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Abstract

To achieve its design luminosity, the Large Hadron Collider, currently under construction at
CERN, will demand optimum emittance preservation throughout the injector chain. One
expected major source of transverse emittance blow-up is mismatch of the beam optical
parameters at the interface between two circular accelerators. This report presents the
methods that will be used during LHC operation to minimise the mismatch between the
PS Booster and the CPS ring. It is shown that in principle the blow-up due to mismatch
can be reduced to the level of the measurement error. A general study of the Booster-CPS
transfer line optics is also presented.
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1.2 Emittance Definitions 3

e Phase space mismatch and miss-steering at beam transfer between machines, followed
by filamentation [9]. In this process, the local phase space density is conserved
according to Liouville, but for all practical purposes the emittance has increased
since the filamentation can not be inverted.

All effects, except for synchrotron radiation [10], leads to an increase in emittance. But
since the energy dissipated due to synchrotron radiation is almost negligible® for all other
particles than electrons, it is safe to state the emittance can only be constant or grow in
proton machines such as the LHC and its injectors.

The smallest achievable emittance is therefore given by the emittance of the source.
The difference between the source emittance and the nominal LHC emittance, defines the
emittance blow-up margin, and this has been allotted to the different machines in the
injection chain according to Tsb. 1.2. Between the Booster and the PS, the emittance
must not grow more than about 10%. In order to achieve this, among other improvements,
the beam has to be carefully steered and matched when it is transfered.

Machine Energy Normalised Emittance, ex Batches

SPS 450 GeV 3.75 pm 12
PS 26 GeV 3.5 um 3
PSB 1.4 Gev 3.0 pm 2
LINAC 50 MeV 2.5 pm

RFQ 750 keV 1.2 ym

GUN 0.5-1.0 um

Table 1.2: Normalised emittances at the exit of each machine in the injector chain, in order to
finally reach the nominal LH C emittance. The beam energy and the number of baiches required
to fill the receiving machine is also shown. Table from [11].

1.2 Emittance Definitions

There are many different definitions of emittance [12]. The one which is used for the LHC
beams, and therefore also in this report, is the 1o emittance, which is defined as

€= Eﬁi (1.2)

where o is the standard deviation of the beam distribution (corrected for dispersive widen-
ing) and @ is the Twiss beta function. This definition is equivalent* to the definition of
statistical emittance due to Lapostolle [13]

e =1/ {z2)(z*) - <:1:$’>2 (1.3)

3The damping time due to synchrotron radiation for protons in the LHC is about 40 hours.
4Under proper assumptions, such as a linear lattice etc.
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where z and z’ are the phase space coordinates, and ( - - - ) denotes average over all particles.
Emittance is usually given in the unit mm-mradian, or simply pm.

The emittance as defined above is not a conserved quantity during acceleration. This
is because the phase space coordinates z and z’, which are generally used in accelerator
physics, are not canonical coordinates. The canonical conjugate momentum to z is

pzxpz o By 7 (1.4)

but since for a constant beam energy the difference is only a fixed factor, p, is seldom used.
The emittance defined using canonical coordinates

en = BrLe, (1.5)

containing the relativistic factor 8.7vr, is a real conserved quantity. This emittance is called
the normalised emittance.

1.3 Emittance Increase due to Injection Errors

The increase in the lo emittance due to different injection errors can be calculated ana-
lytically for a Gaussian beam [9]. For a beam steering error, it is given by

Azx 2
fe 1 (M + (G027 +ako>2> _ 1 VB (16)
€0 2 0-(2) 260 /,BOA:LJ + CZO—A—I" ’ )

ey

where the vector to the right gives the normalised injection error.
For a betatron function mismatch

Ap 2
NAe 1 1 N
— & (B + B0y — 2000 — 2) = b Po Ag |l (1.7)
€0 2 2 ’6 AO(O — o——

0

where the vector to the right is the so-called mismatch vector.
For an error in dispersion function, the emittance increase is given by

AD 2
Ae 1 (AD?+ (BoAD' + apyAD)? o2
== e Vo ap |l @8
€@ 2 % 260 || \ \/BoAD' + cip——=s

Vi

where o, is the standard deviation of the relative momentum distribution (momentum
error divided by the reference momentum), and the vector to the right gives the normalised

dispersion error.



Chapter 1

Introduction

1.1 The LHC Project

The Large Hadron Collider (LHC), currently under construction at CERN, will become
the worlds highest energy accelerator when it starts up in 2005. With its 27 km in cir-
cumference, it will also be the worlds largest cryo-installation, since the superconducting
magnets will be cooled down to 1.4° K by superfluid helium. Needless to say, this machine
poses great technological challenges.

For cost efficiency, very small safety margins have been foreseen in the design, which
means that the design parameters has to be strictly met in order for the machine to reach
its set performance. This means that all possible problems relevant to the running of the
machine has to be identified and eliminated.

Perhaps the most important parameter for a collider like the LHC is the luminosity £,
which gives the number of events that will eventually be seen in the experiments. In the

LHC it is given by [1],

_ Nl
L= yr— (1.1)

where ~y, is the relativistic Lorenz factor, N, is the number of particles per bunch, ey is
the normalised emittance, I, is the total beam current and f, is the optical beta function
at the interaction point. The LHC parameters are given in Tab. 1.1. The beam brightness
N,/en is the key parameter here, since in principle all the other parameters are fixed by
the machine design. In order to achieve a bright beam, the emittance ey should be small.
However, there are also other reasons to keep the emittance small [2], such as:

o The long range beam-beam tune shift, caused by the electro-magnetic interaction
between two beams passing close to each other near the interaction region, is getting
worse with an increased emittance, since particles in the beam tails pass closer to
each other.
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Nominal Parameters Ultimate Parameters

Particles per bunch, IV, 1.0 -10t! 1.6 -10M
Normalised transverse emittance, €y 3.72 pm 3.72 pm
Beta at IP, 0. 0.5m 0.5m
Beam Current I, 05 A 0.8 A
Luminosity, £ 1.0 -10** cm~2%7! 2.5 -10%* cm™2%s7!

Table 1.1: LHC beam brightness requirements (Table from [1]).

e The dynamic aperture, which is the region of phase space where particle motion is
stable, is relatively small in the LHC due to strong non-linearities. A small emittance
gives a larger safety margin.

e The physical aperture, given by the vacuum pipe Is even smaller than the dynamic
aperture. On top of this, the vacuum pipe is at cryogenic temperature. Due to the
very high energy of the particles in the beam, a loss of even a very small fraction of
the beam! could cause the superconducting magnets to quench, which would be a
serious problem. Therefore the beam size has to be kept small to avoid such losses?.

The beam brightness is limited by the head-on beam-beam tune shift, which can not be
greater than the available space between resonances in the tune diagram. The LHC is
designed to operate with optimum beam brightness. Further increasing the brightness by
decreasing the emittance from the value given in Tab. 1.1 would decrease the luminosity
due to the head-on beam-beam effect. Therefore, in order to reach the design luminosity,
the emittance has to be kept to the design value.

According to Liouville’s theorem [4], the local phase space density is a constant of
the motion in a conservative system of non-interacting particles. This implies that the
normalised emittance should in general also be constant. However, in a real accelerator
there are some effects that can affect the emittance. These are effect as (list not exhaustive):

e Synchrotron radiation, which dissipates energy and therefore is non-conservative.
This is mainly a problem in lepton machines.

e Space Charge [5] and Intra Beam Scattering [6], since these are interactions between
particles and not with external forces. Space charge effects decrease rapidly with
increasing energy and is mainly a problem in low energy machines like the PS Booster.

e The impedance of the machine can excite resonances [7}[8], which will result in beam
loss or an increased emittance.

1A detailed description of the maximum losses allowed in the LHC under different circumstances is

given in [3].
2A collimation scheme is foreseen for the LHC, where the particles tails are shaved off. A large emittance
therefore means intensity loss, which translates into lower luminosity.
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It is interesting to note that the relative emittance increase due to beam steering and
dispersion function errors are inversely proportional to the beam emittance, whereas the
betatron mismatch contribution is independent of the original emittance. Moreover, the
emittance increase due to a dispersion function error is quadratic in the momentum spread.

Since the LHC beam will have a small emittance and large momentum spread, this
hints that correcting steering and dispersion function errors will be specially important.

1.4 Automatic Beam Steering

Manual trial-and-error optimisation of accelerator performance is time-consuming and slow.

One should therefore as much as possible make use of computer power to guide the opti-

misation procedure. An “Automatic Beam Steering” (ABS) project has been set up in the

CERN Proton Synchrotron Division, with the aim to provide such optimisation tools.
The ABS approach consists of three main parts.

e A database [14] that contains all the information about the machine. This informa-
tion can be extracted in a format suited for beam optics programs, and be used to
predict the response of the machine to a certain correction. These predictions are

then stored in the database.

e An optimisation algorithm [15] that calculates the optimum corrections given some
measured errors.

e A generic correction software [16] that links the measurement program to the database
and the correction algorithm, and which can access and control the machine param-

eters.

The idea is to have a set of generic correction programs for all types of error corrections.
They should be data driven in the sense that changes in the database propagate directly

to all the programs involved.
Parts of the work presented here deals with the response prediction for different types

of errors and the choice of optimisation algorithms.
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Chapter 2

The Booster-PS Beam Transfer Line

2.1 The Recombination of the Four Booster Rings

The PS Booster (PBS) consists of four parallel synchrotrons stacked on top of each other.
The four rings share major elements but can to some extent be individually controlled using
separate correction elements. The filling of the CERN Proton Synchrotron (CPS), the next
machine in the chain, is usually done by sequential ejection of the four rings. Following
* ejection, the particles from the four rings are brought together in a vertical recombination
scheme [17] to the level of the CPS (see Fig. 2.1). The bending magnets used for the
recombination are rectangular magnets resulting in some edge focusing contributions to
the transverse optics. This effect was during the PSB design stage thought to be of no
importance, and no elements for compensation were installed. An experimental study of
the effect was performed in 1978 [18] and the effect was then considered sufficiently small
to be ignored.

However, the tight emittance budget enforced on the injector chain for the LHC beam
and the resulting demand on good emittance preservation between the individual machines
has triggered a new study of the problem.

The recombination scheme can be divided into three main parts (see Fig. 2.2). In
the first part, the beam-lines from the lower two and the upper two rings are joined
together. The recombination is done in a symmetrical manner and therefore one would
expect the beams from ring one and four to have the same properties after recombination,

= 7 Niifiicd

Figure 2.1: Drawing of the vertical recombination scheme in the PS booster. The four beams
enter from the left. Note the lack of available space for additional elements.
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BT4.BVT10

BT4.SMV10

BT.SMV20

BT.BVT20

BT1.SMV20

BT1.BVT1O0

Figure 2.2: Schematic layout of the beam trajectories in the vertical recombination scheme, show-
ing the position of the main bending magnets.

and similarly for ring two and three. This symmetry, however, is broken in the next part of
the recombination scheme, where the common beam-line from ring two and one is brought
to the level of ring three and recombined. Because of this, the beam-lines from the four
rings all have different optics. In the two first parts, the beam-lines are equipped with
individual steering dipoles, while all the quadrupoles are common. Since the beams in
general do not pass through the centre of the quadrupoles, they have a deflecting as well
as a focusing effect. In the last part of the recombination scheme, the beams from the
four rings are ideally following the same trajectory and this part can be considered as a
standard transfer line. From here the beam is sent to different destinations, either the CPS,
ISOLDE, or the Booster measurement line. Depending on the destination, the settings of
the quadrupoles in the last part varies, while the settings of the quadrupoles in the first

part (recombination) is constant.

2.1.1 Modelling of the Transfer Line

In an attempt to understand the optics of the PSB recombination and transfer region a
model have been produced in Mathematica [19] using the BeamOptics [20] package. In the
calculations, a hard edge model of the magnets have been used, taking into account the
edge effects of all the dipoles and the off-axis quadrupoles. Also, the fact that the curved
beam trajectory inside a bending magnet is slightly longer than the magnetic length of the
magnet has been taken into account.

The model was verified qualitatively for ring three by comparison with an independent,
and somewhat simpler, model [21] made in an alternative optics program. This simpler
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ISOLDE

BTY

BT CPS

Recombination
region

Figure 2.3: General layout of the transfer lines between Booster and CPS, showing the position
of the SEM grids in the Booster Measurement Line (BTM).

model was also adapted to the other rings. No major differences between the two models
were found. The validity of the BeamOptics program has been tested by porting the model
to WinAGILE [22] and comparing the results.

The resulting Twiss parameters at the first SEM-grid in the Booster measurement line
are shown in Tab. 2.1. The large differences observed in the horizontal plane are almost
entirely a result of the horizontal edge focusing effect at the entry and exit from the

rectangular vertical bending magnets’.

Plane Horizontal Vertical
Beam from ring 1 2 3 4 1 2 3 4
Brwiss 6.19 662 8.44 7.69 594 6.00 6.00 5094

QTwiss 1.77 2.03 254 222 178 178 179 1.79
Emittance Blow-Up (RMS) 5.4% 3.1% 0% 0.9% 0.0% 0.0% 0% 0.0%

Table 2.1: Theoretical Twiss values deduced with the analytical beam optics program BeamOptics,
as well as the corresponding theoretical prediction for the emittance blow-up. The Twiss values
are calculated at the first SEM-grid in the Booster measurement line for the actual settings of the

quadrupoles.

1This was verified by turning off the edge-effect on these magnets in the theoretical model.
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2.1.2 Measurements of the Optical Parameters

The Twiss values of the beam from the four Booster rings have been measured using SEM-
grids [23] in the Booster measurement line (see Fig. 2.3), and the corresponding RMS
emittance blow-up have been calculated using Eq. (1.7), taking the parameters of ring
three as a reference. For the measurement, a low intensity proton beam was used. The
result is shown in Tab. 2.2.

Plane Horizontal Vertical

Beam from ring 1 2 3 4 1 2 3 4
Bruwiss 403 390 575 571 567 551 5.67 5.99
QiTwiss 1.19 136 1.75 159 1.76 1.73 1.74 1.89

Emittance Blow-Up (RMS) 6.5% 9.8% 0% 1.1% 0.0% 0.1% 0% 0.3%

Table 2.2: Measured values at the first SEM-grid in the Booster measurement line, as well as
the corresponding theoretical prediction of the emittance blow-up. Since currently no continuous
correction of the optics is made, the measured values have differed slightly between measurements
(see references [24] [25]), but the relative direction and individual magnitude of the mismatch
vectors (see Fig. 2.4), which are independent of drifts in the common quadrupoles, have been

stable.

Practical experience shows that the SEM-grids in the measurement line has an ab-
solute accuracy of about 10% in the measurement of the beta function and emittance?.
Considering this, the measured values for all the four rings in the vertical plane are in
agreement with the theoretical values. In the horizontal plane, however, there is a big dif-
ference between calculated and measured values. Part of this difference could come from
errors in the common part of the recombination line. To study the difference between the
line, one should look at the relative mismatch between rings. Fig. 2.4 shows the mismatch
vectors of rings one, two and four with respect to the ring three. In both the measured
and theoretical case, the mismatch vectors of ring four and two add up approximately to
the mismatch vector of ring one (mismatch vectors are approximatively additive). This
implies that the source for the differences really is the vertical bending magnets, since ring
four is deflected only in the first bending and ring two in the second, while ring four is
deflected in both magnets. However, the fact that the vectors does not point in the same
direction relative each others in the measured and theoretical case implies that there are
effects in the real line which are not accounted for in the model. This is supported by
the historical fact that when the optics of the line was first tested, it did not produce
the desired Twiss parameters at SEM grids in the measurement line [21]. The effect was
empirically corrected by changing some quadrupole settings in the common part of the line
in such a way that the effect cancelled for ring three.

2 According to the conclusions of the 1997 ICFA mini-workshop on emittance preservation, no present
emittance measurement device has a better absolute accuracy than about 10% [26].
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Mismatchvectors with respect to ring three

Theoretical Measured
0.4 0.4
0.2 0.2
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Figure 2.4: Difference between the measured and calculated Twiss values in the horizontal plane.
The mismatch vectors for beams from ring one, two and four relative to the Twiss functions of
the beam from ring three are plotted in the plane.

2.1.3 Impact on the LHC Beam Emittance

Based on the measured values of the optical differences between the beams from the four
different booster rings, the RMS emittance blow-up in the horizontal plane could be as
large as 5%, depending on which of the four beams is considered.

This value is half of the allowed emittance blow-up during the Booster-PS beam trans-
fer. It could be argued that this is acceptable, but one should consider that this is just
one of many possible blow-up sources which should all sum up less to than the allowed
blow-up. If left uncorrected, this effect thus drastically reduces the margin available for

other errors.

2.1.4 Suggested Improvements

The first idea of how to compensate optical differences was to attack the problem at its
origin. Based on the BeamOptics model, it was found that by putting shims® on the main
bending magnets in the recombination scheme, the optical differences could be efficiently
reduced [27]. This approach was however not successful, since the complicated structure
of the bending magnets does not allow the simple addition of shims [28].

Therefore, a study of the effects and optimal positions of corrector quadrupoles was
made [25]. To find the optimum position for the quadrupole, an analytic approach was
taken. Using first order perturbation theory (see Section 3.3), it is possible to derive an

3A shim is a wedge-shaped piece of metal that is added to the end of a magnet yoke to change its edge

focusing properties.
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analytic expression for the residual mismatch vector as a function of correction position,
which can be expressed as

r=e—qk(s) (2.1)

where r is the residual mismatch vector, e is the original mismatch vector, k(s) is the first
order influence of a quadrupole at position s on the mismatch vector, and ¢ is the strength
of the quadrupole. The minimum vector norm of r is achieved for

e-k(s)

q= EW (2.2)

which gives the minimum residual mismatch vector as a function of position s in the line

e-k(s)

PORO] k(s). (2:3)

r=e—
In order to account for the effects of the corrector in both the transverse planes r, e and
k should be defined as the concatenations of the corresponding horizontal and vertical
vectors. Eq. (1.7) then gives a relation between r and the sum of the relative emittance
blow-up in the two planes*

Ae Ae

2 h

=1 +rlcc — +—
€n €y

(2.4)

This function can be evaluated for the case of correction for differences between outer and
inner rings (caused by the bending magnet BTx.BVT10) and differences between upper
and lower rings (caused by BT.BVT20). The relative corrector efficiency, defined as the
ratio of the residual error to the original error is shown in Figs. 2.5 and 2.6 for the two
cases. It is clear that a single corrector is not a good option for correction between outer
and inner rings, whereas it is very efficient for correction between lower and upper rings.
Also, fortunately there is space for a correction element just in the optimum position, just
after the BT.BVT20 magnet. The fact that the correction is so efficient can be traced back
to the large difference in horizontal and vertical beta functions, which means that a single
quadrupole can correct efficiently in the horizontal plane without destroying the vertical
matching.

A more detailed analysis using a finite length quadrupole verifies the basic result. The
corrector quadrupole for the lower rings should have an integrated normalised gradient of
about 0.01 m~!. A design for such a quadrupole has been made [29].

4Due to linear coupling, the injected beam turns round (ex = €,) in the CPS. Since the sum of the
two emittances is ideally conserved in this process, it is proper to minimise the sum of the horizontal and
vertical emittance blow-ups.

-
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Figure 2.6: Relative corrector efficiency as a function of position in the line for a single corrector
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Figure 2.7: Measured transported dispersion for the first turn in the CPS, with the new and old
optics. The CPS lattice dispersion is about the same (~ 3m) at all the pick-up locations.

2.2 Dispersion Matching to the CPS

The present transfer line optics PSB-PS leaves a residual dispersion mismatch at the injec-
tion point. The mismatch is intentional in the sense that it is not possible to do better with
the operational quadrupole magnets. However, there is an additional quadrupole magnet
available which is not used because of it’s awkward position inside the shielding wall be-
tween the two machines. Using this quadrupole, it is possible to match the dispersion. An
optics proposal due to Risselada [30] exist since long, but really convincing measurements
have not been achieved before, due to different hardware problems.

2.2.1 Measurements of the Effect

Measurements of the transported dispersion from the PSB to the PS, using the PS as
a transfer line have been performed. The results show a significant improvement in the
dispersion matching between the two machines when applying the new optics (see Fig. 2.7).
The betatron matching has also been verified for the new optics, using the SEM harps in
the PS ring.

The beam size after filamentation have been measured with the new and old optics,
using the wire-scanner in the PS ring. This measurement is very difficult, since all other
blow-up sources have to be eliminated, and the effect of the coupling between the transverse
planes in the CPS has to taken into account. The results have so far shown no significant
difference between the two optics.
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2.2.2 Impact on the LHC Beam Emittance

Taking the standard formula in Eq. (1.8) for the RMS emittance blow-up due to dispersion
mismatch with the parameters for the LHC beam and the current dispersion mismatch,
gives a RMS blow-up of about 30%. The large number is because the LHC beam is very
small and has a large momentum spread. Some comparative measurements between the
PS SEM-grids and the wire-scanner have indicated a blow-up of the order of 40%, but the
measurements are not conclusive. However, an optics change seems necessary to meet the

LHC requirements.
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The Booster-PS Beam Transfer Line




Chapter 3

Response Matrices

3.1 Definition of the Response Matrix

In order to find the optimum correction given a measured error, one needs to be able to
predict the response of the machine to different corrections. The first order response in a
aumber of observables £, such as beam positions, due to some given perturbations d can
be expressed in terms of a response matrix M.

&1 myy Mg -t My o1
&2 Moy Mag -+ MMy 02

.= . -1 (3.1)
& mi1 M2 mij 5]'

This response matrix can be obtained in two different ways
e By direct measurement, changing machine parameters and recording the respomnse.
e Through first order perturbation theory, given an accurate model of the machine.

The first method will always work, but brings little knowledge about the machine. The
second method is more cumbersome, since a model of the machine has to be produced.
However, the machine model is an Important spin-off of the procedure. If the calculated
response matrix does not work, this shows that the model is insufficient. Eventually, this
will lead to a better understanding of the machine.

3.2 Beam Steering

The idea of an Automatic Beam Steering program was first tested in the PS complex [31]
for beam steering in transfer lines and closed orbit correction in circular machines. The
response matrix elements for this type of corrections can be expressed in terms of the
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betatron function # and the phase advance u as

Az, = v ﬁm,@cSIH(um - ,U'c) Ad. lf Hm > U (3-2)
0 if pom < fhe

for beam steering, and

=
i‘
&

Az, = = cos(|bm — te|] — 2mq) Ao, (3.3)

for closed orbit correction. Here A@. is the increments in angle for corrector magnet c,
Az, is the corresponding beam displacement at monitor m.

3.3 Response Matrix for Betatron Matching
The beta function evolve between two sections of beam line according to [32]
B = C?B. — 2CSa. + S*vc (3.4)

Here, the transfer matrix between corrector and monitor is given in terms of the so-called
cosine-like C and sine-like S functions and their derivatives

c S
Tc—»m = (C/ S/> ) (35)

If a small quadrupole perturbation is applied at the corrector location, the transfer
matrix between the corrector and the monitor can be obtained from Eq. (3.5) by multiplying
by the thin quadrupole transfer matrix. This gives

. (C S\(1 0\_(C+S5AK S
Teom = (C' S’> (Akl 1) = (C’+S’Akl S’>’ (3.6)

where Akl is the integrated gradient of the error. By using the matrix (3.6), one can find
the resulting beta function at the monitor location, namely

B = C26, — 20 S0 + S?ve + 2 S(CP. — Sac) Akl + S?Bc(Akl)? (3.7)
which can be rewritten, using Eq. (3.4), as

ABr = B — B = 2 S(CBe — Sac) Akl + S Bo(AklL)? (3.8)

Now, in the standard parametrisation [32] of the transfer matrix T.—m, the sine-like
function S is given by

S= V /Bmlgc Sin(#m - /—Lc) (39)
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and the cosine-like function C

C =/ %3:- cos(tm — fe) + Cct %’:— sin(pm — Ke) (3.10)

which allows to write the relative error perturbation in the beta function at the monitor
as

2
%?'3 = B, sin 2(pm — ) Akl + %—(1 — 08 2(tm — He)) (ARL)? (3.11)

Taking the derivative with respect t0 fim yields

2

A c
Qm ﬁﬁm — Acim = Bo €08 2(fim — pe) AR+ %— sin 2(fm — He) (Akl)Q (3.12)

If many perturbations are present in the line, the perturbed transfer matrix from the
first corrector to the monitor is

N, N,
— _ T (C; + S; Akl S; . +(C; S; S; O
re=11(G 50 5) -1 Pren(s o) 6w

=1 =1

~

where N, is the number of correctors between the beginning of the beam line and the

monitor m.
This matrix product can be splitted up in a polynomial with matrix coefficients. To

calculate the cross terms of second order in Akl;, one has only to evaluate the general
second order term

= _ (Ca S5 1 0\ /C: S 1 0
Teom = (0; 55) (A% 1> (0; s ) \aky 1 (3.14)
_ <Cg Sz) (C’l S i Cy S 0 0)\/C: S e
cy Sy)\Ci S Cy Sy) \Akly 0) \Cq Si
Going through the exercise of grouping terms of different orders gives
ALm : :
_ﬁ—— = (B sin2(pm — p1) Akl + Pasin 2(pm — po) Akly+ (3.15)
1 : 1
4 2021~ 005 20 — ) (AD)? + 5081 = 005 2(pam — pa)) (ARE)"

+ BBa(cos2(ug — p1) — cos 2(pm — p1) Akly Akl

where the first terms are just the linear and second order terms already computed, and
the last term is the lowest order cross term between perturbations. Again, taking the
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derivative with respect to un yields

ABm
am-—ﬁ—- —Aam = B1cos2(um — 1) Akly + Bocos 2(um — p2) Akly + (3.16)

Brm
B . 2, B 2
+ —-sin 2(thn — 1) (DKL) + —sin 2(pm — p2) (Akly)” +

+ G1Basin2(um — 1) Akl Akl

3.4 Dispersion Matching

If there is dispersion in the transfer line, the evolution of the dispersion function should
be included in the formalism used to correct a mismatch in the optical parameters. The
approach to calculate the response matrix for dispersion matching can be based on 3 x 3
transfer matrices [9]. The propagation of the dispersion function from a corrector location
to a monitor placed downstream can be written using the matrix

c S ¢
Tom=|C 5 €¢]. (3.17)
0 0 1

The upper left 2 X 2 sub-matrix represents the transfer matrix for the betatronic motion
between corrector and monitor. The quantities &, &' are different from zero only when
bending magnets are present in the transfer line. A quantity

W= %[D2 + (aD + D)3, (3.18)

similar to the Courant-Snyder invariant can be defined. In a bending-free region of a
transfer line, W is an invariant and is called the Dispersion invariant [32].

The dispersion at a given monitor is linked to the value at the location of an upstream
corrector (a normal quadrupole) by the transfer matrix of the section in between. The
presence of a quadrupolar error, simulated by a thin lens element, modifies the transfer
matrix, according to the following

B cC S €\ /1 00 C+SAkl S ¢
T .=|c s ¢|[ak 10|=[C+5ak 5 ¢]. (3.19)
o 0 1/\o0 01 0 0 1

The modified dispersion at the monitor location is then given by

Dyn = Dn+S DAkl (3.20)
D = D'nw+ S8 D Ak, (3.21)
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where

Dw = CD.+S D, +¢& (3.22)
D'w = C'D.+S5 D.+¢. (3.23)
In this case, Eq. (1.8) and the existence of the dispersion invariant suggests to define a
dispersion mismatch vector as
ADy,
A Dm\/f:l/g‘AD’ : (3.24)
Om———= W AD
VB

where ADy, = Dy — Dy and AD;, = D - D..
Again, by using the standard parametrisation of the transfer matrix between the corrector
and the monitor, it is possible to obtain the expression of the dispersion mismatch vector

AD
—_—= =  D.sin Ay Akl 3.25
N VB L (3.25)

AD, ,
Om +/BuAD., = +/BcDc.cosAp Akl (3.26)

VB
3.5 Combined Betatron and Dispersion Matching

As mentioned before, when correcting the dispersion using quadrupole correctors, the be-
tatron matching will be affected as well. Therefore, the response matrix used for the
correction should include both effects. In this case, the matrix can be defined as

ééﬁ’l \ ,BHl sin 2Ap g, c.- \ Akll\
. Akly
o ABg,, — Aoy Br, cos 2Aum, - :
™ BHn m
A6y, By, sin 2Apy,
Bv.n,
av,, Aﬁﬁ Vm _ Aay, By, cos 2A vy,
1%
fr/—');_ili - V IBHlDHI Sil’l A#Hl PN . 9 (3-27)
He
aH 2D + v/ Br.,AD] \/Ba, D, cos A,
" V/BE Hm
f/l;ﬁ \/Bv, Dv, sin Apy,
Vim :
ADy,, a4 \/ﬁVmADQ/m \ \/ By, Dy, cos Apuy, Akln
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Here, N, is the number of correctors. Note that one should in general include a weight
factor between the betatronic part of the matrix and the dispersion part. This since the
betatron-matching matrix elements has unit m, while the dispersion part has unit m%?.
Egs. (1.7) and (1.8) suggest that the dispersion part of the matrix should be multiplied by
a weight factor of o,/+/€, which of order unity for the LHC beam. Therefore, for all the
measurements and simulations presented here, the weight factor was set to one.



Chapter 4

Optimisation Schemes

4.1 Problem Formulation

The optimisation problems encountered in accelerator fine tuning are either already linear
or can be linearised since only small corrections are considered. Thus the optimisation

algorithms should solve a linear problem of the type
min||b+ 4 - x|| (4.1)

where || - - - || denotes a suitable norm. In this work, the standard vector norm was used.
If the number of free parameters Nc (correctors) equals the number of constraints N,

(monitors), A is a n X n matrix, and could in principle be inverted. If the system is

over-constrained or singular, it could be solved using the classical least square fit, which is

z = (ATA)'ATb (4.2)

The direct inversion of A often poses numerical problems, since the matrices are often
singular or numerically ill-conditioned. If a response matrix is singular, it means that parts
of the solution space is inaccessible. In other words, there are correction vectors x that
when multiplied with A give zero. Also, there are error vectors b that can not be corrected
using the available correctors.

The inaccessible solution space is called the null-space of the matrix. The least square
method solves this problem by projecting it into the available solution space and solving
the restricted problem. However, if the matrix is ill-conditioned, there are parts of this
restricted solution space that can still only be reached by applying very large corrections
x. This is not good for the stability of the correction, since noise in the in-data is strongly
amplified. These kind of corrections could be called near-to-null-space corrections.

Another important point is that each corrector can only be controlled with a finite
accuracy. Thus with every corrector that is changed, an error is introduced. Therefore, it
is favourable to use as few correctors as possible.
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A good correction algorithm should thus:
e Avoid null-space corrections.
e Avoid near-to-null-space corrections.

e Use as few correctors as possible.

4.2 Singular Value Decomposition

The Singular Value Decomposition method is a general method of solving ill-conditioned
matrix equations. The idea is that any matrix can be decomposed as

M=L"-D-R, (4.3)

where where L and R is a row orthonormal matrices, and D is a diagonal matrix whose
diagonal elements dy,, are the so called singular values of the matrix M. The decomposition
can be done even if M is not a square matrix.

For square matrices, the ratio of the largest singular value to the smallest gives the
condition number, or £2 norm of a matrix, which determines the accuracy of its numerical
inverse. The smaller the ratio, the more accurate is the solution.

The pseudo-inverse of M can be defined from the singular value decomposition as

M*=RT.D* L, (4.4)

where the inverse of the diagonal matrix D is

1
=0 o)
0 = 0
Dt = da2 ‘ (4.5)
1
\0 0 El;/

and k = min(i, 5). It is clear from Eq. (4.5) that any singular values that are zero will lead
to infinities in D~!. Any such infinities are thus simply replaced by zero, which effectively
means removing the degrees of freedom associated with those singular values'. However,
the same way very small singular values will give very large entries in D~1. These large
values can also be replaced with zeros in order to get a more stable solution. In this way
SVD, trades degrees of freedom for numerical stability.

If M is a non-singular square matrix, the pseudo-inverse is just the normal matrix

inverse.

1Up to this point, SVD is identical to the Least Square Method
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4.3 The Harmonic Correction Method

The Harmonic Correction Method [33] for closed orbit corrections was first conceived for
correction of the orbits in the Intersecting Storage Rings (ISR) at CERN. It is based on
the idea to make an FFT of the measured data points, and correct the different harmonics
separately. Variations of the Harmonic Method are used in some labs around the world,
but since it is specific to closed orbit corrections, it will not be discussed here.

4.4 The Micado Algorithm

The MICADO algorithm was also first proposed for closed orbit corrections in the ISR
machine [34]. Its main advantage is that it uses only a small subset of the of corrector
magnets, as opposed to VD and the harmonic method that uses all available correctors.

MICADO solves the matrix equation
M-a=b (4.6)
iteratively, by minimising the norm of the residual vector r defined as
r=b—-—M-a. (4.7)

The matrix M need not to be rectangular. In the first iteration, MICADO finds the column
m; of M which gives the minimum the residual vector when solving the over-determined

system
m; - a; = b, (48)

using the least-square method. This column is then kept to the next iteration, where
MICADO finds the column of M that, together with the first one, minimises the residual

vector when solving
Mgy -aug =D, (4.9)

again using the least-square method. This procedure is repeated N times. The output
data for each iteration contains the chosen columns, that in this case correspond to the
best correctors, and the vector ag ;3, which gives the corrections to be applied. The error,
defined as the norm of the residual vector r, generally decreases much more in the first
few iterations than in the later (see Fig. 4.1). Since a measured value is used as input, one
can not compensate better than the measurement error. The measurement error comes in
already in the calculation of the corrections, and therefore one cannot expect the effect of
the correction to be exactly as predicted by MICADO. As mentioned before, the corrections
can also only be made with a finite accuracy. One should therefore choose the number of
correctors so that all of them give a significant improvement.
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1 2 R f N

Figure 4.1: Plot of the residual vector norm versus number of correctors from a typical MICADO

Tun.

Also, if the response matrix is a linear approximation, the number of neglected higher-
order cross terms grows rapidly with the number of correctors. This is another reason to
keep the number of correctors low.

It is unlikely that one will achieve a perfect match directly. However, if the correction
results in a smaller error, a new measurement of k can be done and the procedure repeated
until the mismatch is eliminated.

4.5 The Minimo Algorithm

The MINIMO algorithm is a modified version of MICADO proposed by Risselada [35].
MICADO starts out by finding the best single corrector, and then iteratively adds the
optimal correctors to the chosen set. In each iteration, one corrector is thus added, and
the time to find a correction using a subset of n correctors out of a total of N available is
approximately proportional to N?n — Nn?.

The assumption made in the MICADO algorithm is that the optimal set of k correctors
is a subset of the optimal set containing k + 1 correctors This is not always true. It is
in fact easy to construct counter-examples. The assumption is however a rather good
approximation in most cases, and it significantly speeds up the algorithm.

MINIMO on the other hand, is a brute-force method. It checks all possible solutions,
without assumptions. Since the number of possible subsets of a certain number of available
correctors can be very large, this method is slow, and in some cases, utterly useless because
of the combinatorial growth of computation time. In fact, the time needed to find a
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