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Abstract. DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) is the future 
Japanese space gravitational wave antenna. The goal of DECIGO is to detect gravitational 
waves from various kinds of sources mainly between 0.1 Hz and 10 Hz and thus to open a new 
window of observation for gravitational wave astronomy. DECIGO will consist of three drag-
free spacecraft, 1000 km apart from each other, whose relative displacements are measured by 
a Fabry–Perot Michelson interferometer. We plan to launch DECIGO pathfinder first to 
demonstrate the technologies required to realize DECIGO and, if possible, to detect 
gravitational waves from our galaxy or nearby galaxies.  

1.  What is DECIGO? 
DECIGO is the future Japanese space gravitational wave antenna. It stands for DECi-hertz 
Interferometer Gravitational wave Observatory [1][2]. The goal of DECIGO is to detect various kinds 
of gravitational waves mainly between 0.1 Hz and 10 Hz and open a new window of observation for 
gravitational wave astronomy. 

DECIGO will bridge the frequency gap between LISA [3] and terrestrial detectors such as LCGT 
[4], somewhat similarly with BBO [5]. It can play a role of follow-up for LISA by observing inspiral 
sources that have moved above the LISA band, and can also play a role of predictor for terrestrial 
detectors by observing inspiral sources that have not yet moved into the terrestrial detector band. 

The more important advantage of DECIGO specializing in this frequency band is that the confusion 
limiting noise caused by irresolvable gravitational wave signals from many compact binaries is 
expected to be very low above 0.1 Hz [6]. Therefore, DECIGO can reach an extremely high sensitivity. 

2.  Pre-conceptual design 
The pre-conceptual design of DECIGO consists of three drag-free spacecraft, whose relative 
displacements are measured by a differential Fabry–Perot (FP) Michelson interferometer (see Fig. 1). 
The arm length was chosen to be 1,000 km in order to realize a finesse of 10 with a 1 m diameter 
mirror and 0.5 μm laser light. The mass of the mirror is 100 kg and the laser power is 10 W. Three sets 
of such interferometers sharing the mirrors as arm cavities comprise one cluster of DECIGO. As 
shown in Fig. 2, the constellation of DECIGO is composed of four clusters of DECIGO located 
separately in the heliocentric orbit with two of them nearly at the same position. 

The FP configuration requires the distance between two mirrors, thus, the distance between two 
spacecraft to be constant during continuous operations. This makes DECIGO very different from a 
possible counterpart with the transponder-type detector (e.g. LISA), where the spacecraft, which are 
much farther apart, are freely falling according to their local gravitational field. We adopted the FP 
configuration because it can provide a better shot-noise-limited sensitivity than the transponder 
configuration due to the enhanced gravitational wave signals.  
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Fig.1. Pre-conceptual design of DECIGO. 

 
 

 
Fig. 2. Constellation of DECIGO. 

 
The control of the mirrors/spacecraft to keep the resonant condition of the FP cavity is compatible 

with the drag free control system. Figure 3 demonstrates the compatibility in a simplified system. One 
of the two spacecraft (S/C I) has only a drag free system; the relative position of the mirror with 
respect to the spacecraft is measured with a local sensor and the signal is fed back to the thruster. The 
other spacecraft (S/C II) has the mirror control system in addition to the drag free system; the relative 
position of the mirror with respect to the mirror in S/C I is measured with the FP interferometer and 
the signal is fed back to the mirror, while the relative position of the mirror with respect to the 
spacecraft is measured with a local sensor and the signal is fed back to the thruster. As a result, the 
mirror in S/C II dictates the motion of S/C I, the other mirror, and S/C II. It should be also noted that 
the FP interferometer output, which includes gravitational wave signals, is not contaminated by the 
local sensor output, which is noisy because of drag forces exerted on the spacecraft. In reality, 
however, each spacecraft has two mirrors and each cluster has three arm cavities. Therefore, a 
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sophisticated control authority for all the degrees of freedom of all the mirrors and spacecraft is 
required to operate the whole system compatibly. 
 

 
Fig. 3. Compatibility of the drag-free system and the FP Michelson system. 

3.  Sensitivity goal and science 
The sensitivity goal of DECIGO, as shown in Fig. 4, is limited by the radiation pressure noise 

below 0.15 Hz, and by the shot noise above 0.15 Hz. In order to realize this goal, all the practical noise 
should be suppressed well below this level. This imposes stringent requirements for the subsystems of 
DECIGO. We anticipate that extremely rigorous investigations are required to attain the requirements 
especially in the acceleration noise and frequency noise. 

 
Fig. 4. Sensitivity goal of DECIGO and expected gravitational wave signals. 

 
Nevertheless, accomplishing the goal sensitivity of DECIGO will ensure a variety of fruitful 

sciences to be obtained. 
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(1) Characterization of dark energy 
DECIGO can detect gravitational waves coming from neutron star binaries at z=1 for five years 

prior to coalescences. It is expected that within this range about 50,000 neutron star binaries will 
coalesce every year [7]. Therefore, DECIGO will detect gravitational waves coming from a large 
number of neutron star binaries at the same time. By analyzing the waveforms of these gravitational 
wave signals precisely, it is possible to determine the acceleration of the expansion of the universe [1]. 
The acceleration of the expansion of the universe can be also measured by finding host galaxies of 
each binary, which is possible with the expected angular resolution of about 1 arcsec, and determining 
their red shifts optically [8]. This will lead to better characterization of dark energy. 
(2) Formation mechanism of supermassive black holes in the center of galaxies 

DECIGO can detect gravitational waves coming from coalescences of intermediate-mass black 
hole binaries with an extremely high fidelity. For example the coalescences of black hole binaries of 
1,000 solar masses at z=1 give a signal to noise ratio of 6,000. This will make it possible to collect 
numerous data about the relationship between the mass of the black holes and the frequency of the 
coalescences, which will reveal the formation mechanism of supermassive black holes in the center of 
galaxies. 
(3) Verification and characterization of inflation 

DECIGO can detect stochastic background corresponding to ΩGW=2×10-16 by correlating the data 
from the two clusters of DECIGO, which are placed nearly at the same position, for three years. 
According to the standard inflation model, it is expected that we could detect gravitational waves 
produced at the inflation period of the universe with DECIGO. This is extremely significant because 
gravitational waves are the only means which make it possible to directly observe the inflation of the 
universe. 

While the inflation background is the primary target for the correlation analysis with the two 
clusters, it would be important to carefully design the system so that we can disclose various aspects of 
stochastic gravitational wave backgrounds. One of the interesting measures from fundamental physics 
is the Stokes V parameter. This parameter characterizes the asymmetry of the amplitudes of the right- 
and left-handed waves, and it is a powerful measure to probe violation of parity symmetry that 
interchanges the two circular-polarization modes. By slightly adjusting the relative configuration of 
the two clusters, we can set sensitivity to the Stokes V parameter [9]. 

 
Fig. 5. Roadmap to DECIGO. 

3 S/C,
3 interferometer
3 or 4 units

3 S/C
1 interferometer

1 S/C
1 arm

Scope

Full GW astronomyDetection of GW w/ 
minimum spec.
Test FP cavity 
between S/C

Test of key technologies

O
bjectives

M
ission

262524232221201918171615141312111009082007

3 S/C,
3 interferometer
3 or 4 units

3 S/C
1 interferometer

1 S/C
1 arm

Scope

Full GW astronomyDetection of GW w/ 
minimum spec.
Test FP cavity 
between S/C

Test of key technologies

O
bjectives

M
ission

262524232221201918171615141312111009082007

DECIGO Pathfinder
(DPF) Pre-DECIGO

DECIGO

R&D
Fabrication

R&D
Fabrication

R&D
Fabrication

7th Edoardo Amaldi Conference on Gravitational Waves (Amaldi7) IOP Publishing
Journal of Physics: Conference Series 122 (2008) 012006 doi:10.1088/1742-6596/122/1/012006

6



 
 
 
 
 
 

4.  Roadmap 
We plan to launch two missions before DECIGO: DECIGO pathfinder (DPF) [10] and pre-DECIGO 
(See Fig. 5). DPF tests the key technologies for DECIGO just as LISA pathfinder [11] does for LISA. 
We expect that it will be launched in 2012. Pre-DECIGO is supposed to detect gravitational waves 
with minimum specifications. We hope that it will be launched in 2018. Finally DECIGO will be 
launched in 2024 to open a new window of observation for gravitational wave astronomy. 

5.  DECIGO Pathfinder 
As shown in Fig. 6, DPF will employ a small drag-free spacecraft that contains two freely falling 

masses, whose relative displacement is measured with a Fabry–Perot interferometer, which is 
illuminated by the frequency-stabilized laser light. The masses are clamped tightly for the launch and 
released gently in space. DPF will be delivered in the geocentric sun-synchronous orbit with an 
altitude of 500km. The strain sensitivity of DPF will be ~10-15 around the frequency band of 0.1-1Hz. 
The primary objective of DPF is to test the drag-free system, the FP cavity measurement system in 
space, frequency-stabilized laser in space, and the clamp release system. The scientific objective of 
DPF is to detect rather unlikely events of intermediate-mass black hole inspirals in our galaxy; it is 
possible to detect such events with the aimed sensitivity of DPF. 

DPF was identified as one of the candidate missions for the small-spacecraft mission series which 
had been recently initiated by the Japanese space agency, JAXA/ISAS. This small-spacecraft mission 
series are expected to reduce the cost of missions significantly compared with the conventional large-
spacecraft missions. The reduction of the cost also relies on the development of a satellite bus that is 
common to any mission. We are now in the process of establishing the conceptual design of DPF 
which is consistent with the common bus system. 
 

 
Fig. 6. Pre-conceptual design of DECIGO pathfinder. 

6.  Conclusions 
The future Japanese space gravitational wave antenna, DECIGO, is expected to detect gravitational 
waves from various kinds of sources and thus to open a new window of observation for gravitational 
wave astronomy. We have started serious R&D for DPF as one of the candidate missions for the 
small-spacecraft mission series to demonstrate the technologies required to realize DECIGO.  
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