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Abstract
We explore a recently demonstrated deterministic photon subtraction scheme, based on
single-photon Raman interaction with a Λ-type three-level atom, as a tool for manipulating
quantum state of few-photon light pulses. We establish a comprehensive theoretical framework
using input–output formalism and quantum regression theorem, enabling calculation of the first
order autocorrelation matrices of the output light and identification of the temporal modes present
in the generated light via their eigendecomposition. By modeling the entire system as a quantum
network consisting multiple virtual cavities and a lambda-type emitter cascaded in two parallel
guided modes of opposite propagation directions, we extract the quantum state occupying the
modes of interest. For both squeezed vacuum and coherent light input pulses, the Wigner function
of the output light after photon subtraction clearly reveals its non-Gaussian character.
Furthermore, we propose a measurement-based scheme on the subtracted photon which can lead
to conditional generation of quantum states resembling Schrodinger’s kitten state directly from
coherent input light with fidelities above 99%. This result is particularly nothworthy, as coherent
pulses, unlike the squeezed vacuum inputs commonly used in previous studies, are readily
available in most experimental setups.

1. Introduction

Discrete variable (DV) and continuous variable (CV) regimes represent distinct approaches in quantum
optics. These two regimes are primarily characterized by the Hilbert spaces employed for the representation
of quantum states of light. Within the DV approach, quantum states are typically illustrated in a
finite-dimensional space, commonly associated with the polarization of single or multiple photons.
Conversely, in the CV approach, individual spatiotemporal modes of light are treated as single harmonic
oscillators. Their representation involves field quadrature components, such as position and momentum,
within an infinite-dimensional Hilbert space [1]. Both of these approaches have evolved over time and
demonstrated their inherent potential in various applications of quantum technologies including quantum
communication [2], computing [3], and metrology [4]. In the context of CV quantum optics, quantum
states are classified into two categories, called Gaussian and non-Gaussian, based on the shape of the
probability distribution they exhibit in the optical phase space. The first group either occurs in nature, such
as vacuum and thermal states, or can be experimentally generated on-demand, like coherent and squeezed
states. On the other hand, the generation of non-Gaussian states of light with high fidelities remains
experimentally challenging [5]. At the same time, a variety of applications in CV quantum optics explicitly
require non-Gaussian states and non-Gaussian operators. For example, a no-go theorem demonstrates that
achieving fault-tolerant quantum computing is not possible solely with Gaussian states and operations [6].
In another example, it has been shown that leveraging Schrödinger’s cat state as a resource enables the
realization of quantum error correction [7]. Similarly, non-Gaussian operators can enable CV entanglement
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distillation [8], which is impossible in Gaussian regime based on another no-go theorem [9]. Additionally,
non-Gaussian states find applications in long-distance communication using quantum repeaters and
teleportation via entangled cat states [10], as well as in interfacing discrete-continuous regimes [11].

Harnessing the existing possibilities of quantum information in the above-mentioned applications
requires the capability to produce light in different non-Gaussian quantum states. The quantum states in CV
regime are superpositions or mixtures of Fock states with different numbers of photons. Consequently, the
addition and subtraction of photons to or from an initial Gaussian state can be a potential method for
creating non-Gaussian states of light. Traditionally, this has been done through application of creation and
annihilation operators [12]. However, creation and annihilation operators do not exactly add or subtract
single photons from arbitrary states and cannot be deterministically implemented. This arises from the fact
that the annihilation and creation operators do not preserve the trace of the density matrix and, as a result,
cannot be implemented in a system that evolves under a deterministic Hamiltonian [13]. Dakna et al [14]
demonstrated that, starting from the vacuum state, any single-mode state of light can be generated through
the alternate application of photon creation and displacement operators. Similarly, Fiurasek et al [15]
showed that the same level of control can be achieved using the photon annihilation operator in combination
with displacement and squeezing operations. It should be noted that the non-deterministic nature of these
methods can lead to very low success probabilities in the generation process of the desired quantum state.
Regarding non-deterministic photon subtraction, the first successful experimental implementation was
reported in 2004 by Wenger et al [16]. They achieved the subtraction of single photons from traveling waves
using a heralded scheme consisting of a low-reflectivity beamsplitter. Using pulses of squeezed light as the
input, the non-Gaussian statistics of the output light was clearly demonstrated in their work by
reconstruction of the Wigner function from the experimental data. Later in 2007, Ourjoumtsev et al carried
out the same experiment with an optimized homodyne detection and were able to observe Wigner functions
with negative values, resembling the Schrodinger’s kitten state [17].

In 2016, Rosenblum et al proposed and experimentally demonstrated a photon subtraction scheme,
capable of deterministically extracting one photon from any arbitrary input quantum state [18]. The device
operated based on single photon Raman interaction (SPRINT) with a Λ-type atom. Although the capability
of an ideal deterministic single photon subtractor in generating non-Gaussian states of light was previously
proposed by Honer et al [19], there is currently no known experimental scheme that can precisely implement
this operator. Similar to other methods which subtract the first arriving photon, the SPRINT mechanism
produces a multimode output even when supplied with a single-mode input pulse. While this downside
limits the deterministic generation of pure states, SPRINT still offers potential for non-Gaussian
manipulation of quantum states. In this paper, we conduct a comprehensive analysis of the SPRINT-based
photon subtraction process to assess its potential in the generation of non-Gaussian states of light. The
considered scheme involves a chiral waveguide directly coupled to a Λ-type atom [20, 21]. Our analysis
employs the input–output formalism in two distinct stages. First, we calculate the first-order coherence
matrices to extract the mode shapes present in the output pulses. Next, we use the results of the first step to
model the device as a cascaded atom-cavity quantum network and determine its effective Hamiltonian and
Lindblad operators. Finally, we employ the quantum trajectory method to simulate the system and derive the
quantum states generated by the photon-subtracting device.

2. Theoretical formulation

A SPRINT-based photon subtractor relies on a three-level Λ-type atom, where distinct ground-to-excited
state transitions are selectively coupled to two different light modes. These modes may correspond to either
distinct modes within a bimodal cavity [18] or counterpropagating bath of modes within a chiral waveguide
[20]. Figure 1 schematically depicts the latter design employing a chiral waveguide which is directly
interacting with the atom. Modes propagating in different directions are represented by distinct colors, with
their correspondence to atomic transitions highlighted in the same color. Consider the atom initially
prepared in ground state |1⟩, with the input light directed towards the right propagating mode (depicted in
green). During the Raman interaction, the atom first absorbs a single photon from the input light, becoming
excited. Subsequently, the destructive interference between the atom’s emission into the same mode as the
input light causes it to decay to the other ground state [22]. This transition results in the emission of a single
photon into the left propagating mode (depicted in red), effectively subtracting one photon from the input
pulse in a deterministic manner. Following this interaction, the atom remains in state |2⟩, where it no longer
interacts with the input light.

Here we use input–output formalism to analytically study the interaction of the atom with the bath of
waveguide modes during the photon subtraction process. This gives a set of differential equations governing
evolution of the atomic operators σij = |i⟩⟨j | in the Heisenberg picture as a function of the input operators
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Figure 1. Schematic view of a Λ-type atom coupled to a chiral waveguide. The input pulse is sent to the right-propagating (green)
mode, the subtracted photon is reflected to the left-propagating (red) mode, while the remaining pulse leaves the waveguide from
the same mode’s output.

rin (t) and lin (t):

∂tσ11 =
√
γg

(
σ31rin + r†inσ13

)
+ γgσ33

∂tσ22 =
√
γg

(
σ32lin + l†inσ23

)
+ γgσ33

∂tσ33 =−√
γg

(
σ31rin + r†inσ13

)
−√

γg

(
σ32lin + l†inσ23

)
− 2γgσ33

∂tσ13 =−iω1σ13 +
√
γg (σ33 −σ11) rin −

√
γgσ12lin − γgσ13

∂tσ23 =−iω2σ23 +
√
γg (σ33 −σ22) lin −

√
γgσ21rin − γgσ23

∂tσ12 =−i(ω1 −ω2)σ12 +
√
γgσ32rin +

√
γgl

†
inσ13.

(1)

In the above equation ωi is the transition frequency from the excited state to the ground state |i⟩ and γg
denotes the emission rate of the atom to the guided modes of the waveguide. In addition, the corresponding
inputs and outputs of the system are connected by the following relations:

rout = rin +
√
γgσ13 lout = lin +

√
γgσ23. (2)

The details on derivation of equations (1) and (2) are provided in appendix A.
We assume that the input light is sent to the rin mode and lin is initially in vacuum state. Also, the emitter

is in its ground state |1⟩ at t= t0 before the light interacts with the emitter. Therefore, According to the
photon subtraction scenario described above, lout contains the subtracted single photon and rout represents
the remaining light after subtraction of a single photon. In the pulsed operation regime, where both the
input and output of the device consist of pulses of light with finite durations, the initial step in the quantum
state analysis of the output light is to conduct a modal decomposition to distinguish the potentially involved
temporal modes at each output. Consider a set of temporal modes identified by their complex mode
amplitude functions hj (t), which represent the temporal shape of each wave-packet, where j indexes the
mode number. A photon wave-packet annihilation operator Aj can be defined for each mode as the following
superposition [23, 24]:

Aj =

ˆ
hj (t)atdt (3)

where at = (1/
√
2π )
´
aω exp(−iωt)dω is the annihilation operator that annihilates a photon at time t. It can

be shown that if hj forms a set of orthonormal functions, satisfying
´
h∗i (t)hj (t)dt= δij, then the
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wave-packet annihilation operators obey the bosonic commutation relation
[
Ai,A

†
j

]
= δij just as aω or at do.

This allows us to express the quantum state of the light in its most general form as follows:

|ψ ⟩=
n
⊗
i=1

|ψ i⟩ (4)

where |ψ i⟩=
∑
j
(cij
/√

j!)(A†
i )

j
|0⟩ denotes the quantum state of light in the ith temporal mode, and n

represents the number of modes in which all, or, using an approximation, the majority of photons exist. The
elements cij are components of a matrix containing the superposition coefficients. Additionally, using the
above representation, the mean number of photons existing in the ith mode is given by:

n̄i = ⟨ψ i

∣∣∣A†
i Ai

∣∣∣ψ i⟩=
∑
j

j
∣∣cij∣∣2. (5)

Using equation (3), the first-order autocorrelation function G(1) (t2, t1) =
〈
a†t2at1

〉
for a light field in the

quantum state |ψ ⟩, as given in equation (4), can be written as follows:

G(1) (t2, t1) =

(
n
⊗
i=1

⟨ψ i|
)
a†t2at1

(
n
⊗
i=1

|ψ i⟩
)
=

n∑
i=1

n̄ih
∗
i (t1)hi (t2). (6)

The above equation suggests that an effective way to identify an appropriate set of orthonormal modes
for a light field is through the eigendecomposition of its first-order autocorrelation matrix [25]. In this
process, the resulting eigenvectors form the orthonormal mode function set, and their corresponding
eigenvalues indicate the mean number of photons in each mode. The unnormalized first autocorrelation
functions for lout and rout modes, by definition, are [26]:

G(1)
l (t2, t1) =

〈
l†out (t2) lout (t1)

〉
G(1)
r (t2, t1) =

〈
r†out (t2) rout (t1)

〉 (7)

which after substituting equation (2), results in:

G(1)
l (t2, t1) = γg⟨σ32 (t2)σ23 (t1)⟩

G(1)
r (t2, t1) = γg⟨σ31 (t2)σ13 (t1)⟩+ ⟨rin† (t2) rin (t1)⟩+

√
γg⟨rin† (t2)σ13 (t1)⟩+

√
γg⟨σ31 (t2) rin (t1)⟩

. (8)

To find G(1)
r,l , we use quantum regression theorem. Based on this theorem, if there exists a complete set of

system operators Aµ, µ= 1,2, . . . such that:

d

dt
⟨Aµ (t)⟩=

∑
λ

Mµλ⟨Aλ (t)⟩ (9)

for a two-point correlation, like the ones appeared in equation (8), one can write [27]:

d

dt2
⟨Aµ (t2)O(t1)⟩=

∑
λ

Mµλ⟨Aλ (t2)O(t1)⟩. (10)

To assess the performance of the single photon subtractor, we examine three distinct input pulses: Fock
state pulse, squeezed vacuum pulse, and coherent pulse. Initially, consider an n-photon Fock state pulse with
carrier frequency ω1 and a wavepacket amplitude of α(t) sent to the input mode rin. By sandwitching the
optical Bloch equation (1) between the input n-photon Fock state |n⟩, the following sets of recurrence
differential equations governing the time evolution of the expectation values ⟨σab⟩= n⟨σab⟩n = ⟨n|σab |n⟩ are
derived:

∂t ⟨σ11⟩=
√
γg
(
n ⟨σ31⟩n−1α(t)+α∗ (t) n−1⟨σ13⟩n

)√
n+ γg ⟨σ33⟩

∂t ⟨σ33⟩=−√
γg
(
n ⟨σ31⟩n−1α(t)+α∗(t)n−1⟨σ13⟩n

)√
n− 2γg ⟨σ33⟩

∂t ⟨σ13⟩=
√
γg
(
n⟨σ33⟩n−1 − n⟨σ11⟩n−1

)√
nα(t)− γg ⟨σ13⟩

∂t ⟨σ31⟩=
√
γg
(
n−1⟨σ33⟩n − n−1⟨σ11⟩n

)√
nα∗ (t)− γg ⟨σ31⟩

∂t ⟨σ32⟩=−√
γgn−1⟨σ12⟩n

√
nα∗ (t)− γg ⟨σ32⟩

∂t ⟨σ12⟩=
√
γgn⟨σ32⟩n−1

√
nα(t)

. (11)
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In deriving the above equation, we used the relation rin (t) |n⟩=
√
nα(t)|n− 1⟩. To calculate the

expectation value
〈
σij
〉
, one needs to first derive differential equations for all terms of the form

i⟨σab⟩j = ⟨i |σab |j⟩, where both i and j vary between 0 and n. This results in a set of 6(n+ 1)2 coupled
equations which can be numerically integrated with the initial condition of i⟨σ11⟩i = 1. Also, according to
equations (9) and (10), similar sets of equations are derived for the first correlation terms appeared in the
right-hand side of equation (8) i.e. ⟨σ32 (t2)σ23 (t1)⟩ and ⟨σ31 (t2)σ13 (t1)⟩:

∂t2 ⟨σ11 (t2)σ13 (t1)⟩=
√
γg
(
n ⟨σ31 (t2)σ13 (t1)⟩n−1α(t2)+α∗ (t2) n−1⟨σ13 (t2)σ13 (t1)⟩n

)
×
√
n+ γg ⟨σ33 (t2)σ13 (t1)⟩

∂t2 ⟨σ33 (t2)σ13 (t1)⟩=−√
γg
(
n ⟨σ31 (t2)σ13 (t1)⟩n−1α(t2)+α∗(t2)n−1⟨σ13 (t2)σ13 (t1)⟩n

)
×
√
n− 2γg ⟨σ33 (t2)σ13 (t1)⟩

∂t2 ⟨σ13 (t2)σ13 (t1)⟩=
√
γg
(
n⟨σ33 (t2)σ13 (t1)⟩n−1α(t2)−α∗ (t2) n⟨σ11 (t2)σ13 (t1)⟩n−1

)
×
√
n− γg ⟨σ13 (t2)σ13 (t1)⟩

∂t2 ⟨σ31 (t2)σ13 (t1)⟩=
√
γg
(
n−1⟨σ33 (t2)σ13 (t1)⟩n − n−1⟨σ11 (t2)σ13 (t1)⟩n

)√
nα∗ (t2)− γg ⟨σ31 (t2)σ13 (t1)⟩

∂t2 ⟨σ32 (t2)σ23 (t1)⟩=−√
γgn−1⟨σ12 (t2)σ23 (t1)⟩n

√
nα∗ (t2)− γg ⟨σ32 (t2)σ23 (t1)⟩

∂t2 ⟨σ12 (t2)σ23 (t1)⟩=
√
γgn⟨σ32 (t2)σ23 (t1)⟩n−1

√
nα(t2)

(12)

which are derived based on the commutation relation
[
σij (t1) , rin (t2)

]
= 0 for t2 > t1, as a result of causality

[28]. Equation (12) needs to be integrated from t2 = t1 according to the following initial conditions:

i⟨σ32 (t2)σ23 (t1)⟩j
∣∣∣
t2=t1

= i ⟨σ31 (t2)σ13 (t1)⟩j
∣∣∣
t2=t1

= i⟨σ33 (t1)⟩j

i⟨σ12 (t2)σ23 (t1)⟩j
∣∣∣
t2=t1

= i⟨σ11 (t2)σ13 (t1)⟩j
∣∣∣
t2=t1

= i⟨σ13 (t1)⟩j
. (13)

For the other three correlation terms appeared in equation (8), one can write:

⟨rin† (t2) rin (t1)⟩= nα∗ (t2)α(t1)
⟨rin† (t2)σ13 (t1)⟩=

√
nα∗ (t2) n−1⟨σ13 (t1)⟩n

⟨σ31 (t2) rin (t1)⟩= n⟨σ31 (t2)⟩n−1

√
nα(t1) .

. (14)

When the input is a squeezed vacuum or coherent state, a similar analysis can be used to calculate the
first autocorrelation matrices, with the detailed steps provided in Appendices B and C, respectively. After
determining the modes included in the output light through eigen decomposition of the first-order
coherence matrices, we follow the method proposed in [25]. to calculate the quantum state of the light in
each mode. The method enables the modeling of each propagating wavepacket in the waveguide through a
single virtual one-sided cavity with a time-dependent decay rate, coupled with the three-level emitter in a
cascaded manner. The input cavity (with annihilation operator aα) initially contains the quantum state of
the input pulse sent to the photon subtractor, while the output cavities (with annihilation operators aiu and
aiw) capture the quantum state contained at each output mode as the interaction occurs. Figure 2 shows a
schematic view of the obtained quantum network, where only one cavity is depicted at each output port for
simplicity. This network can be evolved over time by solving its governing master equation:

dρ

dt
=−i [H,ρ] +

∑
i=0

(
LiρL

†
i −

1

2

{
L†i Li,ρ

})
(15)

with the following Hamiltonian and Lindblad operators in the rotating frame:

H(t) =
i

2

[√
γggα (t)a

†
ασ13 +

√
γgg

∗
v (t)σ31av + gα (t)g

∗
v (t)a

†
αav +

√
γgg

∗
w (t)σ32aw −H.c.

]
L0 (t) =

√
γgσ13 + g∗α (t)aα + g∗v (t)av L1 (t) =

√
γgσ23 + g∗w (t)aw

(16)

L0 and L1 in the above equation are responsible for collapses when a photon, not in the main mode, is
detected at the right and left propagating outputs, respectively. The time-dependent coupling of the cavities
to their input continuum field is related to their corresponding wavepacket function according to the below
relations:

gα (t) =
α∗ (t)√

1−
´ t
0 dt

′|α(t ′)|2
gx (t) =− x∗ (t)√´ t

0 dt
′|x(t ′)|2

x= v,w. (17)
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Figure 2. Quantum network comprising one input and two output cavities interacting with the emitter in a cascade manner. The
couplings of the output cavities are adjusted so that they absorb the main wavepacket at each output pulse.

Here, α(t), as before, represents the wavepacket amplitude of the input pulse, while v(t) and w(t) denote
the first mode shapes of the pulses leaving the system at the right and left propagating outputs, respectively.
The above model can be extended for a higher number of cavities to capture additional modes at the outputs,
following a similar framework based on the SLH method [29].

3. Results and discussion

In our simulations, we make the assumption that the input pulse has a Gaussian temporal shape. For the case
of an input Fock or squeezed state, the temporal profile is modeled by the normalized form of a Gaussian

function i.e. α(t) =
√
2
/

4
√
πτ 2 × exp

(
−2t2

/
τ 2
)
, while for the coherent pulse containing an average

number of n̄ photons, where α(t) essentially represents the phasor of the light pulse, we multiply it by
√
n̄.

As the first step, we employ the method described in the previous section to determine the first-order
coherence matrices of the light at outputs rout and lout. Through an eigen-decomposition, we identify the
modeshapes contained in each output. Results are illustrated in figures 3–6 for the three different types of
input pulses. The legends of the plots indicate the number of photons in each eigenmode which are their
corresponding eigenvalues. For enhanced visual representation of the photon distribution among modes,
and to better illustrate the relative contribution of different modes to the final modal structure, the mode
shapes are weighted by the square root of the contained photons. It should be noted that, because the input
light applied to the system is a single-wavepacket pulse with a real-valued amplitude function, the calculated
G(1) will be both real-valued and symmetric, as the autocorrelation matrix is Hermitian. The eigenvalues and
eigenvectors of a real symmetric matrix are also real, which explains why the mode amplitude functions
shown in figures 3–6 are real-valued. As can be seen in figure 3, the utilization of a single-photon Fock state
as the input reveals a linear system behavior, generating single-mode outputs for both rout and lout outputs.
Any small-amplitude higher-order modes observed in this case can be attributed to minor numerical errors.
In contrast, in all other cases where the input comprises multi-photon states, the system exhibits nonlinear
behavior, leading to multi-mode outputs. This nonlinearity stems from the saturation of the emitter when
exposed to light pulses containing more than one photon.

Due to the deterministic nature of the photon subtractor, if the duration of the input pulse is long
enough based on the coupling strength of the emitter to the guided modes, a single photon is subtracted
from all non-vacuum states at the input. Because of this, in figure 3, we assume a short pulse with τ = 1

/
γg

so that there is still approximately half a photon at the right output, enabling us to explore the modal
composition at this output as well. Otherwise, the single photon would be completely reflected, and there
would be no photon in the right output mode. However, in all other figures throughout the paper, the pulse
duration is assumed to be much longer than the radiation time of the atom to the waveguide, i.e.
τ = 100

/
γg. In figures 3–6, Part c illustrates the temporal intensity of the input and output pulses,

representing their mean photon number distribution. In figure 3(c), due to the fast input pulse, it takes some

6
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Figure 3. System output with a single-photon Fock state as input (τ = 1/γg), showing (a) modal decomposition of the right
(rout) output mode, (b) modal decomposition of the left (lout) output mode, and (c) temporal distribution of photons in input
and output pulses.

Figure 4. System output with a two-photon Fock state as input (τ = 100/γg), showing (a) modal decomposition of the right
(rout) output mode, (b) modal decomposition of the left (lout) output mode, and (c) temporal distribution of photons in input
and output pulses.

Figure 5. System output with a squeezed vacuum state with n̄= 0.1 photons as input (τ = 100/γg), showing (a) modal
decomposition of the right (rout) output mode, (b) modal decomposition of the left (lout) output mode, and (c) temporal
distribution of photons in input and output pulses.

Figure 6. System output with a coherent state with n̄= 1 photon as input (τ = 100/γg), showing (a) modal decomposition of
the right (rout) output mode, (b) modal decomposition of the left (lout) output mode, and (c) temporal distribution of photons in
input and output pulses.
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Figure 7. Proposed configurations for generation of single-mode non-Gaussian states from pulsed Gaussian input light (a)
configuration with one demultiplexer and two detectors used for squeezed vacuum input pulses (b) configuration with two
demultiplexers and four detectors used for coherent input pulses.

time for the emitter to initiate interaction with the light. Consequently, the rout pulse leads compared to the
lout pulse. However, after the emitter becomes excited, it starts reflecting photons to the lout mode, leading to
a decrease in the intensity of the transmitted pulse. Additionally, both output pulses persist even after the
input pulse vanishes, which is attributed to the time needed for the excited emitter to radiate photons to the
guided modes. Conversely, as observed in the temporal intensity plots (part c) of the other three figures, the
lout pulse leads the rout pulse. This implies that when the input pulse duration is sufficiently long, the
subtractor subtracts the first arriving photon and subsequently allows other photons to transmit.

The subsequent step following this modal decomposition is to determine the quantum state of light that
occupies the wavepackets corresponding to the calculated mode shapes. Given that our primary objective is
to investigate the photon subtractor’s potential for generating non-Gaussian states, we specifically
concentrate on cases where the input to the system is of Gaussian type, namely the squeezed vacuum and
coherent state inputs. While the presented photon subtractor operates deterministically, it can only subtract a
photon if there is one present in the input, meaning that the input is not in the vacuum state. Therefore, for
lightly squeezed vacuum states—such as those reported in [30]—as well as weak coherent pulses, containing
a low mean photon number, there is still a high probability that no photon is subtracted. As a result, the
process still needs to be heralded, where the detection of a photon at the lout mode signals the successful
subtraction of a photon and the potential generation of a non-Gaussian state.

Given that numerous applications in CV quantum optics rely on the utilization of single-mode
non-Gaussian quantum states, we initially explore a configuration featuring a demultiplexing device at the
rout output. This device is a demultiplexer designed to effectively isolate the principal temporal mode from
others, as depicted in figure 7(a). One experimental implementation for achieving this separation involves
the utilization of quantum pulse gates (QPGs) [24]. A QPG operates through quantum frequency conversion
in a nonlinear optical medium, where the input light interacts with a group-velocity-matched, shaped strong
laser pulse. Depending on the medium’s nonlinearity, this process can occur via either three-wave or
four-wave mixing, translating the desired mode in the frequency domain to allow easy separation from the
remaining light [31]. Initial experimental results for single-stage QPGs have demonstrated mode selectivity
around 80% [32]. However, both theoretical and experimental studies have shown that cascading QPGs in a
two-stage interferometric scheme can achieve near-unity conversion efficiency and selectivity [33, 34].

In the presented configuration, two detectors are utilized: detector D2 registers a click when a photon is
successfully subtracted and directed to the lout output, while detector D1 identifies the presence of photons in
modes other than the principal mode of the rout output. Now consider that a squeezed vacuum Gaussian
pulse |ζ⟩= Ŝ(ζ) |0⟩ is sent to rin input and we want to study the generated quantum state in the principal
mode of the rout output. To model this problem, we need to consider a quantum network similar to the one
shown in figure 2 with one virtual cavity at the input, one at the rout output, and no cavity at the lout output.
The Hamiltonian of the system and Lindblad collapse operators corresponding to photon detection at
detectors D1 and D2 will be as follows:

H(t) =
i

2

[√
γggα (t)a

†
ασ13 +

√
γgg

∗
v (t)σ31av + gα (t)g

∗
v (t)a

†
αav −H.c.

]
L0 (t) =

√
γgσ13 + g∗α (t)aα + g∗v (t)av L1 (t) =

√
γgσ23

. (18)

We employ the Monte Carlo wave-function method implemented in the QuTiP package in Python to
simulate the described experimental scenario. Our focus is on the heralded (i.e. conditional on a detection
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Figure 8. Photon subtraction results for a squeezed vacuum input |ζ⟩ with a mean photon number of n̄= 0.1. The plots show the
Wigner functions for (a) â |ζ⟩, (b) ŝ |ζ⟩, (c) generated state by the proposed subtractor with no measurement performed byD1, (d)
generated state by the proposed subtractor where both D1 and D2 are used for measurements according to the described scenario.

Figure 9. Photon subtraction results for a squeezed vacuum input |ζ⟩ with a mean photon number of n̄= 0.2. The plots show the
Wigner functions for (a) â |ζ⟩, (b) ŝ |ζ⟩, (c) generated state by the proposed subtractor with no measurement performed byD1, (d)
generated state by the proposed subtractor where both D1 and D2 are used for measurements according to the described scenario.

event) generation of the output quantum state in two specific cases. First, we explore the scenario where no
measurement is performed using detector D1, while D2 heralds the successful subtraction of a photon. In the
second case, we investigate the generated state signaled by a click on D2, with no concurrent click recorded
by D1. The results are presented in figures 8 and 9 for two different input states with different squeezing
levels containing mean number of photons n̄= 0.1 and 0.2 (corresponding to |ζ|= 0.31 and|ζ|= 0.43),
respectively. As seen in these figures, both measurement scenarios have resulted in the generation of
non-Gaussian Wigner functions, reaching negative values and closely resembling the Wigner function of an
odd Schrödinger’s kitten state. The concept of generating Schrödinger’s cat states by subtracting or adding
single photons through traditional non-deterministic methods, equivalent to the implementation of photon
annihilation and creation operators, has been explored for a long time [35]. For the sake of comparison, part
a of the figures depicts the Wigner function of the state generated by applying the annihilation operator
â=

∑
n>0

√
n |n− 1⟩⟨n|. Additionally, by defining the ideal deterministic single photon subtractor as

ŝ=
∑

n>0 |n− 1⟩⟨n|, part b shows the result of applying this operator to the input state.
In figure 10, the fidelity of these generated states with the odd Schrödinger cat state |cato⟩= |α⟩− |−α⟩

is plotted as a function of the amplitude α. As shown in this figure, while the first scenario, where no
measurement is performed by detector D1, cannot surpass a fidelity of 90%, the second scenario generates
cat states with an amplitude close to unity (given the level of squeezing) and achieves a fidelity approaching
unity. While the non-deterministic method of photon subtraction can also theoretically generate cat states
with fidelity approaching unity, it is important to note that this approach suffers from a significantly low
success probability. This limitation arises from the use of beam splitters with very low reflectivity to suppress
the subtraction of more than one photon. In contrast, the deterministic photon subtractor presented here
can generate these states with much higher probabilities. Moreover, success probability increases as the level
of squeezing in the input state rises. The success probabilities for the two cases studied here, with |ζ|= 0.31
values of 0.1, are 4.3% and 3.5% for the scenarios described earlier. Similarly, for |ζ|= 0.43, these success
probabilities are 8.63% and 6.67%, respectively.

While squeezed states are indeed Gaussian states with positive Wigner functions throughout their phase
space and exhibit classical-like properties such as well-defined phase and amplitude, they are not readily
available experimentally. Their generation typically necessitates nonlinear interactions such as parametric
down-conversion [36]. Conversely, the generation of few-photon coherent pulses is relatively
straightforward, achieved through the appropriate attenuation of modulated laser beams. This highlights the
significance of developing systems capable of directly generating exotic non-Gaussian states from coherent
light. The coherent state is an eigenstate of the annihilation operator, implying that traditional

9
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Figure 10. Fidelity between the generated states (obtained by applying different photon subtraction methods, as indicated in the
plot legend) and odd Schrödinger’s cat states of amplitude α. The input |ζ⟩is a squeezed vacuum state with mean photon
numbers: (a) n̄= 0.1 and (b) n̄= 0.2.

beamsplitter-based photon subtraction does not alter the coherent input. Furthermore, an ideal
deterministic photon subtractor (represented by the operator ŝ defined above) when applied to a coherent
state, while altering its photon number distribution, is still incapable of generating non-classical effects such
as negative Wigner functions.

We thus aim to leverage the nonlinear multi-temporal mode nature of the SPRINT mechanism to explore
the possibility of heralded generation of non-Gaussian states from a coherent input pulse. To achieve this, we
consider the schematic setup configuration depicted in figure 7(b). In this setup, there are two
demultiplexers at the two outputs of the photon subtractor, which separate the generated temporal modes.
The first demultiplexer at the rout output, similar to figure 7(a), only separates the principal mode, which
contains the major part of the photons, from the other modes. The second demultiplexer at the lout output
independently extracts the first three modes of the pulse. Three detectors (D2 to D4) are utilized at different
outputs of this demultiplexer which allow us to determine the mode at which the subtracted photon exists. It
is important to note that since the lout output pulse cannot contain more than one photon in the
deterministic photon subtraction, only one of the detectors can register a click. In our scenario, we explore
the conditional generation of quantum states at the principal mode of the rout output based on three different
conditions. First, D1 registers no click, and D2 registers one. Second, D1 registers no click, and D2 registers
one. Third, D1 registers no click, and D3 registers one.

To simulate the system, one can consider a quantum network again similar to the one shown in figure 2
but with three cascaded virtual cavities at the lout output. Since here we are specifically interested in
conditions where all the output photons go to the arranged cavities, and thus, no collapse occurs, it is
possible to directly solve Schrödinger’s equation ih̄∂t |ψ ⟩=Heff|ψ ⟩ using a time-dependent non-Hermitian

effective Hamiltonian. The form of this Hamiltonian is given by Heff =H− ih̄/2
(
L†0L0 + L†1L1

)
, where the

network HamiltonianH and Lindblad operators L0 and L1 are derived in a manner similar to the explanation
provided above equation (15) (See supplementary material of [25]). After determining the final density
matrix ρ= |ψ ⟩⟨ψ |of the entire system, the quantum state stored in the rout output cavity can be extracted by
defining a suitable projection operator projecting the density matrix on a subspace based on the specified
condition, which identifies the lout cavity containing the subtracted photon. The density matrix of the
resulting quantum state is obtained by projecting the overall density matrix using this operator, followed by a
partial trace over the atomic state and the states of all cavities other than the one at rout output. The outcomes
of this simulation are depicted in parts a to c of figures 11 and 12 for coherent inputs with n̄= 1 and 3
photons, respectively.

As depicted in these figures, when the subtracted photon is detected in the first mode of the lout output,
the resulting state closely resembles a coherent state. One the other hand, if the subtracted photon is found in
the second mode, the output state resembles a displaced single-photon Fock state. However, when the photon
is detected in the third mode, indicated by a click from detector D4, the generated state exhibits a Wigner
function similar to that of a displaced cat state, represented by the form D̂(γ)

[
|α⟩+ eiβ |−α⟩

]
, where D̂ is

the displacement operator. Through optimization of the parameters α, β, and γ, we have identified the cat
state that exhibits the highest fidelity with the state shown in part c of the figures. These optimized cat states
are presented in part d of the figures, with their corresponding parameters detailed in the figure captions.
Notably, the maximum fidelity achieved is 99.3% and 99.1% for the input coherent states with n̄= 1 and 3
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Figure 11. Photon subtraction results for a coherent input with a mean photon number of n̄= 1. The plots show the Wigner
functions for (a) generated output state when the subtracted photon in detected in 1st mode, (b) generated output state when the
subtracted photon in detected in 2nd mode, (c) generated output state when the subtracted photon in detected in 3rd mode, (d) a
displaced cat state with parametersα= 0.60, β = 3.90, γ = 0.07.

Figure 12. Photon subtraction results for a coherent input with a mean photon number of n̄= 3. The plots show the Wigner
functions for (a) generated output state when the subtracted photon in detected in 1st mode, (b) generated output state when the
subtracted photon in detected in 2nd mode, (c) generated output state when the subtracted photon in detected in 3rd mode, (d) a
displaced cat state with parameters α= 0.47, β = 3.83, γ = 0.56.

photons, respectively. A further displacement of this generated states produces the Schrodinger’s cat state
which is a pivotal quantum source with numerous applications in quantum technology.

Successful interfacing of quantum emitters with chiral nanophotonic structures has been experimentally
demonstrated across various platforms [37–43]. Achieving this requires high confinement levels to activate
optical spin-orbit interactions, coupling light’s polarization with its propagation direction [44]. Selective
interaction of atomic transitions with photons of specific polarizations thereby creates a chiral light-matter
system. The performance of these systems is commonly evaluated based on two factors. The first is the total
coupling efficiency of each atomic transition to the waveguide, given by β = γ/(γ+Γ), where γ is the total
emission rate into both counterpropagating waveguide modes, and Γ accounts for all dissipative radiative
and non-radiative channels. The second factor is the directionality of the coupling, defined as Fdir = γdir/γ,
where γdir represents the emission rate into the desired propagation direction. Cold atoms coupled to the
evanescent field of nanofibers have demonstrated directional emission into the guided modes [37]. In these
systems, coupling efficiency can be enhanced by positioning the atoms closer to the fiber surface [45]. Higher
coupling efficiencies can also be achieved by replacing the nanofiber with photonic crystal waveguides with
reduced group velocity, which occurs when the guided mode frequency approaches the bandgap edge of the
photonic structure [38]. Coupling efficiencies as high as β = 0.98 have been reported when using quantum
dots embedded within the waveguide and directly coupled to the waveguide field [39, 41]. Charged quantum
dots possess a Λ-type energy level structure, making them promising candidates for single-photon Raman
interactions. Their potential for deterministic single-photon subtraction has been previously studied [46].
Near-unity directionality has been achieved in both nanofiber and photonic crystal waveguide setups.
Cesium cold atoms evanescently trapped on the surface of a nanofiber have demonstrated directional photon
emission into the waveguide mode, with a directionality factor of Fdir = 0.92 [42]. Additionally, for quantum
dots coupled to photonic crystal waveguides, directionality values as high as 0.98 have been reported [43].
According to these results, the high coupling and directionality reported specifically for solid-state systems
make them potential candidates for implementing the photon subtraction scheme discussed in this paper.

4. Conclusion

In summary, we have demonstrated the potential of the deterministic single-photon subtraction scheme
based on the single-photon Raman interaction effect in transforming squeezed and coherent states of light
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into non-Gaussian states. We employed an input–output formalism with squeezed vacuum, coherent, and
Fock state input pulses to calculate the temporal modes of the output light through eigen decomposition of
first-order autocorrelation matrices. Subsequently, we determined the quantum state content of different
modes by cascading virtual cavities at various outputs of the subtractor and evolving the obtained quantum
network in time using quantum trajectory method. Our results revealed that the proposed scheme not only
can achieve higher success probabilities for generating kitten states from squeezed vacuum compared to
traditional beam-splitter-based methods but also has the capability to generate non-Gaussian states,
including kitten states, directly from coherent laser pulses. The calculated fidelities are above 99% for both
cases of squeezed and coherent states.
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Appendix A. Derivation of the optical Bloch equations

To find the set of governing Bloch equations given in equation (1), one must initially derive the total
Hamiltonian of the system, which is the summation of the waveguide’s Hamiltonian Hwg, emitter’s
Hamiltonian He, and their interaction Hamiltonian Hint:

Htot =Hwg +He +Hint (A.1)

where the different terms can be expressed as follows:

Hwg =

+∞ˆ

−∞

(
r†ωrω − l†ω lω

)
ωdω

He = ω1σ33 +(ω1 −ω2)σ22

Hint = iVR

+∞ˆ

−∞

(
r†ωσ13 −σ31rω

)
dω+ iVL

+∞ˆ

−∞

(
l†ωσ23 −σ32lω

)
dω

. (A.2)

In the above equation, σij = |i⟩⟨j | is the atomic transition operator, ωi is the transition frequency from
the excited state to the ground state |i⟩, rω (lω) is the annihilation operator for a right (left) propagating
mode of frequency ω, and VR (VL) is the coupling strength between the light propagating in right (left)
direction with the corresponding atomic transition.

Heisenberg equation of motion can be used to obtain time derivatives of any arbitrary operator A(t) in
the Heisenberg picture (h̄= 1):

dA(t)

dt
= i [Htot,A(t)] . (A.3)

This, after substituting in equations (A.1) and (A.2), results in the following set of ordinary differential
equations governing time evolution of different atomic transition operators:

σ̇11 = VR

+∞ˆ

−∞

(
σ31rω + r†ωσ13

)
dω σ̇13 =−iω1σ13 +VR

+∞ˆ

−∞

((σ33 −σ11) rω)dω−VL

+∞ˆ

−∞

(σ12lω)dω

σ̇22 = VL

+∞ˆ

−∞

(
σ32lω + l†ωσ23

)
dω σ̇23 =−iω2σ23 +VL

+∞ˆ

−∞

((σ33 −σ22) lω)dω−VR

+∞ˆ

−∞

(σ21rω)dω
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σ̇33 =−VR

+∞ˆ

−∞

(
r†ωσ13 +σ31rω

)
dω σ̇12 =−i(ω1 −ω2)σ12 +VR

+∞ˆ

−∞

(σ32rω)dω+VL

+∞ˆ

−∞

(
l†ωσ13

)
dω

−VL

+∞ˆ

−∞

(
l†ωσ23 +σ32lω

)
dω. (A.4)

Also, for the right and left propagating field operators, one obtains:

ṙω =−iωrω +VRσ13 l̇ω = iωlω +VLσ23 (A.5)

which after integration gives:

rω = rω|t=t0e
−iω(t−t0) +VR

tˆ

t0

σ13e
−iω(t−t ′)dt ′ lω = lω|t=t0e

iω(t−t0) +VL

tˆ

t0

σ23e
−iω(t−t ′)dt ′. (A.6)

Substituting equations (A.6) into (A.4) results in the set of optical Bloch equations given in equation (1),
where input operators rin and lin are defined as Fourier transform of the bath operators rω and lω at time
t= t0, before the light starts interacting with the emitter:

rin (t) :=
1√
2π

+∞ˆ

−∞

dω ′rω ′ (t0)e
−iω ′(t−t0) lin (t) :=

1√
2π

+∞ˆ

−∞

dω ′lω ′ (t0)e
iω ′(t−t0). (A.7)

In deriving equation (1), we assume that the coupling strengths VR and VL are equal and express them in
terms of the emission rate γg of the atom to the guided modes of the waveguide as VR = VL =

√
γg/2π .

Using a similar approach to equation (A.7), one can define the output operators rout and lout to keep track of
the output light from the system at time t= t1, which is after the interaction ends:

rout (t) =
1√
2π

+∞ˆ

−∞

dω ′rω ′ (t1)e
−iω ′(t−t1) lout (t) =

1√
2π

+∞ˆ

−∞

dω ′lω ′ (t1)e
iω ′(t−t1). (A.8)

Integrating equation (A.6) over all frequencies, and then substituting equations (A.7) and (A.8), yields
the input–output relations for the system as given in equation (2).

Appendix B. Derivation of first autocorrelationmatrices for squeezed vacuum input

When the input is in the squeezed vacuum state |ζ⟩0 = Ŝ(ζ) |0⟩ with the complex squeeze parameter ζ = seiθ,
we can define the state obtained by annihilating n photons from the original vacuum state as |ζ⟩n = an|ζ⟩0
where a is the annihilation operator of the corresponding mode. Then, using the notation

i⟨σab⟩j = i ⟨ζ|σab|ζ⟩j, we express the equations set (11) and (12) as follows:

∂t ⟨σ11⟩=
√
γg
(
n ⟨σ31⟩n+1α(t)+α∗ (t) n+1⟨σ13⟩n

)
+ γg ⟨σ33⟩

∂t ⟨σ33⟩=−√
γg
(
n ⟨σ31⟩n+1α(t)+α∗(t)n+1⟨σ13⟩n

)
− 2γg ⟨σ33⟩

∂t ⟨σ13⟩=
√
γg
(
n⟨σ33⟩n+1 − n⟨σ11⟩n+1

)
α(t)− γg ⟨σ13⟩

∂t ⟨σ31⟩=
√
γg
(
n+1⟨σ33⟩n − n+1⟨σ11⟩n

)
α∗ (t)− γg ⟨σ31⟩

∂t ⟨σ32⟩=−√
γgn+1⟨σ12⟩nα

∗ (t)− γg ⟨σ32⟩
∂t ⟨σ12⟩=

√
γgn⟨σ32⟩n+1α(t)

(B.1)

and:

∂t2 ⟨σ11 (t2)σ13 (t1)⟩=
√
γg
(
n ⟨σ31 (t2)σ13 (t1)⟩n+1α(t2)+α∗ (t2)n+1⟨σ13 (t2)σ13 (t1)⟩n

)
+ γg ⟨σ33 (t2)σ13 (t1)⟩

∂t2 ⟨σ33 (t2)σ13 (t1)⟩=−√
γg
(
n ⟨σ31 (t2)σ13 (t1)⟩n+1α(t2)+α∗(t2)n+1⟨σ13 (t2)σ13 (t1)⟩n

)
− 2γg ⟨σ33 (t2)σ13 (t1)⟩

∂t2 ⟨σ13 (t2)σ13 (t1)⟩=
√
γg
(
n⟨σ33 (t2)σ13 (t1)⟩n+1 − n⟨σ11 (t2)σ13 (t1)⟩n+1

)
α(t2)− γg ⟨σ13 (t2)σ13 (t1)⟩

∂t2 ⟨σ31 (t2)σ13 (t1)⟩=
√
γg
(
n+1⟨σ33 (t2)σ13 (t1)⟩n − n+1⟨σ11 (t2)σ13 (t1)⟩n

)
α∗ (t2)− γg ⟨σ31 (t2)σ13 (t1)⟩

∂t2 ⟨σ32 (t2)σ23 (t1)⟩=−√
γgn+1⟨σ12 (t2)σ23 (t1)⟩nα

∗ (t2)− γg ⟨σ32 (t2)σ23 (t1)⟩

∂t2 ⟨σ12 (t2)σ23 (t1)⟩=
√
γgn⟨σ32 (t2)σ23 (t1)⟩n+1α(t2)

.

(B.2)
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Both equations (B.1) and (B.2) represent sets of recurrence equations, similar to the case of Fock state
input. As n increases, |ζ⟩n tends toward zero, allowing for truncation at a sufficiently large n, after which the
equations can be solved. The initial conditions for equation (B.2) are analogous to those provided in
equation (13). Furthermore, in accordance with the photon number distribution of the squeezed vacuum
state, which is as follows:

|ζ⟩=
∑
n

(
−eiθ tanh s

)n
√
cosh s

(2n!)
1
2

2nn!
|2n⟩. (B.3)

The nonzero initial conditions for equation (B.1) will be:

i⟨σ11⟩j =
∑
n

(
−eiθ tanh s

)2n+ i+j
2 +1

cosh s

 (
2
(
n+ i+1

2

)
!
)(

2
(
n+ j+1

2

)
!
)

22n+
i+j
2 +1

(
n+ i+1

2

)
!
(
n+ j+1

2

)
! (2n+ 1)!

 i and j arebothodd

i⟨σ11⟩j =
∑
n

(
−eiθ tanh s

)2n+ i+j
2

cosh s

 ((2n+ i)!)((2n+ j)!)

22n+
i+j
2

(
n+ i

2

)
!
(
n+ j

2

)
! (2n)!

 i and j arebotheven

.

(B.4)
Solving equation (B.2) gives the first correlation terms appearing on the right-hand side of equation (8).

For the other three correlation terms appeared in equation (8), one can write:

〈
rin

† (t2) rin (t1)
〉
=

(∑
n

(
−eiθ tanh s

)2n+2

cosh s

[
(2(n+ 1)!)2

22n+2((n+ 1)!)2 (2n+ 1)!

])
α∗ (t2)α(t1)〈

rin
† (t2)σ13 (t1)

〉
= α∗ (t2) 1⟨σ13 (t1)⟩0

⟨σ31 (t2) rin (t1)⟩= 0⟨σ31 (t2)⟩1α(t1)

. (B.5)

Appendix C. Derivation of first autocorrelationmatrices for coherent input

For the case where the input pulse is in a coherent state |α⟩, one has rin (t) |α⟩= α(t)|α⟩. Taking the
expectation values of both sides of equation (1) yields:

∂t ⟨σ11⟩=
√
γg (⟨σ31⟩α(t)+α∗ (t)⟨σ13⟩)+ γg ⟨σ33⟩

∂t ⟨σ33⟩=−√
γg (⟨σ31⟩α(t)+α∗ (t)⟨σ13⟩)− 2γg ⟨σ33⟩

∂t ⟨σ13⟩=
√
γg (⟨σ33⟩− ⟨σ11⟩)α(t)− γg ⟨σ13⟩

∂t ⟨σ31⟩=
√
γgα

∗ (t)(⟨σ33⟩− ⟨σ11⟩)− γg ⟨σ31⟩
∂t ⟨σ32⟩=−√

γgα
∗ (t)⟨σ12⟩− γg ⟨σ32⟩

∂t ⟨σ12⟩=
√
γg ⟨σ32⟩α(t)

(C.1)

which needs to be solved according to the initial condition of ⟨σ11⟩= 1. Equation (12) in this case changes to
the following form:

∂t2 ⟨σ11 (t2)σ13 (t1)⟩=
√
γg (⟨σ31 (t2)σ13 (t1)⟩α(t2)+α∗ (t2)⟨σ13 (t2)σ13 (t1)⟩)+ γg ⟨σ33 (t2)σ13 (t1)⟩

∂t2 ⟨σ33 (t2)σ13 (t1)⟩=−√
γg (⟨σ31 (t2)σ13 (t1)⟩α(t2)+α∗ (t2)⟨σ13 (t2)σ13 (t1)⟩)− 2γg ⟨σ33 (t2)σ13 (t1)⟩

∂t2 ⟨σ13 (t2)σ13 (t1)⟩=
√
γg (⟨σ33 (t2)σ13 (t1)⟩α(t2)−α∗ (t2)⟨σ11 (t2)σ13 (t1)⟩)− γg ⟨σ13 (t2)σ13 (t1)⟩

∂t2 ⟨σ31 (t2)σ13 (t1)⟩=
√
γg (⟨σ33 (t2)σ13 (t1)⟩− ⟨σ11 (t2)σ13 (t1)⟩)α∗ (t2)− γg ⟨σ31 (t2)σ13 (t1)⟩

∂t2 ⟨σ32 (t2)σ23 (t1)⟩=−√
γg ⟨σ12 (t2)σ23 (t1)⟩α∗ (t2)− γg ⟨σ32 (t2)σ23 (t1)⟩

∂t2 ⟨σ12 (t2)σ23 (t1)⟩=
√
γg ⟨σ32 (t2)σ23 (t1)⟩α(t2)

.

(C.2)
The initial conditions will be as follows:

⟨σ32 (t2)σ23 (t1)⟩|t2=t1
= ⟨σ31 (t2)σ13 (t1)⟩|t2=t1

= ⟨σ33 (t1)⟩
⟨σ12 (t2)σ23 (t1)⟩|t2=t1

= ⟨σ11 (t2)σ13 (t1)⟩|t2=t1
= ⟨σ13 (t1)⟩

. (C.3)
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Solving equation (C.2) with the initial conditions given in equation (C.3) gives the first correlation terms
appearing on the right-hand side of equation (8). Also, the other correlation terms appearing in equation (8)
will be: 〈

rin
† (t2) rin (t1)

〉
= α∗ (t2)α(t1)〈

rin
† (t2)σ13 (t1)

〉
= α∗ (t2)⟨σ13 (t1)⟩

⟨σ31 (t2) rin (t1)⟩= ⟨σ31 (t2)⟩α(t1)
. (C.4)
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