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Abstract: Although continuous-variable quantum key distribution (CVQKD) systems have uncondi-
tional security in theory, there are still many cyber attacking strategies proposed that exploit the loopholes
of hardware devices and algorithms. At present, few studies have focused on attacks using algorithm
vulnerabilities. The low-rate denial-of-service (LDoS) attack is precisely an algorithm-loophole based
hacking strategy, which attacks by manipulating a channel’s transmittance T. In this paper, we take
advantage of the feature that the power spectral density (PSD) of LDoS attacks in low frequency band is
higher than normal traffic’s to detect whether there are LDoS attacks. We put forward a detection method
based on the Bartlett spectral estimation approach and discuss its feasibility from two aspects, the esti-
mation consistency and the detection accuracy. Our experiment results demonstrate that the method can
effectively detect LDoS attacks and maintain the consistency of estimation. In addition, compared with
the traditional method based on the wavelet transform and Hurst index estimations, our method has
higher detection accuracy and stronger pertinence. We anticipate our method may provide an insight
into how to detect an LDoS attack in a CVQKD system.

Keywords: CVQKD; LDoS attack; spectral estimation

1. Introduction

Humans have been giving great importance to cryptography since ancient times. With
the development of computer technology, a massive amount of sensitive data called for
more advanced encryption techniques to ensure security. Key distribution is the crucial
issue of encryption techniques, and there have been many key distribution methods, such
as RSA algorithms [1] of asymmetric encryption. However, all classical encryption tech-
niques based on high computational complexity are decipherable and are unable to detect
the disclosure of keys [2]. Thankfully, the progress of quantum key distribution (QKD)
makes it possible for two remote communicating parties to share secure keys through
an unsafe quantum channel controlled by an eavesdropper [3,4], since the Heisenberg un-
certainty principle [5] and no-cloning theorem [6] of quantum mechanics guarantee QKD’s
unconditional information security and the detectability of eavesdroppers. Compared
with discrete-variable (DV)QKD, continuous-variable (CV)QKD has the merits of low-cost
implementation for it is compatible with the current telecom networks and components
such as homodyne and heterodyne detectors and has other advantages [7,8]. Specifically,
the Gaussian-modulated coherent state (GMCS) protocol, the most developed CVQKD
protocol, has been proven secure against collective attacks and coherent attacks theorati-
cally [9-13].

By contrast, the imperfection of hardware devices and algorithms lead to security loopholes
in CVQKD systems.

A great deal of research has put forward various practical attack strategies by exploiting
hardware defects, and examples include the wavelength attack, the calibration attack, the local
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oscillator (LO) fluctuation attack and the saturation attack [14-18]. P. Huang et al. proposed
an asynchronous countermeasure strategy without structural modifications of the conventional
CVQKD scheme to defend against the above-mentioned attacks [19]. In stark contrast, there are
few studies on the practical security analysis of the algorithms. Y. Li et al. proposed a denial-of-
service (DoS) attack strategy aimed at the parameter estimation method in the communication
process [20]. Under the DoS attack, eavesdroppers’ slight manipulation of the channel transmit-
tance results in great underestimation of the secure transmittance distance, and subsequently
the two sides of communication consider the channel insecure and thus terminate the communi-
cation process.

The low-rate denial-of-service (LDoS) attack is a more stealthy type of DoS attacks
because it sends short-time but high-rate burst attack traffic periodically to maintain the av-
erage attack rate low, so as to escape from detection [21]. The LDoS attack, in the narrow
sense, is TCP protocol oriented, while in GMCS protocol, the LDoS attack can be considered
as short-time, high-rate and periodic burst attack on the parameter estimation. Accord-
ing to the periodicity of LDoS attacks and the characteristic differences between periodic
signals and aperiodic signals in the frequency domain, the rule that the power spectral
density (PSD) of the LDoS attack traffic in low frequency band is higher than normal is
then obtained [22]. On the basis of this rule, the issue of LDoS attacks detection transforms
into the spectral estimation of the stochastic sequence.

In this paper, to detect LDoS attacks and guarantee the consistency of spectral estimation,
we proposed a detection method based on Bartlett’s spectral estimation approach (average
periodogram). Spectral estimation is the issue of estimating the power spectrum of a stochas-
tic process given partial data, usually only a finite number of samples of the autocorrelation
function [23]. It detects whether the network traffic contains LDoS attack traffic by estimat-
ing the power spectral density in low frequency band. There are two broad categories of
approaches in spectral estimation, the classical approaches (non-parametric approaches) and
the modern approaches (parametric model-based approaches). The former consists mainly of
the periodogram and its improved approaches, including data windowed periodogram, av-
erage periodogram, etc., and the typical models of the latter are autoregressive (AR), moving
average (MA) and autoregressive moving average (ARMA) models [24-26]. The structure
of the paper is as follows. Firstly, the strategy of LDoS attacks based on the GMCS protocol
is briefly introduced. Secondly, we discuss three different spectral estimation approaches,
autocorrelation estimation with rectangular window, periodogram with Bartlett window
and the Bartlett approach (average periodogram), and then analyze their estimation results.
Finally, we carry out the related experiences and it is demonstrated that the proposed method
can effectively detect LDoS attacks.

2. System Description and Attack Detection
2.1. Attack Strategy against GMCS Protocol

In the GMCS protocol, Alice sends Bob a chain of coherent states |x + ip) where
the quadratures (x, p) are randomly chosen from a Gaussian distribution of mean zero and
variance V4 Ny, where Ny means the shot noise variance. Then, Bob randomly chooses to
measure either x or p by homodyne detection and announces overtly to Alice which one
he measured, so that she discards the irrelevant data. After several rounds of exchanges,
Alice and Bob will share a set of correlated Gaussian variables, which are employed for
further secret key extractions by way of post-processing procedures, including parameter
estimation, reverse reconciliation and amplification. The above-mentioned process can be
seen in Figure 1. To maintain consistency, the reconciliation protocol has to be unidirectional
(from Bob to Alice) [27-29]. As LDoS attacks mainly aim at the process of parameter
estimation, we will introduce the principle of parameter estimation methods of GMCS
protocol at length in the following part.

Some parameters in parameter estimation are determined by the instruments’ charac-
teristic and measured beforehand. The detector efficiency 7 and the electrical noise V,; of
Bob’s end are relatively stable in experimental repetition, thus we measure them in advance
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and treat them as constants during the communication. The shot noise can be expressed as
Np = Ky, Ero, where Ky, is a parameter that needs to be calibrated before communication,
and Ej o is the power of the local oscillator.

Others, including channel transmittance T and channel excess noise ¢, demand esti-
mation in real time. Exploiting this loophole, Eve manipulates the parameters to cause
estimation deviation till the communicating parties think the channel insecure and close it.
In this way, an attack succeeds. In the GMCS protocol, some shared Gaussian variables are
disclosed to estimate the channel transmittance and channel excess noise; others are used
for key extraction and we generally estimate the above-mentioned parameters by means of
statistical methods. In the classical parameter estimation method, Alice and Bob’s data are
associated with each other through the linear model y = tx 4z, where t = \/T € Randz
follows a centered normal distribution with unknown variance 02 = 1 + Te.

ALICE BOB
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Figure 1. In the GMCS CVQKD protocol, Alice encodes the secret key information by modulating
the quadratures x and p of coherent states with independent Gaussian distributions and sends them
to Bob through an insecure channel controlled by Eve. Next, the homodyne detector on Bob’s end
obtains the transmitted information. Then, some of the shared Gaussian variables are disclosed for
channel estimation. Lastly, shared Gaussian variables are used to extract keys.

According to the above linear model, adopting the maximum likelihood estimation
method and neglecting the finite-size effect of limited data, we are able to estimate the value
of the channel transmittance T and the channel excess noise ¢ as below

s Lty xiyi
f= Zi=1tii 1
i1 xzz @
1 ¢ ro\2
0= pn Z(]/i — tx;)%, )

1

where 7 is the estimated value of /T, and 2 is the estimated value of 1 + Te. Furthermore,
fand 62 comply with the normal distribution and chi-square distribution, respectively,

o2

t, =
2
Yo%

P N ) 0~ X% (m—1), 3)

where t and ¢ are the true values of the parameters /T and 1 + Te, respectively.

Using Equations (1) and (2), we can estimate the value of T and ¢ convincingly . The
authors of [30] proposed a method under the condition of considering the finite-size effect,
while for the sake of simplicity, we do not consider the effect as it only degrades the precision
of results. In the rest of this section, we will analyze the impact caused by Eve’s arbitrary ma-
nipulations in channel parameters under the framework of this parameter estimation method.
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In the optical fiber transmission system, we generally treat the channel’s transmittance
as a constant when making parameter estimations. Nonetheless, in consideration of Eve’s
control of the channel, she can intentionally modify the characteristics of the channel,
which will lead to deviations to parameter estimations. Such manipulation is a so-called
denial-of-service attack, since it can make the actual secure channel perceived as insecure
by two parties and lead to the communication discontinuance [20]. Now, we begin with
Equations (1) and (2) to analyze the effects of DoS attacks.

As mentioned before, channel transmittance T and excess noise ¢ are the two parame-
ters we lay stress on. We assume that Alice modulates X and Bob measures Y, where X is
a cosine signal and Y is an X-distorted signal that is presented in the phase deviation and
linear noise. Next, due to the phase compensation technique and the linear noise mean
value of 0, the following formula can be obtained

F=E(VT), (4)

where we highlight the conclusion. From Equation (4) we can draw the following conclu-
sions: if the transmittance T is a constant, the estimated f equals to the true value /T, while
if not, there will be deviations in our estimation.

Similarly, by using the equivalent relations in Equation (4) and equation V4 = E(X?),
we can rewrite Equation (2)

02 = E(T)e+1+E(T)V4 — (E(VT))?Va. (5)

Likewise, if the transmittance T is a constant, the estimated ¢ equals to the true value
1+ Te, while if not, E(T)V4 # (E(v/T))?*V4 which will bring about inaccuracy in excess
noise estimation.

Through the above brief analysis, Eve’s DoS attack strategy, namely making the pa-
rameter estimation deviates from the true value by manipulating the channel transmittance
T, has been demonstrated. For the detailed derivation process, refer to Appendix A. As
for the LDoS attack, it is one type of DoS attacks and conforms to their basic principles,
characterized by the good quality of concealment.

2.2. Detection Principle of LDoS Attack by Spectral Estimation

Though Y. Li et al. suggested a countermeasure based on post-selection to suppress
the DoS attack [20], there is still a vacancy in the detection of LDoS attacks. Y. Chen et al. an-
alyzed the PSD distribution over the frequency domain to find that LDoS attacks are mainly
distributed in the low-frequency band rather than broadband distribution of the normal
traffic [22]. Hence, we can use such feature to effectively detect an LDoS attack and the
flow chart of the detection method is shown in Figure 2.

: The Bartlett Existence of
Traffic Data
approach LDoS attack
Input Spectral Estimation Normalization Detection
Process Result

Figure 2. The flow chart of LDoS attack detection. The Bartlett approach is used to obtain the PSD
of traffic data, and then normalized cumulative power spectrum density (NCPSD) is gained after
the normalization process. Judge whether there is an attack by analyzing the distribution of NCPSD
in low frequency domain at last.

The power spectrum gives us an insight into the characteristics of the generalized
stationary stochastic process in frequency domain, such as periodicity, peak position,
frequency range, etc. The power spectrum of zero-mean generalized stationary stochastic
process {x, } is defined as
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Se(@@) = Y Ry(m)e /™™, (6)

m=—oo
namely Wiener—Khinchin theorem, where the autocorrelation sequence Ry (m) is defined as

Rx(m) = E[x(n)x (n+m)]

i N (7)
_NliréozNJr ; x(n+m),

where N means the length of sample data. It is noteworthy that Equations (6) and (7)
are only of theoretical significance for reasons as follows: first, there is no way to collect
infinite data, and second, there is always noise mixed in our data. In any event, the spectral
estimation of {x, } is then transformed into the estimation of its autocorrelation sequence
Ry (m). With regard to the stochastic process whose mean value is not equal to 0, its power
spectrum will not change after eliminating the mean value, and thus only discussing
the case where the mean value is 0 does not lose the conclusions’ generality [31]. In this
section, we are going to compare three spectral estimation approaches from the perspective
of consistency of estimations and discuss whether they are unbiased estimations.

2.2.1. Autocorrelation Estimation with Rectangular Window

Since it is impossible to get unlimited data, we can intercept a certain length of data
by using the window function. Here, the rectangular window is our first consideration.
We assume that x(n) is a sampling sequence of stochastic process {x, } and we intercept
a segment of x(n) as

x(n), 0<n<N-1
xn(n) = wr(n)x(n) = ®)
0, else,
where wg (1) is a rectangular window of length N
1, 0<n<N-1
wr(n) = )
0, else.

When the length of sample data is N, the autocorrelation Ry (m) is estimated as

Jm|<N-1
m | (10)

0, else,

L an(n)xy(n+m)
|

: y

Rx(m) = § n=—o0

which can be simplified as

Nﬁl*‘m‘x(n)x*(n +m)

. — = |m|<N-1

Rimy={ & T N—[ml "] an
0, else.

Next, we find the mathematical expectation of Ry (m)
. N=L20m By (n)x* (n 4+ m
ElRx(m)] = e
n=0
N1 (12)

1—|m
= r;} m == Rx(m)/

which has values only if | m |[< N — 1 and 0 in other cases. According to Equation (12),
when Ry (m) is used as the estimate of Ry (1), estimation bias B = Ry(m) — E[Ry(m)] =0,
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namely Rx (m) is the unbiased estimation. By the estimation of R, (m), the estimation of
the power spectrum (Py(w)) can be obtained

N-1 '
Pe(w)= ). Re(m)e™m, (13)
m=—(N-1)

whose mathematical expectation is the convolution of frequency spectrum and rectangular
window spectrum. When N — oo, the mean value is

oo 4
I\lliir;oE[Px(w)] = ; wgr (m)Ry(m)e” /™"

- (14)

= Y Ri(m)e ™" = Py(w),

m=—oo

from which Py(w) is the true value of power spectrum and we can see that Py (w) is the
asymptotic unbiased estimation, as when N — oo, wg(m) — 1.
However, the Fourier transform of rectangular window function

. N_l .
W) = Y wg(m)e o
n=—(N-1) 15
N-1 , sin(wm;]_l)) (15
= ef]wn:#
n:_%_l) sin(%3)

shows that it has values in negative number field which may lead to Py(w) less than zero
subsequently. As there is no physics meaning if Py(w) < 0, the autocorrelation estimation
with rectangular window is not used to estimate the power spectrum generally.

2.2.2. Periodogram with Bartlett Window

Due to the defects of rectangular window that some results are inconsistent with
physics meaning and the estimation error is comparatively large when the value of | m | is
close to N, we consider using Bartlett window to optimize,

| m |
_mi <N-1
wp(m) = N Imls (16)

0, else.

Thus, we get another estimate of Ry (m)

Nﬁl*‘m‘x(n)x*(n +m)
Rgc(m) = n=0 N

0, else,

Jm|<N-1

whose link with Equation (10) can be expressed as Rim = (N — | m |)Ry(m)/N. Therefore,
the mathematical expectation of R/ (1) can be easily obtained

(18)

which means R/, (m) is the biased estimate of R () because estimation bias B = Ry (m) —
Rl (m) = | m |Ry(m)/N is not equal to 0. While because of
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/ . N
Am E[Ry(m)] = lim =5 (19)

= Ry(m),

hence the autocorrelation estimation based on Bartlett window is the asymptotic unbi-
ased estimation.

More importantly, the Fourier transform of Bartlett window can be regarded as the con-
jugated product of the rectangular window’s Fourier transform

Wi () = Wi (e7”) Wi ()
2
1 szn( el (20)
N\ sin(%) )’
which ensures the power spectrum estimation obtained later is greater than 0, thus being

consistent with the physics meaning. Similarly, according to Equation (13), the mathemati-
cal expectation of power spectrum estimation can be deduced as

ElPe(w)] = E[ 3 Ry(m)e "]

mN:_floo |
_ R, —jwm
m:—%}—l)WB(m) (m)e 1)
- %WB(w) « Py(w)
— o= [ Wa@Pi(w -2z,

which demonstrates its mean value is the convolution of frequency spectrum and Bartlett
window spectrum. When N — oo, referring to Equation (14), it is not hard to draw that
E[Py(w)] — Py(w).

Another indicator to measure estimation performance is estimate consistency, which
can be represented by estimation variance

Var|Py(w)] ~ P? [1 + <Sm(wN)>2] (22)

Nsinw

from which we can find spectral estimation with Bartlett window is not a consistent estima-

tion. Based on the above analyses, it is appropriate to make spectral estimations by using

autocorrelation estimations with Bartlett window, though the results are not consistent.
Regrettably, the approach based on Equation (6) is still not simple enough, and then

the so-called direct calculation approach of periodogram is proposed,

w) = m——oo R (m)e=rom

zm_,w 12 e m)xyy (m)e T

N IR ;Z"’_oo xN(k)efjka?\I(”)ejwn (23)
. 2
%)zygolxm)eﬂwn

= %IXN(ij)F,

||§ 2| /\

where Xy (/) = YN"1x(n)e~/*™. In this way, we no longer need to estimate the au-
tocorrelation function, but obtain spectral estimation by directly Fourier transforming
the sequence data and then squaring their modulus.

In a word, periodogram with Bartlett window guarantees the power spectrum greater
than 0 and simultaneously the calculation is relatively simple, while the defect lies in the es-
timation inconsistency.
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2.2.3. The Bartlett Approach

The result of periodogram is the asymptotic unbiased estimation, but not the consistent
estimation of power spectrum. Inspired by Equation (14), if we could find the consistent esti-
mation of E[Py(w)], and correspondingly the consistent estimation of Py(w) is then gained.

According to the statistic theory, the arithmetic mean of a set mutually independent
data of a stochastic variable is the consistent estimation of this variable’s mathematical
expectation. Consequently, we take several mutually independent sampling sequences of
a stochastic process and average their periodogram results. The mean value so obtained
would be the consistent spectral estimation of the stochastic process. Such approach is the
so-called average periodogram, or the Bartlett approach.

Refer to the algorithm model in Figure 3, for data with N points, they are divided
into L segments, each of which has M points, namely N = L x M. For each segment,
we perform periodogram with Bartlett window separately to estimate power spectrum

Blw)= ¥ Rilme o, (1 <i<i) e

and then average the total L segments’ estimation results

L
Y Y Ri(myeen (25)

which means find out each segment’s autocorrelation function, calculate the average value
and then conduct Fourier Transform.

Input:
{Xn} with A points

Segment:
Divide into L segments

Process piecewise:
Calculate the power spectrum
of each segment

Smooth:
Average the above power
spectrums

Figure 3. The algorithm model of the Bartlett approach.
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P;(w) can be approximately regarded as mutually independent in the case of M > 1,
hence the estimation variance of the Bartlett approach is

L
Var[Py(w)] ~ % Y Var[Pi(w)] = %Var[pi(w)]. (26)
i=0

Considering the limiting case of L — o, the variance Var[P,(w)] — 0, demonstrating
the Bartlett approach is the consistent estimation.

3. Performance
3.1. Comparison with the Wavelet Approach

The detection principle of the traditional method, based on wavelet feature extraction
and Hurst index estimation [32], is such that when the DoS attack occurs, the Hurst index of
network traffic will decrease. The Hurst index of normal network traffic is roughly between
0.75 and 1, and the larger the Hurst index, the stronger the burst of traffic [33]. When
the channel is completely blocked, the network traffic tends toward a Poisson distribution,
and the Hurst index becomes 0.5. However, as the DDoS and LDos attack both are a type
of DoS attack and will cause the drop of the Hurst index in the same way, it is unattainable
to achieve the goal of distinguishing these two attacks. Moreover, the complexity of the
wavelet transform is higher than that of the power spectrum estimation.

Based on a NS-2 simulation environment from Rice University, the performance of
the wavelet approach and the Bartlett approach in LDoS attack detection accuracy is
compared in Table 1. Only DDoS and LDoS attacks are set in the simulation environment.
It can be seen from Table 1 that the wavelet approach has almost no ability to distinguish
these two attacks.

Table 1. Detection accuracy of LDoS attack.

Method Accuracy
The wavelet approach with Hurst estimation 53%
The Bartlett approach with NCPSD 88%

3.2. Estimation Consistency and Detection Effect

To verify the validity of our proposed detection approach, we initially compare the per-
formance of estimation consistency, then detect the traffic containing LDoS attack streams
by analyzing the distribution of normalized cumulative power spectrum density (NCPSD)
in frequency band to test the authenticity of our approach. The authors of [20] conducted
relevant simulation experiments to prove that a slight change in transmittance T will result
in the keyrate-distance product decrease. A typical experiment in Ref. [20] shows that,
in the channel where T obeys a two-point distribution, when p, which means the probability
that the channel transmittance is non-zero, drops from 1 to 0.99, the channel’s secure trans-
mission distance is reduced by more than half. Therefore, the LDoS attack stream in our
experimental data mainly aims at tempering the transmittance T. As for the data used to
test the estimation consistency, we adopt the filtered Gaussian white noise as the stochastic
process sequence with a normalized center frequency (see Appendix B for definition) of 0.1
and a relative bandwidth (see Appendix B for definition) of 4%. Moreover, the sampling
frequency is 100 Hz in the estimation consistency experiment.

As shown in Figure 4, our experiment data are filtered from Gaussian white noise by
FIR filter with Blackman window and the data length is 1800 points. We carefully select
the order of filter to balance the signal distortion and filtering effect. In accordance with a
sampling frequency of 100 Hz, it can be calculated that the analog frequency corresponding
to the normalized frequency of 0.1 should be 0.1 x 100 Hz/2 =5 Hz.



Photonics 2022, 9, 365

10 of 14

Raw data
Filtered data

iltered IR with Blac| J indow 0.08 [

0.06 1

0.02 f
‘f\

Amplitude
Magnitude

0 500 1000 1500 0 5 10 15 20 25 30
Time(n) Frequency(Hz)
Figure 4. Data of estimation consistency experiment. Raw data is the Gaussian white noise with
mean value of 0 and variance of 1. Filtered data is obtained by filtering the raw data with a high-order
FIR filter. The figure on the right is the spectogram, distributed around 5 Hz, of filtered data.

After that, we successively used the periodogram with Bartlett window and the Bartlett
approach to estimate the power spectrum of experiment data. In order to put stress
on the estimation consistency, the power spectrum’s details in the vicinity of the center
frequency are magnified in Figure 5. Both spectral estimation approaches estimate twice to
analyze the consistency of the estimation.

T T
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first time first time
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Figure 5. Comparison of estimation consistency. (a) Adopting the periodogram with Bartlett
window for spectral estimation. (b) Adopting the Bartlett approach (average periodogram) for
spectral estimation.

Comparing the two figures in Figure 5, except the discovery that the performance
in consistency of the Bartlett approach outperforms the periodogram with Bartlett window,
we can also find that the curve of the Bartlett approach is smoother and its center frequency
peak is more distinct. Hence, the Bartlett approach’s estimation consistency has been
strongly verified.

In the simulation experiment, the Bartlett approach is used for the spectral estimation.
Using the NCPSD (see Appendix B for definition) calculation of the LDoS attack stream
under different background traffic intensities, we test the feasibility of the proposed method
to detect the LDoS attacks.

As shown in Figure 6a, the stream with the LDoS attacks has an energy distribution
close to 70% of the total energy in the range of 0 to 50 Hz, while the normal stream has only
10% energy in this range. It, at the same time, proves that we can calculate the deviation of
the NCPSD from the normal value to reflect whether the stream contains LDoS attacks.
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Figure 6. NCPSD under different background traffic intensity.(a) NCPSD of attack stream and normal
stream under low background traffic. (b) NCPSD of attack stream and normal stream under high
background traffic.

Figure 6b shows the NCPSD curves of stream with the LDoS attack and the normal
one. In spite of the narrowed difference between the two curves, there is 30% of the total
energy distributed within the range of 0 to 50 Hz, which is still quite deviated from 10%
of the normal stream. That is to say, under the high intensity of background traffic, the
detection effect has declined to some extent, but it can still detect whether the stream
contains LDoS attacks.

4. Conclusions

In our paper, a method based on Bartlett’s approach of spectral estimation is pro-
posed to detect LDoS attacks in the CVQKD communicating progress. The LDoS attack is
an algorithm-aimed hacking strategy and related experiments have already demonstrated
that a slight manipulation of a channel’s parameters can trigger the communication inter-
ruption. What we pay attention to is the channel’s transmittance T, as other parameters can
be deduced from it. Taking advantage of the periodicity of LDoS attacks, we obtain the rule
that the PSD of the LDoS attack stream is higher than normal in the low frequency domain,
hence transforming the issue of the LDoS attack detection into the spectral estimation of
stochastic sequence. Three of the spectral estimation approaches are discussed emphat-
ically, including the autocorrelation estimation with rectangular window, periodogram
with Bartlett window and the Bartlett approach, from the perspective of estimation consis-
tency and estimation unbiasedness. Through mathematical deduction and experimental
analysis, the Bartlett approach performs best among the three approaches. The simulation
experiment results show that the Bartlett approach is consistent in its estimations and can
effectively detect the LDos attacks.
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Abbreviations

The following abbreviations are used in this manuscript:

CVQKD  Continuous-variable quantum key distribution
DVQKD  Discrete-variable quantum key distribution

DoS Denial-of-service

LDoS Low-rate denial-of-service

PSD Power spectral density

GMCS Gaussian-modulated coherent state

LO Local oscillator

TCP Transmission control protocol

NCPSD  Normalized cumulative power spectral density
FIR Finite impulse response

Appendix A. Detailed Derivation and Proof of the LDoS Attack Strategy

In Section 2.1, we have briefly explained the LDoS attack strategy against the GMCS
protocol. In this part, the rigorous mathematical derivation is given. During a commu-
nication, Alice modulates X and Bob measures Y, both X and Y are Gaussian variables,
and their expressions are as follows

X = Acos(8) Y = VTAcos(6 + Ag) + A, (A1)

where A is the amplitude of the coherent state that is modulated by AM, 6 is the phase of
the coherent state that modulated by PM, T is the channel transmittance, Ag is the phase
deviation generated by the quantum channel and Ay is the linear error caused by the noise.
Once again, the finite-size effect is left out of consideration and we regard detector efficiency
1 and electrical noise V,; as fixed values. Substitute Equation (A1) into Equation (1) and
then the following formula can be obtained

_ m I y _ E(XY)
ST

>

(A2)
E(VTA?cos(8)cos(0+Ag))+E(AnAcos(8))
E(A2c0s2(0)) )

Then, in view of the phase compensation technique could rectify the phase shift and
the mean value of Ay caused by noise equals 0, we reckon that A ~ 0 and E(AyAcos(0)) =
E(AN)E(Acos(0)) = 0. Such being the case, we can simplify Equation (A2) to

P E(V/TAZ%cos%0)
T E(AZcos?9)

E(V/T)E(A?c0s?8)+cov(\/T,A?cos?0)
it (83

E(V/T)E(A2%cos26
= ot = E(VT).

The covariance cov(+/T, A%cos?6) equals 0 because the parameter T is irrelevant to
Alice’s modulation process. Ulteriorly, by using the equivalent relations in Equation (A3)
and equation V4 = E(X?) = E(A?cos%0), we can get the 62 as

02 = E(Y — tX)? = E(Y? — 2{XY + 2X?)
= E(Te) + 1+ E(TX?) — 2fE(XY) + F2E(X?) (A4)
=E(T)e+ 1+ E(T)V4 — (E(VT))*V4.

Equations (A3) and (A4) fully prove that T is a key parameter in channel estimation.
Eve can carry out attacks by manipulating T.
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Appendix B. Definition of Some Key Parameters

In this part, we give the definitions of key parameters that are not provided in
the manuscript.

Appendix B.1. NCPSD

The normalized cumulative power spectrum density is defined as

f fmax
o(f) = ;PSD(i)/ ; PSD(i),

where PSD (i) means the power spectral density of ith frequency component. The value
range of NCPSD is 0 to 1, and NCPSD reflects the proportion of different frequency
components in the whole signal.

Appendix B.2. Normalized Frequency

The normalized frequency is defined as

2
w = f ,
fs
where f means the analog frequency and f; means the sampling frequency. It takes

the sampling frequency as the reference value. In this way, a unified standard is achieved,
which is conducive to comparing the distribution of various frequencies.

Appendix B.3. Relative Bandwidth
Relative bandwidth is defined as

frb _ 2(fH _fL)’
fu+/
where fy and f], are the upper and lower limit frequencies, respectively.
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