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A B S T R A C T

High energy scattering processes are an essential tool for understanding the substruc-
ture of hadrons in terms of their constituents, i.e. quarks and gluons. The theory
which describes the dynamics of quarks and gluons inside hadrons is called quantum
chromodynamics (QCD). Using QCD for the description of high energy particle colli-
sions is a very challenging task. Its applicability rests on the concept of factorization:
the scattering process is separated into a part where one can use well established
perturbative methods and into a part where the complicated hadron structure is
parameterized by phenomenological functions. Those functions are the, so called,
parton distribution functions. Factorization can be rigorously proved (so-called factor-
ization theorems) only for a few specific examples. But it is plausibly assumed to hold
at high-energies. The thesis is organized as follows: After a short introduction we
investigate the exclusive production of charmed hadrons using a factorization based
approach in the first main part of this thesis. To be more specific, we consider the
following two processes: π− p→ D− Λ+

c and γ p→ D∗ Λ+
c . Using physical plausible

assumptions, the scattering amplitude factorizes into a perturbatively calculable par-
tonic subprocess and hadronic matrix elements, which contain the non-perturbative
bound-state dynamics of the hadronic constituents. These hadronic matrix elements
are parameterized in terms of generalized parton distributions (GPDs) and a meson
distribution amplitude (DA). We show estimates for the cross sections and spin cor-
relation functions. In the second main part we use the, so called, meson-cloud model
to model (collinear) parton distribution functions (PDFs) of the proton. We discuss
the unpolarized, polarized and transversity PDFs of the proton as well as the flavor
asymmetries in the unpolarized and polarized proton sea.
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Z U S A M M E N FA S S U N G

Hochenergie-Streuprozesse sind unverzichtbar um die Substruktur der Hadronen
auf Konstituentenniveau, d.h. auf Niveau von Quarks und Gluonen, zu studieren.
Die Theorie, welche die Dynamik von Quarks und Gluonen innerhalb von Hadro-
nen beschreibt, nennt man Quantenchromodynamik (QCD). Deren Anwendung auf
Hochenergie-Streuprozesse gestaltet sich als sehr schwierig. Um QCD auf Hochenergie-
Streuprozesse anwenden zu können, verwendet man das Konzept der Faktorisierung.
Dabei trennt man den Streuprozess in zwei verschiedene Teile auf: In einem Teil, auf
den man gut etablierte störungstheoretische Methoden anwenden kann und ein an-
derer Teil, der die komplizierte Substruktur der Hadronen durch phänomenologische
Funktionen parametrisiert. Diese Funktionen sind die so genannten Partonverteilungs-
funktionen. Faktorisierung kann man rigoros nur für ein paar bestimmte Prozesse
beweisen, aber man ist im allgemeinen der Ansicht, dass Faktorisierung auch generell
bei sehr hohen Energien gelten soll. Die Dissertation ist wie folgt aufgebaut: Nach
einer kurzen Einleitung diskutieren wir im ersten Teil dieser Arbeit die exklusive
Produktion von Teilchen mit “Charm”. Genauer gesagt, untersuchen wir die fol-
genden zwei Prozesse π− p → D− Λ+

c und γ p → D∗ Λ+
c , indem wir eine durch

Faktorisierung motivierte Herangehensweise benützen. Unter physikalisch plausiblen
Annahmen faktorisieren die Streuamplituden in einen störungstheoretisch behandel-
baren partonischen Teilprozess und hadronische Matrixelemente, welche die Forma-
tion der Partonen zu Hadronen beschreiben. Diese Matrixelemente werden durch
sogenannte generalisierte Parton-Distributionen und Meson-Distributionsamplituden
paramterisiert. Wir erhalten numerische Vohersagen für differentielle und integrierte
Wirkungsquerschnitte, sowie Spin-Korrelationsfunktionen. Im zweiten Teil der Dis-
sertation benützen wir ein Meson-cloud Modell um (kollineare) Partonverteilungsfunk-
tionen des Protons zu modellieren. Wir diskutieren insbesondere nicht polarisierte,
polarisierte und transversale Partonverteilungsfunktionen, sowie die dazugehörigen
“flavor”- Asymmetrien im (nicht) polarisierten See des Protons.
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1
I n t r o d u c t i o n

Quantum chromodynamics (QCD) is the quantum field theory of the strong interac-
tion. It is formulated as a gauge theory with SU(3)color as the corresponding gauge
group which gives the theory its non-abelian character. The fundamental building
blocks of QCD are spin 1

2 particles, called the quarks, and spin 1 gauge bosons, called
the gluons. QCD has two remarkable features which are predominant in different
energy regimes

• In the high energy regime (or equivalently short space-time distances):
Asymptotic freedom.
Asymptotic freedom means that the coupling constant of QCD, αs, becomes
small at high energies and hence we can use well established perturbative meth-
ods to make theoretical predictions. This branch of QCD is termed perturbative
QCD (pQCD) [1].

• In the low energy regime (or equivalently at large space-time distances):
Confinement.
Confinement stands, loosely speaking, for the fact that quarks and gluons
cannot be isolated from each other, i.e. colored particles are not observable in
nature. Furthermore in the low energy regime the coupling αs becomes large, so
that perturbative methods are not applicable. Rather we have to stick to some
modeling or use non-perturbative methods such as lattice QCD [2].

Up to now it is not fully understood how quarks and gluons (which do not exist as
isolated particles) form the observed hadrons. The missing link to fully describe all
phenomena of the strong interaction within QCD is the transition from its elementary
building blocks, i.e. quarks and gluons, to the real objects observed in experiments,
i.e. hadrons. Therefore, QCD confronts us with a problem: On the macroscopic level
our detectors can only detect hadrons. But with hard processes1 we can also probe
their substructure. How is it possible to learn something about the microscopic
structure, that is on the level of quarks and gluons, from the experiments if we do
not understand the transition from there to the observable hadrons? The answer and
the way out of the dilemma is provided by factorization which is also the basis of
the parton model. Thereby the process of interest is divided into two parts: a short-
distance partonic subprocess that can be calculated by means of pQCD and the long

1These are generally high-energy processes that involve at least one hard scale such as a high photon
virtuality or a large momentum transfer which justifies the use of pQCD
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2 Introduction

distance binding effects that are described by hadronic matrix elements of parton
field operators. The short distance effects (hard physics) and the long distance effects
(soft physics) decouple from each other and to a good approximation do not influence
each other. The former are in principle calculable to arbitrary accuracy, but going
beyond tree level becomes soon very tricky and quite tedious. The soft physics part is
parameterized in the form of, a priori, unknown functions. Depending on the process
of interest these functions can be

• Form factors (FFs)

• Parton distribution functions (PDFs)

• Generalized parton distributions (GPDs)

• . . .

The predictive power of the formalism with FFs, PDFs and GPDs rests on the property
of universality which means that, once measured in a hard process, FFs, PDFs and
GPDs can be used for the calculation of other processes (requiring the same type of
distributions). It is beyond the scope of this chapter to give a comprehensive introduc-
tion to these functions. We rather want to state their definition and we also want show
typical examples whose description involves the above mentioned phenomenological
functions2. We note that this will be done in a schematic and strongly simplified
manner.

The nucleon structure has been extensively investigated by two main classes of
scattering processes since the late 60‘s: Elastic scattering processes and inclusive (deep)
inelastic scattering.
Let us start to consider the elastic process e−N → e−N, see left panel of Fig. 1.1. An
electron e− exchanges a highly virtual photon γ∗ with the nucleon N. The nucleon
changes its momentum but it remains a nucleon. The photon interacts with a single
quark inside the nucleon. The “soft” physics is factorized into the FFs Fq

1 (t) and
Fq

2 (t) where t = (pN − p′N)
2 = −Q2 and Q2 being minus the photon four-momentum

squared. They are related to the following vector QCD local operators (since we need
them later we also define at this point the axial vector operators3), see right panel of
Fig.1.1

〈N : p′N |Ψ̄q(0)γ+Ψq(0)|N : p〉 = ū
(

p′N
) [

Fq
1 (t)γ

+ + Fq
2 (t)

iσ+ν∆ν

2mN

]
u (pN) ,

〈N : p′N |Ψ̄q(0)γ+γ5Ψq(0)|N : p〉 = ū
(

p′N
) [

Gq
A(t)γ

+γ5 + Gq
P(t)γ5

∆+

2mN

]
u (pN) .

(1.1)

2We follow here closely chapter 1 of Ref. [3]
3Those cannot be accessed in elastic lepton nucleon scattering
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FF

0

t=Δ2

N(p) N(p+Δ)

x x

e e

γ

N N

q q

*

Figure 1.1: Left panel: Elastic scattering. Right panel: Illustration of the associated local non-
diagonal matrix element which can be accessed in the elastic scattering process as
shown in the left panel.

These operators are non-diagonal since the momenta of the initial and final nucleons
are different and they are local since the initial and final quarks are created (annihi-
lated) at the same space-time point.

The second class is inclusive deep inelastic scattering (DIS) e−N → e−X, where X
denotes an undefined final state. The electron scatters through one photon exchange4.
For sufficiently high Q2 we can “see” the inner structure of the nucleon5, see left panel
of Fig. 1.2. The photon interacts with a single quark of the nucleon. The struck quark
is hit so hard that it “escapes” its parent nucleon and hadronizes. The nucleon also
breaks-up into many fragments leaving the final state undetermined. The complex
quark and gluon structure as governed by QCD is factorized into the unpolarized PDF
f q
1 (x) and polarized PDF gq

1(x). They correspond to the following QCD operators6

PDF

0

N(p) N(p)

x x

e e

γ

N N

q

*

y

Figure 1.2: Left panel: Deep inelastic scattering. Right panel: Illustration of the associated
diagonal non-local matrix element which can be accessed in DIS.

4This is only a first approximation. The effects of two photon exchanges are beyond the scope of this
text.

5The approximate Q2-independence of the cross section in the early days of the experiment was
(correctly) interpreted as a signature of a process where the photon interacts with a pointlike
constituent inside the nucleon. QCD modified this picture and gave an explanation of the Q2-
dependence of the cross section.



4 Introduction

f q
1 (x) =

1
2

∫ dz−

2π
ei x p+ z− 〈N : p|Ψ̄q (0) γ+Ψq (y−) |N : p〉 ,

gq
1(x) =

1
2

∫ dz−

2π
ei x p+ z− 〈N : p, S‖|Ψ̄q (0) γ+γ5Ψq (y−) |N : p, S‖〉 .

(1.2)

S‖ denotes the longitudinal nucleon spin projection and x is the longitudinal mo-
mentum fraction carried by the struck quark. Since space-time coordinates of the
initial and final nucleon are different, the operators in Eq. (1.2) are non-local and
since the momenta of the initial and final nucleon are identical they are diagonal. The
operators are illustrated in the right panel of Fig. 1.2. These PDFs are a 1-dimensional
momentum distribution of the quarks inside the nucleon and therefore also called
collinear PDFs.
The PDFs f q

1 (x) and gq
1(x) do not exhaust all the possible collinear distribution

functions which can be defined. It is also possible to define the transversity hq
1(x) by

hq
1(x) = −1

2

∫ dz−

2π
ei x p+ z− 〈N : p, S⊥|Ψ̄q (0) iσ+1γ5 Ψq (y−) |N : p, S⊥〉 , (1.3)

with S⊥ being the transverse spin projection. Equation (1.3) is a chiral odd quantity
and cannot be accessed in DIS. In order to measure h1 the chirality must be flipped
twice: We must either have two hadrons in the initial state or one hadron in the initial
state and at least one hadron in the final state. Thus it is very challenging to extract
information about the transversity from experiments. From a phenomenological point
of view, the unpolarized PDF is a very well know quantity, the polarized PDF is know
to some extent and the transversity is poorly know.

In the 90‘s another class of reactions attracted much interest: Hard exclusive reactions.
Such reactions are experimentally very challenging, since it is very difficult to hit a
complex composite object very hard (to resolve its substructure) on the one hand and
to avoid a break-up into fragments (to detect a specific final state) on the other hand.
The consequence is low counting rates in an experiment. As an example we consider
the exclusive electroproduction of a photon on the nucleon at large Q2 , i.e. γ∗N → γN,
see left panel of Fig. 1.3. Such a diagram is also called a “handbag” diagram. The
factorization theorem states that the handbag mechanism is the dominant one for
sufficiently high virtuality of the initial photon. It scatters on the quark and the same
quark radiates away the final photon. The factorizing functions are the so called
GPDs7 Hq (x, ξ, t) , Eq (x, ξ, t) , H̃q (x, ξ, t) and Ẽq (x, ξ, t). They correspond to the
Fourier transform of non-local and non-diagonal QCD operators (which are also

6We are working in light-cone gauge, i.e. A+ = 0.
7Omitting their Q2-dependence. It is a consequence of Lorentz invariance that the GPDs depend on

the three variables x, ξ and t.
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GPD

0
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y

γ

t=Δ2

Figure 1.3: Left panel: Deep inelastic scattering. Right panel: Illustration of the associated
diagonal non-local matrix element which can be accessed in DIS.

illustrated in the right panel of Fig. 1.3)

1
2

∫ dz−

2π
eixP+z− 〈N : p′|Ψ̄q (0) γ+Ψ

(
y−
)
|N : p〉

=
1

2P+
u(p′)

[
Hq(x, ξ, t)γ+ + Eq(x, ξ, t)

iσ+ν∆ν

2mN

]
u(p),

1
2

∫ dz−

2π
eixP+z− 〈N : p′|Ψ̄q (0) γ+γ5Ψ

(
y−
)
|N : p〉

=
1

2P+
u(p′)

[
H̃q(x, ξ, t)γ+γ5 + Ẽq(x, ξ, t) γ5

∆+

2mN

]
u(p),

(1.4)

where P is the average nucleon momentum, i.e. P = (pN + p′N) /2, t = ∆2 =

(p′N − pN)
2 and ξ = −∆+

2P+ , respectively. If we look at Eq. (1.4), we see that the quark
field operator structure is helicity conserving. It is also possible to define transversity
GPDs involving the use of the σ+ν operator between the quark fields, see Ref. [4] for
more details.
For a comprehensive review on GPDs we refer the interested reader to Ref. [5].
However, we do mention a few important properties:

• Partonic content:
x can vary between −1 and 1 and ξ could in principle also vary in that range but
due to time reversal invariance the range of ξ is reduced to be between 0 and 1.
If |x| > ξ the GPDs represent the probability amplitude of taking out a quark
(or an antiquark if x < −ξ) from the nucleon with a plus momentum fraction
x + ξ (ξ − x) and reinsert it back to the nucleon with a momentum fraction
x− ξ (−ξ − x) plus some “kick” in the transverse momentum represented by t.
In the region −ξ < x < ξ the GPDs are the probability amplitude of finding a
quark-antiquark pair in the nucleon with a momentum fraction x + ξ and ξ − x
of the plus momentum, respectively. This partonic interpretation of the GPDs
also reveal their novelty: The correlations between (anti-)quarks with different
momenta or the information on qq̄ configurations are relatively unknown.

The region |x| > ξ is also called DGLAP-region8 and the region −ξ < x < ξ is

8Dokshitzer-Gribov-Lipatov-Altarelli-Parisi



6 Introduction

called the ERBL-region9 following the different patterns of the evolution in the
factorization scale.

• Helicity content:
At the nucleon level Hq and H̃q leave the nucleon helicity unchanged, whereas
Eq and Ẽq are associated with a flip of the nucleon helicity. On the quark level
Hq and Eq correspond to the average of quark helicities and are therefore called
unpolarized GPDs. The GPDs H̃q and Ẽq involve differences of quark helicities
and are called polarized GPDs. Thus, the four GPDs of Eq. (1.4) reflect the
independent quark-nucleon helicity combinations10.

• Forward limit:
In the forward limit, i.e. ξ, t→ 0, the GPDs Hq (x, 0, 0) and Eq (x, 0, 0) reduce to
the collinear PDFs f q

1 (x) and gq
1(x), respectively.

• First moment:
The first moments of the GPDs of Eq. (1.4) are related to the FFs of Eq. (1.1) by

∫ 1

−1
dxHq (x, ξ, t) = Fq

1 (t),
∫ 1

−1
dxEq (x, ξ, t) = Fq

2 (t),∫ 1

−1
dxH̃q (x, ξ, t) = Gq

A(t),
∫ 1

−1
dxẼq (x, ξ, t) = Gq

P(t).
(1.5)

• Second moment:
The second moment of the GPDs, Ji‘s sum rule, is relevant for the spin structure
of the nucleon. In Ref. [6] it was shown that the nucleon spin can be decomposed
as follows: 1

2 = Jq + Jg, where Jq is the total quark contribution to the nucleon
spin and Jg is the total gluon contribution to the nucleon spin, respectively. Ji‘s
sum rule relates Jq to the GPDs:

Jq =
1
2

∫ 1

−1
dx x

[
Hq (x, ξ, t = 0) + Eq (x, ξ, t = 0)

]
. (1.6)

The first and the second moment of the GPDs are a particular case of a more general
sum rule: xn moments of the GPDs must be a polynomial in ξ of order n. This
property is called polynomiality [5].

For the sake of completeness we mention that the FFs, PDFs and GPDs can be
considered as a particular limit of more generalized objects, called generalized parton
correlation functions, which provide a unified framework to discuss all the information
on partons within hadrons.

In this thesis we deal not only with parton distributions of the nucleon and
their modeling, but also with generalized parton distributions which describe the
transition betweens hadrons– in our case p→ Λc and π → D transitions. We analyze

9Efremov-Radyushkin-Brodsky-Lepage
10Conserving the quark helicity.
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the handbag contributions to π− p → D− Λ+
c and γ p → D∗λ=0 Λ+

c , show how the
transition GPDs arise in these processes, model the GPDs and make predictions for
the corresponding reaction cross section. The thesis is organized as follows: It is
divided into two main parts. In the first part, Sec. 2, we investigate the exclusive
production of charmed hadrons. We start in Sec. 2.1 by pointing out that the situation
on the description of charmed hadron production is controversial in the sense that
the estimates of the production cross sections can differ by orders of magnitude for
the different models available on the market. We discuss then how

• π− p→ D− Λ+
c (see Sec. 2.3),

• γ p→ D∗λ=0 Λ+
c (see Sec. 2.4),

can be described within the generalized parton picture. The soft ingredients to these
processes are p → Λc and π → D transition GPDs, which we model by means
of valence quark light-cone wave functions for the hadrons involved. We conclude
this chapter in Sec. 2.5 by discussing how the large differences in the cross section
predictions as compared to our model come about.

In the second part, Sec. 3, we use a front form meson-cloud model to calculate collinear
nucleon PFDs. We start in Sec. 3.2 to present the basics of the meson cloud model,
explain in Sec. 3.3 how we can apply the meson-cloud model to get a convolution
formula of the PDFs and finally present our results in Sec. 3.5.





2
H a r d e x c l u s i ve p r o d u c t i o n o f c h a r m e d p a r t i c l e s

In this section we motivate why exclusive production of charmed particles is an
interesting research field and then use a handbag approach to describe the following
two processes:

• π− p→ D− Λ+
c (Sec. 2.3),

• γ p→ D∗λ=0 Λ+
c (Sec. 2.4).

The pion induced process was published in Ref. [7] and the photoproduction of the
longitudinally polarized D∗ mesons (which we denote by D∗λ=0) is unpublished so far.
We note that the photoproduction of the pseudoscalar D0 meson has been already
studied and published in Refs. [8, 9]1. Updated results with the same constituent
kinematics as chosen now for the D∗λ=0 case are therefore included (and shown for
the very first time) in this thesis in App. G.

2.1 Why should we study the production of charmed hadrons?

There is a vivid interest in the prediction of cross sections for the exclusive production
of charmed hadrons. Be it for the planned P̄ANDA experiments 2, the new facility
at J-PARC 3 with a high energy pion beam, or for the upgraded JLab 4. To asses the
capacity of the experiments and to plan the upcoming experiments it is important to
know the amount of produced charmed mesons and baryons, i.e. to have a reliable
estimate of the cross section. However the investigation of such processes is a very
challenging task because of two main reasons:

• Lack of experimental data (to constrain parameters).

1The constituent kinematics chosen there is physically plausible, but violates four-momentum conser-
vation on the constituent level.

2One of the key experiments at FAIR (Facility for Antiproton and Ion Research) in Darmstadt will
be the P̄ANDA experiment. In this experiment one is, among other things, interested in charmed
hadron spectroscopy and how charmed hadrons are modified when they are embedded in hadronic
matter. One big advantage in using p̄ p collisions to produce charmed particle pairs is that no extra
particles are need to ensure charm conservation.

3J-PARC stands for Japan Proton Accelerator Research Complex. One experimental program is devoted
to the study of (excited) charmed Lambda-particles. The reaction chosen to investigate these questions
is π p→ D(∗)Λc.

4The energy of the photon beam after the 12 GeV upgrade at JLab (Jefferson Lab) is big enough to
produce charmed mesons.

9
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• The dominant production mechanism for charmed hadron production is not
known.

The first point will become much less severe with the (above mentioned) upcoming
experiments with which a considerable improvement of the experimental situation
for charmed hadron production is to be expected. The second point is from the
perspective of a theoretical physicist very exciting since several models can be used
and compared with each other. In fact the situation is such, that the various predictions
differ by several orders of magnitude as emphasized for example in Ref. [10] for
p̄ p → Λ̄−c Λ+

c . Let us illustrate this statement in some more detail. In particular
we sketch the main features of the generalized parton picture (which we also use to
investigate the processes mentioned in the very beginning of this section) and those
of hadronic models and plot the estimates of the cross section.

In Fig. 2.1 we show the unpolarized cross section integrated over the forward
hemisphere for p̄ p → Λ̄−c Λ+

c as predicted by the generalized parton picture. Its
magnitude is of the order of 1 nb.

25 30 35 40 45 50

1

2

3

4

5

6

s [GeV2]

σ
[n
b]

pp̄→ Λ+c Λ̄
−
c

Figure 2.1: The cross section of p̄ p → Λ̄−c Λ+
c integrated over the forward hemisphere (i.e.

cos θ ≤ 0) using a handbag mechanism (see Fig. 2.2). This plot is taken from
Ref. [11].

The main features of this approach are:

• The reaction mechanism is the handbag mechanism5 shown in Fig. 2.2. The
arguments why pole contributions (ERBL-region) can be neglected can be found
in Ref. [11].

• The charm quarks are produced perturbatively.

• The transition GPDs for p→ Λ+
c and p̄→ Λ̄−c are unknown: They need to be

modeled.

In Fig. 2.3 we show the results for the integrated cross section using hadronic
models. Their main features are

5Based on the hypothesis that hard and soft processes factorize.
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p +

u

c

c
g

u

cΛ

p -
cΛ

GPDs

GPDs

Figure 2.2: The double handbag contribution to p̄ p→ Λ̄−c Λ+
c .

• Charm is produced non-perturbatively via (single or reggeized) exchange of a
hadron H, see Fig. 2.4.

• The strong coupling at the vertex is unknown. SU(4) f -symmetry as a first ap-
proximation or for example QCD sum rules are used to determine the couplings.

When we compare Fig. 2.1 with Fig. 2.3 we note that there are differences in the
predictions up to three orders of magnitude.

Figure 2.3: The integrated cross section for p̄ p→ Λ̄−c Λ+
c predicted by hadronic models. On

the left panel we show the result from an unreggeized hadronic model and on the
right panel the result for a reggeized hadronic model. The figures are taken from
Ref. [10] (left panel) and from Ref. [12] (right panel), respectively.

The differences are discussed in more detail in Sec. 2.5. We focus especially on the
comparison with our model calculations.

Finally we note a complication in the theoretical description of the production of
charmed hadrons. The presence of the charm quark introduces a mass scale which is
much large than the confinement scale ΛQ ≈ 300 MeV. Since the mass scale of the
lighter quarks is � ΛQ there are now two different scales. One way to deal with
two different scales is to use effective theories such as heavy quark effective theories
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H
p

p

Λ

Λ

c

c

H= D and D 0 *0

Figure 2.4: Graphical representation of the hadronic models used to describe p̄ p→ Λ̄−c Λ+
c .

The intermediate line represents the (single or reggeized) exchange of a hadron H.
For this particular process H = D0 and D∗0.

(HQET)6. The large charm mass certainly justifies to apply HQET but is still not
large enough to ignore corrections to it. Therefore, charmed hadrons are also ideal
candidates to test and apply the predictions of HQET.

2.2 Hard exclusive production of charmed hadrons

within the generalized parton picture

Hard exclusive processes have attracted much attention in recent years by both,
theoreticians and experimentalists. Above all the deeply virtual reactions as leptopro-
duction of mesons and photons have been theoretically studied and measured in great
detail. This interest is based on the asymptotic factorization theorems which state
that the process amplitudes can be represented as convolutions of perturbatively cal-
culable partonic subprocess amplitudes with generalized parton distributions (GPDs).
This, so-called, handbag approach is quite successful in describing the deeply virtual
processes qualitatively as well as quantitatively. An alternative class of hard exclusive
processes is characterized by large Mandelstam −t (and −u) providing the hard scale.
For this class the amplitudes factorize in a product of subprocess amplitudes and form
factors representing moments of GPDs. Examples of such processes are wide-angle
real Compton scattering or time-like reactions as, e.g., two-photon annihilations into
pairs of hadrons. Also the time-reversed process proton-antiproton annihilation into
two photons (or photon and meson) belong to this class. Again the handbag approach
works very well in that case. A particular outstanding example is real Compton
scattering. A GPD analysis of the nucleon form factors provides also results for the
Compton form factors. Hence, Compton scattering in the wide-angle region can be
evaluated free of parameters. The results are found to be in fair agreement with
experiment. New measurements performed at the upgraded Jlab will provide another
crucial test for the quality of these results. Future precise data from BELLE and FAIR
may further probe the predictions for the time-like processes.

A third class of hard exclusive processes, which are amenable to the handbag
approach, is formed by reactions involving heavy hadrons. Here the large scale is set

6Introductions to HQET can be found in Refs. [13, 14].
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by the heavy-quark mass and the model can be applied to the forward hemisphere
and Mandelstam s well above the reaction threshold. Like for the wide-angle processes
the heavy-hadron amplitudes are represented by products of subprocess amplitudes
and appropriate form factors. Till now the processes p̄p→ Λ̄−c Λ+

c [11], p̄p→ D0D0

[15] and γp → D0Λ+
c [8, 9] 7 have been investigated. In this thesis we add two

further processes, namely π− p → D− Λ+
c in Sec. 2.3 (published in Ref. [7]) and

γ p→ D∗λ=0 Λ+
c in Sec. 2.4 (unpublished).

7For an updated calculation see App. G.
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2.3 π− p→ D− Λ+
c

In this section we investigate a pion induced reaction for charmed particle production.

2.3.1 Kinematics

The momenta, light-cone (LC) helicities and masses of the incoming proton and
π− are denoted by p, µ, mp and q, mπ, those of the outgoing Λ+

c and D− by
p′, µ′, MΛc and q′, MD, respectively. We consider the reaction in a symmetric center-
of-momentum system (CMS) which has the z-axis aligned along the three-vector part,
p̄, of the average momentum p̄ ≡ 1

2 (p + p′). This reference frame is chosen such
that the transverse component of the momentum transfer ∆ ≡ (p′ − p) = (q− q′) is
symmetrically shared between the particles. Introducing the skewness parameter

ξ ≡ p+ − p′+

p+ + p′+
= − ∆+

2p̄+
, (2.1)

we parameterize the proton and the Λ+
c momenta as follows8

p =

[
(1 + ξ) p̄+,

m2
p + ∆2

⊥/4
2(1 + ξ) p̄+

,−∆⊥
2

]
, p′ =

[
(1− ξ) p̄+,

M2
Λc

+ ∆2
⊥/4

2(1− ξ) p̄+
,

∆⊥
2

]
. (2.2)

The π−-meson and the D−-meson momenta can be written in an analogous way

q =

[
m2

π + ∆2
⊥/4

2(1 + η)q̄−
, (1 + η)q̄−,

∆⊥
2

]
, q′ =

[
M2

D + ∆2
⊥/4

2(1− η)q̄−
, (1− η)q̄−,−∆⊥

2

]
, (2.3)

with

q̄ ≡ 1
2
(
q + q′

)
and η ≡ q− − q′−

q− + q′−
=

∆−

2q̄−
. (2.4)

The Mandelstam variable s is given by

s = (p + q)2 = (p′ + q′)2, (2.5)

which is the invariant mass squared of our process. Mandelstam s has to be larger
than (MΛc + MD)

2 = 17.27 GeV2 to produce the particles Λ+
c and D−. The remaining

two Mandelstam variables read

t = ∆2 = (p′ − p)2 = (q− q′)2 (2.6)

and

u = (q′ − p)2 = (p′ − q)2, (2.7)

8The notation that we use can be found in the App. A.
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p:p,μ +:p,μ

π:q D:q

u:k1,λ1,a1

c:k2,λ2,a2

c:k1,λ1,a1
kg

u:k2,λ2,a2

cΛ

Figure 2.5: The double-handbag contribution to the process π− p→ D− Λ+
c (in the DGLAP

region). The momenta, LC helicities and colors of the quarks are specified.

such that
s + t + u = m2

p + m2
π + M2

Λc
+ M2

D. (2.8)

The explicit expressions for p̄+, q̄−, ξ, η, ∆2
⊥, t, u can be found in App. B with9

ma = mp = 0.938272 GeV, mb = mπ = 0.139570 GeV, mc = MΛc = 2.286460 GeV and
md = MD = 1.869620 GeV.

2.3.2 Double-handbag mechanism

As in Ref. [11] we argue that intrinsic (non-perturbative) charm of the proton (see also
Sec. 2.5.3) can be neglected and the mechanism which dominates π− p → D− Λ+

c
well above the kinematical threshold

(
≈ 17.27 GeV2) and in the forward hemisphere

is the one depicted in Fig. 2.5. It is understood that the proton emits a u-quark10 with
momentum k1 and helicity λ1, the π− a ū-quark with momentum k2 and helicity
λ2, respectively. They undergo a scattering with each other, i.e. they annihilate into
a gluon and subsequently produce the cc̄ pair. The heavy partons, characterized
by k′1, λ′1 and k′2, λ′2, are reabsorbed by the remnants of the proton and the π− to
form the final Λ+

c and D−. To produce the cc̄-pair the Mandelstam variable ŝ of the
subprocess11 has to be

ŝ ≥ 4m2
c ≈ 6.50 GeV2. (2.9)

The (heavy) quark mass mc therefore serves as a natural scale which implies that the
intermediate gluon has to be highly virtual.

2.3.2.1 “Factorization” of the handbag diagram

In the quantum-field-theoretical sense, factorization means that IR-sensitive contribu-
tions arising from radiative corrections to the partonic cross-sections or amplitudes
can be unambiguously absorbed into appropriate hadronic quantities. We use the

9The values of the masses are taken from Ref. [16].
10The light quarks are treated as massless particles.
11Generally, the “hat” on Mandelstam variables indicates that those Mandelstam variables refer to the

partonic subprocess.
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word “factorization” in a more loose sense12: We just mean the physical situation of
a hard subprocess on the partonic level (uū → cc̄) at O (αs) and the soft emission
(re-absorption) of partons by the proton and π− (Λ+

c and D−) described by soft
hadronic matrix elements on the hadronic level. In order to justify such a picture we
have to make the following assumptions [11, 17]:

• The parton virtualities and (intrinsic) transverse momenta13 are restricted by a
typical hadronic scale Λ which is of the order of 1 GeV:

k2
i . Λ2 for u-quarks and |k2

i −m2
c | . Λ2 for charm quarks, (2.10)

k(′)2
⊥

x(′)i

. Λ2. (2.11)

The u → c (ū → c̄) transition GPDs are a function of three variables: The average
momentum fraction defined by

x̄1 =
k+1 + k′+1
p+ + p′+

(
x̄2 =

k−1 + k′−1
q− + q′−

)
, (2.12)

the skewness parameter ξ (η) and Mandelstam t.

• p → Λc (π → D) GPDs exhibit a pronounced peak at a large value of x̄1 (x̄2)

close to the ratio of charm-quark to charmed-hadron masses x̄10 = mc/MΛc ≈
0.56 (x̄20 = mc/MD ≈ 0.68). Such a behavior parallels the theoretical expected
and experimentally confirmed property of heavy-quark fragmentation functions,
in particular for c → Λ+

c [18] and is also analogous to the behavior of heavy-
hadron distribution amplitudes (DAs) [19, 20]. It also ensures that the active
u (ū) and c (c̄) quarks which take part in the hard subprocess do not have large
transverse momentum with respect to their parent hadron, cf. Ref. [21].

Under these assumptions, with mc taken as the hard scale, the hadronic amplitude M

is represented as a product of a hard partonic scattering kernel H̃ and soft hadronic
matrix elements which describe the p→ Λc and π → D transitions by emission and
absorption of soft (anti)quarks. These quarks participate in the partonic subprocess
ū u → c̄ c, are approximately on-mass-shell and collinear with their parent hadron.
Of course, this is by no means a proof for factorization but we rather take it as an
assumption to be confronted with experimental data.

12We do not give a proof of factorization, but rather argue under which assumptions factorization may
happen.

13The i-th parton carries a momentum fraction x(′)i of its parent particle.
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2.3.2.2 The scattering amplitude I

The scattering amplitude for the process can be written as14

Mµ′,µ = ∑
a(′)i ,α(′)i

∫
d4k̄1 Θ(k̄+1 )

∫ d4z1

(2π)4 eik̄z1

∫
d4k̄2 Θ(k̄−2 )

∫ d4z2

(2π)4 eik̄2z2

× 〈Λ+
c : p′, µ′|T Ψc

a′1,α′1

(
− z1

2

)
Ψu

a1,α1

( z1

2

)
|p : p, µ〉 H̃

a(′)i ,α(′)i

(
k̄1, k̄2

)
× 〈D− : q′|T Ψu

a2,α2

( z2

2

)
Ψc

a′2,α′2

(
− z2

2

)
|π− : q〉 ,

(2.13)

where we have introduced15 the average partonic momenta k̄i ≡
ki+k′i

2 , α
(′)
i , a(′)i denote

the Dirac and color indices, respectively, and H̃ is the hard scattering kernel. Using
Eqs. (2.10)-(2.11) the momenta of the active quarks can be approximated by on-mass
shell vectors which are collinear to their parent hadrons, i.e.

k1 →
[

k+1 ,
x2

1∆2
⊥

8k+1
,−x1

∆⊥
2

]
with k+1 = x1 p+,

k′1 →
[

k′+1 ,
m2

c + x′21 ∆2
⊥/4

2k′+1
, x′1

∆⊥
2

]
with k′+1 = x′1 p′+,

k2 →
[

x2
2∆2
⊥

8k−2
, k−2 , x2

∆⊥
2

]
with k−2 = x2q−,

k′2 →
[

m2
c + x′22 ∆2

⊥/4
2k′−2

, k′−2 ,−x′2
∆⊥
2

]
with k′−2 = x′2q′−.

(2.14)

Or, in other words, using the fact that our subprocess is dominated by a large scale (the
heavy quark mass mc), the variation of the transverse and minus (plus) components
of the active quarks in the proton and π (D and Λc) can be neglected in the hard-
scattering kernel H̃. Therefore the integrations over k̄−1 , k̄⊥1, k̄+2 and k̄⊥2 in Eq. (2.13)
can be done analytically. The line of arguments leading to Eq. (2.14) also puts an upper
bound on ∆2

⊥ which restricts the validity of our approach to a particular angular
range around the forward direction. For the energies we are interested in this angular
range is, however, sufficiently large to obtain reasonable estimates for integrated cross
sections.

14We are working in light-cone gauge, i.e. A+ = 0.
15The whole hadronic four-momentum transfer ∆ is exchanged between the active partons in the

partonic subprocess.
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The simplified amplitude reads16 (using k̄+1 = x̄1 p̄+ and k̄2 = x̄2q̄−)

Mµ′,µ = ∑
a(′)i ,α(′)i

∫
dx̄1 p̄+

∫ dz−1
(2π)

eix̄1 p̄+z−1
∫

dx̄2 q̄−
∫ dz+2

(2π)
eix̄2 q̄−z+2

× 〈Λ+
c : p′, µ′|Ψc

a′1,α′1

(
−

z−1
2

)
Ψu

a1,α1

(
z−1
2

)
|p : p, µ〉 H̃

a(′)i ,α(′)i

(
x̄1 p̄+, x̄2q̄−

)
× 〈D− : q′|Ψu

a2,α2

(
z+2
2

)
Ψc

a′2,α′2

(
− z+2

2

)
|π− : q〉 .

(2.15)

The process amplitude is a convolution of a hard scattering kernel with hadronic
matrix elements Fourier transformed w.r.t. the momentum fraction x̄1 and x̄2. The soft
part is encoded in Fourier transforms of two hadronic matrix elements (of a bilocal
product of quark field operators):

• p→ Λ+
c transition

p̄+
∫ dz−1

(2π)
eix̄1 p̄+z−1 〈Λ+

c : p′, µ′|Ψc
a′1,α′1

(
−

z−1
2

)
Ψu

a1,α1

(
z−1
2

)
|p : p, µ〉 , (2.16)

• π− → D− transition

q̄−
∫ dz+2

(2π)
eix̄2 q̄−z+2 〈D− : q′|Ψu

a2,α2

(
z+2
2

)
Ψc

a′2,α′2

(
− z+2

2

)
|π− : q〉 . (2.17)

These matrix elements describe the non-perturbative part of our process and are called
transition matrix elements. The subsequent section is devoted on how to manipulate
those matrix elements to bring it to a form which is suitable for a parameterization in
terms of GPDs.

2.3.2.3 Transition matrix elements

Using projection techniques as in Refs. [11, 17] we can pick out the “leading twist”
contributions from the bilocal quark-field operator product Ψc

(−z−1 /2)Ψu(z−1 /2) of
Eq. (2.16)

〈Λ+
c |Ψ

cΨu |p〉 : 〈Λ+
c |Ψ

c{
γ+, γ+γ5, iσ+j}Ψu |p〉 (2.18)

and from Ψu
(z+2 /2)Ψc(−z+2 /2) of Eq. (2.17)

〈D−|ΨuΨc |π−〉 : 〈D−|Ψu{
γ−, γ−γ5, iσ−j}Ψc |π−〉 , (2.19)

respectively (σ±j = iγ±γj with j = 1, 2 labeling transverse components). The three
Dirac structures showing up in Eqs. (2.18) and (2.19) can be considered as + or −
components of (bilocal) vector, pseudovector and tensor currents, respectively. These
currents are then Fourier transformed (with respect to z−1 or z+2 ) and decomposed
into appropriate hadronic covariants. The coefficients in front of these covariants are

16The distance of the quark field operators is forced to be light-like with the replacement of Eq. (2.14)
and thus we do not need time ordering anymore.
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the quantities which are usually understood as GPDs. For the p → Λ+
c transition

this kind of analysis leads to 8 GPDs, as explained in detail in Ref. [11]. Matters
become much simpler for the pseudoscalar to pseudoscalar D− → π− transition.
Due to parity invariance the matrix element 〈D−|Ψu

γ−γ5Ψc |π−〉 vanishes and the
covariant decomposition of the remaining vector and tensor currents gives rise to
two π− → D− transition GPDs. In App. C we use the aforementioned technique
step by step and show how it can be used to parameterize the matrix element of
Eq. (2.16) in terms of GDPs. Therefore we restrict the discussion in the remainder of
this subsection to the transition matrix element, Eq. (2.17).

The π− → D−-transition is described by the following matrix element17

q̄−
∫ dz+2

(2π)
eix̄2 q̄−z+2 〈D− : q′|Ψu

(
z+2
2

)
Ψc
(
− z+2

2

)
|π− : q〉 . (2.20)

The quark field operator product of Eq. (2.20) can be written as (see Ref. [11] and
App. C.1)

Ψu (z+2 /2
)

Ψc (−z+2 /2
)
= − 1

2
√

k−2 k′−2

×∑
λ2

{[
Ψu (z+2 /2

)
γ−

1− 2λ2γ5

2
Ψc (−z+2 /2

) ]
v (k2, λ2) v

(
k′2, λ2

)
+ 2λ2

[
Ψu (z+2 /2

) iσ−1

2
Ψc (−z+2 /2

)
+ 2iλ2Ψu (z+2 /2

) iσ−2

2
Ψc (−z+2 /2

) ]
v (k2, λ2) v

(
k′2,−λ2

) }
.

(2.21)

Inserting Eq. (2.21) into Eq. (2.20) we get

q̄−
∫ dz+2

(2π)
eix̄2 q̄−z+2 〈D− : q′|Ψu

(
z+2
2

)
Ψc
(
− z+2

2

)
|π− : q〉 =

− 1

4
√

k−2 k′−2
q̄−
∫ dz+2

(2π)
eix̄2 q̄−z+2

×∑
λ2

〈D− : q′|
{

v (k2, λ2) v
(
k′2, λ2

) [
Ψu (z+2 /2

)
γ−Ψc (−z+2 /2

)
− 2λ2Ψu (z+2 /2

)
γ−γ5Ψc (−z+2 /2

) ]
+ 2λ2v (k2, λ2) v

(
k′2,−λ2

) [
Ψu (z+2 /2

)
iσ−1Ψc (−z+2 /2

)
+ 2iλ2 Ψu (z+2 /2

)
iσ−2Ψc (−z+2 /2

) ]
}
|π− : q〉 .

(2.22)

17For better legibility we suppress the Dirac and color indices of the quark fields.



20 Hard exclusive production of charmed particles

Due to parity invariance 〈D−|Ψu
γ−γ5Ψc|π−〉 = 0 [22]. We introduce now the

following notation

Vµ(−z+2 /2, z+2 /2) := Ψc
(−z+2 /2)γµΨu(z+2 /2)−Ψu

(z+2 /2)γµΨc(−z+2 /2),

Tµν(−z+2 /2, z+2 /2) := Ψc
(−z+2 /2)iσµνΨu(z+2 /2)−Ψu

(z+2 /2)iσµνΨc(−z+2 /2) (2.23)

and

H cu ≡ q̄−
∫ dz+2

2π
eix̄2 q̄−z+2 〈D− : q′|V−(−z+2 /2, z+2 /2) |π− : q〉 , (2.24)

H T cu
j ≡ q̄−

∫ dz+2
2π

eix̄2 q̄−z+2 〈D− : q′| T−j(−z+2 /2, z+2 /2) |π− : q〉 , (2.25)

with
H T cu

λ2
≡ 1

2

(
H T cu

1 − 2λ2iH T cu
2

)
. (2.26)

Thus Eq. (2.20) reads

q̄−
∫ dz+2

(2π)
eix̄2 q̄−z+2 〈D− : q′|Ψu

(
z+2
2

)
Ψc
(
− z+2

2

)
|π−q〉 =

1

4
√

k−2 k′−2
∑
λ2

{
H cu v (k2, λ2) v

(
k′2, λ2

)
+ 4λ2H

T cu
−λ2

v (k2, λ2) v
(
k′2,−λ2

)}
.

(2.27)

This is the final form of the π− → D− transition matrix element. It is in a form which
is suitable for a parameterization in terms of GPDs. The leading twist pseudoscalar
GPDs are defined by18 [22]

q̄−
∫ dz+2

2π
eix̄2 q̄−z+2 〈D− : q′|Ψu

(
z+2
2

)
γ−Ψc

(
− z+2

2

)
|π− : q〉 = 2q̄− Hcu

πD(x̄2, η, t)

(2.28)
and

q̄−
∫ dz+2

2π
eix̄2 q̄−z+2 〈D− : q′|Ψu

(
z+2
2

)
iσ−jΨc

(
− z+2

2

)
|π− : q〉

=
q̄−∆j − ∆−q̄j

mπ + MD
Ecu

T πD
(x̄2, η, t),

(2.29)

respectively. These GPDs are functions of the average momentum fraction x̄2, the
skewness parameter η and the Mandelstam variable t = ∆2. To model them, we
employ an overlap representation in terms of LCWFs as discussed in Ref. [23]. We
remark at this point that we take simple s-wave wave functions for the hadron ground
states. This has the consequence that 〈D−| iσ−j |π−〉 vanishes. The reason is that the

18This definition resembles also the one for the matrix elements 〈Λ+
c |Ψ

c
γ+Ψu |p〉 and

〈Λ+
c |Ψ

ciσ+jΨu |p〉 introduced in Ref. [11].
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tensor structure requires the flip of a quark helicity which means that in at least
one of the LCWFs, ψπ or ψD, the helicity of the meson is not the sum of its parton
helicities so that orbital excitations of the quarks have to come into play. For zero
orbital angular momentum the π− → D− transition matrix element can thus be
expressed in terms of a single GPD, namely Hcu

πD. Likewise, for pure s-wave baryon
wave functions five of the eight p→ Λ+

c transition GPDs vanish.

2.3.2.4 The scattering amplitude II: final form

The process amplitude, cf. Eq. (2.15), can be written with the help of Eqs. (2.27) and
(C.24) as

Mµ′,µ =
C
16

1
q̄+q̄−

∫ dx̄1√
x̄2

1 − ξ2

∫ dx̄2√
x̄2

2 − η2
H̃
(
x̄1 p̄+, x̄2q̄−

)
×∑

λ1

∑
λ2

{[
H cu

µ′µ + 2λ1H̃
cu

µ′µ

]
u(k2, λ1)u(k1, λ1)− 4λ1H

Tcu
λ1µ′µu(k2,−λ1)u(k1, λ1)

}
×
{

H cu v (k2, λ2) v
(
k′2, λ2

)
+ 4λ2H

Tcu
−λ′1

v (k2, λ2) v
(
k′2,−λ2

)}
,

(2.30)

where C = 1/2 is the color factor. The decomposition of H cu, H̃ cu, H Tcu in terms of
GPDs is shown in Eqs. (C.26), (C.27), (C.32), respectively, the decomposition of H cu

in terms of GPDs is shown in Eq. (2.28) and we have used the fact that

1√
k+1 k′+1

=
1

p̄+
√

x̄2
1 − ξ2

and
1√

k−2 k′−2
=

1

q̄−
√

x̄2
2 − η2

. (2.31)

The spinors of Eq. (2.30) and of Eq. (C.13) can be absorbed into the hard-scattering
kernel19

Hλ′1λ′2,λ1λ2
= v (k2, λ2) u(k1, λ1) H̃ u(k′1, λ′1)v

(
k′2, λ′2

)
, (2.32)

which defines the hard-scattering amplitude. It will be discussed in the subsequent
section. We can now use Eq. (2.32) and the fact that20 λ1 = −λ2 to obtain the final

19We note that in deriving Eq. (2.30) we have used one time that the quark helicity does not flip, i.e.
λ′1 = λ1, λ′2 = λ2 and one time that the quark helicity flips, i.e. λ′1 = −λ1, λ′2 = −λ2.

20In the hard subprocess the massless ū-quark has to have opposite helicity compared to the massless
u-quark since they cannot flip their helicities when interacting with a gluon.
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expression of the process amplitude21:

Mµ′,µ =
C
8

1
p̄+q̄−

∫ dx̄1√
x̄2

1 − ξ2

∫ dx̄2√
x̄2

2 − η2[1
2

H+−,+−
{ (

H cu
µ′µ + H̃ cu

µ′µ

)
H cu +

(
H cu

µ′µ − H̃ cu
µ′µ

)
H cu

}
+ H++,+−

{
H Tcu
−µ′µH cu +H Tcu

+µ′µH cu
}]

.

(2.33)

Here we have used that H+−,+− = H−+,−+ and H++,+− = −H−+,−+, which follows
from parity invariance.
Let us summarize what we have achieved so far: Having expressed the soft hadronic
matrix elements in Eq. (2.15) in terms of generalized parton distributions one ends
up with an integral in which these parton distributions, multiplied with the hard
partonic scattering amplitude Hλ′1λ′2,λ1λ2

(x̄1 p̄+, x̄2q̄−) are integrated over x̄1 and x̄2.

The supposition that the p → Λ+
c and D− → π− GPDs (in Figs. 2.8, 2.9 and

2.13 we see that they indeed exhibit a peak) are strongly peaked at x̄10 and x̄20,
respectively, leads to a further simplification of the π− p→ D− Λ+

c amplitude. One
can thus replace the hard partonic scattering amplitude by its value at the peak
position, Hλ′1λ′2,λ1λ2

(x̄10 p̄+, x̄20q̄−) and take it out of the integral. This is called peaking
approximation. What one is left with are separate integrals over the GPDs which may
be interpreted as generalized p→ Λ+

c and D− → π− transition form factors. In the
formal limit of mc → ∞ , x̄10 and x̄20 tend to 1 according to the heavy-quark effective
theory [24]. With this peaking approximation our final expressions for our process
amplitudes become:

M+,+ = M−,− =
1
4

√
1− ξ2 H+−,+− RV G ,

M+,− = −M−,+ =
1
4

√
1− ξ2 H++,−+ ST G, (2.34)

with the π− → D− transition form factor

G(η, t) =
∫ 1

η

dx̄2√
x̄2

2 − η2
Hcu

πD(x̄2, η, t). (2.35)

In Eq. (2.34) we have restricted ourselves to the two most important p→ Λ+
c GPDs,

Hcu
pΛc

and Hcu
T pΛc

, leading to the respective form factors RV and ST, defined in App. C.4.
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u:k1,λ1

c:k2,λ2

c:k1,λ1
kg

u:k2,λ2

Figure 2.6: The leading order Feynman diagram of the hard scattering process uū→ cc̄.

2.3.2.5 The hard scattering amplitude

The Hλ′1λ′2,λ1λ2
are LC helicity amplitudes for uū → cc̄ via one-gluon exchange 22,

see Fig. 2.6. Naive application of the collinear approximation gives (minus signs for
primed momenta) k(′)1 = (x̄10 ± ξ)p(′)/(1± ξ) and k(′)2 = (x̄20 ± η)q(′)/(1± η) for the
parton momenta (mp and mπ are usually neglected). In order to match the subprocess
kinematics (charm-quark mass mc) with the one on the hadronic level (hadron masses
MΛc 6= MD) some further approximations are required. As one can easily verify
k1 + k2 6= k′1 + k′2, i.e. momentum conservation does not hold on the partonic level,
in general. There are only two special cases in which momentum conservation is
recovered. The first case is x̄10, x̄20 → 1, which one would obtain in the heavy-quark
limit (MΛc = MD = mc → ∞). The second case is x̄10 = x̄20 finite, but ξ = η ' 0,
which holds for finite charm-quark mass in the limit of large (hadronic) Mandelstam
s. In these two limiting cases the partonic amplitudes become formally the same
if expressed in terms of the hadronic momentum components p+(′), q−(′), ∆⊥ and
Mandelstam s. They only differ in the argument of the strong coupling αs which is
Mandelstam s in the first case and (x̄10 x̄20 s) in the second one. Since we want to
apply our approach for physical masses of the heavy hadrons it seems more plausible
to take (x̄10 x̄20 s) as the scale which determines the strength of αs. In both cases one
demands that x̄10 = x̄20 which means that an average mass must be taken for the
heavy hadrons when calculating the partonic amplitude. We take the geometric mean
value M2 = MΛc MD. The resulting analytic expressions for H+−,+−, H+−,−+ and
H++,−+ are given by

21We write± instead of ± 1
2 for the helicities for better legibility.

22The definition and normalization of the LC-helicity spinors can be found in App. E.
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H+−,+− =
4παs(x̄10 x̄20s)

s
4(p+p′+ − ∆2

⊥/8)2 + 2M2 p+2

p+p′+
,

H+−,−+ = −4παs(x̄10 x̄20s)
s

∆2
⊥
[
2(p+ + p′+)2 + M2]

4p+p′+
,

H++,−+ =
4παs(x̄10 x̄20s)

s
M|∆⊥|

[
2p+p′+ − ∆2

⊥/8 + p+2]
p+p′+

.

(2.36)

For the strong coupling constant αs we take the one-loop expression with four flavors
and ΛQCD = 0.24 GeV.

2.3.3 Modeling

In order to make numerical predictions for π− p→ D− Λ+
c observables we need to

know how the GPDs and, in particular, the form factors RV , ST and G look like. This
requires some modeling. Proceeding along the lines of Ref. [23] the overlap represen-
tation for the transition GPDs is obtained by inserting the Fourier representation of
the field operators and the Fock state decomposition of the corresponding hadron
states in LC-quantum field theory. We restrict ourselves on the valence (anti)quarks
sector. For the p and the π− higher Fock states are most likely also important, but
they do not contribute to the overlap with the valence Fock states of Λc and D−,
respectively.
For the rest of this section we use the following notation : The momenta of the
partons belonging to the incoming hadron in the hadron-in frame are indicated with
a “ ∼′′. Likewise the momenta of the partons belonging to the outgoing hadron in
the hadron-out frame are indicated with a “∧′′. The notation used in LC field theory
can be found in App. A.

2.3.3.1 The p→ Λ+
c transition

The valence Fock state of the proton is written as [25]:

|p : +, uud〉 =
∫
[dx]3[d2k⊥]3 {(Ψ123M

u
+−+ + Ψ213M

u
−++)− (Ψ132 + Ψ231)M u

++−} ,

(2.37)
where the color wave function has been omitted. Since we only consider ground state
wave functions with zero orbital angular momentum the quark helicities sum up to
+1/2, i.e. the helicity of the proton. M

q
λ1λ2λ3

are the three-quark states and defined as

M
q
λ1λ2λ3

≡ 1√
x1x2x3

|q : x1, k⊥1, λ1〉 |u : x2, k⊥2, λ2〉 |d : x3, k⊥3, λ3〉 . (2.38)
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In Eq. (2.38) the active quark is denoted by q (for the proton q = u for the Λ+
c q = c).

According to Ref.[26] one needs only one independent scalar wave function Ψijk if
parity invariance and permutation symmetry between the u-quarks should hold and
if the three quarks couple to an isospin 1/2-state. For the proton LCWF we choose
the one proposed in Ref. [19] by Bolz and Kroll

Ψ123 = Ψp(x1, x2, x3; k⊥1, k⊥2, k⊥3)

= NP(1 + 3x1) exp

[
−a2

p ∑
k2
⊥i

xi

]
.

(2.39)

The transverse momentum dependence of the wave function is contained in a Gaussian
factor which keeps the model simple and allows one to perform k⊥-integrations
analytically. Furthermore the Gaussian k⊥-dependence is conform to the requirement
that we only need the soft part of the full wave function, i.e. the wave function with
its perturbative tail removed and is supported by theoretical requirements, see for
instance Ref. [27]. The LCWF in Eq. (2.39) has been constructed and its parameters
Np and ap are chosen in such a way that it fulfills several constraints: It should
provide the correct contribution to the Dirac form factors of the proton and neutron at
large momentum transfer; it should provide an acceptable value for the J/Ψ→ NN̄
decay width and it should be consistent with the common parameterization of the
valence quark distributions. This proton LCWF is therefore a very well established
one and has been applied, for example, to model the GPDs as an overlap of LCWFs to
investigate wide-angle Compton scattering in the handbag approach and the results
are found to be in good agreement with experiments, see Ref. [17]. The fit to various
data implies values for the two free parameters, namely the normalization constant Np

and the oscillator parameter ap, which in turn determine values for the valence Fock
state probability and the root mean square (r.m.s) intrinsic transverse momentum, cf.
App. D:

Np = 160.93 GeV−2

ap = 0.75 GeV−1

}
⇒

Pp = 0.17,√
〈k2
⊥〉 = 411 MeV.

(2.40)
The valence Fock state of the Λ+

c is written as [11]

|Λ+
c : +, cud〉 =

∫
[dx]3[d2k⊥]3

{
(M c

++− −M c
+−+) + ρ(x2 − x3)M

c
−++

}
ΨΛ(xi, k⊥i).

(2.41)
The valence Fock state of the Λ+

c consists of a contribution where the c-quark either
has the same helicity as the Λ+

c and one where it has the opposite helicity. The
strength of the latter contribution is controlled by the parameter23 ρ and the factor
(x2 − x3) guarantees the correct isospin behavior. Although the opposite contribution
is expected to be suppressed in comparison to the first one and should even vanish

23We take a value of ρ = 2 which amounts to a 15% contribution of the opposite helicity admixture to
the overall valence Fock state probability of 0.9.



26 Hard exclusive production of charmed particles

in the formal limit mc → ∞ according to HQET, it cannot be ruled out completely24.
The LCWF of the Λ+

c is chosen to be

ΨΛ(x1, x2, x3; k⊥1, k⊥2, k⊥3) = NΛ exp [− f (x1)] exp

[
−a2

Λ ∑
k2
⊥i

xi

]
, (2.42)

where the function f (x1) takes care of the mass of the heavy c-quark inside the Λ+
c

and should generate the expected peak at x1 ≈ x0 = mc/MΛc ∼ 0.56. We use two
versions for f (x1). The first one is a slightly modified version of the one given in
Ref. [29],

fKK(x1) = a2
Λ M2 (x1 − x0)2

x1(1− x1)
. (2.43)

The second version was originally developed for the Λb within a QCD sum rule
approach in Ref. [30] which we adapt to our case of a Λc:

fBB(x1) = aΛ M(1− x1). (2.44)

The two functions have the same x1 dependence for large mc up to corrections of
order (M−mc)/M. The normalization NΛ and the oscillator parameter aΛ are chosen
such that they yield for the valence Fock state probability PΛ = 0.9 and for the r.m.s.
transverse momentum of the active c-quark

√
〈k⊥〉 ≈ 450 MeV, cf. App. D:

NΛ = 2117 GeV−2(BB)/3477 GeV−2(KK)

aΛ = 0.75 GeV−1

}
⇒

PΛ = 0.9,√
〈k⊥〉 ≈ 450 MeV.

(2.45)

The distribution amplitudes (DAs)25 corresponding to Eqs. (2.39) and (2.42) are

φp = 60 x1x2x3 (1 + 3x1) , (2.46)

φΛ ∼ x1x2x3 e− f (x1) (2.47)

and are plotted in Fig. 2.7. We see that the DAs of the proton and of the Λ+
c with mass

exponential fBB are very similar. The latter one exhibits only a mild peak at x1 ∼ x0.
The reason for that is that fBB was originally proposed for the Λb, but the c-quark
is relatively light compared to the b-quark. The Λ+

c DA with the variant f = fKK,
however, leads to a pronounced peak and is narrower and thus higher than the DA
with f = fBB.

As mentioned in the beginning of this section, the GPDs are modeled by overlaps

24This is supported by experimental investigations of the much heavier Λb where even there a contri-
bution of an opposite b-quark helicity does not seem to be negligible (see Ref. [28] and references
cited therein, in particular those of the ALEPH collaboration (1996) and of the OPAL collaboration
(1998)).

25A distribution amplitude φ(x) is the probability amplitude for finding a quark with a momentum
fraction x of its parent particle. It is normalized to 1, i.e.

∫ 1
0 dx φ(x) = 1. If one integrates the LCWF

with respect to the intrinsic transverse components one gets the corresponding DA which is a
function of the momentum fraction(s) only.
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Figure 2.7: The DAs of the proton (solid) and the Λ+
c with the KK mass exponential (dashed)

and the BB mass exponential (dotted) vs. the momentum fraction x.

of LCWFs. Using the baryon states of Eqs. (2.37) and (2.41), the LCWFs of Eqs. (2.39)
and (2.42) and choosing the parameters as discussed above, we can now construct
the GPDs Hcu

pΛc
, H̃cu

pΛc
and Hcu

T pΛc
(all other GPDs vanish for the present choice of the p

and Λ+
c LCWFs) by performing the overlap26. The result is, according to Ref. [11],

Hcu
T pΛc

(
x̄, ξ, ∆2

⊥
)
= −3

4
NΛ Np

4π4
1

1− ξ2
x̄2 − ξ2

a2
p(1 + ξ) + a2

Λ(1− ξ)

× (1− x̄)3

1 + ξ

1 + 2ξ + x̄
a2

p(1 + ξ)2(x̄− ξ) + a2
Λ(1− ξ)2(x̄ + ξ)

× exp
[
− f
(

x̄− ξ

1− ξ

)]
exp

[
−(1− x̄)a2

pa2
Λ∆2
⊥

a2
p(1 + ξ)2(x̄− ξ) + a2

Λ(1− ξ)2(x̄ + ξ)

]
(2.48)

and for the ρ dependent part

∆Hcu
pΛc

(
x̄, ξ, ∆2

⊥
)
=

ρ

15
1

1− ξ

(1− x̄)2

1 + 2ξ + x̄
Hcu

T pΛc

(
x̄, ξ, ∆2

⊥
)

, (2.49)

such that
Hcu

pΛc

(
x̄, ξ, ∆2

⊥
)
= Hcu

T pΛc

(
x̄, ξ, ∆2

⊥
)
− ∆Hcu

pΛc

(
x̄, ξ, ∆2

⊥
)

(2.50)

and
H̃cu

pΛc

(
x̄, ξ, ∆2

⊥
)
= Hcu

T pΛc

(
x̄, ξ, ∆2

⊥
)
+ ∆Hcu

pΛc

(
x̄, ξ, ∆2

⊥
)

. (2.51)

The function f (x) was defined in Eqs. (2.43) (KK mass exponential) and Eq. (2.44)

26Setting ρ to zero would lead to Hcu
pΛc

= H̃cu
pΛc

= Hcu
T pΛc

.
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Figure 2.8: This plot shows the p→ Λc transition GPDs Hcu
pΛc

and Hcu
T pΛc

vs. x̄ at Mandelstam

s = 25 Gev2 for the hadron LCWFs introduced in the text (KK mass exponential,
cf. Eq. (2.43)). The dependence of Hcu

pΛc
on ∆2

⊥ is also shown: ∆2
⊥ = 0, 3.0, 5.0 GeV2

(solid blue, solid purple and solid green), corresponding to |t′| = |t− t0| = 0, 3.35,
5.78 GeV2 (ξ = 0.10, 0.13, 0.15). t0 is the (non-vanishing) value of t for forward
scattering (∆⊥ = 0, p′3 ≥ 0).

(BB mass exponential), respectively. We note that for π− p → D− Λ+
c the GPD

H̃cu
pΛc

does not contribute. Nevertheless we do mention it because we need it for the
photoproduction process γ p→ D∗L Λ+

c in Sec. 2.4.
The p → Λc GPDs for π− p → D− Λ+

c in our symmetric CMS are shown in
Figs. 2.8 and 2.9. We observe that the GPDs exhibit a peak at x̄ ≈ x0. This peak is
more pronounced for the fKK mass exponential. We also learn that the differences
between Hcu

pΛc
and Hcu

T pΛc
are marginal. The reason that ∆Hcu

pΛc
(cf. Eq. (2.49)) is small,

is due to the tiny overlap of the ρ-term of the Λ+
c -LCWF with the LCWF of the proton.

The GPDs exhibit the following behavior for increasing ∆2
⊥: The peak height becomes

smaller and the peak position is shifted towards larger values of x̄. This behavior is
independent of the choice of the mass exponential. The corresponding transition form
factors, RV and ST are shown in Fig. 2.10 at Mandelstam s = 25 GeV2. The energy
dependence of RV with the KK mass exponential is studied in Fig. 2.11. It turns out
that the energy dependence is very mild.
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Figure 2.9: This plot shows the p→ Λc transition GPDs Hcu
pΛc

and Hcu
T pΛc

vs. x̄ at Mandelstam

s = 25 Gev2 for the hadron LCWFs introduced in the text (BB mass exponential,
cf. Eq. (2.44)).
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Figure 2.10: In this figure we show the p → Λc transition form factors at s = 25 GeV2. RV

corresponds to the solid line and ST to the dashed line, respectively. The color
code is as follows: Blue for the KK mass exponential and purple for the BB mass
exponential.
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Figure 2.11: The energy dependence of RV for the KK mass exponential.

2.3.3.2 The π− → D− transition

In this section we will derive a LCWF overlap representation of the π− → D−

transition matrix element. As we mentioned in Sec. 2.3.2.3 this matrix element is
described at leading twist and involves only one GPD which we denoted by Hcu

πD
if we assume pure s-wave LCWFs for the π and D. For convenience we repeat its
definition here

q̄−
∫ dz+2

2π
eix̄2 q̄−z+2 〈D− : q′|Ψu

(
z+2
2

)
γ−Ψc

(
− z+2

2

)
|π− : q〉 = 2q̄− Hcu

πD(x̄2, η, t).

(2.52)
The bilocal product of quark-field operators in Eq. (2.52) can be written in terms of
the “good” (independent) field components

Ψ̄u
(

z+2
2

)
γ−Ψc

(
− z+2

2

)
=
√

2φ†u
(

z+2
2

)
φc
(
− z+2

2

)
. (2.53)

We note that due to our choice of kinematics for the π → D− transition the “good”
components are the minus components, see footnote 2 in App. B. The “good” field
components have the following Fourier decomposition

φ†u
(

z+2
2

)
=
∫ dk−2

k−2

∫ d2k⊥2

16π2 θ
(
k−2
)
∑
λ2

[
b†

u
(
k−2 , k⊥2, λ2

)
u†
− (k2, λ2) e

ik−2 z+2
2

+ du
(
k−2 , k⊥2, λ2

)
v†
− (k2, λ2) e−

ik−2 z+2
2

] (2.54)
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and

φc
(
− z′+

2

)
=
∫ dk′−2

k′−2

∫ d2k′⊥2
16π2 θ

(
k′−2
)
∑
λ′2

[
bc
(
k′−2 , k′⊥2, λ′2

)
u−
(
k′2, λ′2

)
e

ik′−2 z′+
2

+ d†
c
(
k′−2 , k′⊥2, λ′2

)
v−
(
k′2, λ′2

)
e−

ik′−2 z′+
2

]
.

(2.55)

The spinors u− and v− are the “good” components of the (anti-)quark spinors u and
v, i.e. u− = P−u and (v− = P−v). The operator bq ( d†

q) annihilates (creates) a quark
(anti-quark) of flavor q, respectively. Its action on the vacuum gives the single-parton
states, which are normalized as follows

〈k′−, k′⊥, λ′|k−, k⊥, λ〉 = 16 π3 k− δ
(
k′− − k−

)
δ(2)

(
k′⊥ − k⊥

)
δλ′λ. (2.56)

This normalization is in accordance with the anti-commutation relations{
cq
(
k′−, k′⊥, λ′

)
, c†

q
(
k−, k⊥, λ

) }
=
{

dq
(
k′−, k′⊥, λ′

)
, d†

q
(
k−, k⊥, λ

) }
= 16 π3 k− δ

(
k′− − k−

)
δ(2)

(
k′⊥ − k⊥

)
.

(2.57)

The valence Fock state decomposition of the π− meson is

|π− : q〉 =
∫

dx̃
∫ d2k̃′⊥

16π3 Ψπ(x̃, k̃⊥)
1√

x̃(1− x̃)
1√
2

∑
λ

2 λ

× |ū : x̃q−, k̃⊥ + x̃q⊥, λ〉 |d : (1− x̃)q−,−k̃⊥ + (1− x̃)q⊥,−λ〉 ,

(2.58)

the one of the D− meson is

|D− : q′〉 =
∫

dx̂′
∫ d2k̂′⊥

16π3 ΨD(x̂′, k̂′⊥)
1√

x̂′(1− x̂′)
1√
2

∑
λ′

2 λ′

× |c̄ : x̂′q′−, k̂′⊥ + x̂′q′⊥, λ′〉 |d : (1− x̂′)q′−,−k̂′⊥ + (1− x̂′)q′⊥,−λ′〉 ,

(2.59)

respectively. The normalization of the Fock states is

〈H : q′−, q′⊥|H : q−, q⊥〉 = 16 π3 q− δ
(
q′− − q−

)
δ(2)

(
q′⊥ − q⊥

)
. (2.60)

Equations (2.58) and (2.59) are the Fock state expansions for pseudoscalar mesons
consisting of partons with vanishing orbital angular momentum, i.e. the sum of the
parton helicities is equal to the parent meson helicity. The parton helicity flip term,
see Eq. (2.29), is therefore equal to zero in our model. This is also supported by an
explicit calculation of this matrix element.
The arguments of the LCWFs of the active partons are related to the average momen-
tum fraction x̄2 and the average transverse momentum k̄⊥2 by

x̃2 =
x̄2 + η

1 + η
, k̃⊥2 = k̄⊥2 +

1− x̄2

1 + η

∆⊥
2

(2.61)
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and
x̂′2 =

x̄2 − η

1− η
, k̂′⊥2 = k̄⊥2 −

1− x̄2

1− η

∆⊥
2

, (2.62)

respectively. Inserting Eqs. (2.54), (2.55), (2.59) and (2.58) into Eq. (2.52) and using the
anti-commutation relations as specified above and Eqs. (2.61) and (2.62) we get

Hcu
πD(x̄2, η, t) =

1
4q̄−

∫ dx̄√
x̄2 − η2

∫ d2k̄⊥2

16π3 δ (x̄− x̄2)[
ΨD

(
x̂′ (x̄, η) , k̂′⊥

(
k̄⊥2, x̄, η

))
Ψπ

(
x̃ (x̄, η) , k̃⊥

(
k̄⊥2, x̄, η

))
×∑

λ

v̄u
−
(

x̃ (x̄, η) , k̃⊥
(
k̄⊥2, x̄, η

))
γ−vc

−

(
x̂ (x̄, η) , k̂′⊥

(
k̄⊥2, x̄, η

)) ]
.

(2.63)

The spinor product is equal to

∑
λ

v̄u
−γ−vc

− = 4q̄−
√

x̄2 − η2. (2.64)

Equation (2.63) therefore reads

Hcu
πD(x̄2, η, t) =

∫
dx̄
∫ d2k̄⊥2

16π3 δ (x̄− x̄2)[
ΨD

(
x̂′ (x̄, η) , k̂′⊥

(
k̄⊥2, x̄, η

))
Ψπ

(
x̃ (x̄, η) , k̃⊥

(
k̄⊥2, x̄, η

)) ]
.

(2.65)

We now specify the LCWFs Ψπ and ΨD, appearing in the Fock state decomposition
in Eqs. (2.58) and (2.59), which we need to evaluate the overlap in Eq. (2.65). For the
valence Fock state of the π− meson we use the following LCWF [31, 32]

Ψπ (x, k⊥) = Nπx(1− x) exp

[
−a2

πk2
⊥

x(1− x)

]
. (2.66)

The two free parameters of the π− LCWF, Nπ and aπ, are chosen such that they yield

for the r.m.s. of the transverse momentum of the active quark
√
〈k2
⊥〉u = 370 MeV [31]

and give the experimental value of the meson decay constant fπ taken from Ref. [16].
The (light) pseudoscalar meson decay constant is defined by the relation

〈0|Ψ̄u(0)γµγ5Ψd(0)|π− : q〉 = i fπqµ. (2.67)

Taking the minus component and inserting the π− valence Fock state expansion we
get (omitting phases)

2
√

6
∫

dx
∫ d2k⊥

16π3 Ψπ (x, k⊥) = fπ. (2.68)

The two parameters of the π− LCWF are, cf. App. D:
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Nπ = 18.56 GeV−2

aπ = 0.85 GeV−1

}
⇒

√
〈k2
⊥〉u = 370 MeV, Pπ = 0.25,

fπ = 132 MeV. Pπ = 0.25
(2.69)

For the valence Fock state of the D− we take the LCWF [29]

ΨD (x, k⊥) = ND exp [− f (x)] exp

[
−a2

Dk2
⊥

x(1− x)

]
, (2.70)

with either the KK mass exponential (x0 = mc/MD ∼ 0.68)

f (x) = a2
D M2

D
(x− x0)

2

x (1− x)
(2.71)

or with the BB mass exponential

f (x) = aD MD(1− x), (2.72)

respectively. The two free parameters of the D−-LCWF, ND and aD, are chosen such
that they yield for the valence Fock state probability PD = 0.9 and reproduce the
experimental value of the meson decay constant fD taken from Ref. [16]. The (heavy)
pseudoscalar meson decay constant is defined by the relation

〈0|Ψ̄c(0)γµγ5Ψd(0)|D− : q′〉 = i fDq′µ. (2.73)

Taking the minus component and inserting the D− valence Fock state expansion we
get (omitting phases)

2
√

6
∫

dx
∫ d2k⊥

16π3 ΨD (x, k⊥) = fD. (2.74)

The two parameters of the D− LCWF are, cf. App. D:

NDKK(BB) = 54.92 (83.20) GeV−2

aDKK(BB) = 0.86 (0.96) GeV−1

}
⇒

PD = 0.9,

fD = 206.7 MeV.
(2.75)

The distributions amplitudes (DAs) corresponding to Eqs. (2.66) and (2.70) are

φπ = 6x(1− x), (2.76)

φD ∼ x(1− x) exp [− f (x)] . (2.77)

They are shown in Fig. 2.12.

Employing the model wave functions, Eq. (2.66) and Eq. (2.70), the LCWF overlap
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Figure 2.12: The DAs of the π− (solid) and the D− with the KK mass exponential (dashed)
and the BB mass exponential (dotted) vs. the momentum fraction x.

for Hcu
πD reads

Hcu
πD
(
x̄2, η, ∆2

⊥
)
=

Nπ ND

16π2

(x̄2 − 1)
(
x̄2

2 − η2)
a2

π (x̄2 − η) (1 + η)2 + a2
D (x̄2 + η) (η − 1)2

× exp

[
−∆2

⊥a2
πa2

D (1− x̄2)

a2
π (x̄2 − η) (1 + η)2 + a2

D (x̄2 + η) (η − 1)2

]
× exp [− f (x̄2)] .

(2.78)

The function f (x̄2) depends on the chosen mass exponential in the D meson LCWF.
It is

fKK (x̄2) =
a2

D M2
D (x̄2 − η + x̄20 (η − 1))2

(x̄2 − η) (1− x̄2)
(2.79)

for the KK mass exponential and

fBB (x̄2) =
aD MD (x̄2 − 1)

η − 1
(2.80)

for the BB one. Results for Hcu
πD for the two different mass exponentials are presented

in Fig. 2.13. The GPD Hcu
πD exhibits the expected pronounced peak near x̄20 = 0.68,

with the peaking value being slightly shifted towards larger values of x̄2 for increasing
∆2
⊥ (or −t′). If we had taken the BB mass exponential for the D− wave function instead

of the KK one the π− → D− transition GPD Hcu
πD would become broader and the shift

of its maximum to larger x̄2 with increasing ∆2
⊥ is somewhat faster than for the KK

mass exponential. Fig. 2.14 shows the form factor corresponding to Hcu
πD for the KK

mass exponential as function of |t′| for different values of Mandelstam s. Interestingly
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it exhibits only a weak dependence on s. For |t′| . 3 GeV2 the BB mass exponential
provides a considerably larger transition form factor G than the KK mass exponential.
The results of the π → D− GPDs and form factors resemble very much those of the
p→ Λc transition GPDs, discussed in detail in Sec. 2.3.3.1.

2.3.3.3 Remarks on the LCWFs

This section is taken from Ref. [7]. A few remarks concerning the choice of the hadron
LCWFs are in order. Whereas our models for the proton and π LCWFs have already
been successfully tested in other applications, we are not aware of models for the Λc

and D LCWFs which are comparably well established. The concepts of heavy-quark
effective theory, which are very useful in restricting LCWFs for bottom mesons and
baryons and determining the renormalization-group evolution of the corresponding
light-cone distribution amplitudes [33], could also be used for modeling LCWFs
of charmed hadrons, but with the caveat that one is still far away from the heavy-
quark limit and corrections of order 1/mc can be large. We therefore decided to take
simple two-parameter forms for the LCWFs with the mass exponentials providing a
more (KK) or less (BB) pronounced peak in longitudinal direction around mc/MH

(H = Λc, π). The BB mass exponential is inspired by a model for the Λb distribution
amplitude which is based on QCD sum rules [30]. The two parameters of the D
and Λc LCWFs are fixed by physical requirements, namely reasonable values for the
valence Fock state probabilities, the experimentally known D-meson decay constant
and a reasonable value for the average transverse momentum in case of the Λc,
respectively. In the numerical calculations the renormalization-group evolution of our
transition GPDs is neglected. We work in a rather restricted energy range, where we
expect the corresponding effects to be less important than the variations due to the
different modeling of the D and Λc LCWFs.

2.3.4 Results

In Sec. 2.3.2.5 we showed the results for the hard scattering amplitude and in Sec. 2.3.3
we thoroughly discussed the model input. i.e. the LCWFs and the GPDs used for
describing our process. All parts of the scattering amplitude, cf. Eq. (2.34), are by now
determined. We are therefore in the position to investigate the cross section and spin
observables.

The differential cross section for πp→ D−Λ+
c reads

dσ

dΩ
=

1
64π2s

|p′|
|p| σ0 =

1
64π2s

Λ′

Λ
σ0 =

1
4π

sΛΛ′
dσ

dt
, (2.81)

where σ0 is defined by

σ0 :=
1
2 ∑

µ,µ′
|Mµ′,µ|2 (2.82)

and Λ and Λ′ are given in Eqs. (B.12) and (B.13). The differential cross section predic-
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Figure 2.13: This plot shows the π− → D− transition GPD Hcu
πD vs. x̄2 at Mandelstam s =

25 GeV2 and ∆2
⊥ = 0, 3.0, 5.0 GeV2 (solid, dotted and dashed line), corresponding

to |t′| = |t− t0| = 0, 3.35, 5.77 GeV2 (η = 0.15, 0.17, 0.20), for the hadron LCWFs
introduced in the text (KK mass exponential in the upper panel and BB mass
exponential in the lower panel). t0 is the (non-vanishing) value of t for forward
scattering (∆⊥ = 0, p′3 ≥ 0).
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Figure 2.14: This figure shows the π− → D− transition form factor G (KK mass exponential)
as function of |t′| for s = 20, 25 and 30 GeV2 (solid, dotted and dashed line)).

tions for several values of s are presented in Fig. 2.15 for the KK mass exponential
(upper panel) and for the BB mass exponential (lower panel). The forward peak of
the cross section is obviously more pronounced for the latter. The shaded bands take
the uncertainties of the Λc and D− LCWF parameters into account. The band corre-
sponds to a variation of PΛc and PD between 0.8 and 1, of fD within the experimental
uncertainties and of 〈k2

⊥ c〉
1/2
Λc

within a range of 417± 42 MeV (see also Refs. [11] and
[15]) and to taking s instead of (x̄10 x̄20s) as argument of αs.

The integrated cross section is plotted in Fig. 2.16 for both, the KK and the BB
mass exponentials. As for the differential cross section, we have also made an error
assessment in case of the KK mass exponential. A comparable error band is also found
for the BB mass exponential. The differences between the predictions obtained with
different analytic forms of the Λc and D− LCWFs are obviously much larger than
the variations coming from parametric errors in the wave functions. The integrated
cross sections are of the order of nb with the BB mass exponential giving the larger
results. This is the order of magnitude that has also been found for p̄p→ Λ̄−c Λ+

c [11]
and p̄p→ D0D0 [15], when treated within the generalized parton framework. It is in
accordance with old AGS experiments at s ≈ 25 GeV2 which found upper bounds of
7 nb for π− p→ D∗− Λ+

c and ≈ 15 nb for πp→ D−Λ+
c [34]. A new and more precise

measurement of these cross sections would be highly welcome.

For 0 + 1/2 → 0 + 1/2 processes one has three linearly independent polariza-
tion observables, one single-spin observable and two spin correlations. Single-spin
observables vanish in lowest order perturbation theory, but our approach provides
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Figure 2.15: The differential πp → D−Λ+
c cross section versus cos θ for s = 20, 25, 30 GeV2

(solid, dotted and dashed line). This plot has been obtained with the wave
function parameterizations described in the text using the KK mass exponential
(upper panel) and using the BB mass exponential (lower panel). The effects of
uncertainties in the Λc and the D− wave function parameters are indicated by
the shaded band around the curve for s = 20 GeV2.

non-trivial predictions for spin correlations. We consider the polarization transfers

DLL = DSS =
|Φ++|2 − |Φ+−|2
|Φ++|2 + |Φ+−|2

, (2.83)
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Figure 2.16: Our prediction for the integrated cross section σ versus Mandelstam s (solid line
with error band). Solid line corresponds to the KK mass exponentials and the
dashed line corresponds to the BB mass exponential.

and

DLS =
2 Re(Φ++Φ∗+−)
|Φ++|2 + |Φ+−|2

(2.84)

as the two independent, nontrivial spin correlations. The labels “S” and “L” de-
note longitudinal and sideways (in the scattering plane) polarization directions (cf.
Ref. [11]). The Φµ̃′µ̃ are CMS helicity amplitudes which are related to our LC helicity
amplitudesMµ′µ, as defined in Eq. (2.34), by means of an appropriate Melosh rotation
27. For a reasonable probability of about 10% to find the c quark with helicity opposite
to the Λc helicity in the Λc, the form factors RV and ST differ by less then 2% [11]. As
a consequence all the form factors and thereby the whole model dependence nearly
cancel out in DLL and DLS. The energy dependence of DLL and DLS is plotted in
Figs. 2.17 and 2.18 for the KK mass exponential. It occurs to be very mild over the
considered energy range. The corresponding plots for the BB mass exponential look
more or less the same, which confirms the approximate independence of DLL and
DLS on the choice of the GPDs.

27Like in Ref. [11] only the Melosh transformation of the Λc helicity is considered since that of the p
plays a minor role.
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Figure 2.17: The spin-correlation parameters DLL versus cos θ for s = 20, 25 and 30 GeV2.
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Figure 2.18: The spin-correlation parameters DLS versus cos θ for s = 20, 25 and 30 GeV2.

2.3.5 Summary

We have investigated the exclusive process πp → D−Λ+
c within the generalized

parton picture. Thereby we have extended previous work on p̄ p → Λ̄−c Λ+
c [11],

where p → Λc transition GPDs were introduced for the first time. The analysis of
πp → D−Λ+

c is analogous to the one for p̄ p → Λ̄−c Λ+
c , the only new ingredients

being the π− → D− transition GPDs which replace those for the p̄→ Λ̄c transition.
Starting with a double-handbag-type mechanism for the production of the charmed
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hadrons the arguments for factorization into the hard partonic subprocess ū u→ c̄ c
and soft hadronic matrix elements, which describe the π− → D− and p → Λ̄c

transitions, are quite the same as for p̄ p → Λ̄−c Λ+
c . Under the assumption that

the transition GPDs are strongly peaked for momentum fractions close to mc/MΛc,D

the process amplitude simplified further and became just the product of the hard-
scattering amplitude with generalized transition form factors, which are kind of
moments of the GPDs. To model the GPDs and make numerical predictions we have
employed an overlap representation in terms of LCWFs for the valence Fock states of
the hadrons involved.

Interesting for planned experiments, e.g. at J-PARC or at COMPASS, we found
the integrated cross section well above production threshold (s & 20 GeV2) to be
of the order of nb, depending on the models for the hadron LCWFs. Our result
is in accordance with experimental evidence on π− p → D∗− Λ+

c [34]. The size of
the π−p → D−Λ+

c cross section is typical for the exclusive production of charmed
hadrons, like p̄ p → Λ̄−c Λ+

c [11] and p̄ p → D0 D0 [15] when treated within the
same kind of factorization approach that has been applied here. We expect a cross
section of this size also for the case of a pion-induced production of longitudinally
polarized D∗ mesons in a straightforward extension of our model. The calculated
spin correlation parameters, on the other hand, were seen to be nearly independent
on the models for the LCWFs. This means that those spin correlations are mostly
determined by the hard partonic subprocess and may thus give us some clues on how
charm is produced on the partonic level.
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2.4 γ p→ D∗λ=0 Λ+
c

In this section we investigate the exclusive photoproduction of charmed vector mesons.
If we want to apply again our collinear framework and stay at leading twist, the
production of transversely polarized vector mesons is power suppressed [35], so
we focus on the production of longitudinally polarized vector mesons. To be more
specific, we consider the process γ p→ D∗λ=0 Λ+

c . When we are speaking of a D∗ we
mean in the following the longitudinal polarized one.

2.4.1 Kinematics

The momenta, light-cone (LC) helicities and masses of the incoming proton and
photon are denoted by p, µ, mp and q, ν, those of the outgoing Λ+

c and D∗ by
p′, µ′, MΛc and q′, MD∗ , respectively. As the reference frame we choose again a
symmetric CMS, cf. Sec. 2.3.1. We parameterize the proton and the Λ+

c momenta as
follows

p =

[
(1 + ξ) p̄+,

m2
p + ∆2

⊥/4
2(1 + ξ) p̄+

,−∆⊥
2

]
, p′ =

[
(1− ξ) p̄+,

M2
Λc

+ ∆2
⊥/4

2(1− ξ) p̄+
,

∆⊥
2

]
, (2.85)

with

∆ ≡
(

p′ − p
)
=
(
q− q′

)
and ξ ≡ p+ − p′+

p+ + p′+
= − ∆+

2p̄+
. (2.86)

The photon and the D∗-meson momenta can be written in an analogous way

q =

[
∆2
⊥/4

2(1 + η)q̄−
, (1 + η)q̄−,

∆⊥
2

]
, q′ =

[
M2

D∗ + ∆2
⊥/4

2(1− η)q̄−
, (1− η)q̄−,−∆⊥

2

]
,

(2.87)
with

q̄ ≡ 1
2
(
q + q′

)
and η ≡ q− − q′−

q− + q′−
=

∆−

2q̄−
. (2.88)

The Mandelstam variable s is given by

s = (p + q)2 = (p′ + q′)2, (2.89)

which is the invariant mass squared of our process. Mandelstam s has to be larger
than (MΛc + MD∗)

2 = 18.43 GeV2 to produce the particles Λ+
c and D∗. The remaining

two Mandelstam variables read

t = ∆2 = (p′ − p)2 = (q− q′)2 (2.90)

and

u = (q′ − p)2 = (p′ − q)2, (2.91)
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such that
s + t + u = m2

p + m2
π + M2

Λc
+ M2

D∗ . (2.92)

The explicit expressions for p̄+, q̄−, ξ, η, ∆2
⊥, t, u can be found in App. B with28

ma = mp = 0.938272 GeV, mb = 0 GeV, mc = MΛc = 2.286460 GeV and md = MD∗ =

2.00697 GeV.

2.4.2 Handbag mechanism and scattering amplitude

p:p,μ Λ :p,μ

D  :q

u:k1,λ1,a1 c:k1,λ1,a1
kg

c:k2,λ2,a2u:k2,λ2,a2
γ:q,ν

*

GPDs

DA

+
C

λ=0

Figure 2.19: Handbag contribution to the process γ p → D∗λ=0 Λ+
c (in the DGLAP region).

The momenta, LC helicities and colors of the quarks are specified. The photon
can couple to either of the points indicated by the dots.

The mechanism we assume for the description of the γ p → D∗λ=0 Λ+
c reaction

well above the kinematical threshold and in the forward scattering hemisphere is
depicted in Fig. 2.19. A proton emits a u-quark with momentum k1 and helicity λ1

which itself emits a gluon and henceforth changes its momentum to k2 and helicity
to λ2. The gluon subsequently decays into a charm-anticharm pair with momenta
k′1, k′2 and helicities λ′1, λ′2, respectively. The “scattered” u-quark29 and the produced
c̄-quark form the D∗ meson and the residual c-quark is reabsorbed by the remainders
of the proton and both form the Λ+

c
30.

The heavy-quark mass mc serves as a natural hard scale which requires the gluon to
be highly virtual. This is easy to see for those graphs in which the photon couples
to the u-quarks, but less obvious for those in which the photon couples to either the
c- or c̄-quark. When the photon couples to the u-quark it is obvious that k2

g ≥ 4m2
c .

If it couples to the c- or c̄-quark one can verify by a numerical calculation that also
in this case the gluon propagator is highly virtual. Furthermore, we can also verify

28The values of the masses are taken from Ref. [16].
29The light quarks are treated as massless.
30We are neglecting the intrinsic charm of the proton, therefore only the emission of the u-quark from

the proton leads to the Λ+
c in the final state.
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by a numerical calculation that the propagators are sufficiently off-mass shell so that
a perturbative treatment of the partonic subprocess is justified, even at small −t
and −u. The corresponding Feynman diagrams are investigated in Sec. 2.4.3. The
non perturbative dynamics is encoded in hadronic matrix elements which can be
parameterized in terms of transition GPDs (for the p→ Λ+

c transition) and a DA (for
the D∗ production).

The scattering amplitude for γp→ D∗λ=0Λ+
c using the handbag mechanism can

be written as

Mµ′0,µν = ∑
a(′)i ,α(′)i

∫
d4k̄1 Θ(k̄+1 )

∫ d4z1

(2π)4 eik̄1z1

∫
d4k′2 Θ(k′−2 )

∫ d4z2

(2π)4 ei z2
2 (−q′+2k′2)

× 〈Λ+
c : p′, µ′|T Ψc

a′1,α′1

(
− z1

2

)
Ψu

a1,α1

( z1

2

)
|p : p, µ〉 H̃ν

a(′)i ,α(′)i

(
k̄1, k2, k′2

)
× 〈D∗ : q′|T Ψu

a2,α2

( z2

2

)
Ψc

a′2,α′2

(
− z2

2

)
|0〉 ,

(2.93)

where the assignments of momenta and helicities can be read off from Fig. 2.19

and a(′)i and α
(′)
i denote color and spinor labels, respectively, and H̃ is the hard

scattering kernel. The average momentum is defined by k̄1 =
k1+k′1

2 . As we explained
in Sec. 2.3.2.1 in detail the crucial assumptions are that the parton virtualities and the
intrinsic transverse momentum components of the parton divided by its momentum
fraction are restricted by a hadronic scale of the order of 1 GeV, see Eqs. (2.10)-(2.11).
The active parton momenta are then approximately on mass shell and collinear to
their parent hadron

k1 →
[

k+1 ,
x2

1∆2
⊥

8k+1
,−x1

∆⊥
2

]
with k+1 = x1 p+,

k′1 →
[

k′+1 ,
m2

c + x′21 ∆2
⊥/4

2k′+1
, x′1

∆⊥
2

]
with k′+1 = x′1 p′+,

k2 →
[
(1− x′2)

2
∆2
⊥

8k−2
, k−2 ,−

(
1− x′2

) ∆⊥
2

]
with k−2 =

(
1− x′2

)
q−,

k′2 →
[

m2
c + x′22 ∆2

⊥/4
2k′−2

, k′−2 ,−x′2
∆⊥
2

]
with k′−2 = x′2q′−.

(2.94)
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Therefore Eq. (2.93) can be simplified to

Mµ′0,µν = ∑
a(′)i ,α(′)i

∫
dx̄1 p̄+

∫ dz−1
(2π)

eix̄1 p̄+z−1
∫

dk′−2

∫ dz+2
(2π)

ei
z+2
2 (−q′−+2k′−2 )

× 〈Λ+
c : p′, µ′|Ψc

a′1,α′1

(
−

z−1
2

)
Ψu

a1,α1

(
z−1
2

)
|p : p, µ〉 H̃ν

a(′)i ,α(′)i

(
x̄1 p̄+, k−2 , k′−2

)
× 〈D∗ : q′|Ψu

a2,α2

(
z+2
2

)
Ψc

a′2,α′2

(
− z+2

2

)
|0〉 ,

(2.95)

with x̄1 =
k̄+1
p̄+ . The soft part of our process is encoded in Fourier transforms of two

hadronic matrix elements of a bilocal product of quark field operators:

∫ dz−1
2π

eiz−1 k̄+1 〈Λ+
c : p′, µ′|Ψc

a′1,α′1

(
−

z−1
2

)
Ψu

a1,α1

(
z−1
2

)
|p : p, µ〉 , (2.96)

for the soft p→ Λ+
c transition and

∫ dz+2
2π

ei
z+2
2 (−q′−+2k′−2 ) 〈D∗ : q′|Ψu

a2,α2

(
z+2
2

)
Ψc

a′2,α′2

(
− z+2

2

)
|0〉 , (2.97)

for the formation of the D∗-meson. In Eq. (2.96), Ψu(z−1 /2) takes out a u-quark
at space-time z−1 /2 from the proton state |p : p, µ〉, which then participates in the
hard partonic subprocess, whereas Ψc

(−z−1 /2) reinserts the produced c-quark at
space-time −z−1 /2 into the remainder of the proton which gives the final Λ+

c hadron.
Equation (2.97) is the amplitude for finding the u- and the c̄-quark that leave the hard-
scattering process at space-time z+2 /2 and −z+2 /2, respectively, in the state |D∗ : q′〉.
Appendix C is devoted to the study of Eq. (2.96). In the remainder of this section we
investigate Eq. (2.97).

We want to decompose the quark field operator product Ψ̄uΨc at leading twist.
This can easily done in the hadron-out frame of the D∗ which is a frame where it has
zero transverse momentum. The scattering process is formulated in the CMS and
therefore also the quark field operators are expressed in terms of CMS quantities.
However, by performing a transverse boost we can transform from the CMS to the
hadron-out frame where we will single out the leading twist components of the
quark fields. The transverse boost does not alter our reasoning. Therefore we can
then transform back to the CMS. Let us now investigate this procedure step by step
for Eq. (2.97). By performing a transverse boost we can change from the CMS to
the hadron-out frame of the outgoing D∗. In this frame the momenta k2 and k′2 of
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Eq. (2.94) read

k2 =
[
0, k−2 , 0⊥

]
, (2.98)

k′2 =
[ m2

c

2k′−2
, k′−2 , 0⊥

]
. (2.99)

The energy projectors can therefore be written as

∑
λ2

u (k2, λ2) ū (k2, λ2) = k2 · γ = k−2 γ+, (2.100)

∑
λ′2

v
(
k′2, λ′2

)
v̄
(
k′2, λ′2

)
= k′2 · γ−mc = k′−2 γ+ +

m2
c

2k′−2
γ− −mc. (2.101)

Using 1 = P+ +P− with the projection operators P± (see Eq. A.15) we get

Ψ̄u = Ψ̄u1 = Ψ̄u 1
2
(
γ−γ+ + γ+γ−

)
, (2.102)

Ψc = 1Ψc =
1
2
(
γ−γ+ + γ+γ−

)
Ψc, (2.103)

in which we can eliminate γ+ by means of Eq. (2.100) to obtain31

Ψ̄u =
1

2k−2
∑
λ2

(
Ψ̄uγ−u (k2, λ2)

)
ū (k2, λ2) , (2.104)

Ψc =
1

2k′−2
∑
λ′2

v
(
k′2, λ′2

) (
v̄
(
k′2, λ′2

)
γ−Ψc) . (2.105)

In Eqs. (2.104)-(2.105) we have projected out the “good” field components of the quark
fields. This is seen for Eq. (2.104) as follows

Ψ̄uγ− = Ψ†uγ0γ−γ0γ0 = Ψ†uγ+γ0 =
(
γ0γ−Ψu)†

=
√

2
(
P2
−Ψu
−
)†

=
(
γ0γ−Ψu)†

= Ψ̄u
−γ−

(2.106)

and for Eq. (2.105)

γ−Ψc = γ0γ0γ−Ψc =
√

2γ0P−Ψc =
√

2γ0P2
−Ψc = γ−Ψc

− (2.107)

respectively ( Ψ− denotes the “good” field component of the quark field). With
Eqs. (2.104)-(2.105) we can write for the quark field operator product in the meson
matrix element

Ψ̄uΨc =
1

4k−2 k′−2
∑
λ2

(
Ψ̄u
−γ−u (k2, λ2)

) (
v̄
(
k′2,−λ2

)
γ−Ψc

−
)

ū (k2, λ2) v
(
k′2,−λ2

)
,

(2.108)

31For Ψ̄u there is an additional term Ψ̄uu (k2, λ2) ū (k2, λ2) γ− and for Ψc there is the following additional
term γ−

(
v
(
k′2, λ′2

)
v̄
(
k′2, λ′2

)
Ψc − 2mcΨc). However, these two term vanish when they are applied

to the meson matrix element 〈D∗|Ψ̄uΨ̄c|0〉.
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where we have used that λ′2 = −λ2 (see the Fock state expansion of the D∗ in
Eq. (2.119)). We note that a transverse boost from the hadron-out frame to the CMS
does not alter Eq. (2.108). In the following we are again working in our CMS. Using
appropriate spinor products such as32

− ū (k2, λ2) γ−v (k′2,−λ2)

2
√

k−2 k′−2
= 1, (2.109)

we can write the product(
Ψ̄u
−γ−u (k2, λ2)

)
1
(
v̄
(
k′2,−λ2

)
γ−Ψc

−
)

(2.110)

as

− 1

2
√

k−2 k′−2
Ψ̄u
−γ−u (k2, λ2) ū (k2, λ2) γ−v

(
k′2,−λ2

)
v̄
(
k′2,−λ2

)
γ−Ψc

−. (2.111)

In principle there is also the following spinor product at our disposal

∼ ū (k2, λ2) iσ−jv
(
k′2, λ′2

)
, (2.112)

but for λ′2 = −λ2 it is zero. The reason that we inserted Eq. (2.111) into (2.108) is that
we can use the helicity projectors for the u-quark and the heavy c-quark

u (k2, λ2) u (k2, λ2) = k2 · γ
1− 2λ2 γ5

2
(2.113)

and
v
(
k′2,−λ2

)
u
(
k′2,−λ2

)
=
(

k′2 · γ + mc

)1 + γ5 S2 · γ
2

(2.114)

with the covariant spin vector

S2 =
−2λ2

mc

(
k′−2 −

m2
c

k′−2
n+
)

. (2.115)

Putting all pieces together, Eq. (2.108) becomes

Ψ̄uΨc =
1

4k−2 k′−2
∑
λ2

(
Ψ̄u
−γ− (1− 2λ2γ5)Ψc

−
)

ū (k2, λ2) v
(
k′2,−λ2

)
. (2.116)

Now, when we insert the Fourier decomposition of the field operators we find that
Ψ̄uγ−γ5Ψc = 0 since λ′2 = −λ2. Thus, the final expression for the quark field operator
product reads

Ψ̄uΨc = − 1
4k−2 k′−2

∑
λ2

Ψ̄u
−γ−Ψc

−ū (k2, λ2) v
(
k′2,−λ2

)
. (2.117)

32The explicit form of the spinors can be found in App. E. We remark that
(

k(′)2

)
3
< 0 so the

corresponding spinors must be used.
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After these manipulations the hadronic matrix element describing the formation of
the D∗ has the following form33:

−
∫ dz+2

2π
ei

z+2
2 (−q′−+2k′−2 ) 1

4k−2 k′−2
〈D∗ : q′|∑

λ2

Ψ̄u
−

(
z+2
2

)
γ−Ψc

−

(
− z+2

2

)
|0〉 . (2.118)

In order to calculate this matrix element we have to specify the valence Fock state
of the D∗:

|D∗ : q′〉 =
∫

dx̂′2
∫ d2k̂′⊥2

16π3 ΨD(x̂′2, k̂′⊥)
1√

x̂′2(1− x̂′2)

× 1√
2

[
|c̄ : x̂′2q′−, k̂′⊥ + x̂′2q′⊥,+

1
2
〉 |u : (1− x̂′)q′−,−k̂′⊥ + (1− x̂′)q′⊥,−1

2
〉

+ |c̄ : x̂′2q′−, k̂′⊥ + x̂′2q′⊥,−1
2
〉 |u : (1− x̂′)q′−,−k̂′⊥ + (1− x̂′)q′⊥,

1
2
〉
]
.

(2.119)

For the D∗-LCWF we use the same as in Sec. 2.3.3.2 to describe the π− → D−

transition, cf. Eq. (2.70). For convenience we also repeat the Fourier representation of
the field operators

Ψ̄u
−

(
z+2
2

)
=
∫ dk−2

k−2

d2k⊥2

16π3 ∑
λ2

b†
uū (k2, λ2) ei

k−2 z+2
2 + . . . , (2.120)

Ψc
−

(
− z+2

2

)
=
∫ dk′−2

k′−2

d2k′⊥2
16π3 ∑

λ′2

d†
c v
(
k′2, λ′2

)
e−i

k′−2 z+2
2 + . . . , (2.121)

with λ′2 = −λ2 and . . . denote terms which are equal to zero in 〈D∗|Ψ̄u
−γ−Ψc|0〉 using

the valence Fock state for the D∗ of Eq. (2.119). With the definition of the meson decay
constant

〈0|Ψ̄cγµΨu|D∗〉 = i fD∗MDεµ (2.122)

and inserting Eqs. (2.119)-(2.120) into Eq. (2.118) we get

−
∫ dz+2

2π
ei

z+2
2 (−q′−+2k′−2 ) 1

4k−2 k′−2
〈D∗L : q′|∑

λ2

2λ2Ψ̄u
−

(
z+2
2

)
γ−γ5Ψc

−

(
− z+2

2

)
|0〉

= − fD∗

2
√

6
φD∗

(
x′2
)

. (2.123)

The value of the meson decay constant fD∗ = 0.252 ± 22.64 MeV is taken from
Ref. [36]. We note that we are not using the peaking approximation in the hadronic
meson matrix element. The DA is peaked at values around x′20 ∼

mc
MD
∼ 0.63 (see

Sec. 2.3.3.2), i.e. when integrating over x′2 only the region close to x′20 gives sizable con-

33The spinors of Eq. 2.117 (and also those of Eq. (C.13)) are absorbed into the hard scattering kernel of
the scattering amplitude and define the hard scattering amplitude.
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tributions. For convenience we repeat the D∗ distribution amplitude (see Sec. 2.3.3.2
for more details) that we use34

φD∗(x′2) ∼ x′2(1− x′2) exp
[
− f (x′2)

]
, (2.124)

with the KK mass exponential (x′20 = mc/MD ∼ 0.68)

f (x) = a2
D∗M

2
D∗

(x′2 − x′20)
2

x′2 (1− x′2)
(2.125)

and with the BB mass exponential

f (x) = a∗D M∗D(1− x′2). (2.126)

The oscillator parameters are a∗D = 0.74 GeV−1(KK) and a∗D = 0.80 GeV−1(BB),
respectively. The normalization N∗D = 43.94 GeV2(KK)/64.82 GeV2(BB) and the os-
cillator parameter of the D∗-LCWF are chosen such that f ∗D is reproduced and that
the probability to find the valence Fock state in the to D∗ becomes 0.9.

Before we show the explicit form of the scattering amplitude in terms of the
p → Λc transition form factors and the D∗-DA, we make some remarks about the
hard scattering amplitude:

• Naive application of the collinear approximation gives (minus signs for primed
momenta) k(′)1 = (x̄10 ± ξ)p(′)/(1± ξ), k2 = (1− x′2)q

′ and k′2 = x′2q′ for the
parton momenta where x̄10 = mc/MΛ = 0.55. In order to match the subprocess
kinematics (charm-quark mass mc) with the one on the hadronic level (hadron
masses MΛc 6= MD) some further approximations are required. As one can
easily verify k1 + k2 6= k′1 + k′2, i.e. momentum conservation does not hold on the
partonic level, in general. There is only one special case in which momentum
conservation is recovered, namely in the heavy-quark limit MΛc = MD = mc →
∞, i.e. x̄10 → 1.

• We absorb the spinors coming from the quark field operator manipulations
(cf. Eq. (C.24) and Eq. (2.118)) into the hard scattering kernel of the (hadronic)
scattering amplitude:

– The spinors of the meson matrix element give to a good approximation the
covariant spin wave function of the outgoing D∗-meson35:

1√
2

[
ū
(

q′,
1
2

)
v
(

q′,−1
2

)
+ ū

(
q′,−1

2

)
v
(

q′,
1
2

) ]
=

(/q ′ −MD) /εVM√
2

.

(2.127)
This structure is absorbed into the hard scattering kernel H̃ν and we denote
the modified hard scattering kernel by Ĥν.

34The DA normalization condition is
∫

dx′2φ∗D(x′2) = 1.
35This is exactly the general spin structure we would have for the wave function of a heavy-light meson

that obeys heavy-quark symmetry, see Ref. [37].
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– We define the hard scattering amplitude then as

Hν
λ′1,λ1

= ū
(

p′, λ′1
)

Ĥνu (p, λ1) . (2.128)

With the preceding discussions and App. C we can show that the final expression
of the scattering amplitude reads

M 1
2 0, 1

2 ν =
C

4
√

6
fD

√
1− ξ2[

(RV + RA)
∫

dz φD(z)Hν
1
2 , 1

2
+ (RV − RA)

∫
dz φD(z)Hν

− 1
2 ,− 1

2

]
,

M− 1
2 0,− 1

2 ν =
C

4
√

6
fD

√
1− ξ2[

(RV − RA)
∫

dz φD(z)Hν
1
2 , 1

2
+ (RV + RA)

∫
dz φD(z)Hν

− 1
2 ,− 1

2

]
,

M 1
2 0,− 1

2 ν =
C

2
√

6
fD

√
1− ξ2 ST

∫
dz φD(z)Hν

1
2 ,− 1

2
,

M− 1
2 0, 1

2 ν =
C

2
√

6
fD

√
1− ξ2 ST

∫
dz φD(z)Hν

− 1
2 , 1

2
,

(2.129)

with C = 4
3

1√
3

being the color factor.

To conclude this section let us summarize the assumptions we have made that
lead to Eq. (2.129)

• Peaking approximation: The p→ Λc GPDs have a peak at x̄1 ∼ x̄10 and therefore
can be taken out of the convolution integral with the hard scattering amplitude.
We rather need the integral over the GPDs than the GPDs themselves. We call
those integrals transition form factors.

• In modeling the GPDs as an overlap of LCWFs we restricted ourselves to s-wave
functions, i.e. the helicity of the partons in the valence Fock states add up to the
hadron helicity. This reduces the number of GPDs from 8 to 3.

2.4.3 The hard scattering amplitude

At leading order in αs we have to evaluate 4 Feynman diagrams, i.e. 4 amplitudes
which are shown in Fig. 2.20. The hard scattering amplitude Hν

λ′1,λ1
is then a sum of

those four amplitudes. With the collinear approximation in the heavy quark limit, k1 =

p and k′1 = p′, the partonic momenta can be expressed in terms of momenta on the
hadronic level. To match the subprocess kinematics (charm-quark mass mc) with the
one on the hadronic level (hadron masses MΛc 6= MD) we introduce M =

√
MΛc MD
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1 2

3 4

Figure 2.20: The 4 leading order Feynman graphs contributing to the partonic subprocess.

(the mass of the proton is chosen equal to zero in the hard scattering process). The
kinematics is then such that we are again in a symmetric CMS and the kinematical
quantities such as p̄+, ξ, ∆2

⊥, . . . are given in App. B with ma = 0, mb = 0, mc = M
and md = M. Before we discuss the structure of the amplitudes in more detail in
Sec. 2.4.3.2, let us mention the following: When we simplify the amplitudes it turns
out that the final expressions can be written in terms of 8 different spinor products
and 8 different scalar products.

2.4.3.1 Spinor and scalar products

Let us start to list the 8 different spinor products and the 8 different scalar products
that we have to calculate.

Spinor products:

• Spinor product 1 (SP1 ): ū (p′, λ′1) u (p, λ1)

• Spinor product 2 (SP2 ): ū (p′, λ′1) /εγ(q, 1)u (p, λ1)

• Spinor product 3 (SP3 ): ū (p′, λ′1) /ε M(q, 0)u (p, λ1)

• Spinor product 4 (SP4 ): ū (p′, λ′1) /qu (p, λ1)

• Spinor product 5 (SP5 ): ū (p′, λ′1) /εγ(q, 1)/ε M(q, 0)u (p, λ1)

• Spinor product 6 (SP 6 ): ū (p′, λ′1) /q/εγ(q, 1)u (p, λ1)

• Spinor product 7 (SP7 ): ū (p′, λ′1) /q/ε M(q′, 0)u (p, λ1)

• Spinor product 8 (SP8 ): ū (p′, λ′1) /q/εγ(q, 1)/ε M(q′, 0)u (p, λ1)
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Scalar products:

• Scalar product 1 (ScP1): p′ · εγ(q, 1)

• Scalar product 2 (ScP2): q′ · εγ(q, 1)

• Scalar product 3 (ScP3): q · εM(q′, 0)

• Scalar product 4 (ScP4): εγ(q, 1) · εM(q′, 0)

• Scalar product 5 (ScP5): q · p′

• Scalar product 6 (ScP6): p′ · εM(q′, 0)

• Scalar product 7 (ScP7): p · εM(q′, 0)

• Scalar product 8 (ScP8): p · q

The momenta in the hard scattering process are given by36

k1 = p =
[
(1 + ξ) p̄+, . . . ,−|∆⊥|

2
, 0
]
,

k′1 = p′ =
[
(1− ξ) p̄+, . . . ,

|∆⊥|
2

, 0
]
,

q =
[ ∆2

⊥
8 (1 + ξ) p̄+

, (1 + ξ) p̄+,
|∆⊥|

2
, 0
] (2.130)

and

k2 =
(
1− x′2

)
q′,

k′2 = x′2q′,

with q′ =
[M2

+ ∆2
⊥/4

2 (1− ξ) p̄+
, (1− ξ) p̄+,−|∆⊥|

2
, 0
]
.

(2.131)

The polarization vectors of the photon37 εγ and of the longitudinally polarized vector
mesons εM read

εγ (q, 1) =
[ 1

2
√

s
|∆⊥|,−

1
2
√

s
|∆⊥|,

2 (1 + ξ) p̄+√
s

− 1√
2

,− i√
2

]
, (2.132)

εM(q′, 0) =
[ ∆2

⊥/4−M2

2M (1− ξ) p̄+
,
(1− ξ) p̄+

M
,−|∆⊥|

2M
, 0
]
. (2.133)

36The minus components of the proton and the Λc are not explicitly written because we do not need
them in the following. They can be obtained by the on mass-shell conditions, i.e. p2 = 0 and
p′2 = M2.

37We fix the photon helicity to 1. The photon helicity −1 amplitudes follow from parity relations.
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We can now calculate the various spinor products for the four helicity combinations
(λ′1 = +, λ1 = +), (λ′1 = −, λ1 = −), (λ′1 = +, λ1 = −) and (λ′1 = −, λ1 = +) 38:

• ū (p′, λ′1) u (p, λ1)

(λ′1 = +, λ1 = +) : M

√
1 + ξ

1− ξ
(2.134a)

(λ′1 = −, λ1 = −) : M

√
1 + ξ

1− ξ
(2.134b)

(λ′1 = +, λ1 = −) :
|∆⊥|√
1− ξ2

(2.134c)

(λ′1 = −, λ1 = +) : − |∆⊥|√
1− ξ2

(2.134d)

• ū (p′, λ′1) /εγ(q, 1)u (p, λ1)

(λ′1 = +, λ1 = +) : −
√

2|∆⊥|√
1− ξ2

(2.135a)

(λ′1 = −, λ1 = −) : 0 (2.135b)

(λ′1 = +, λ1 = −) : 0 (2.135c)

(λ′1 = −, λ1 = +) : −
√

2M

√
1 + ξ

1− ξ
(2.135d)

• ū (p′, λ′1) /ε M(q′, 0)u (p, λ1)

(λ′1 = +, λ1 = +) :
1

32Mp̄+2 (ξ − 1)
√

1− ξ2
(2.136a)

×
[
∆4
⊥ + 64p̄+4 (1 + ξ) (ξ − 1)3 − 4∆2

⊥

(
M2 − 4p̄+2ξ (ξ − 1)

) ]
(λ′1 = −, λ1 = −) = (λ′1 = +, λ1 = +) (2.136b)

(λ′1 = +, λ1 = −) :
|∆⊥|

(
M2

+ p̄+
(

4p̄+ −
√

2s
)(

1 + ξ
))

4p̄+2 (ξ − 1)
√

1− ξ2
(2.136c)

(λ′1 = −, λ1 = +) = −(λ′1 = +, λ1 = −) (2.136d)

38In order to simplify the results we use the following relation

∆2
⊥ = 4

√
2 sp̄+ (1 + ξ)− 8p̄+2 (1 + ξ)2 .
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• ū (p′, λ′1) /qu (p, λ1)

(λ′1 = +, λ1 = +) :
(

2
√

2s p̄+ − s
)√1 + ξ

1− ξ
(2.137a)

(λ′1 = −, λ1 = −) = −(λ′1 = +, λ1 = +) (2.137b)

(λ′1 = +, λ1 = −) : − |∆⊥|M
√

s
2
√

2 p̄+
√

1− ξ2
(2.137c)

(λ′1 = −, λ1 = +) : (λ′1 = +, λ1 = −) (2.137d)

• ū (p′, λ′1) /εγ(q, 1)/ε M(q′, 0)u (p, λ1)

(λ′1 = +, λ1 = +) : − |∆⊥|
4
√

s p̄+2 (ξ − 1)
√

1− ξ2

[
16p̄+3 (1 + ξ) (2.138a)

+
(

1 + ξ
)(

2sp̄+ − 8
√

2s p̄+2
)
+ M2

(
2p̄+ (1 + ξ)−

√
2s
)]

(λ′1 = −, λ1 = −) : − |∆⊥|
2p̄+
√

s (ξ − 1)

[
M2

+ 8p̄+2 − 2
√

2s p̄+
]√1 + ξ

1− ξ
(2.138b)

(λ′1 = +, λ1 = −) :
2 (1 + ξ)

M
√

s (ξ − 1)
√

1− ξ2

(
M2

+ 8p̄+2 − 2
√

2s p̄+
)

(2.138c)

×
(

2p̄+ (1 + ξ)−
√

2s
)

(λ′1 = −, λ1 = +) : −
(1 + ξ)

(
1− ξ2)−1/2

M
√

s p̄+ (ξ − 1)

[
p̄+
(

1 + ξ
)(

32p̄+3 − 24
√

2s p̄+2
)

+ 12sp̄+2 (1 + ξ)−
√

2 s3/2 p̄+ (1 + ξ) (2.138d)

+ M2
(

s + 4p̄+2 (1 + ξ)−
√

2s p̄+ (3 + ξ)
)]

• ū (p′, λ′1) /q/εγ(q, 1)u (p, λ1)

(λ′1 = +, λ1 = +) : − |∆⊥|M
√

s
2p̄+

√
1− ξ2

(2.139a)

(λ′1 = −, λ1 = −) : 0 (2.139b)

(λ′1 = +, λ1 = −) : 0 (2.139c)

(λ′1 = −, λ1 = +) :
(√

2 s− 4
√

s p̄+
)√1 + ξ

1− ξ
(2.139d)
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• ū (p′, λ′1) /q/ε M(q′, 0)u (p, λ1)

(λ′1 = +, λ1 = +) :
1 + ξ

2p̄+ (ξ − 1)
√

1− ξ2

(
M2

+ 8p̄+2 − 2
√

2s p̄+
)

(2.140a)

×
(

2p̄+ (1 + ξ)−
√

2s
)

(λ′1 = −, λ1 = −) = (λ′1 = +, λ1 = +) (2.140b)

(λ′1 = +, λ1 = −) :
|∆⊥| (1 + ξ)

4Mp̄+ (ξ − 1)
√

1− ξ2

(
4p̄+ −

√
2s
)(

M2
+ 8p̄+2 − 2

√
2s p̄+

)
(2.140c)

(λ′1 = −, λ1 = +) = −(λ′1 = +, λ1 = −) (2.140d)

• ū (p′, λ′1) /q/εγ(q, 1)/ε M(q′, 0)u (p, λ1)

(λ′1 = +, λ1 = +) : 0 (2.141a)

(λ′1 = −, λ1 = −) : − |∆⊥| (1 + ξ)

4Mp̄+ (ξ − 1)
√

1− ξ2

(√
2 M2

+ 8
√

2 p̄+2 − 4
√

s p̄+
)

×
(

4p̄+ −
√

2s
)

(2.141b)

(λ′1 = +, λ1 = −) :
1 + ξ

2p̄+ (ξ − 1)
√

1− ξ2

(√
2 M2

+ 8
√

2 p̄+2 − 4
√

s p̄+
)

×
(

2p̄+ (1 + ξ)−
√

2s
)

(2.141c)

(λ′1 = −, λ1 = +) : 0 (2.141d)

Finally we list the 8 scalar products:

p′ · εγ(q, 1) = −
|∆⊥|

(
M2

+ 2p̄+
(√

2s− 4p̄+
) )

4
√

s p̄+ (ξ − 1)
(2.142)

q′ · εγ(q, 1) =
|∆⊥|

(
M2

+ 2p̄+
(√

2s− 4p̄+
) )

4
√

s p̄+ (ξ − 1)
(2.143)

q · εM(q′, 0) =
M2

(1 + ξ)2 − ∆2
⊥

2M (ξ2 − 1)
(2.144)

εγ(q, 1) · εM(q′, 0) = −
|∆⊥|

(
M2

+ 8p̄+2 − 2
√

2s p̄+
)

4M
√

s p̄+ (ξ − 1)
(2.145)

q · p′ = −1
2

(
u−M2

)
(2.146)
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p′ · εM(q′, 0) =

(
∆2
⊥ + 8p̄+2 (ξ − 1)2

)2
− 16M2

64Mp̄+2 (ξ − 1)2 (2.147)

p·εM(q′, 0) =

(
∆2
⊥ − 2M|∆2

⊥|+ 8p̄+2 (ξ2 − 1
) )(

∆2
⊥ + 2M|∆2

⊥|+ 8p̄+2 (ξ2 − 1
) )

64Mp̄+2 (ξ2 − 1)
(2.148)

p · q =
s
2

(2.149)

2.4.3.2 The four Feynman diagrams

In this section we examine the structure of the four Feynman diagrams contributing
to the hard scattering amplitude. As we mentioned above it turns out that those
diagrams can be expressed in terms of the spinor products and scalar products we
have listed in the preceding section. Before we do that in detail we start with some
preliminaries.

Color factor:
We used the color factor at the level of the hadronic amplitude, see Eq. (2.129).

α

ββ

γ

δAB

Σδββ√
1

λAβα λBϒβ
2

β

2

j
i
j

i
1 εαij

1 εγij

3

√6 √6

Figure 2.21: Calculation of the color factor.

From Fig. 2.21 it follows for the color factor

C = ∑
A,B,β

1
3!

1√
3

1
4

εαij εγij δAB δββ λA
βα λB

γβ
= ∑

A,β

1
3!

1√
3

1
4

εijαεijγλA
βαλA

γβ
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=
1
3!

1√
3

1
4

2 δαγ ∑
A,β

λA
βα λA

γβ = 2
1
3!

1√
3

1
4

16 =
4
3

1√
3
=

CF√
Nc

, (2.150)

where CF = (N2
c − 1)/(2Nc) is the usual SU(N) color factor.

Couplings:
For the strong coupling we use the one-loop expression [38]

α(q2) =
4π(

11− 2
3 N f (q2)

)
ln(−q2/Λ2)

, (2.151)

where N f is the number of quarks with m2
quark < |q2| and Λ = 234 MeV. For N f = 4

Eq. (2.151) reads

α(q2) =
12π

25 ln(−q2/Λ2)
. (2.152)

We choose for the argument of Eq. (2.152) q2 = x′20s which is roughly the average of
the gluon and quark virtualities in the hard process.
The electromagnetic coupling strength ge is given by

ge =
2
3

√
4πα for u-quarks, (2.153)

ge =
2
3

√
4πα for c-quarks. (2.154)

In the following we investigate individual Feynman diagrams.

Graph 1:

γ:q,1

u:p,λ1 c:p,λ1

u:(1-x2)q,λ2 c:x2q,λ2

kg
k
~

Figure 2.22: Graph 1
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With the Feynman rules of App. F we obtain for graph 1 (see Fig. 2.22):

H(1),1
λ′1,λ1

= u
((

1− x′2
)

q′, λ2
)
(−igsγ

µ)
i/̃k

k̃2

(
− igeγ

σ
)

εγσ(q, 1)u (p, λ1)

(
−i

gµν

k2
g

)
× u

(
p′, λ′1

)
(−igsγ

ν) v
(
x′2q′, λ′2

)
.

(2.155)

Equation (2.155) can be written as

H(1),1
λ′1,λ1

= i g2
s ge

1
k2

g

1

k̃2

[
u
(

p′, λ′1
)

γµv
(
x′2q′, λ′2

)
u
((

1− x′2
)

q′, λ2
)

γµ (/p − /q) /εγ(q, 1)u (p, λ1)
]
.

(2.156)
The gluon momentum squared k2

g is given by

k2
g =

(
p′ + x′2q′

)2
= M2

(
1 + x′2

)2
+ x′2

(
s− 2M2

)
(2.157)

and the quark momentum squared k̃ by

k̃2 =
(

p + q
)2

= s, (2.158)

respectively. Before we continue to simplify the Dirac structure of Eq. (2.156), some
remarks about the gluon and quark propagators are in order. In principle there are
two different possibilities for the propagators. Using graph 1 as an example they are:

• Momenta of external particles:

gluon propagator:
(

x′2q′ + p′
)2

,

quark propagator:
(

q + p
)2

.

• Using momenta of internal and external particles :

gluon propagator:
(

k̃− (1− x′2) q′
)2

,

quark propagator:
(

kg + (1− x′2) q′
)2

.

As one can easily check, they all give the same results. Using the naive collinear ap-
proximation, i.e. k1 = x1 p = x̄10+ξ

1+ξ p and k′1 = x′1 p′ = x̄10−ξ
1−ξ p′ would violate momentum

conservation. Only in the heavy quark limit, i.e. x̄10 → 1, momentum conservation is
recovered and we can use any of the two possibilities for the propagators.

Using the Dirac equation and p · εγ = 0, Eq. (2.156) can be written as

H(1),1
λ′1,λ1

= i g2
s ge

1
k2

g

1

k̃2

[
u
(

p′, λ′1
)

γµ
1√
2

(
/q ′ −M

)
/ε M(q′, 0)γµ

/q/εγ(q, 1)u (p, λ1)
]
,

(2.159)
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where we have replaced the spinors in the meson by its covariant spin wave function,
cf. Eq. (2.127). With the relations for the Dirac matrices of App. E we get

H(1),1
λ′1,λ1

= i g2
s ge

1
k2

g

1

k̃2

[
2
√

2 M · ScP3 · SP2− 2
√

2 ScP4 · SP4 +
√

2 M · SP8
]
.

(2.160)

Graph 2:
The analytical expression for Fig. 2.23 is

γ:q,1

u:p,λ1 c:p,λ1

u:(1-x2)q,λ2 c:x2q,λ2

kg

k
~

Figure 2.23: Graph 2

H(2),1
λ′1,λ1

= i g2
s ge

1
k2

g

1

k̃2

[
u
(

p′, λ′1
)

γµv
(
x′2q′, λ′2

)
u
((

1− x′2
)

q′, λ2
)

/εγ(q, 1)((1− z)/q ′−/q)γµu (p, λ1)
]
.

(2.161)
Together with the Dirac equation and the covariant spin wave function of the D∗,
Eq. (2.161) simplifies to

H(2),1
λ′1,λ1

= i g2
s ge

1
k2

g

1

k̃2

[
2(1− x′2)q

′ · εγ(q, 1) u
(

p′, λ′1
)

γµ
1√
2

(
/q ′ −M

)
/ε M(q′, 0)γµu (p, λ1)

− u
(

p′, λ′1
)

γµ
1√
2

(
/q ′ −M

)
/ε M(q′, 0)/εγ(q, 1)/qγµu (p, λ1)

]
.

(2.162)
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Using standard relations for the Dirac matrices we obtain as the final result for graph
2

H(2),1
λ′1,λ1

= i g2
s ge

1
k2

g

1

k̃2[
4
√

2
(

ScP4 · ScP5− ScP1 · ScP3
)
· SP1

+ 2
√

2 M · ScP3 · SP2 + 2
√

2
(
1− x′2

)
M · ScP2 · SP3

− 2
√

2 M · ScP4 · SP4− 2
√

2
(

ScP5 + ScP8
)
· SP5

− 2
√

2
(

ScP6 + ScP7
)
· SP6 + 2

√
2 · ScP1 · SP7

+
√

2 M · SP8
]
,

(2.163)

where the gluon momentum squared is given by Eq. (2.157) and the quark momentum
squared is

k̃2 =
(
(1− x′2q′)− q

)2
=
(

1− x′2
)2

M2
+
(

1− x′2
)(

t−M2
)

. (2.164)

Graph 3:

γ:q,1

u:p,λ1 c:p,λ1

u:(1-x2)q,λ2 c:x2q,λ2

kg

k
~

Figure 2.24: Graph 3

The analytical expression for Fig. 2.24 is

H(3),1
λ′1,λ1

= i g2
s ge

1
k2

g

1

k̃2 − x′2M2

[
u
(

p′, λ′1
)

γµ(−x′2 /q ′ + /q + x′2 M)/εγ(q, 1)

× v
(
x′2q′, λ′2

)
u
((

1− x′2
)

q′, λ2
)

γµu (p, λ1)
]
.

(2.165)



2.4 γ p→ D∗λ=0 Λ+
c 61

Equation (2.165) can be written as

H(3),1
λ′1,λ1

= i g2
s ge

1
k2

g

1

k̃2 − x′2M2

[
u
(

p′, λ′1
)

γµ/q/εγ(q, 1)
1√
2

(
/q ′ −M

)
/ε M(q′, 0)γµu (p, λ1)

− 2x′2(q
′ · εγ(q, 1))u

(
p′, λ′1

)
γµ

1√
2

(
/q ′ −M

)
/ε M(q′, 0)γµu(p, λ1).

(2.166)

The final result for graph 3 is

H(3),1
λ′1,λ1

= i g2
s ge

1
k2

g

1

k̃2 − x′22 M2

[
4
√

2
(

ScP4 · ScP5− ScP1 · ScP3
)
· SP1

+ 2
√

2 · ScP3
(

M− 1
)
· SP2− 2

√
2 M x′2 · ScP2 · SP7

+ 2
√

2 · ScP4
(

1−M
)
· SP4− 2

√
2 · ScP5 · SP5

− 2
√

2
(

ScP6 + ScP7
)
· SP6 + 2

√
2 · ScP1 · SP7 +

√
2
(

2M− 1
)
· SP8

]
,

(2.167)

where the gluon momentum squared k2
g is given by

k2
g =

(
p− (1− x′2)q

′
)2

=
(

1− x′2)
2M2

+
(

1− x′2
)(

u−M2
)

(2.168)

and the quark momentum squared k̃2 by

k̃2 =
(

x′2q′ − q
)2

= x′22 M2
+ x′2

(
t−M2

)
, (2.169)

respectively.

Graph 4:

Finally the analytical expression for graph 4 (Fig. 2.25) is

H(4),1
λ′1,λ1

= i g2
s ge

1
k2

g

1

k̃2 −M2

[
u
(

p′, λ′1
)

/εγ(q, 1)(/p′ − /q + M)γµ

× v
(

x′2q′, λ′2
)

u
((

1− x′2
)

q′, λ2
)

γµu (p, λ1)
]
.

(2.170)
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γ:q,1

u:p,λ1 c:p,λ1

u:(1-x2)q,λ2 c:x2q,λ2

kg k
~

Figure 2.25: Graph 4

We can write Eq. (2.170) as

H(4),1
λ′1,λ1

= i g2
s ge

1
k2

g

1

k̃2 −M2

[
2(p′ · εγ(q, 1))u(p′, λ′1)γµ

1√
2

(
/q ′ −M

)
/ε M(q′, 0)u (p, λ1)

− u
(

p′, λ′1
)

/εγ(q, 1)/qγµ
1√
2

(
/q ′ −M

)
/ε M(q′, 0)γµu (p, λ1) .

(2.171)

The final result for graph 4 reads

H(4),1
λ′1,λ1

= i g2
s ge

1
k2

g

1

k̃2 −M2

[
2
√

2M · ScP1 · SP3 +
√

2 M · SP8
]
, (2.172)

where the gluon momentum squared k2
g is given by Eq. (2.168) and the quark

momentum squared k̃2 by

k̃2 =
(

p′ − q
)2

= M2
+
(

u−M2
)

. (2.173)

The full hard scattering amplitude is the sum

H1
λ′1,λ1

= H(1),1
λ′1,λ1

+ H(2),1
λ′1,λ1

+ H(3),1
λ′1,λ1

+ H(4),1
λ′1,λ1

. (2.174)

2.4.4 Results

Here we have to keep in mind that only longitudinally polarized D+ mesons are
considered in the final state. The differential cross section for γ p→ Λ+

c D∗λ=0 reads



2.4 γ p→ D∗λ=0 Λ+
c 63

[39]
dσ

dΩ
=

1
64π2s

|p′|
|p| σ0 =

1
64π2s

Λ′

Λ
σ0 =

1
4π

sΛΛ′
dσ

dt
, (2.175)

with σ0 defined as

σ0 :=
1
2 ∑

µ,µ′
|Mµ′,µ1|2 (2.176)

and Λ and Λ′ are given by Eqs. (B.12) and (B.13). The differential cross sections for
Mandelstam s = 19, 21, 25 and 30 GeV2 are depicted in Fig. 2.26. In each of the
figures we show the cross sections evaluated either with the KK mass exponential
for both the Λ+

c - and D∗-LCWF or with the BB mass exponential for both. Before we
discuss the cross sections we turn to the error assessment issue with respect to the
model parameters: We vary aΛ by ±10% around its central value of 0.75 GeV−1. The
valence Fock state probability of the Λ+

c is varied in the range 0.7 to 1. The errors
of the parameters of the proton LCWF are not taken into account, since they lead to
much smaller uncertainties compared to those of the Λ+

c -LCWF. In fact, the proton
LCWF that we use has been studied in detail in several processes. The uncertainties of
fD∗ are taken from Ref. [36] and are fD∗ = 0.252± 22.64 MeV. The valence Fock state
probability of the D∗-meson, PD∗ = 0.9, is varied between 0.8 and 1, thus yielding
different values for aD∗ = and ND∗ = as well. The gray bands in the plots show the
variation of the cross section due to these uncertainties in the parameters.

The integrated cross section is displayed in Fig. 2.27. The larger cross section is
obtained with the BB mass exponential, as already anticipated by the corresponding
behavior of the differential cross sections. The difference of the cross sections when
evaluated for the different mass exponentials is larger than the parametric errors.
The absolute size of the integrated cross section is of the order of 10−1 − 1 nb. Un-
fortunately there are no other model calculations to compare with. In Ref. [40] they
calculate the (differential) cross section for γ p → D∗ Λ+

c , however, the sum over
the helicities of the D∗. According to the discussions of Sec. 2.5 we expect, using a
hadronic model where SU(4) flavor symmetry is not broken at the wave function level,
an integrated cross section in the range of 10− 100 nb. If SU(4) flavor symmetry is
broken at the level of the hadronic wave functions we conjecture that the cross section
is of comparable order to our estimate.

To make predictions for spin correlations we have to bear in mind that CMS
observables are typically expressed in terms of CMS helicity amplitudes. Therefore
we have to transform our LC helicity amplitudes Mµ′0,µν to CMS helicity amplitudes
which we will denote by φµ′0,µν. The relation between the two amplitudes is39

φµ′0,µν =
1√

1 + β2
=
(
Mµ′0,µν + 2µ′βM−µ′0,µν

)
, (2.177)

39Although we use the same symbols for LC-helicities and “usual” helicities there should be no confusion
which kind of helicity is meant, since it is clear that the subscripts of M refer to LC-helicities and
subscripts of φ refer to “usual” helicities.
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Figure 2.26: The differential γp → D∗λ=0Λ+
c cross section versus cos θ for s =

19, 21, 25, 30 GeV2 (solid, dash-dotted, dotted and dashed line). This plot has
been obtained with the wave function parameterizations described in the text
using the KK mass exponential (upper panel) and using the BB mass exponential
(lower panel). The effects of uncertainties in the Λc and the D∗ wave function
parameters are indicated by the shaded band around the s = 19 GeV2 curve
(hardly visible).
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Figure 2.27: Our prediction for the integrated cross section σ versus Mandelstam s (solid line
with error band). The solid line corresponds to the KK mass exponential and the
dashed line corresponds to the BB mass exponential.

with β := MΛ
p′0+|p′| tan θ

2 . In total there are 12 independent helicity amplitudes for the
photoproduction of vector mesons [41]. As an example for spin observables for which
our model provides nontrivial predictions, we will consider the beam asymmetry Σx

(cf. [42])

Σx =
dσ

dt
=

dσ⊥
dt

=
dσ‖
dt
− 1

16π(s−m2
p)

2 R
(

φ∗−0,−1φ+0,+1 − φ∗−0,+1φ+0,−1

)
. (2.178)

The result for the beam asymmetry is shown in Fig. 2.28. It hardly depends on
the wave function model and thus its angular dependence is characteristic for the
handbag mechanism.

2.4.5 Summary

The same conclusions as in Ref. [9] apply here, we repeat them in a slightly modified
manner. In Sec. 2.4 we have investigated the exclusive process γ p→ D∗λ=0 Λ+

c using a
handbag mechanism. Thereby we have extended the range of applications of p→ Λ+

c
transition GPDs, which have been introduced and used to describe p p → Λ+

c Λ̄−c
in Ref. [11] and π−p → D−Λ+

c in Ref. [7], by another exclusive reaction. We have
argued that, under plausible physical restrictions on parton virtualities and intrinsic
transverse momenta, one can “factorize” this process into a hard partonic subprocess
and soft hadronic matrix elements. The partonic subprocess is the photoproduction
of a cc̄ pair off a u quark, i.e. γu → uc̄c, and has been treated in leading order
perturbative QCD. A numerical calculation reveals that all the propagators are highly
virtual, so a perturbative treatment is justified. The soft hadronic matrix elements
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Figure 2.28: Beam asymmetry Σx for different values of Mandelstam s vs. cos θ.

are the non-perturbative ingredient of our photoproduction mechanism. One of
them describes the p → Λ+

c transition via emission of a u quark by the proton and
reabsorption of a c quark by the remnant of the proton, the other one the formation
of the outgoing u and c̄ quarks to the D∗ meson. The first one is parameterized in
terms of eight GPDs, the second one in terms of a D∗-meson distribution amplitude.
Our approach does not provide a rigorous proof of factorization. It is, at most, a first
step in this direction.

In order to make numerical predictions we have adopted the overlap representation
of Ref. [11] for the p → Λ+

c transition GPDs and we have calculated the D-meson
distribution amplitude from a simple Gaussian model for the light-cone wave function
of the D∗-meson valence Fock state. The overlap representation makes sense for
energies well above the reaction threshold and scattering into the forward hemisphere,
where the momentum fractions of the active quarks have to be larger than the
skewness (i.e. the DGLAP region) in order to produce the cc̄-pair. The starting
point of the overlap representation are also simple Gaussian-type light-cone wave
functions for the valence Fock states of the proton and the Λc. The two parameters
in each wave function were fixed by physical constraints which were taken to be
the probabilities of the valence Fock states, the mean intrinsic transverse momenta
and the D∗-meson decay constant. All the wave function models are pure s-wave.
This reduces the number of non-vanishing p→ Λc transition GPDs to three. These
three non-vanishing GPDs are nearly identical if the contribution of helicity states
with the c-quark helicity being opposite to the Λc helicity is assumed to be small
(in agreement with experimental evidences). Plots for the GPDs show that they are
strongly peaked at x0 = mc/MΛ. This suggested to calculate the hadronic scattering
amplitude by means of a peaking approximation. Thereby the variation of the hard-
scattering amplitude is neglected in the relevant integration region (around x0) when
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it is convoluted with the GPDs and one can take it out of the integral. In this way
the hadronic amplitude becomes a sum of products of generalized form factors, i.e.
particular moments of the GPDs, with the hard scattering amplitude that has still to
be convoluted with the D∗-meson DA.

With this model for the GPDs and the D∗-meson DA we have calculated (unpo-
larized) differential and integrated cross sections as well as the beam asymmetry.
Our prediction for the integrated photoproduction cross section is of the order of
10−1 − 1 nb. The spin correlation parameter is rather insensitive to details of the wave
function model. This means it is mostly determined by the hard partonic subprocess
and may thus give us some clues on how charm is produced on the partonic level.

2.5 Cross section in charmed hadron production: Discrepancies be-
tween different approaches

Exclusive production of charmed hadrons has been addressed with different models.
As we have illustrated in Sec. 2.1 using the example of p̄ p → Λ̄−c Λ+

c , there are
differences up to three orders of magnitude in the estimates for the cross section 40.
In this section we try to understand how these differences come about with special
emphasis on the differences compared to our model. However, we note right away,
that the approaches are of completely different nature, so it is practically impossible
to understand in detail where the drastic differences come from. But nonetheless we
try to pin down what we think could be the main reasons for these differences.

To do so for single hadron exchange models we make reference to the case of
strange particle production and discuss what kind of changes appear when we go to
charm particle production. In Sec. 2.5.1 we discuss the differences of our model to
single hadron exchange models. We will find that those are closely connected to the
question how SU(4) f -symmetry is broken. In the subsequent Sec. 2.5.2 we investigate
the differences to reggeized hadron exchange models using the specific process of
Sec. 2.3, i.e. π− p → D− Λ+

c . Here we will find that the differences are correlated
with charm/strange suppression and how flavor symmetry is broken in the Regge
residues and in the scale parameter. In the final chapter of this section we make some
remarks on the intrinsic charm quark content of the proton.

2.5.1 Single hadron-exchange models

Exclusive charm production near threshold has been estimated within single hadron
exchange models in Refs. [10, 43, 44], for example. As compared to the handbag
mechanism, Refs. [11, 15], the predicted cross sections are about a factor of 100− 1000
larger.
To understand these differences we first look at the generic form of the transition
potentials in these hadron exchange models. The transition potential for p̄ p→ Λ̄−c Λ+

c
is given by t-channel D and D∗ exchanges, those for p̄ p → D̄0 D0 is given by

40A similar conclusion can be made for other processes like p̄ p→ D̄0 D0, see Refs. [15, 43].
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Figure 2.29: The transition potential for p̄ p→ Λ̄c Λc (left figure) and for p̄ p→ D̄ D (right
figure), respectively.

t-channel Λc and Σ(∗)
c exchanges, respectively. The transition potentials have the

following generic form, see also Fig. 2.29,

V p̄ p→Λ̄c Λc(t) ∼ ∑
M=D,D∗

g2
p Λc M

F2
p Λc M(t)

t−m2
M

(2.179)

and

V p̄ p→D̄0 D0
(t) ∼ ∑

B=Λc,Σ(∗)
c

g2
p D B

F2
p D B(t)

t−m2
B

, (2.180)

where gp Λc M and gp D B are the coupling constants at the respective hadronic ver-
tex and Fp Λc M and Fp D B are the vertex form factors. Now, under the assumption
of SU(4) f -symmetry the coupling constants are the same as in the corresponding
exchanges in p̄ p → Λ̄ Λ and p̄ p → K̄ K, respectively 41. With SU(4) f -symmetry
we can give a qualitative estimate for the size of the cross section coming from
single hadronic exchange. Let us discuss this for p̄ p → Λ̄c Λc. When one starts
with p̄ p → Λ̄ Λ and goes to p̄ p → Λ̄c Λc the main change is due to the different
meson propagator in the transition potential, i.e. the masses of (K, K∗) are replaced
by those of (D, D∗), cf. Eqs. (2.179)-(2.180). The couplings stay the same because
of the assumed SU(4) f -symmetry. If one then considers the ratio of the transition
potentials, one roughly gets

V p̄ p→Λ̄c Λc

V p̄ p→Λ̄ Λ
=

m2
Ms

m2
Mc

≈ 1
4

. (2.181)

So we expect that the cross section is smaller by a factor of around 16, i.e. one
order of magnitude. It turns out that this is roughly what one finds in the full
calculation [10, 44]. This explains why the cross section for p̄ p→ Λ̄c Λc in a single
hadron exchange model is smaller by about one order of magnitude as compared
to p̄ p → Λ̄ Λ. We want to remark that the variation of the cutoff parameter in
the form factors of Eqs. (2.179)-(2.180) provides to some extent SU(4) f -symmetry
breaking, because it alters the t-dependence of the transition potential. In this way
some SU(4) f -symmetry breaking in the coupling is also mimicked 42.

41The cutoff parameter in the vertex factor cannot be taken over. The reason is that the masses of the
exchanged particles in the charmed particle production are much larger than in strange particle
production. The sensitivity of the cross section on the cutoff parameters is discussed in Refs.[10, 43].

42Indeed results from QCD sum rules show that the ratio of gpΛc D to gpΛK is 1.47+0.58
−0.44, i.e. SU(4) f -
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Within our factorization approach we separate the process into a hard part (pQCD) and
into a soft part (GPDs). To model the GPDs we employ an overlap representation in
terms of LCWFs as was demonstrated in more detail in Sec. 2.2. We stress that in
our model SU(4)-flavor-symmetry breaking (in addition to the one from the hadron
and quark masses) occurs due to the flavor dependence of the hadron wave functions
which diminishes the p→ Λc overlap considerably as compared to the p→ Λ and
π → K ones [45], namely by three orders of magnitude.

Let us summarize

• Using hadronic models in the description of charmed particle production where
SU(4) f -symmetry is assumed for the coupling constants, we expect that the
cross section is one order of magnitude smaller as compared to corresponding
strange particle production.

• Using a factorization approach in the description of charmed particles produc-
tion, where the non-perturbative part is described in terms of LCWFs which
break SU(4) f -symmetry, we expect that the cross section has to be three orders
of magnitude smaller than in strange particle production.

We therefore expect that the cross section in models which break SU(4) f -symmetry
at the wave function level are closer to our cross section estimates.

2.5.2 Reggeized hadron exchange models

Exclusive production of charmed hadrons has also been addressed within Regge
models. For π−p→ D−Λ+

c one has to consider the D∗ trajectory. Its exchange leads
to a characteristic factor

∼
(

s
s0

)αD∗ (t0)

(2.182)

for the forward scattering amplitude. With a typical trajectory αD∗(t) ' −1 +

t/2 GeV−2 [46, 47] and the still sizeable value of |t0| for s in the range 20− 30 GeV2

one notices a strong suppression of the DΛc channel as compared to the strangeness
channel KΛ, where the K∗ trajectory is exchanged. In the strangeness channel |t0|
is very small for s ' 20 GeV2. Thus, at t = t0 ' 0 the K∗ trajectory takes a value of
about 0.4. In addition to the strong charm/strange suppression through the different
trajectories and values of t0 there is the issue of flavor symmetry breaking in the Regge
residues and in the scale parameter, s0. For the scale parameter it is usually relied on
the quark-gluon string model of binary reactions [46]. In detail the differences in the
Regge parameters and in the residues lead to substantial differences in the results
for the charm/strange suppressions. Thus, in the recent work [48] a suppression
factor of about 10−3 has been obtained and hence a cross section of the order of nb in
agreement with our finding. In sharp contrast to [48] Khodjamirian et al [12] found
a much milder charm/strange suppression. Thus, for instance, for the p̄p→ Λ̄−c Λ+

c

symmetry is broken [12].
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cross section they obtained a value which is about two orders of magnitude larger
than the estimate in our partonic picture [11]. Results for π−p → D−Λ+

c , are not
quoted in [12].
Using reggeized hadronic models one main issue can be identified which is responsi-
ble for the suppression of charmed particle production compared to strange particle
production

• Depending on the differences in the Regge parameters one gets different results
for charm/strange suppressions.

Before we turn briefly to the subject of the intrinsic charm content of the proton, let
us summarize our findings of Sec. 2.5.1-2.5.2

• If one uses single hadron exchange models with SU(4) f -symmetry to describe
the production of charmed particles one gets a cross section which is roughly
one order of magnitude smaller compared to the corresponding strange particle
channel.

• If one uses reggeized hadron exchange models this difference strongly depends
on the charm/strange suppression and can lead to cross sections which are
one to three orders of magnitude smaller depending on the assumptions on
SU(4) f -symmetry breaking in the Regge residues an the scale parameter.

• If one uses an approach where the non-perturbative dynamics is modeled in
terms of flavor dependent wave functions, due to SU(4) f symmetry breaking
effects the cross section is about three orders of magnitude smaller than the one
for the corresponding strange particle production process.

2.5.3 Final remarks: intrinsic charm content of the proton

To conclude the section of charmed hadron production, we discuss very briefly the
topic of intrinsic charm in the nucleon. There are two distinct processes to produce
charm in the nucleon

• Extrinsic charm: Through gluon radiation charm-anticharm pairs are produced.
This perturbative process is a feature of QCD evolution. The charm is concen-
trated at very low momentum fractions x and with increasing Q2 one expects to
see more and more charm. Furthermore the charm and anticharm distributions
are symmetric, i.e. c(x) = c̄(x).

• Intrinsic charm: Here the charm arises through non-perturbative fluctuations
to a |qqqcc̄〉 state. Compared to extrinsic charm, intrinsic charm tends to be
valence-like, i.e.the extrinsic charm distribution is peaked at rather low values
of the momentum fraction x. It is not necessary that charm and anticharm are
equal.

Intrinsic charm was first introduced by Brodsky, Hoyer, Peterson, and Sakai [49].
They noticed that in order to describe the magnitude of the cross section of the first
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direct measurements of charm production, one should add an intrinsic charm com-
ponent. Since then there have been several theoretical studies on the intrinsic charm
content of the nucleon but the magnitude of its charm content is still inconclusive: It
ranges from 0.3 % to 2 % (see Ref. [50] for more details).

An example of a non-perturbative model to produce intrinsic charm in the nucleon
is a meson-cloud model. The basic features of this model will be discussed in more
detail in Sec. 3.2. In this model, say a proton, can fluctuate into a baryon plus a meson
state. An example for a fluctuation to produce a charm-anticharm pair would be
p→ Λ+

c D0. Here the charm is in the Λ+
c (|udc〉) and the anticharm is in the D0

(|uc̄〉).
The resulting charm probability distribution c(x) can be written in the form of a
convolution [50]

c(x) = ∑
B,M

[ ∫ 1

x

dy
y

f p/BM(y) cB

(
x
y

)
+
∫ 1

x

dy
y

f p/MB(y) cM

(
x
y

) ]
. (2.183)

In Eq. (2.183) f p/BM(y) ( f p/MB(y)) represents the slitting function43 for a proton to
fluctuate to a baryon (meson) B (M) with momentum fraction y of the proton mo-
mentum and with a spectator meson (baryon) M (B) carrying a momentum fraction
1− y of the proton momentum. cB and cM denote the charm distribution inside the
baryon B and meson M, respectively. In analogy to Eq. (2.183) one can define an
anticharm probability distribution c̄(x).

As we discussed in Secs. 2.5-2.5.2 the estimated cross sections in hadronic models
are about a factor of 100− 1000 larger than ours. Cross sections as large as predicted
by hadronic or some of the Regge models would also indicate that, in contrast
to our assumption, charm is produced non-perturbatively which means that (non-
perturbative) intrinsic charm of the proton must be taken into account. This could, in
principle, be done within our approach (see Fig. 2.30 (left panel) for example), but it
is hardly conceivable that the small amount of intrinsic charm in the proton that is
compatible with inclusive data [50] could increase the cross section for the exclusive
production of charmed hadrons by two or three orders of magnitude. In a similar
way one could also think of intrinsic charm in the pion (see Fig. 2.30 (right panel))
Experimental data for processes like π− p → D− Λ+

c , p̄ p → Λ̄−c Λ+
c , γ p → D0 Λ+

c

and p̄ p→ D0 D0 up to several GeV above production threshold would thus be highly
desirable to pin down the production mechanism of charmed hadrons and shed some
more light on the question of non-perturbative intrinsic charm in the proton.

43Analogue to the quark-gluon splitting functions of perturbative QCD.
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3
C o l l i n e a r p a r t o n d i s t r i b u t i o n s i n a
f r o n t f o r m m e s o n - c l o u d m o d e l

3.1 Introduction

The ideas of a pion cloud inside free nucleons emerged in the beginning of the 70‘s of
the last century with the work of Drell, Yan and Levy [51] (1970) and Sullivan [52]
(1972). Later it was realized that a (non-perturbative) pion cloud is a consequence of
spontaneously broken chiral symmetry in QCD [53]. A renewed interest in the the
meson-cloud model aroused because of experimental evidences that simple parton-
model symmetries are broken such as the flavor symmetry in the sea of unpolarised
nucleons1 (related to the violation of Gottfried‘s sum rule) where it was found that
d̄ > ū. We can explain this asymmetry naturally in the meson-cloud model: The wave
function of the physical proton contains (many) virtual meson-baryon components.
Via a convolution with the probability to find a meson-baryon component in the
nucleon state, the valence anti-quark distribution of the meson contributes to the
anti-quark distribution in the (physical) proton sea. In the proton wave function the
probability of the Fock state |nπ+〉 is larger than that of the |∆++π−〉 Fock state.
This naturally leads to an asymmetry d̄ > ū. We note, however, that the observed
asymmetry cannot be fully ascribed to the meson-cloud. This does not question the
value of the meson cloud model which has been extensively used in connection with
parton distributions, see Ref. [54] for a review. The role of the meson-cloud model has
also been discussed in connection with form factors [55], GPDs [56] and transition
distribution amplitudes [57].

This section is organized as follows: In Sec. 3.2 we present the basics of the front
form meson-cloud model. We continue to discuss in Sec. 3.3 how the meson-cloud
model is applied to get a convolution formula for the PDFs. In Sec. 3.4 we discuss the
model inputs and show in Sec. 3.5 our results.

3.2 Basics of the front form meson-cloud model

Before presenting the general formalism, we briefly discuss the main idea and the
assumptions we make: To incorporate the meson-cloud effects into the wave function

1In Sec. 3.5.3 we discuss this issue in more detail and discuss the question whether this asymmetry
extents to the polarized sea distributions.

73
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of the physical nucleon, we picture the physical nucleon state |Ñ〉 as being part of the
time a bare nucleon state |N〉 and part of the time a nucleon dressed by a surrounding
meson cloud. In the one-meson approximation this cloud is simply the higher order
Fock state |BM〉 component in the Fock space expansion. Assuming that there are no
interactions among the constituents of the baryon and the meson in the |BM〉-state
during the interaction with the external probe, i.e. a hard photon, we can apply the
convolution approach which enables us to relate the contribution of a certain |BM〉
Fock state to the parton distribution of the physical nucleon.

According to the derivation in Ref. [56], the physical nucleon state |Ñ〉, charac-

terized by the momentum pN =
[

p+N , p−N , pN⊥
]

and helicity µ, is an eigenstate of the
light-cone Hamiltonian

HLC = ∑
B,M

[
HB

0 + HM
0 + H(N,BM)

I

]
: (3.1)

HLC |Ñ : p, µ〉 =
p2

N⊥ + M2
N

2p+N
|Ñ : p, µ〉 . (3.2)

H(N,BM)
I describes the nucleon-baryon-meson-interaction for all the possible baryon

and meson states in which the nucleon can virtually fluctuate. HB
0 and HM

0 are (effec-
tive) Hamiltonians that govern the constituent quark dynamics inside the baryons
and mesons, and lead to the confinement of the quarks inside baryons and mesons,
respectively. Therefore the baryon state with three quarks, denoted by |B : pB, λ〉, is
an eigenstate of HB

0 , i.e.

HB
0 |B : pB, λ〉 =

p2
B⊥ + M2

B

2p+B
|B : pB, λ〉 . (3.3)

Similarly, a quark-antiquark state with the quantum numbers of a meson is an
eigenstate of HM

0 :

HM
0 |M : pM, λ〉 =

p2
M⊥ + M2

M

2p+M
|B : pM, λ〉 . (3.4)

Treating H(N,BM)
I as a perturbation, we can expand the nucleon wave function in

terms of eigenstates of the “free” bare Hamiltonian H0 = HB
0 + HM

0 . We then get

|Ñ : p̃, µ〉 =
(√

Z |N : pN , µ〉+ ∑
n1

|n1〉 〈n1|HI |N : pN , µ〉
EN − En1 + iε

+ ∑
n1,n2

|n2〉 〈n2|HI |n1〉 〈n1|HI |N : pN , µ〉
(EN − En2 + iε) (EN − En1 + iε)

+ . . .
)

,
(3.5)

where Z is the wave function renormalization constant and the sum is a summation
over the BM intermediate states. As we mentioned above, we are using the one-meson
approximation. From that it follows that in the series expansion of Eq. (3.5) we only
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take terms which are of first order in HI :

|Ñ : p̃, µ〉 =
√

Z |N : pN , µ〉+ ∑
B,M
|N(BM) : pN , µ〉

=
√

Z |N : pN , µ〉+ ∑
B,M

[ ∫ dp+B d2pB⊥
16π3 p+B

dp+M d2pM⊥
16π3 p+M

× ∑
λB,λM

〈BM : pB, pM, λB, λM|HI |N : pN , µ〉
EN − EB − EM

|BM : pB, pM, λB, λM〉
]
,

(3.6)

where we have introduced |BM : pB, pM, λB, λM〉 as a shorthand notation for the
tensor-product states |B : pB, λB〉 |M : pM, λM〉. To calculate the energy denominator
of Eq. (3.6) we write for the baryon and meson momenta

p+B = yp+N , pB⊥ = k⊥ + ypN⊥,

p+M = (1− y)p+N , pM⊥ = −k⊥ + (1− y)pN⊥,
(3.7)

with y (1− y) denoting the baryon (meson) longitudinal momentum fraction of the
physical nucleon momentum and k⊥(−k⊥) standing for the intrinsic transverse mo-
mentum of the baryon (meson) relative to the physical nucleon transverse momentum.
The minus component can be identified by using the on-mass shell conditions. The
energies in the denominator of Eq. (3.6) can now be written as

EN =
1√
2

(
p+N + p−N

)
=

1√
2

(
p+N +

M2
N + p2

N⊥
2p+N

)
,

EB =
1√
2

(
p+B + p−B

)
=

1√
2

(
yp+N +

M2
B + (k⊥ + ypN⊥)

2

2yp+N

)
,

EM =
1√
2

(
p+M + p−M

)
=

1√
2

(
(1− y)p+N +

M2
M + (−k⊥ + (1− y)pN⊥)

2

2(1− y)p+N

)
.

(3.8)

If we use Eq. (3.8) the energy denominator reads

EN − EB − EM =
1

2
√

2p+N

(
M2

N −M2
BM

)
, (3.9)

where we have defined the invariant mass of the baryon-meson fluctuation by

M2
BM =

M2
B + k2

⊥
y

+
M2

M + k2
⊥

1− y
. (3.10)

Furthermore, the transition amplitude 〈BM|HI |N : pN , λ〉 in Eq. (3.6) has the follow-
ing general expression:

〈BM : pB, pM, λB, λM|HI |N : pN , λ〉 = 16π3δ
(

p+B + p+M − p+N
)

δ(2) (pB⊥ + pM⊥ − pN⊥)

×Vµ
λB,λM

(N, BM),
(3.11)
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with the vertex function Vµ
λB,λM

(N, BM) being

Vµ
λB,λM

(N, BM) = ūNα (pN , µ) ναβγχβ (pM, λM)Ψγ (pB, λB) . (3.12)

In Eq. (3.12) uN is the spinor of the physical nucleon, χ and Ψ are the field operators
of the virtual meson and baryon fluctuation, respectively, ν denotes the structure we
get (depending on momenta, derivatives, Dirac matrices, . . . ) if we work out Eq. (3.12)
with a specified Lagrangian and α, β, γ are the bi-spinor and/or vector indices2. In
App. H we show the results for the vertex functions.
Using the results of Eqs. (3.9) and (3.11), we find

|Ñ : p̃, µ〉 =
√

Z |N : pN , µ〉+ ∑
B,M

∫ dy d2k⊥
16π3

1√
y(1− y) ∑

λB,λM

φ
µ(N,BM)
λB,λM

(y, k⊥)

× |B : yp+N , k⊥ + ypN⊥, λB〉 |M : (1− y)p+N ,−k⊥ + (1− y)pN⊥, λM〉 ,
(3.13)

where we have introduced the probability amplitude φ
µ(N,BM)
λB,λM

(y, k⊥)

φ
µ(N,BM)
λB,λM

(y, k⊥) =
1√

y(1− y)

Vµ
λB,λM

(N, BM)

M2
N −M2

BM(y, k⊥)
. (3.14)

The probability amplitude of Eq. (3.14) gives the amplitude that a nucleon with
helicity µ fluctuates into a virtual BM system with the baryon having a longitudinal
momentum fraction y, transverse momentum k⊥ and helicity λB, and the meson
having a longitudinal momentum fraction 1− y, transverse momentum −k⊥ and
helicity λM. By imposing the normalization condition of the nucleon state of Eq. (3.13),
we obtain a condition for Z:

1 = Z + PBM/N , (3.15)

where we have defined PBM/N by

PBM/N = ∑
B,M

∫ dy d2k⊥
16π3

1
y(1− y) ∑

λB,λM

|V1/2
λB,λM

(N, BM)|2

M2
N −M2

BM(y, k⊥)
. (3.16)

PBM/N is the probability that a nucleon fluctuates into a baryon-meson state. In
analogy, Z is the probability to find a bare nucleon in the physical nucleon.

3.3 Convolution model for the quark parton distribution functions

In this section we show how the meson-cloud model can be applied to calculate quark
PDFs. The definition of the leading twist nucleon quark PDFs is given in Sec. 3.3.1.1.
We can relate the quark PDFs to helicity amplitudes for which we can find an overlap
representation in terms of LCWFs. As a side remark, we note that our discussion can

2E.g. for B = N and M = π, the index β vanishes (since the pion is a pseudoscalar) and γ is a bi-spinor
index. For M = ρ, β is a vector index.
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be generalized also to GDPs in non-forward kinematics, as it was shown in Ref. [56].

3.3.1 PDFs and helicity amplitudes

3.3.1.1 Definition of twist two quark PDFs of the nucleon

For convenience we repeat the definition of the PDFs at twist two level:

• unpolarised quark PDF

f q
1 (x) =

1
2

∫ dz−

2π
ei x p+ z− 〈N : p, µ| Ψ̄q (−z−/2

)
γ+ Ψq (z−/2

)
|N : p, µ〉 ,

(3.17)

• polarised quark PDF

gq
1(x) =

1
2

∫ dz−

2π
ei x p+ z− 〈N : p, µ| Ψ̄q (−z−/2

)
γ+γ5 Ψq (z−/2

)
|N : p, µ〉 ,

(3.18)

• transversity distribution

hq
1(x) = −1

2

∫ dz−

2π
ei x p+ z− 〈N : p, µ′x| Ψ̄q (−z−/2

)
iσ+1γ5 Ψq (z−/2

)
|N : p, µx〉 .

(3.19)

The nucleon state is characterized by the momentum p and the helicity µ(µx)3.

Another way to define the leading twist PDFs is the following: We introduce the
quark-quark correlator for a hadron target H

Φab(x, S) =
∫ dξ−

2π
eik+ξ−〈H : p, S|Ψq

b(0)Ψ
q
a(ξ)|H : p, S〉

∣∣
ξ+=ξ⊥=0 , (3.20)

where k+ = xp+ and a, b are indices in the Dirac space. The target state is characterized
by its four-momentum p and covariant spin four-vector S satisfying p2 = M2, S2 = −1,
and p · S = 0. We choose a frame where the hadron momentum has no transverse
components P =

[
P+, M2

2P+ , 0⊥
]
, thus S =

[
Sz

p+
M ,−Sz

M
2P+ , S⊥

]
with S2 = 1. From now

on, we replace the dependence on the covariant spin four-vector S by the dependence
on the unit three-vector S = (S⊥, Sz). The parton distribution functions can be
obtained by performing the traces of the correlator (3.20) with suitable Dirac matrices.
Using the abbreviation Φ[Γ] ≡ Tr[ΦΓ]/2, we have

Φ[γ+](x, S) = f1, (3.21)

Φ[γ+γ5](x, S) = Szg1, (3.22)

Φ[iσj+γ5](x, S) = Sj
⊥h1. (3.23)

3The helicity µx refer to the helicities in the transversity basis in x̂-direction, i.e. they are eigenstates of
the transverse x-spin-projection operator, Q± = 1

2
(
1± γ1γ5

)
.
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3.3.1.2 Helicity amplitudes

H:p,μ

q:xp,λ q:xp,λ

H:p,μ

Figure 3.1: Representation of the helicity amplitudes defined in Eq. (3.24)

The helicity amplitudes are defined by (see also Fig. 3.1)

Aq/H
µ′λ′,µλ =

∫ dz−

2π
eix p+ z− 〈H : p, µ′| Oq

λ′λ|H : p, µ〉 |z+=z⊥=0, (3.24)

with the various quark field operators given by

O
q
++ =

1
4

ψ̄q
(
− z

2

)
γ+ (1 + γ5)ψq

( z
2

)
=

1√
2

φ†
R

(
− z

2

)
φR

( z
2

)
,

O
q
−− =

1
4

ψ̄q
(
− z

2

)
γ+ (1− γ5)ψq

( z
2

)
=

1√
2

φ†
L

(
− z

2

)
φL

( z
2

)
,

O
q
−+ = − i

4
ψ̄q
(
− z

2

)
σ+1 (1 + γ5)ψq

( z
2

)
= − i

4
ψ̄q
(
− z

2

) (
σ+1 − iσ+2

)
ψq
( z

2

)
=

1√
2

φ†
L

(
− z

2

)
φR

( z
2

)
,

O
q
+− =

i
4

ψ̄q
(
− z

2

)
σ+1 (1− γ5)ψq

( z
2

)
=

i
4

ψ̄q
(
− z

2

) (
σ+1 + iσ+2

)
ψq
( z

2

)
=

1√
2

φ†
R

(
− z

2

)
φL

( z
2

)
.

(3.25)

φR(L) are the good field components with helicity R(L). Following Ref. [23], we can
express the helicity amplitudes of Eq. (3.24) in terms of LCWFs. To obtain the wave
function representation of the helicity amplitudes we

1. insert the Fock state expansion into the matrix elements defining the helicity
amplitudes,

2. express the quark field operators in terms of creation and annihilation operators
of quarks and antiquarks,

3. use the anti-commutation relations of these operators.

The resulting formula is

Aq/H
µ′λ′,µλ(x) = ∑

N,β
∑
j=q

∫ [
dx
]

N

∫ [
dk⊥

]
N

f ac(λj, λ′j)δλj,λδλ′j,λ
′

× δ
(

x− xj
)

ΨH∗
µ′
(
{xi, k⊥i, λ′i, β′i}i=1,...,N

)
ΨH

µ ({xi, k⊥i, λi, βi}i=1,...,N) ,
(3.26)
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where N specifies the number of partons in a Fock state, β is a collective label for
flavor and color, j denotes the active quark and the global factor is given by

f ac
(

λj, λ′j

)
=


δλj,λ′j

chiral even (unpolarised) ,

sign(λj)δλj,λ′j
chiral even (polarised) ,

δλj,−λ′j
chiral odd.

(3.27)

3.3.1.3 PDFs expressed in terms of helicity amplitudes

The decomposition of the helicity amplitudes in terms of PDFs can be obtained by
decomposing the target states |H : p,±S〉 with light-cone polarization parallel or
opposite to the generic direction S = (sin θS cos φS, sin θS sin φS, cos θS) in terms of
the target light-cone helicity states |H : p, µ〉,(

|p,+S〉, |p,−S〉
)
=
(
|p,+〉, |p,−〉

)
u(θS, φS), (3.28)

where the SU(2) rotation matrix u(θS, φS) is given by

u(θS, φS) =

(
cos θS

2 e−iφS/2 − sin θS
2 e−iφS/2

sin θS
2 eiφS/2 cos θS

2 eiφS/2

)
. (3.29)

For a spin 1/2 target like the proton one has:

Aq/p
µ′λ′,µλ =



1
2

(
f q/p
1 + gq/p

1

)
0 0 hq/p

1

0 1
2

(
f q/p
1 − gq/p

1

)
0 0

0 0 1
2

(
f q/p
1 − gq/p

1

)
0

hq/p
1 0 0 1

2

(
f q/p
1 + gq/p

1

)

 ,

(3.30)
where the elements of the 2× 2 block matrices refer to hadron helicities (µ′, µ) (quark
helicities (λ′, λ) fixed), whereas the different block matrices refer to the different
contributions of quark helicities (λ′, λ):

• 2× 2 matrix:

– upper left: (µ′ = +, µ = +)

– upper right: (µ′ = −, µ = +)

– lower left: (µ′ = +, µ = −)
– lower right: (µ′ = −, µ = −)

• block matrices:

– upper left: (λ′ = +, λ = +)

– upper right: (λ′ = −, λ = +)

– lower left: (λ′ = +, λ = −)
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– lower right: (λ′ = −, λ = −).

From Eq. (3.30) we read off that

f q/p
1 (x) = Aq/p

++,++(x) + Aq/p
−+,−+(x),

gq/p
1 (x) = Aq/p

++,++(x)− Aq/p
−+,−+(x),

hq/p
1 (x) = Aq/p

++,−−(x).

(3.31)

For a spin 1 target like the ρ one has [58]:

Aq/ρ
µ′λ′ ,µλ =



f1 + g1 −
f1LL
3 0 0 0

√
2 (h1 + ih1LT) 0

0 f1 +
2 f1LL

3 0 0 0
√

2 (h1 − ih1LT)

0 0 f1 − g1 −
f1LL
3 0 0 0

0 0 0 f1 − g1 −
f1LL
3 0

√
2 (h1 − ih1LT) 0 0 0 f1 +

2 f1LL
3 0

0
√

2 (h1 + ih1LT) 0 0 0 f1 + g1 −
f1LL
3


,

(3.32)

where the elements of the 3× 3 block matrices refer to the ρ-helicity (µ′, µ), whereas
different blocks belong to different combinations of quark helicities (λ′, λ). The
definition of the helicity amplitudes in Ref. [58] differs from our definition in Eq. (3.24)
by a factor of two. With our definition we obtain

f q/ρ
1 (x) =

2
3

(
Aq/ρ

1+,1+(x) + Aq/ρ
−1+,−1+(x) + Aq/ρ

0+,0+(x)
)

,

f qρ
1LL(x) = 2Aq/ρ

0+,0+(x)− (Aq/ρ
1+,1+(x) + Aq/ρ

−1+,−1+(x)),

gq/ρ
1 (x) = Aq/ρ

1+,1+(x)− Aq/ρ
−1+,−1+(x),

hq/ρ
1 (x) =

1√
2

(
Aq/ρ

1+,0+(x) + Aq/ρ
0+,−1−(x)

)
.

(3.33)

For a spin 0 target, like the π, one has only one independent helicity amplitude,
corresponding to the unpolarized PDF, i.e.

f q/π
1 = Aq/π

0+,0+ + Aq/π
0−,0− = 2Aq/π

0+,0+. (3.34)

3.3.2 PDFs in the meson cloud model

3.3.2.1 Helicity amplitudes in the meson cloud model

In DIS the virtual photon can hit either the bare proton4 p or one of the constituents of
the higher Fock states. As a consequence, a generic quark parton distribution function
PDF(x) can be obtained as a sum of two contributions:

PDFq/p(x) = Z PDFqV /p
bare (x) + δPDFq(x), (3.35)

4We can restrict our discussion about the PDFs to the proton, since the PDFs of the neutron can be
related to those of the proton by isospin invariance.
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N N
M

B B

N N
B

M M

N N

Figure 3.2: Deeply virtual scattering on the bare nucleon (left figure) and on the dressed
nucleon: virtual baryon (middle figure, meson acting as a spectator) and on the
virtual meson (right figure, baryon acting as a spectator).

where PDFqV /p
bare is the valence quark distribution (PDF = f1, g1 or h1, cf. Sec. 3.3.1.1

for their definition) of the bare proton described by 3q Fock states and δPDFq/p

includes both valence and sea contribution coming from the BM Fock component
of the proton state, i.e. q = (uV + ū, dV + d̄). As we consider only the minimal 3q
and qq̄ configurations for the baryon and meson components in the BM fluctuation,
respectively, only the meson can contribute to the sea of the physical proton. The last
term in Eq. (3.35) can be further split into two contributions, with the active parton
belonging either to the baryon (δPDFq/BM) or to the meson (δPDFq/MB), i.e.

δPDFq(x) = ∑
B,M

[
δPDFq/BM(x) + δPDFq/MB(x)

]
. (3.36)

To find the expression for δPDFq(x) we recall that the PDFs can be written in terms
of helicity amplitudes, see the previous section. Therefore we need to find the helicity
amplitudes in the meson cloud model. In the meson cloud model we can write the
helicity amplitudes as

Aq/p
µ′λ′,µλ(x) = Z Aq/(p,bare)

µ′λ′,µλ (x) + δAq/p
µ′λ′,µλ(x), (3.37)

where Aq/(p,bare)
µ′λ′,µλ is the contribution from the bare nucleon (described in terms of three

valence quarks) and δAq/p
µ′λ′,µλ is the contribution from the higher Fock state, i.e. the

baryon-meson fluctuation. δAq/p
µ′λ′,µλ can be split into two different parts: One where

the active quark is in the baryon and another one where the active quark is in the
meson:

δAq/p
µ′λ′,µλ(x) = ∑

B,M
δAq/BM

µ′λ′,µλ(x) + δAq/MB
µ′λ′,µλ(x). (3.38)

In the first case a baryon is taken out (reinserted) from the initial (final) proton with a
momentum fraction yB of the plus momentum of the proton, a transverse momentum
pB⊥ and helicity λB(λ

′
B). The meson is a spectator during the scattering process. In

the second case a meson is taken out (reinserted) from the initial (final) proton with a
momentum fraction yM of the plus momentum of the proton, a transverse momentum
pM⊥ and helicity λM(λ′M), respectively. The baryon now acts as the spectator.

To evaluate the baryon contribution δAq/BM
µ′λ′,µλ(x) we calculate the matrix element

in Eq. (3.24) between the BM components of the initial and final proton. From the
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nucleon wave function of Eq. (3.13) the contribution from the active baryon in the BM
components reads5

∑
B,M

∫ dyB

yB

dyM

yM
δ (1− yB − yM)

∫ d2kB⊥d2kM⊥
16π3 δ(2) (kB⊥ + kM⊥)

× ∑
λB,λM

φ
µ(′)(p,BM)

λ
(′)
B ,λM

(yB, kB⊥) |B : yB p+p , kB⊥, λB〉 |M : yM p+p , kM⊥, λM〉 .
(3.39)

The final result for the baryon contribution to δAq/BM
µ′λ′,µλ(x) is given by

δAq/BM
µ′λ′,µλ(x) = ∑

λ
(′)
B ,λM

∫ 1

x

dyB

yB

∫ dk⊥B

16π3 Aq/B
λ′Bλ′,λBλ

(
x

yB

)

× φ
µ(p,BM)
λBλM

(yB, k⊥B)
[
φ

µ′(p,BM)
λ′BλM

(yB, k⊥B)
]∗

,

(3.40)

with

Aq/B
λ′Bλ′,λBλ

(
x

yB

)
=
∫ dz−

2π
ei x

yB
p+B z− 〈B : pB, λ′B| Oλ′λ |B : pB, λB〉 . (3.41)

The quark field operator product Oλ′λ is defined in Eq. (3.25) for the different he-
licity combinations of (λ′, λ). Analogous, we can calculate δAq/MB

µ′λ′,µλ(x). We find the
following convolution

δAq/MB
µ′λ′,µλ(x) = ∑

λ
(′)
M ,λM

∫ 1

x

dyM

yM

∫ dk⊥M

16π3 Aq/M
λ′Mλ′,λMλ

(
x

yM

)

× φ
µ(p,BM)
λBλM

(1− yM,−k⊥M)
[
φ

µ′(p,BM)
λBλ′M

(1− yM,−k⊥M)
]∗

,

(3.42)

with

Aq/M
λ′Mλ′,λMλ

(
x

yM

)
=
∫ dz−

2π
ei x

yM
p+M z− 〈M : pM, λ′M| Oλ′λ |M : pM, λM〉 . (3.43)

For equations (3.41) and (3.43) we can use the overlap formula of Eq. (3.26). Since
we now have the expressions for the BM component of the helicity amplitudes, we
can also calculate their contribution to the PDFs, i.e. we can calculate

δPDFq(x) = ∑
B,M

[
δPDFq/BM(x) + δPDFq/MB(x)

]
. (3.44)

We recall that the PDFs can be written in terms of helicity amplitudes, cf. Sec. 3.3.1.3.

3.3.2.2 Convolution formula for the PDFs

In this section we specify the convolution formula for the PDFs in the meson cloud
model. The lowest lying fluctuations for the proton which we include in our calcula-

5The initial proton (baryon) has the helicity µ(λB) and the final proton (baryon) has the helicity µ′(λ′B).
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tions are

p(uud) → n(udd)π+(ud̄),

p(uud) → p(uud)π0
(

1√
2
[dd̄− uū]

)
,

p(uud) → n(udd) ρ+(ud̄),

p(uud) → p(uud) ρ0
(

1√
2
[dd̄− uū]

)
. (3.45)

In what follows helicities ± 1
2 are denoted by ± for better legibility.

N π-fluctuation:
Let us start with6 δ f q/BM

1 :

• B = N → active, M = π → spectator

δ f q/Nπ
1 (x) = δAq/Nπ

++,++(x) + δAq/Nπ
+−,+−(x) =

∫ 1

x

dyB

yB

∫ dk⊥B

16π3

×
[[

Aq/N
++,++ φ

+(p,Nπ)
+0

(
φ
+(p,Nπ)
+0

)∗
+ Aq/N

−+,−+

Aq/N
+−,+−

φ
+(p,Nπ)
−0

(
φ
+(p,Nπ)
−0

)∗ ]

+
[

Aq/N
+−,+− φ

+(p,Nπ)
+0

(
φ
+(p,Nπ)
+0

)∗
+ Aq/N

−−,−−

Aq/N
++,++

φ
+(p,Nπ)
−0

(
φ
+(p,Nπ)
−0

)∗ ]]

=
∫ 1

x

dyB

yB

∫ dk⊥B

16π3

[
φ
+(p,Nπ)
+0

(
φ
+(p,Nπ)
+0

)∗
∣∣∣(φ+(p,Nπ)

+0

∣∣∣2
[

Aq/N
++,++ + Aq/N

+−,+−

f q/N
1

]

+ φ
+(p,Nπ)
−0

(
φ
+(p,Nπ)
−0

)∗
∣∣∣(φ+(p,Nπ)
−0

∣∣∣2
[

Aq/N
++,++ + Aq/N

+−,+−

f q/N
1

]]

=
∫ 1

x

dyB

yB
f q/N
1

(
x

yB

)
∑
λN

∫ dk⊥B

16π3

∣∣∣φ+(p,Nπ)
λN0 (yB, k⊥B)

∣∣∣2.

(3.46)

6We label the “pion helicity” with 0.
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• M = π → active, B = N → spectator

δ f q/πN
1 (x) = δAq/πN

++,++(x) + δAq/πN
+−,+−(x) =

∫ 1

x

dyM

yM

∫ dk⊥M

16π3

×∑
λN

[
Aq/π

0+,0+ φ
+(p,Nπ)
λN0

(
φ
+(p,Nπ)
λN0

)∗
+ Aq/π

0−,0− φ
+(p,Nπ)
λN0

(
φ
+(p,Nπ)
λN0

)∗ ]
=
∫ 1

x

dyM

yM

∫ dk⊥M

16π3

[
Aq/π

0+,0+ + Aq/π
0−,0−

f q/π
1

∑
λN

φ
+(p,Nπ)
λN0

(
φ
+(p,Nπ)
λN0

)∗
∣∣∣(φ+(p,Nπ)

λN 0

∣∣∣2
]

=
∫ 1

x

dyM

yM
f q/π
1

(
x

yM

)
∑
λN

∫ dk⊥M

16π3

∣∣∣(φ+(p,Nπ)
λN0 (1− yM,−k⊥M)

∣∣∣2.

(3.47)

Only the active nucleon contributes to the polarized and transversity PDF since the
pion has spin zero. We continue with δgq/Nπ

1 :

δgq/Nπ
1 (x) = δAq/Nπ

++,++ (x)− δAq/Nπ
+−,+− (x) =

∫ 1

x

dyB

yB

∫ dk⊥B

16π3

×
[[

Aq/N
++,++ φ

+(p,Nπ)
+0

(
φ
+(p,Nπ)
+0

)∗
+ Aq/N

−+,−+

Aq/N
+−,+−

φ
+(p,Nπ)
−0

(
φ
+(p,Nπ)
−0

)∗ ]

−
[

Aq/N
+−,+− φ

+(p,Nπ)
+0

(
φ
+(p,Nπ)
+0

)∗
+ Aq/N

−−,−−

Aq/N
++,++

φ
+(p,Nπ)
−0

(
φ
+(p,Nπ)
−0

)∗ ]]

(3.48)

=
∫ 1

x

dyB

yB

∫ dk⊥B

16π3

[
φ
+(p,Nπ)
+0

(
φ
+(p,Nπ)
+0

)∗
∣∣∣(φ+(p,Nπ)

+0

∣∣∣2
[

Aq/N
++,++ − Aq/N

+−,+−

gq/N
1

]

− φ
+(p,Nπ)
−0

(
φ
+(p,Nπ)
−0

)∗
∣∣∣(φ+(p,Nπ)
−0

∣∣∣2
[

Aq/N
++,++ − Aq/N

+−,+−

gq/N
1

]]

=
∫ 1

x

dyB

yB
gq/N

1

(
x

yB

) ∫ dk⊥B

16π3

[∣∣∣(φ+(p,Nπ)
+N0 (yB, k⊥B)

∣∣∣2 − ∣∣∣(φ+(p,Nπ)
−0 (yB, k⊥B)

∣∣∣2].

(3.49)

The contribution δhq/Nπ
1 of the Nπ-fluctuation to the transversity of the proton reads
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δhq/Nπ
1 (x) = δAq/Nπ

++,−− (x) =
∫ 1

x

dyB

yB

∫ dk⊥B

16π3 Aq/N
++,−−

(
x

yB

)
hq/N

1

(
x

yB

)
× φ

−(p,Nπ)
−0 (yB, k⊥B)

(
φ
+(p,Nπ)
+0 (yB, k⊥B)

)∗
=
∫ 1

x

dyB

yB

∫ dk⊥B

16π3 hq/N
1

(
x

yB

)
× φ

−(p,Nπ)
−0 (yB, k⊥B)

(
φ
+(p,Nπ)
+0 (yB, k⊥B)

)∗
.

(3.50)

N ρ-fluctuation:
We now investigate the contribution of the Nρ fluctuation to the PDFs of the proton.
Since the ρ-meson is a vector particle it contributes to all three leading twist PDFs
when the meson is active. Let us start with δ f q/BM

1 :

• B = N → active, M = ρ→ spectator

δ f q/Nρ
1 (x) = δAq/Nρ

++,++(x) + δAq/Nρ
+−,+−(x) =

∫ 1

x

dyB

yB

∫ dk⊥B

16π3

×∑
λρ

[[
Aq/N
++,++ φ

+(p,Nρ)
+λρ

(
φ
+(p,Nρ)
+λρ

)∗
∣∣∣φ+(p,Nρ)

+λρ

∣∣∣2
+ Aq/N

−+,−+

Aq/N
+−,+−

φ
+(p,Nρ)
−λρ

(
φ
+(p,Nρ)
−λρ

)∗
∣∣∣φ+(p,Nρ)
−λρ

∣∣∣2
]

+
[

Aq/N
+−,+− φ

+(N,Nρ)
+λρ

(
φ
+(N,Nπ)
+λρ

)∗
∣∣∣φ+(p,Nρ)

+λρ

∣∣∣2
+ Aq/N

−−,−−

Aq/N
++,++

φ
+(N,Nρ)
−λρ

(
φ
+(p,Nρ)
−λρ

)∗
∣∣∣φ+(p,Nρ)
−λρ

∣∣∣2
]]

(3.51)

=
∫ 1

x

dyB

yB

∫ dk⊥B

16π3 ∑
λρ

[∣∣∣(φ+(p,Nρ)
+λρ

∣∣∣2[ Aq/N
++,++ + Aq/N

+−,+−

f q/N
1

]

+ φ
+(p,Nρ)
−λρ

(
φ
+(p,Nρ)
−λρ

)∗
∣∣∣(φ+(p,Nρ)
−λρ

∣∣∣2
[

Aq/N
++,++ + Aq/N

+−,+−

f q/N
1

]]

=
∫ 1

x

dyB

yB
f q/N
1

(
x

yB

)
∑

λN ,λρ

∫ dk⊥B

16π3

∣∣∣(φ+(p,Nρ)
λNλρ

(yB, k⊥B)
∣∣∣2.

(3.52)
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• M = ρ→ active, B = N → spectator

δ f q/ρN
1 (x) = δAq/ρN

++,++(x) + δAq/ρN
+−,+−(x) =

∫ 1

x

dyM

yM

∫ dk⊥M

16π3

×∑
λN

[∣∣∣(φ+(p,Nρ)
λN1

∣∣∣2[ Aq/ρ
1+,1+ + Aq/ρ

1−,1−

f q/ρ
1 − 1

3 f q/ρ
1LL

]
+
∣∣∣(φ+(p,Nρ)

λN0

∣∣∣2[ Aq/ρ
0+,0+ + Aq/ρ

0−,0−

f q/ρ
1 + 2

3 f q/ρ
1LL

]

+
∣∣∣(φ+(p,Nρ)

λN−1

∣∣∣2[ Aq/ρ
−1+,−1+ + Aq/ρ

−1−,−1−

f q/ρ
1 − 1

3 f q/ρ
1LL

]]

=
∫ 1

x

dyM

yM

∫ dk⊥M

16π3

[
∑

λN ,λρ

f q/ρ
1

(
x

yM

) ∣∣∣(φ+(p,Nρ)
λNλρ

(1− yM,−k⊥M)
∣∣∣2

+ ∑
λN

f q/ρ
1LL

[ ( x
yM

)
− 1

3

∣∣∣φ+(p,Nρ)
λN1

∣∣∣2 + 2
3

∣∣∣φ+(p,Nρ)
λN0

∣∣∣2 − 1
3

∣∣∣φ+(p,Nρ)
λN−1

∣∣∣2]].

(3.53)

We continue with the higher Fock state contribution to the polarised proton PDF:

• B = N → active, M = ρ→ spectator

δgq/Nρ
1 (x) = δAq/Nρ

++,++(x)− δAq/Nρ
+−,+−(x) =

∫ 1

x

dyB

yB

∫ dk⊥B

16π3

×∑
λρ

[[
Aq/N
++,++ φ

+(p,Nρ)
+λρ

(
φ
+(p,Nπ)
+λρ

)∗
∣∣∣φ+(p,Nρ)

+λρ

∣∣∣2
+ Aq/N

−+,−+

Aq/N
+−,+−

φ
+(N,Nρ)
−λρ

(
φ
+(p,Nρ)
−λρ

)∗
∣∣∣φ+(p,Nρ)
−λρ

∣∣∣2
]

−
[

Aq/N
+−,+− φ

+(p,Nρ)
+λρ

(
φ
+(p,Nπ)
+λρ

)∗
∣∣∣φ+(p,Nρ)

+λρ

∣∣∣2
+ Aq/N

−−,−−

Aq/N
++,++

φ
+(p,Nρ)
−λρ

(
φ
+(p,Nρ)
−λρ

)∗
∣∣∣φ+(p,Nρ)
−λρ

∣∣∣2
]]

(3.54)

=
∫ 1

x

dyB

yB

∫ dk⊥B

16π3 ∑
λρ

[∣∣∣(φ+(p,Nρ)
+λρ

∣∣∣2[ Aq/N
++,++ − Aq/N

+−,+−

gq/N
1

]
(3.55)

− φ
+(p,Nρ)
−λρ

(
φ
+(p,Nρ)
−λρ

)∗
∣∣∣(φ+(p,Nρ)
−λρ

∣∣∣2
[

Aq/N
++,++ − Aq/N

+−,+−

gq/N
1

]]
(3.56)

=
∫ 1

x

dyB

yB
gq/N

1

(
x

yB

)
∑
λρ

∫ dp⊥B

16π3

[∣∣∣(φ+(p,Nρ)
+λρ

(yB, k⊥B)
∣∣∣2 − ∣∣∣(φ+(p,Nρ)

−λρ
(yB, k⊥B)

∣∣∣2].

(3.57)
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• M = ρ→ active, B = N → spectator

δgq/ρN
1 (x) = δAq/ρN

++,++(x)− δAq/ρN
+−,+−(x) =

∫ 1

x

dyM

yM

∫ dk⊥M

16π3

×∑
λN

[∣∣∣(φ+(p,Nρ)
λN1

∣∣∣2[ Aq/ρ
1+,1+ − Aq/ρ

1−,1−

gq/ρ
1

]
−
∣∣∣(φ+(p,Nρ)

λN−1

∣∣∣2[ Aq/ρ
−1−,−1− − Aq/ρ

−1+,−1+

gq/ρ
1

]]

=
∫ 1

x

dyM

yM
gq/ρ

1

(
x

yM

) ∫ dk⊥M

16π3

×∑
λN

[ ∣∣∣(φ+(p,Nρ)
λN1 (1− yM,−k⊥M)

∣∣∣2 − ∣∣∣(φ+(p,Nρ)
λN−1 (1− yM,−k⊥M)

∣∣∣2].

(3.58)

Finally, the contribution of the Nρ-fluctuation to the transversity reads

• B = N → active, M = ρ→ spectator

δhq/Nρ
1 (x) =

∫ 1

x

dyB

yB

∫ dk⊥B

16π3 Aq/N
++,−−

(
x

yB

)
hq/N

1

(
x

yB

)
×∑

λρ

φ
−(p,Nρ)
−λρ

(yB, k⊥B)
(

φ
+(p,Nρ)
+λρ

(yB, k⊥B)
)∗

=
∫ 1

x

dyB

yB

∫ dk⊥B

16π3 hq/N
1

(
x

yB

)
∑
λρ

φ
−(p,Nρ)
−λρ

(yB, k⊥B)
(

φ
+(p,Nρ)
+λρ

(yB, k⊥B)
)∗

.

(3.59)

• M = ρ→ active, B = N → spectator

δAq/ρN
++,−−(x) = ∑

λN

∫ 1

x

dyM

yM

∫ dk⊥M

16π3

[
Aq/ρ

1+,0−

(
x

yM

)
φ
−(p,ρN)
0λN

(
φ
+(p,ρN)
1λN

)∗
+ Aq/ρ

0+,−1−

(
x

yM

)
φ
−(p,ρN)
−1λN

(
φ
+(p,ρN)
0λN

)∗ ]
.

(3.60)

Now we can use the following relation (parity invariance)

φ
+(p,ρN)
λρλN

= (−1)−
1
2+λN+λρ

(
φ
−(p,ρN)
−λρ−λN

)∗
,

φ
−(p,ρN)
λρλN

= (−1)
1
2+λN+λρ

(
φ
+(p,ρN)
−λρ−λN

)∗ (3.61)

and get

∑
λN

φ
−(p,ρN)
−1λN

(
φ
+(p,ρN)
0λN

)∗
= ∑

λN

φ
−(p,ρN)
0λN

(
φ
+(p,ρN)
1λN

)∗
. (3.62)
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Thus

δhq/ρN
1 (x) = δAq/ρN

++,−−(x)

=
∫ 1

x

dyM

yM

∫ dk⊥M

16π3

[√
2 hq/ρ

1

(
x

yM

)
× ∑

λN

φ
−(p,ρN)
λN0 (1− yM,−p⊥M)

(
φ
+(p,ρN)
λN1 (1− yM,−k⊥M)

)∗
.

(3.63)

Let us now summarize: The higher Fock state contribution to the different parton
distribution functions of the proton can be written as the following convolutions:
• for the unpolarized PDF:

δ f q/p
1 (x) = ∑

B,M

[∫ 1

x

dy
y

f p/BM(y) f q/B
1

(
x
y

)
+
∫ 1

x

dy
y

f p/MB(y) f q/M
1

(
x
y

)]
(3.64)

with the splitting functions

f p/BM(y) = f p/MB(1− y) =
∫ d2k⊥

16π3 ∑
λB,λM

∣∣∣φ 1
2 (p/BM)
λBλM

(y, k⊥)
∣∣∣2. (3.65)

When the ρ-meson is active there is an additional term in Eq. (3.64), namely

∑
B,ρ

∫ 1

x

dy
y

f p/Bρ
LL (y) f1LL

(
x
y

)
, (3.66)

with

f p/Bρ
LL (y) = ∑

λB

[
− 1

3

∣∣∣φ+(p,Nρ)
λB1 (1− y,−k⊥)

∣∣∣2 + 2
3

∣∣∣φ+(p,Nρ)
λB0 (1− y,−k⊥)

∣∣∣2
(3.67)

− 1
3

∣∣∣φ+(p,Nρ)
λB−1 (1− y,−k⊥)

∣∣∣2]. (3.68)

The description of a nucleon as a sum of bare and BM Fock components is inde-
pendent of whether the photon couples to the baryon or to the meson, so on general
grounds the relation f N/BM(y) = f N/MB(1− y) must hold. It simply means that when
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a baryon which carries a momentum fraction y is struck by the photon, the remaining
meson carries a momentum fraction 1− y. Furthermore, this relation ensures charge
conservation and momentum conservation automatically.

• for the longitudinally polarized PDF:

δgq/p
1 (x) = ∑

B,M

∫ 1

x

dy
y

∆L f p/BM(y) gq/B
1

(
x
y

)
+∑

B,ρ

∫ 1

x

dy
y

∆L f p/ρB(y) gq/ρ
1

(
x
y

)
,

(3.69)

with the splitting functions

∆L f p/BM(y) =
∫ d2k⊥

16π3 ∑
λBλM

(−1)
1
2−λB

∣∣∣∣φ 1
2 (p/BM)
λBλM

(y, k⊥)
∣∣∣∣2 , (3.70)

∆L f p/ρB(y) =
∫ d2k⊥

16π3 ∑
λB

[∣∣∣∣φ 1
2 (p/Bρ)
λB+1 (1− y,−k⊥)

∣∣∣∣2 − ∣∣∣∣φ 1
2 (p/Bρ)
λB−1 (1− y,−k⊥)

∣∣∣∣2
]

.

(3.71)

• for the transversity:

δhq/p
1 (x) = ∑

B,M

∫ 1

x

dy
y

∆T f p/BM(y) hq/B
1

(
x
y

)
+∑

B,ρ

∫ 1

x

dy
y

∆T f p/ρB(y)
√

2hq/ρ
1

(
x
y

)
,

(3.72)

with the splitting functions

∆T f p/BM(y) =
∫ d2k⊥

16π3 ∑
λM

[
φ
− 1

2 (p/BM)

− 1
2 λM

(y, k⊥)
(

φ
1
2 (p/BM)
1
2 λM

(y, k⊥)
)∗]

,

∆T f p/ρB(y) =
∫ d2k⊥

16π3 ∑
λB

[
φ
− 1

2 (p/BM)
λB0 (1− y,−k⊥)

(
φ

1
2 (p/Bρ)
λB+1 (1− y,−k⊥)

)∗]
.

(3.73)

In the convolution model an active meson (photon couples to the meson in the BM
Fock component) with spin zero can only contribute to the unpolarised quark PDF f1.
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In the next section we present the model input and show explicitly the overlap
formula for the baryonic and mesonic PDFs that appear in the convolution formula
of Eqs. (3.64), (3.66), (3.69) and (3.72) respectively.

3.4 Modeling

We now specify the ingredients of the model calculation for the PDFs in the meson-
cloud model. First of all, for the vertex function we use the results which have been
explicitly derived in Refs. [56, 55] and are shown in App. H. These results were
obtained using time-order perturbation theory (TOPT) in the infinite-momentum
frame. In TOPT also intermediate particles are on their mass-shell. However, an
additional off-shell dependence is introduced in the vertex function for the vector
meson due to the derivative coupling. So, even using TOPT, we have a freedom on
how to choose the meson energy in the vertex. In principle, there are two possible
prescriptions:

A) pµ
V = (EV , pV), with the on-shell meson energy EV =

√
m2

V + p2
V ,

B) pµ
V = (EV , pV), with the off-shell meson energy EV = EN − EB.

We will adopt the choice B), following the arguments of Ref. [59] to establish a
correspondence between time-ordered perturbation theory in the infinite momentum
frame and light-cone perturbation theory. The vertex functions, which we have defined
in Eq. (3.12) read

• for the transition p→ Nπ

Vµ
λN ,0(p, Nπ) = igpNπ ū (pN , λN) γ5u

(
pp, µ

)
, (3.74)

• for the transition p→ Nρ

Vµ
λN ,λM

(p, Nρ) = gpNρ ū (pN , λN) γµu
(

pp, µ
)

ε∗µ(pM, λV)

−
fNNρ

2MN
ū (pN , λN) iσµνu

(
pp, µ

)
ε∗µ(pM, λV)pMν.

(3.75)

Furthermore, because of the extended structure of the hadrons involved, one has also
to multiply the coupling constant for point-like particles in the vertex function by
phenomenological vertex form factors. These form factors parametrize the unknown
microscopic effects at the vertex and have to obey the constraint FNBM(y, k2

⊥) =

FNBM(1− y, k2
⊥) to ensure basic properties like charge and momentum conservation

simultaneously [60]. To this aim we will use the following functional form

FNBM(y, k2
⊥) = exp

[
M2

N −M2
BM

2Λ2
BM

]
, (3.76)

where ΛBM is a cut-off parameter. Following the recent analysis of Refs. [61, 62], we
take ΛBM = 0.8 GeV for all the baryon-meson fluctuations entering our calculation. For
the NBM coupling constants at the interaction vertex we used the numerical values



3.4 Modeling 91

given in Refs. [63, 64], i.e. g2
NNπ/4π = 13.6, g2

NNρ/4π = 0.84 and fNNρ = 6.1gNNρ
7.

With this choice of the parameters in the case of the p→ Nπ and p→ Nρ transitions
one finds

Pp/Nπ = Pp/pπ0 + Pp/nπ+ = 3Pp/pπ0 = 13.17%, (3.77)

Pp/Nρ = Pp/pρ0 + Pp/nρ+ = 3Pp/pρ0 = 2.17%. (3.78)

For the hadron states of the bare nucleon and baryon-meson components in
Eq. (3.13) we adopt the light-front constituent quark model of Ref. [55], that we briefly
summarize here for convenience. A hadron state with momentum p̃ and helicity µ is
given by

|H : p̃H, µ〉 = ∑
qi ,λi

∫ [ dx√
x

]
N
[d2k⊥]NΨ[H]µ;q1...qN

λ1 ...λN
({k̃i}i=1,...,N)

N

∏
i=1
|xi p+H, pi⊥, λi, qi〉 ,

(3.79)
where8 Ψ[H]µ;q1 ...qN

λ1 ...λN
({xi, ki⊥}) is the LCWF which gives the probability amplitude

for finding in the hadron with a light-front helicity µ, N partons with momenta
(xi p+H, pi⊥ = ki⊥ + xip⊥H) with xi being the longitudinal momentum fraction of the
i-th parton with respect to its parent hadron (the index i runs from 1 to N) and ki⊥
being the parton intrinsic transverse momentum. The index λi labels the (LC-)helicity
and qi the isospin of the i-th parton, respectively. In Eq. (3.79) and in the following,
the integration measures are defined by[

dx√
x

]
N

=

(
N

∏
i=1

dxi√
xi

)
δ

(
1−

N

∑
i=1

xi

)
, (3.80)

[
d2k⊥

]
N =

1

(16π3)N−1

(
N

∏
i=1

d2k⊥ i

)
δ

(
N

∑
i=1

k⊥ i

)
. (3.81)

For valence Fock state components one has N = 3 and N = 2 for the baryon and
meson, respectively. As explained in Ref. [66], the wave function Ψ[H]µ;q1 ...qN

λ1 ...λN
can

be obtained by transforming the ordinary equal-time (instant-form) wave function
into one appropriate for front form. The instant-form wave function9 Ψ[H]c;q1 ...qN

µ1...µN is
constructed as the product of a momentum wave function ψ̃[H]

(
{k̃i}

)
, which is spher-

ically symmetric and invariant under permutations, and a spin-isospin wave function
φ[H] ({µi}, {qi}), which is uniquely determined by SU(6)-spin-flavor-symmetry re-
quirements, i.e.

Ψ[H]c;q1 ...qN
µ1...µN

(
{k̃i}

)
= ψ̃[H]

(
{k̃i}

)
⊗ φ[H] ({µi}, {qi}) . (3.82)

7Note that we follow Ref. [55] for the vertex interaction, where the coupling constant fNNρ is dimen-
sionless. In order to compare with the definition adopted in Refs. [65], fNNρ has to be multiplied by
a factor 4MN .

8We change the notation for the LCWF to a form which is very convenient to what follows.
9µi is the label for the “canonical” helicity of the i-th parton in the equal-time quantization.
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The transformation to the front form is essentially accomplished by a Melosh-rotation,
which acts on the particle spin

Ψ[H]µ;{qi}
{λi} ({xi, k⊥i}) = ψ̃[H]

(
{k̃i}

)
∑

µ1,...,µN

φ[H] ({µi}, {qi})
N

∏
i=1

D1/2 ∗
µiλi

(Rc f (k̃i)), (3.83)

where D1/2 ∗
µiλi

(Rc f (k̃i)) are the Wigner rotations matrices defined in Ref. [66].

In the case of the nucleon we adopt the momentum wave function of Ref. [67],
which reads

ψ̃[N]({k̃i}i=1,3) = 16π3
[

1
M0

ω1ω2ω3

x1x2x3

]1/2 N′

(M2
0 + β2)γ

, (3.84)

where ωi =
√

m2
q + k2

i is the energy of the i-th quark, M0 = ∑i ωi is the invariant

mass of the system of N non-interacting quarks and N′ is a normalization factor such
that

∫
d[x]3d[k⊥]3|ψ({k̃i}i=1,2,3)|2 = 1. In Eq. (3.84), the scale β, the parameter γ for

the power-law behavior, and the quark mass mq are taken from the fit to the nucleon
form factor of Ref. [68], i.e. γ = 3.21, β = 0.489 GeV and mq = 0.264 GeV.

The canonical wave function of the pion is taken from Ref. [69] and reads

ψ̃[π](x̄, k⊥) = [16π3]1/2
[

M0

4x̄(1− x̄)

]1/2 i
π3/4α3/2 exp [−k2/(2α2)], (3.85)

with k = k1 = −k2, x̄ = x1 = 1− x2 and the two parameters α = 0.3124 GeV and
mq = 0.25 GeV fitted to the pion form factor data. The wave function of the ρ differs
from the pion only in the spin part, with the canonical spin states of the qq̄ pair
coupled to J = 1 instead of J = 0.

We refer to the momentum wave functions of Eqs. (3.84)-(3.85), that were obtained
adapting an analytical ansatz fitted to nucleon/pion form factors, as model 1. In addi-
tion we also use momentum wave functions that were obtained within a relativistic
constituent quark model (CQM) by solving an eigenvalue equation for the mass
operator. We refer to those LCWFs as model 2. The mass operator of the particular
model we use has a hypercentral confining force and is given by [70]

M =
3

∑
i=1

√
k2

i + m2
i −

τ

y
+ κly, (3.86)

with τ and κl being two parameters, ∑i ki = 0, y =
√

ρ2 + λ2 is the radius of the
hypersphere in six dimensions and ρ and λ are the Jacobi coordinates. The solutions
have the general form of Eq. (3.82) with the momentum wave function (total orbital
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angular momentum L = 0) [66]

ψ̃[N]({k̃i}i=1,3) = ψ00(ỹ)Y
(0,0)
[0,0,0] (Ω) . (3.87)

The solution of the the mass operator is the hyperradial wave function denoted by
Ψγ,ν(ỹ). The function Y(0,0)

[0,0,0] is the hyperspherical harmonics defined on the hyper-
sphere of unit radius.

The light-front formalism allows us to obtain a convenient representation of the
hadron PDFs in terms of overlap of LCWFs. Labeling the active quark with i = 1, the
hadron light-front helicity amplitudes introduced in Sec. 3.3.1.2 can be obtained as

Aq/H
µ′λ′,µλ =

∫
d[1 . . . N] ∑

λ2,...,λN

∑
q1...qN

(
ψ
[H]µ′;q1 ...qN
λ′λ2...λN

)∗
ψ
[H]µ;q1...qN
λλ2 ...λN

, (3.88)

For N = 3

d[123] = [dx]3[d2k⊥]3 3 δ(x− x1), (3.89)

and for N = 2

d[12] = [dx]2[d2k⊥]2 δ(x− x1) =
dx√

x(1− x)
d2k⊥

2(2π)3 . (3.90)

From the relations in Eq. (3.31) we then find the following LCWF overlap representa-
tion for the contribution of the 3q Fock state to the proton PDFs

f q/p
1 =

∫
d[123] ∑

λ2λ3

∑
q2q3

[∣∣∣Ψ[p]+;qq2q3
+λ2λ3

∣∣∣2 + ∣∣∣Ψ[p]+;qq2q3
−λ2λ3

∣∣∣2] ,

gq/p
1 =

∫
d[123] ∑

λ2λ3

∑
q2q3

[∣∣∣Ψ[p]+;qq2q3
+λ2λ3

∣∣∣2 − ∣∣∣Ψ[p]+;qq2q3
−λ2λ3

∣∣∣2] ,

hq/p
1 =

∫
d[123] ∑

λ2λ3

∑
q2q3

(
Ψ[p]+;qq2q3

+λ2λ3

)∗
Ψ[p]−;qq2q3
−λ2λ3

.

(3.91)

The spin-/isospin part of the LCWF of Eq. (3.83) leads to the following result in
Eq. (3.91) [71]

• f q/p
1 : iso,

• gq/p
1 : iso (mq+x3 M0)

2−k2
3⊥

(mq+x3 M0)
2
+k2

3⊥
,

• hq/p
1 : iso (mq+x3 M0)

2

(mq+x3 M0)
2
+k2

3⊥
,

where iso = 2(1) in f q/p
1 for q = u(d) and iso = 4

3

(
− 1

3

)
in gq/p

1 and hq/p
1 for q = u(d),

respectively.
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Analogously the contribution of the qq̄ Fock state to the pion PDF reads

f q/π
1 (x) = f q̄/π

1 (x) =
∫

d[12] ∑
λ2

[∣∣∣Ψ[π];qq̄
+λ2

∣∣∣2 + ∣∣∣Ψ[π];qq̄
−λ2

∣∣∣2] , (3.92)

where f q/π = f q/π+
refers to the parton distribution in the charged pion π+, while

the other PDFs can be obtained by isospin symmetry and charge symmetry, i.e.
f u/π+

= f d̄/π+
= f d/π− = f ū/π− = 2 f u/π0

= 2 f ū/π0
= 2 f d/π0

= 2 f d̄/π0
.

Using the relations in Eq. (3.33) for the vector meson, we also obtain the following
LCWF overlap representation for the contribution of the qq̄ Fock state to the PDFs of
the ρ meson

f q/ρ
1 (x) = f q̄/ρ

1 (x) =
2
3

∫
d[12] ∑

λ2

[∣∣∣Ψ[ρ]0;qq̄
+λ2

∣∣∣2 + ∣∣∣Ψ[ρ]+1;qq̄
+λ2

∣∣∣2 + ∣∣∣Ψ[ρ]+1;qq̄
−λ2

∣∣∣2] ,

f q/ρ
1LL(x) = f q̄/ρ

1LL(x) =
∫

d[12] ∑
λ2

[
2
∣∣∣Ψ[ρ]0;qq̄

+λ2

∣∣∣2 − ∣∣∣Ψ[ρ]+1;qq̄
+λ2

∣∣∣2 − ∣∣∣Ψ[ρ]+1;qq̄
−λ2

∣∣∣2] ,

gq/ρ
1 (x) = gq̄/ρ

1 (x) =
∫

d[12] ∑
λ2

[∣∣∣Ψ[ρ]+1;qq̄
+λ2

∣∣∣2 − ∣∣∣Ψ[ρ]+1;qq̄
−λ2

∣∣∣2] ,

hq/ρ
1 (x) = hq̄/ρ

1 (x) =
1√
2

∫
d[12] ∑

λ2

[
Ψ[ρ]0;qq̄
−λ2

(
Ψ[ρ]+1;qq̄

+λ2

)∗
+ Ψ[ρ]−1;qq̄

−λ2

(
Ψ[ρ]0;qq̄

+λ2

)∗]
.

(3.93)

Writing jq/ρ = jq/ρ+ for the generic PDF j in the charged ρ meson ρ+, the other PDFs
can be obtained by isospin symmetry, i.e. ju/ρ+ = jd̄/ρ+ = jd/ρ− = jū/ρ− = 2ju/ρ0

=

2jū/ρ0
= 2jd/ρ0

= 2jd̄/ρ0
. The result of the Melosh-rotation in the different helicity

amplitudes is given by

• Aq/ρ
1+,1+: N1N2

[ (
mq + x2M0

)2
+ k2

⊥2

] (
mq + x1M0

)2,

• Aq/ρ
−1−,−1−: equal to Aq/ρ

1+,1+,

• Aq/ρ
1−,1−: N1N2

[ (
mq + x2M0

)2
+ k2

⊥2

]
k2
⊥1,

• Aq/ρ
−1+,−1+: equal to Aq/ρ

1−,1−,

• Aq/ρ
0±,0±: N1N2

1
2

[ (
mq + x2M0

)2
+ k2

⊥2

][ (
mq + x1M0

)2
+ k2

⊥1

]
,

• Aq/ρ
1+,0−: N1N2

1√
2

[ (
mq + x2M0

)2
+ k2

⊥2

][
mq + x1M0

]2
,

• Aq/ρ
0+,−1−: equal to Aq/ρ

1+,0−,

with the common prefactors N1 and N2 defined by

N1 =
[ (

mq + x1M0
)2

+ k2
⊥1

]−1
and N2 =

[ (
mq + x2M0

)2
+ k2

⊥2

]−1
. (3.94)
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3.5 Results

Before we discuss our results, we have to turn to the subject of finding the initial
scale where our model calculations are valid. At the lowest hadronic scale µ2

0 the
bare nucleon is described by the valence quark model which we discussed in Sec. 3.4.
When we include the meson cloud, the partonic content of the nucleon will be
renormalized and a new scale Q2

0 > µ2
0 must be defined. The scale Q2

0 which depends
on the partonic content we include is a priori not known. We now address the
procedure how to obtain the initial scale Q2

0: we calculate the second moment of the
unpolarised PDF, i.e.10 〈uV(x, Q2

0) + dV(x, Q2
0)〉2. Then we evolve back experimental

data of the unpolarised valence PDF (at leading order) until it matches the value
dictated by our model. Our model gives 〈uV(x, Q2

0) + dV(x, Q2
0)〉2 = 0.35 which leads

to Q2
0 = 0.19 GeV2.

Before we proceed to present our result we list the ingredients necessary for the
calculation of the initial scale. It is convenient to discuss the evolution equations in
the Mellin space, i.e. to consider the moments 〈 f (x, Q2)〉N . The flavor non-singlet
(NS) evolution equation of the valence PDF (at LO) reads [62]

〈qNS(Q2)〉N
〈qNS(Q2

0)〉N

∣∣∣∣∣
LO

=

(
αs(Q2)

αs(Q2
0)

) P(0)NS(N)

β0
, (3.95)

with

• the strong coupling αs(Q2), for which we use the one-loop expression, i.e.

α(Q2) =
4π(

11− 2
3 n f (Q2)

)
ln(Q2/Λ2

QCD)
, (3.96)

where n f (Q2) is the number of quarks with m2
quark < |Q2| and the values of

ΛQCD are listed in footnote 11.

• β0 = 11− 2n f
3 is the lowest expansion coefficient of the QCD beta function

βNm LO(αs) = −
m

∑
k=2

βkαk+2
s . (3.97)

• The N-th moment of the LO-NS-splitting function P(0)
NS(N) has the following

form (see Ref. [72] for example)

P(0)
NS(N) =

8
3

[
1− 2

N(N + 1)
+ 4

N

∑
j=2

1
j

]
. (3.98)

The evolution in the scale has been accomplished by modifying11 the numerical
procedures of Refs. [73, 74, 75].

10Using the notation 〈 f (x)〉N =
∫

dxxN−1 f (x).
11 Modified to include the variable flavor-number scheme with heavy-quark mass thresholds
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We now show our model calculations for the leading twist PDFs of the proton
(valence and sea contributions), compare them with extractions from the experiment,
discuss flavor asymmetries in the unpolarised and polarized sea and present our
results for the tensor charge.

3.5.1 Unpolarized quark PDF

The unpolarised PDF f1 is known with a very good precision. Many data exist to
obtain PDF fits with a good accuracy, i.e. with small error bands. It is therefore
very instructive to test how well our model calculation works for f1 in order to be
confident about the validity in the case of g1 and in particular of h1 where theoretical
and experimental uncertainties are an issue. In Figs. 3.3-3.4 we show the valence
part and the sea part of x f1(x), for both u-flavor and d-flavor, at the initial model
scale Q2

0 = 0.19 GeV2 (dotted curves) and evolved to the scale Q2 = 2.4 GeV2 (solid
curves). The differences between model 1 and model 2 for the valence f1 are more
pronounced at the initial scale. If we increase the scale the differences between the
two model calculations become much smaller and we observe a good agreement with
the PDF parametrization of Ref. [76]. We note, however, that the peak position of the
up-distribution is at smaller values of x as compared to the peak position of the PDF
parametrization and that the fall-off at larger values of x is better reproduced with
model 2. For the down-distribution the peak position as well as the behavior at larger
values of x is well reproduced with both models. The differences12 of model 1 and
model 2 for the unpolarised antiquark PDFs are so small that we decided to show
only the result for model 1. With respect to the PDF parametrization of Ref. [76] the
magnitude of the sea at intermediate values of x is smaller.

The cutoff dependence of the results has also been studied. Even in the case of the well
investigated pion-nucleon coupling the cutoff parameter ranges from Λ = 0.5 GeV to
Λ = 1.3 GeV [77]. With our model a cutoff of Λ = 1.3 GeV would lead to negative
values of the unpolarized PDF, therefore we choose as an upper bound for the cutoff
the value Λ = 1.1 GeV. In Fig. 3.5 we plot the cutoff dependence of x f uV /p

1 (x) and
x f ū/p

1 (x) (similar figures are obtained for d-flavor) for model 1. We observe that a
larger cutoff shifts the peak of the valence distribution to smaller values of x and
that the x → 1 tail falls off stronger than the PDF-parameterization Ref. [76]. The sea
distribution seems not to have a strong dependence on the choice of the cutoff.

mc = 1.4 GeV, mt = 4.75 GeV and mt = 175 GeV. αs(Mz) = 0.13939 and, depending on the
number of flavors n f , ΛQCD(n f ) is ΛQCD(3) = 359 MeV, ΛQCD(4) = 322 MeV, ΛQCD(5) =
255 MeV and ΛQCD(6) = 137 MeV.

12At the initial scale the sea-quark distributions are the same in both models as they are generated by
the antiquarks of the π and the ρ. After the LO-evolution the difference between the two models for
the unpolarized seq-quark distributions is practically indistinguishable in the plot.
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Figure 3.3: Unpolarised u-valence distribution (upper panel) and sea distribution (lower panel)
using two different types of LCWFs as explained in the main text. The different
scales are as indicated (Q2

0 = 0.19 GeV2 and Q2 = 2.4 GeV2). The gray band
corresponds to the PDF parameterization of Ref. [76] at Q2 = 2.4 GeV2.
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Figure 3.4: Unpolarised d-valence distribution (upper panel) and sea distribution (lower panel)
using two different types of LCWFs as explained in the main text. The different
scales are as indicated (Q2

0 = 0.19 GeV2 and Q2 = 2.4 GeV2). The gray band
corresponds to the PDF parameterization of Ref. [76] at Q2 = 2.4 GeV2.
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Figure 3.5: The cutoff dependence of the unpolarized u-valence distribution in the range
Λ = 0.5− 1.1 GeV (left panel) and the corresponding sea distribution (right panel)
at Q2 = 2.4 GeV2. The gray band corresponds to the PDF parameterization of
Ref. [76] at Q2 = 2.4 GeV2.

3.5.2 Polarized quark PDF

In Figs. 3.6-3.7 we plot our results for the (longitudinally) polarized PDF xg1(x) at
Q2

0 = 0.19 Gev2 and Q2 = 2.4 Gev2 . Since we perform the scale evolution at LO, we
can only compare our results to parameterizations of g1 which are done at LO. The
most recent parameterizations are all done at NLO, so we have to choose an older
PDF set such as the one of Ref. [78]. We observe here that the agreement with our
model calculation and the PDF parametrization is not as good as in the case of the
unpolarised PDF. In particular the disagreement becomes most pronounced in the
case of the the sea contributions to g1: Especially we find that the qualitative behavior

of our result for xgū/p
1 (x) and xgd̄/p

1 (x) is very different from the parameterization
of Ref. [78] we compare with. Additionally we compare our model calculations for
the valence and the sea part with experimental data from COMPASS [79], cf. Fig. 3.8.
As we mentioned above the error bars for g1 are much larger than for f1, as there
are not so much accurate data available. Our predictions of the valence g1 are in fair
agreement with the experiment but the huge error bars in the experimental data do
not allow definite conclusions about the quantitative behavior of the sea contribution
to g1. Experimental data for the polarized d-sea (see lower right panel of Fig. 3.8)
are afflicted by large error bars, but tend towards a small negative value, whereas
our predictions are very small and positive. The PDF parameterization of Ref. [78]
provides a small negative value of xgū/p

1 (x) at small x, see Fig. 3.7.

The cutoff dependence for model 1 and u-flavor is shown in Fig. 3.9. Increasing the
value of the cutoff decreases xguV /p

1 in value but leaves the peak position approxi-
mately constant. However, for xgū/p

1 larger values of the cutoff significantly alter the
functional behavior of xgū/p

1 as compared to smaller values of the cutoff.
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Figure 3.6: Polarized u-valence distribution (upper panel) and sea distribution (lower panel)
using two different types of LCWFs as explained in the main text. The different
scales are as indicated (Q2

0 = 0.19 GeV2 and Q2 = 2.4 GeV2). The solid purple line
corresponds to the PDF parameterization of Ref. [78] at Q2 = 2.4 GeV2.
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Figure 3.7: Polarized d-valence distribution (upper panel) and sea distribution (lower panel)
using two different types of LCWFs as explained in the main text. The different
scales are as indicated (Q2

0 = 0.19 GeV2 and Q2 = 2.4 GeV2). The solid purple line
corresponds to the PDF set of Ref. [78].
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Figure 3.8: Comparison of our model calculation for the polarized PDF at a Q2 = 3.0 GeV2

with the experimental data taken from Ref. [79].

L=0.5

L=0.8

L=1.1

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

x

xg1
uV�p

L=0.5

L=0.8

L=1.1

0.0 0.2 0.4 0.6 0.8 1.0

0.000

0.005

0.010

x

xg1
u�p

Figure 3.9: The cutoff dependence of the polarized u-valence distribution (left panel) in the
range Λ = 0.5− 1.1 GeV and the corresponding sea distribution (right panel) at
Q2 = 3.0 GeV2.

3.5.3 Flavor asymmetry in the nucleon sea

We now discuss very briefly the topic of the flavor structure of the nucleon sea. We
thereby focus on the breaking of the flavor symmetry SU(2) f in the light-quark sector.
For a more detailed discussion on this topic (with an extension to breaking of SU(3) f

we refer to Ref. [80].
The sea quarks in the nucleon are readily produced via the process shown in

Fig. 3.10. Ignoring the small mass differences of the u- and d-quarks, the perturbatively
produced sea is flavor symmetric, i.e. ū = d̄. To explain a flavor asymmetry in the
nucleon sea therefore requires a non-perturbative model13.

13Strictly speaking also in perturbative QCD the flavor symmetry does not hold because the additional
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g q

q

Figure 3.10: Perturbative production of the nucleon sea.

The first hint of SU(2) f breaking in the sea came from the Gottfried sum rule14

∫ 1

0

dx
x

[
Fp

2 (x)− Fn
2 (x)

]
= ∑

i
e2

i

∫ 1

0
dx
[
qp

i (x) + q̄p
i (x)− qn

i (x)− q̄n
i

]
=

1
3

∫ 1

0
dx
[
up

v(x)− dp
v(x)

]
+

2
3

∫ 1

0
dx
[
ūp(x)− d̄p(x)

]
=

1
3
+

2
3

∫ 1

0
dx
[
ūp(x)− d̄p(x)

]
.

(3.99)

In deriving Eq. (3.99) we used that up(x) = dn(x), dp(x) = un(x), ūp(x) = d̄n(x) and
d̄p(x) = ūn(x). If the sea is flavor symmetric, the Gottfried sum rule value is equal
to 1

3 . The new muon collaboration determined the Gottfried sum rule value to be
0.235± 0.026 at Q2 = 4 GeV2 [82, 83], which is significantly lower than 1/3.
The E866/NuSea experiment [84] provides values for the unpolarised sea flavor

asymmetry, namely for f d̄/p
1 (x)− f ū/p

1 (x) and f d̄/p
1 (x)/ f ū/p

1 (x). In Figs. 3.11 and 3.12

we compare our results for f d̄/p
1 (x)− f ū/p

1 (x) and f d̄/p
1 (x)/ f ū/p

1 (x), respectively, with
the results from the E866/NuSea experiment.
Despite our simple model we observe a good agreement with the experimental data

for f d̄/p
1 (x)− f ū/p

1 (x), however, the behavior f d̄/p
1 (x)/ f ū/p

1 (x) for fairly large values
of x is not well reproduced. However, as was pointed out in Ref. [80], all the different
models have in common that they can describe the feature d̄ > ū in the unpolarised

sea very well, but fail to reproduce f d̄/p
1 (x)/ f ū/p

1 (x) at larger values of x15.
The large flavor asymmetry in the unpolarised sea naturally leads to the question
whether the polarized sea is also asymmetric. We note right away that within our
model this asymmetry cannot be very large, because only the rho fluctuation does
contribute to the polarized sea and due to its large mass it is suppressed, see Eq. (3.14).
Interestingly, although the different models can give a reasonable good explanation
of the data of the ū- and d̄-distributions, they tend to give different predictions on
the sea in a (longitudinally) polarized nucleon. New data (with more precision as
we will see in a moment) are therefore highly desirable to test the predictions of
various models. Our estimate of the flavor asymmetry in the polarized sea is shown

u quark in the proton can lead to a suppression of g→ uū via Pauli-blocking [81]. NLO calculations
later confirmed that the Pauli blocking cannot account for a sizable violation of the flavor symmetry
in the sea.

14F2 denotes the structure function in the standard analysis of DIS.
15Preliminary data from the E − 906/SeaQuest collaboration show a better agreement with model

calculation at larger x.
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Figure 3.11: In this figure we show the f d̄/p
1 (x) − f ū/p

1 (x) distribution at the scale Q2 =

54 GeV2 in comparison to the experimental data taken from Ref. [84].
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Figure 3.12: In this figure we show the f d̄/p
1 (x)/ f ū/p

1 (x) distribution at the scale Q2 = 54 GeV2

in comparison to the experimental data taken from Ref. [84].

in Fig. 3.13. With our meson-cloud model we predict a small and negative value

for x
(

gū/p
1 (x)− gd̄/p

1 (x)
)

. In Fig. 3.14 we compare our results with the experimental
values from from COMPASS [79] and HERMES [85]. The accuracy of the data is
limited, but the experiments seem to favor models which predict a small positive
value.
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Figure 3.13: The flavor asymmetry of the polarized sea x
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at Q2 =

3.0 GeV2 within our model.
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Figure 3.14: The flavor asymmetry of the polarized sea x
(

gū/p
1 (x)− gd̄/p

1 (x)
)

within our
model in comparison with the experimental data from COMPASS [79] and
HERMES [85]. Q2 = 3.0 GeV2.

3.5.4 Transversity quark PDF

We now discuss the third of the leading-twist quark distributions of the nucleon: The
transversity distribution function. Due to its chiral-odd nature it involves a helicity
flip of the struck quark. At leading twist it therefore decouples in DIS. It has to be
coupled to another chiral-odd function to study it in a physical process such as in
semi-inclusive DIS (SIDIS) or Drell-Yan processes. These processes involve at least
another “soft” function such as a fragmentation function. Thus it is experimentally
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very challenging to extract information about the transversity. We therefore also expect
large uncertainties in the extractions from the experiment. From a phenomenological
point of view, the unpolarized PDF is known very well, the polarized PDF to some
extent and the transversity is poorly known.

In Fig. 3.15 we compare our model calculation (at the scales Q2
0 = 0.19 Gev2 and

Q2 = 2.4 Gev2 ) of the valence transversity distribution of the proton with the experi-
mental extractions from Refs. [86, 87, 88] (at Q2 = 2.4 Gev2). For values of x & 0.35
our calculation of xhuV

1 is compatible with the various extractions within their error
band and for values of x . 0.35, xhuV

1 with model 1 does not lie within the error
bands anymore. The situation is different for xhdV

1 : Both models lie approximately
within the error bands of Ref. [87] for the whole x range.

The extracted functions themselves also are different. In Ref. [87] they used a tree-
level expression (no scale evolution) and simultaneously extract information of the
transversity and Collins function from azimuthal asymmetries in SIDIS and data on
e+e−-annihilation. Kang et al. [88] work with evolution equations within the standard
transverse momentum distribution framework with next-to-leading-order (NLO) scale
evolution. Since our scale evolution is done at leading order it is very encouraging
to see that the tree level extractions and the NLO extractions yield similar results
(see Fig. 3.15). We therefore expect that a scale evolution at NLO of our results from
Q2

0 = 0.19 Gev2 to Q2 = 2.4 Gev2 does not alter our model calculations significantly.
Radici et al. [86] extract the transversity using SIDIS with two hadrons in the final
state within the standard collinear factorization framework and LO scale evolution.

The non-perturbative sea contribution to the transversity distribution is shown
in Fig. 3.16. These predictions are the first calculations for the antiquark transversity
distributions within a meson-cloud approach. We readily observe that its magnitude
is very small as compared to the valence contribution. The transversity distribution
is therefore dominated by its valence quarks. In the upper panel of Fig. 3.17 we

show the isoscalar distribution xhū/p
1 + xhd̄/p

1 and the isovector distribution xhū/p
1 −

xhd̄/p
1 and for comparison we plotted in the lower panel xgū/p

1 + xgd̄/p
1 and xgū/p

1 −
xgd̄/p

1 . The chiral quark soliton model satisfies in the large Nc limit the following
inequalities [89, 90, 91]

|gū
1 − gd̄

1| > |gū
1 + gd̄

1|

|hū
1 − hd̄

1| > |hū
1 + hd̄

1|
(3.100)

Analogous relations hold for the quark distributions. Equation (3.100) is not supported
by the meson cloud model, while it holds for the quark distributions.

The cutoff dependence for model 1 and u-flavor is shown in Fig. 3.18. We observe a
similar cutoff-dependence as we have found for the polarized PDF.
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Figure 3.15: Comparison of our model calculation of the transversity PDF for u-flavor (upper
panel) and d-flavor (lower panel) with experimental extractions of different groups.
The model calculations are shown at the initial scale Q2

0 = 0.19 GeV2 and after
LO evolution to Q2 = 2.4 GeV2. The experimental extractions for Q2 = 2.4 GeV2
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Figure 3.18: The cutoff dependence of the transversity u-valence distribution (left panel) in
the range Λ = 0.5− 1.1 GeV and the corresponding sea distribution (right panel)
at Q2 = 2.4 GeV2.

We have also investigated the tensor charge. Like the isoscalar and axial vector
charges, the tensor charge is an essential property for characterizing the momentum
and spin structure of the nucleon. It is defined by the following forward matrix
element [92]:

〈N : p, ST|iΨ̄qσµνγ5Ψq|N : p, ST〉 = 2δq
(
Q2

0
) (

pµSν
T − pνSµ

T
)

, (3.101)

where the spin vector ST is understood to be in the transversity basis and δq
(
Q2

0
)

is the tensor charge for flavor q at the scale Q2
0. The tensor charge measures the net

distribution of transversely polarized quarks in a transversely polarized proton [93].
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It also enters the description of novel tensor interaction at the TeV scale [94]. Jaffe and
Ji showed [95] that the tensor charge of the nucleon N can be related to the zeroth
moment of the valence transversity, i.e.

δq =
∫ 1

0
dx hN/q

1 (x). (3.102)

Our results for the tensor charge at Q2 = 10 GeV2 are

• δu:

model 1: 0.675,

model 2: 0.560,

• δd:

model 1: −0.208,

model 2: −0.179.

The contribution of the u- and d-quarks to the tensor charge in our model and in
comparison with various other model estimates is plotted in Fig. 3.19. Most notably it
is interesting to compare our results with those of Refs. [96, 97, 98], because therein
a three quark constituent model for the nucleon is used, so we can study the effect
of the inclusion of the meson-cloud. For u-flavor the meson-cloud improves the
agreement with the data analysis, whereas for d-flavor it gives only small corrections.
Other results within a different theoretical framework are given as reported in the
original works: QCD sum rule approach [92], chromodielectric model [99], axial-vector
dominance model [100], chiral-quark soliton model [101, 102], light-front chiral quark
soliton model [103], Dyson-Schwinger model [93] and lattice QCD [104, 105]. We
remark that the dependence of the tensor charge on the scale is very mild so we can
compare the tensor charge for different values of Q2.

3.6 Summary

In this chapter we investigated the collinear PDFs within a front form meson cloud
model. In Sec. 3.2 we formulated the basics of the meson cloud model. We expressed
the wave function of the physical nucleon in terms of a bare nucleon and virtual
meson-baryon components. At first order in the baryon-meson-nucleon interaction,
the meson-baryon component consists of one meson M and one baryon B. We take
M = π, ρ and B = p, n explicitly into account. With the expansion of the physical
nucleon state in terms of a bare nucleon dressed by its virtual meson cloud we can
obtain a convolution formula for the PDFs. In this convolution formula the splitting
functions (which can be calculated using time-ordered perturbation theory) and the
PDFs of the respective baryons and mesons enter, cf. Sec. 3.3.2.2. Those PDFs are
modeled by a LCWF overlap representation. In Sec. 3.4 we presented explicitly the
overlap formulas and discussed the model input to perform the overlaps. In the final
section, 3.5, we showed various results:



110 Collinear parton distributions in a front form meson-cloud model

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

0 0.5 1 1.5

model 1
model 2

Kanget alH2015L
Abdel-Rehim etalH2015L
Bhattacharya etal H2016L

PitschmannetalH2015L
Bacchetta etal H2015LAnselminoetal H2013L

Lorcé etalH2007LPasquini etalH2007LWakamatsuH2007LPasquini etalH2005LGamberg etal H2001LSchweitzeretalH2001LBaroneetal H1997LHe and JiH1995L

∆u

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

0 0.5-1 -0.5

model 1
model 2

KangetalH2015L
Abdel-Rehim etalH2015L

Bhattacharya etalH2016L

PitschmannetalH2015L
Bacchetta etalH2015LAnselminoetalH2013L

Lorcé etalH2007LPasquinietalH2007LWakamatsuH2007LPasquini etalH2005LGamberg etalH2001LSchweitzeretalH2001LBaroneetalH1997LHeandJiH1995L

∆d

Figure 3.19: Comparison of our model calculation (Q2 = 2.4 GeV2) of the tensor charge δq
with results from other references. The comparison is done with the following
references: He and Ji [92] (Q2 ∼ 1 GeV2), Barone et al. [99] (Q2 = 25 GeV2),
Schweitzer et al. [102] (Q2 = 0.36 GeV2), Gamberg et al. [100] (Q2 ∼ 1 GeV2),
Pasquini et al. 2005 [96] (Q2 = 10 GeV2), Wakamatsu [101] (Q2 = 2.4 GeV2),
Pasquini et al. 2007 [97, 98] (Q2 = 10 GeV2), Lorcé [103] (Q2 = 0.36 GeV2),
Pitschmann [93] (Q2 = 4 GeV2), Anselmino et al. [87] (Q2 = 0.8 GeV2), Bacchetta
et al [86] (Q2 = 10 GeV2), Kang et al. [88] (Q2 = 10 GeV2), Abdel-Rehim et al.
[104] (Q2 = 4 GeV2) and Bhattacharya et al. [105] (Q2 = 4 GeV2). Upper figure
for u-flavor and lower figure for d-flavor, respectively.

• Unpolarized PDF: valence and sea contribution in comparison with the PDF-
parameterization of Ref. [76].
Our results are found to be in reasonable agreement with the PDF set we
compare with.

• Polarized PDF: valence and sea contribution in comparison with the PDF-
parameterization of Ref. [78] and experimental data of Ref. [79].
We note that the experimental error bars are much larger than for the unpo-
larized PDFs. Our results for the valence contributions to the polarized PDF
follow the pattern set by the experimental data. For the sea contributions we
find deviations from the experimental data, but due to the large error bars no
definite conclusion can be drawn.

• Our estimate of the unpolarized and polarized sea in comparison with recent
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experimental data.

The meson-cloud model is capable to describe the flavor asymmetry f d̄/p
1 (x)−

f ū/p
1 (x) very well, but fails (as other models) to describe the observed asym-

metry f d̄/p
1 (x)/ f ū/p

1 (x) at larges values of x. For the polarized asymmetry the
experimental data seem to favor models which predict a small positive value

for gd̄/p
1 (x)− gū/p

1 (x), whereas our model predicts a small negative value for it.

• Transversity PDF: valence and sea contribution in comparison with the PDF-
parameterizations of Refs. [86, 87, 88].
The extractions from the experiments come along with huge error bands. Our
model estimates for the transversity PDF lie within those error bands. We also
find that the transversity PDF is dominated by valence degrees of freedom, i.e.
the sea contribution is negligible.

• Tensor charge: for u-flavor and d-flavor our predictions are within the range of
experimental extractions and other model calculations.
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A P P E N D I C E S





A
L i g h t - C o n e Q u a n t i z a t i o n

This appendix is a modified version of an appendix originally published in Ref. [9]. It
is by no means complete but serves more as a short introduction into the topic and it
introduces the notation.

a.1 Introduction

We first review some aspects of canonical field theory. The Lagrangian is the basic
object from which the equations of motion (EOM) and constants of motion can be
derived. Since the EOM are differential equations we need initial values for solving
them. In a four dimensional space-time these initial conditions are formulated on
a hypersphere. If we know them, i.e. all necessary field components φ(x0, x) on a
hypersphere that is, e.g., characterized by a fixed initial time x0, we can propagate the
initial configuration forward or backward in time with the help of the Hamiltonian1

H = P0. In a (classical) theory with a conjugate momentum2 Π[φ] = δL
δ(∂0φ)

and with
the Hamiltonian P0 = P0[φ, Π] the EOM for a non-constrained system are given in
terms of Poisson brackets:

∂0φ = {P0, φ}cl and ∂0Π = {P0, Π}cl . (A.1)

The transition to a quantum field theory can be obtained by making the field and its
conjugate momentum operator-valued and replacing the Poisson brackets between
them by commutators (or by the anti-commutator for fermionic fields)3

{φ(x), Π(y)}cl = δ3(x− y)⇒ 1
i
[φ(x), Π(y)]x0=y0 = δ3(x− y). (A.2)

The time derivatives of the field operators are given by the Heisenberg equations.
These procedure is known as canonical quantization and it applies only for the indepen-
dent fields. Therefore it can become very involved, especially for a gauge theory like

1Depending on the form of the Hamiltonian dynamics one can, however, choose a time parameter
τ which differs from ordinary time τ = x0 = t. The Hamiltonian H will then generate the “time”
evolution in the parameter τ, i.e. H |Ψτ〉 = i ∂

∂τ
|Ψτ〉.

2For simplicity we assume that we have only one field, but the generalization to more fields is
straightforward.

3We are not distinguishing between operators and their eigenvalues, but use the same symbol for both
since it should be clear within the context if we either are talking about an operator or its associated
eigenvalue.
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QED or QCD: There can exist fields with no conjugate momentum (if not all fields
are independent) and/or gauge) fields with redundant degrees of freedom.

One big disadvantage so far was that we have treated time t and space x as if
they were different. In a covariant theory, however, time and space are only different
aspects of a four dimensional space-time. Space can be defined as that hypersphere
in space-time on which one choses the initial field configurations in accordance with
microcausality. Time can be understood as the normal (or at least linear independent
direction) to that hypersphere.
This can be phrased more formally by introducing generalized coordinates x̃ν. Starting
from a basic parameterization of space-time xµ with a metric tensor gµν (all elements
are zero except of g00 = 1 and g11 = g22 = g33 = −1) one parameterizes space-time
by the following relation

x̃ν = x̃ν(xµ). (A.3)

The transformation Eq. (A.3) is restricted by the condition that its inverse xµ(x̃ν)

exists and that it conserves the arc length, (ds)2 = gµνdxµdxν = g̃ρσdx̃ρdx̃σ. The two
metric tensors are related by

g̃ρσ = gµν

(
∂xµ

∂x̃ρ

)(
∂xν

∂x̃σ

)
. (A.4)

The Lagrangian is independent of the parameterization, i.e. it can be expressed in
terms of either x or x̃.
Now there are many possible ways to parameterize space-time by generalized coordi-
nates x̃(x) but all those which are connected by a Lorentz transformation should be
excluded. This limits the freedom and following Dirac [106] there are at least three
special parameterizations 4. The difference between them is the hypersphere on which
the fields are initialized and so one has correspondingly different time parameters
and each of them also has its own Hamiltonian.
The question which hypersphere we should choose would in fact be an ill posed
one, since, in principle, all should yield the same physical result. In high energy
physics it is convenient to work in Dirac‘s, so-called, front-form. It is ideally suited for
a description of high energy processes due to the following reasons:

• The ground state of the full theory nearly coincides (apart of zero modes5) with
the ground state of the free theory.

• Wave functions in front form can be independent of the reference frame and
are thus useful in the description of a wide range of high-energy scattering
processes.

• In the light-cone gauge there are no ghosts.

• . . .

The first two points will be discussed further in this appendix. Before we do so, let us
introduce the notation we are using.

4There are actually 5 such parameterizations, see Ref. [107], but two of them seem to be less useful.
5Problems with quantization on a light-front, e.g. zero modes, are beyond the scope of this appendix.
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a.2 Notation, metric and all That

For any four-vector aµ = (a0, a1, a2, a3) (written in the “usual” coordinate) we write in
LC-coordinates6

aµ = [a+, a−, a⊥] (A.5)

with

a± :=
a0 ± a3
√

2
and a⊥ := (a1, a2). (A.6)

The metric tensor is now non-diagonal

gµν =


0 1 0 0

1 0 0 0

0 0 −1 0

0 0 0 −1

 . (A.7)

The scalar product of two four vectors in LC-coordinates is

a · b = aµbµ = gµνaµbν = a+b− + a−b+ − a⊥ · b⊥. (A.8)

Due to the off-diagonal entries of the metric tensor the conversion of contravariant
to covariant vectors is somewhat involved, we e.g. have: a± = a∓ and ∂± ≡ ∂/∂z± =

∂/∂z∓.
For convenience we define two lightlike unit vectors

n+ :=
1√
2
(1, 0, 0, 1) ≡ [1, 0, 0⊥] and n− :=

1√
2
(1, 0, 0,−1) ≡ [0, 1, 0⊥], (A.9)

satisfying n2
+ = n2

− = 0 and n+ · n− = 1. Using Eq. (A.9) LC-plus and -minus
components can be projected out by

a+ = n− · a and a− = n+ · a, (A.10)

respectively.
Light-cone coordinates depend on the particular choice of the z-axis but they

transform simply under boosts along the z-axis. In “ordinary” coordinates a boost
from the rest frame of a particle to a frame where the particle moves with velocity v
into the z-direction changes the four vector components according to

x′0 =
x0 − vx3
√

1− v2
, x′3 =

x3 − vx0
√

1− v2
, x′1 = x1, x′2 = x2. (A.11)

6The order of the index µ is now µ = +,−, 1, 2. It has become common to speak of “light-cone
coordinates”, “light-cone quantization”, “light-cone wave functions”, etc., although all these terms
rather refer to the light front, i.e. a hypersphere tangent to the light cone. We will stick to the common
nomenclature, keeping in mind that it is not completely correct.
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Equation (A.11) in LC-coordinates reads

x̃+ = x+eψ, x̃− = x−e−ψ, x̃⊥ = x⊥, (A.12)

where the hyperbolic angle ψ is 1
2 ln 1+v

1−v , so that v = tanh ψ [108], i.e. plus and minus
components are simply scaled by e±ψ.
We consider now in particular the momentum p of a particle with mass m obtained
by a boost with ψ from the rest frame into the z-direction:

p′µ =

[
p+,

m2

2p+
, 0⊥

]
=

[
m√

2
eψ,

m√
2

e−ψ, 0⊥

]
. (A.13)

If the boost in Eq. (A.13) is very large, we see that the plus component of pµ becomes
large, whereas the minus component becomes small (using the “usual” components,
p0 and p3 both become large).
A very useful Lorentz transformation is a transverse boost which leaves the plus
component of a four vector a unchanged:

aµ = [a+, a−, a⊥]→ a′µ =

[
a+, a− − a⊥ · b⊥

b+
+

a+b2
⊥

2(b+)2 , a⊥ −
a+

b+
b⊥

]
, (A.14)

with b+ and b⊥ being three parameters (b⊥ is a 2-vector).

For further purposes it will be convenient to define the following projectors

P± :=
1
2

γ∓γ±, (A.15)

with

P+ +P− = 1, P+P− = P−P+ = 0 and P2
± = P±. (A.16)

They further satisfy

P±γ∓ = γ∓P∓, P±γ± = 0 and P±γ⊥ = γ⊥P±. (A.17)

a.2.1 Bound states on the light-cone, light-Cone wave functions
and light-cone quantization

Each hadronic state is an eigenstate of the QCD-Hamiltonian. If we denote the
light-cone Hamiltonian by HLC = P−, each state of mass M must satisfy P− |Ψ〉 =
M2+P2

⊥
2P+ |Ψ〉. If we project this eigenvalue equation onto the various Fock states we

get an infinite number of coupled integral equations. Solving these equations means
solving the underlying field theory, i.e. QCD. Using the light-cone Fock state basis is
particularly appealing because the vacuum is simple and the wave functions can be
expressed in terms of frame independent coordinates.
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a.2.1.1 Light-cone vacuum

Why is the vacuum simple? We first recall that in a quantum field theory the four-
momentum Pµ of a physical particle has to satisfy the spectrum condition [109]

P2 ≥ 0 and P0 ≥ 0. (A.18)

We can now immediately derive the inequalities P02 − P32 ≥ P2
⊥ ≥ 0 and P0 ≥ |P3|

from Eqs. (A.18), (A.8) and the definition of light-cone coordinates, Eq. (A.6). This
implies for the plus component of the momentum

P+ ≥ 0. (A.19)

The vacuum, defined as those state with the lowest possible energy eigenvalue, fulfills

P+ |0〉 = 0, (A.20)

which means that the vacuum is an eigenstate of P+ with eigenvalue zero. The
consequence of this is, that the vacuum is also an eigenstate of the full light-cone
Hamiltonian P−. In other words the light-cone vacuum is also the ground state for
the interacting theory 7. As we will see later, we can therefore build a Fock state basis
out of the vacuum.

a.2.1.2 Bound states

We want to solve the following eigenvalue problem8:

P− |Ψ〉 =
M2 + P2

⊥
2P+

|Ψ〉 . (A.22)

The operator P+ is positive (having positive eigenvalues) as we showed above. As
discussed in Refs. [107, 110] eigenfunctions of the Hamiltonian in the front-form can
be labeled by six quantum numbers:

• the invariant mass M,

• the 3 momentum components P+ and P⊥,

• the generalized total spin squared S2 and its longitudinal projection Sz,

7These arguments hold for non-vanishing bare mass of the particles. For massless gauge fields the zero
modes require some care

8Solving a relativistic bound state problem for a particle with mass M and wave function |Ψ〉 in a
straightforward way within the usual equal-time formalism would require to solve the Schrödinger-
like eigenvalue problem

H |Ψ〉 =
√

M2 + P2 |Ψ〉 , (A.21)

where H = P0 and P are second quantized Heisenberg operators and |Ψ〉 is expanded in multi-
particle occupation number Fock states. This eigenvalue problem has several disadvantages like
its complicated vacuum eigensolution (associated with a complicated vacuum structure) and the
presence of a square root operator.
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plus a collection of additional quantum numbers like charge, parity, color,... denoted
by α.
A state |Ψ〉 can therefore be written as

|Ψ〉 = |Ψ; M, P+, P⊥, S2, Sz, α〉 . (A.23)

|Ψ〉 can be expanded in a complete set of functions, namely a complete basis of Fock
states which are constructed in the usual way by applying creation operators to the
vacuum state:

|0〉 ,

|qq̄ : k+i , k⊥i, λi〉 = b†(k1)d†(k2) |0〉
|qq̄g : k+i , k⊥i, λi〉 = b†(k1)d†(k2)a†(k3) |0〉 (A.24)

|gg : k+i , k⊥i, λi〉 = a†(k1)a†(k1) |0〉 ,

...

The operators b†(k), d†(k) and a†(k) create bare quarks, bare antiquarks and bare
gluons (their anti-commutation relations are given in App. A.2.1.3. The notation keeps
only track of the three-momenta k+i , k⊥i and the helicity λi. The projections of |Ψ〉 on
the basis vectors |µn〉 := |n : k+i , k⊥i, λi〉 (the index n labels the different Fock states)
are called the wave functions (in this context the light-cone wave functions (LCWFs))

Ψn = 〈µn|Ψ〉 . (A.25)

It therefore follows for the expansion of |Ψ〉 in Fock states

|Ψ〉 = ∑
n

∫
d[µn] |µn〉Ψn(µ). (A.26)

Each of the |µn〉 = |n : k+i , k⊥i, λi〉 is an eigenstate of P+ and P⊥ with eigenvalues

P⊥ = ∑
i∈n

k⊥i and P+ = ∑
i∈n

k+i . (A.27)

Now we introduce relative momentum coordinates xi and k̂⊥ via

k+i = xiP+,

ki⊥ = xi P⊥ + k̂i⊥.
(A.28)

xi denotes the longitudinal momentum fraction of the i-th particle. Since k+i > 0 and
P+ > 0, the values of xi lie in the range of 0 < xi < 1. k̂i⊥ is the relative transverse
momentum of the i-th particle. In a frame where P⊥ = 0 (which can be reached by a
transverse boost, cf. Eq. (A.14)), we have k⊥i = k̂i⊥. Therefore k̂i⊥ can be considered
as the intrinsic transverse momentum of the i-th particle. We note that the relative
coordinates are invariant under light-front boosts. Comparing with Eq. (A.27) we see
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that the relative coordinates have to fulfill the following constraints:

∑
i

xi = 1 and ∑
i

k̂⊥i = 0⊥. (A.29)

Before we proceed to write down the eigenvalue equation for the mass operator,
we define the phase-space differential d[µn]. In our convention, where the anti-
commutators are given by Eq. (A.47) it reads∫

d[µn]... =
∫ [

dxid2k̂⊥i

]
n

..., (A.30)

with[
dxik̂i⊥

]
n
=

n

∏
i=1

dxi δ

(
1−

n

∑
i=1

xi

)
1

(16π3)n−1

n

∏
i=1

d2 k̂i⊥δ(2)

(
n

∑
i=1

k̂i⊥

)
. (A.31)

In the case of interactions the front-form Hamiltonian P− can be written as

P− = P−0 + V, (A.32)

where P−0 is the free front-form Hamiltonian and V the “potential” term. Since
the minus momentum components are dynamical in front-form, the total minus
momentum of the whole system is not equal to the sum of the minus momenta of the
respective constituent particles. For the free case, the total light-cone energy reads in
terms of relative coordinates (cf. Eq. (A.28))

P−0 = ∑
i

k−i = ∑
i

k2
⊥i + m2

i

2k+i
=

P2
⊥

2P+
+ ∑

i

k̂2
⊥i + m2

i
2xiP+

. (A.33)

We observe in Eq. (A.33) that P−0 separates into a center-of-mass term (first term of
Eq. (A.33) which vanishes in hadron in/out frames) and a term containing only the
relative coordinates (second term of Eq. (A.33)). Introducing the free invariant mass
squared9 M2

0 := P2
0 we can identify the relative momentum contribution with the free

invariant mass squared, i.e.

M2
0 = P2

0 = 2P+P−0 − P2
⊥ = ∑

i

k̂2
⊥i + m2

i
xi

. (A.34)

It is also possible to define an invariant mass squared in the interacting case,

M2 := P2 = 2P+
(

P−0 + V
)
− P2

⊥, (A.35)

which can be rewritten in terms of the free invariant mass squared M2
0

M2 = P2 = M2
0 + 2P+V. (A.36)

9P0 is the four momentum of the free system.
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The difference between M and M0 thus is

M2 −M2
0 = 2P+V. (A.37)

The front-form analogue of Eq. (A.21) can now be stated as(
M2 −M2

0
)
|Ψ〉 = W |Ψ〉 , (A.38)

with W := 2P+V. Projecting the eigenvalue equation onto the various Fock states
〈qq̄| , 〈qq̄g| , ... results in an infinite number of coupled integral eigenvalue equations.
To conclude this section let us use Eq. (A.38) to write for the LCWFs corresponding
to the state |Ψ〉:

Ψ =
WΨ

M2 −M2
0

. (A.39)

With the help of the parameter

ε := M2 −M2
0 = M2 −

(
∑

i
k−i

)2

= M2 −∑
i

k̂2
⊥i + m2

i
xi

, (A.40)

one sees that all LCWFs are of the form

Ψ =
WΨ

ε
. (A.41)

ε measures how far off (light-cone) energy shell the bound state is since

P− −∑
i

k−i =
ε

P+
. (A.42)

We therefore learn from Eq. (A.38) that there is only a small overlap of the bound
state with Fock states that are far off the (light-cone) energy shell. This implies the
restrictions

Ψ(xi, k̂⊥i)→ 0 for k̂2
⊥i → ∞, xi → 0 (A.43)

on the LCWFs.

a.2.1.3 Canonical quantization of quark and gluon fields

As mentioned in the introduction of this appendix, canonical quantization proceeds
by imposing equal time commutation relations, here at LC-time x+ = 0, on the
independent dynamical fields. The independent fields are called “good” LC-field-
components and the dependent fields are called “bad” LC-components, respectively.
To make this statement clearer, we start with the Dirac equation for a quark field Ψq

(suppressing spinor and color labels)

(i /D−m)Ψq = 0, (A.44)
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with D being the covariant derivative, Dµ = ∂µ + igAµ. With the help of the projection
operators of. Eq. (A.15), P+ and P−, we can rewrite the Dirac equation as a set of
spinor equations

iγ+D−φq = (iγ⊥ ·D⊥ + m)χq and iγ−D+χq = (iγ⊥ ·D⊥ + m)φq, (A.45)

where φq := P+Ψq and χq := P−Ψq. Since D± = ∂/∂∓ + igA± it follows that in
the second equation of Eq. (A.45) “the light-cone time“ x+ does not occur and it is
therefore not an EOM but rather constrains χq in terms of φq and A⊥. For light-cone
gauge, A+ = 0, it even takes on the simpler form iγ−∂/∂x−χq = γ⊥ ·D⊥φq + mφ.
Hence φq describes the dynamically independent degree of freedom, referred to as the
”good“ field component, whereas the dependent field component χq is called the ”bad“
component. Thus the projection operators P+ and P− project out ”good“ and ”bad“
field components of a Dirac field Ψq, respectively, i.e. Ψq = (P+ +P−)Ψq = φq + χq.

The independent free quark field can be expanded, at light-cone time x+ = 0 , as

φq(x−, x⊥) =
∫ dk+

k+
d2k̂⊥
16π3 θ(k+)∑

λ

(A.46)[
bq(k+, k̂⊥, w)u+(k+, k̂⊥, w)e−ik+x−+ik̂⊥·x⊥

+ d†
q(k

+, k̂⊥, w)v+(k+, k̂⊥, w)eik+x−−ik̂⊥·x⊥
]
,

with w being a collective index for helicity and color. The operator b is the annihilator
of the ”good“ component of the quark field, the operator d† the creator of the
”good“ component of the anti-quark field and for the quark and anti-quark spinors
we consistently have to use u+(k+, k̂⊥, w) := P+u(k+, k̂⊥, w) and v+(k+, k̂⊥, w) :=
P+v(k+, k̂⊥, w).
The creation and annihilation operators fulfill the following anti-commutation relation{

bq′(k′+, k̂′⊥, w′), b†
q(k

+, k̂⊥, w)
}
=
{

dq′(k′+, k̂′⊥, w′), d†
q(k

+, k̂⊥, w))
}

(A.47)

= 16π3k+δ(k′+ − k+)δ(2)(k̂′⊥ − k̂⊥)δq′qδw′w.

Similar considerations can be done for the gluonic field Aµ and they reveal that
the ”good“ field components are the transverse ones, A⊥, whereas the bad one is A−.
The plus component can be fixed by the choice of the gauge, e.g. A+ = 0 in light-cone
gauge. The Fourier expansion of the independent gluonic field component is

A⊥(x−, x⊥) =
∫ p+

p+
d2p̂⊥
16π3 θ(p+)∑

λ

(A.48)[
a(p+, p̂⊥, w)ε⊥(p+, p̂⊥, w)e−ip+x−+ip̂⊥·x⊥+

+ a†(p+, p̂⊥, w)ε∗⊥(p+, p̂⊥, w)e+ip+x−−ip̂⊥·x⊥
]
,

where ε⊥ is the transverse component of the gluon polarization vector and a, a† are
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the annihilation, creation operators for transverse gluons satisfying[
a(p′+, p̂′⊥, w′), a†(p+, p̂⊥, w)

]
= 16π3 p+δ(p′+ − p+)δ(2)(p̂′⊥ − p̂⊥)δw′w. (A.49)

To conclude this section we repeat the Fock state decomposition of a hadronic state
with momentum P and helicity λ. It can be written as a superposition of Fock states,
that contain the free quanta of the ”good“ LC-components of quarks, antiquarks and
gluon fields

|H : P, µ〉 = ∑
n,α

∫ [
dxd2k̂⊥

]
n

Ψ(x, k̂⊥)n,α |n, α : k1, ..., kn〉 , (A.50)

with the LCWFs Ψ(x, k̂⊥)n,α of the n-parton-Fock state |n, α : k1, ..., kn〉 and α being a
collective index for the parton content, helicity and color of each parton, respectively.
The hadron states are normalized as

〈H : P′, µ′|H : P, µ〉 = 16π3P+δ(P′+ − P+)δ(2)(P′⊥ − P⊥)δµ′µ. (A.51)

a.2.1.4 Parton content of GPDs and PDFs

In the last section of this appendix we want to study how (quark) GPDs and PDFs
can be interpreted as quantities that give us information about how the partons are
distributed inside the hadrons. To obtain this interpretation we employ the light-cone
gauge, i.e. A+ = 0.

Let us start with the GPDs. The GPDs are defined by the Fourier transform of a
bilocal quark field operator product sandwiched between two non-forward hadron
states. For the unpolarized GPDs the following quark field operator product occurs
Ψ̄q(z1)γ

+Ψ(z2)q. With the considerations of App. A.2.1.3 it can be written as

Ψ̄q(z1)γ
+Ψq(z2) = Ψ†γ0γ+Ψ(z2) =

√
2
(
P+Ψq

)
(z1) (P+Ψ) (z2) =

√
2φ†

q(z1)φq(z2).
(A.52)

The good quark field operators can be expanded in terms of annihilation/creation
operators. The density operator therefore reads

1√
2

Ψ̄q(z1)γ
+Ψ(z2) = φ†

q(z1)φq(z2) = 2
∫ dk+

k+
d2k⊥
16π3 θ(k+)

dk′+

k′+
d2k′⊥
16π3 θ(k+′) ∑

λ,λ′

×
[

exp
(

ik+z−1 − ik⊥ · z⊥1 − ik′+z−2 + ik′⊥ · z⊥2

)
b†(w′)b(w) u†

+(w
′)u+(w)

+ exp
(
− ik+z−1 + ik⊥ · z⊥1 + ik′+z−2 − ik′⊥ · z⊥2

)
d(w′)d†(w) v†

+(w
′)v+(w)

+ exp
(
− ik+z−1 + ik⊥ · z⊥1 − ik′+z−2 + ik′⊥ · z⊥2

)
d(w′)b(w)v†

+(w′)u+(w)

+ exp
(

ik+z−1 − ik⊥ · z⊥1 + ik′+z−2 +−ik′⊥ · z⊥2

)
b†(w′)d†(w)u†

+(w
′)v+(w),

(A.53)
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with w(′) =
(

k+(′), k(′)
⊥ , λ(′)

)
. The operators b†(w′)b(w) and d†(w′)d(w) count the

number of quarks and antiquarks, whereas d(w′)b(w) and b†(w′)d†(w) annihilate/cre-
ate a quark-/antiquark pair, respectively. Which of the four different terms of
Eq. (A.53) does contribute in the defining matrix element of the unpolarized GPD is
determined by the momentum fraction x, the constraint of positive k+(′) momenta
and the constraint from momentum conservation, see for example Ref. [5]. We then
recover the parton interpretation we have shown in Sec. 1. Similarly we can identify
the parton content in the polarized and transversity GPDs. We note however, that
the GPDs do not exhibit a probabilistic interpretation, since the the quarks can have
different momenta. They are rather amplitudes which describe the correlation to find
quarks with different momenta inside the hadrons.

We can furthermore easily include the chiral structure of the operators by defining
the chiral projectors

PR/L =
1
2
(1± γ5) . (A.54)

The density operator Ψ̄q(z1)γ
+Ψ(z2) ”counts“ the sum of right- and left-handed good

quark field quanta:

Ψ̄q(z1)γ
+Ψ(z2) =

√
2
(

φ†
qR(z1)φqR(z2) + φ†

qL(z2)φqL(z2)
)

. (A.55)

The density operator for the polarized GPDs, Ψ̄q(z1)γ
+γ5Ψ(z2), is sensitive to the

”net“ helicity:

Ψ̄q(z1)γ
+Ψ(z2) =

√
2
(

φ†
qR(z1)φqR(z2)− φ†

qL(z2)φqL(z2)
)

. (A.56)

For the transversity GPDs with the density operator Ψ̄q(z1)iσ+iγ5Ψq(z2), we change
from the helicity basis, i.e. states that are eigenstates of the helicity operator introduced
in Eq. (A.54),

PR |R〉 =
1
2
|R〉 and PL |L〉 = −

1
2
|L〉 (A.57)

to the transversity basis, i.e. states that are eigenstates of Q± = 1
2 (1∓ γ5γ1):

Q+ |↑〉 = |↑〉 and Q− |↓〉 = |↓〉 . (A.58)

Those states are, of course, linear combinations of the helicity states,

|↑〉 = 1√
2
(|R〉+ |L〉) and |↓〉 = 1√

2
(|R〉 − |L〉) . (A.59)

In the transversity basis Ψ̄q(z1)iσ+iγ5Ψq(z2) can be written as

Ψ̄q(z1)iσ+iγ5Ψq(z2) =
1√
2

(
φ†

q↑(z1)φq↑(z2)− φ†
q↓(z1)φq↓(z2)

)
. (A.60)

The partonic and chiral structure of the bilocal quark field operators appearing in
the definition of the PDFs is the same as for the GPDs. There is one change, however:
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The PDFs are defined by forward matrix elements. So the quarks carry the same
momentum. The number density interpretation (probabilistic interpretation) becomes
then manifest: The operator Ψ̄q(z1)γ

+Ψ(z2) counts the sum of right- and left-handed
good quark field quanta, the operator Ψ̄q(z1)γ

+γ5Ψ(z2) counts the right-handed
quarks minus the left-handed quarks and the operator Ψ̄q(z1)iσ+iγ5Ψ(z2) counts the
quarks in the |↑〉 state minus the quarks in the |↓〉 state.
This number operator idea corresponds to the particular choice of the light-cone
gauge. There is also a further hitch here: The bilocal quark field operators, defining
the PDFs are divergent in the ultraviolet10. Literally taken, this removes the possibility
of interpreting the PDFs as number densities.

”The factorization formula merely permit them to be used as if they are number densities, since
the factorizations have the form of PDFs convoluted with a short-distance cross section.“-quote
taken from Ref. [111].

10The renormalization of the UV singularities introduces the scale µF into the PDFs: Roughly speaking,
the factorization scale is the upper cutoff for what momenta belong to the PDF.
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K i n e m a t i c s i n a s y m m e t r i c c e n t e r - o f - m o m e n t u m - s y s t e m

In this appendix we discuss the kinematics of a two particle scattering process of the
form a + b→ c + d in a symmetric center-of-momentum-system (CMS). A symmetric
CMS is a frame in which the transverse momentum transfer of the incoming and
outgoing particles is treated in a symmetric way. We denote the momentum and
mass of the incoming particles a and b by p, ma and q, mb, respectively, those of the
outgoing particles c and d by p′, mc and q′, md, respectively, see Fig. B.1.

z

x

θ1

θ2
θ

p
a c
p

d
q

b
q

Figure B.1: CMS kinematics of a + b → c + d. The z-axis of our symmetric CMS is aligned
along the three vector part of p̄, defined in Eq. (B.2).

The momenta are parameterized in light-cone (LC) coordinates (cf. App. A for
their definition). For the momenta of the particle a and particle b we write

p =

[
(1 + ξ) p̄+,

m2
a + ∆2

⊥/4
2(1 + ξ) p̄+

,−∆⊥
2

]
and p′ =

[
(1− ξ) p̄+,

m2
c + ∆2

⊥/4
2(1− ξ) p̄+

,
∆⊥
2

]
,

(B.1)
where we have introduced the average momentum p̄, the momentum transfer ∆ and
the “skewness” parameter ξ. The average momentum and the momentum transfer

129
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are given by1

p̄ :=
1
2
(p + p′) and ∆ := p′ − p = q− q′. (B.2)

The minus components can be obtained by using the on-mass-shell conditions p2 = m2
a

and p′2 = m2
c . The parameter ξ gives the relative momentum transfer between the

particle a and the particle c in the plus direction, i.e.

ξ :=
p+ − p′+

p+ + p′+
= − ∆+

2p̄+
. (B.3)

The momenta of the particle b and the particle d are written as follows2

q =

[
m2

b + ∆2
⊥/4

2(1 + η)q̄−
, (1 + η)q̄−,

∆⊥
2

]
and q′ =

[
m2

d + ∆2
⊥/4

2(1− η)q̄−
, (1− η)q̄−,−∆⊥

2

]
,

(B.4)
where we have introduced, in analogy to Eq. (B.2)

q̄ :=
1
2
(q + q′) and η :=

q− − q′−

q− + q′−
=

∆−

2q̄−
. (B.5)

The “skewness”-parameter η gives now the relative momentum transfer in the minus
direction between the particle b and the particle d.
q̄− and η are not independent from p̄+ and ξ, but can be related to each other. After
a straightforward calculation we find that

q̄− = p̄+ −
m2

a −m2
b −m2

d + m2
c

2
√

2
√

s
. (B.6)

If we insert the parameterizations of the momenta, cf. Eq. (B.1) and Eq. (B.4) into the
definition of the momentum transfer, cf. Eq. (B.2) we find that

η =
m2

c (1 + ξ)−m2
a (1− ξ) + ξ

∆2
⊥

2
4p̄+q̄− (1− ξ2)

. (B.7)

The Mandelstam variable s is given by

s = (p + q)2 = (p′ + q′)2, (B.8)

which is the invariant mass squared of our process. Mandelstam s has to be larger
than (mc + md)

2 to produce the particles c and d. The remaining two Mandelstam
variables read

t = ∆2 = (p′ − p)2 = (q− q′)2 (B.9)

1∆ = q− q′ follows from momentum conservation, i.e. p + q = p′ + q′.
2 The role of the plus and minus components are now reversed, as compared to Eq. (B.1), since

q3 = −p3 and q′3 = −p′3. The minus component is now the “large” component. To be more specific,

for example: q′± =
q′0±q′3√

2
=

q′0∓|p′3|√
2

=
q′0∓|q′3|√

2
.



Kinematics in a symmetric center-of-momentum-system 131

and
u = (q′ − p)2 = (p′ − q)2, (B.10)

such that
s + t + u = m2

a + m2
b + m2

c + m2
d. (B.11)

Before we proceed to list the explicit expressions of the various kinematical variables
in our symmetric CMS3, it is convenient to introduce the following abbreviations

Λ :=

√√√√(1− (ma + mb)
2

s

)(
1− (ma −mb)

2

s

)
(B.12)

and

Λ′ :=

√√√√(1− (mc + md)
2

s

)(
1− (mc −md)

2

s

)
. (B.13)

The three-momentum of the incoming particle a and its component into the
z-direction can be written as

|p| =
√

s
2

Λ and p3 =

√
s

2

√
Λ2 −

∆2
⊥
s

. (B.14)

The corresponding quantities for the outgoing particle c are

|p′| =
√

s
2

Λ′ and |p′3| =
√

s
2

√
Λ′2 −

∆2
⊥
s

. (B.15)

Note that in our CMS |q| = |p|, q3 = −p3, |q′| = |p′| and q′3 = −p′3.
We have chosen our coordinate system in such a way, that p3 is always positive, but
p′3 can become negative at large scattering angles. The sign change happens when
∆2
⊥ reaches its maximum value, i.e.

∆2
⊥max = sΛ′2. (B.16)

We continue to find the expression for the scattering angle Θ = Θ1 + Θ2, cf.
Fig. B.1. The angle Θ1 is given by

Θ1 = arccos
(

p′3

|p′|

)
= arccos

sign(p′3)

√
1−

∆2
⊥

sΛ′2


= arcsin

(
|∆⊥|
2|p′|

)
= arcsin

(
|∆⊥|√

sΛ′

)
for p′3 ≥ 0

= π − arcsin
(
|∆⊥|
2|p′|

)
= π − arcsin

(
|∆⊥|√

sΛ′

)
for p′3 < 0,

(B.17)

3Since most of the calculations are only tedious (straightforward though) algebra, we do not present
them in much detail.
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where sign(p′3) takes care of the kinematical situation of scattering into the forward
or backward hemisphere.
The angle Θ2 reads

Θ2 = arccos
(

p3

|p|

)
= arccos

√1−
∆2
⊥

sΛ2


= arcsin

(
|∆⊥|
2|p|

)
= arcsin

(
|∆|⊥√

sΛ

)
.

(B.18)

With the help of Eqs. (B.17) and (B.18), the cosine and sine of Θ turn out to be

cos Θ =
sign(p′3)

ΛΛ′


√√√√(Λ2 −

∆2
⊥
s

)(
Λ′2 −

∆2
⊥
s

)
− sign(p′3)

∆2
⊥
s

 (B.19)

and

sin Θ =
1

ΛΛ′
|∆⊥|√

s

√Λ2 −
∆2
⊥
s

+ sign(p′3)

√
Λ′2 −

∆2
⊥
s

 . (B.20)

Let us now find expressions for p̄+, ξ, q̄− and η in a compact form. Starting from
Eq. (B.2) the plus component of the average momentum can be written with the help
of Eqs. (B.14), (B.15), (B.19) and (B.20) as4

p̄+ =
1
2
(

p+ + p′+
)
=

1
2
√

2

(
(p0 + p3) + (p′0 + p′3)

)
=

1
4

√
s
2

(
2 +

(m2
a −m2

b + m2
c −m2

d)

s
+ Γ

)
,

(B.21)

where Γ is given by
Γ =

√
Λ2 + Λ′2 + 2ΛΛ′ cos Θ. (B.22)

For the “skewness” parameter ξ we obtain

ξ =
p+ − p′+

p+ + p′+
=

1√
2

(
p0 − p3 − p′0 − p′3

)
1√
2
(p0 + p3 + p′0 + p′3)

=

(
m2

a −m2
b −m2

c + m2
d

)
Γ + s

(
Λ2 −Λ′2

)(
2s + m2

a −m2
b + m2

c −m2
D + sΓ

)
Γ

.

(B.23)

4The explicit expressions for p(′)3 were already given in Eqs. (B.14)-(B.15). The energy of the particle a

and particle c is p0 =
√

s
2

(
1 + m2

a−m2
b

s

)
and p′0 =

√
s

2

(
1 + m2

c−m2
d

s

)
, respectively.
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For q̄− and η we get5

q̄− =
1
2
(
q− + q′−

)
=

1
2
√

2

(
(q0 − q3) + (q′0 − q′3)

)
=

1
4

√
s
2

(
2 +

(m2
b −m2

a + m2
d −m2

c)

s
+ Γ

)
(B.24)

and

η =
q− − q′−

q− + q′−
=

1√
2

(
q0 − q3 − q′0 + q′3

)
1√
2
(q0 − q3 + q′0 − q′3)

=

(
m2

b −m2
a + m2

c −m2
d

)
Γ + s

(
Λ2 −Λ′2

)(
2s−m2

a + m2
b −m2

c + m2
d + sΓ

)
Γ

.

(B.25)

Next we consider the Mandelstam variables and write them in a more compact
form with the help of Eqs. (B.14), (B.15), (B.19) and (B.20).
Mandelstam t can be written as

t = m2
a + m2

c − 2
√

m2
a + |p|2

√
m2

c + |p′|2 +
s
2

ΛΛ′ cos Θ

=
(m2

a −m2
b −m2

c + m2
d)

2

4s
− s

4
(
Λ2 + Λ′2 − 2ΛΛ′ cos Θ

)
.

(B.26)

We now specify Mandelstam t for forward (θ = 0) and backward (θ = π) scattering.
For forward scattering it acquires the value

t0 := t(∆2
⊥ = 0, p′3 ≥ 0)

=
(m2

a −m2
b −m2

c + m2
d)

2

4s
− s

4
(
Λ−Λ′

)2
(B.27)

and for backward scattering

t1 := t(∆2
⊥ = 0, p′3 ≤ 0)

=
(m2

a −m2
b −m2

c + m2
d)

2

4s
− s

4
(
Λ + Λ′

)2 .
(B.28)

Furthermore we can introduce a “reduced” Mandelstam variable t′ that vanishes for
forward scattering, i.e.

t′ := t− t0

= − s
2

ΛΛ′(1− cos Θ).
(B.29)

5q(′)3 are related to p(′)3, cf. the statement after Eq. (B.15). The energy of the particle b and particle d is

q0 =
√

s
2

(
1 + m2

b−m2
a

s

)
and q′0 =

√
s

2

(
1 + m2

d−m2
c

s

)
, respectively.
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Mandelstam u is given by

u = −s− t + m2
a + m2

b + m2
c + m2

d

=
(m2

a −m2
b + m2

c −m2
d)

2

4s
− s

4
(
Λ2 + Λ′2 + 2ΛΛ′ cos Θ

)
.

(B.30)

For forward scattering it becomes

u0 := u(∆2
⊥ = 0, p′3 ≥ 0)

=
(m2

a −m2
b + m2

c −m2
d)

2

4s
− s

4
(
Λ + Λ′

)2
(B.31)

and for backward scattering

u1 := u(∆2
⊥ = 0, p′3 ≤ 0)

=
(m2

a −m2
b + m2

c −m2
d)

2

4s
− s

4
(
Λ−Λ′

)2 .
(B.32)

The ”reduced” Mandelstam variable u′

u′ := u− u1

= − s
2

ΛΛ′(1 + cos Θ)
(B.33)

vanishes for backward scattering.

We can write the transverse component of ∆ as a function of the CMS scattering
angle Θ, using Eqs. (B.19) and (B.20)

∆2
⊥ = s

Λ2Λ′2 sin2 Θ
(Λ2 + Λ′2 + 2ΛΛ′ cos Θ)

, (B.34)

or we solve Eq. (B.26) for ∆2
⊥ which gives

∆2
⊥ = −t′

t′ + sΛΛ′

t′ + s
4 (Λ + Λ′)2 . (B.35)

We now have expressions for the most important kinematical quantities in the most
general case (unequal mass kinematics) for a two-body scattering process in the
symmetric CMS system.



C
T h e p → Λ +

c G e n e r a l i z e d P a r t o n D i s t r i b u t i o n s

c.1 Introduction

In this appendix we discuss the p → Λ+
c GPDs which were introduced for the

first time in Ref. [11]. These GPDs parameterize the hadronic matrix element which
describes the non-perturbative transition from the proton to the charmed Lambda that
appears in the hadronic scattering amplitude Eqs. (2.34) and (2.95). For convenience
we repeat it here

p̄+
∫ dz−

(2π)
eix̄ p̄+z− 〈Λ+

c : p′, µ′| Ψc
(
− z−

2

)
Ψu
(

z−

2

)
|p : p, µ〉 . (C.1)

The average momentum is denoted by p̄ = p+p′
2 and the average momentum fraction

by x̄ = k̄+
p̄+ , respectively, with k̄ =

k1+k′1
2 . In Eq. (C.1) Ψu(z−/2) takes out a u-quark

at space-time z−/2 from the proton state |p : p, µ〉, which then participates in the
hard partonic subprocess, whereas Ψc

(−z−/2) reinserts the produced c-quark at
space-time −z−/2 into the remainder of the proton which gives the final Λ+

c hadron,
see also Fig. C.1.

p:p,μ +

u:k1,λ1

cΛ  :p,μ

GPDs

c:k1,λ1

Figure C.1: Graphical representation of the p→ Λ+
c GPDs.

The procedure to project out the leading twist contributions of the quark field operator
product in Eq. (C.1) is the following:
First, the quark field operators Ψu and Ψc are studied in the hadron-in frame of the
proton and hadron-out frame of the Λ+

c , respectively. These are frames in which the
incoming or the outgoing hadron have no transverse momentum components. In
such a frame, the dominant components of the quark fields are the, so called, “good”
components, cf. Ref. [11] or Sec. 2.4.2 for more details. It turns out that in these frames

135
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Ψu and Ψc can be written as

Ψu(z/2) =
1

2k+1
∑
λ1

u(k1, λ1)
(
u(k1, λ1)γ

+Ψu(z/2)
)

, (C.2)

Ψc(−z/2) =
1

2k′+1
∑
λ′1

u(k′1, λ′1)
(
u(k′1, λ′1)γ

+Ψc(−z/2)
)

. (C.3)

This is also true if one goes back to the CMS by a transverse boost, since a transverse
boost does not change the plus components (of any 4-vector). With Eqs. (C.2) and
(C.3) at hand we can write for the bilocal product

Ψc
(−z/2)Ψu (+z/2) =

=
1

4k+1 k′+1
∑
λ1

[(
Ψc

(−z/2)γ+u(k′1, λ1)
)(

u(k1, λ1)γ
+Ψu(z/2)

)
u(k′1, λ1)u(k1, λ1)

+
(

Ψc
(−z/2)γ+u(k′1,−λ1)

)(
u(k1, λ1)γ

+Ψu(z/2)
)

u(k′1,−λ1)u(k1, λ1)
]

,

(C.4)

where we have used λ′1 = ±λ1 to separate the product of quark fields into (LC)
helicity non-flip and helicity flip configurations of the active quarks at the p→ Λ+

c
vertex. The products of quark fields in Eq. (C.4) can be further simplified using
appropriate LC spinor products and helicity projectors. In fact, inserting

u(k′1, λ1)γ
+u(k1, λ1)

2
√

k+1 k′+1
= 1, (C.5)

between u(k′1, λ1)u(k1, λ1) and

1
i(2λ1i)j

u(k′1,−λ1)iσ+ju(k1, λ1)

2
√

k+1 k′1
= 1, (C.6)

between u(k′1,−λ1)u(k1, λ1) (with j = 1, 2 and σ±j = iγ±γj) we obtain for the non-
helicity flip term in Eq. (C.4)

Ψc
(−z/2)γ+u(k′1, λ1)u(k1, λ1)γ

+Ψu(z/2) =

=
1

2
√

k+1 k′+1
Ψc

(−z/2)γ+u(k′1, λ1)u(k′1, λ1)γ
+u(k1, λ1)u(k1, λ1)γ

+Ψu(z/2) (C.7)

and for the helicity flip term in Eq. (C.4)

Ψc
(−z/2)γ+u(k′1,−λ1)u(k1, λ1)γ

+Ψu(z/2) =

=
1

2
√

k+1 k′+1

1
i(2λ1i)j Ψc

(−z/2)γ+u(k′1,−λ1)u(k′1 − λ1)iσ+ju(k1, λ1)u(k1, λ1)γ
+Ψu(z/2),

(C.8)
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respectively. The reason for the insertions of Eqs. (C.5) and (C.6) is that we can now
use the helicity projectors of the (massless) u-quark and the (heavy) c-quark. They
explicitly read (they coincide for mc → 0)

u(k1, λ1)u(k1, λ1) = k1 · γ
1− 2λ1 γ5

2
(C.9)

and
u(k′1, λ′1)u(k

′
1, λ′1) =

(
k′1 · γ + mc

)1 + γ5 S1 · γ
2

. (C.10)

The covariant spin vector

S1 =
2λ′1
mc

(
k′+1 −

m2
c

k′+1
n−
)

(C.11)

is needed for the c-quark with n− being a unit vector pointing into the minus LC
direction.

Now putting everything together, i.e. inserting the helicity projectors into Eqs. (C.7)
and (C.8) and those further into Eq. (C.4), we obtain after some algebra for our bilocal
product of quark fields

Ψc
(−z/2)Ψu(z/2) =

1

2
√

k+1 k′+1
∑
λ1

{
Ψc

(−z/2)γ+ 1 + 2λ1γ5

2
Ψu(z/2)u(k′1, λ1)u(k1, λ1)

− i(−2λ1i)jΨc
(−z/2)iσ+j 1 + 2λ1γ5

2
Ψu(z/2)u(k′1,−λ1)u(k1, λ1)

}
.

(C.12)

Thus we obtain as our final result for Eq. (C.1)

p̄+
∫ dz−

(2π)
eix̄ p̄+z− 〈Λ+

c : p′, µ′|Ψc
(
− z−

2

)
Ψu
(

z−

2

)
|p : p, µ〉 =

1

4
√

k+1 k′+1
∑
λ1

p̄+
∫ dz−

2π
eix̄ p̄+z−〈Λ+

c : p′, µ′|
{

u(k′1, λ1)u(k1, λ1)

[
Ψc

(−z−/2)γ+Ψu(z−/2) + 2λ1Ψc
(−z−/2)γ+γ5Ψu(z−/2)

]
− i (−2λ1i)j u(k′1,−λ1)u(k1, λ1)[
Ψc

(−z−/2)iσ+jΨu(z−/2) + 2λ1Ψc
(−z−/2)iσ+jγ5Ψu(z−/2)

] }
|p : p, µ〉.

(C.13)

We have finally achieved that there are only leading twist quark field operator
contributions. The advantage of Eq. (C.13) is, that it is suitable for a parameterization
in terms of GPDs after introducing an appropriate notation. Before we switch to
the new notation, let us define vector, axial-vector and tensor currents of bilocal
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quark-field-operator products

Vµ(−z/2, z/2) := Ψc
(−z/2) γµ Ψu(z/2)−Ψu

(z/2) γµ Ψc(−z/2), (C.14)

Aµ(−z/2, z/2) := Ψc
(−z/2)γµγ5Ψu(z/2)−Ψu

(z/2)γµγ5Ψc(−z/2), (C.15)

Tµν(−z/2, z/2) := Ψc
(−z/2)iσµνΨu(z/2)−Ψu

(z/2)iσµνΨc(−z/2) (C.16)

and

Tµν
5 (−z/2, z/2) := Ψc

(−z/2)iσµνγ5Ψu(z/2)−Ψu
(z/2)iσµνγ5Ψc(−z/2). (C.17)

The antiparticle contribution has been added to have manifest charge-conjugation
symmetry. Since we neglect the intrinsic charm content of the proton this can be done
without getting any troubles. The new notation is the following

H cu
µ′µ := p̄+

∫ dz−

2π
eix̄ p̄+z− 〈Λ+

c : p′, µ′|V+(−z−/2, z−/2) |p : p, µ〉 , (C.18)

H̃ cu
µ′µ := p̄+

∫ dz−

2π
eix̄ p̄+z− 〈Λ+

c : p′, µ′| A+(−z−/2, z−/2) |p : p, µ〉 , (C.19)

H Tcu
jµ′µ := p̄+

∫ dz−

2π
eix̄ p̄+z− 〈Λ+

c : p′, µ′| T+j(−z−/2, z−/2) |p : p, µ〉 , (C.20)

H Tcu
5jµ′µ := p̄+

∫ dz−

2π
eix̄ p̄+z− 〈Λ+

c : p′, µ′| T+j
5 (−z−/2, z−/2) |p : p, µ〉 . (C.21)

The action of V+, A+, T+j and T+j
5 on the quark fields is that

• V+ and A+ do not flip the helicities of the active quarks, whereas

• T+j and T+j
5 do.

H cu
µ′µ and H̃ cu

µ′µ are from now on referred to as quark helicity non-flip p → Λ+
c

transition matrix elements, whereas H Tcu
jµ′µ and H Tcu

5jµ′µ are called quark helicity flip
p→ Λ+

c transition matrix elements.
With this new notation Eq. (C.13) reads

p̄+
∫ dz−

(2π)
eix̄ p̄+z− 〈Λ+

c : p′, µ′|Ψc
(
− z−

2

)
Ψu
(

z−

2

)
|p : p, µ〉 =

1

4
√

k+1 k′+1
∑
λ1

{[
H cu

µ′µ + 2λ1H̃
cu

µ′µ

]
u(k′1, λ1)u(k1, λ1)

−i(−2λ1i)j
[
H Tcu

jµ′µ + 2λ1H
Tcu

5jµ′µ

]
u(k′1,−λ1)u(k1, λ1)

}
.

(C.22)

Using
σ+1γ5 = −iσ+2 and σ+2γ5 = iσ+1, (C.23)

we can show that T+j
5 and T+j are not independent. The relation between them is:

T+j
5 = (−1)jT+k with k 6= j and k, j = 1, 2.



C.2 Quark helicity non-flip p→ Λ+
c transition matrix elements 139

Thus the p→ Λ+
c transition matrix element finally becomes:

p̄+
∫ dz−

(2π)
eix̄ p̄+z− 〈Λ+

c : p′, µ′|Ψc
(
− z−

2

)
Ψu
(

z−

2

)
|p : p, µ〉 =

1

4
√

k+1 k′+1
∑
λ1

{[
H cu

µ′µ + 2λ1H̃
cu

µ′µ

]
u(k′1, λ1)u(k1, λ1)

−λ1H
Tcu

λ1µ′µ u(k′1,−λ1)u(k1, λ1)
}

.

(C.24)

We introduced
H Tcu

λ1µ′µ :=
1
2

(
H Tcu

1µ′µ − 2λ1iH Tcu
2µ′µ

)
, (C.25)

for later convenience. Equation (C.24) is separated into quark helicity non-flip contri-
butions (involving H cu

µ′µ and H̃ cu
µ′µ) and a quark helicity flip contribution (involving

H Tcu
λ1µ′µ). Both can be parameterized by GPDs as summarized in the following two

subsections.

c.2 Quark helicity non-flip p→ Λ+
c transition matrix elements

The quark helicity-conserving distributions in the flavor-diagonal case have been
considered for example in Ref. [112]. The Dirac structure in our case is the same as
therein, though for our case we have to take the u→ c transition in flavor space into
account.
Let us start with the parameterization of H cu

µ′µ

H cu
µ′µ = p̄+

∫ dz−

2π
eix̄ p̄+z− 〈Λ+

c : p′, µ′|V+(−z−/2, z−/2) |p : p, µ〉 (C.26)

= u(p′, µ′)

[
Hcu

pΛc
(x̄, ξ, t)γ+ + Ecu

pΛc
(x̄, ξ, t)

iσ+ν∆ν

MΛc + mp

]
u(p, µ),

with Hcu
pΛc

(x̄, ξ, t) and Ecu
pΛc

(x̄, ξ, t) being the GPDs. If we use the spinor product tables
of App. C of Ref. [113] we can see that, although in the matrix element H cu

µ′µ a quark

helicity flip is not allowed, u(p′, µ′) iσ+ν∆ν
MΛc+mp

u(p, µ) is associated with a hadron helicity
flip. Consequently there is a mismatch between partonic and hadronic helicities. To
resolve this mismatch we need a non-vanishing orbital angular momentum between
active partons and spectators, in this case one unit of orbital angular momentum. As
we discussed in Sec. 2.3.3 we are modeling our GPDs with LCWFs with zero orbital
angular momentum. Thus, the GPD Ecu

pΛc
and in further consequence its associated

transition form factor will vanish in our model.
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Let us proceed with H̃ cu
µ′µ

H̃ cu
µ′µ = p̄+

∫ dz−

2π
eix̄ p̄+z− 〈Λ+

c : p′, µ′| A+(−z−/2, z−/2) |p : p, µ〉 (C.27)

= u(p′, µ′)

[
H̃cu

pΛc
(x̄, ξ, t)γ+γ5 + Ẽcu

pΛc
(x̄, ξ, t)

∆+

MΛc + mp
γ5

]
u(p, µ).

The GPDs are now H̃cu
pΛc

(x̄, ξ, t) and Ẽcu
pΛc

(x̄, ξ, t). Comparison with the spinor table

reveals that u(p′, µ′) ∆+

MΛc+mp
γ5u(p, µ) is associated with a hadron helicity flip and we

therefore conclude (see remarks above) that Ẽcu
pΛc

(x̄, ξ, t) can be neglected within our
model framework.
The various occurring covariants in Eqs. (C.26) and (C.27) can be evaluated for our
symmetric CMS system and thus our final results for the transition matrix elements
are [11]

H cu
µµ = 2p̄+

√
1− ξ2

[
Hcu

pΛc
− ξ

1− ξ2 M̃Ecu
pΛc

]
, (C.28)

H cu
−µµ = 2ε p̄+

√
1− ξ2 1

1− ξ2
∆⊥

MΛc + mp
Ecu

pΛc
, (C.29)

and

H̃ cu
µµ = 2ε p̄+

√
1− ξ2

[
H̃cu

pΛc
− ξ

1− ξ2 M̃ Ẽcu
pΛc

]
, (C.30)

H̃ cu
−µµ = 2p̄+

√
1− ξ2 ξ

1− ξ2
∆⊥

MΛc + mp
Ẽcu

pΛc
, (C.31)

with ε = (−1)µ−1/2 and M̃ =
(1+ξ)MΛc−(1−ξ)mp

MΛc+mp
.

c.3 Quark helicity flip p→ Λ+
c transition matrix elements

Quark helicity flip distributions for the flavor diagonal case have been considered in
Ref. [4]. It was discussed in this paper that there are four independent distributions.
H Tcu

jµ′µ can be decomposed into the following Dirac structures:

H Tcu
jµ′µ = p̄+

∫ dz−

2π
eix̄ p̄+z− 〈Λ+

c : p′, µ′| T+j(−z−1 /2, z−1 /2) |p : p, µ〉 (C.32)

= u(p′, µ′)

[
Hcu

T pΛc
(x̄, ξ, t)iσ+j + H̃cu

T pΛc
(x̄, ξ, t)

p̄+∆j − ∆+ p̄j

MΛmp

+Ecu
T pΛc

(x̄, ξ, t)
γ+∆j − ∆+γj

MΛ + mp
+ Ẽcu

T pΛc
(x̄, ξ, t)

γ+ p̄j − p̄+γj

(MΛ + mp)/2

]
u(p, µ).

In Eq. (C.32) all four covariants, in general, contribute if the baryon helicity flips. If it
is not flipped u(p′, µ′)iσ+ju(p, µ) vanishes, the remaining three covariants still being
non-zero. We recall that the mismatch between partonic and hadronic helicities is to
be compensated by an appropriate number of units of orbital angular momentum in
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the hadronic wave functions. We therefore expect the contributions parameterized by
H̃cu

T pΛc
, Ecu

T pΛc
and Ẽcu

T pΛc
to be suppressed for ground state wave functions with zero

orbital angular momenta.
After evaluating the spinor products in Eq. (C.32) we arrive at [11]

H Tcu
λ1µµ =

p̄+√
1− ξ2

∆2
⊥

MΛc + mp

{
(MΛc + mp)

(1 + ξ)MΛc + (1− ξ)mp

2mp MΛc

H̃cu
T pΛc

(x̄, ξ, t)

+ [1 + 2λ1εξ] Ecu
T pΛc

(x̄, ξ, t)− [ξ + 2λ1ε] Ẽcu
T pΛc

(x̄, ξ, t)
}

,

(C.33a)

H Tcu
λ1−µµ = − p̄+√

1− ξ2

{
(1− ξ2)(ε + 2λ1)Hcu

T pΛc
(x̄, ξ, t) + ε

∆⊥
2MΛc mp

H̃cu
T pΛc

(x̄, ξ, t)

− (ε + 2λ1)M̃
[
ξ Ecu

T pΛc
(x̄, ξ, t)− Ẽcu

T pΛc
(x̄, ξ, t)

]}
.

(C.33b)

c.4 Transition form factors

Using the peaking approximation we need the integral over the GPDs rather than the
GPDs themselves in the scattering amplitude. The transition form factors are defined
by

FFi(ξ, t) =
∫ 1

ξ

dx̄√
x̄2 − ξ2

GPDi(x̄, ξ, t), (C.34)

where GPDi stands for any of our transition GPDs and FFi for their associated
transition form factor (FF).
The correspondence between them is as follows

Hcu
T pΛc

, H̃cu
pΛc

, Ecu
pΛc

, Ẽcu
pΛc

, Hcu
T pΛc

, H̃cu
T pΛc

, Ecu
T pΛc

, Ẽcu
T pΛc

↔RV , RA, RT, RP, ST, SS, SV1, SV2.
(C.35)

We see that taking ξ as the lower limit of integration in Eq. (C.34) leads to a ξ (or
equivalently s) dependence of the FFs. Turning on the CMS energy, however, this
dependence becomes weaker and in the limit s→ ∞ it disappears. The reason why
we take for the x̄-integration as a lower bound ξ instead of 0 is that we are interested
in the GPDs in the DGLAP-region.

Finally we list explicit expressions for the integrals over the transition matrix
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elements

∫ 1

ξ

dx̄√
x̄2 − ξ2

H cu
µµ = 2p̄+

√
1− ξ2

[
RV −

ξ

1− ξ2 M̃RT

]
, (C.36)

∫ 1

ξ

dx̄√
x̄2 − ξ2

H cu
−µµ = 2ε p̄+

√
1− ξ2 1

1− ξ2
∆⊥

MΛc + mp
RT, (C.37)

∫ 1

ξ

dx̄√
x̄2 − ξ2

H̃ cu
µµ = 2ε p̄+

√
1− ξ2

[
RA −

ξ

1− ξ2 M̃RP

]
, (C.38)

∫ 1

ξ

dx̄√
x̄2 − ξ2

H̃ cu
−µµ = 2p̄+

√
1− ξ2 ξ

1− ξ2
∆⊥

MΛc + mp
RP, (C.39)

∫ 1

ξ

dx̄√
x̄2 − ξ2

H Tcu
λ1µµ =

p̄+√
1− ξ2

∆⊥
MΛc + mp

{
(MΛc + mp)

(1 + ξ)MΛc + (1− ξ)mp

2mp MΛc

SS

(C.40)

+ [1 + 2λ1εξ] SV1 − [ξ + 2λ1ε] SV2} ,

∫ 1

ξ

dx̄√
x̄2 − ξ2

H Tcu
λ1−µµ = − p̄+√

1− ξ2

{
(1− ξ2)(ε + 2λ1)ST + ε

∆2
⊥

mp MΛc

SS

(C.41)

−(ε + 2λ1)M̃ [ξ SV1 − SV2 ]
}

.
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M o d e l p a r a m e t e r s

Proton:
The normalization constant Np and the oscillator parameter ap are related to the
valence Fock-state probability Pp as follows,

NP =

√
143360

29
π4 a4

P PP. (D.1)

Lambda:
The normalization constant NΛ and the r.m.s. of the intrinsic transverse momentum
of the active c-quark

√
〈k2
⊥〉c in terms of PΛ, aΛ, ρ is given by

NΛ =

√
3 · 322π4 a4

Λ PΛ

IKK
12 (aΛ)

+
ρ2

10
IKK
15 (aΛ) for fKK(x1), (D.2a)

NΛ =

√
3 · 322π4 a4

Λ PΛ

IBB
12 (aΛ)

+
ρ2

10
IBB
15 (aΛ) for fBB(x1), (D.2b)

√
〈k2
⊥〉

KK

c
=

1
2aΛ

IKK
24

IKK
13

, (D.3a)√
〈k2
⊥〉

BB

c
=

1
2aΛ

IBB
24

IBB
13

, (D.3b)

where we have introduced the abbreviations

I(KK)
ij (aΛ) :=

∫ 1

0
dx xi(x− 1)j exp

[
−2a2

Λ M2
Λ
(x− x0)2

x(x− 1)

]
, (D.4a)

I(BB)
ik (aΛ) :=

∫ 1

0
dx xi(x− 1)j exp [−2aΛ MΛ(1− x)] . (D.4b)

Pi-meson:
The normalization constant Nπ and the valence Fock-state probability Pπ expressed
in terms of aπ and fπ read,

Nπ =

√
3
2

fπ (4πaπ)
2 and Pπ =

N2
π

192a2
ππ2 . (D.5)
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The r.m.s. is √
〈k2
⊥〉 =

√
1
10

1
aπ

. (D.6)

D-meson:
The normalization constant ND and the valence Fock-state probability PD expressed
in terms of aD and fD read,

NDKK =

(
4πa2

DKK

)2
fD

2
√

6I(KK)
11

(
aDKK /

√
2
) and PD =

N2
D1

I(KK)
11 (aDKK)

32a2
DKK

π2
, (D.7)

NDBB =

(
4πa2

DBB

)2
fD

2
√

6I(BB)
11

(
aDBB /

√
2
) and PD =

N2
DBB

I(BB)
11 (aDBB)

32a2
DBB

π2
, (D.8)

where we have introduced the abbreviations

I(KK)
ij (aDKK) :=

∫ 1

0
dx xi(1− x)j exp

[
−2a2

DKK
M2

D
(x− x0)

2

x(x− 1)

]
, (D.9a)

I(BB)
ij (aDBB) :=

∫ 1

0
dx xi(1− x)j exp [−2aDBB MD (1− x)] . (D.9b)

The r.m.s. of the active c̄- quark is

√
〈k2
⊥〉

(KK)
c =

1
2a2

DKK

I(KK)
22 (aDKK)

I(KK)
11 (aDKK)

and
√
〈k2
⊥〉

(BB)
c =

1
2a2

DBB

I(BB)
22 (aDBB)

I(BB)
11 (aDBB)

. (D.10)



E
D i r a c m a t r i c e s a n d D i r a c s p i n o r s

This appendix is taken from Ref. [9].

e.1 Dirac matrices

We are using the standard Dirac representation for the γ-matrices [114]

γ0 =

(
1 0

0 −1

)
, γi =

(
0 σi

−σi 0

)
, i = 1, 2, 3, (E.1)

with σi being the Pauli matrices

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i

i 0

)
and σ3 =

(
1 0

0 −1

)
. (E.2)

Its is useful to note that
gµνgµν = 4 (E.3)

and to recall the fundamental anti-commutation relation for the γ-matrices and an
associated rule for the “slash” products

γµγν + γνγµ = 2gµν and /a/b + /b/a = 2a · b, (E.4)

where /a := aµγµ. These relations entail a sequence of contraction theorems [115]:

γµγµ = 4, (E.5a)

γµ/aγµ = −2/a , (E.5b)

γµ/a/bγµ = 4(a · b), (E.5c)

γµ/a/b/cγµ = −2/c/b/a . (E.5d)

Finally, γ5 = iγ0γ1γ2γ3 with {γµ, γ5} = 0.
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e.2 Dirac spinors

e.2.1 Helicity spinors

In the Dirac representation a helicity spinor for a particle with mass m and momentum
p moving in a direction parameterized by the angles φ and θ can be written as

u(p, λ) =
1√

E + m

(
(E + m)D(φ, θ)χλ

2|p|λD(φ, θ)χλ

)
. (E.6)

The rotation matrix D(φ, θ) is given by

D(φ, θ) =

(
cos θ

2 −e−iφ sin θ
2

eiφ sin θ
2 cos θ

2

)
, (E.7)

where we have used the Jakob-Wick convention for the spin rotation [116].
χλ is a 2-component spinor which is given by

χλ =
1
2

(
1 + 2λ

1− 2λ

)
. (E.8)

It is an eigenvector of σ3, i.e.
1
2

σ3χλ = λχλ, (E.9)

with λ = ± 1
2 . Its normalization is such that χ†

λ′χλ = δλ′λ.

The helicity spinor for an antiparticle with mass m and momentum p moving in a
direction parameterized by the angles φ and θ is

v(p, λ) = − 1√
E + m

(
2|p|λD∗(φ, θ)χ−λ

−(E + m)D∗(φ, θ)χ−λ

)
. (E.10)

u(p, λ) satisfies the Dirac equation

(/p −m)u(p, λ) = 0, (E.11)

whereas v(p, λ) fulfills
(/p + m)v(p, λ) = 0. (E.12)

The u-spinor and the v-spinor are related by charge conjugation:

u(p, λ) = C vᵀ(p, λ), (E.13)

v(p, λ) = C uᵀ(p, λ), (E.14)
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where C = iγ2γ0.

e.2.2 Light-cone spinors

For the sake of completeness we give a short overview of light-cone spinors, which
coincide with the helicity spinors for zero mass, but are different if the mass is finite
[4]. The corresponding set of spinors for p3 > 0 is given by [110, 113, 117] (adjusted
to our conventions of App. A)

u(p, λ) =
1

21/4
1√
p+

(√
2p+ + βm + α⊥ · p⊥

)
χλ, (E.15)

and
v(p, λ) = − 1

21/4
1√
p+

(√
2p+ − βm + α⊥ · p⊥

)
χ−λ, (E.16)

where λ = ± 1
2 and χ 1

2
and χ− 1

2
are eigenstates of the projection operators P+ and

P− (cf. Eq. (A.15)), respectively. They are given by

χ 1
2
=

1√
2


1

0

1

0

 , χ− 1
2
=

1√
2


0

1

0

−1

 . (E.17)

Working in the Dirac representation we can write

(√
2p+ + βm + α⊥ · p⊥

)
=


√

2p+ + m 0 0 p1 − ip2

0
√

2p+ + m p1 + ip2 0

0 p1 − ip2
√

2p+ −m 0

p1 + ip2 0 0
√

2p+ −m

 ,

(E.18)
and

(√
2p+ − βm + α⊥ · p⊥

)
=


√

2p+ −m 0 0 p1 − ip2

0
√

2p+ −m p1 + ip2 0

0 p1 − ip2
√

2p+ + m 0

p1 + ip2 0 0
√

2p+ + m

 .

(E.19)
If we use Eqs. (E.18) and (E.17) in (E.15) and Eqs. (E.19) and (E.17) in (E.16),
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respectively, we get the desired light-cone spinors:

u
(

p,
1
2

)
=

1
21/4

1√
p+


p+ + m/

√
2

p⊥/
√

2

p+ −m/
√

2

p⊥/
√

2

 , u
(

p,−1
2

)
=

1
21/4

1√
p+


−p∗⊥/

√
2

p+ + m/
√

2

p∗⊥/
√

2

−p+ + m/
√

2


(E.20)

and

v
(

p,
1
2

)
= − 1

21/4
1√
p+


−p∗⊥/

√
2

p+ −m/
√

2

p∗⊥/
√

2

−p+ −m/
√

2

 , v
(

p,−1
2

)
= − 1

21/4
1√
p+


p+ −m/

√
2

p⊥/
√

2

p+ + m/
√

2

p⊥/
√

2

 ,

(E.21)
where p⊥ := p1 + ip2. The light-cone spinors are again normalized such that u(p, λ′)u(p, λ) =

2mδλ′λ and v(p, λ′)v(p, λ) = −2mδλ′λ.

Finally, we specify the light-cone spinors for the case that p3 < 0 [113]. To do so, we
rotate χλ with the help of the rotation matrix D and obtain

u
(

p,
1
2

)
=

1
21/4

sign(p1)√
p−


p∗⊥/
√

2

p− + m/
√

2

p∗⊥/
√

2

p− −m/
√

2

 , u
(

p,−1
2

)
= − 1

21/4
sign(p1)√

p−


p− + m/

√
2

−p⊥/
√

2

−p− + m/
√

2

p⊥/
√

2

 ,

(E.22)
and

v
(

p,
1
2

)
=

1
21/4

sign(p1)√
p−


p− −m/

√
2

−p⊥/
√

2

−p− −m/
√

2

p⊥/
√

2

 , v
(

p,−1
2

)
= − 1

21/4
sign(p1)√

p−


p∗⊥/
√

2

p− −m/
√

2

p∗⊥/
√

2

p− + m/
√

2

 .

(E.23)

e.2.3 Relation between helicity spinors and light-cone spinors

The light-cone spinors and helicity spinors are related by a unitary transformation [4]:(
uH(λ = +1/2)

uH(λ = −1/2)

)
= U ·

(
uLC(λ = +1/2)

uLC(λ = −1/2)

)
, (E.24)

(
vH(λ = +1/2)

vH(λ = −1/2)

)
= U∗ ·

(
vLC(λ = +1/2)

vLC(λ = −1/2)

)
, (E.25)
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with

U =

√
p0 + |p|√

2|p|(|p|+ p3)(p0 + p3)

 |p|+ p3 p⊥ m
p0+|p|

−p∗⊥
m

p0+|p| |p|+ p3

 (E.26)

=

√
p0 + |p|√
p0 + p3

 cos θ
2 eiφ m

p0+|p| sin θ
2

−e−iφ m
p0+|p| sin θ

2 cos θ
2

 .

For our CMS kinematics of App. B U can be written in a more convenient form

U =
1√

1 + β2

(
1 +β

−β 1

)
, (E.27)

with
β :=

m
p0 + |p| tan

θ

2
. (E.28)





F
F e y n m a n r u l e s

This appendix is a modified version of an appendix originally published in Ref. [9].

In this appendix we first recall the Feynman rules [115] used for calculating the
hard-scattering amplitudes of Sec. 2.3 and Sec. 2.4.

In the following µ and ν are Lorentz indices, α and β color indices, respectively and
we are omitting helicity labels.

f.0.4 External lines

incoming

outgoing
Quarks:

u(p)

u(p)

incoming

outgoing
Antiquarks:

v(p)

v(p)

f.0.5 Propagators

Quarks and antiquarks

i(q + m)

q2 - m2

q

Gluons (Feynman gauge)

μν δ
αβ

q2
g-i

α,μ β,ν

q
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152 Feynman rules

f.0.6 Vertices

Quark-gluon vertex

α,μ

-igs
2

λαϒμ

Quark-photon vertex

igeϒ
μ-

ge = |e|q, where q is the fraction of the charge of the particle in units of the electron
charge

f.0.7 Gell-Mann matrices

For the calculation of the color factor we need the Gell-Mann matrices which are the
hermitian and traceless 3× 3 matrices [118]

λ1 =


0 1 0

1 0 0

0 0 0

 , λ2 =


0 −i 0

i 0 0

0 0 0

 , λ3 =


1 0 0

0 −1 0

0 0 0

 ,

λ4 =


0 0 1

0 0 0

1 0 0

 , λ5 =


0 0 −i

0 0 0

i 0 0

 , λ6 =


0 0 0

0 0 1

0 1 0

 ,

λ7 =


0 0 0

0 0 −i

0 i 0

 , λ8 =
1√
3


1 0 0

0 1 0

0 0 −2

 . (F.1)
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They satisfy the following relations,

[λa, λb] = 2i fabcλc, (F.2)

Tr(λaλb) = 2δab, (F.3)

with fabc denoting the SU(3) structure constants.





G
U p d a t e t o d i p l o m a t h e s i s

g.1 Introduction

p:p,μ Λ :p,μ

D :q

u:k1,λ1 c:k1,λ1
kg

c:k2,λ2u:k2,λ2

γ:q,ν

0

GPDs

DA

+
C

Figure G.1: Handbag contribution to the process γp → D0Λ+
c (in the DGLAP region). The

momenta and LC helicities of the quarks are specified. The photon can couple to
either of the points indicated by the dots.

In this appendix we present the updated results for γ p→ D0 Λ+
c . This process

can be investigated along the same lines as γ p→ D∗λ=0 Λ+
c (see Sec. 2.4).

g.2 Kinematics

The kinematics is the same as in Sec. 2.4.1 with md = MD = 1.86484 GeV2. The
threshold to produce the Λ+

c and the D0 is s ∼ (MΛc + MD)
2 = 17.23 GeV2.
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g.3 The hadronic scattering amplitude

Mµ′,µν =
∫

dx̄1 p̄+
∫ dz−1

(2π)
eix̄1 p̄+z−1

∫
dk′−2

∫ dz+2
(2π)

ei
z+2
2 (−q′−+2k′−2 )

× 〈Λ+
c : p′, µ′|Ψc

(
−

z−1
2

)
Ψu
(

z−1
2

)
|p : p, µ〉 H̃

(
x̄1 p̄+, x̄2q̄−

)
× 〈D0 : q′|Ψu

(
z+2
2

)
Ψc
(
− z+2

2

)
|0〉 ,

(G.1)

For the p→ Λc transition we refer to App. C. The investigation of the meson matrix
element is analogous to the one of Sec. 2.4.2 with the following changes, however:

• Equation (2.117) gets replaced by

Ψ̄uΨc = − 1
4k−2 k′−2

∑
λ2

2λ2Ψ̄u
−γ−γ5Ψc

−ū (k2, λ2) v
(
k′2,−λ2

)
. (G.2)

• The valence Fock state of the D0 reads

|D0 : q′〉 =
∫

dx̂′2
∫ d2k̂′⊥2

16π3 ΨD(x̂′2, k̂′⊥)
1√

x̂′2(1− x̂′2)

× 1√
2

[
|c̄ : x̂′2q′−, k̂′⊥ + x̂′2q′⊥,+

1
2
〉 |u : (1− x̂′)q′−,−k̂′⊥ + (1− x̂′)q′⊥,−1

2
〉

− |c̄ : x̂′2q′−, k̂′⊥ + x̂′2q′⊥,−1
2
〉 |u : (1− x̂′)q′−,−k̂′⊥ + (1− x̂′)q′⊥,

1
2
〉
]
.

(G.3)

With these changes the final expression for the hadronic meson matrix element is
given by

−
∫ dz+2

2π
ei

z+2
2 (−q′−+2k′−2 ) 1

4k−2 k′−2
〈D0 : q′|∑

λ2

2λ2Ψ̄u
−

(
z+2
2

)
γ−γ5Ψc

−

(
− z+2

2

)
|0〉

=
fD0

2
√

6
φD
(

x′2
)

.

The consequence of these changes is that the hadronic scattering amplitude gets an
additional minus sign compared to the scattering amplitude for D∗ production. For
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convenience we state the expression for the hadronic scattering amplitude

M 1
2 , 1

2 ν =
C

4
√

6
fD

√
1− ξ2[

(RV + RA)
∫

dz φD(z)Hν
1
2 , 1

2
+ (RV − RA)

∫
dz φD(z)Hν

− 1
2 ,− 1

2

]
,

M− 1
2 ,− 1

2 ν =
C

4
√

6
fD

√
1− ξ2[

(RV − RA)
∫

dz φD(z)Hν
1
2 , 1

2
+ (RV + RA)

∫
dz φD(z)Hν

− 1
2 ,− 1

2

]
,

M 1
2 ,− 1

2 ν =
C

2
√

6
fD

√
1− ξ2 ST

∫
dz φD(z)Hν

1
2 ,− 1

2
,

M− 1
2 , 1

2 ν =
C

2
√

6
fD

√
1− ξ2 ST

∫
dz φD(z)Hν

− 1
2 , 1

2
,

(G.4)

with the color factor C = 4
3

1√
3
. The functional form of the D meson DA that we use is

the same as in Eq. (2.77).

g.4 The hard scattering amplitude

g.4.1 Preliminaries

The hard scattering amplitude of the photoproduction of the pseudoscalar meson can
be written in terms of 4 spinor products and 2 scalar products. The respective spinor
products are

• Spinor product 1 (SP1 ): ū (p′, λ′1) γ5u (p, λ1),

• Spinor product 2 (SP2 ): ū (p′, λ′1) /qγ5u (p, λ1),

• Spinor product 3 (SP3 ): ū (p′, λ′1) /εγ(q, 1)γ5u (p, λ1),

• Spinor product 4 (SP4 ): ū (p′, λ′1) /q/εγ(q, 1)γ5u (p, λ1).

Using the following parameterizations for the momenta and the photon polarization
vectors (see Fig G.1 for the specification of the momenta and helicities labels and see
also Sec. 2.4.3.2 for the kinematics in the hard scattering process)

k1 = p =
[
(1 + ξ) p̄+, . . . ,−|∆⊥|

2
, 0
]
,

k′1 = p′ =
[
(1− ξ) p̄+, . . . ,

|∆⊥|
2

, 0
]
,

q =
[ ∆2

⊥
8 (1 + ξ) p̄+

, (1 + ξ) p̄+,
|∆⊥|

2
, 0
] (G.5)
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and

k2 =
(
1− x′2

)
q′,

k′2 = x′2q′,

with q′ =
[M2

+ ∆2
⊥/4

2 (1− ξ) p̄+
, (1− ξ) p̄+,−|∆⊥|

2
, 0
]
, M̄ =

√
MΛc MD

(G.6)

as well as

εγ (q, 1) =
[ 1

2
√

s
|∆⊥|,−

1
2
√

s
|∆⊥|,

2 (1 + ξ) p̄+√
s

− 1√
2

,− I√
2

]
, (G.7)

we can calculate the spinor and scalar products:

• ū (p′, λ′1) γ5u (p, λ1)

(λ′1 = +, λ1 = +) : M

√
1 + ξ

1− ξ
(G.8a)

(λ′1 = −, λ1 = −) : −M

√
1 + ξ

1− ξ
(G.8b)

(λ′1 = +, λ1 = −) : − |∆⊥|√
1− ξ2

(G.8c)

(λ′1 = −, λ1 = +) : − |∆⊥|√
1− ξ2

(G.8d)

• ū (p′, λ′1) /qγ5u (p, λ1)

(λ′1 = +, λ1 = +) :
(

2
√

2s p̄+ − s
)√1 + ξ

1− ξ
(G.9a)

(λ′1 = −, λ1 = −) : −
(

2
√

2s p̄+ − s
)√1 + ξ

1− ξ
(G.9b)

(λ′1 = +, λ1 = −) : − |∆⊥|M
√

s
2
√

2 p̄+
√

1− ξ2
(G.9c)

(λ′1 = −, λ1 = +) : − |∆⊥|M
√

s
2
√

2 p̄+
√

1− ξ2
(G.9d)
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• ū (p′, λ′1) /εγ(q, 1)γ5u (p, λ1)

(λ′1 = +, λ1 = +) : −
√

2|∆⊥|√
1− ξ2

(G.10a)

(λ′1 = −, λ1 = −) : 0 (G.10b)

(λ′1 = +, λ1 = −) : 0 (G.10c)

(λ′1 = −, λ1 = +) : −
√

2M

√
1 + ξ

1− ξ
(G.10d)

• ū (p′, λ′1) /q/εγ(q, 1)γ5u (p, λ1)

(λ′1 = +, λ1 = +) : − |∆⊥|M
√

s
2p̄+

√
1− ξ2

(G.11a)

(λ′1 = −, λ1 = −) : 0 (G.11b)

(λ′1 = +, λ1 = −) : 0 (G.11c)

(λ′1 = −, λ1 = +) :
(√

2 s− 4
√

s p̄+
)√1 + ξ

1− ξ
(G.11d)

• scalar products

ScP1 = p′ · εγ(q, 1) = −
|∆⊥|

(
M2

+ 2p̄+
(√

2s− 4p̄+
) )

4
√

s p̄+ (ξ − 1)
(G.12)

ScP2 = q′ · εγ(q, 1) =
|∆⊥|

(
M2

+ 2p̄+
(√

2s− 4p̄+
) )

4
√

s p̄+ (ξ − 1)
(G.13)

Before we show the updated results we list the hard scattering amplitudes of the
following 4 graphs:
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1 2

3 4

Figure G.2: The 4 leading order Feynman graphs contributing to the partonic subprocess.

• Graph 1
The hard scattering amplitude for graph 1 reads1

H(1),1
λ′1,λ1

= i g2
s ge

1
k2

g

1

k̃2

[
−
√

2
(

s · SP3 + M · SP4
)]

, (G.14)

with

k2
g =

(
p + x′2q′

)2
= M2

(
1 + x′2

)2
+ x′2

(
s− 2M2

)
,

k̃2 =
(

p + q
)2

= s.
(G.15)

• Graph 2
The hard scattering amplitude for graph 2 reads

H(2),1
λ′1,λ1

= i g2
s ge

1
k2

g

1

k̃2

[
2
√

2 M(x′2 − 1) · ScP2 · SP1

− 2
√

2
(

ScP1 + (1− x′2) · ScP2
)
· SP2 +

√
2
(

M2 − u
)
· SP3

−
√

2 M · SP4
]
,

(G.16)

where the gluon propagator has the same analytical expression as for graph 1
and the denominator of the quark propagator is given by

k̃2 =
(
(1− x′2)q

′ − q
)2

=
(

1− x′2
)2

M2
+
(

1− x′2
)(

t−M2
)

. (G.17)

1The denominator of the gluon propagator is denoted by k2
g and the one of the respective quark

propagator by k̃, respectively.
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• Graph 3
The hard scattering amplitude for graph 3 reads

H(3),1
λ′1,λ1

= i g2
s ge

1
k2

g

1

k̃2 − x′22 M2

[
2
√

2 Mx′2 · ScP2 · SP1 + 2
√

2 x′2 · ScP2 · SP2

+
√

2 s · SP3−
√

2 M · SP4
]
,

(G.18)

with

k2
g =

(
p− (1− x′2)q

′
)2

=
(

1− x′2)
2M2

+
(

1− x′2
)(

u−M2
)

,

k̃2 =
(

x′2q′ − q
)2

= x′22 M2
+ x′2

(
t−M2

)
.

(G.19)

• Graph 4
The hard scattering amplitude for graph 4 reads

H(4),1
λ′1,λ1

= i g2
s ge

1
k2

g

1

k̃2 −M2

[
− 2
√

2 M ·ScP1 ·SP1−
√

2
(

M2−u
)
·SP3−

√
2 M ·SP4

]
,

(G.20)
where the denominator of the gluon propagator has the same analytical ex-
pression as for graph 3 and the denominator of the quark propagator is given
by

k̃2 =
(

p′ − q
)2

= M2
+
(

u−M2
)

. (G.21)

The full hard scattering amplitude is the sum

H1
λ′1,λ1

= H(1),1
λ′1,λ1

+ H(2),1
λ′1,λ1

+ H(3),1
λ′1,λ1

+ H(4),1
λ′1,λ1

. (G.22)

g.5 Results

The differential cross section [39] for γ p → Λ+
c D0 (note the remark about the

kinematics in Sec. G.2) is given by

dσ

dΩ
=

1
64π2s

|p′|
|p| σ0 =

1
64π2s

Λ′

Λ
σ0 =

1
4π

sΛΛ′
dσ

dt
, (G.23)

with σ0 defined as

σ0 :=
1
2 ∑

µ,µ′
|Mµ′,µ1|2. (G.24)

For the spin observables we need the “usual” helicity amplitudes. They can be
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obtained by a Melosh-rotation of the LC-helicity amplitudes2

φµ′,µ1 =
1√

1 + β2

(
Mµ′,µ1 + 2µ′βM−µ′,µ1

)
, (G.25)

with β := MΛc
p′0+|p′| tan θ

2 . In general, exclusive photoproduction of pseudoscalar mesons
can be described by four independent helicity amplitudes which are (following the
notation of Ref. [119])

N = φ− 1
2 , 1

2 1, S1 = φ− 1
2 ,− 1

2 1,

D = φ 1
2 ,− 1

2 1, S2 = φ 1
2 , 1

2 1.
(G.26)

N, S1, S2 and D represent independent non-flip, single-flip and double-flip am-
plitudes, respectively. There are in total 15 polarization observables [120]. Single-
polarization observables will vanish within our approach, since we do not get complex
phase factors. What we get, however, are non-vanishing spin correlations. Typical
examples are the photon asymmetry

Σ
dσ

dt
=

dσ⊥
dt
−

dσ‖
dt

=
1

16π(s−m2
p)

2 R (S∗1S2 − ND∗) (G.27)

and the double-polarization observable

E
dσ

dt
=

1
32π(s−m2

p)
2

(
|N|2 − |S1|2 + |S2|2 − |D|2

)
. (G.28)

Before we show the results we turn to the error assessment issue with respect to
the model parameters: We vary aΛ by ±10% around its central value of 0.75 GeV−1.
The valence Fock state probability of the Λ+

c is varied in the range 0.7 to 1. The errors
of the parameters of the proton LCWF are not taken into account, since they lead to
much smaller uncertainties compared to those of the Λ+

c -LCWF. The uncertainties
of fD are taken from Ref. [16] and are fD = 0.2067± 10 MeV. The valence Fock state
probability of the D0-meson, PD = 0.9, is varied between 0.8 and 1, thus yielding
different values for aD and ND as well. The “standard” values3 for the oscillator
parameter are aD = 0.86 GeV−1(KK) and aD = 0.96 GeV−1(BB). The gray bands in
the plots show the variation of the cross section due to these uncertainties in the
parameters.

The differential cross section is shown in Figs. G.3. The integrated cross section
is plotted in Fig. G.4. If we compare our estimation with those of Ref. [121] where
an effective Lagrangian approach has been used we find that there is a difference of
about 2 orders of magnitude. This finding is in line with the discussions in Sec. 2.5

2Although we use the same symbols for LC-helicities and “usual” helicities there should be no confusion
which kind of helicity is meant, since it is clear that the subscripts of M refer to LC-helicities and
subscripts of φ refer to “usual” helicities.

3For fD = 0.2067 MeV and PD = 0.9.



G.5 Results 163

where we argue that differences of about 2− 3 orders of magnitude in the cross
sections using hadronic models and a perturbative treatment as we do are found.

Finally we show the spin observables in Figs. G.5-G.6, respectively. They hardly
depend on the wave function model. Their angular dependence is thus most probably
characteristic for the handbag mechanism.
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2
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2
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D

Figure G.3: The differential γp→ D0Λ+
c cross section versus cos θ for s = 18, 20, 25, 30 GeV2

(solid, dash-dotted, dotted and dashed line). This plot has been obtained with
the wave function parameterizations described in the main text using the KK
mass exponential (upper panel) and using the BB mass exponential (lower panel).
The effects of uncertainties in the Λc and the D0 wave function parameters are
indicated by the shaded band around the s = 18 GeV2 curve.



164 Update to diploma thesis

KK

BB

18 20 22 24 26 28 30

0.00

0.05

0.10

0.15

0.20

s@GeV2D

Σ
@n

b
D

Figure G.4: Our prediction for the integrated cross section σ versus Mandelstam s (solid line
with error band). Solid line corresponds to the KK mass exponentials and the
dashed line corresponds to the BB mass exponential.
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Figure G.5: Correlation function Σ for different values of Mandelstam s vs. cos θ.
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Figure G.6: Correlation function E for different values of Mandelstam s vs. cos θ.





H
Ve r t e x f u n c t i o n s

In this appendix we list the results for the vertex functions defined by

〈BM : pB, pM, λB, λM|HI |N : pN , λ〉 = 16π3δ
(

p+B + p+M − p+N
)

δ(2) (pB⊥ + pM⊥ − pN⊥)

×Vµ
λB,λM

(N, BM).
(H.1)

We consider only the transitions p→ Nπ and p→ Nρ. The vertex functions are given

• for the transition p→ Nπ by

Vµ
λN ,0(p, Nπ) = igpNπ ū (pB, λB) γ5u

(
pp, µ

)
, (H.2)

• for the transition p→ Nρ by

Vµ
λN ,λM

(p, Nρ) = gpNρ ū (pB, λB) γρ
(

pp, µ
)

ε∗ρ(pM, λV)

−
fNNρ

2MN
ū (pB, λB) iσρτu

(
pp, µ

)
ε∗ρ(pM, λV)pM,τ.

(H.3)

The momentum pp is written as pp =
[

p+p , p−p , pp⊥
]
, the momentum pB as pB =[

yp+p , p−B , k⊥ + ypp⊥
]

and the momentum pM as pM =
[
(1− y)p+p , p−M,−k⊥ + (1−

y)pp⊥
]
, respectively. The polarization vector of the vector meson reads

• λM = 0 : ε = 1
MV

[
p+M, p2

⊥M−M2
V

2p+M
, p⊥M

]
,

• λM = 1 : ε =
[
0,− p1

⊥M+ip2
⊥M√

2p+M
,− 1√

2
,− i√

2

]
,

• λM = −1 : ε =
[
0, p1

⊥M−ip2
⊥M√

2p+M
, 1√

2
,− i√

2

]
.

The final results for p → Nπ with proton helicity µ = 1
2 are given in Table. H.1.

kR is defined by kR = k1
⊥ + ik2

⊥. The vertex function for proton helicity µ = − 1
2 can be

obtained via the parity relation

V−1/2(p,Nπ)
λN ,0 (y, k⊥) = (−1)1/2−λN V−µ(p,Nπ)

−λB,0 (y, k̂⊥), (H.4)

with k̂⊥ =
(
k1
⊥,−k2

⊥
)
.

167



168 Vertex functions

The final results for p → Nρ with proton helicity µ = 1
2 in the prescription B are

given in Table. H.2. The ones with µ = − 1
2 can be obtained by

V−1/2(p,Nρ)
λN ,λρ

(y, k⊥) = (−1)1/2+λN+λρ V1/2(p,Nρ)
−λN ,−λρ

(y, k̂⊥). (H.5)

µ→ λB V(p, Nπ)

1
2 →

1
2 igNNπ

Mp(1−y)√
y

1
2 → −

1
2 −igNNπ

kR√
y

Table H.1: Vertex functions for N → Nπ.

Table H.2: Vertex functions for p → NV and particle helicities 1
2 → λ′N , λV in the prescrip-

tion B.

λ′N λV V(N, NV)

+ 1
2 +1

√
2kL√

y

[
g

1−y +
f
2

]
− 1

2 +1 g
√

2(MB−yMN)√
y + f

2MN

√
2[k2
⊥−(MN+MB)(1−y)(yMN−MB)]√

y(1−y)

+ 1
2 0 g k2

⊥+(1−y)2 MN MB−yM2
V

MV
√

y(1−y)

+ f
2MN

(yMN−MB)[k2
⊥+y2 M2

N−y(M2
N+M2

V+M2
B)+M2

B]
2MV y

√
y

− 1
2 0 g (MB−MN)

MV
√

y + f
2MN

kR(1+y)[k2
⊥−y(M2

B+M2
N+M2

V)+M2
B+y2 M2

N ]
2MV y

√
y(1−y)

+ 1
2 −1 −g

√
2ykR√

y(1−y) +
f

2MN

√
2kR MB√

y

− 1
2 −1 − f

2MN

√
2k2

R√
y(1−y)
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