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1 Introduction

Despite the discovery of the Higgs boson in the year 2012 [1, 2] that completed the particle
spectrum in the Standard Model (SM), there exist numerous observed phenomena in astro-
physics, e.g. dark matter, dark energy and the matter-antimatter asymmetry, that do not
find their explanations within this theory framework and thus call for physics beyond the
Standard Model (BSM). Unfortunately, all direct searches in high-energy colliders have so



far returned null results. On the other hand, precision experiments have observed several
interesting anomalies in flavor physics that point towards the possible existence of BSM
physics. This research concerns one of these observed anomalies, namely the irregularities
in the top-row Cabibbo-Kobayashi-Maskawa (CKM) matrix elements.

The unitarity of the CKM matrix is a rigorous SM prediction [3, 4]. In particular, the
top-row CKM unitarity (which is also known as the Cabibbo unitarity) that involves the
matrix elements V4 and Vs (Vi is negligible) has received the most attention because
they can be measured to high precision in hadron and nuclear beta decays. Recently, a
series of improvements in the theory [5-8] of the electroweak radiative corrections (RC) in
the extraction of V4 led to an apparent deviation of the Cabibbo unitarity at a level of
30 [9]. However, in this work we will not focus on V,4, but rather on V,; which possesses
yet another interesting anomaly by itself.

Let us focus on the two best determinations of the matrix element V,, which come
from leptonic (Kj3) and semileptonic (Kj3) kaon decays respectively. From the leptonic
kaon and pion decay, the following ratio is obtained:

‘Vus‘fK+
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where fr+ and f,+ are the KT and the 7+ decay constant, respectively, which require
lattice QCD inputs. The theory uncertainty on the right-hand side is less than 1073,
thanks to the cancellation of the common electroweak RC to the leptonic kaon and pion
decay rate [10, 11]. Combining this expression with the Ny =2+ 1+ 1 FLAG average of
frc+/fr+ [12] and the recent value of V4 obtained from superallowed beta decays [5], the
following result is quoted in PDG 2020 [9]:

|Vus| = 0.2252(5) (K 2/mu2 + superallowed) (1.2)

Meanwhile, in the semileptonic kaon decay process K — wlTv(y) one does not measure
a ratio, but obtains Vs directly from the decay rate, where the SM inputs include the
electroweak RC, the K7 form factors and the SU(2) isospin-breaking effects (we postpone
the detailed discussions to the main text). With the most recent theory inputs of these
quantities, PDG 2020 quotes the following result:

|Vus| = 0.2231(4) exp+rc (6)1at (K3) (1.3)

We observe a ~ 30 disagreement between the numbers in eq. (1.2) and (1.3), with a ~ 1%
difference between the two central values. This provides another interesting hint to the
existence of BSM physics [13-22] which, to some extent, is even more promising than the
top-row CKM unitarity deficit. In fact, the extraction of Vs is free from complicated
nuclear-structure uncertainties (except those that enter V4 in eq. (1.1), whose effect on
Vus is subdominant to the existing uncertainties). For instance, if the total uncertainty in
egs. (1.2) and (1.3) is reduced to 4 x 10~% or below, with the central values unchanged,
the discrepancy will reach 50 which is sufficient to claim an observation of a BSM signal.
Achieving this final goal requires a careful re-analysis of all the SM inputs, not just to



reduce their uncertainties but also to make sure that no large unidentified SM corrections
were missed in existing analyses.

In this work, we study a particularly important SM correction to the kaon semilep-
tonic decay, namely the electroweak RC. Earlier studies of this topic by Ginsberg [23-26],
Becherrawy [27] and later by Bytev et al. [28] and Andre [29] assumed specific models for
the strong and electroweak interactions which made a rigorous analysis of the theory un-
certainties rather challenging. Another class of works, e.g. by Garcia and Maya [30] and by
Judrez-Leén et al. [31-33] put more emphasis on the so-called “model-independent” piece in
the long-distance electromagnetic corrections (i.e. the convection term contribution, which
we will explain in the main text) but were unable to place any constrain on the “model-
dependent” piece originating from non-perturbative Quantum Chromodynamics (QCD) at
the hadronic scale. So far, the only approach that allows a systematic error analysis in
every part of the electroweak RC has been the chiral perturbation theory (ChPT) calcula-
tion by Cirigliano et al. [34-36], where the most general electroweak interactions between
hadrons and dynamical photons [37] and leptons [38] are arranged according to increas-
ing powers of p/A,, where p is a typical small momentum scale in such interactions and
A, ~ 4mF; is the chiral symmetry breaking scale, with F; = 92.1 MeV the pion decay
constant. Within this framework, the long-distance electromagnetic RC to Kj3 decay is
calculated to O(e?p?), and the theory uncertainty comes from two major sources: the un-
known low-energy constants (LECs) at O(e?p?), and the neglected contributions of the
order O(e?p?). Both uncertainties are estimated to be of the order 1073. At this point it
seems formidable to make any further progress within the same theory framework, because
(1) the LECs are only calculable within phenomenological models [39, 40] with outcomes
that are highly uncertain, and (2) to reduce the higher-order corrections one needs to per-
form a full two-loop ChPT calculation which is not only technically challenging but more
importantly, involves even more unknown LECs.

A series of preparatory works were done since early 2020 in order to eventually over-
come the difficulties mentioned above. First, a new theory framework based on the hy-
bridization of the classical Sirlin’s approach [41, 42] and modern ChPT was formulated [43]
in order to resum the most important O(e?p?") effects while retaining the full model-
independent characteristics in the traditional ChPT approach. Next, lattice QCD was
introduced to study the part of the RC in semileptonic decays that carries the largest
hadronic uncertainties, namely the axial yW-box diagram. The first calculation was done
on the pion [44], which removed the dominant theory uncertainty in the semileptonic pion
decay and also confirmed the result of the previous dispersion-relation analysis of the RC
in free neutron [45]. Shortly after that, following the suggestion in ref. [46] a new lattice
calculation of the K7 axial yW-box in the flavor SU(3) limit was performed [47]. Up to
this point, we finally have all the necessary ingredients and are in the position to present a
fully-updated numerical analysis of the electroweak RC in kaon semileptonic decays that
eventually reduces the existing theory uncertainty by almost an order of magnitude, i.e. to
the level of 1074,

The main results in this study were presented in an earlier paper [48], and here we
will show all the details. We concentrate on the K3 channel and not K3 throughout this



study for reasons that will become clear in the main text. The contents of this work are
arranged as follows. In section 2 we introduce the basic notation and set up our theory
framework. In sections 3-6 we present our update of the contributions from the “virtual”
electroweak RC; in particular, we demonstrate in section 6 how the most recent lattice
QCD results are used to constrain the hadronic uncertainties in the physical K7 axial
YW -box diagram. The contribution from the real-photon emission process is calculated in
section 7. In section 8 we discuss how our new results should be interpreted in the ChPT
language, and show the numerical improvement against the existing calculations. Final
discussions and conclusions are provided in section 9.

2 Notation and setup

One of the most important avenues to extract Vs is the inclusive kaon semileptonic decay
K3, i.e. the process K(p) — m(p') + 1T (p) + ve(py) + ny, where | = e,u, and n > 0
is the number of photons in the final state. It will be evident later that the case | = e
allows for a much better control of the theory uncertainties, so throughout this paper,
we will concentrate on this particular case. If all massless final-state particles are left
unobserved, the differential decay rate of the process is fully described by three independent,
dimensionless Lorentz-invariant variables:!

P 2p-pe _2p-p

xEM?(,y: M?(,Z: M?(’

(2.1)

where P = p — p/ — p. Notice that z is strictly zero (neglecting neutrino mass) for n = 0,
but may take a non-zero value when n > 1. We may have as well introduced the usual
Mandelstam variables s = (p/ + pe)?, t = (p — p')? and u = (p — pe)?, but none of them is
independent of {x,y, z}.

At O(G%) (where G = 1.1663787(6) x 1075 GeV~? is the Fermi constant extracted
from muon decay [49]), only the n = 0 process contributes to the K.3 decay rate. Its
corresponding tree-level amplitude is given by:

Gr _ x
My = ——Za,7"(1 — 5 v FE™(p' . p) | (2.2)

V2

where the effects of the strong interaction are fully contained in the following hadronic
matrix element of the charged weak current:

EXm(0p) = (x| (BOHE @) = Vi [f 0@+ 1)+ £ 00— 1)] - (23)
The equation above defines the charged weak form factors f£7(¢).2 It is also customary to
define a third form factor:

0 (1) = [T+ MIQ(t_Mfo’f(t), (2.4)

K

n the existing literature = is more often defined as P?, which carries a dimension.

%We wish to remind the readers that our sign convention for the form factors is f£7(0) < 0, which is
also adopted in our previous works, e.g. [43, 46], but may be opposite to other existing literature. This
serves to be consistent with the sign convention of the charged weak current (Jé‘v)f derived from ChPT.



and call fE7(t) and fE7(¢) the “vector” and “scalar” form factor, respectively. From the

definition above, it is obvious that f&7(0) = fE£7(0), so another common step is to factor
out their ¢ = 0 value: Kx (1)
) 3

fro(t) = 7 : (2.5)
FE7(0)

There are several different ways to parameterize f+70(t), e.g. Taylor expansion, monopole
parameterization and dispersive parameterization. The interested reader may consult
ref. [50] and references therein for the details, and we will also come back to this point
in section 4.

It is instructive to display explicitly the absolute square of the tree-level amplitude
above (upon summing over the lepton spin, as we will always do throughout this work):

Mo,y 2) = GEES™ (0 ) (B (0, p) " Te [P (p, = me)y" (1 =5)| - (2.6)

Here we purposely retain the x-dependence in the formula above despite the fact that
x = 0 when n = 0. The z-dependence becomes important later when we discuss the
squared amplitude of the bremsstrahlung process. The impact of the form factors f£™ on
the tree-level decay rate relies heavily on the leptonic trace in eq. (2.6). Suppose we define:

H(a,b) = Tr [P(p+ap ) (9, — me)(p+ bp) (1 —75)| (2.7)
then a straightforward calculation shows:
H(+1,41) = —2Mj [4y = 1)(y+ 2 — 1) + drx — re(rr + 4y + 32 — 3) + 12|
H(+1,-1) = H(—-1,+1)
= 2Mpre[—re + 17+ 2y + 2 — 3]
H(—1,-1) = —2Mgre[re —re + 2 — 1], (2.8)

where r, = M2/M% and r. = m2/M%. We observe that only H(+1,+1) is not explicitly
suppressed by the factor 7. ~ 1076, Following the notations in appendix A, the decay rate
at O(G%) in given by:

Mg
(Cridmee = g0 [ dudelMol2(0,9.2) (29)
3

From the argument above, it is apparent that only f£7(¢), and not fE™(¢), is relevant in

(T'K.3)tree- Of course the actual value of (I'k_, ), depends on the specific parameterization

Le tree
of fi(t) and the parameters therein, but the impact of the different choices is generically

of the order 0.1%. Since in this paper (I'k.,);,.. serves only as a normalization factor to

tree
the already-small RC, such a difference is completely negligible.
The electroweak RC induces a shift of the tree-level decay rate: (I'k; )10 = (TKes)ireeT

0T k,,. We define the quantity: i
_ 9 Kes

0K, =
’ (Ijl(e3>tree

that represents the fractional correction to the decay rate, and we will discuss its relation

(2.10)

to the different quantities within the ChPT framework in section 8. To match the precision



level of current and near-future experiments, we need a theoretical prediction of dx, , up
to O(av). At this level, the only two contributors are (1) the O(Gra) electroweak RC to
the n = 0 decay amplitude, and (2) the tree-level contribution from the n = 1 process. We
will spend the next few sections discussing these two contributions.

3 Virtual correction: analytic pieces

We start by discussing the virtual corrections, i.e. the O(Gra) electroweak RC to the n =0
decay amplitude. It is possible to express such corrections entirely in terms of perturbations
to the charged weak form factors, i.e.,

S My = —?/EV* WAL= 35)ve | (0 + PdFE™ + (p = 2)ud 5] (3.1)

The only complication is that §ff™ are complex functions of two variables, e.g. {y, z},
rather than real functions of a single variable t.

The virtual contribution to dg,, at O(«) arises from the interference between My and
My, ie. |Mo|? — |Mo|? + 5| M |2, with 6|M |2, = 29Re { M6 M,y }. Again, by restricting
fK7r

ourselves to K3, we only need to know ¢ in order to determine the perturbation to

the n = 0 squared amplitude:
e {o 17}
()

Based on the theory framework outlined in refs. [43, 46], the O(Gra) virtual corrections

8| M 3y, 2) = 2|Mo|*(0,y, ) +0(re) - (3-2)

to the n = 0 decay amplitude can be summarized by the following equation:

o M?2 1. M2 1 m2 9 3
OMyy = | =5 (I + ;I — o ~635P | M,
2 ( 2 TI e T2 RVERECI >+ 0
+OMo + OM3z + 6 Myw . (3.3)

Let us briefly explain the notation above, all the details are given in ref. [43]. First, the
terms in the square bracket come from the “weak” RC including its O(as) perturbative
QCD (pQCD) corrections apqep =~ 0.068, the electron wavefunction renormalization, and
the resummation of the large QED logs represented by 5QED = 0.0010(3) [51]. An in-
finitesimal photon mass M, is introduced to regularize the infrared (IR) divergence in the
electron wavefunction renormalization. Next, the quantities § M5 3 represent the contribu-
tions from two separate pieces of the electromagnetic RC to the charged weak form factors,
known as the “two-point function” and “three-point function”, respectively. Finally, 6 M.,y
represents the contribution from the vW-box diagram:

Gre? dt¢ M3 uAY (" —2pE) (1 — y5)ve Kﬂ'
V2 (2m)* M3, — ¢ [(pe — ¢')% — m2] [ MQ}

My = — S (d5p ), (34)

3Using the on-shell condition, one can show that other leptonic bilinear structures, such as

1M D] Peatlya (1 — ¥5)ve, are linear combinations of . (p+£ p')(l — 5)Ve.-



where we have introduced the so-called “generalized Compton tensor” T lff,” which plays a
central role in the upcoming analysis:

T (d'svp) = [ db et (n)| T{I (@) T O} K 0)) (3.5)

where T'{...} denotes the conventional time-ordering. It satisfies the following Ward iden-
tities:

/

4, T (50, p) = —iFg. (v, p)

4T (dsp',p) = —iFg (0, p) — iUk (d'59'p) (3.6)
with ¢ =p' +¢ — p, and
Ui (50 p) = /d4$€iq"m (n(p))| T{JE ()0 - T (0)} |K () (3.7)

The first line in eq. (3.6) is a consequence of the exact conservation of the electromagnetic
current, while the second line entails the partial conservation of the charged weak current.
Expressing hadronic matrix elements in terms of integrals with respect to 7, is a classical
technique in hadron physics that appears also in, e.g., the Cottingham’s approach to the
hadronic mass splittings [52-57].

Using now the following Dirac matrix identity:

YAy = ghry® — ghoaY 4 g it — e Py gy (3.8)
(with %123 = —1) one splits the vy -box diagram into two pieces: OMyw =46 ;‘W+5M$W,
where the antisymmetric tensor is contained in the second term.* A great simplification is
observed upon combining 6 M with dMy,, [46]:

e = qfl)z e { (5,’36_' q,]\j;;z Thru(d'sp'p) + %T;’éﬁ(q';pﬁp)
—2)2 _ZE\% TR (50 p) + ey _Z % F?&(Q';p’,p)}
- [m ]‘ﬁ £ aa| Mot (5M +0MSy) (3.9)

The terms in the square bracket in eq. (3.9) are exactly known as they are isolated from
the full one-loop integral with the help of the Ward identities in eq. (3.6), as well as the
operator product expansion (OPE) at leading-twist in the ¢ ~ My, region (see eq. (6.1)
in ref. [43]), and ay® =~ 0.019 entails the O(a;) pQCD corrections of such terms. The

“We used to label them as MYy, and §MZ}yy in ref. [46], but this may cause confusions with notations of
box diagrams in some literature when we further divide the contributions from the vector and axial charged
weak current in T’ﬁ”, so here we adopt an alternative labeling.



remaining “integral” piece requires further theoretical analysis and will be treated in the
next section. Meanwhile, the other component of the yW-box diagram reads:

(}F B dq  M? 1 1
(SMb _ 1— / W uuoc/\ TKT(' /AW
\/§ ul/f}/)\( 75)’08 (271')4 M[%V_QQ (pe_q,)Q m2 q ¢ pv (q D 7p)7

(3.10)

which can be split into two pieces, as well: 5M$W = 5M3% —|—5M,l;’vé, where 6M$’V‘V/ (5M,?’V’3)
picks up the contribution from the vector (axial) charged weak current in the generalized
Compton tensor T;{iﬂ'

At this point, we can combine the terms in the square brackets from egs. (3.3) and (3.9).
They are analytically known and do not require any further treatment. Their contribution
to 5ff7r is given by

MZ 1. M3 1. m2 3 1
@ﬁﬁ%;{almné_ W+71 S+ iy

27 4 m2 M2 8 2

+1Qm}f ™(¢), (3.11)

where @, = —(3/2)apqep + g™ ~ —0.083. We use the subscript “I” to signify the fact that
it carries an IR divergence. We will see later that the remaining IR-~divergent pieces in the
virtual corrections come from (6 Mz + M, ), . and M3, and will carry the subscript “II”
and “ITI” respectively.

All the remaining O(Gra) electroweak RC to the n = 0 decay amplitude not included
in eq. (3.11) are fully contained in the following quantities: (5M2 + 6 gW) 5M7W, OM;3

and 5M3§3. They will be studied in the next three sections.

. . a b,V
4 Virtual correction: <6M2 —+ 5M7W)int and 6M7W
In this section we evaluate the loop integrals in <5M2 +9 gw) . and 6M:’V‘§. The first

11

important observation is that these integrals cannot depend on physics at large virtual mo-
mentum ¢ (so we could take M3, /(M3 —q'?) — 1 in the integrand). In ((5M2 +6 ;LW)int’
this is because the numerators in the integrand contain explicit factors of p., p—p’ or quark
masses (in 'y ); whereas in 5M$’V‘;, it is because there is no extra antisymmetric tensor

coming from (Tﬁ”)v, so the integral vanishes when ¢’ > (p — p') or p. due to symmetry.
Therefore, these integrals are saturated by contributions from the intermediate hadronic
states at low energy.

All the information on the hadronic structure in these integrals is contained in the
generalized Compton tensor 7% and the vector I'%. . Within the former, we distinguish
two types of contributions shown in figure 1: the pole term associated with a charged
meson (initial or final, depending on the reaction channel) propagator which leads to a 1/¢’
behavior in the soft photon limit, and the seagull term which is regular in that limit. The
pole term is model-independent and given in terms of the meson weak and electromagnetic
form factors, whereas the seagull term, alongside the form factors, contains information
about excited states, and is generally model-dependent. It is common to single out the
Born part of the generalized Compton tensor, defined as the pole terms complemented by



Figure 1. Pole (left, middle) and seagull (right) contribution to Tﬁﬂ at low energy.

a part of the seagull term that ensures that the Ward identities in eq. (3.6) are satisfied. In
this way, the remaining, non-Born part is regular for ¢ — 0 and also obeys Ward identities
individually.

Guided by the order O(p?) result in chiral expansion for the Compton tensor,

. 2p" + ) (p+p' +4q)
T — iV [( _guuj|
( KO ) 2 us (p’+q’)2 _Mg

v _ iV @p=d)e+r -d) L
(TK+7TO)p2 - \/i [ (p . q,)? . MIQ( g 9 (41)
and
M2 — M?
o _ * K s / I\
(FKOW*)pz = Vs (p/ + q/)2 — M72r (2p + Q)
Ve Mz — M?
- — __us K T (2p— ¢ )M 4.2
( K+7r0)p2 ﬂ(p_q,)g _Mfz(( p Q) ) ( )

we thus define the minimal Born contributions for the two decay channels as

T;u/,B _xr% F7r_ 2 (2])/ +q’)M KOn—/ 2 2 v KOr=/ 2\ v uv p KO~
KOx— _Zvus em (q ) (p’+q’)2 *M2( + (q )( p+Q) _f— (q )q )_g fseagull

y oy 2p — ¢ )" 4.0 4,0 +70
TR = Vi Pl (a7) [ (p(_q,)z _)M2 (FE " (a*)(2p =) = 17 <q2>q”)—9“”f§§ag’£n] :
K

(4.3)
where FT(¢%) and FE' (¢"2) are the electromagnetic form factors of the 7~ and the K+,

respectively,” which satisfy F7_ (0) = —1 and FX(0) = 1. Furthermore, the normalization
of the seagull term is fixed as:

07— 07— Or— + 50 + 50 + 0
fsleilgull:ff " ((12)_!](‘5(7r (q2)7 fsle{agﬁll: f " (q2)+f£{ " (qQ) (44)

One can check that the electromagnetic Ward identity is satisfied upon neglecting the
¢’-dependence of the form factors in qLTI‘é’;B. With the same diagrams and keeping in

SIn principle the photon can also couple to K° due to its non-zero charge radius, so FJf,,O (¢*) # 0
when ¢? # 0. However, a simple ChPT calculation at O(p*) indicates that |Fgfn0(q'2)\ < 0.02 when
\q’2| < 0.1GeV? (see, e.g., ref. [59]), so to our required precision it is completely negligible. On the other
hand, Fg’,ﬂ (¢’*) is exactly zero due to G-parity.



mind that we must apply the equation of motion to the charged weak vertex so that it
vanishes exactly when Mg = M (see, e.g. the discussion in section 7 of ref. [43]), the Born
contribution to I'f.  reads,

2 2
M2 — M. KO

,B T T
Do = Vis W +¢)2 — M2 20 + ) FL (@) £ (6%
M3z — M? 0
,B p + +
Il o =V e _;(,)2 “M 2p — ) FL (@)™ () (4.5)

that depends on the scalar but not the vector charged weak form factor.

The Born contributions of eqs. (4.3) are defined in terms of the model-independent
pole contributions supplemented with a minimal seagull term required by gauge invari-
ance. It is easy to see that if rearranging eqs. (4.3) into two separately gauge invariant
structures (clearly reminiscent of the usual inelastic structure functions, (—¢g" +...)F] +
(pFp” +...)/(p- q)F»), one finds that only the contribution to F5 contains a pole and is
model-independent. The Born contribution to Fj is regular and cannot in principle be
distinguished from other inelastic contributions, so that egs. (4.3) represent the minimal
Born contribution definition only, bearing residual model dependence. Fortunately, its
effect on the loop integrals turns out to be very small. In (5M2 + (5Mf/‘W)im, it only con-

tributes to & f&7, whose effect in the decay rate is further suppressed by r. ~ 1076 (which
is yet another reason why we restrict ourselves to K,3 throughout this study), whereas the
contribution to 5M7bi}§ vanishes trivially due to symmetry.

Starting from O(p*) one expects new structures such as pp”/A? to enter, which
parametrize inelastic contributions. Observe that a new mass scale A is present for di-
mensional reasoning, and an obvious choice is the mass of the lowest resonances. This
means we are able to get a handle of the effect of the inelastic contributions by computing
the contributions from the resonances at low energy. We perform that calculation based
on the framework of resonance chiral theory (this is fine, as we are only dealing with
tree graphs, see details in appendix B), and find that their contribution to dx , through
(5M2 + 4 '?W)int and 0 M, SV‘V/ is smaller than 10~%, which indicates that this contribution
is negligible. However, to stay on the safe side, we introduce a common uncertainty of
2 x 10~%, which is roughly four times the magnitude of the resonance contribution esti-
mated in appendix B, to dk_, as a very conservative estimation of the effects from the
neglected inelastic terms.

Before proceeding directly with the numerical calculations, we prefer to further isolate
a particularly important piece from TI’?;’B and F’;(’f’ known as the “convection term” [60],

Tuu, conv __ _Z.(zp/ + q/)'uF[V(OW— (p/,p)

Ko (' +4q)° = M7
T/u/, conv __ i(2p - q/)'uF]V(+7r0 (plvp) (4 6)

+ 70 - ) .

K (p—dq')* = M,

puseony _ (20 + )"0 — D) Fio, (7',p)
Ko (' +q)? = M7

preony _ (20— )"0 — PIAFri o, p) L
K+#x0 — (piq/)Z *M2 : ( . )

K
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It corresponds to taking the contribution of the point electric charge in the Born term.
This contribution contains the full IR-divergent structure and is numerically the largest.
Being ¢’-independent, it leads to a contribution to the loop integrals that does not depend
on the specific parameterization of the hadronic form factors. Therefore it gives rise to
the so-called “model-independent” contribution emphasized in refs. [30-33], which is more
commonly known as the “outer correction” in the case of free neutron and nuclear beta
decays [61, 62]. We thus choose to split the full Born contribution to d f f ™ into three pieces

(3557 oy = (5 (577 + (55 (1)

The first and the second piece on the right-hand side of the equation above represent the

as follows:

IR-divergent and IR-finite contributions from the convection term, respectively. The last

piece, (0fE™ , represents the difference between the full Born contribution and
+ Born—conv

the convection term contribution. In what follows we provide the analytic results for the
first two pieces:

(6717 ), = 1= S LSS (L WY
+ n 4r meMy(1 — 22) s meM,; | 7T
5 M2\ (P - (p+P) ,on- p-(p—7) ko
O o | (B pKOmm gy BIP T P) pKOn
+<2 nM%)( oz + T Ot T - ()>

(5fK+7r > _ 04{ 4pe - pay, )lnxuln< 2 )fK+7r (t)

meMK(l — ."L‘%

2 ) + +0

meMK

and
(610 )fn = —40;{ (C&? +4p, - p'OB 4 2p, - Cy — 2m§02) FET (1)
+ (- )T )+ (- ) () (Cl +;C11>
—;( APV @)+ pe - (0 - D) (1)) Cao
+(pe-(p’—p)+m§)( Ko7 (1) 4 £ (¢ ())02}
OH™ )i = — {(C — 4p, - pCf" — 2p, - pCy — 2m2Cy) £ (1)
( (p+p) ™ 4. (p*p’)ffﬁ”o) <C1+;Cu>
+2 ( S+ ) () + pe - (p—p’)ffﬁﬂo(t)) Cla

+< e'(p/—p)—i—mg) <fK+7r (t )_ffﬁﬂo(t)) 02} ) (4.10)

The variables x5, x, and the loop functions are defined in appendix C. Notice that one
needs to substitute m; = M, ma = me, and v = s = (p' + p.)? in the C-functions for the
case of K2, and m; = My, ma = me, v = u = (p — p.)? for the case of K:é
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Next, we shall study (& ff“)Bom_conv, which is the only piece that requires a specific
parameterization of the hadronic form factors in order to perform the loop integral. Our
first observation is that the Born contribution to ¢ ff’r is UV-finite even without the form
factors (it is UV-divergent for J f&™ without the form factors, which is however irrelevant
for K¢3). Therefore, we expect the effect of the form factors to receive a regular power
suppression instead of a logarithmic enhancement.

There are different ways of parameterizing the form factors which are practically indis-
tinguishable in the region ¢’ ~ p. ~ p—p' ~ My — M relevant to the integrals. However, in
practice a simpler parameterization allows for a more straightforward evaluation of the loop
integrals. Therefore, in this work, we shall adopt the monopole representation for both the
electromagnetic and charged weak form factors. It is advantageous because the monopole
resembles an ordinary propagator, so the ¢’-integral reduces to standard Passarino-Veltman
loop functions which can be integrated numerically with respect to {y,2}.% For the elec-
tromagnetic form factors, we have:

. 1 . 1
Fr(d*) =5, FE ()= s
e 1— 4 (R2)q? " 1— 5 (R%)q”

where (R2) and (R?%) are the mean-square charge radius of 7~ and KT, respectively.” For

(4.11)

the former, we use the result in ref. [65]:
(R2) = (0.431 + 0.010) fm? (4.12)

because it was obtained through an experimental fit to the monopole form factor, which
is what we adopt in this work. This value is consistent with the more recent determi-
nations [66, 67] as well as the PDG average [9], and the 2% experimental uncertainty is
completely negligible in our analysis. The kaon mean-square charge radius, on the other
hand, was measured with a 15% uncertainty [68]:

(R%) = (0.34+0.05) fm?, (4.13)

which agrees with monopole-SU(3) estimates (see, e.g., ref. [93]). We will include this
uncertainty later in our error analysis. Finally, for the vector and scalar charged weak
form factor, the monopole parameterization reads:

_ M2 _ M2
2 Vv 2 S
— = 4.14
f+(q ) M‘%—QQ’ fO(q ) Mé_qQ? ( )
where the fitted vector and scalar pole masses are [50]:
My = (884.4£7.4)MeV, Mg = (1208.3 £52.1) MeV . (4.15)

The uncertainties are less than 5% and can be safely neglected in our analysis.

SThroughout this research we make extensive use of Package-X [63, 64]. It is a Mathematica package
that provides very efficiently all the analytic expressions of one-loop integrals that can be directly applied
to the numerical phase-space integration.

"A general monopole form factor would read F = 1/(1 — ¢*/A?). Here, we simply express the cut-off A
in terms of the charge radius, as we are interested in a precise low-energy representation.
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Full O(e?p?) Mg =1.1M,

(Fgc0, o —5.0%x 1073 | =53 x 1073 | 3.08 x 1072
(0%9,) Born—_conv 4.1x1073 3.6 x1073 1x1074
(O Veomy 9.6 x 1073 92x1073 | 9.9x1073
(5K$)an_mmy 10)<Ri>><10—4 ~1.8x1073 | —1x10*

Table 1. The IR-finite Born contribution to 6 My + 5M$W + 5M,l;%.

To end this section, we summarize in table 1 the numerical contributions to dx_, from
the different pieces in eq. (4.8) (except (& ff”)n that we need to combine with other terms
to achieve IR-finiteness). For the error analysis, we retain only the uncertainties of the
order 10™* or larger which, in this case, only arise from (R% ). The first column represents
the physical results, but we also consider two other cases for comparison. In the second
column, we retain only the O(e?p?) contributions, which corresponds to taking fr=fo=1
and FT_(¢?) = —1, FX" (¢?) = 1. Comparing to the numbers in the first column, we find
the inclusion of form factors has a larger impact on the ¢ K, than on the § KO, channel.
In fact, the amount of shift in the former exceeds the estimated O(e?p*) uncertainty of
0.19% in the ChPT analysis [36]. This is understandable because the effect of the form
factors scales typically as Mf /M?, where M? is the typical mass scale in the monopole
parameterization, and M; is the mass of the charged meson. In K ;;) we have M; = Mg
so the numerical impact is larger. Finally, in the third column, we consider an unphysical
case where My = 1.1M,. We observe in this case that (Jg,,)™ > (3x.,) which
proves our previous assertion that the contribution from the convection term dominates

Born—conv’

when the initial and final hadronic states are nearly degenerate.

5 Virtual correction: d M3

Next, we study 6 M3, namely the “three-point function” correction to the charged weak
form factors. It was suggested in ref. [43] to calculate such contributions in fixed-order
ChPT, and we obtain the following results at O(e?p?):

Mg 5

2
Ms 2

K+ 0 fin
5™

+ (o

ME o KOn— fin
. ﬁ,% B 2‘| + <f+’3 >e2p2 ’

e2p?

K+ ___a p-(p-p)
(5f+,3 >€2p2_ 427 2MI2( In
_apr--p) |

A 2M?2

(37557) (5.1)

e2p2
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where the IR-finite pieces read:

+ 0 8nla [1- - 3_

Za  M% MK _dma [
+ 1+1In 2K3 + Kj + K5—i— Kﬁ]
2v/2m My — Mz V2 37573
_8ma M? 2 2
V2 M2 - M2 [ 2K‘”’JFK‘*JF3K“”+3K6 3K9_3K1°}
- - 3-
(fKO ) = —81Z« |:2hK+7r0(t) + hor—(t) + 2hK+n(t)} . (5.2)

The parameter Z = 0.8 represents the short-distance electromagnetic effects that causes
the M+ — Mo mass splitting, while { K} are the O(e?p?) LECs in the chiral Lagrangian
with dynamical photons [37]. Finally, the loop functions l_LpQ(t) are defined in appendix A
of ref. [43].

The strategy above has a caveat, namely: there is an IR-divergent piece in (6 ffg)
that is numerically large, so its associated O(e?p*) uncertainty can also be significant.
Fortunately, it is straightforward to resum the IR-divergent piece to all orders in the chiral
power counting by appropriately putting back the charged weak form factors based on two
simple criteria as follows:

1. The combination In(M?/ M72 ) —5/2 originates from the convection term contribution
and should stay intact after the resummation. This is apparent by noticing that the

same combination appears also in (5 ff”)ll.

2. As we will show in section 7, the IR-divergent piece from the bremsstrahlung contri-
bution takes the following form:

2
SIMPE o =2 ( tanh ™! 3;(0) — 1) In lMK] |Mo|?(0,y,2) + ... (5.3)
rem T 1 M,% r I

1
Bi(0)

the definition o 1s given in eq. . where [5; 1s the speed of the
he definiti f§|M32.,, is gi i A.13 here $3;(0) is th d of th
positron in the rest frame of the charged meson (i.e. 7~ in K% and K in K5). The
M,-dependence above must be canceled exactly by the corresponding M,-dependence

n (5ff”)1, (5ff”>n and the IR-divergent piece in 6ff§

The arguments above lead straightforwardly to the following expression for § ff_f z

5755 = (6117 + { (5555)" L+ 0@} (5.4

where the fully-resummed IR-divergent terms read:

(5777 = f 2B P [ ) - 5 0) H?{ - 3]

4 2M2 2
O7r_ _ Oﬂ.— 071' M2 5
(5 ¥ )IH - 47T102(]]D\47%]M [ AN (R N )} [1 m - 2] : (5.5)
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(6K63 )gln

K% 0.5(1)g2ps x 1072

K;g 1'4(3)62p4(8)LEC x 1073

Table 2. The IR-finite contribution from the three-point function.

while the IR-finite terms stay unchanged as in eq. (5.2). A significant advantage of eq. (5.4)
over the O(e?p?) expression in eq. (5.1) is that now only the {...} term involves a chiral
expansion and must be associated with an O(€2p4) uncertainty.

fin
We end this section by summarizing the numerical contribution from (5 ffg) , ., to
b e p

the decay rate in table 2. The O(e?p*) uncertainty is obtained by multiplying the central
value by M2/ Ai. The numerical values of the LECs {K['} at y = M, are obtained from
refs. [40, 69] (also summarized in ref. [70]), and we assign a 100% uncertainty to the sum
of the LEC contributions.

6 Virtual correction: JMSQ;’[‘}

The last piece of the virtual corrections to f£™(¢) comes from 5M«I;hé7 which is fundamen-
tally different from those we studied in section 4 and 5 in the sense that it probes the strong
interaction physics in T~ from Q? = —¢’? = 0 all the way up to Q* ~ M3,. At large Q, one
could perform a leading-twist, free-field OPE that gives us the large electroweak logarithm,
but this treatment breaks down at small (). Also, due to parity, there is no Born contri-
bution in 5M$’Vé that can be easily accounted for as in the previous two sections. Instead,
one needs to deal with contributions from inelastic intermediate states residing at Q ~ A,
that are governed by non-perturbative QCD. In the language of ChPT, their corresponding
uncertainties are buried in the poorly-constrained LECs X7 and X§ bys [34-36, 46].

As we mentioned in the Introduction, an important breakthrough happened in early
2020 as lattice QCD started to pick up its role in this subject. A series of first-principles
calculations were performed to study the so-called “forward axial yW-box” defined as
follows:

ie? dq¢  M? 1 y T (d': pgs po)
DXﬁqf(gbi,qbf,M) /( W 26M aﬁq/a 5 AR Sl (6.1)

~ 0] @M -7 (@) FIo)

where ¢; and ¢ are two degenerate hadrons with mass M, and carry the same external
momentum pg, and Fif (0) is the form factor fif (0) multiplied by the appropriate CKM
matrix element. The first calculation of ny/v‘?, (7 +, 7% M) in ref. [44] led to the reduction
of the RC uncertainty in the pion semileptonic decay by a factor of three. Shortly after
that, a new calculation of D%’?}(K O 7=, M) in the flavor SU(3) limit was performed [47]
following the suggestion in ref. [46]. These two calculations together provided an improved
determination of the LECs X; and X} hYS that agrees with the values quoted in the earlier
ChPT papers [34, 36, 71] within error bars, which suggests that the error assignment in
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the latter is reasonable. However, in the pure ChPT representation, the major source
of theory uncertainty in the long-range electromagnetic corrections to K.3 comes from
O(e?p*) instead of the LECs. Therefore, the significance of the calculations above was not
fully revealed within the traditional framework.

In this section, we will demonstrate how the above-mentioned lattice QCD results play
a decisive role within the new theory framework, namely to pin down 5M$§é. We start by
splitting the forward axial yW-box into two pieces:

Vi (di, 05, M) =0V~ + OV (6i, ¢, M) (6.2)

which come from the integral in eq. (6.1) at Q? > Q2 and Q? < Q?, respectively, where
Qcut is a scale above which the leading-twist, free-field OPE is applicable. Throughout this
work we choose Q?,; = 2GeV?, in accordance with the original lattice QCD paper [44].%
The first term, D¥W>, contains a large electroweak logarithm and is independent of the
external states {¢;, ¢} as well as the mass M. It is given by:

Mg,

[0
OV = Ll R RRR (6.3)

cut

where “4...” denotes the pQCD corrections, which are at present calculated to O(a?) [72],
leading to a very precise determination: DKV’{? = 2.16 x1073. Meanwhile, ijﬁ{‘f (¢isdp, M)
depends {¢;, ¢, M} and probe the details of the strong interaction at @ ~ A.

To proceed further, we perform the same splitting to the integral in 5M7b’v‘é

,uya)\ / Ky 1.,/
e / 2m)A M2, — ¢2 (pe — ¢')2 — m2 ¢ (T (¢p ,P))A

- {/622>Q§m+/@2<c22m} (), (6.4)

where (T ﬁ”)A represents the component in T;ff,” that involves the axial charged weak

)bA>

current. The contributions from these two terms to § ff’r are denoted as (5 f and

b,A<
SfET , respectively, and will now be related to the different components of the forward
+

axial yW-box. First, since at Q% > Q?,; > |pe|?> we can set p. — 0 in the integrand, one
can show using OPE that,

(658m) = OV ) (6.5)

Adding this piece to (5ff”)1 in eq. (3.11) reproduces the full electroweak logarithm in the
total RC.

8The validity of this choice is justified by the observation that the difference between the pQCD cor-
rections to O(a?) and to O(a?) is negligible above 2 GeV? [45], which demonstrates the convergence of the
perturbative series.

~16 —



Next, we can parameterize the integral at Q? < Q2 as:

dt¢ MG 1 1
e? w pura ! K/ 1. |/

" /QQ<QZM @I MG, —¢? (pe —q)2 —mZq?" e (T (div'p)
= Vi[9 (M3 M2 2, 5. 0)(p + 9) + g (M, M2 2, s,u)(p — )

—|—ge(M[2<, Mﬁ,mg, s,u)p;\} , (6.6)

so it is obvious that: "
LA
(6ff”)7W = g+(M[2<,M72r,mg,s,u) ) (6.7)

To relate this quantity to the recent lattice QCD results, we set p — p’ and p. — 0 on
both sides of eq. (6.6). That gives:?

v 4 1 2 TK= /; /7 /
g+(M7%,M7%707M7%7M7?) _ e / d*q ZZWW 1 e‘uyaAq:lpl)\( uv (q p,p ))A
2M? Q2<Q?,, (27)4 M, — q? (¢2)2 v

= OV~ (K, m, M) £ (2). (6.8)

Since the lattice community has computed DZV’?f(K ,m, M), we can obtain g, (M2, M2,0,
M2, M?2) which is not exactly the same as g4 (Mz, M2, m2,s,u) that we seek. However,
remember that the integral in eq. (6.6) is dominated by the physics at the scale ¢/ ~ A,
(e.g. Regge physics [45]), it is then possible to simply take g, (M2, M2,0, M2, M?2) together
with an appropriately-assigned uncertainty:

E2
g+(M12(7M7?7mz737u) :g+(M37M3707M7%7M7%)+O <A2> ) (69)
X

where E is an energy scale that characterizes the non-forward (NF) kinematics in eq. (6.6),
e.g. Mg — My, (s— M,r)l/2 or (u— Mﬂ)l/Z. Since they are all smaller than My, we can
take ' — My as a conservative estimation of the uncertainty due to the NF effects. So,
combining egs. (6.5), (6.7) and (6.9), we obtain:

(ortr)o = {ci +

Notice that only the term in the square bracket is associated to an O(Mz / Ai) uncertainty.

VA< MfIQ( Km
OV (K,W,Mﬂ)—k(’)(AZ )H Kn(py | (6.10)
X

The recent lattice calculations provided the forward axial vW-box in the charged pion
and neutral kaon decay:

Y= (r, 7% My) = 0.671(28)1a x 107, OVp=(K°,m™, My) = 0.278(44)15¢ x 107° .
(6.11)

In the last line we made two implicit approximations: (1) we do not distinguish the value of f£7(0)
between the case of Mg > M, and Mg = M,, and (2) we add the ¢-dependence to the form factor.
Both approximations only lead to changes of a few percent in ff ™ which is completely negligible after
multiplying with OY 3= (K, m, My).
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(0K )g"j?, > < Total

KY, 4.3 %1073 | 0.6(1)1ae(1)nE x 1073 | 4.9(1)1ae(1)np x 1073
K% 4.3 x 1073 | 2.1(1)1ae(4)nF x 1073 | 6.4(1)10¢(4)nF x 1073

Table 3. Contribution from 6MS’V€.

The box diagram in charged kaon decay is not yet computed, but can be related to the
first two through a matching to the O(e?p?) ChPT expression:

OV (K, w0 My) = 20V (n ", 7%, M) — OV~ (KO w7, M) = 1.064(71) 10 x 1077
(6.12)
The higher-order ChPT corrections to the expression above scales as O(M2/ Ai) and can be
safely neglected in our error analysis.!” With the numbers above, we obtain the numerical
correction to the K3 decay rate from 5MS’V’3, as summarized in table 3. Notice that the
NF uncertainty is obtained by simply multiplying 2D¥V’{‘,<(K ,m, M) with M2/ Ai.
To end this section, we briefly discuss the future role of the lattice QCD. The estimation
of the NF uncertainty in eq. (6.9) is physically sound but can be further improved with an
extra lattice calculation. This can be seen by considering the following relations:

8
—5 X1+ XPE(M,)

1 VA &Y MW 1 (5 M?
?m(mvw(K moME gy | e %) TO\ R

—%Xl + XM (M)

__L VA(7-+ 750 o MW 1<5 > M2
=5 (D (KT K% M) = o—In 1 07 + 53 (3 +0 ) (6.13)

Both equations are obtained through a matching between the calculation of the RC based
on Sirlin’s approach and ChPT; the first line was given in ref. [46] and the second line can
be derived accordingly. We see that both DEY/V’{‘,(KO,W_,M,,) and D;/V?,(KJ“,KO,Mk) are
matched to the same combination of LECs, except that the latter is subject to larger higher-
order corrections because the involved meson mass is My which is larger. That means,
the difference in the numerical values between D (K% 7=, M) and D;/V‘?,(K KO M)
provides an estimation of the size of the NF correctlons in eq. (6.9). This strategy is very
similar to the standard lattice QCD technique to estimate the size of the chiral power
corrections through the variation of the quark masses.

ONevertheless, a direct lattice calculation of DI,/‘,‘{‘/ (K, 7% M) in the future is still very much desirable
as it provides an excellent test of the convergence speed of the chiral expansion in the SU(3) limit.
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Figure 2. The real photon emission diagrams.

7 Bremsstrahlung contribution

After going through all the virtual corrections, we switch to the contribution from the n = 1
process, which is simply known as the “bremsstrahlung contribution”. According to the
discussions in appendix A, the bremsstrahlung process contributes to the differential decay
width dI'k_, /dydz not only in the D3 region but also in the D4_3 region, the latter has no
correspondence in the n = 0 process. Therefore, it is eventually up to the experimentalists
to decide in which region of {y, z} will the data be taken, and whether or not a veto will be
applied to exclude decay events with hard photons. Of course, the simplest choice is to not
apply any veto, and to collect data from all available regions of {y, z}. This corresponds
to a fully-inclusive prescription of the real photon emission process, or in other words, we
should calculate the sum of the full n = 0 and n = 1 decay width. This prescription was
adopted in ref. [36] and will be followed in this work.
The bremsstrahlung amplitude, depicted by the two diagrams in figure 2, reads:

_ Gre _ u De 5*(k7) %¢*(k) Kmy, !
MK~>7Te+V'y = NG Uy (1 = 5) { De - k + Mo - k UeF'u, (r'sp)
S (1= g5)ues (BT (ki) (1)

We observe that the generalized Compton tensor Tlﬁ” appears again, only that now one
deals with a real photon. Unlike in the loop diagrams, here we only need to know Tlfi’r
for small (due to the phase-space constraint) and on-shell photon momentum k, so instead
of exhausting the contributions from all intermediate states, it is possible to adopt a low-
energy effective expression Tﬁ”. It should, however, satisfy three basic criteria:

e It must contain the full convection term contribution to ensure an exact cancellation

of the IR-divergence from the virtual corrections.

e It should include the seagull term, as the effect of the latter is not particularly
suppressed in the decay rate, unlike in the loop diagrams.

o It should satisfy exact electromagnetic gauge invariance, so that one could perform
the usual replacement > _e#(k)e¥* (k) — —g¢" in the sum of the outgoing photon
polarizations.
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The simplest effective expression that satisfies all these criteria is:
W20 R Fhr (7i0) | (.u [ (28 + )R
T ! — KO ’ { * l:
KOﬂ-— (k7p 7p) <p/ + k)Q _ Mg + ZV’LLS (p/ + k>2 _ Mg
i(2p — k)M }V<+ 0(p/ap) iV, (2p — k)'kY 4
T us +g" | +0O . (7.2
G-P-ME T\ va [woRr-ag 0 TOw - (T2

The first term on the right-hand side in the expressions above is just the convection term,

- g“”} + 0(194)}

Tio(kp',p) =

whereas the remainders are the seagull term and the extra pieces from the Born contribution
needed to recover gauge invariance. Notice that the convection term is exact, and only the
terms in the curly bracket undergo a chiral expansion. In fact, if we expand the convection
term to O(p?), the LO ChPT expression in eq. (4.1) is recovered. In fact, the existing
ChPT calculation uses exactly eq. (4.1) in their calculation of the bremsstrahlung effect,
but now our expression allows a resummation of the most important terms in 7% to all
chiral orders.

With the above, the bremsstrahlung amplitude splits into two pieces: My e+, =
M4+ Mp that are separately gauge-invariant (i.e. we can write My g = SZ(k)MiB, where
kqu,B =0). For K = 7~ eTv.y we have:

GGF 0= *
My = — \/i F;f( (p/’p)gu(k‘)
X ( Pe v )V u, Y (1 = v5)ve + Uy (1 = 45) Fy" ve
pe-k Pk 2pe - k
eGr_ . _ p'*
Mp = — \/i Vusgu(k)ul/ {p/k% - ’YM} (1 - ’75)1}6 ) (73)

and for Kt — 7% T,

eGF K+70 *
My = — \/i Fy, (plyp)éy(k)

Pe P\~
- = 4 1 1_ e
x{(pe-k p~k>“” )
eGp

Ma = SV { Pk =} (=)o (7.49)

U,y (1 — 75)%7”%}

The significance of such a splitting is that M4 is an exact expression and only Mpg involves
a chiral expansion. Therefore, in the computation of the decay rate, only the contribution
from 2Re{Mp5Ma} + |Mp|? acquires an O(e?p*) uncertainty, while the contribution from
|M4|? is exact. As we will show later, this brings an advantage over the existing treatment
as the latter is numerically the largest.

Now we proceed to the phase space integration of the bremsstrahlung contribution.
We first discuss the integration in the Dj region. To isolate the IR-singular term, we first
split |M|? into two pieces:

2
De i
APt = e (E = L) M0, + Ma 75)
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(0K s 111,11 brem(py) | From 2Re {M 3 Mp} + |MZ] Remainder Total

K 0.10(2)c2p2 x 1072 2.41(3)mo x 1072 | 2.51(3)50(2)e2pe x 1072
K —0.03(1) 20 x 1072 0.44(3)io % 1072 | 0.40(3) 10 (1)e2ps x 1072

Table 4. Sum of the IR-divergent one-loop contribution I, II, III and the bremsstrahlung contri-
bution in the D3 region.

where p; = p (p) in K5 (KY%). The integration of the first term with respect to {p), k)
produces an IR-divergence:

ay(y,2) A3k d®p A p i \2
12 9 (4)P_ o V( e _ z>
R m e o R G O (e e
= IRy, 2) + I (y, 2), (7.6)

where the explicit expressions of IZ-IR and Iiﬁn can be found in appendix D, and with this,
we verify our previous assertion about the IR-divergent structure of the bremsstrahlung
contribution in eq. (5.3). We can now combine the IR-divergent contributions from the
virtual corrections (which we previously labeled as I, II, III) with the bremsstrahlung
contribution in the D3 region to obtain the following shift of the K3 decay rate:

(5FKe3)I,H,IH+brem(D3) 25671‘3 / dde5|M’I JLITI+brem(Ds3) (y’ ) ) (77)
where

Mz 1 M 2 M?

6‘M‘%,II,HI+brem(D3)(yvz) = {27r [21 miZ —-In—+ (1 EAC) tanh ™" 3 ( ))1 M2
1 M? 13 e M?

tanh~15, i iy |+ 6QED _ My
+ﬂz‘(0) anh ™ 5;(0) In m2 4 g et o (v, 2)
M00[S

XMl (0,9, 2) + 5 o 32Ek 27r)32E

x(2m)* 6D (P — k = p,) {|Malks + 2%e {M3Mp} + |Mp[*},
(7.8)

which is now explicitly IR-finite. We observe that the expression above still contains a
residual integral with respect to {p, E, x}, but it is IR-finite and therefore can be straight-
forwardly carried out with the method outlined in appendix E. The numerical result is
summarized in table 4. The HO uncertainty comes from (5HO , while the O(e?p?) uncer-
tainty is obtained by multiplying the contribution from 2Re {M}Mp}+|Mp|? by M%/ Ai.
We see that these uncertainties are as small as 10~4, which is a clear success of our strategy
in the splitting of T4 (k';p/,p) in eq. (7.2).

Finally, we also need to compute the bremsstrahlung contribution in the D4_3 region:

M3 a4 (y,2) Bk d3p, 4504)
(5TKes)brem(D4_3) = 5127?4/94(31de /a—(y,Z) dx/(27r)32Ek @r)2E, 2m)* 0\ (P —k —py)

x {|Mal? + 2% (M3 Mg} + |Mp|*} . (7.9)
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(0Kes )brem(py_s) | From 2Re {M3Mp} + |M%]| | From |Mg4|? Total

KY, 0.2 x 1073 5.6 x 1073 | 5.8 x 1073
K% —0.1 x1073 53 x 1073 | 5.2x 1073

Table 5. The bremsstrahlung contribution in the D4_3 region. Uncertainties are of order 107>
and are not displayed.

The integrals are IR-finite and can be carried out similarly using the method in appendix E.
The numerical results are given in table 5. In principle one also acquires an O(e%p*)
uncertainty by multiplying the contribution from 2Re {M%Mp} + |Mp|* by M3/ Ai, but
the outcomes are of the order 10~ and so are not displayed in the table.

8 Comparing with the ChPT result

We have now finished calculating all components of the O(G%a) electroweak RC to the
K3 decay rate. The total result is simply given by:

n n b,A
(5K53)t0t = (6Ke3){:ionv + <6Ke3)BOI‘Il—COI1V + (5Ke3)§ + (6Ke3)’YW

+ (0K )1 10114 brem(Ds) T (0K )brem(Dy_s) - (8.1)

where the numerical values of different components can be found in tables 1-5. On the
other hand, in the existing standard ChPT treatment the full electroweak RC is broken
down into “short-distance” and “long-distance” pieces, and are allocated to several different
quantities, some of which are somewhat implicitly hidden. This section serves to perform a
rigorous matching between our result and the values quoted in the existing ChPT literature,
with special attention paid to the so-called “long-distance electromagnetic corrections” (551\5}[
In the standard ChPT framework, the photon-inclusive K.3 decay rate is parameterized
as [9]:
G| Vus|* M Cic
19273

07— ™
P = Sewl AT OPIIO) (14085 +087) . (82)

where Ck is a simple isospin factor. Apart from the quantity | ffoﬂ_(())] that requires
a lattice input, all the small QCD and electroweak corrections to I'k_, are distributed
into the following four quantities: Sgw, I}?g()\i), (5&”(2) and 5{3(15[ We shall take a serious
look at each of these quantities, and study their relations to the different components of
electroweak RC we calculated in this work.

8.1 Spw

The quantity Sgw was first introduced by Marciano and Sirlin in ref. [73] as a process-
independent factor that accounts for the large electroweak logarithm in the electroweak
RC [41, 74] including the O(a;) pQCD corrections on top of it, as well as the resummation
of the QED logs (i.e. 53813 in our notation). It was often quoted schematically in the
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literature as [36, 75]:

2 Qg My Qg

where the p-mass appears as a low-energy scale. It is not straightforward to infer its
exact value from the expression above because some of the important components (e.g.
5§8D) are not explicitly shown, and it is also not clear what scale one should choose for
as. Fortunately, as a common consensus, the value Sgpw = 1.0232(3)po was always used
for all practical purposes in the recent years (see, e.g. refs. [34, 35] and the FLAVIAnet
global analysis, ref. [76]), where the central value comes from ref. [73] and the estimated
uncertainty of the QED log resummation comes from ref. [51]. Notice that although ref. [75]
quoted a slightly different value of Sgpw = 1.0223(5), but that number was never used in
any subsequent analysis.

Now, the process-independent physics included in our (ég.,),, are not only those
described by Sgw but even more. For example, the most important pQCD correction
contained in (5K€3)2’VA;, is calculated to O(a?) instead of just O(as) in Sgw. Therefore,
it is not the most natural choice to remove Sgw — 1 analytically from (dx,,),., in order
to compare our result with the ChPT result. Instead, it is more convenient to take the

above-mentioned numerical value of Sgw simply as its definition, i.e.,
SEW —1= 0.0232(3)1{0 s (8.4)

and remove this value numerically from (dg,, ), for the comparison. This prescription
keeps us on the same track with all the recent literature mentioned above.

8.2 IV(\)

The quantity I}?)

e

(\;) is formally defined as the “phase space integral depending on slope
and curvature of the form factors f£7(¢)” according to ref. [75], but in practice it is treated
not just as a pure QCD factor, but also contains a part of the short-distance electromagnetic
effects. This can be seen in, e.g., refs. [34, 35]: the ¢t-dependence of ff7(t) at O(p?) is
given by the mesonic loop functions Hpg(t), and we observe that in these functions the
masses of the charged mesons (e.g. %) and their neutral counterparts (e.g. 7°) are kept
distinct. Since we know that this mass splitting is partially induced by short-distance
electromagnetic effects, or more specifically, the O(e?) term in the chiral Lagrangian [38]:

L= ZE2F} <QemUQemUT > : (8.5)

so the observation above implies that a part of the short-distance electromagnetic effect
proportional to Z is actually assigned implicitly to I}?g()\i) through Hpg(t) within the
ChPT framework. In our notation, this residual effect is represented exactly by the hpg(t)

fi _
terms in (6 f f 3 (t)) : ,» since the hpg(t) functions are simply consequences from the Taylor
) e2p

expansion of Hpg(t) to O(Z).
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5Ke This work Ref. [36]

KY, 1.16(2)inel(1)1at (1%)NF (2)e2pt X 1072 0.99(19) 24 (11)1Ec x 1072
KJ 0.21(2)ine1(1)<R%<>(1)1at(4*)NF(1)62p4 x 1072 | 0.10(19) 24 (16)Lpc x 1072

Table 6. Comparison between the value of 6153(15[ obtained from this work and from the ChPT
calculation.

8.3 5y

The isospin-breaking correction factor 55&2) is formally defined as:'!

Cro fE7(0) \°
Kr K +

that is only present in Kl'g According to the definition above, it contains not only
the strong isospin breaking effect resulting from the u—d mass difference, but also the
electromagnetically-induced isospin breaking. Indeed, according to eq. (4.42) in ref. [75],
one has:

oo =23 (@ + el + e +..) (8.7)
(4)

where epy, originates from the electromagnetically-induced 797 mixing. In our notation,

fi _
this correction simply comes from (5 JEs ST (t )) : , after removing the hpg(t) terms.
ep

8.4 &&¢

After all the discussions above, it is now apparent that the most convenient way to discuss
551\7[ is to simply refer it as “the sum of all electroweak RC that are not already contained

s

in Sgw, I}?g()\i) and 5§J(2)” This means

Ofi = (Oken)ior — (SEw — 1) — (0k,5)5" (8.8)

in our notation, where Sgw — 1 is defined by eq. (8.4) as we discussed earlier. Apart
from Sgw — 1, the quantity (61(63){;“ is also subtracted out because its contribution is
redistributed into I;?g()\i) and 551}’(2) according to the ChPT prescription, as we discussed
above. In fact, 5K & is also the only meaningful quantity to be compared between this work
and the existing literature, because we are taking an O(e?p?) approximation to (§x 3)ﬁn
and thus have made no new improvement on this term.

The comparison between our result of §&¢ and the ChPT result is given in table 6.

Let us explain all the different types of uncertainties that appear in our new evaluation:

 inel: this represents our conservative estimation of the effects from the inelastic term
n ((5M2 +9 “Lle)int and 5Mf:’;§. See the discussions after eq. (4.5).

" The existence of the isospin factor Cxo/Cr in the formula above is simply due to our choice of nor-
malization of f£7(0).
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. <R%(>: this is the uncertainty originated from the experimental error of the K charge
radius (see eq. (4.13)) that enters <6M2 +0 '(;Lw)int and 5Ms% in K.

o lat: thisis the total lattice QCD uncertainty in the calculation of DKV‘{} (see eq. (6.11)).

e NF: this represents our estimation of the uncertainty due to the non-forward kine-
matics in 6 M, S’V’é at small loop momentum ¢’. We include an asterisk to remind the
reader that this error estimation can be made more rigorous with an extra lattice
QCD calculation, as we discussed at the end of section 6.

o ¢%p*: this is the chiral expansion uncertainty of the non-convection term contribution
(i.e. 2Re {MjMa} +|Mp|?, see the discussions after eq. (7.4)) in the bremsstrahlung
process.

From table 6 we find that our results are consistent with the ChPT estimation within
the error bars, but with a significant reduction of the total uncertainty by almost an order
of magnitude. This improvement is mainly due to two reasons:

1. Our calculation permits a much better control of the O(e?p*) effects, which are the
main source of uncertainty in the ChPT treatment. With the new theory framework
introduced in refs. [43, 46], all the hadron physics are contained in quantities such
as T” and T'%._, from which the full convection/Born contribution can be explicitly
isolated. These contributions govern the full IR-divergent structure of the decay
process, are numerically the largest and, most importantly, do not involve any chiral
expansion. The size of the non-Born/non-convection term contributions are in general
an order of magnitude smaller (see, for example, table 4 and 5), so the O(e?p?)
uncertainties attached to them are even tinier. On the other hand, in the traditional
ChPT treatment one must multiply the full result by M /A2 to obtain the O(e*p?)
uncertainty, so it is much larger.

2. We used latest lattice QCD results to pin down 5M$’V’3, which corresponds to the
LECs X; and X§ S in ChPT. In the existing literature, these LECs were calculated
within resonance models and were assigned a 100% uncertainty. On the other hand,
the highly-precise lattice results of DX{}} would correspond exactly to 6M$i/é if K and
m were degenerate. We investigated the region of integration in 5MS’V‘3 where this
non-degeneracy starts to take effect, and assigned a reasonable NF-uncertainty to the
contribution from this region on top of the lattice results. In the ChPT language,
our treatment above simultaneously take into account the uncertainties of the LECs
themselves as well as the O(e?p*) uncertainties on top of the LEC contributions.

9 Final discussions

The 30 discrepancy in the extraction of Vs from K,» and Kj3 decays has triggered re-
newed interest within the particle physics community about its possible implications on
the existence of BSM physics. However, the current level of significance is not sufficient
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to claim a discovery so one needs further reduction of not just the experimental errors but
also the SM theory uncertainties. Our re-analysis of the SM electroweak RC in K.3 there-
fore, serves as a crucial step along this direction. We successfully overcome the natural
limitations in traditional ChPT by adopting a new computational framework that allows
for a resummation of the numerical largest components in the RC, and also utilizing the
most recent lattice QCD outcomes to reduce the uncertainties from the non-perturbative
QCD at the chiral symmetry breaking scale. Our work reduces the existing uncertainties
in the K.3 RC by almost an order of magnitude, and finds no large shift in the central
values. This suggests that we should remove the electroweak RC from the “list of culprits”
responsible for the K,»—K;3 discrepancy.

Is it evident now that the Vs anomaly cannot be explained by SM effects? We would
say that it is still too early to decide at this stage. Further investigations must also be
made on other SM inputs, just to mention a few:

o Based on the analysis of a newly-constructed ratio Ry = 'k, /T, ref. [77] suggested
that a shift of the lattice QCD input of ]ffoﬂ_ (0)/ffr”0 (0)| from its current value of
0.970(2) to a smaller value of 0.961(4) would reconcile the K2 and Kj3 results, and
encouraged the lattice community to examine this possibility. Lattice calculations of
|ffo7r_ (0)] with Ny =241 (78, 79] and Ny = 24+1+1 [80-82] in the recent years have
so far been consistent with each other, which led to the FLAG 2019 averages [12]:

Nf=2+41: |57 (0)] = 0.9677(27)
Np=2+1+1: |57 (0)] = 0.9706(27) . (9.1)

However, a new calculation by the PACS collaboration with Ny = 2 + 1 returned
|ffo7r_ (0)] = 0.9603(16)(T1*)(44)(19)(1) that is significantly lower than the existing
average [83]. This calculation utilized only one lattice spacing a = 0.085 fm and thus
should be carefully reexamined.

o The quantity IE?I) (A\i) probes the t-dependence of the form factors f+70 (t). Adopting
a Taylor-expansion parameterization:

2

Frot) =1+ A;,Oﬂé 4 %X;,O (é) +o. 9.2)
the parameters )\’Jﬁo and X[ are fit to the experimental distributions of the K3 decays
to obtain f+70(t) in the physical region of . The resulting uncertainties are 0.13%
for Ié?f)j and 0.31% for I}?L (see table 21 in ref. [84]), which look well under control,
other forms of parameterization were also investigated [85-89]. However, it is known
for some time that some disagreements occur in the extracted values of the slope
parameter A of the scalar form factor from different experiments [75]. Also, since
f+70(t) are pure QCD quantities, their fitting to the Kj3 distributions can only be
done after removing the effects of the electroweak RC from the experimental data.
Now since we have updated the RC analysis, the fitting procedure should in principle
also be updated accordingly. Although in this paper we only present our updates of
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55\%, but the electromagnetic corrections to the K3 Dalitz plots can also be derived

with the same method.

o Although the SU(2) isospin breaking correction factor 55&2) exists only in the K+
channel by construction, its associated theory uncertainty is the largest. Upon ne-
glecting the electromagnetic contributions, it is given by:

31 |M? 2
58T [ Ky 2 (9.3)

sU@ T 507 |z TR

in ChPT to O(p*), where Q* = (m? — m?)/(m3 — m2) = R(ms/m + 1)/2 and
Xpt = 0.219 [90]. The main uncertainties therefore come from Q and R. For in-
stance, disagreements are observed between the values of O and R extracted from

phenomenology [91]
n— 31 Q=221(7), R=344(2.1) (9.4)
and from lattice QCD [12]

Ny=2+41:Q=233(0.5), R=381(1.5)
Np=2+1+1:Q=24.0(0.8), R=40.7(2.7) (9.5)

which must be sorted out in order to pin down the isospin breaking correction precisely.
Finally, we want to mention that we present in this work only our updates on the
electroweak RC but not a new value of V5. A part of the reason is that we work exclusively
on K3 and not on K3, given that the latter involves more sources of uncertainty (e.g.
from § f57™) and will be a subject of future study. But more importantly, we realize that the
physics of kaon decay is a dynamically progressing field from where the knowledge in both
experiment and theory, including our understanding of the issues above, is being constantly
updated. Therefore, rather than quoting a new value of V,,5 upon every single improvement,
it is more preferable to have a commonly agreed value that results from a collaborative
work between experimentalists and theorists based on the most updated inputs from their
respective fields, similar to the FLAVIAnet evaluation in the past decade [76]. We hope
that our research may serve as a useful input for a possible future collaboration of such kind.

Note added. Awaiting the review outcome of this manuscript, some of us published a
new global analysis of V,s from Kj3 based on the improvements in this work [92]. The
values of |V,,| extracted from K3 and K3 are currently consistent with each other within
error bars, therefore we do not see a noticeable violation of lepton flavor universality within
K;3. This requires further check from theory improvements of the K3 RC as well as future
experiments.
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A Three- and four-body phase space in K3

In this appendix we derive the phase space formula for the K — we™v(y) process. We
start from the following master formula: suppose A(z,y, z) is an arbitrary Lorentz-invariant
function of the three dimensionless variables {x,y, z} defined in eq. (2.1), then its integra-
tion with respect to p’ and p, can be expressed as

1 d3p/ dgpe v:2)
2My / Gn)32E (2n)P2E, Y2 5127r4 /2\ﬁ / e / )y L2A@ Y2,
(A1)

z 1
at(y,z) = 1—y—z—|—rﬂ—|—re+%:|:§\/y2—47“6\/,22—47‘,r . (A.2)

We can apply the master formula above to derive the expressions for the K — wetv(y)

where

phase space. First, for K(p) — 7(p')e™ (pe)v(py), we can identify:

d’py
Awy2) = [ Gy OO P = p) M,

27
= M—%d(:cﬂMﬁ(_mem . (A.3)

When plugging the expression above into eq. (A.1), the z-integral is non-zero only when
a_(y,z) < 0 < ai(y,z), which imposes constraints on the integration region of {y,z}.
Solving these inequalities gives the well-known formula:

Ik srety = 2567 oEa 3 / dde|M|K—>7re+l/7 <A4)

where the integration region D3 can be represented in two equivalent ways, namely:

c(z) —d(z) <y <e(z)+d(z), 2re <z<l+4rs—re
Q2= 4retrr—2) V2 —dr (L4 — e — 2)
o(z) = 2(1 47z — 2) ’ dlz) = 2147z — 2) ’ (A.5)
a(y) — bly) <z <a(y) +by), 2(re <y <l+re—7s
2=y 4rrtre—1y) VY —dre(l+re —rr —y)
(L(y) - 2(1 4 Te — y) ’ b(y) - 2(1 4 Te — y) . (Aﬁ)
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Next, we discuss the phase space of K (p) — m(p')e™ (pe)v(py)y(k). In this case we can
identify:
d3k d®p,
A =
(2,9,2) / (27)32E), (21)32E,

@m)* 6N (P =k = )| Mty (A7)

Without performing the integral, one already sees that the J-function imposes the con-
straint 2 > 0 because P? = M[Q(a: = (k 4 p,)? is just the invariant squared mass of the vy
system, which cannot be negative. With that one splits the z-integral into two terms:

a(y,2) a+(y,2) a+(y,z)
/ o dm@(:v):@(a+(y,z))@(—a,(y,z))/0 der@(oz,(y,z))/ L
a—(Y,z a—\Y,z
(A.8)

and the different step functions in front of each term impose different constraints on the
integration region of {y,z}. The first term requires a_(y,2) < 0 < a4 (y, z), which simply
gives the D3 region we discussed above. Meanwhile, the second term requires a_(y, z) > 0,
and solving this inequality yields a different integration region which we may call Dy_3. It

can again be represented in two equivalent ways:

Tr

2\/re <y < c(z) —d(z), 2\/ﬁ<2<1—\/r:+1_\/r>e (A.9)
20/rr < 2 < aly) — b(y), 2\/778<y<1—\/ﬁ—|—1_ri/ﬁ. (A.10)

There is no overlap between the region D3 and Dy_3 (see figure 3). With the above, the
K — meTvy decay rate can be written as:

M3 o (y,2) ot (y,2) 3k d3p
T — K / / / / v
K=metry = 51ond { ngydz 0 ot D473dydz a-(y,2) o (2m)32E), (2m)32E,

X(QW)45(4) (P — k- pV)|M’%{—>7re+1/’y . (All)

In the study of a fully-inclusive kaon semileptonic decay rate up to O(G%a), one should
add the K — me™v and K — meT vy decay rate to give:

M M3}
FK_>7re+V+FK_>7r€+V’Y - m /D dydz {’M’%(aﬂ'e‘*‘y + 6’M’12)rem} + 512§4 /D dydz
3 43

ay(y,2) A3k &Pp ,

Y__ (9 G (P—k—p,)| M|
></oz_(y,Z) dx/(277)32Ek (27T)32El,( 7T) 0 ( k—p )| |K—>7re+y'y>
(A.12)

where

M2 fat(yo) d3k d3p
2 _ Mg v 4sW)(p 1. 2
M = 55 [ [ S eyt 20 0P k= pIM I
(A.13)

Both |[M 3, . . and §|M|?,,, possess IR-divergences that eventually cancel other. Mean-
while, the term with the integration over the D43 region is by itself IR-finite.
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Figure 3. Illustration of the D3 region (dark blue) and D,_3 region (light green) in K.

B Resonances at low energy

In this appendix, we briefly review the basics of the resonance chiral theory that includes
the 17~ and 17+ resonances as dynamical DOFs in the chiral Lagrangian [93-95]. Based on
this formalism we calculate the contribution of these resonance to d My +d M W and OM SV“;

In most of the literature on resonance chiral theory, the massive spin-1 particles are
described by a totally-antisymmetric tensor field instead of a vector field [96], so we start
by introducing the formalism. First, the free Lagrangian of a (real) massive spin-1 particle
is written as:

1 1
L= (9*Ran) (O,R™) + TMERW R (B.1)

where R, is the antisymmetric tensor field. It satisfies the following classical equation of
motion:

o (M) — 0 (O\RM) + MER™ =0 . (B.2)
The quantized field takes the form:

Z/ (2 32ER 'R {(kVEZ(E) — kugf,(/;’)) &S(E)e—ik.m
- (’%52*%) - kuey (k) al(R)e™} -

where ES(E) is the polarization vector of the spin-1 particle that satisfies the following
relations:

. Kk

k - 65 —0 ZS s* k guy—FV}%, (B4)

and &j(E), a5 (k) are the creation and annihilation operators. Finally, by inverting the free
Lagrangian one obtains the covariant propagator of the antisymmetric tensor field:
i

1
Apias(p) = mw

(GpaPuvPs — GupPvPa — GuaPuPp + GuaPuPa)

Mié (g;tagl/ﬁ - gl/ozguﬁ) . (B.5)
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We can now construct the chiral Lagrangian with dynamical vector and axial reso-
nances. The 17" octet resonances are represented by Viw which is a traceless, Hermitian
matrix in the flavor space. Its chiral covariant derivative is given by:

v/\V,uu = 8)\V;w + [F)\a V,uu] ) (B'G)

where 1

L= {0, = i(ou + )] w + u [0 — (v, — @) ul } (B.7)
is the standard connection vector, with v, a, the vector and axial external sources. Sim-
ilarly, the 17~ resonances are represented by the matrix A,,. Other elementary building

blocks of the ordinary ChPT. include the “vielbein”:
uy =i {uT 0y —i(vy +ap)]u—u[0, —i(vy — ay)] uT} , (B.8)
and the anti-symmetric tensors fj’éf‘ ; built from the vector and axial external sources:
frp = 0" £a”) = 9" (W' £a') —i ok £ak 0" £a"], (B.9)

and finally, 1" = uff"u’ £ ul f&"u. With the above we can now write down the chiral
Lagrangian with 17+ and 17~ resonances. The LO Lagrangian scales as O(p*):

4 1 1 1 1
£ = -3 <(VAVM)(VVVW) — 2M&VWVW> -5 <(VAAM)(VVA”“) - 2M§,A,WAW>
Fy v, Gy Fy v
+—= Vi ) + —= (Vpuru”) + —= (A, f2) | B.10
2ﬂ<ﬂ+> ﬂ<lt >2\/§<Mf> ( )
where (...) represents the trace over the flavor space, My and M4 are the vector and axial
resonance masses in the chiral limit, while Fy/, F)4 and Gy are real coupling constants.
The leading resonance contribution to Th~ scales as O(p*) and enters through the
s- and u-channel diagrams as depicted in figure 4. Since all the couplings in eq. (B.10)
have even intrinsic parity, it is evident that only the axial resonances can exist in the
intermediate state. They give rise to the following expressions:

17 F2 k 174
(125 (Q’;p’,p))R =~ Vista =~ ¢ )AL (0 + )
0
uv 1o FZ} * / / / aufv !
(TK+7r0(q;p’p))R = ﬁFQVusqa(p_p —Q)ﬁAA (p—Q), (Bll)
0

where Fj is the pion decay constant in the chiral limit. For numerical estimation, we choose
Fy = 123MeV, My = 968 MeV following ref. [93], and Fy ~ F; = 92.1 MeV. Meanwhile,
since I'%. vanishes in the flavor SU(3) limit, it cannot be generated by the resonance
Lagrangian in eq. (B.10) at tree level because the latter is SU(3)-symmetric.

We then plug the expressions above into eq. (3.9), (3.10) and evaluate the integrals.
Of course, upon setting M3, /(M3, — ¢’*) — 1 the integrals are UV-divergent, but this
is expected because the expressions above are only supposed to work at small ¢’ so the
integral should be cut off at ¢ ~ My4. As our main purpose here is just to have an order-of-
magnitude estimation of the resonance contribution, we shall adopt a simple prescription as
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Figure 4. The resonance contribution to 7}, at low energy.

follows: we first regularize the UV-divergence using dimensional regularization, and discard
the usual divergent combination 2/(4 — d) — vg + In4m. The result is then a function of
the renormalization scale p, which we vary from M4 to 2M 4 as a crude estimation of the
uncertainty. With the above, we obtain the following resonance contribution to dg,,:

(x0,) = (0.6 +£2.0) x 107°
resonance

KeS

-5
(5@3 = (5.940.8) x 1077 (B.12)

) resonance

They are both smaller than 10~

C Loop functions in the convection term contributions

In this appendix we provide the analytic formula for the loop functions that enter the

convection term contribution §Ms + M2 W and 6MSV‘[§ We start by parameterizing the

relevant loop integrals:

@r)t? oy kFE
dk — O Ay
2 / [(p1 — — ml][(pQ — k)2 — m%]kQ 9" Coo + (PP + piph)Cia

+pi'p{Ci1 + php5Co2,  (C.1)

I
— [ d*k i

= —Cipy — Caph 2
im? [(pl - k‘) — ml][(pQ — k;)Q _ m%]kQ Clpl 02172 ) (C )

and
1 [, 1

i ) o= R = e — W2 — gl — 0z~ (C3)

The first expression is UV-divergent and is regularized using dimensional regularization,
while the third expression is IR-divergent and is regularized by a small photon mass M,.

All the Cs above are functions of m? = p?, m3 = p3 and v = (p; — p2)?. The analytic
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expressions for the C;; functions are as follows:

1 2 u? A(v,mi,ma)  —m2+mi+v. m?
Coo=—-|—— Indr +1In— +3 —
00 4<4d YE + Indm + nm%—l— )—i— 1 + 2 nm%

1 2 2

- 7—7E+ln47r+ln'u—2+3 + Cfin
m —2m2m2 4+ m% — 2m2v + 02 2 _

O = 1 1772 2 1 Alv, mq, Sl " T TN R
u 20\, 13, 0) (v 1, ) + "

mj — 2m?m3 +mj — 2m3v + v?

C A(v,my,m ————In— - —
* 20\ (m?, m3,v) (0, m,mg) + 4u? m3  2v
4 2,2 4 2 2 2 2 2
—my + 2mims — my + miv + msv mi—ms5. . m 1
Oy — M 113 2 i 2Y A (v, my, my) — A 21 My
2 20\ (m%, m3,v) (v, m1, ms) 402 m3 T

(C.4)
where A(a, b, c) = a® + b? + ¢® — 2ab — 2bc — 2ca is the triangle function, and
A2 (m2. m2 A/2(m2 . m2 2 2 _
A(’U,ml,mg) = (m17m27v) In (m17m2vv)+m1+m2 v + e ) (C5)
v 2mims
The analytic expressions for the C; functions read:
1 m?  m?—m3—v
Oy = L™ My Uy
T nm% A(m3,m3,v) (v, m1,m2)
1 m?  mi—mj+v
Cy=——1In—L -1 27 Ay, my, ) C.6
2 20 m3  A(m3,m3,v) (v, ma) (C.6)
And finally,
2 2
Ty M 1 9 T
Co=————-H/1 -1 ) —-=1 2In(1 — - —
0 mime(1 — :1:2) { Ht [ . <m1m2> g vt n x”)] 6
+Li2(ac) 71 2( >+L12<1—xvm >+L12(1—xvm2)}
2 mo meo mi
2
Ty M
=1 1 C C.7
myma(1 — x2) Hee <m1m2> " 7 0
with
dmim
- \/1 oy (C.8)

T i mm

ml m2

D Dimensional regularization of the IR-divergent integral in the
bremsstrahlung contribution

The only IR-divergent integral in bremsstrahlung process K(p) — 7 (p')e™ (pe)v(py)v(k)
reads:

ay(y,2) A3k d*p P i \2
I; = id 24<4>P——V<€—’>
o= [ [ G g, 2P -k (SR - o

at(y,z) d3k P pi \?
-9 " §(M2gx—2k-P e = D.1
7T/o d:c/(%)ngké( kv =2k )<pe'k pi-k> ’ (D-1)
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where i = K or 7 (obviously, px = p and p, = p’). Here, we can use the single delta
function in the second line to integrate out Ej, so the IR-divergence comes from the final
integration with respect to x, where the integrand behaves as ! at small . A common
prescription to regularize this IR-divergence is to introduce a non-zero photon mass such
that k2 = Mw2 This sets a lower bound of M% /MIQ{ for the z-integral that regularizes
the IR-divergence, but also introduces a complicated M,-dependence in the integrand that
needs to be carefully taken into account in order to correctly reproduce all the IR-finite
terms in the M, — 0 limit.

A more elegant way to deal with the IR-divergence is to use dimensional-regulariza-
tion [97, 98]. With this prescription, we first generalize the three-dimensional k-integral to
d — 1 dimension:

d3k g d¥TE
ennE, " @nT e D.2
(27)32E, H (2m)d-12F, (D.2)
4-d
= WEZ’Q sin=3 0, sin?4 0 . . . sin Oy_sdEpd0ydls . .. d0y_3dfy s |
where 0 < 61,02,...,04-3 < mand 0 < 649 < 2m. The spatial components of k are

parameterized as:

k1 = Ej costy

ko = E} sin 6 cos Oy

kg_o = Epsinfisinfy...sinf;_gcosfy_o

kg—1 = Ejsinf1sinf,y...sinf;_3sinfy_o . (D.3)

With the prescription above, the IR-divergent integral over x can now be simply performed:

() (0 (v, 2)""
dog?™® = 2 D.4
/ v e (D4)
assuming d > 4. Meanwhile, the angles can be integrated using the formula:
T r l(m + 1)
/ sin™ 0d6 = \/%(2) . (D.5)
0 r (%(m + 2))

And finally, one expands the result to O ((d — 4)0). It is also customary to switch the result
back to the expression with the M,-regularization. For that purpose one simply performs

the following matching:
2

My
m*VEJranLTr%ln?. (D.6)
Next, we discuss some useful tricks in the evaluation of I;(y, z) with dimensional regu-
larization. First, the full integral can be split into three terms, with the integrand propor-

tional to:
1 1 1

(pe - k)? ’ (pi - k)? ’ (pe - k) (pi - k)

(D.7)
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respectively. The integration with respect to the first term is most easily done in the p-rest
frame, while the next two terms should be done in the p;-rest frame. The following identity
is also useful in performing the integration of the third term:

a+(y,z) d—5 a+(y)z) d—5 a+(y7z) d—5
[ daat ) = [ dwat @0+ [ deat (f(dw) - £(d,0)
0 0 0

d— at(y,z
:(°‘+(y’z))4+/0 " e (Fd) — F(4.0) + O(d—4) |

d—4 x
(D.8)
We are now ready to write down the full result of the integral:
I’i(yaz) = IiIR(yaZ) +Iyzﬁn(yaz)7 (Dg)
where

IR(y,z) = (1 L a1 8 (0)) o | M| Ly | M (D.10)

. z) = — 1 I n|——-|— <-in .

N P V) 3:(0) Mz T2 me

is the IR-divergent piece after switching back to the M,-prescription using eq. (D.6), and

2

1 2 MZ2a?
L {(1 5tk 5O [4132(*)
1 . [ 260 . 23;(0)
()L12[1+ﬁz(0)]+ ,O)L”{ 1—3;(0 >]

2 10
Bi(0 Po(

)L2 [1+(ﬁz20) ( 0503 * 1)] Bi?O)LiQ L fZ( 2 0) ( 0
ot (1) (o Z
_27rfl\4% /0 d% {&%x) . E . ?ﬁﬁxﬂ - Bio) . {1 . 5158

is the IR-finite piece, with

Izﬁn(yaz) - —|—1Il

a2 (y, 2) ]
(I—2z+4r;—re)?

)
e

— = =

oy |y MEmE O AL S S S 2F Y
Pilw) =41 (pi - pe)?’ Folw) = M; Bl )_5i(90)( (@) pi'peMZ) - (D12)

Of course all the quantities in eq. (D.12) are functions of {y,z} as well. Their physical
meanings are apparent: (;(z) is the speed of the positron, Py(z) is the zeroth component
of P*, and P (x) is the spatial component of P* along the direction of p, all in the p;-rest
frame. Notice that the residual, IR-finite integral in the last line of eq. (D.11) vanishes for
i = K, because i (z) = Bk(0).

The correct analytic expression for I (y, z) and I (y, z) first appeared in ref. [25] and
ref. [35] respectively (notice that ref. [24] also attempted to calculate I.(y,z), but the
result there is wrong even with the Errata). It is easy to check the numerical equivalence
between eq. (D.9) and those expressions, after accounting for the difference in the overall

normalization.
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E IR-finite integrals in the bremsstrahlung contribution

In this appendix, we outline the general strategy to evaluate the IR-finite numerical inte-
grations from the bremsstrahlung process, in both the D3 and Dy_3 region. We start by
providing the expressions of the relevant integrands. In K% we have:

/

2
2 _ 2 Pe P 2 _ 2
Mal == (P = ) {IMoP oy, 2) ~ 1Mo 0,3, )]

/

2
+e?G%LF,F; (pp'ek — p/p' k:) Tr [}éfy“(pe —me)y” (1 — 75)}

e

eQG%F;FVplk( e I) T, —ma (P21 )

De
+e2GLF, F* Tr (P — F)y" kv (1 — 7s5)]

. Pe i
2Re{ MMy} = —QeQG%VusFu (pe i k)g

/o

(P = k07"(p, —me) { Tk =7} (1= )]
PGV Fy T (P~ Bt (9, —mo) { Lok =0} (1)

- “} (p,—me) {]f“k% —W} (1—75)] )

xReTr

‘MB,Q —e*G ’Vus,QTr[(P k){pl/)/#k

(E.1)
and similarly for K :3,
M= (2~ 2 ) (1000, 2) ~ IMP0,,))
+e*GLF,Fy) (pepek p?k)Q Tr [%W”(]l’e —me)y” (1 — 75)}
~CGHF,— 5 (257 = L2) e[, —m(P—"Hr (1)

+e>GLF, F* kTr (P — )" Ey" (1 = 5)]

2Re{MaMp} = \@BQGFV“SF" <p;pel<: - ﬁ:)a
x e Tr {(P - %)7“(17’6 — Me) {pp.akk N 7a} (- 75)}
iﬁF VieF kmeTr {(P — B (p, —me) {ﬁ;{;k - 7‘“} (1_75)}

: 2GF|vus|2ﬂ P-B{ o - ma { Pk ).
(E.2)

|Mp|* =~

In the above, we have used F}, as a shorthand of F, f” (p',p). We do not display the explicit
results after taking the spinor trace, as the latter can be done with, e.g., various packages
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in Mathematica such as Tracer or Package-X. After taking the trace, all the expressions
above are functions of {z,y, z} as well as two of the three following dot products involving
k: {k-p,k-p' k- pc} using the identity 2k - (p — p' — p.) = Mzx.

The integration can be performed with the following strategy. Take |M|2, in K% as
an example: we first express the squared amplitude as a finite sum:

1
k _p/)m(k. ,pe)n ’

where —2 < m,n < 2 and ¢pp(x,y,2) are known scalar coefficients. The p, and k-

‘MAlges = Z Cm,n(xa Y, Z) ( (Eg)
m,n

integrations return the following functions:

I ( ) — i ﬂd?’pu 5(4)(P —k _pl/>
m,n p17p2 - 27T Ek EV (p1 . k)m(pQ . k)n b

(E.4)

of which analytic expressions are given in the appendix of ref. [25] (we have checked their
correctness). With this, we obtain:

/ d3k d3pl/ (27T)4(5(4)(P—l€— )‘M ’2 :izc (ZL’ Z)I ( / )
(27)32E}, (27)32E, Duv) M Alres S o mn T Ys 2 ) dmn (D, De)

(E.5)
where the right-hand side is now a function of {x,y,z}, so the remaining three-fold in-
tegration with respect to these variables are completely regular and can be performed

numerically. The same strategy applies to the IR-finite integrals in K ;5,, except that one
should choose 1/ {(k-p)™(k - p.)"} as the basis.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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