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We describe how randomized benchmarking can be used to reconstruct the unital part of any trace-
preserving quantum map, which in turn is sufficient for the full characterization of any unitary evolution or,
more generally, any unital trace-preserving evolution. This approach inherits randomized benchmarking’s
robustness to preparation, measurement, and gate imperfections, thereby avoiding systematic errors caused
by these imperfections. We also extend these techniques to efficiently estimate the average fidelity of a
quantum map to unitary maps outside of the Clifford group. The unitaries we consider correspond to large
circuits commonly used as building blocks to achieve scalable, universal, and fault-tolerant quantum
computation. Hence, we can efficiently verify all such subcomponents of a circuit-based universal quantum
computer. In addition, we rigorously bound the time and sampling complexities of randomized
benchmarking procedures, proving that the required nonlinear estimation problem can be solved efficiently.
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I. INTRODUCTION

While quantum process tomography [1] is a conceptually
simple approach to the characterization of quantum oper-
ations on states, its implementation suffers from a number of
fundamental drawbacks. These obstacles range from its
exponential scaling with the size of the system to its
dependence on precise knowledge of state preparation and
measurement. Precise knowledge about state preparation
requires precise knowledge about operations and measure-
ments, leading to a difficult nonlinear estimation problem
[2–5]. Lackof precise knowledge about state preparation and
measurement can also lead to significant systematic errors in
the reconstructed operations [6]. Recently, randomized
benchmarking (RB) protocols have been shown to lead to
estimates of the average fidelity to Clifford group operations
in amanner that is robust against imprecise knowledge about
state preparation and measurement, and therefore largely
free of some of the systematic errors that can affect standard
tomographic reconstructions [7–12].

We describe a procedure that provides an almost complete
description of any quantum map in a way that is robust
against many errors that plague standard tomographic
procedures. Specifically, we can estimate the unital part
[13,14] of any trace-preserving map, which includes all
parameters necessary to describe deterministic as well as
random unitary evolution. Furthermore, we show that a
related protocol can be used to efficiently estimate the
average fidelity to unitary operations outside the Clifford
group, again in a way that is accurate even in the presence of
state preparation, measurement, and unitary control errors.
Both procedures use RB protocols as a tool, combined

with several new results: We show that Clifford group
maps span the unital subspace of quantum maps and that
important unitaries outside the Clifford group can be
expressed as linear combinations of a few Clifford group
maps. These insights, combined with new error strategies
and analysis, allow us to robustly characterize maps that
were previously inaccessible.
Our error analysis rigorously proves that randomized

benchmarking decays can be fit efficiently. We also prove
new results on the average fidelity of composed maps,
which is important for RB, but is also of significance to any
procedure where direct access to a quantum map is limited.
This paper is organized as follows. In Sec. II, we give

background on general properties of quantum operations.
In Sec. III, we sketch the RB protocol and describe the
information that can be extracted from such experiments.
In Sec. IV, we describe how the information from RB
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experiments can be used to tomographically reconstruct the
unital part of any experimental map even in the presence of
imperfect randomizing operations. In Sec. V, we show that it
is possible to efficiently bound the fidelity of any exp-
erimental map to a class of unitaries capable of universal
quantum computation. Finally, in Sec. VI, we analyze error
propagation in these protocols. This section includes new
bounds on the effect of imperfect randomizing operations
and rigorous bounds on the number of samples needed to
achieve some desired error and confidence.

II. COMPLETELY POSITIVE TRACE-
PRESERVING MAPS: NOTATION AND

PROPERTIES

Throughout this paper, we will restrict the discussion
to Hermiticity-preserving linear operations on quantum
states—more specifically, linear operations on multiqubit
states such that the Hilbert space dimension will always be
d ¼ 2n for n qubits. The physical operations within this
class that are commonly considered are completely positive
(CP) trace-preserving (TP) operations [15–17]. We refer
to these operations on quantum systems as maps and will
denote them by the calligraphic fonts A, B, etc. The
composition of two maps will be denoted A∘B, meaning
B acts on a state first and then A acts on it. Even when
discussing unitary evolution, we will refer to the corre-
sponding maps. The notable exceptions are the identity
unitary Î and the unitaries in the multiqubit Pauli group P,
which will be denoted P̂i—although the corresponding
maps I and Pi will also be used in some contexts. We will
use the standard convention where P̂0 ¼ Î. We use T to
mean the map corresponding to the unitary e−iπ8Ẑ.
A map E is TP iff trρ̂ ¼ trEðρ̂Þ for all ρ̂, which in turn

leads to the requirement that E†ðÎÞ ¼ Î, where E† is the
Heisenberg picture representation of E. Any linear map E
can be written as

Eðρ̂Þ ¼
Xd2−1
i;j¼0

χEijP̂iρ̂ P̂j; (2.1)

which is known as the χ matrix representation of E. The
map E is CP iff χE is positive semidefinite, and the TP
condition E†ðÎÞ ¼ Î translates to

P
ijχ

E
ijP̂jP̂i ¼ Î, which

implies trχE ¼ 1 [1]. A map E is unital if EðÎÞ ¼ Î.
It is often necessary to compute the representation of the

composition of two maps. While such a calculation can be
cumbersome in the χ representation, Liouville representa-
tions are more convenient for describing the action of
composed maps on quantum states [18]. In the Liouville
representation, an operator ρ̂ is represented by a column
vector jρ̂ii, and maps are represented by matrices acting
on these vectors, such that the composition of maps
corresponds to matrix multiplication. The most convenient
choice of basis for these vectors and matrices depends on
the application, but for our purposes, we will use the basis

of Pauli operators and will call this the Pauli-Liouville
representation (which appears to have no standard name in
the literature, despite being widely used [19–24]). For a
map E, the Pauli-Liouville representation is given by

EðPLÞ ¼
Xd2−1
i;j¼0

tr½EðP̂iÞP̂j�
d

jiihjj; (2.2)

where P̂i and P̂j are n-qubit Pauli operators. Hermiticity
preservation implies that all matrix elements of EðPLÞ are
real. The kth entry in the vector jρ̂ii representing a density
matrix ρ̂ corresponds to trρ̂P̂k. This ensures that the Pauli-
Liouville representation of any CPTP map can be written
as [19,20]

EðPLÞ ¼
�

1 0⃗
T

τ⃗ε E

�
; (2.3)

where τ⃗ε is a d2 − 1-dimensional column vector, 0⃗ is the
corresponding zero vector, and E is a ðd2 − 1Þ × ðd2 − 1Þ
matrix.
We will quantify how distinct a map E is from a

particular unitary map U by the average fidelity F̄ðE;UÞ,
which can be written as

F̄ðE;UÞ ¼
Z

dμðψÞ hψ jðU†∘Eðjψihψ jÞÞjψi; (2.4)

with integration taken over the unitarily invariant Fubini-
Study measure [14]. This definition also implies F̄ðE;UÞ ¼
F̄ðE∘U†; IÞ ¼ F̄ðU†∘E;IÞ. The average fidelity is closely
related to the trace overlap between EðPLÞ and UðPLÞ, as well
as to χE∘U†

00 , by the formulas [25,26]

F̄ðE;UÞ ¼ trU†E þ d
dðdþ 1Þ ; (2.5)

¼ χU
†∘E

00 dþ 1

dþ 1
: (2.6)

For simplicity and clarity, here and throughout the paper,
we omit the superscripts from the Pauli-Liouville repre-
sentation of superoperators whenever they occur within
trace expressions, as these expressions already include
superscripts indicating Hermitian conjugates.

III. RANDOMIZED BENCHMARKING
OF CLIFFORD GROUP MAPS

RB [7–12] consists of a family of protocols to robustly
estimate the average fidelity F̄ðE;UÞ between an exper-
imental quantum map E and an ideal unitary map U. In this
context, robustness refers to the ability to estimate F̄ðE;UÞ
in a manner that is insensitive to imprecise or even biased
knowledge about state preparation, measurement, and
controlled unitary evolution. Such imperfections can lead
to systematic errors, e.g., in fidelity estimates based on
standard tomographic reconstruction protocols [5].
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We now describe a framework that can be used to
understand existing RB protocols but which allows us to
highlight how our protocol differs from previous proce-
dures. RB protocols consist of k repeated applications of E,
each time preceded by independently chosen randomizing
unitary maps Di, where 1 ≤ i ≤ k, and, after the last
application of E, followed by a recovery map Dkþ1. The
randomizing unitaries are chosen such that if (i) the
sequence is applied to a fixed initial state jψi, (ii) E is
identical to a certain unitary map U, and (iii) the random-
izing maps Di are perfect, then the final state would be
identical to the initial state. If the first k randomizing
operations are chosen from the Haar measure over unitary
maps [7,14] or from a set with the same first- and second-
order moments as the Haar measure [27], the fidelity
between the initial and final states can be shown to decay
exponentially with k at a rate that depends only on F̄ðE;UÞ
[7,9,10]. The RB literature typically assumes either
(1) U ¼ I and E represents the errors from the randomizing
operations, or (2) U is some other unitary map, and E is its
potentially faulty implementation. However, we emphasize
that our description is more general, and as we will
demonstrate later, it allows us to reconstruct a major
portion of arbitrary E, not just implementations of the
randomizing operations.
In a realistic setting, one cannot assume that the initial

state is pure and exactly known, that one knows what
observable is measured exactly, or that the randomizing
operations are applied noiselessly. However, these assump-
tions are not necessary for the RB protocol to work: the
initial state can be any mixed state ρ̂0 ≠ 1

d Î, the measured
observable M̂ can be any observable where trρ̂0M̂ ≠ 1

d trM̂,
and the rate of decay p of the measured expectation value is
still related to F̄ðE;UÞ in the same way. The randomizing
operations need not be noiseless either [9,10], as long as the
imperfect randomizing operations correspond to N ∘Di,
withN representing some arbitrary CPTP error map (some
of these restrictions may be relaxed, leading to more
complex decays [9,10], and although our protocols general-
ize straightforwardly to such scenarios, we do not discuss
them here for the sake of brevity). Under these more
realistic assumptions, FkðE;UÞ, the average of hM̂i over the
choice of randomizing operations, for sequences of length
k, is given by

FkðE;UÞ ¼ A0pk þ B0; (3.1)

where A0 and B0 are constants that contain partial infor-
mation about the preparation and measurement (including
imperfections), and

p ¼ dF̄ðE∘N ;UÞ − 1

d − 1
; (3.2)

¼ trU†EN − 1

d2 − 1
: (3.3)

By estimating FkðE;UÞ for different values of k, it is
possible to isolate p (which contains the desired infor-
mation about E) from A0 and B0 (which contain the
undesired information about preparation and measure-
ment), creating a protocol that is largely free of systematic
errors caused by imprecise knowledge of state preparation
and measurement [28].
Case (1) discussed above is the original scenario con-

sidered in the RB literature [7–10], where U ¼ I and
E ¼ I , so the observed decay leads to a direct estimate of
F̄ðN ; IÞ, i.e., how well the randomization operations are
implemented. Case (2) discussed above is the extension of
RB to the extraction of information about F̄ðE;UÞ, where E
is one of the randomizing operations in the experiment and
U is its unitary idealization. This is a recent development
sometimes referred to as interleaved RB [11,12], but we do
not make such a distinction in this paper. The previously
known result in this case is that F̄ðE;UÞ can be bounded by
experimentally estimating F̄ðE∘N ;UÞ and F̄ðN ;IÞ, and
in Sec. VI A, we provide more general bounds (with fewer
assumptions) for the same purpose.
While the RB protocol is valid for any choice of

randomizing operations discussed above, we emphasize
that, in order to ensure that the protocols remain scalable in
the number of qubits, U and Di are restricted to be unitary
maps in the Clifford group, since this allows for scalable
design of the randomizing sequences via the Gottesman-
Knill theorem [29]. Moreover, although previous works
have applied the RB protocols only to E very close to
Clifford group maps, we emphasize that no restriction
beyond E being CPTP needs to be imposed. The restricted
applications of the RB protocols in previous work were
partially due to the fact that the bounds used to isolate
F̄ðE;UÞ are only useful when E is close to a Clifford
group map. Since we are interested in extracting informa-
tion about arbitrary E, here we consider tomographic
reconstruction techniques that do not rely on these bounds.
We also design efficient techniques for average-fidelity
estimates that rely on new and improved general bounds
on F̄ðE;UÞ.
In summary, RB allows for efficient estimation of

F̄ðE∘N ;UÞ and efficient bounding of F̄ðE;UÞ for U in
the Clifford group. These estimates can be obtained with-
out relying on perfect information about preparation and
measurement errors, thereby avoiding some of the system-
atic errors that may be present in standard tomographic
protocols because of these imperfections.

A. RB sequence design

A compact way to describe how RB sequences are
constructed refers back to the idea of twirling [27,30–33].
Although this is not how this construction is typically
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described, we find it to be convenient and include it for
completeness.
If E is an arbitrary quantum map, and S is a set of maps

fC0;…g, the average map

Ei½C†i ∘U†∘E∘Ci� ¼ 1

jSj
X
Ci∈S

C†i ∘U†∘E∘Ci (3.4)

is called the twirl of U†∘E over S, where Ei denotes the
expectation value over uniformly random choices for
Ci ∈ S. If S is the Clifford group or any other unitary
2-design [27], then

Ei½C†i ∘U†∘E∘Ciðρ̂Þ� ¼ pρ̂þ ð1 − pÞ
d

Î; (3.5)

where p ¼ trU†E−1
d2−1 ¼ dF̄ðE;UÞ−1

d−1 as before.
A length k RB sequence consists of applying the twirled

channel repeatedly to the same state k times, i.e.,

Ei⃗½C†ik∘U†∘E∘Cik∘ � � � ∘C†i1∘U†∘E∘Ci1ðρ̂Þ�;
¼ Ei⃗½Dikþ1

∘E∘Dik∘E∘Dik−1∘ � � � ∘Di2∘E∘Di1ðρ̂Þ�;

¼ pkρ̂þ ð1 − pkÞ
d

Î; (3.6)

where

Dil ¼

8>><
>>:

Ci1 l ¼ 1

Cil∘C†il−1∘U† 1 < l ≤ k

C†ik∘U† l ¼ kþ 1;

(3.7)

and Ei⃗ denotes the expectation value over uniformly
random choices for Cil ∈ S for all l.
The RB protocol to estimate F̄ðE;UÞ then consists of

(i) choosing a sequence of Cil for 1 < l ≤ k, (ii) applying
the alternating sequence ofDil and E, as prescribed in (3.6),
to a fixed initial state, (iii) measuring the resulting state, and
(iv) averaging over random choices for Cil to obtain Fk.
The Fk can be fit against (3.1), yielding an estimate for p,
even in the presence of imperfections. As we prove in
Sec. VI, this estimate can be obtained efficiently in the
number of qubits, desired accuracy, and confidence. Note
that neither E nor U needs to be an element of the Clifford
group. However, we will generally consider the case where
E is not a Clifford group map, while U will be chosen to be
a Clifford group map. Choosing U to be a Clifford group
element makes the design of the experiments for n qubits
efficient [10,29], while leaving E unconstrained affords us
greater flexibility and has no impact on the design of the
experiment.

IV. TOMOGRAPHIC RECONSTRUCTION
FROM RB

As discussed above, RB can efficiently provide bounds
on the fidelities of an arbitrary CPTP map E with any
element of the Clifford group—in a manner that is robust
against preparation and measurement errors, as well as
imperfections in the twirling operations. Here, we demon-
strate that the collection of such fidelities of a fixed E to a
set of linearly independent Clifford group maps can be used
to reconstruct a large portion of E. The advantage of
this approach is that the robustness properties of the
estimates obtained via RB carry over to this tomographic
reconstruction.
Using the Liouville representation of quantum maps, it is

clear that an estimate of the average fidelity F̄ðE;UÞ leads
to an estimate of trU†E, and thus, all information that can be
extracted from these fidelities for a fixed E is contained in
the projection of E onto the linear span of unitary maps. It is
unnecessary to consider the span of arbitrary unitary maps,
as the following result demonstrates (see Appendix A for
the proof).
Lemma IV.1.—The linear span of unitary maps coincides

with the linear span of Clifford group unitary maps.
Moreover, the projection of a TP map to this linear span
is a unital map.
Given a set of linearly independent vectors that span a

subspace, and the inner product of an unknown vector with
all elements of that set, it is a simple linear algebraic
exercise to determine the projection of the unknown vector
onto the subspace. Similarly, measuring the average fidelity
of some TP map E to a Clifford group map Ci is equivalent
to measuring such an inner product—the matrix inner
product trðEC†i Þ. Since Clifford maps span the unital
subspace of quantum CPTP maps, measuring the inner
product of E with a set of maximal linearly independent
elements of the Clifford group is sufficient to reconstruct
the projection of E onto the unital subspace. We call this
projection the unital part of E and denote it by E0.
Since the unitality condition constrains only how the

map acts on the identity component of a state, E0 can be
obtained by changing how E acts on that component.
Defining Q to be the projector into the identity component
of any operator and Q⊥ to be the projection into the
orthogonal complement (i.e., QþQ⊥ ¼ I), one finds that

E ¼ E∘ðQ⊥ þQÞ ¼ E∘Q⊥ þ E∘Q; (4.1)

E0 ¼ E∘Q⊥ þQ; (4.2)

which indicates that E and E0 map traceless operators in
the same way. The maps E and E0 have Pauli-Liouville
representations
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EðPLÞ ¼
�

1 0⃗
T

τ⃗ε E

�
; E0ðPLÞ ¼

�
1 0⃗

T

0⃗ E

�
; (4.3)

so we refer to τ⃗ε as the nonunital part of E. It is then clear
that E0 is described by ðd2 − 1Þ2 real parameters if E is TP,
while E itself is described by ðd2 − 1Þd2 real parameters.
The unital part of E contains the vast majority of the
parameters needed to describe E—in fact, over 93% of the
parameters for two qubits and over 99% of the parameters
for four qubits.
As discussed, one limitation of RB is that in a realistic

setting, it can only provide bounds for F̄ðE; CiÞ (and
therefore trEC†i ) because of the imperfections in the
randomizing operations. Clearly, these bounds can only
lead to a description of parameter-space regions compatible
with E0 as opposed to any point estimator, even in the
absence of statistical fluctuations. Our approach to recon-
struct E0 is to avoid these bounds altogether and instead use
the following result, which we prove in Appendix B.
Lemma IV.2.—If ðE∘N Þ0 is the unital part of E∘N and

N 0 is the unital part ofN , and all these operations are trace
preserving, then E0 ¼ ðE∘N Þ0∘ðN 0Þ−1 whenever ðN 0Þ−1
exists.
This allows us to reconstruct E0 from the reconstructions

of ðE∘N Þ0 and N 0. As both ðE∘N Þ0 and N 0 are related
directly to decay rates, we can create a point estimate of E0,
without recourse to the bounds needed in standard RB to
characterize E.
It should be noted that the only cases where ðN 0Þ−1 does

not exist are when N completely dephases some set of
observables (i.e., maps them to something proportional to
the identity). However, the experimental setting where
tomographic reconstructions are interesting is precisely
in the regime where N is far from depolarizing any
observable, so ðN 0Þ−1 is typically well defined [34]. The
penalty, of course, is that the application of ðN 0Þ−1 leads
to greater statistical uncertainty in the estimate of E0 thanks
to the uncertainties in the reconstructions ofN 0 and ðE∘N Þ0
as well as uncertainty propagation due to multiplication
by ðN 0Þ−1. However, larger experimental ensembles can be
used to compensate for this, as is discussed in the section
that follows.
Moreover, writing the imperfect randomizing operations

as N ∘Ci instead of Ci∘N � for some different map N � is
merely a convention, and Lemma IV.2 can be trivially
adjusted to such a different convention. In the physical
regimes where RB estimates are expected to be valid, the
choice of conventions is largely immaterial (see Appendix E
for more details).
This result shows that the average fidelities with a

spanning set of Clifford group unitary maps can lead not
only to a point estimator of the unital part of any TP map
but also to a point estimator of the average fidelity of E
to any unitary map—i.e., information from multiple RB
experiments can eliminate the need for the loose bounds

on the average fidelity considered in Ref. [12]. This comes
at the cost of efficiency, as the unital part of a map—like the
complete map—contains an exponential number of param-
eters. However, for a small number of qubits, the overhead
of reconstructing the unital part is small, and therefore, it is
still advantageous to perform this cancellation to get better
estimates of the error.

A. Example: Single-qubit maps

In order to reconstruct the unital part of a single-qubit
map, one must first consider a set of linearly independent
maps corresponding to unitaries in the Clifford group. As
this group contains 24 elements, there are many different
choices for a linearly independent set spanning the ten-
dimensional unital subspace. One particular choice of
unitaries leading to linearly independent maps is

Ĉ0 ¼ Î; Ĉ1 ¼ e−iπ2X̂; (4.4)

Ĉ2 ¼ e−iπ2Ŷ ; Ĉ3 ¼ e−iπ2Ẑ; (4.5)

Ĉ4 ¼ e−i
π
3
X̂þŶþẐffiffi

3
p

; Ĉ5 ¼ e−i
2π
3
X̂þŶþẐffiffi

3
p

; (4.6)

Ĉ6 ¼ e−i
π
3
X̂−ŶþẐffiffi

3
p

; Ĉ7 ¼ e−i
2π
3
X̂−ŶþẐffiffi

3
p

; (4.7)

Ĉ8 ¼ e−i
π
3
X̂þŶ−Ẑffiffi

3
p

; Ĉ9 ¼ e−i
2π
3
X̂þŶ−Ẑffiffi

3
p

: (4.8)

In a noiseless setting, estimating the average fidelities
between these Clifford maps and the map

HðPLÞ ¼

0
BBB@

1 0 0 0

0 0 0 1

0 0 −1 0

0 1 0 0

1
CCCA (4.9)

corresponding to the single-qubit Hadamard gate leads
to the decays illustrated in Fig. 1. The corresponding p
values are

p0 ¼ p2 ¼ p8 ¼ p9 ¼ − 1

3
; (4.10)

p1 ¼ p3 ¼ p4 ¼ p5 ¼ p6 ¼ p7 ¼
1

3
: (4.11)

Note, in particular, that some p values are negative,
which simply indicates an oscillatory exponential-decay
behavior. While these decay rates are much larger (i.e.,
the p values are much smaller) than those typically seen
in previous RB protocols, we show in Sec. VI B that it is
possible to efficiently estimate any decay rate to fixed
accuracy, no matter the size.
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If one considers a noisy setting, where N is not the
identity, the decay rates are modified by N , but after
reconstructing N 0 and ðE∘N Þ0 separately, one is able to
reconstruct E0. To see that errors in the estimate of N 0 will
not create unmanageable errors in the estimate of E,
consider how errors in the estimate ofN 0 affect the estimate
of ðN 0Þ−1. The relative error in the estimate of ðN 0Þ−1 is
given by [35]

∥ðN 0Þ−1 − ðN 0 þ G0Þ−1∥
∥ðN 0Þ−1∥ ≤

κðN 0Þ
1 − κðN 0Þ ∥G0∥

∥N 0∥

∥G0∥
∥N 0∥

; (4.12)

as long as

∥G0∥∥ðN 0Þ−1∥ < 1; (4.13)

where G0 is the error in the estimate ofN 0, and κðN 0Þ is the
condition number for the matrix inversion of N 0 with
respect to the matrix norm ∥ · ∥. The condition number ofA
is given by κðAÞ ¼ ∥A−1∥∥A∥ if A is nonsingular and ∞
otherwise.
If we choose ∥ · ∥ to be the spectral norm, even whenN 0

is the depolarizing map Dðρ̂Þ ¼ δρ̂þ ð1 − δÞ Î
d, the con-

dition number of N 0 is given by κðN 0Þ ¼ 1
jδj. Similarly,

if N 0 is the dephasing map Zðρ̂Þ ¼ 1þγ
2
ρ̂þ 1−γ

2
Ẑ ρ̂ Ẑ, one

finds κðN 0Þ ¼ 1
jγj. Thus, even for δ and γ polynomially

close to 0, a polynomial increase in the number of statistical
samples can be used to ensure an estimate of the inverse of
N to any polynomial accuracy with high probability.

B. Beyond unital maps

What does the reconstruction of E0 tell us about the E?
We prove the following in Appendix C.
Lemma IV.3.—The unital part of a CPTP single-qubit

map is always a CPTP map.
This means that the unital part of a single-qubit map

imposes no lower bound on the magnitude of the nonunital
part of that map—the nonunital part can always be set to 0.
For a single qubit, the unital part does impose stringent

conditions on the maximum size of the nonunital part.
Up to unitary rotations, any map can be written in the
Pauli-Liouville representation as [20]

0
BBB@

1 0 0 0

t1 λ1 0 0

t2 0 λ2 0

t3 0 0 λ3

1
CCCA; (4.14)

where λi and ti are real-valued parameters. The λi,
corresponding to the unital part, can be estimated using
the techniques already described, but as Lemma IV.3
demonstrates, no useful lower bound on jtij can be
obtained. However, for the map to be positive, it is
necessary that jtij ≤ 1 − jλij [20], which gives upper
bounds on the magnitudes of the nonunital parameters.
The fact that, for single-qubit maps, E0 is always CP can

be turned around to say that statistically significant non-CP
estimates of E0 imply statistically significant non-CP
estimates of E and may be used as witnesses of systematic
errors in the experiments [6,36].
Lemma IV.3 fails in the case of multiple qubits, and it is

not difficult to construct counterexamples. Numerical
experiments indicate that CPTP maps chosen at random
by drawing unitary dilations from the Haar distribution
lead to non-CP unital parts with probability around 1. This
implies that, while it may not be possible to test complete
positivity of a general map by testing only its unital part, the
reconstruction of the unital part of a multiqubit map yields
lower bounds on the magnitudes of the nonunital param-
eters. Thus, while this result precludes the use of the unital
part of a multiqubit map to test for systematic errors in
experiments, it does provide more information about the
nonunital parameters.

V. FIDELITY ESTIMATION BEYOND THE
CLIFFORD GROUP

Previous RB results showed how to bound the average
fidelity of Clifford operations [10,12]. While the maps
in the Clifford group form an integral part of current
approaches to scalable fault tolerance in quantum com-
puters, universal quantum computation is only possible if
operations outside the Clifford group are also considered.
We would like to be able to not only efficiently verify
the performance of Clifford gates but also verify the
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FIG. 1. RB decays used to estimate the fidelity between an ideal
Hadamard gate and Ĉ0 (green circles, with p ¼ 1

3
) and Ĉ1 (orange

squares, with p ¼ − 1
3
). The decays corresponding to each of the

remaining average fidelities coincide with one of these two
representative decays. Note that these decays are much faster than
decays previously estimated in RB, as they correspond to the
average fidelities between very different maps. The data points
are offset along the x axis for clarity.
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performance of universal circuits. However, there are
strong indications that quantum computers are strictly
more powerful than classical computers; for example, if
classical computers could efficiently simulate certain classes
of nonuniversal quantum circuits, it would imply a collapse
of the polynomial hierarchy [37]; thus, it is considered
highly unlikely. It is therefore extremely unlikely that
classical computers can efficiently predict the behavior of
a general polyðnÞ-depth quantum circuit [38], and without
these predictions, it is not possible to check if a quantum
computer is behaving as desired. For these fundamental
reasons, we do not expect it to be possible to efficiently
estimate the average fidelity to a general quantum map.
It is important to note, however, that it is possible to

efficiently simulate some circuits that contain maps outside
the Clifford group. In particular, Aaronson and Gottesman
[39] have proven that circuits consisting of Clifford group
maps and a logarithmic number of maps outside the
Clifford group can be simulated efficiently. Despite effi-
cient simulation being possible, these circuits can be
thought of as discrete components that enable universality
under composition, and thus the ability to verify their
implementation is of great practical importance. We now
show how our methods can be extended to allow for
efficient estimation of the average fidelity of any experi-
ment to such circuits.

A. Average fidelity to T

The canonical example of a map outside the Clifford
group is the operation T ¼ e−iπ8Ẑ. This gate is commonly
used in combination with Clifford group operations to form
a gate set that is universal for quantum computation [40]. In
this section, we show how to efficiently bound the average
fidelity of a map E to U ¼ T .
In Sec. IV, we prove that Clifford maps span the space

of unital maps. This implies that, in the Pauli-Liouville
representation, any unitary map UðPLÞ can be written as a
linear combination of Clifford maps

UðPLÞ ¼
X
i

βUi C
ðPLÞ
i ; (5.1)

with βi ∈ R. By linearity,

trENU† ¼
X
i

βUi trEN ðCiÞ†; (5.2)

so

F̄ðE∘N ;UÞ ¼
X
i

βUi F̄ðE∘N ; CiÞ þ
1

dþ 1

�
1 −X

i

βUi

�
:

(5.3)

For an arbitrary unitary U, the number of nonzero βUi ,
which we denote byNU, can be as large asOðd2Þ. However,

T ðPLÞ can be written as a linear combination of three
Clifford maps. The support of T ðPLÞ is given by the maps
corresponding to the Clifford group unitaries, Î, Ẑ, and

e−iπ4Ẑ, with the corresponding coefficients 1
2
, 1− ffiffi

2
p
2

, and 1ffiffi
2

p .

Thus, to estimate F̄ðE∘N ; T Þ, one only needs to estimate
three average fidelities to Clifford group maps (instead of
the ten necessary for reconstruction of the unital part).
Suppose one estimates each fidelity F̄ðE∘N ; CiÞ for all of

the Ci in the linear combination to within ϵ0 with confidence
1 − δ0. In Sec. VI B, we show that this requires OðNU

ϵ04 log
1
δ0Þ

samples. From Eq. (5.3), it is clear that one can obtain an
estimate ~F such that

Pr

�
j ~F − F̄ðE∘N ;UÞj ≥ ϵ0

X
i

jβUi j
�

≤ NUδ
0: (5.4)

Choosing δ0 ¼ δ=NU and ϵ0 ¼ ϵ=
P

ijβUi j gives

Prðj ~F − F̄ðE∘N ;UÞj ≥ ϵÞ ≤ δ (5.5)

and requires OðNUð
P

i
jβUi j
ϵ Þ4 log NU

δ0 Þ samples.
For the particular case of the T map, one findsP
ijβTi j ¼

ffiffiffi
2

p
, so an estimate for the average fidelity to

T can be obtained by the following procedure:
(1) Perform RB with Oð 1

ϵ4
log 1

δÞ samples for each
relevant fidelity F̄ðE∘N ; CiÞ. This requiresOð 1

ϵ4
log1δÞ

total samples and results in an estimate ~F such
that

Pðj ~F − F̄ðE∘N ; T Þj ≥ ϵÞ ≤ δ: (5.6)

(2) Perform RB with Oð 1
ε4
log 1

δÞ samples to obtain an
estimate ~FN of F̄ðN ; IÞ such that

Pðj ~FN − F̄ðN ; IÞj ≥ εÞ ≤ δ: (5.7)

(3) In Sec. VI A, we show how to bound the fidelity
of F̄ðE;UÞ, given estimates of F̄ðE∘N ;UÞ and
F̄ðN ; IÞ. Apply the bounds of Sec. VI A for
F̄ðE∘N ; T Þ ¼ ~F � ϵ, and for F̄ðN ; IÞ ¼ ~FN � ϵ,
to obtain bounds on F̄ðE; T Þ that are valid with
probability of at least 1 − 2δ.

This procedure trivially extends to bounding the fidelity
of E to the case where T acts on a single qubit and the
identity acts on n − 1 qubits. The sampling complexity
remains the same, but the time complexity changes, as the
classical preprocessing time needed to make a single
average fidelity estimate scales as Oðn4Þ [12]. Similar
arguments can be used to show that the sampling complex-
ity of determining the average fidelity of E to any one-or
two-qubit unitary acting on n qubits is constant, with the
same classical preprocessing time complexity. In the next

ROBUST EXTRACTION OF TOMOGRAPHIC INFORMATION … PHYS. REV. X 4, 011050 (2014)

011050-7



section, we will discuss more general operations acting on
n qubits.

B. Average fidelity to more general unitaries

It is possible to efficiently bound the average fidelity
of a map E to a unitary U when U is a composition of
OðpolyðnÞÞ Clifford maps and OðlogðnÞÞ T maps on n
qubits (i.e., maps that act as T on one qubit and as the
identity on the remaining n − 1 qubits). Under these
constraints,

(i) UðPLÞ can be efficiently decomposed into a linear
combination of OðpolyðnÞÞ Clifford maps
[i.e., NU ¼ OðpolyðnÞÞ];

(ii) the coefficients βUi in the linear combination sat-
isfy

P
ijβUi j ¼ OðpolyðnÞÞ.

Following the argument of Sec. VA, the sampling com-

plexity scales like OðNUð
P

i
jβUi j
ϵ

4Þ log NU
δ0 Þ, so together (i)

and (ii) guarantee that the sampling complexity of bound-
ing FðE;UÞ is OðpolyðnÞÞ. Since (i) guarantees that the
decomposition is efficient, and the classical preprocessing
time needed to make a single sample scales as Oðn4Þ, the
time complexity is also OðpolyðnÞÞ.
We prove (i) by induction on t (the number of T maps in

the circuit) and c (the number of Clifford maps in the
circuit). We show that one can decompose UðPLÞ into a
linear combination of at most 3t terms, where each Clifford
map in the linear combination is written as a composition of
at most tþ c Clifford maps. The base case is given by the
following
(a) t ¼ 1, c ¼ 0: U is a single T , and UðPLÞ can

be written as a linear combination of three Clif-
ford maps.

(b) t ¼ 0, c ¼ 1: U is a Clifford map, and so UðPLÞ
can be written as a linear combination of one Clifford
map.

For the inductive case, we assume that one has a unitary
U that is a composition of t T maps and c Clifford maps.
By inductive assumption, UðPLÞ can be written as

UðPLÞ ¼
XM
i¼1

βUi
YNi

j¼1

CðPLÞi;j ; (5.8)

with M ≤ 3t and Ni ≤ tþ c. Now consider composing U
with a Clifford C. Then

CðPLÞUðPLÞ ¼
�XM

i¼1

βUi C
ðPLÞYNi

j¼1

CðPLÞi;j

�
; (5.9)

and one obtains a linear combination of ≤ 3t terms, each a
composition of cþ tþ 1 Clifford maps. Likewise, if U is
composed with T , then

T ðPLÞUðPLÞ ¼
XM
i¼1

X3
k¼1

βUi β
T
k C

T ðPLÞ
k

YNi

j¼1

CðPLÞi;j ; (5.10)

where the CTk are the three Clifford maps involved in the
linear combination of T ðPLÞ, so one obtains a linear
combination of 3tþ1 elements, each a composition of
tþ cþ 1 Clifford maps, as desired.
Therefore, if one has a unitary map U composed of

OðpolyðnÞÞ Clifford maps and OðlogðnÞÞ T maps, one can
write UðPLÞ as a linear combination of OðpolyðnÞÞ Clifford
maps, where each term in the linear combination is a
composition of at most OðpolyðnÞÞ Clifford maps. A
sequence of OðpolyðnÞÞ Clifford maps can be efficiently
simplified into a single Clifford map using the Gottesman-
Knill theorem [29]. The average fidelity estimate to U
is obtained by estimating the average fidelities to these
simplified Clifford maps.
To see that (ii) also holds, suppose one calculates a linear

combination for UðPLÞ based on the above construction. It is
possible that different terms in the linear combination result
in the same Clifford map, but for simplicity, we treat each
term separately so that our estimate of the complexity is
an upper bound. Then, if the circuit decomposition of U
contains t T maps,

X
i

jβUi j ≤
�X

i
jβTi j

�
t
¼

ffiffiffi
2

p
t; (5.11)

so
P

ijβUi j scales, at most, as OðpolyðnÞÞ for t ¼ OðlognÞ.
These results demonstrate that robust estimates of the

average fidelities to unitary maps outside the Clifford group
can be obtained efficiently, scaling polynomially in the
number of qubits.

VI. BOUNDING ERROR IN AVERAGE
FIDELITY ESTIMATES

In this section, we bound sources of error that occur in
RB procedures. There are two sources of uncertainty we
consider. When trying to efficiently estimate the average
fidelity E without inverting N , as we do in Sec. V, we lack
direct access to F̄ðE;UÞ and instead can only estimate
F̄ðE∘N ;UÞ and F̄ðN ; IÞ. This leads to an error on our
estimate of F̄ðE;UÞ. We also consider statistical errors
from the sampling of random variables and show that we
can efficiently fit RB decays to any constant error. As a
consequence, this allows us to efficiently bound the average
fidelity to maps outside the Clifford group, as described
in Sec. V. We address these two effects separately. These
types of uncertainties can be found in many contexts, so we
expect the analysis in Secs. VI A and VI B has broader
applications.
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A. Bounds on average fidelity of composed maps

In this section, we show how to bound F̄ðE;UÞ when we
have estimates of F̄ðE∘N ;UÞ and F̄ðN ; IÞ.
In Appendix D, we prove

χA∘B
0;0 ¼ χA0;0χ

B
0;0 �

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − χA0;0ÞχA0;0ð1 − χB0;0ÞχB0;0

q

þ ð1 − χA0;0Þð1 − χB0;0Þ
�
: (6.1)

Setting B ¼ N , A ¼ U†∘E, and using Eq. (2.6) gives
bounds on F̄ðE;UÞ as a function of F̄ðE∘N ;UÞ
and F̄ðN ; IÞ.
This bound is valid for any mapsA and B. There existA

and B that saturate the upper bound, but the lower bound is
not tight, for reasons we discuss in Appendix D. Generally,
this method gives better bounds when the operation E is
close to U and whenN is close to I (i.e., the imperfections
in the randomizing operations are small). Because
these lower and upper bounds—just like the bounds in
Ref. [12]—are not close to each other, except in the regime
where E is close to U, they are not useful for the type of
tomographic reconstruction performed in Sec. IV, where an
arbitrary map might be far from a Clifford map or from a
map that is composed of Clifford maps and OðpolyðnÞÞ
T maps.
Previous work on average-fidelity estimates based on RB

have derived the bound [12]

χA0;0 ¼
ðd2 − 1ÞχA∘B

0;0

d2χB0;0
� E; (6.2)

E ¼
����χB0;0 − ðd2 − 1ÞχA∘B

0;0

d2χB0;0

����þ
�
d2 − 1

d2
− χB0;0

�
; (6.3)

which is only valid when F̄ðA; IÞ ≥ 2F̄ðB; IÞ − 1 or, in
the fidelity estimation context, when F̄ðE;UÞ is close to 1
[41]. There is no way to directly verify from the exper-
imental data that this requirement holds, but in order to
compare the bounds in Ref. [12] with the bounds derived
here, we use Eq. (6.1) to bound the region of validity of
Eq. (6.2). As illustrated in Fig. 2, the bounds derived here
are better when F̄ðA∘B; IÞ is close to 1 but are applicable
to the entire range of parameters without additional
assumptions about the maps involved.

B. Confidence bounds on fidelity estimates

Here, we show how to extract FðE;UÞ from the esti-
mated points FkðE;UÞ (the average fidelity of a length-k
RB sequence—see Sec. III). We rigorously bound the error
and sampling complexity of this nonlinear fit.
One can easily show that, using the Hoeffding bound, an

estimate ~Fk for FkðE;UÞ can be obtained such that [9]

Prðj ~Fk − FkðE;UÞj ≥ ε0Þ ≤ δ0; (6.4)

with a number of samples Oð 1
ε02 log

1
δ0Þ, which is indepen-

dent of the number of qubits in the system. What we show
here is that this allows for p [and thus F̄ðE;UÞ] to be
estimated with a number of samples that also scales well
with some desired accuracy and confidence. In standard RB
experiments, p is estimated by numerical fits to the ~Fk with
many different sequence lengths, but the dependence of the
error on the number of samples per sequence length is
difficult to analyze. Here, we take a different approach that
leads to simple bounds on the accuracy and confidence.
Since FkðE;UÞ ¼ A0pk þ B0, it is easy to see that

p ¼ F2 − F∞

F1 − F∞
; (6.5)

and therefore, at least in principle, p can be estimated by
using only sequences of length 1 and 2, along with a
sequence long enough to ensure jA0pkj ≪ jB0j [42], with
the corresponding expectation denoted by F∞. Assuming
that each ~Fi is estimated with accuracy ε0 and confidence
1 − δ0, and that 0 is not in the confidence interval for
~F1 − ~F∞, it follows that the estimate ~p for p > 0 and
A0 > 0 satisfies

p − 2ε0
A0p

1þ 2ε0
A0p

≤ ~p ≤
pþ 2ε0

A0p

1 − 2ε0
A0p

; (6.6)

with probability of at least 1 − 3δ0 (similar expressions hold
for the cases of negative p or A0, but for simplicity, we
focus on the expressions for the positive case). If jA0j or jpj
is small, these bounds diverge, so it is important to test the
data to exclude these cases.

FIG. 2. Bounds on χA0;0 versus χ
A∘B
0;0 , when χB0;0 is fixed at 0.995.

Our bounds are shown as a solid blue line, while the bounds of
Ref. [12] are shown as a red dashed line. The bounds of Ref. [12]
are valid in the green shaded region, while our bounds are valid
for all values of χA∘B

0;0 .
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Note that A0 is independent of the sequences being used,
so one can choose to estimate A0 from a sequence with
large p. Denoting the Fi estimates for those sequences as
~F0
i, and assuming that the confidence interval for ~F0

2 − ~F0
∞

does not include 0, A0 is bounded below via

A0 ≥
ð ~F0

1 − ~F0
∞ − 2ε0Þ2

~F0
2 − ~F0

∞ þ 2ε0
≡ a; (6.7)

with probability of at least 1 − 3δ0. From Eq. (6.4),

ap − 2ε0 ≤ A0p − 2ε0 ≤ ~F1 − ~F∞; (6.8)

and thus

p ≤
~F1 − ~F∞ þ 2ε0

a
; (6.9)

so if one desires an accuracy ε for ~p, whenever

~F1 − ~F∞ þ 2ε0

a
≤ ε; (6.10)

one can set ~p ¼ 0, thereby avoiding the divergent con-
fidence intervals while still providing estimates with the
desired accuracy.
Similarly, from Eq. (6.4),

~F1 − ~F∞ ≤ A0pþ 2ϵ0; (6.11)

so whenever

~F1 − ~F∞ þ 2ε0

a
≥ ϵ; (6.12)

it follows that

aϵ − 4ϵ0 ≤ A0p ≤ A0: (6.13)

Thus, choosing ϵ0 ¼ 4ϵ2a, one can safely Taylor expand
Eq. (6.6) to first order in ε to obtain

p − ϵ −Oðϵ2Þ ≤ ~p ≤ pþ ϵþOðϵ2Þ; (6.14)

with probability of at least 1 − δ ¼ 1 − 6δ0, as desired,
using Oð 1

ε4
log 6

δÞ samples.
This immediately gives an estimate ~F for F̄ðE;UÞ that

can be obtained as

Prðj ~Fk − F̄ðE;UÞj ≥ εÞ ≤ δ; (6.15)

with Oð 1
ε4
log 1

δÞ samples.

VII. SUMMARY AND OUTLOOK

We have demonstrated that, using information from
multiple RB experiments, it is possible to reconstruct the
unital part of any completely positive trace-preserving map

in a way that is robust against preparation and measurement
errors, thereby avoiding some forms of systematic errors
that plague more traditional tomographic reconstruction
protocols. The unital part of a map consists of the vast
majority of the parameters of that map, including all
parameters necessary to describe any deterministic unitary
map, as well as any random unitary map, such as dephasing
with respect to any eigenbasis.
We also presented a robust procedure for bounding the

average fidelity to an arbitrary unitary and showed that this
protocol is efficient for a large class of unitaries outside of
the Clifford group. The overhead of the procedure depends
on how the unitary is decomposed as a linear combination
of Clifford group unitary maps, and we gave rigorous
bounds on the number of samples needed to achieve some
desired accuracy and confidence in the fidelity estimate.
The extension of these results to nonqubit systems

remains an open problem. In addition, the characterization
of the nonunital part of a map in a robust manner seems
to present a larger challenge than the characterization of
the unital part. New techniques are needed to access this
important information.
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APPENDIX A: UNITAL MAPS AND THE
LINEAR SPAN OF UNITARY MAPS

The Pauli-Liouville representation is particularly con-
venient when discussing the Clifford group of n-qubit
unitary maps because, in this representation, such maps are
monomial matrices [44,45]. In the particular case of qubits,
EðPLÞ
ij ∈ f�1; 0g for a unitary in the Clifford group. Given

these facts, we can now straightforwardly prove the result
about the linear span of Clifford group maps on n qubits.
First, we need to prove a small result about Clifford group
unitaries.
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Claim A.1.—For any two n-qubit Pauli operators P̂i≠0
and P̂j≠0, there exists a Clifford group unitary Ĉ such
that ĈP̂iĈ

† ¼ P̂j.
Proof.—This claim shows that there are no subsets

of nonidentity multiqubit Pauli operators that do not mix
under the action of the Clifford group. P̂i and P̂j can both
be written as tensor products of single-qubit Pauli operators
and identity operators Î, where in the tensor product
of each, there is at least one element that is not Î. Using
local Clifford group unitaries, one can take each noniden-
tity element in each tensor product to the single-qubit
Pauli operator X̂. We call these new Pauli operators P̂i

0 and
P̂j

0. Now the problem is equivalent to finding Clifford
group unitaries that take one tensor product of X̂ and Î to
another.
Let CNOTk;l denote the controlled-NOT unitary with

qubit k as a control and qubit l as a target. The CNOT is a
well-known unitary in the Clifford group with the property
that CNOTk;l

ˆXðkÞCNOTk;l ¼ X̂ðkÞ ⊗ ˆXðlÞ, where we use
X̂ðiÞ to denote X̂ acting on the ith qubit. In this way, one
can increase or decrease the number of X̂ in the tensor
product decomposition of P̂i

0 using unitary maps, as long
as there is at least one X̂ in the tensor product. This means
that any tensor product of Î and X̂ on n qubits can be
mapped to any other tensor product of Î and X̂ on n qubits
through the use of CNOT unitaries—in particular, one can
map P̂i

0 to P̂j
0.

Now we can prove the intended result.
Lemma IV.1.—The linear span of unitary maps coincides

with the linear span of Clifford group unitary maps.
Moreover, the projection of a TP map to this linear span
is a unital map.
Proof.—It suffices to show that any matrix element in the

unital part of a map (in the Pauli-Liouville representation)
can be written as a linear combination of Clifford group
unitary maps.
The Pauli-Liouville representations of unitaries in the

n-qubit Clifford group are monomial matrices with nonzero
entries equal to �1. For any given such unitary Ĉ, one can
construct 4n orthogonal unitaries of the form P̂iĈ, with
corresponding 4n mutually orthogonal Pauli-Liouville rep-
resentation matrices. Pauli operators are diagonal in the
Pauli-Liouville representation, so for a fixed Ĉ, the Pauli-
Liouville representations of all P̂iĈ have support in the
same set of 4n matrix elements as the Pauli-Liouville
representation of Ĉ; thus, the values of any of these matrix
elements for any map E can be recovered by collecting
the Hilbert-Schmidt inner products between EðPLÞ and the
Pauli-Liouville representation of the map for the P̂iĈ, i.e.,
trEðPiCÞ†. From Claim A.1, one can choose a Clifford
group unitary that has support on any particular matrix
element in the unital block; therefore, any unital matrix can
be written as a linear combination of Clifford group unitary
maps. Since Clifford group maps are unital, this concludes
the proof.

APPENDIX B: RECONSTRUCTION OF THE
UNITAL PART WITH IMPERFECT OPERATIONS

In the main body of this paper, we describe how RB
allows for the reconstruction of the unital parts of E∘N and
N , where E is some quantum operation one would like to
characterize, and N is the error operation associated with
each of the randomizing operations. We now prove the
result that allows for the estimation of the unital part of E
alone, given an estimate of the unital part of N .
Lemma IV.2.—If ðE∘N Þ0 is the unital part of E∘N and

N 0 is the unital part ofN , and all these operations are trace
preserving, then E0 ¼ ðE∘N Þ0∘ðN 0Þ−1 whenever ðN 0Þ−1
exists.
Proof.—Any trace-preserving linear map A can be

written in the Pauli-Liouville representation as

AðPLÞ ¼
�

1 0⃗
T

t⃗A TA

�
; (B1)

where, as discussed previously, the unital part is

A0ðPLÞ ¼
�
1 0⃗

T

0⃗ TA

�
: (B2)

The Pauli-Liouville representation of the composition of
two trace-preserving linear maps A and B is given by
the multiplication of the Pauli-Liouville representations,
resulting in

ðA∘BÞðPLÞ ¼
�

1 0⃗
T

t⃗A þ TAt⃗B TATB

�
; (B3)

and thus

ðA∘BÞ0ðPLÞ ¼
�
1 0⃗

T

0⃗ TATB

�
; (B4)

¼ ðAÞ0ðPLÞðBÞ0ðPLÞ: (B5)

It follows immediately that

ðAÞ0ðPLÞ ¼ ðA∘BÞ0ðPLÞ½ðBÞ0ðPLÞ�−1; (B6)

if the inverse exists, and

A0 ¼ ðA∘BÞ0∘ðB0Þ−1; (B7)

by the Pauli-Liouville isomorphism. The lemma follows by
setting A ¼ E∘N and B ¼ N .
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APPENDIX C: COMPLETE-POSITIVITY OF
THE PROJECTION OF SINGLE-QUBIT

OPERATIONS ONTO THE UNITAL SUBSPACE

In this appendix, we prove that for a CPTP map E acting
on a single qubit, E0, the unital part of E [see Eq. (4.3)], is
always a CPTP map.
Recall that the Pauli-Liouville representation of a single-

qubit map E may be written as

EðPLÞ ¼
�

1 0⃗

t⃗E TE

�
: (C1)

King and Ruskai [20] show that there exist unitary maps U
and V such that

UĔV ¼ E; (C2)

where

ĔðPLÞ ¼
�
1 0⃗

τ⃗ D

�
¼

0
BBB@

1 0 0 0

τ1 λ1 0 0

τ2 0 λ2 0

τ3 0 0 λ3

1
CCCA: (C3)

To prove E0 is CPTP, we first show that Ĕ0 (the projection
of Ĕ onto the unital block) is always CPTP, and then we
prove that if Ĕ0 is CPTP, E0 is CPTP.
Lemma C.1.—For single-qubit operations, Ĕ0 is

always CPTP.
Proof.—Ruskai et al. [46] prove that E is CP if and

only if

ðλ1 þ λ2Þ2 ≤ ð1þ λ3Þ2 − τ23 − ðτ21 þ τ22Þ
�
1þ λ3 � τ3
1 − λ3 � τ3

�
;

(C4)

ðλ1 − λ2Þ2 ≤ ð1 − λ3Þ2 − τ23 − ðτ21 þ τ22Þ
�
1 − λ3 � τ3
1þ λ3 � τ3

�
;

(C5)

ð1− ðλ21þ λ22þ λ23Þ− ðτ21þ τ22þ τ23ÞÞ2
≥ 4ðλ21ðτ21þ λ22Þþ λ22ðτ22þ λ23Þþ λ23ðτ23þ λ21Þ− 2λ1λ2λ3Þ;

(C6)

where in Eqs. (C4) and (C5), if jλ3j þ jτ3j ¼ 1, then τ1 and
τ2 must be 0 for the map to be CP.
To prove the lemma, we need to show that for any values

of fτig and fλig that satisfy Eqs. (C4–C6)), these equations
are still satisfied when τi ¼ 0 for i ¼ 1, 2, 3.
Notice that in Eqs. (C4–C5) when we set τi ¼ 0, we

require

ðλ1 � λ2Þ2 ≤ ð1� λ3Þ2: (C7)

However, it is easy to show [46] that Eqs. (C4–C5)
combined with positivity constraints imply

ðλ1 � λ2Þ2 ≤ ð1� λ3Þ2; (C8)

so we only need to look at Eq. (C6).
Looking at Eq. (C6), we see that we need to show

ð1 − ðλ21 þ λ22 þ λ23ÞÞ2 ≥ 4ððλ1λ2Þ2 þ ðλ2λ3Þ2
þ ðλ3λ1Þ2 − 2λ1λ2λ3Þ: (C9)

Because τ’s only increase the value of the right-hand side of
Eq. (C6)), we have

ð1 − ðλ21 þ λ22 þ λ23Þ − ðτ21 þ τ22 þ τ23ÞÞ2
≥ 4ðλ21λ22 þ λ22λ

2
3 þ λ23λ

2
1 − 2λ1λ2λ3Þ: (C10)

Note that if ðλ21 þ λ22 þ λ23Þ þ ðτ21 þ τ22 þ τ23Þ ≤ 1, then we
obtain

ð1 − ðλ21 þ λ22 þ λ23ÞÞ2 ≥ ð1 − ðλ21 þ λ22 þ λ23Þ
− ðτ21 þ τ22 þ τ23ÞÞ2; (C11)

which, combined with Eq. (C10), gives the desired result.
To show that ðλ21 þ λ22 þ λ23Þ þ ðτ21 þ τ22 þ τ23Þ ≤ 1, note

that when Ĕ acts on the completely mixed state, for the
outcome to be positive, we require ðτ21 þ τ22 þ τ23Þ ≤ 1.
Furthermore, when Ĕ acts on one of the Pauli-Z eigenstates,
we obtain ððλ1 � τ1Þ2 þ τ22 þ τ23Þ ≤ 1, where the �
depends on which eigenstate is chosen and whether τ1
and λ1 have the same sign. This implies that
ðλ21 þ τ21 þ τ22 þ τ23Þ ≤ 1, and similarly for λ2 and λ3 (with
the Pauli-X and -Y eigenstates). Combining these inequal-
ities and the positivity constraint gives

λ21 þ λ23 þ λ23 þ 3ðτ21 þ τ22 þ τ23Þ ≤ 3;

−ðτ21 þ τ22 þ τ23Þ ≥ −1;
→ ðλ21 þ λ22 þ λ23Þ þ ðτ21 þ τ22 þ τ23Þ ≤ 1: (C12)

Lemma IV.3.—The unital part of a CPTP single-qubit
map is always a CPTP map.
Proof.—Lemma C.1 shows that the projection of Ĕ onto

its unital part results in a CP map. So, here we show that
this implies that the projection of the map E onto its unital
part results in a CP map.
Because U and V are unitaries, their Pauli-Liouville

representations have the form

UðPLÞ ¼
�
1 0⃗

0⃗ U

�
; VðPLÞ ¼

�
1 0⃗

0⃗ V

�
: (C13)
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So,

EðPLÞ ¼ UðPLÞĔðPLÞVðPLÞ ¼
�

1 0⃗

Ut⃗ UDV

�
: (C14)

Now suppose Ĕ0ðPLÞ ¼
�

1 0⃗

0 D

�
is a valid CP map. Then,

WðPLÞ ¼ UðPLÞĔ0ðPLÞVðPLÞ ¼
�
1 0⃗

0 UDV

�
(C15)

is also a valid CPTP map because the composition of valid
quantum maps is always a valid quantum map. However,
by Eq. (4.3),W is equal to E0, so the unital part of a single-
qubit map is always CPTP.

APPENDIX D: BOUNDS ON FIDELITY

Recall that for an operation E, the χ-matrix representa-
tion is

Eðρ̂Þ ¼
X
i;j

χEi;jP̂iρ̂P̂j: (D1)

Because of complete positivity constraints, χ matrix ele-
ments satisfy

χEi;j ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffi
χEi;iχ

E
j;j

q
: (D2)

Composing two maps, their χ-matrix representations are

A∘Bðρ̂Þ ¼ X
m;n;k;j

χAm;nχ
B
k;jP̂mP̂kρ̂P̂jP̂n: (D3)

Let σiðmÞ be the index such that P̂σiðmÞP̂m ¼ P̂i. Then,
using the fact that the absolute value is greater than the real
or imaginary parts of a complex number, we obtain

χA∘B
i;i ¼ χAi;iχ

B
0;0

�
�
2
X
m≠0

jχAσiðmÞ;ijjχBm;0jþ
X
m;n≠0

jχAσiðmÞ;σiðnÞjjχBm;nj
�
:

(D4)

Looking at the term
P

m≠0jχAσiðmÞ;ijjχBm;0j and using Eq. (D2)
and the Cauchy-Schwarz inequality, we have

X
m≠0

jχAσiðmÞ;ijjχBm;0j ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
m≠0

jχAσiðmÞ;ij2
X
m≠0

jχBm;0j2
s

≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
m≠0

χAσiðmÞ;σiðmÞχ
A
i;i

X
m≠0

χBm;mχ
B
0;0

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − χAi;iÞχAi;ið1 − χB0;0ÞχB0;0

q
: (D5)

Similarly, the term
P

m;n≠0jχAσiðmÞ;σiðnÞjjχBm;nj givesX
m;n≠0

jχAσiðmÞ;σiðnÞjjχm;nj

≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
m;n≠0

jχAσiðmÞ;σiðnÞj2
X
m;n≠0

jχBm;nj2
s

≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
m;n≠0

χAσiðmÞ;σiðmÞχ
A
σiðnÞ;σiðnÞ

X
m;n≠0

χBm;mχ
B
n;n

s

¼ ð1 − χAi;iÞð1 − χB0;0Þ: (D6)

So, we have

χA∘B
i;i ¼ χAi;iχ

B
0;0 � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − χAi;iÞχAi;ið1 − χB0;0ÞχB0;0

q
� ð1 − χAi;iÞð1 − χB0;0Þ: (D7)

Setting i ¼ 0 gives the desired result.
To see why the lower bound is, in general, not tight,

consider Eq. (D4). For the lower bound on χA∘B
i;i , we take all

of the terms of the form χAσiðmÞ;σiðnÞχ
B
m;n and replace them

with −jχAσiðmÞ;σiðnÞjjχBm;nj because many of these terms have

unknown phases, which in the worst case, can have a value
−1. However, when m ¼ n, because χ is positive semi-
definite, we get terms of the form χAσiðmÞ;σiðmÞχ

B
m;m ¼

jχAσiðmÞ;σiðmÞjjχBm;mj; thus, we are subtracting terms that

should actually be added. However, there is no way to
address this issue without obtaining more information
about the χ matrix.

APPENDIX E: ORDERING OF ERROR MAPS

Throughout this paper, we chose to describe the noisy
maps as the composition of the ideal map and some error
map (applied in that order). In other words, the noisy
implementation of the map Ci is expressed as

N i∘Ci; (E1)

where N i is the error map and Ci is the ideal Clifford map.
This choice can be made without loss of generality, and it
has no effect on experimental observations. In other words,
we could instead express the implementation of the Clifford
Ci as

Ci∘N �
i ; (E2)

where N �
i is, in general, a different error map. The average

fidelity of these noisy maps to Ci is the same, or,
equivalently, N i and N �

i have the same average fidelity
to the identity. However, in general, N i ≠ N �

i . Other
process metrics are immune to this problem because they
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take the error to be additive rather than multiplicative, and
so there is no ordering choice to be made or imposed.
If all error maps are identical for either of the conventional

choices (N i ¼ N or N �
i ¼ N �), then Eq. (3.1) holds, and

small deviations from these cases lead to perturbative
corrections that generalize the results in Refs. [9,10]. If
the error maps are close to the identity, both perturbative
models are likely to be valid, so N ≈N �—the question of
which convention is used becomes immaterial. However, if
either N or N � is far from the identity, low-order perturba-
tive expansions may not be valid for one of the conventions.
Fits to individual RB decays cannot differentiate between
these two cases, and the bounds used to isolate the error in E
from N or N � do not depend on this conventional choice,
thus, as long as Eq. (3.1) holds for some separation of the
error and ideal channel.
A problem arises when one attempts to use Lemma IV.2,

as, unless N ≈N �, the choice of conventions becomes
important. The physical regime where, e.g., N i ≈N is
precisely the regime whereN i ≈N �

i ≈ I , and so this is not
likely to be a problem in practice; within the accuracy of the
perturbative expansions to Eq. (3.1), the inversion in
Lemma IV.2 will be valid, as would a similar inversion
taking the error map to occur before the ideal map.
In the more general formal cases where, e.g., N i ≈N

but theN �
i are very different from each other, there appears

to be no way to choose the appropriate convention from
individual observations. It may simply be the case that the
E0 reconstruction via Lemma IV.2 using one convention is
highly unphysical, while the other is physical, indicating
which convention should be used. In the absence of this
indication of systematic errors, however, one should report
both reconstructions or simply choose the worst of the two.
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