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The mass number dependence of nuclear radii is closely related to the properties of nuclear matter.
It is known that most nuclei exhibit some deformation. We discuss how the nuclear density profile
is modified by nuclear deformation to elucidate the enhancement mechanism of nuclear radii
through a systematic investigation of neutron-rich Ne, Mg, Si, S, Ar, Ti, Cr, and Fe isotopes.
Skyrme—Hartree—Fock calculations are performed in a 3D Cartesian grid to describe the nuclear
deformation in a non-empirical way. The role of nuclear deformation in nuclear density profiles
is explored in comparison to calculations with a spherical limit. We find correlations between
nuclear deformation and the internal nuclear density. The evolution of nuclear radii appears to
follow the core swelling mechanism recently proposed in spherical nuclei [W. Horiuchi and T.
Inakura, Phys. Rev. C 101, 061301(R) (2020)], and the radius is further enhanced by nuclear
deformation. This study demands further theoretical and experimental investigations for the
internal density.

Subject Index D04, D12, D13

1. Introduction

The nuclear landscape has been extended toward the neutron dripline and has so far reached the Ne
isotopes [1]. Following the discovery of new neutron-rich isotopes, the evolution of nuclear radii in
terms of the neutron excess is of interest as it is closely related to the properties of “matter” composed
of neutrons and protons in particularly extreme neutron/proton ratios [2—7].

For stable nuclei, the mass number (4) dependence of the nuclear matter radius is roughly propor-
tional to 4'/3 due to the saturation of the nuclear density [8,9]. For neutron-rich unstable nuclei, many
examples that deviate from this rule have been observed because of exotic structure properties, e.g.,
halo structure [10,12] (see also Ref. [11] and references therein) and nuclear deformation [13,14].
Approaching the neutron dripline, the emergence of deformed halo structure was predicted in Ne
and Mg isotopes [15-20] and has actually been observed for 3!Ne [21].

Recently, indications of the “core” swelling in neutron-rich Ca isotopes have been reported [22,23],
exhibiting a kink in the charge and matter radii at N = 28. In Ref. [24], this phenomenon was related
to the nuclear internal density in that the “core” density swells to reduce the internal density to
increase the total energy. We remark that another mechanism to produce a kink in the charge radius
for heavy nuclei was proposed in Ref. [25]. Since most nuclei are deformed [26], it is natural to
extend the study of Ref. [24] to deformed neutron-rich nuclei.

© The Author(s) 2021. Published by Oxford University Press on behalf of the Physical Society of Japan.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/),
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

1202 JoquianoN €z uo Jasn yayjol|qiqienusz-AS3a Aq £+21.2£9/20A€01/0 1L/ 20g/a10me/de)d/woo dno-olwapede//:sdjy wo.y papeojumod



PTEP 2021, 103D02 W. Horiuchi and T. Inakura

The purpose of this paper is to clarify the radius enhancement mechanism of neutron-rich unstable
nuclei, focusing on the role of nuclear deformation. We study light- and medium-mass nuclei with
the proton number 8 < Z < 28, where their isotope dependence is significant. It is well known that
nuclear deformation considerably enhances the matter radius in the light-mass neutron-rich isotopes
Ne and Mg [13,14,27-31]. We investigate how the density profiles are changed by nuclear deforma-
tion and discuss its correlation with the internal density. Skyrme—Hartree—Fock (HF) calculations in
3D Cartesian coordinates are performed, which allow us to describe any deformed shape. Since the
nuclear deformations predicted are strongly model dependent, several sets of standard Skyrme-type
effective interactions are investigated.

The paper is organized as follows. Section 2 introduces the theoretical model employed in this
paper. Model setups of the HF calculation to obtain the deformable ground-state wave functions
are briefly explained. Section 3 is devoted to a discussion of changes in the density profiles and the
enhancement mechanism of the nuclear radius due to nuclear deformation based on the HF results. We
compare these results with spherically constrained HF to clarify the role of the nuclear deformation.
Section 3.1 discusses the evolution of nuclear deformation as a function of the neutron number for
neutron-rich isotopes with 8 < Z < 28. Section 3.2 describes the deformation effect on the density
profiles. We compare the density distributions obtained with full and spherically constrained HF
calculations for some selected nuclei, 34Mg, 403, and ©2Cr. The role of nucleon orbits near the Fermi
level is quantified. Section 3.3 contains more general discussions that relate nuclear deformation and
nuclear density in the internal region. Finally, the conclusion is given in Sect. 4.

2. Skyrme-Hartree—Fock calculation in 3D coordinate space

In this paper, we employ the Skyrme—HF calculation. Since all details can be found in Refs. [24,30,
32], we only give a minimum explanation for the present analysis. The ground-state wave function
is expressed as a product of deformable single-particle (s.p.) orbits represented by a 3D Cartesian
mesh that is flexible enough to describe any nuclear deformation. We obtain these s.p. orbits fully
self-consistently in a sphere of radius 20 fm based on the energy density functional of the intrinsic
nucleon density o [33], E[p] = Ey + Ec — Ecm, where Ey is the nuclear energy, E¢ the Coulomb
energy, and E.ny, the center-of-mass energy. The total energy is minimized using the imaginary-
time method [34]. The Coulomb interaction is incorporated as given in Ref. [35]. This paper aims to
understand the nuclear deformation effect on the density profile, which is an extension of the previous
study for spherical nuclei [24]. To obtain different density profiles, four kinds of Skyrme parameter
sets, SkM™* [36], SLy4 [37], SkI3 [38], and SIII [39] are employed. As a reference to clarify the role
of nuclear deformation, we also perform a spherically constrained HF calculation. To preserve the
spherical symmetry, the self-consistent HF solution is obtained with the filling approximation [39],
which assumes a uniform occupation of the Fermi level with angular momentum j as m/(2j 4 1) with
m being the number of outermost nucleons. We remark that the pairing correlation is an important
ingredient for determining the nuclear deformation. However, at this stage, the pairing correlation is
ignored because it may induce further model dependence; see, e.g., Refs. [26,40—43].

To guide the degree of nuclear deformation, the quadrupole deformation parameter of the ground-
state wave function is evaluated; this is defined by

B2 =1/ B+ B M
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Fig. 1. Quadrupole deformation parameter of (a) Ne, Mg, Si, S, and Ar and (b) Ti, Cr, and Fe isotopes as a
function of the neutron number. The SkM* interaction is employed.

where

. n<222—x2—y2) . 3 (yz—xz)
ﬁzo—\/;T, B2 = ?W (2)

with 7> = x? + y? + z?. We take z as the quantization axis and choose it as the largest (smallest)
principal axis for prolate (oblate) deformation. Thus, the sign of 8, follows that of 85¢. The ground-
state wave function can be triaxially deformed (0 < y < m/3), which is treated as prolate (0 < y <
7r/6) or oblate (7/6 < y < m/3) for simplicity.

3. Results and discussions
3.1.  Evolution of nuclear deformation

First we give an overview of the neutron number dependence of even—even neutron-rich isotopes with
8 < Z < 28. Among the four Skyrme-type interactions employed in this paper, the SkKM* interaction
is best for describing the nuclear deformation and the validity of these density distributions for
Ne and Mg isotopes were well evaluated as they showed good agreement with the measured cross
sections [30,44]. Tt is the results obtained with the SkKM™* interaction that are mainly discussed, unless
otherwise mentioned.

Figure 1 plots the quadrupole deformation parameter S, for those isotopes with (a) 8 < Z < 20 and
(b) 20 < Z < 28 as a function of the neutron number. Let us first discuss the isotope dependence of
the nuclear deformation for 8 < Z < 20. The reader is referred to Ref. [30] for more discussions on
the structure of those isotopes with Z = 10—-14. Actually, the nuclear deformation strongly depends
on the proton and neutron numbers. The proton and neutron numbers of Z, N = 10 and 12 favor
a prolately deformed state due to the occupation of the [nn.m;]1$2 = [220]1/2 and [211]3/2 orbits,
where n, n-, m;, and Q denote the asymptotic quantum numbers [45]: the principal quantum number,
that for the quantization axis z, the projection of the orbital angular momentum onto z, and that
of the total angular momentum onto z, respectively. It is well known that Ne and Mg show large
deformation in the island of inversion [14,46—49]. Most of the Ne and Mg isotopes show a prolate
shape, whereas 24?0Ne are oblately deformed.

To see the calculated results, the proton number of Z = 14 favors both the prolate and oblate
states as the s.p. energy of the [202]5/2 orbit may compete with the prolately deformed orbits, e.g.,
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Fig. 2. Matter, neutron, and proton density distributions of (a) **Mg, (b) 4°S, and (c) ®*Cr obtained from the
full and spherical (Sph.) HF calculations. The SkM* interaction is employed.

[220]1/2 and [211]3/2. Competing with changes in the neutron shell structure by neutron excess,
Si isotopes have relatively small deformations |82| < 0.2. The proton number of Z = 16 favors a
spherical shape, and thus S isotopes have small 8, values like Si isotopes. Most of the Ar isotopes
(Z = 18) exhibit oblate deformation. The nucleon number just before shell closure favors the oblate
shape.

Figure 1(b) shows B, for the Ti, Cr, and Fe isotopes. Most medium-mass nuclei have a prolate
shape; this is known as prolate dominance [50—52]. Oblate deformations are found only in % -34Ti.
30Tj forms an oblate shape that could be produced in the prolately deformed state from a combination
of a subshell closed neutron orbit (N = 28) and a prolate-favoring [330]1/2 orbit (Z = 22). The Ti,
Cr, and Fe isotopes have large deformations at N & 38, where additional occupancy of the [440]1/2
and [411]3/2 orbits is induced like in the island of inversion found at N =~ 20.

3.2.  Deformation effect on nuclear density profile

In this subsection, we show some specific examples of how the density profile is modified by nuclear
deformation. Figure 2 displays the point-matter, neutron, and proton density distributions of (a)
3*Mg, (b) 4°S, and (c) %?Cr, which show the largest quadrupole deformation parameters for each
isotope with the SkM* interaction. The deformed intrinsic density distributions are averaged over
angles as p(r) = # f dQ p(r,2). The density distributions with the spherically constrained HF
are also plotted for comparison. Compared to the spherical one, for the >**Mg and %>Cr cases, the
deformed state shows a more diffused nuclear surface and higher internal density, like to the case of
30Ne [30], whereas for 4°S the internal density is reduced by the nuclear deformation.

These changes in the density profile crucially affect the total energy, which can be quantified by
showing the cumulative energy per nucleon defined by

e(r) = / "2 / AQEF(, Q)] / / "2 f Q. Q). 3)
0 0

Note that ¢(r) with » — oo leads to the energy per nucleon E[p]/A. Figure 3 displays e(r) of
the full and spherically constrained HF of (a) 3*Mg, (b) %°S, and (c) %*Cr. Significant contributions
of the internal density, say below &~ 2-3 fm, can clearly be seen in the cumulative energies. The
deformed nuclear states for >**Mg and %>Cr are more advantageous for energy gain than the spherical
nuclear states, while the opposite is true in *°S, where the nuclear internal density is reduced by
nuclear deformation. It should be noted that deformed nuclear states always gain more energy than
spherical ones in surface regions beyond ~ 3—4 fm. The deformed state is selected in *’S because
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Fig.3. Cumulative energies per nucleon of (a) **Mg, (b) *’S, and (c) ®*Cr obtained from the full and spherically
constrained HF calculations. The SkM* interaction is employed.

the energy gain in the surface region is larger than the energy loss in the internal region compared
to the spherical state.

Since the characteristics of occupied s.p. orbits are crucial to determine the nuclear density dis-
tributions, we calculate the occupation probability of the spherical s.p. orbits for these deformed
states. In practice, we simply take the overlap between the s.p. orbits of the full and spherical HF
calculations. With this procedure, the components of the spherical s.p. orbits are projected out from
each deformed s.p. orbit. The occupation probabilities for each spherical s.p. state are obtained by
dividing those occupation numbers by the maximum occupation number 2j + 1 for each s.p. state
with the angular momentum ;. Figure 4 displays these obtained occupation probabilities for the
neutrons and protons of (a) 3*Mg, (b) 4°S, and (c) ®*Cr. The results with the spherical limit are also
shown for comparison. The labels of the s.p. orbits are aligned in order of s.p. energy. We see that the
nuclear deformation only affects the distribution around the Fermi levels, which makes the surface
more diffuse due to the mixture of lower orbital-angular-momentum s.p. states, resulting in a further
increase in the nuclear radius compared to the spherical limit. Regarding these fully occupied orbitals
as belonging to the “core” of the nucleus, the structure change by nuclear deformation is governed
by the “valence” nucleons.

Let us discuss this in more detail. In (a) **Mg, since the 1s /2 orbit is located just above the proton
Fermi level 0ds >, the nuclear deformation induces occupancy of the 1s/, orbit, which leads to the
enhancement of the central density as well as the nuclear diffuseness as seen in Fig. 2(a). The same
phenomenon is also found in the case of N = 14 isotones [53]. The nuclear deformation induces
occupancy of the 1sy,, orbit and thus the central depression of the nuclear density disappears.

In contrast, in the case of (b) 4°S, the 1s; /2 orbit is fully occupied in the spherical limit. To get a
deformed state, as the Fermi level for protons is 1s; /2, some of these protons should be moved to the
other orbits around the Fermi level, i.e., the 0d3 ; orbit, resulting in the reduction of 1512 occupancy,
i.e., reduction of the central density compared to the spherical limit displayed in Fig. 2(b).

For %2Cr, the mechanism is not simple as those for >**Mg and “°S because there is no vacant or
occupied s orbit near the Fermi level for either protons or neutrons. Actually, the nuclear deformation
induces a slight increase in the occupancy of the 251/, orbit for neutrons. However, this is not
enough to explain the enhancement of the central density presented in Fig. 2(c). What induces this
enhancement of the central density? To understand this, we compare the central densities that come
from the deepest s.p. orbits [000]1/2 and 0s1 2 obtained by deformed and spherical HF calculations,
respectively. Since the full HF calculation produces a deeper mean-field potential than the spherical
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Fig. 4. Occupation probabilities of the full and spherically constrained HF single-particle (s.p.) orbits for (a)
3*Mg, (b) *°S, and (c) ®*Cr. See text for details. The SkM* interaction is employed.

one, the [000]1/2 orbit is confined in a narrower potential well than that of the spherical Osy/ orbit.
In fact, the respective s.p. energies are —44.41 and —43.29 MeV. The resulting central density of
the [000]1/2 orbit for neutrons becomes approximately 10% higher than the spherical Os; /> orbit,
which corresponds to about half of the total enhancement of the central density. This enhancement
of the central density for protons is tiny, & 1%. The other contribution may come from the change
in the 1sy /2 orbit by the deformation, which is not easily identified as it is constructed from various
deformed s.p. orbits.

We note that the pairing correlations also give fractional occupation probabilities for states around
the Fermi level. Incorporating the pairing interaction is necessary for more quantitative discussions
that involve close comparison with experimental data; see, e.g., Ref. [54] for Cr isotopes; however,
this is beyond the scope of this paper.

3.3.  Correlations of the nuclear deformation and internal density

In the previous subsection, we showed the energy contributions of the internal and surface density,
which can be the trigger for nuclear deformation. Extending the discussion to more general cases, we
evaluate the correlations between nuclear deformation and internal density. Here we take the central
density p(0) = p(0) as the degree of internal density for all isotopes studied in this paper.

Figure 5(a) displays a correlation plot of the relative differences in the central densities calculated
by the full and spherically constrained HF calculations, A[p(0)] = [p(0) — p*P(0)]/p*™ (0), with
the SkKM* interaction. We find that the |A[p(0)]| value becomes large for greatly deformed states.
This indicates that the nuclear deformation can be driven by those changes in the internal density.
Most of the isotopes are deformed by filling the internal densities, while most of the S and the Ar
isotopes lower their internal densities by nuclear deformation. The most striking difference in these
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s b
-0.4-0.3-0.2-0.1 0 O

isotopes compared to the others is that the central densities are quite high &~ 0.18-0.19 fm > in the
spherical limit because the 1sy,, orbits are fully occupied, like in the case of 408 [Fig. 2(b)].

We do the same analysis with the other Skyrme interactions, SLy4, SkI3, and SIII. The results are
respectively displayed in Figs. 5(b), (c), and (d). Though there are some quantitative differences, a
similar trend is obtained for the different Skyrme interactions. The larger | A[p(0)]| is, the larger | 8|
becomes. The functional form of |A[p(0)]| appears to be a quadratic function of 8. To quantify this
correlation, we calculate the correlation coefficient of ,B% and |A[p(0)]] for each interaction. In fact,
they show correlations as the calculated correlation coefficients are 0.77, 0.73, 0.66, and 0.54 for
the SkM*, SLy4, SkI3, and SIII interactions, respectively. This square proportionality can roughly
be explained within an assumption of volume conservation with a sharp radius R. Using the familiar

radius formula R" = R,/1 + (5/4m) ﬂ% [9] for a quadrupole deformed surface for small B,, we get

Alp((0)] = —é—i ,322. Though the estimation always predicts a negative value for A[p(0)], it gives
Alp(0)] = —0.01 to —0.05 for |B2| = 0.1-0.3, which is reasonable. In reality, most of the cases
show a positive A[p(0)] value owing to the modification of the surface distributions demonstrated
in Figs. 2(a) and (c). This rough estimation can only be applied to the cases that exhibit relatively
small changes in the surface density distributions, e.g., *°S in Fig. 2(b).

Comparing the results with different Skyrme interactions, the behavior of A[p(0)] with the SkM*
and SLy4 interactions is similar; the largest A[p(0)] values are shown with the SkI3 interaction, and
the SIII interaction tends to give smaller values and the correlation becomes small. This fact may
be related to the nuclear equation of state (EOS) parameters, which characterize the softness of the
nuclear matter against nucleon excess. Some relevant values for each interaction are listed in Table 1.
The listed EOS parameters are similar for the SkM* and SLy4 interactions. The SkI3 interaction
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Table 1. Saturation density, incompressibility, symmetry energy, and the slope parameter of the symmetry
energy for the adopted Skyrme interactions. Energy is given in MeV.

Po (fm_3) K() Esym L
SkM* 0.1602 216.40 30.04 45.80
SLy4 0.1595 229.90 32.00 45.94
SkI3 0.1577 257.96 34.83 100.49
SIT 0.1453 355.35 28.16 9.91
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Fig. 6. Root-mean-square matter radii of O, Ne, Mg, Si, S, Ar, Ca, Ti, Cr, Fe, and Ni isotopes as a function of
the neutron number. The open symbols denote the matter radii obtained with the spherically constrained HF
calculations. The results of O, Ca, Ni are taken from Ref. [24]. For the sake of visibility, (Z — 8) x 0.1 fm is
added to the results. Two-headed arrows indicate regions where core swelling is expected to occur. See text
for more details. The SkM* interaction is employed.

has a very large slope parameter of the symmetry energy L, while the incompressibility Ky and the
symmetry energy Egyn are not very different from those for the SkM* and SLy4 interactions. Since
the energy loss against the neutron and proton number asymmetry from the nuclear saturation density,
ie.,0.16 fm=3 forN = Z, is largest for the SkiI3 interaction, a larger central density fraction A[p(0)]
is needed to induce large nuclear deformation compared to the other interactions. In contrast, the
SIII interaction gives extremely small L and large K. As displayed in Fig. 5, the A[p(0)] values are
hard to change compared to the other interactions.
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3.4.  Evolution of the nuclear radius

How does nuclear deformation affect the nuclear radius? Figure 6 displays the root-mean-square
(rms) matter radii ,, of those isotopes with Z = 8-28 calculated with full (closed symbols) and
spherically constrained HF (open symbols) calculations. Note that we omit the results with the
spherical HF calculations for 323*Ne because they are not bound. A kink in the nuclear radius across
N = 18-20 for the Ne and Mg isotopes appears when the nuclear state exhibits large quadrupole
deformation. The enhancement of the Ne isotopes near the dripline N = 20-24 is an exception that
can be recognized as the systems have weakly bound orbits < 3 MeV. This is consistent with the
findings of the systematic analyses given in Refs. [27-31,44].

We note that in the spherically constrained HF calculation, despite all the nuclear states being
spherical, the matter radii already show some kinks at the magic and semi-magic numbers, i.e.,
N = 14, 20, and 28. This can be explained by the core swelling mechanism recently proposed in
Ref. [24]. The enhancement of nuclear radii occurs when the valence neutrons fill the nodal or j-lower
orbits, resulting in core swelling or enhancement of the nuclear radius to avoid high density in internal
regions. For the sake of comparison, the results of the O, Ca, and Ni isotopes taken from Ref. [24]
are shown. Their neutron number dependence is similar to those of the spherically constrained HF
calculations from the Ne to Fe isotopes studied in this paper: A sudden enhancement of the nuclear
radius occurs in the spherically constrained HF calculations for N = 14-20 when 1s1 2, 0d3/, are
occupied, and for N = 28-40 when 1p3/2, 0f5/2, and 1py are occupied.

We see that the deformed HF results always give larger radii than the spherical ones for all the
isotopes studied in this paper. It is natural to presume that the radius enhancement occurs via
the core swelling mechanism [24] and the radius is further enhanced when the nucleus exhibits
nuclear deformation.

4. Conclusions

In order to elucidate the enhancement mechanism for nuclear radii, we have studied the effect of
nuclear deformation on nuclear density profiles. A systematic investigation for even—even light- and
medium-mass neutron-rich nuclei of 8§ < Z < 28 has been undertaken based on the ground-state
density distributions obtained from Skyrme—Hartree—Fock calculations in a 3D Cartesian mesh. A
spherically constrained HF calculation has also been performed as a reference state for each deformed
HF state.

The nuclear internal density can be the key to understanding deformation phenomena. We have
shown that nuclear deformation is determined by minimizing the total energy in the whole nuclear
region, not only in the surface region but also in the internal region. We find correlations between
changes in the internal density and nuclear deformation, which can be related to the properties of
nuclear matter. A deformed nuclear state is selected to weigh the relative energy gains in the internal
and surface regions. In general, the nuclear deformation induces a more diffuse nuclear surface while
changing the magnitude of the density distributions in the internal regions. From a microscopic point
of view, this phenomenon can be explained by considering the fact that the nuclear deformation
mainly influences the occupation of spherical single-particle orbits near the Fermi level. Changes
in the nuclear density in the internal regions become significant when the occupied or unoccupied
s orbital is located near the Fermi level because its occupation number is strongly modified by
nuclear deformation.
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We have found that in the spherical limit the evolution of the nuclear radius with respect to the
neutron number follows the core swelling rule proposed in Ref. [24], that a “core” nucleus swells
when the single-particle orbits that have large spatial overlaps between the orbitals in the core.
Core swelling is responsible for developing the nuclear bulk and nuclear deformation plays a role
in diffusing the density profile in the surface regions, resulting in a further increase in the nuclear
radius. The nuclear deformation mainly changes the occupation number near the Fermi level, while
the occupation numbers of the deeper bound orbitals are not changed; even single-particle states are
deformed. This is strong evidence that the core swelling phenomena found in spherical nuclei [23,24]
is universal for radius enhancement, although the occupation number of single-particle orbits near
the Fermi level becomes fractional by surface phenomena such as nuclear deformation.

In this paper, we have discussed possible correlations between nuclear deformation and internal
density. We note, however, that this work only includes the deformation effect on the density profile
with a standard mean-field approximation. To establish the results of this work, a careful investigation
is necessary, including the pairing correlation and various many-body effects beyond the mean-field
level. Also, experimental studies to extract the internal density of unstable nuclei are desired, such
as electron scattering, which has recently been realized [55].
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