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Abstract: Dynamical symmetries of laser-dressed matter determine the selection rules that influence

its absorption spectrum. We explore selection rules for polarization-sensitive absorption in Floquet

matter, using Floquet group theory in synthetic dimensions. We present comprehensive tables of

selection rules that polarization-structured light impose on Floquet dark states and Floquet dark

bands. Notably, our tables encompass nonlinear absorption for all nonlinear orders, revealing

that different nonlinear orders follow distinct polarization selection rules, potentially leading to

polarization-tunable optical filters.

Keywords: Floquet; dynamical symmetries; selection rules; tailored light

1. Introduction

Recently, Floquet engineering techniques have been developed for controlling the spec-
tral absorption of materials [1]. For example, the electronic structure of an optically dressed
material (described by a time-periodic Hamiltonian [2]) comprises Floquet states and Flo-
quet bands, and proper engineering of these unique properties can imbue materials with
intriguing features. Such Floquet systems are ubiquitous in various areas of physics such
as lasers [3] condensed matter [4] and more [5–9].

A Floquet system exhibits spatio-temporal symmetries, also known as dynamical
symmetries [10], that determine selection rules, e.g., the generation of odd-only [10] or
circularly polarized [11,12] harmonics in high harmonic generation from isotropic media.
Floquet group theory was introduced as a general framework to describe dynamical sym-
metries, and their associated selection rules on physical observables such as the nonlinear
emission spectrum [13]. Notably, it was recently shown (theoretically and experimentally)
that DSs also impose selection rules on linear absorption in the form of symmetry-protected
dark states, symmetry-protected dark bands, and symmetry-induced transparency [14].
However, nonlinear absorption was not explored. Also, only absorbed light with DS that
matches the DS of the absorbing Floquet system was considered. That is, the DSs of the
dressing and absorbed fields were matched, so that the full light–matter system exhib-
ited DS. Notably, it was recently shown that even in the presence of broken dynamical
symmetries, selection rules can still be systematically manifested [15,16].

Here, we present a generalized framework for absorption and transparency of an
arbitrarily polarized light by dressed matter with DS, even when this probe light does
not uphold the DS of the dressed matter. That is, the light–matter system exhibits broken
DS. Nevertheless, the system exhibits dynamical symmetries in space–time and synthetic
dimensions (SDSs), where the synthetic dimensions represent the polarization of the probe
light. We derive the selection rules for linear and nonlinear absorption associated with these
SDSs. We find that polarization-structured dressing light leads to polarization selective
Floquet dark states and Floquet dark bands (i.e., polarization-selective absorption). Notably,

Photonics 2024, 11, 918. https://doi.org/10.3390/photonics11100918 https://www.mdpi.com/journal/photonics

https://doi.org/10.3390/photonics11100918
https://doi.org/10.3390/photonics11100918
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/photonics
https://www.mdpi.com
https://orcid.org/0000-0002-1592-6530
https://doi.org/10.3390/photonics11100918
https://www.mdpi.com/journal/photonics
https://www.mdpi.com/article/10.3390/photonics11100918?type=check_update&version=3


Photonics 2024, 11, 918 2 of 12

the derived selection rules encompass nonlinear absorption for all nonlinear orders. We
found that different nonlinear orders adhere to different selection rules.

2. Results

We begin our treatment by considering a specific example that was previously con-
sidered absorption of light by a molecule with planar hexagonal symmetry, e.g., benzene
driven (dressed) by a circularly polarized laser field with frequency Ω [14]. The molecule
and driving laser polarization are aligned in the XY plane (Figure 1). The k-vector of the

driving field is in the z direction
(

k̂drive = ẑ
)

, while the probe beam k-vector is in the

y-direction
(

k̂prob = ŷ
)

and it is linearly polarized in the z-direction. The time-dependent

Hamiltonian of the system is given by [14].

Ĥ(t) = Ĥ0 + λd̂ ·
(

QdeiΩt + H.c.
)

(1)

in which Ĥ0 is the time-independent Hamiltonian of the field-free molecule, d̂ is the dipole
moment operator, Qd is the complex Jones vector of the pump, λ is proportional to the
electric field amplitude of the dressing laser and Ω is the frequency of the driven light.
We note that employing a quantum-optical Hamiltonian [14] is not required, as the semi-
classical and quantum-optical Hamiltonians share the same DSs and selection rules. We
consider the absorption of a ẑ polarized (out of the molecule plane) probe beam of frequency
ωp that interacts with the system (Figure 1a). The interaction term in Hamiltonian (1),
including the probe, is shown below:

Ŵ = λQd · d̂eiΩt + λQp · d̂ eiωpt + H.c. (2)

in which Qd,p are the complex Jones vectors of the complex pump and the probe beams,
respectively, and ωp is the frequency of the probe. Within either linear response theory [14]
or Floquet perturbation theory [16], the linear absorption at the frequency ω = ωp + nΩ is

proportional to the susceptibility I(ω) ∝ −i
∼
χn

(
ωp

)
, which is given by the following equation:

∼
χn

(
ωp

)
= iλ2 ∑

ν,µ,m

V
(−n−m)
ν,µ V

(m)
µ,ν

(
pν − pµ

)

ϵµ − ϵν + mΩ − ωp − iγ
(m)
ν,µ

(3)

In the above equation, m and n are integers, µ, ν are Floquet state indices and γ
(m)
ν,µ

are dephasing rates. V
(m)
µ,ν ≡ 1

τ

∫ τ
0 ⟨u

(m)
µ (t)|d̂|u

(m)
ν (t)⟩ dt are transition dipole moments

between Floquet states
∣∣uµ,ν(t)

〉
, and εµ,ν are their corresponding quasi-energies, defined

by the following eigenvalue equation:

[
Ĥ(t)−

id

dt

]
|u

(m)
η (t) ⟩ = εη |u

(m)
η (t) ⟩ (4)

The dressed system exhibits the DS Ĉ6 = R̂6 · τ̂6 where R̂6 is the spatial rotation of
2π
6 around the ẑ axis, and τ̂6 is T

6 = 2π
6Ω

[13,14] time translation. The DS Ĉ6 results in
symmetry-protected dark states (spDS) [14], as shown below:

V̂
(m)
ν,µ =

{
1 if ei 2π

N (mµ−mν+n) = 1
0 else

mµ, mν ∈ {0, 1 . . . N − 1} (5)

Symmetry-protected Floquet bands are also shown below:

∼
χn

(
ωp

)
=

{
1 if ei 2π

N n = 1
0 else

(6)
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In the above equation, N = 6. We emphasize that within the linear response approach,
Equations (5) and (6) are only correct for probes that do not break the Ĉ6 symmetry,
essentially limiting the discussion to ẑ polarized probes.

𝐻෡ = 𝐻෡଴ + 𝑊෡ 𝐶መ଺Ω 𝑸௣𝑋෠ = 𝐶መ଺ ∘ ζመ ζመ𝑸୮  

 

ff

𝜁መ஼መల𝑸௣ 𝜁መ஼መలൣ𝑸௣൧ = 𝑒౟ಡమഏలಈ 𝑸௣ tt𝑬(𝑡)
𝑬൫𝑡, 𝑸𝒑൯ = 𝐶መ଺𝑬൫𝑡, 𝜁መ஼መలൣ𝑸𝒑൧൯𝑬 tt  𝑃ே௅(𝑡, 𝑄௣) 𝑸 𝑞௭𝑧̂ 𝑬 𝑞௭

𝜔 ≡ nΩ + ω୮: ෍ 𝑬෩𝝎൫𝑸𝒑൯𝑒௜ఠ௧௡ = ෍ 𝐶መ଺(௑௒)𝑬෩𝝎 ቀ𝜻෠𝑪෡𝟔൫𝑸𝒑൯ቁ 𝑒௜ఠ௧ ௡𝑬෩𝝎൫𝑸𝒑൯ Fourier element of 𝑬 𝑸
1 = 𝑒௜ଶగ଺ ቀఠିఠ೛ஐ ቁ = 𝑒௜ଶగ଺ ௡ 𝑋෠ = 𝐶መ଺ ∘ ζመ

Figure 1. The differences between perturbation theory (a) and dynamical symmetry (b) for the

polarization of the probe (1) and the absorption order (2).

To generalize this result beyond the regime of linear response, and for arbitrarily
polarized probe fields, we look for synthetic dynamical symmetries [16] of the perturbed
(probed) Hamiltonian Ĥ = Ĥ0 + Ŵ. While the probe may break the Ĉ6 symmetry imposed
by the circularly polarized Ω field, for any choice of Qp, reduced dynamical symmetry
in synthetic dimensions (synthetic dynamical symmetry—SDS) remains. The SDS is con-
structed as the composition X̂ = Ĉ6 ◦ ζ̂, where ζ̂ operates in the synthetic space spanned by
the polarization vector of the probe Qp.

Here, ζ̂Ĉ6
operates in the synthetic space spanned by the components of the Jones

vector Qp, and is given by ζ̂Ĉ6

[
Qp

]
= e

iω2π
6Ω Qp. By employing the invariance of the emitted

field E(t) (equivalent to the dipole moment expectation value in our semi-classical de-
scription) under the SDS operation, we obtain the generalized selection rule for symmetry-
protected dark bands (generalizing Equation (6)), as shown below:

E
(

t, Qp

)
= Ĉ6E

(
t, ζ̂Ĉ6

[
Qp

])
(7)

where E is the emitted electric field and may also be replaced by the nonlinear polariza-
tion PNL

(
t, Qp

)
. This represents the most general selection rule for the absorption of the

probe. For example, assuming Q= qz ẑ and that E is linear with qz, Equation (7) reduces to
Equation (6), reproducing the result of ref. [14]. However, Equation (7) contains a wealth
of additional information, as it provides selection rules on the nonlinear response to all
nonlinear orders, and for arbitrary probe polarization. We denote ω ≡ nΩ +ωp to form
Equation (8), as shown below:

∑
n

∼
Eω

(
Qp

)
eiωt = ∑

n

Ĉ
(XY)
6

∼
Eω

(
ζ̂Ĉ6

(
Qp

))
eiωt (8)
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in which
∼
Eω

(
Qp

)
is the Fourier element of E. For the first order in Q, we obtain the

following equation:

1 = e
i2π

6 (
ω−ωp

Ω
) = e

i2π
6 n (9)

This equation is equivalent to Equation (6). In a similar way, X̂ = Ĉ6 ◦ ζ̂ imposes a
selection rule on the transition between Floquet bands. To derive this selection rule, we

expand
〈

ν
∣∣∣ d̂

∣∣∣µ
〉
=

〈
ν
∣∣∣ d̂

∣∣∣µ
〉
≡ ∑n

∼
dn

(ν,µ)(
Qp

)
einωt in a Fourier series, and employ the

relation
〈
ν
∣∣ X̂+X̂d̂ X̂+X̂

∣∣µ
〉
. The corresponding generalized selection rule is as follows:

∼
dn

(ν,µ)(
Qp

)
= e

i2π
6Ω

(mν−mµ+n)R̂6

∼
dn

(ν,µ)(
ζ̂Ĉ6

[
Qp

])
(10)

Equation (10) is a generalized selection rule for symmetry-protected dark states, which

reduces to Equation (5) for Qp ∥ ẑ and the linear term of
∼
dn

(ν,µ)(
Qp

)
. As a generalization,

the polarization of the probe can also account for the absorption of in-plane (the molecule
XY plane) probes, e.g., right- (RCP) or left (LCP)-handed circularly polarized probes with
Jones vectors Qp ≡ Q(x̂ ± iŷ) where a plus (minus) corresponds to an RCP (LCP)-polarized

probe. Expanding
∼
dn

(ν,µ)

into orders of Qk, Equation (10) becomes the following:

1 = e
i2π

6 ( n−(
ωp
Ω

±1)( k−1)) (11)

in which k is the nonlinearity order of the absorption, and ± corresponds to RCP/LCP,
respectively.

Through a similar procedure (see Appendix A), we tabulate the generalized selection
rules for symmetry-protected bands (Table 1) and symmetry-protected dark states (Table 2).
The complete derivations are outlined in the SI. For a Hamiltonian with time-reversal(

T̂
)

symmetry, we find that transitions between Floquet bands (absorption/emission)
of linearly polarized probes are allowed only when the electric field is in phase with
the dressing field, regardless of the interaction’s nonlinearity order. For Ẑy symmetry,
transition between Floquet bands is allowed only for an x̂ polarized probe that satisfies
n −

ωp

Ω (k − 1) + k + 1 = 2l and ŷ polarized probes satisfying
ωp

Ω (k − 1) = 2l, where k is
the nonlinearity order, l is an integer, and n is the Floquet band index. For the circular
DS, ĈN,M, transition between Floquet bands is allowed by an RCP/LCP probe that only

satisfies n −
(

ωp

Ω
± M

)
(k − 1) = Nl, where a plus (minus) corresponds to RCP (LCP)

and M and N are integers. Similar rules are outlined in Table 2 for symmetry-protected
dark states. It is important to note that our work is based solely on symmetry arguments,
independent of the specific molecular structure or the various physical mechanisms of
optical absorption [17]. Additionally, the presented formalism is general, provided that
the light includes enough optical cycles to account for the Flouqet formalism. Notably,
on-resonance interaction requires significantly larger numbers of optical cycles [16].

Information on the general SR with other symmetries is shown below:

Table 1. Selection rule of dark bend ‘n’ with various symmetries in general order and general

polarized probes. When k is the order of the absorption, λ is the magnitude of the light. ωp is the

frequency of the probe and Ω is the frequency of the driver n, l ∈ Z.

Symmetry Selection Rule of
∼
χ
(k,x̂)

n , l ∈ Z, k(nonlinearity order) ∈ N

T̂
Transition (absorption/emission): any linearly polarized probe in the same phase with the dressing field for
any nonlinearity order

Q̂ Transition (absorption/emission): linearly polarized probe with the phase πk/2

Ĝ Transition (absorption/emission): linearly polarized probe with the phase π
(

n −
ωp

Ω (k − 1) + k + 1
)

/2
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Table 1. Cont.

Symmetry Selection Rule of
∼
χ
(k,x̂)

n , l ∈ Z, k(nonlinearity order) ∈ N

Ẑy
x̂ polarized probe: n −

ωp

Ω (k − 1) + k + 1 = 2l

ŷ polarized probe: n −
ωp

Ω (k − 1) = 2l

D̂y
x̂ polarized probe with the phase π(1 + k)/2
ŷ polarized probe in phase with the dressing field

Ĥy

x̂ polarized probe with the phase π

2

(
n − (k − 1)

(
ωp

Ω

)
+ 1 + k

)

ŷ polarized probe with the phase π
2

(
n −

ωp

Ω (k − 1)
)

ĈN,M

RCP-polarized probe: n −
(
ωp

Ω
+ 1

)
(k − 1) = Nl

LCP-polarized probe: n −
(
ωp

Ω
− 1

)
(k − 1) = Nl

êN,M

RCP-polarized probe: n −
(
ωp

Ω
+ M

)
(k − 1) = Nl

LCP-polarized probe: n −
(
ωp

Ω
− M

)
(k − 1) = Nl

Table 2. Selection rule between two states (µ.ν) at bend ‘n’ with various symmetries in general order

and general polarized probes.

Symmetry Selection Rule of V̂
(n,k)
ν,µ l ∈ Z, k(nonlinearity order) ∈ N

T̂ Linearly polarized probe with a phase: π

2 (mµ − mν)
Q̂ Linearly polarized probe with a phase: π

2 (mµ − mν + k + 1)

Ĝ Linearly polarized probe with a phase: π
2

(
n −

ωp

Ω (k − 1) + k + 1 + mµ − mν

)

Ẑy
x̂ polarized probe: n −

ωp

Ω (k − 1) + k + 1 + mµ − mν = 2l

ŷ polarized probe: n −
ωp

Ω (k − 1) + mµ − mν = 2l

D̂y
x̂ polarized probe with a phase: π

2 (1 + k1 + k + mµ − mν)
ŷ polarized probe with a phase: π

2 (mµ − mν)

Ĥy

x̂ polarized probe with a phase: π

2

(
n − (k − 1)

(
ωp

Ω

)
+ 1 + k + mµ − mν

)

ŷ polarized probe with a phase: π

2

(
n −

ωp

Ω (k − 1) + mµ − mν

)

ĈN

RCP-polarized probe: n −
(
ωp

Ω
+ M

)
(k − 1) + mµ − mν = Nl

LCP-polarized probe: n −
(
ωp

Ω
− M

)
(k − 1) + mµ − mν = Nl

êN

RCP-polarized probe: n −
(
ωp

Ω
+ M

)
(k − 1) + mµ − mν = Nl

LCP-polarized probe: n −
(
ωp

Ω
− M

)
(k − 1) + mµ − mν = Nl

3. Discussion

In summary, in this study, we derived selection rules for symmetry-protected dark
bands and states in Floquet systems by applying the concept of synthetic dynamical sym-
metries [16]. By employing synthetic dynamical symmetry, we extended the applicability
of previous linear response theory treatments to nonlinear absorption by Floquet systems.
Notably, our approach enables the identification of selection rules even when one of the
fields disrupts the system’s DS, accommodating complex field geometry. Our selection
rules derived from dynamical symmetry generalized previously reported [14,18] selection
rules for absorption in dressed matter. This work holds promise for the development of
tunable polarization sensitive optical elements using Floquet dressing. Additionally, it
connects the concepts of Floquet engineering and tailored light. Our selection rules can
serve as a guide for further research on nonlinear absorption in complex geometries [19].
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Appendix A. Derivation

Ŵ = λQp · d̂ eiωpt + H.c.

ω = Ωn + ωp

Eemit(Q, t) = λQ · r eiωt

In order to calculate
∼
χ
(k,x̂)

n for every symmetry x̂, we first find ζ̂ x̂ using the following
equation:

X̂ = x̂ · ζ̂ x̂

x̂ · ζ̂ x̂

(
Ŵ

)
= Ŵ

We then find the SR of the emitter field using the following equation:

x̂ · ζ̂T̂ E(t, Q) = E(t, Q)

E(t, Q) is the expectation value of the field. Additionally, we use Fourier series to
separate the frequencies, and Tailor series to separate the order of the absorption.

Derivation of T-symmetry:

The symmetry operator is as follows:

X̂ = T̂ · ζ̂T̂

T̂ · ζ̂T̂λQp · r eiωpt + h.c = ζ̂T̂λQp · r e−iωpt + h.c

Therefore, the synthetic operator is as follows:

ζ̂T̂

(
λQp

)
= λQp

The expectation value is as follows:

T̂ · ζ̂T̂ E(t, Q) = E(t, Q)

T̂ · ζ̂T̂ E(t, Q) = ∑
n

En

(
Q
)
e−iωt = ∑

n

En(Q)eiωt

En

(
Q
)
= E−n(Q) = En(Q)

Therefore, regardless of the polarization, the SR is as follows:

Ek,n ∈ R

Derivation of Q-symmetry:

X̂ = Q̂ · ζ̂Q̂
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For x̂ or ŷ polarized probes,

Q̂ · ζ̂Q̂

(
λx̂ eiωpt + h.c

)
= −ζ̂Q̂

(
x̂ e−iωpt + h.c

)

Therefore, the synthetic operator is as follows:

ζ̂Q̂

(
λQp

)
= −λQp

Regarding the expectation value, the following expressions can be used for x̂ polarized
probes, which are the same for ŷ polarized probes:

Q̂ · ζ̂Q̂ E(t, Q) = E(t, Q)

Q̂ · ζ̂Q̂ E(t, Q) = ∑
n

En

(
ζ̂Q̂(Q)

)
e−iωt = ∑

n

−En

(
−Q

)
e−iωt = ∑

n

En(Q)eiωt

En(Q) = −En

(
−Q

)

∑
k

En,kλk = ∑
k

−En,k

(
−λ)k

En,k = (−1)k+1En,k

The SR is as follows:
i1+k · Ek,n ∈ R

Derivation of G-symmetry:

X̂ = Ĝ · ζ̂Ĝ

For x̂ or ŷ polarized probes,

Ĝ · ζ̂Ĝ

(
λx̂ eiωpt + h.c

)
= −ζ̂Ĝ

(
x̂ e−iωpt(−1)

ωp
Ω + h.c

)

Therefore, the synthetic operator is as follows:

ζ̂Ĝ

(
λQp

)
= (−1)−

ωp
Ω

−1λQp

For the expectation value, the following expressions can be used for x̂ polarized probes,
which are the same for ŷ polarized probes:

Ĝ · ζ̂Ĝ E(t, Q) = E(t, Q)

Ĝ · ζ̂Ĝ E(t, Q) = ∑
n

(−1)
ω
Ω
+1En

(
ζ̂Ĝ(Q)

)
e−iωt = ∑

n

En

(
Q(−1)−

ωp
Ω

−1
)

e−iωt = ∑
n

En(Q)eiωt

En(Q) = (−1)
ω
Ω
+1En

(
Q(−1)−

ωp
Ω

−1
)

∑
k

En,kλk = ∑
k

(−1)
ω
Ω
+1En,k((−1)−

ωp
Ω

−1 λ)k

En,k = (−1)
ω
Ω
+1−(

ωp
Ω

+1)kEn,k = (−1)
ω+ωp

Ω
+1−1−(

ωp
Ω

+1)(k−1)En,k

The SR is as follows:
in−(

ωp
Ω

+1)(k−1) · En,k ∈ R

Derivation of Zy-symmetry:

X̂ = Ẑ · ζ̂Ẑ
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For x̂ polarized probes,

Ẑ · ζ̂Ẑ

(
λx̂ eiωpt + h.c

)
= −ζ̂Ẑ

(
x̂ eiωpt(−1)

ωp
Ω + h.c

)

Therefore, the synthetic operator is as follows:

ζ̂Ẑ

(
λQp

)
= (−1)−

ωp
Ω

−1λQp

The expectation value of the emitter field is shown below:

Ẑ · ζ̂Ẑ E(t, Q) = ∑
n

(−1)
ω
Ω
+1En

(
ζ̂Ẑ(Q)

)
eiωt = ∑

n

En

(
(−1)−

ωp
Ω

−1Q

)
eiωt = ∑

n

En(Q)eiωt

En(Q) = (−1)
ω
Ω
+1En

(
Q(−1)−

ωp
Ω

−1
)

∑
k

En,kλk = ∑
k

(−1)
ω
Ω
+1En,k((−1)−

ωp
Ω

−1 λ)k

En,k = (−1)
ω
Ω
+1−(

ωp
Ω

+1)kEn,k = (−1)
ω+ωp

Ω
−(

ωp
Ω

+1)(k−1)En,k

The SR is as follows:

n −
(ωp

Ω
+ 1

)
(k − 1) = 2l , l ∈ Z

For ŷ polarized probes,

Ẑ · ζ̂Ẑ

(
λŷ eiωpt + h.c

)
= ζ̂Ẑ

(
x̂ eiωpt(−1)

ωp
Ω + h.c

)

Therefore, the synthetic operator is as follows:

ζ̂Z

(
λQp

)
= (−1)−

ωp
Ω λQp

The expectation value of the emitter field is shown below:

Ẑ · ζ̂Ẑ E(t, Q) = ∑
n

(−1)
ω
Ω En

(
ζ̂Ẑ(Q)

)
eiωt = ∑

n

(−1)
ω
Ω En

(
(−1)−

ωp
Ω Q

)
eiωt = ∑

n

En(Q)eiωt

En(Q) = (−1)
ω
Ω En

(
Q(−1)−

ωp
Ω

)

∑
k

En,kλk = ∑
k

(−1)nEn,k((−1)−
ωp
Ω λ)k

En,k = (−1)
ω
Ω
−(

ωp
Ω

)kEn,k = (−1)
ω+ωp

Ω
−(

ωp
Ω

)(k−1) En,k

The SR is as follows:
n −

(ωp

Ω

)
(k − 1) = 2l , l ∈ Z

Derivation of D-symmetry:

The symmetry operator is as follows:

X̂ = D̂ · ζ̂D̂
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For x̂ polarized probes,

D̂ · ζ̂D̂

(
λx̂ eiωpt + h.c

)
= ζ̂D̂

(
−x̂ e−iωpt + h.c

)

Therefore, the synthetic operator is as follows:

ζ̂D̂

(
λQp

)
= −λQp

In this instance, the Q̂ symmetry is the same; therefore, the SR is as follows:

i1+k · Ek,n ∈ R

For ŷ polarized probes,

D̂ · ζ̂D̂

(
λŷ eiωpt + h.c

)
= ζ̂D̂

(
ŷ e−iωpt + h.c

)

Therefore, the synthetic operator is as follows:

ζ̂D̂

(
λQp

)
= λQp

In this instance, the operator is similar to T̂ symmetry; therefore, the SR is as follows:

Ek,n ∈ R

Derivation of H-symmetry:

The symmetry operator is as follows:

X̂ = Ĥy · ζ̂Ĥ

For x̂ polarized probes,

Ĥ · ζ̂Ĥ

(
λx̂ eiωpt + h.c

)
= ζ̂Ĥ

(
−x̂ e−iωpt + h.c

)

Therefore, the synthetic operator is as follows:

ζ̂Ĥ

(
λQp

)
= −λQp(−1)−

ωp
Ω

In this instance, the Ĝ symmetry is the same; therefore, the selection rule is as follows:

in−(
ωp
Ω

+1)(k−1) · En,k ∈ R

For ŷ polarized probes,

Ĥ · ζ̂Ĥ

(
λŷ eiωpt + h.c

)
= ζ̂Ĥ

(
ŷ e−iωpt + h.c

)

Therefore, the synthetic operator is as follows:

ζ̂Ĥ

(
λQp

)
= λQp(−1)−

ωp
Ω

The expectation value of the emitter field is shown below:

Ĥ · ζ̂Ĥ E(t, Q) = ∑
n

(−1)
ω
Ω En

(
ζ̂Ĥ(Q)

)
e−iωt = ∑

n

(−1)
ω
Ω En

(
(−1)−

ωp
Ω Q

)
e−iωt = ∑

n

En(Q)eiωt
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(−1)
ω
Ω En

(
(−1)−

ωp
Ω Q

)
= En(Q)eiωt

∑
k

En,kλk = ∑
k

(−1)
ω
Ω En,k((−1)−

ωp
Ω λ)k

En,k = (−1)
ω
Ω
−

ωp
Ω

kEn,k = (−1)n−
ωp
Ω

(k−1)En,k

The SR is as follows:
in−

ωp
Ω

(k−1)En,k ∈ R

Derivation of C-symmetry:

The symmetry operator is as follows:

X̂ = ĈN,M · ζ̂Ĉ

The vectors êRH , êLH are RH and LH polarizations, i.e., x + iy, x − iy. These vectors

are the eigen vectors of the rotation operators, with an eigen value of e±
i2π
N M.

For RCP-polarized probes,

Ĉ · ζ̂Ĉ

(
λêRH eiωpt + h.c

)
= ζ̂Ĉ

(
e

i2π
N MλêRHe−iωpte2π

iωp
NΩ + h.c

)

Therefore, the synthetic symmetry operator is as follows:

ζ̂Ĉ

(
λQp

)
= λQpe−2π

iωp
NΩ e−

i2π
N M

The expectation value of the emitter field is shown below:

Ĉ · ζ̂Ĉ E(t, Q) = ∑
n

e
i2π
N Me2πi ω

NΩ En

(
ζ̂Ĉ(Q)

)
eiωt = ∑

n

e
i2π
N Me2π iω

NΩ En

(
e−

i2π
N Me−2πi

ωp
NΩ Q

)
eiωt = ∑

n

En(Q)eiωt

e
i2π
N Me2πi ω

NΩ En

(
e−

i2π
N Me−2πi

ωp
NΩ Q

)
= En(Q)eiωt

∑
k

En,kλk = ∑
k

e
i2π
N Me2πi ω

NΩ En,k(e
− i2π

N Me−2πi
ωp
NΩ λ)k

En,k = En,ke
2πi
N ( ω

Ω
+M−(

ωp
Ω

+M)k) = En,ke
2πi

6 (
ω−ωp

Ω
−(

ωp
Ω

+M)(k−1))

n +
(ωp

Ω
+ M

)
(k − 1) = Nl , l ∈ Z

For LCP-polarized probes,

Ĉ · ζ̂Ĉ

(
λêLH eiωpt + h.c

)
= ζ̂Ĉ

(
e−

i2π
N MλêRHe−iωpte2π

iωp
NΩ + h.c

)

Therefore, the synthetic symmetry operator is as follows:

ζ̂Ĉ

(
λQp

)
= λQpe−2π

iωp
NΩ e

i2π
N M

The expectation value of the emitter field is shown below:

Ĉ · ζ̂Ĉ E(t, Q) = ∑
n

e−
i2π
N Me2πi ω

NΩ En

(
ζ̂Ẑ(Q)

)
eiωt = ∑

n

e−
i2π
N Me2π iω

NΩ En

(
e

i2π
N Me−2πi

ωp
NΩ Q

)
eiωt = ∑

n

En(Q)eiωt

e−
i2π
N Me2πi ω

NΩ En

(
e

i2π
N Me−2πi

ωp
NΩ Q

)
= En(Q)eiωt
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∑
k

En,kλk = ∑
k

e−
i2π
N Me2πi ω

NΩ En,k(e
− i2π

N Me−2πi
ωp
NΩ λ)k

En,k = En,ke
2πi
N ( ω

Ω
−M−(

ωp
Ω

−M)k) = En,ke
2πi
N (

ω−ωp
Ω

−(
ωp
Ω

−M)(k−1))

The selection rule is as follows:

n −
(ωp

Ω
− M

)
(k − 1) = Nl , l ∈ Z

Derivation of e-symmetry:

The symmetry operator is as follows:

X̂ = êN,M · ζ̂Ĉ

Now, we can define êRH/LH as x ± iby, i.e., the right/left elliptical polarized probes.
These unit vectors are the eigen vector of the operator L̂bR̂N L̂ 1

b
and they have an eigen

value of e±
i2π
N M.

For RCP-polarized probes,

ê · ζ̂ ê

(
λêRH eiωpt + h.c

)
= ζ̂ ê

(
e

i2π
N MλêRHe−iωpte2π

iωp
NΩ + h.c

)

Therefore, the synthetic symmetry operator is as follows:

ζ̂ ê

(
λQp

)
= λQpe−2π

iωp
NΩ e−

i2π
N M

In this instance, the Ĉ symmetry is the same; therefore, the selection rule is as follows:

n −
(ωp

Ω
+ M

)
(k − 1) = Nl , l ∈ Z

For LCP-polarized probes,

ê · ζ̂ ê

(
λêRH eiωpt + h.c

)
= ζ̂ ê

(
e

i2π
N MλêRHe−iωpte2π

iωp
NΩ + h.c

)

Therefore, the synthetic symmetry operator is as follows:

ζ̂ ê

(
λQp

)
= λQpe−2π

iωp
NΩ e−

i2π
N M

In this instance, the Ĉ symmetry is the same; therefore, the selection rule is as follows:

n −
(ωp

Ω
− M

)
(k − 1) = 6l , l ∈ Z

The derivation of V̂
(n,k)
ν,µ is very similar to the derivation of

∼
χ
(k,x̂)

n , but the expectation
value of Eemit is added to the eigen value of the state µ, ν in this instance. Therefore, we
need to solve the following equation:

e
i2π
N (mµ−mν) x̂ · ζ̂T̂ E(t, Q) = E(t, Q)

In the above equation, N is the number of the different states in every band. Because
of this, we obtain the same SR but with the addition of mµ − mν.
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