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Abstract of “Topological Order in Superconductors and Quantum Hall Liquids” by
Guang Yang, Ph.D., Brown University, May 2014

Fractional quantum Hall (FQH) liquids are interesting two-dimensional electron sys-
tems that possess quasiparticle excitations with fractional charges, obeying quantum
statistics different from those of bosons and fermions. In particular, the FQH liquid
at filling factor g was proposed to host Majorana bound state (MBS) with exotic
non-Abelian statistics. A collection of MBSs can span a topological Hilbert space, in
which each many-particle state is topologically distinct, depending on the historical
trajectories of all the MBSs in the system. Logic operations in quantum computation
can be encoded in the linear transformations in topological Hilbert space and in prin-

ciple be protected against local defects and perturbations, which are topologically

trivial and cannot induce transitions between different many-particle states.

Despite such intriguing theoretical picture, experiments probing the nature of the
g FQH liquid are controversial. In this dissertation, we provide an explanation of
two seemingly contradicting experiments in the g FQH liquid, by exploring the role
of electrostatic interaction closely related to the geometries of the devices. We also
construct several new g FQH states, by making use of the particle-hole symmetry
in FQH systems, to account for a recent experiment observing upstream neutral
edge transport in the g FQH liquid, which ruled out most of the existing theories. In
addition to the new particle-hole states, we propose another topological description of
the g FQH liquid which reconciles all existing transport experiments. Later, we turn
our attention to the MBSs in superconductor systems. We study the approaches to
minimizing the decoherence of a Majorana-fermion-based gbit due to its interaction
with environment, based on a full classification of the fermionic zero modes in a

system of interacting Majorana fermions.
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CHAPTER ONE

Introduction



The quantum Hall effect [1] is an important macroscopic quantum phenomenon
discovered [2,3] in the early 1980s. It features the almost vanishing longitudinal
resistance R,, ~ 0 and the quantized transverse (Hall) resistance R,, = }/e% in
two-dimensional magnetotransport. The quantity v that can be determined through
mesoscopic measurement is in nature quantum mechanical. It is the ratio of the
number of electrons to the number of quantum states per degeneracy in the system,
called the filling factor. Experimentally observed v can be either an integer or a
rational fraction, with which the system is referred to as exhibiting integer quantum
Hall (IQH) effect or fractional quantum Hall (FQH) effect. The quantum mechanical

nature of v is evidenced by the remarkably precise quantization of the Hall resistance,

which has been measured to the accuracy of nearly one part in a billion [4].

The quantum Hall effect occurs when a two-dimensional electron gas (2DEG)
is subject to strong perpendicular magnetic field, in the limit that the energy scale
set by the external magnetic field is much larger than the energy scales set by the
in-sample disorder potential, the inter-electron Coulomb potential and the thermal
energy. In such a case, electrons are frozen in quantized Landau levels. The remanent
(yet rich) physical properties of the 2DEG then depend on the interplay between the
disorder potential and the intra-Landau-level electron-electron interaction. In the
case that the disorder potential is much stronger than the electron-electron inter-
action, IQH effect is observed. On the contrary, if the electron-electron interaction

dominates over the disorder potential, one arrives at the regime of FQH effect.

The physics of IQH effect is better understood than that of FQH effect. To
a good approximation, one may ignore the electron-electron interaction within the
Landau level and view the IQH system as a collection of non-interaction electrons.
The observed non-dissipative transport and the quantization of Hall resistance can

be explained under the framework of single particle quantum mechanics, taking into



account the existence of localized electron states due to disorders and impurities.

FQH systems, on the other hand, contain much richer physics. To understand
the physics of FQH effect, one must not neglect the intra-Landau-level Coulomb
interaction among electrons. From theoretical point of view, FQH liquids possess
internal structures, called “topological orders” [5], that involve strong correlation
and collective motion of all degrees of freedom in the system, as a result of the
simultaneous presence of strong magnetic field and electron-electron interaction. The
nontrivial topological orders distinguish FQH liquids from IQH liquids, which are

essentially free electron systems having trivial topological order.

Due to their nontrivial topological orders, FQH liquids possess quasiparticle ex-
citations with fractional charges, obeying quantum statistics different from those of
bosons and fermions [6]. The new quantum statistics can be either Abelian or non-
Abelian. When two Abelian quasiparticles are exchanged, the many-particle wave
function acquires a phase factor that is different from £1. This phase factor defines
the topological property of the Abelian quasiparticles. What is more interesting are
the non-Abelian quasiparticles. A collection of non-Abelian quasiparticles can span a
topological Hilbert space, in which each many-particle state is topologically distinct,
depending on the historical trajectories of all the non-Abelian quasiparticles. Lo-
cal defects and perturbations are topologically trivial and cannot induce transitions
among different many-particle states. On the other hand, braidings of non-Abelian
quasiparticles give rise to unitary transformations in the topological Hilbert space,
which can be used to encode logic operations in quantum computation. As such, the
non-Abelian FQH quasiparticles are potential building blocks for topological quan-
tum computer [7, 8], whose operation is in principle topologically protected against

various decoherence processes due to defects and perturbations.



The FQH liquid at filling factor v = 5/2 [9] was expected to host one simple kind
of non-Abelian quasiparticle, the Majorana bound state (MBS). Such quasiparticles
were predicted in a theory proposed by Moore and Read [10] to explain the even
denominator of the filling factor. The Moore-Read theory, however, is not the only
candidate for the v = 5/2 FQH state. Competing theories [11,12] exist to predict
the quantum liquid an Abelian system. Unfortunately, experiments [13-24] probing
the topological nature of the v = 5/2 FQH liquid are controversial. A large part
of this dissertation is devoted to understanding experiments in the v = 5/2 FQH
liquid, as well as constructing new candidate theories for the v = 5/2 FQH state.
The application of MBSs to topological quantum computation is also an interest-
ing subject [8,25]. In the later part of the dissertation, I study the approaches to

optimizing the reliability of topological quantum computation with MBSs.

Before jumping into the details of my dissertation work, I first give an introduc-
tion to the experimental and theoretical aspects of the quantum Hall effect. The
introduction is by no means comprehensive. It is primarily a review of the basics
that will prepare the reader the necessary background and motivation to understand
the later chapters of the dissertation. In Section 1.1, I discuss experiments and show
the incapability of classical theory in explaining the quantum Hall effect. In Sec-
tion 1.2, I introduce the successful theory of IQH effect, which is based on single
particle quantum mechanics. The theory of FQH effect is surveyed in Section 1.3,
including discussions of the wave function approach, the effective field theory, and
quasiparticle tunneling between FQH edges which links the theory to experiments.
In Section 1.4, I give a special discussion of the FQH liquid at filling factor v = 5/2,
where MBSs may exist. The idea of topological quantum computation using MBSs

is also explained. Section 1.5 is an outline of the following chapters.



1.1 Experimental aspects of quantum Hall effect

To observe the quantum Hall effect, one needs to construct a 2DEG. Experimentally,
a 2DEG is realized by freezing the degrees of freedom of electrons in the third spatial
dimension. This can be done, for example, in a heterostructure of two different
semiconducting alloys whose band structure mismatch creates a “quantum well” for
the electron motion in one of the spatial directions. The energy level spacing in
the quantum well can be of order 103K, much larger than the temperature at which
quantum Hall experiments are performed. Hence, the kinetic energies of electrons
in the third spatial direction are quenched in the lowest energy level in the quantum

well and the electron system becomes effectively a 2DEG.

Fig. 1.1 shows the measured transport data [26] in the quantum Hall effect. As we
can see, the Hall resistance scales linearly with the perpendicular magnetic field. At
certain magnetic field, plateaus appear where the Hall resistance becomes universal
constants,

1k

Ry, = (1.1)

ve?’
where v is an integer or a rational fraction. Along with the Hall resistance plateaus,
the longitudinal resistance drops to almost zero and the transport becomes dissipa-
tionless. These phenomena cannot be explained by the classical theory of magneto-

transport in two dimensions, as we now show.

In classical Hall effect, electrons move under an electric field E and a perpendic-
ular magnetic field B. The electric field has a component perpendicular to both the
magnetic field and the direction of current flow which balances the Lorentz force by

the magnetic field, and a component in the direction of current flow to provide drift
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Figure 1.1: Transport in the quantum Hall regime. The numbers indicate the filling factors
at which plateaus of Hall resistance R, appear, associated with the vanishing of longitudinal
resistance R;,. Adopted from Ref. [26].



velocity v of electrons. The transport can be described by Drude theory [27],

dv e v
— = —(eE+ - B) —m— 1.2
mdt (e +Cv>< ) mT, (1.2)

where m is the effective electron mass, —e is the electron charge and 7 is the relax-
ation time set by various scattering mechanisms in the 2DEG, e.g., due to phonons

(in the quantum Hall regime, phonon excitations are almost completely suppressed)

and impurities. At equilibrium, flj—‘; = 0. Solving Eq. (1.2) at equilibrium with
v=vr,B=—-BZ E-Z2=0 gives
Ex TLZ;’T
0 0
where j = —nev is the conducting current density. From Eq. (1.3), we obtain the
longitudinal and Hall resistances
E, E B
Rp=—2=—" and R,=—Y=—. (1.4)
J ner J nec

We see that in classical Hall effect, the longitudinal resistance is nonzero, reflecting
the dissipation in transport due to scattering mechanisms, and the Hall resistance
is a linear function of the perpendicular magnetic field. From the ¢ component of

Eq. (1.3), we also find that the electron drift velocity v = cE,/B.

Drude theory gives qualitatively correct explanation of the transport data when
the system is outside the quantum Hall regime. However, it does not explain the
appearance of Hall resistance plateaus and the associated vanishing longitudinal
resistance in Fig. 1. These puzzles can only be understood after one admits quantum

mechanical treatment.



Another important observation in the quantum Hall systems is that the 2DEG
turns into an incompressible liquid state when the Hall resistance plateaus appear.
This implies a gapped excitation spectrum in the bulk of the system which is fun-
damentally quantum mechanical. To see this connection, recall the definition of
compressibility k,

oP O’FE

-1 _ Dl z
K= V(?V V@VQ (1.5)

where V, E are the volume and the internal energy of the system, respectively, and P
is the pressure applied to the system. For the 2DEG, it is convenient to rewrite the
above definition in terms of quantities defined per electron per unit area. Let N, A
be the electron number and the area of the system, respectively. Using E = Ne(n),

n = N/A and the definition of chemical potential y = 0E/ON, we find

d
K= nQﬁ. (1.6)

where n is the electron density and €(n) is the internal energy density as a function
of n. Hence, the incompressibility condition x = 0 is equivalent to a discontinuity in
the chemical potential 1(n) as a function of n, which then means a gapped excitation

spectrum.

In the following sections, we discuss the physical origins and consequences of
incompressibility in IQH effect (Section 1.2) and in FQH effect (Subsection 1.3.1).
The case of IQH effect is immediately clear after one solves the quantum mechanical
problem of free electrons under strong magnetic field. The case of FQH effect,

however, requires a closer look at the Coulomb interaction among electrons.



1.2 Quantum Hall effect at integer filling factors

To understand the physics of IQH effect, we first study the quantum dynamics of an

electron moving under strong perpendicular magnetic field B = BZ.

We choose Landau gauge for the vector potential A = xBy. The Hamiltonian of
the problem then reads

1 eB
H=—[p? —x)? 1.7
2m[px+(py+ : )], (1.7)

where m is the effective mass of electrons in the sample. In Eq. (1.7), we have
ignored the kinetic energy from the electron motion in 2 direction, which as we
mentioned before is simply the lowest possible energy in a one-dimensional quantum
well. After a bit of algebra, the Hamiltonian can be written as that of a simple
harmonic oscillator. It is then straightforward to obtain the energy eigenfunctions

and eigenvalues,

1 . — L (a+ki%)?
Vnr(r) = —=™H, (x4 kl%)e 5
VL
1
€nk = (n+§)hwc (1.8)

where H, is the nth Hermite polynomial, L is the system size in gy direction, Ak is

the quantized linear momentum in ¢ direction, g = e% is the magnetic length and
W, = ;—Bc is the cyclotron frequency. We see that the kinetic energies of electrons are

quenched in quantized energy levels, call Landau levels, labeled by integers n.

The degree of degeneracy in each Landau level is obtained as follows. First we
note that the energy in each Landau level is independent of the wave number k in

y direction. Hence, we much sum over all possible values of &k in order to count the



10

number of states in each Landau level. For given k, the eigenfunction in & direction
is a harmonic oscillator located at * = —kl%. Suppose the sizes of the 2DEG in &
and g directions are L’ and L, respectively. The range of allowed wave vectors is

then [0, L'/l%]. The number N of states in each Landau level is

L [l LL' LLI'B
N, / " ik _ _
0

_4L _ 2PN 1.9
o owmls, By ® (1.9)

where ¢y = hf is the magnetic flux quantum and Ng = Nj is the number of flux

quanta penetrating through the area of the 2DEG.

The filling factor v is defined as the ratio of the number of electrons to the
degree of degeneracy in each Landau level (or the number of flux quanta penetrating

through the area of the 2DEG),
IQH effect corresponds to the situations where v takes integer values.

To study transport in an IQH system, consider an electric field E applied to the
2DEG, in addition to the magnetic field. Let E = Ez. This amounts to adding
a potential energy V(r) = eEx to the Hamiltonian in Eq. (1.7). By completing

the square in x in the Hamiltonian, the problem is simply a quantum harmonic

oscillator shifted by —nc;fg in Z direction. The new eigenfunctions are now located
el

at T = —k‘l% — p—

with eigenvalues depending on k,

1 1
ek = (0 + §)hwc + eFExy, + §m02, (1.11)
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where v = ¢E/B. The group velocity of electrons in the nth Landau level is

1 E
Vnk = ~ Vk€nk = -

—g = —vy. 1.12
- =) (1.12)
Hence, upon applying an electric field, electrons in all the Landau levels drift at
the same velocity v, in the direction perpendicular to both the electric field and

the magnetic field. The drift velocity we find by solving the quantum mechanical

problem agrees with the drift velocity in classical Hall effect, obtained after Eq. (1.3).

In a realistic quantum Hall system, an electrical potential is created (e.g., by
metallic gates or by chemical etching) to confine the 2DEG to the area of interest.
Near the edge of the 2DEG, an electric field exists as the gradient of the confining
potential. This electric field, however, is screened out in the bulk. Hence, transport

only happens on the edge of the quantum Hall system.

Fig. 1.2 shows the energy levels in an IQH system. Deep in the bulk of the 2DEG,
the electric field due to the confining potential is completely screened out such that
the excitation spectrum is given by Eq. (1.8), gapped by the Landau level spacing
hw.. Near the edge of the system, gapless excitations appear as extended electron
states, as a result of the nonzero electric field. These extended states form edge

channels of the IQH system, in which conducting current flows.

IQH effect occurs when the chemical potential lies in between two Landau levels.
In such a case, the lower Landau levels are completely filled, while the upper Landau
levels are empty. An edge channel in a quantum Hall system is defined as consisting
of all the extended states in a Landau level. Such edge channels have finite widths,
unlike those in quantum wires. We now show that in an IQH system, the Hall

conductance in each edge channel is quantized as % Let L be the size of the system
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Edge excitation

Bulk excitation

Figure 1.2: Energy levels in an IQH system. p is the chemical potential, below which the electron
states are occupied. Excitations in the bulk are gapped by Landau level spacing w, (setting i =1).
Gapless excitations exist on the edge where there is a nonzero electric field produced by the confining
potential. Adopted from Ref. [5].

in the longitudinal direction of an edge channel. The number of extended states per
wave number is then % All the extended states in the edge channel are occupied by
conducting electrons, with group velocities %Vkenk. To a good approximation, we

use Fermi function at zero temperature for the quantum Hall system. The current

in the nth edge channel is

r=-= /dkilvkenk

L 2 h
m
:—E/ de
h Jo
2
e
=——V 1.13
4 (1.13)

where = eV is the chemical potential in the edge channel and in the second line
we have used the fact that the integrand in the first line is a perfect derivative.

Hence, the Hall conductance o,, = e

- in each edge channel. For realistic transport

experiments, let pg, up be the chemical potentials in the source and in the drain.
The net current I = —v§(pus — pip) = —V%VSD, where Vsp is the voltage difference

between the source and the drain, and v is the number of edge channels contributing
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to transport.

We can now explain the transport data in IQH effect. The number N, of states
in each Landau level is related to the magnetic field B via Eq. (1.9). At certain
magnetic field, Ny reaches a value such that the number N of electrons in the 2DEG
is an integer multiple v of Ny. By Eq. (1.10), there are v completely occupied
Landau levels below the chemical potential. The edge channel of each Landau level

contributes % to the Hall conductance. Altogether, we have a Hall conductance

N

0wy = V5. In a quantum Hall system, electrons flow in the direction perpendicular
to both the electric field and the magnetic field. No current flow can be measured
along the direction of the electric field. Hence, the longitudinal conductance o, = 0.

The resistance matrix R is the inverse of the conductance matrix @,

-1

_ 0 —ve 0o iz
R=7 "= ] " = v | (1.14)
ve 0 —1h 0

from which we find the longitudinal resistance R,, = 0 and the Hall resistance

1h
Ry=10

ve2’

The vanishing of the longitudinal resistance R, is a result of the excitation gap
fw. between the filled vth Landau level and the empty (v + 1)th Landau level.
The gap prevents electrons from being excited between different Landau levels and
ensures that all v lower Landau levels remain completely filled. In such a case,
electron scatterings are greatly suppressed because of the lack of unoccupied states
in any of the v Landau levels to accommodate the scattered electrons. The transport
is hence dissipationless, reflected by the nearly vanishing longitudinal resistance. The

excitation gap also explains the incompressibility of the 2DEG in IQH effect.
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Figure 1.3: Broadening of Landau levels by localized electron states (shaded areas) near disorders.
n labels Landau levels. Electron states in the white strips between neighboring shaded areas are
non-localized and can contribute to transport in the presence of an electric field. A Hall resistance
plateau appears when the chemical potential lies between two white-strip regions.

To understand the Hall resistance plateaus, we need to take into account the
role of disorders. As mentioned in the beginning of this chapter, IQH effect occurs
when the disorder potential is much stronger than the electron-electron interaction.
The disorders turn some of the degenerate states in each Landau level into localized
electron states with different energies. As shown in Fig. 1.3, this effectively broadens
the Landau levels. As the chemical potential of the system moves (e.g., due to the
change of magnetic field B, Egs. (1.9)(1.10)) in the reservoir of localized energy

levels, all the Landau levels below the chemical potential remain fully occupied such

that the Hall resistance is still quantized. The Hall resistance plateaus then appear.
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1.3 Theory of quantum Hall effect at fractional

filling factors

In Section 1.2, we see that IQH effect is well explained using single particle quantum
mechanics. However, similar arguments do not apply to FQH effect. FQH effect
occurs when the uppermost Landau level is partially filled. Naively, the availability
of unoccupied states in the uppermost Landau level should allow electron scattering
which gives rise to nonzero longitudinal resistance. But this is not what has been
observed. In fact, FQH liquids are in nature strongly-correlated electron systems
[1,5,28,29] with rich internal structures. The Coulomb repulsion between electrons

within the Landau level plays an important role in the formation of FQH liquids.

Before discussing the theory of FQH effect, I first use a two-body problem to
answer a basic question about FQH liquids: Why are FQH liquids incompressible?

Incompressibility is the starting point of all theoretical attempts to FQH effect.

1.3.1 A two-body problem: Understanding incompressibil-

ity

Let us study the quantum mechanical problem of two interacting electrons under
strong magnetic field B. The energy scale set by Coulomb interaction between the
electrons is much smaller than the Landau level spacing. Hence, we can solve the
problem using perturbation theory, by treating Coulomb interaction as a pertur-
bation and using the eigenfunctions of the free electron Hamiltonian, Eq. (1.7), as

zeroth order basis functions. Here, it is more convenient to use the symmetric gauge
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A = —3(y& — x§)B. The zeroth order basis functions are found to be

1 e
Ui = ome 5 (1.15)

1/ 27Tl?3m+22mm!

where z = x+1y is the complex coordinate of the electron and m € Z is the quantum

number labeling the degeneracy in the Landau level, m > 0. The physical meaning

of m is the conserved angular momentum of ,,.

Now consider two electrons in the eigenstates 1, (z1) and ¥y, (z2). Their Coulomb

interaction V(|21 — z2|) = where ¢ is the dielectric constant in the sample,

5|zle —za]?
typically of order 10. We solve the problem by switching to the center-of-mass coor-
dinate Z = z; + z3 (ignoring the factor 1/2) and the relative coordinate z = z; — 2.

Correspondingly, we define the center-of-mass angular momentum M and relative

angular momentum m. The zeroth order wave function of the two-electron system

U mg (215 22) = Uy (20) Uy (22) = Uagn(Z, 2) 2 ZM 2 s (2P 4R (1.16)

7

where after “~” we have ignored the normalization factor. The Coulomb potential

V(lz1 — z2|) = V(|2]) = %I The first-order corrections to the energy eigenvalues

(UrrmlV|¥arm) €2 T(m+3)

V., = -
<\I]M,m|\IjM,m> 8[3 2-m!

, (1.17)

are independent of the center-of-mass angular momenta M and are referred to as
Haldane pseudopotentials [30]. Fig. 1.4 shows Haldane pseudopotential V}, versus
the relative angular momentum m (or equivalently, versus the distance r,, o mig)
between two electrons. We see that the potential energy of the system is quantized in
unit of %, due to the simultaneous presence of Coulomb repulsion between electrons

and the strong external magnetic field. Electrons can no longer approach each other
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Figure 1.4: Haldane pseudopotential V,, (in unit of €2 /el ) versus the relative angular momentum
m between two electrons. Adopted from Ref. [29].
in a continuous way. Instead, they must take quantized steps r,, and overcome a

gap ~ % during each step.

The above results for the two-electron system can be qualitatively extended to
a system of many electrons, for example, to a FQH system which is essentially an
interacting 2DEG under strong magnetic field. We can infer a gapped spectrum in
a FQH liquid, despite that the uppermost Landau level is not completely occupied
by electrons. The gap ~ % preserves the uniform structure of the ground state and
turns the 2DEG into an incompressible liquid. Transport in FQH liquids consists
of the collective motion of all the electrons while the system remains in its ground
state. Electron scattering in FQH liquids is considerably suppressed, because of the
difficulty of moving an electron towards the other electrons. As a result, transport

in FQH liquids is non-dissipative with an almost vanishing longitudinal resistance.
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1.3.2 Wave function approach

We now discuss the wave function approach to FQH effect, first introduced by R. B.
Laughlin [31].

The many-particle wave function Laughlin wrote down for the ground state of

the FQH liquid at filling factor v = 1/m is

— oz i lail®
U ([z]) = [z — z)me B (1.18)
i<j

where m must be an odd integer to ensure fermionic statistics between electrons and
[2;] denotes the set of complex coordinates z; labeling the positions of electrons. This
wave function vanishes quickly when two electrons approach each other. Hence, in
such a state, electrons tend to stay away from one another and the total Coulomb

energy of the system is minimized.

Expanding ¥™([z]) into a polynomial in z;, we see that it is a superposition
of several many-particle states. In all such constituent states, electrons are well
dispersed so that the relative angular momentum of any pair of electrons is equal to or
greater than m. This fact guarantees that U™ (|[z;]) is the exact ground state of a FQH
system with short-ranged electron-electron interaction. To see this, approximate the
total Coulomb energy in the FQH system as the sum of Haldane pseudopotentials
between all pairs of electrons and ignore the total kinetic energy which is a constant

independent of the electron index. The Hamiltonian is then

H= i > VPl (1.19)

m/=0 1<j

where P}, is a projection operator operating on a many-particle wave function W.
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Pf;{,\IJ = W if the relative angular momentum of z;, z; electrons in ¥ equals m, and

P,i‘z,\ll = 0 if otherwise. Hence, we have

HIU™(| Z > Vi PLU™([z1]). (1.20)

m/=m 1<jJ

If we artificially truncate the range of the Haldane pseudopotential such that V,,,, =
0,m' > m, i.e. V,,» becomes a “hard-core potential”, U ([z]) is explicitly the exact
ground state of the Hamiltonian. The excited states are obtained by squeezing pairs
of electrons such that their relative angular momenta become smaller than m. As

illustrated in the previous subsection, this must overcome an energy gap ~ - ~ Vj.

The filling factor v of the FQH state described by W™ (|[z;]) is obtained through
the plasma analogue [5,31], which treats the square of W ([2;]), describing the prob-
ability density of finding an electron in the realistic FQH system, as the Boltzmann
weight function in a classical system describing the probability distribution of classi-
cal particles. Writing [0 ([])|> = e PF with 8 = 2/m, we obtain a classical energy

function

=-m>) In|z - z]!+4l2 Z\zﬁ (1.21)

1<J
which describes a two-dimensional plasma system. In the plasma system, each par-

ticle z; carries a “plasma charge” m and sees a potential %|z|? produced by the

4%
background “charge” density ng = ﬁ To keep the system “charge” neutral, the
total “charge” density of the plasma particles must equal the background charge
density. Hence, we demand mn = ng, where n is the number density of plasma
particles. Switching back to reality, each plasma particle corresponds to an electron
in the FQH system. Hence, n is also the number density of physical electrons. Be-

sides, the background “charge” density ng in the plasma system coincides with the

density of states (or the density of flux quanta) in the FQH system. Hence, we find
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v=n/ng=1/m.

Laughlin also suggested the many-particle wave functions for localized excitations
in a FQH system. The excitations can be positively charged, called “quasiholes”, or
negatively charged, called “quasielectrons”. A fundamental quasihole located at &

in the ¥ = 1/m Laughlin state is described by the wave function

VO ([2],€) = [ [ (= — W™ ([]), (1.22)

%

where we have ignored the normalization factor. A fundamental quasielectron located

at & has the wave function

\Ilqp([zi]a f) = H(2aZz - 5*)\1;7”([21])7 (123)

i

where £* is the complex conjugate of &. Interestingly, quasiholes and quasielectrons
in a FQH system may carry fractional charges and obeying quantum statistics which

are different from those of bosons and fermions.

The charges and statistics of quasiholes and quasielectrons can be extracted from

the plasma analogue. We take quasiholes for example.

In the presence of a quasihole located at &, the classical energy function
F"=F-m) Inl|z—¢| (1.24)

in the plasma analogue. The last term in F% means that there is an impurity
particle in the system, with “plasma charge” 1. All the rest of the particles have
“plasma charge” m. The impurity repels 1/m number of “charge” m particles out of

its neighborhood so as to keep the system “charge” neutral everywhere. Switching
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back to the realistic FQH system, this means the absence of 1/m number of electrons

near ¢, which forms a quasihole with e/m electric charge.

Consider now the two-quasihole wave function

! TG - &) [[ - &)=, (1.25)

WA ([2],61,6) = VO(&,&,6,8)
»S1o )52 i '

where C' is the normalization factor depending on &, &7, &2, &5, Using plasma ana-
logue, we can find C'. The two quasiholes can be viewed as two “charge” 1 impurities
in the plasma system. Taking into account the mutual interaction between the im-
purities and the interaction between the impurities and the background charge, the

classical energy function

F2ah :F_mzm‘zi—&’ —len|Zi—52| —hl’gl_&‘

+ (6l +16l) (1.26)
B

. = _ 2qh .
Using |W2%"|2 = ¢ ™" where 8 = 2/m, we can define an unnormalized wave func-

tion

F2h _ |€1 _ €2|%67@(|51\2+|52\2) H(Zz B 51) H(Zz . fg)qu([zz]), (1‘27)

K3 (2

which differs from the normalized wave function W27 only by a constant that does

not depend on &;,&. Comparing Eq. (1.27) with Eq. (1.25), we find
e e Lo L (aPHeP)
C(61, &1, 62,85) oc & — &of Tme™'s ; (1.28)

up to a constant that does not depend on &, &s.



22

For the statistical property of quasiholes, we adiabatically move one quasihole &;
around another &. The Berry phase acquired by the many-particle wave function
W24k contains the statistical phase between two quasiholes. During the motion of the
quasihole, the coordinate &; is the only parameter in the Hamiltonian that change

in time, & = & (t). Consider a small time slice 0t of the process, the Berry phase is

pilae Eutag €1)6t

= (U ([21], [2]], &0t + 68), & (¢ + 0t), &, &)W ([2], [2]], &4(8), £1 (1), €2, 63)),
(1.29)

where ag, is the effective gauge potential as seen by quasihole &, written in complex
coordinate &1, and ag, is the complex conjugate of ag,. We can take the continuous

limit of this difference equation by letting 0t — 0 to obtain

ag, &1 + agr &y

d
=i<‘1’2qh([2¢],[Zf]y51(75),ff(t)v€z,€§)|a|‘1’2qh([zi],[Zf]vfl(t),ﬁf(t),§2,€§)> (1.30)
Using % = 516& + f"i‘@q, we have

ag, :i<qIQQh([Zi]a [Z;'k]?6175;6276;”8&’\1}2(1}1([%]7 [z;'k]?glvg;(ag??g;»
= —2'\/5851%

- %a& InC. (1.31)

The dependence of C' on quasihole coordinates is given in Eq. (1.28). Hence, we find

i1, 1 1
afl_§(2ml-28§1_agl_52)

(1.32)

The first term in ag, corresponds to the Aharonov-Bohm phase due to the external
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magnetic field. The Aharonov-Bohm phase depends on the area enclosed by the
trajectory of quasihole & and is non-topological. The second term however is topo-
logical. It contributes a phase 2% to the many-particle wave function after quasihole

&1 winds around quasihole §. This gives the statistical phase * upon exchanging

the two quasiholes.

Before ending this subsection, we briefly discuss the idea of hierarchical FQH
states [30,32-34], invented to explain the FQH effect at filling factors other than
v = 1/m. A hierarchical FQH state is constructed by condensing the quasiholes
(quasielectrons) of a parental FQH state into a FQH state of quasiholes (quasielec-
trons). For example, starting from the vy = 1/p Laughlin state, we can condense the
fundamental quasiholes with charge e/p into a 1 = 1/q Laughlin state. The wave

function of this quasihole hierarchical state is

JHeaTe-=r Tle - TE - gre 5= mm =0 s
i i<j irj i<j
The filling factor of above FQH state is obtained as follows. Let Ny, N1, Ny be the
number of available states (per Landau level), electrons, quasiholes in the system,
respectively. By definition,we have Ny /Ny = 1/q. Each quasihole is e/p charged and
is equivalent to the absence of 1/p of an electron. Hence, the total Ny quasiholes is
equivalent to the absence of N;/(pq) electrons. Imagine these missing electrons were
present in the system. Then, adding them to the physically existing N; electrons
makes the FQH state a Laughlin state at filling factor 1/p. Hence, we have

Nl—i-]%]Nl_l

= -, 1.34
N, 5 (1.34)



24

from which we obtain the realistic filling factor

Ny 1
= —= = 1.35
No p+ ( )

v

Q=

of the FQH state in Eq. (1.33).

We can also construct quasielectron hierarchical states. This time we condense
the fundamental quasielectrons in a 1y = 1/p Laughlin state into a v; = 1/¢ Laughlin

state. The hierarchical wave function is

/HCF&H(’% —z)P H(g ~20,.) H(gl _ @-)qe_é Zikv‘,@g-@ 2 I&-lz. (1.36)

1<j 1,J 1<j

The filling factor is found by a similar argument to that in the quasihole hierarchical
state. Each quasielectron is —e/p charged and is equivalent to the presence of 1/p
of an electron. This gives

V=—=—7". (1.37)

Egs. (1.33)(1.36) only constructed one level of hierarchy. In general, one can
construct infinite levels of hierarchies. This produces a series of filling factors to

explain almost all observed FQH states.

The above picture of forming hierarchical FQH states was proposed by Haldane
and Halperin [30, 32] and is referred to as “Haldane-Halperin hierarchy”. There
is yet another picture of understanding the FQH states at filling factors other than
v = 1/m, called “composite fermion” [35-38]. The two pictures are equivalent [39] in
the sense that they both generate FQH states at all odd-denominator filling factors
and predict identical fractional charges and statistical properties for quasiparticle

excitations.
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1.3.3 Effective field theory

We now discuss the low-energy effective theories [5,12] of FQH liquids. In this sub-
section, we use using Einstein summation convention: Repeated indices are implicitly

summed.

We start by showing how the effective theory is constructed for the v = 1/m
Laughlin state, whose ground wave function is given in Eq. (1.18). In the presence
of magnetic field B, electrons in the 2DEG couple to the electromagnetic gauge
potential A, through a term eA,j* in the Lagrangian density, where j* = (j°,j)
is the four-vector form of the electron number density j° and the electron number
current density j. Here and below, we set A = ¢ = 1. The coupling constant e is
called the unit electric charge. Incompressibility in the FQH liquid requires that 5 is

-0

linked to the magnetic field B through the filling factor, v = % = BJ/ T = 2;%0, where

P, = 27 /e is the magnetic flux quantum. Hence, the response §5° in the electron

density to a change 6B in the magnetic field is 60 = -2-0B. We can introduce

2mm

another gauge field a, to describe the conserved electron density, j* = %5“”&,%,

2N

where ¢ is the Levi-Civita symbol. Then we write the response equation in terms

of a,, in 4-vector form,

M), Say = %gwaﬂm. (1.38)

The Lagrangian density that reproduces this response equation is

1
L= —E[me””’\aﬂa,,a,\ — Zeg“l’AAH&,aA], (1.39)

which is an Abelian Chern-Simons theory with U(1) gauge group. This is the effective

theory for the Laughlin state at filling factor v = 1/m.
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Quasiparticle excitations are considered as the particle density j* coupled to
the gauge field a,. Hence, we add a source term lauj“ to Eq. (1.39) to include
quasiparticle excitations. The coupling constant [ is the “charge” associated with
the gauge field a,. It must be quantized to an integer in order to ensure the single-
valuedness of the many-particle wave function of the Laughlin state. The full effective

theory for the v = 1/m Laughlin state is

1 ~
L= —E[m&t“”’\%&,a;\ — 2ee"*A,0,a,] + la,j*. (1.40)

For a quasiparticle located at ry, the density j°(r) = 6(r—r). The Euler-Lagrangian

equation of the gauge field a, can be easily obtained, whose Oth component is

1 [
—e" 0,0y = = ‘ B+ -5
27 2mm m

(r —rp). (1.41)

On the right side of the equation, the first term reflects the filling factor v = 1/m,
while the second term means there is an extra [/m number of electrons at ry, due
to the presence of the quasiparticle. Hence, the quasiparticle has an electric charge
—le/m. The e/m-charged fundamental quasihole (wave function given in Eq. (1.22))
corresponds to an excitation with [ = —1 and the —e/m-charged fundamental quasi-

electron (wave function given in Eq. (1.23)) corresponds to an excitation with [ = 1.

The exchange statistical phase of two quasiparticles with [ = [; and | = [ can
also be obtained. We first replace the source [j# in Eq. (1.40) with (1,75 +1574), where
gt (ry) = (0(r—ry),#18(r—r1)) and j5'(ry) = (§(r—ry), t26(r—r3)). Then, we integrate
out the gauge field a,, to obtain an effective theory for only the quasiparticles g4 and
74, in which there is a term

~ l1l2 ~
Lig = gt ——77. 1.42
12 =1 %a/\gu,\yh ( )
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We can treat this term as the way j* (or j4) couples to an extra gauge field

(0A),, in addition to the electromagnetic gauge field A,, where (6A), satisfies

e 0,(0A)N = 75 (or €0, (0A)N = 7). By moving one of the quasi-
particles to the origin and keeping it still, ro = ry = 0, we find that (§A4), is simply
the gauge field that appeared as the second term (multiplied by l;l3) in Eq. (1.32),

which produces an exchange statistical phase 7lils/m.

In general, a FQH state can be a hierarchical state of multiple levels in which
the densities of quasiparticles are described by several gauge fields a7, I =1,2,---.

The effective theory of such a general FQH state is

1
L= _EKIJFEWACLI#@CLJA + %tﬁuy/\Au&/aU’ (1.43)

where A, is the electromagnetic gauge field, K;; is an integer-valued matrix called
“K matrix” and t; is called “charge vector”. t; determines how the quasiparticle
densities ji = %5’“”\&,@,\ couple to the electromagnetic gauge field. ¢; = 1 if [
labels a physical electron layer at the bottom level of the hierarchy. ¢; = 0 if [
labels a quasiparticle condensate layer at a higher level of the hierarchy. In the case
when [ labels a physical layer of 2e-charged Cooper-pairs, t; = 2. The K matrix and
the charge vector together characterize the topological order of the FQH state. The
number of “1” entries in the charge vector equals the number of layers of physical
electrons at the bottom level of the hierarchical state. The filling factor of this

hierarchical state is given by

V:t[<K_1)[JtJ. (144)

A generic quasiparticle excitation is created by the source term l;a,,j*, where j#(r) =
(0(r—r),rd(r—r)). The integers I; define the properties of the quasiparticle. By the

same argument as for the Laughlin state, the electric charge e* of the quasiparticle
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is given by

6*/€:l1(K_1)[JtJ. (145)

The exchange statistical phase 6 of two quasiparticles labeled by the integers (I1);
and (l3); is given by

0/m = (1) 1(K™)1(l2).s- (1.46)

1.3.4 Example: Connection between wave function approach

and effective field theory

In this subsection, we illustrate the connection between the wave function approach
(Subsection 1.3.2, Refs. [30,32-34]) and the effective field theory (Subsection 1.3.3,
Refs. [5,12]). The two formalisms are equivalent in describing the phenomenological
properties of a FQH system, such as the filling factor and the quasiparticle charge

and statistics. We verify such equivalence for a generic 3 by 3 K matrix

K3y3 = n o my P (1.47)

P11 P2 —mMm3

with charge vector t1, ; = (1,1,0) and a generic 4 by 4 K matrix

K4><4: (148)
p1 p2 —ms I

P3 D4 -l —my
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with charge vector t1, ., = (1, 1,0,0). The material presented here is a straightforward

exercise based on the method in Ref. [34].

We first write down the wave function of the parental FQH state,
m m n~ 1 (s [P+ wil?)
Wo([2i], [wi]) = H(Zz‘—zj) ' H(wi_wj) QH(Zi_wj) e s - (1.49)
i<j 1<j i,J

This is a bi-layer state. Electrons in the first and the second layer are labeled by the

sets of coordinates [z;] and [w;], respectively. The corresponding K matrix is
Koys = (1.50)

with the charge vector t1,., = (1,1).

3 by 3 K matrix

Consider a quasihole in the parental FQH state, described by the wave function

Wy (2], [wi, &) = [ [z = &P [ [(wi = €7 o (2], [wi]). (1.51)

% 7

In K-matrix formalism, such quasiholes are characterized by a two-component vector
p = (p1,p2), defined with respect to the K matrix Ksyo. In K-matrix formalism

(Subsection 1.3.3), the electric charge of the quasihole is

(ma —n)p1 + (my — n)pze

T g1
(P" Kyyotixa)e = D)
mimeo — 1N

(1.52)
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and the statistical phase between two such quasiholes is

2 2
map] + mip; — 271p1p27r
mimey — n2

(p"K3p)m = (1.53)

In the following, we show that the charge and statistics of the quasihole can also be

obtained in the wave function approach, through the plasma analogue.

In the plasma analogue, the bi-layer parental FQH state corresponds to a system
of two kinds of plasma particles. Each particle carries two types of plasma “charges”

. Writing |W¥;|? = e #F1| where 3 = 2, we find the classical energy function

Fi([z], [wi], &) = —my Zln |2i — 24| — mQZm \w; — w;| — nZln|zZ- — w,

1<j 1<j 1,J

—plzlnm — ¢ _p2zln|wi — ¢
1

+ @Q: 2+ Jwil?) (1.54)
By i

of the plasma system, where z; labels one kind of particles and w; labels the other
kind. The coupling constants among plasma particles are: mso between two z; par-
ticles, mo between two w; particles, and n between a z; particle and a w; particle.
We can imagine that each z; particle carries \/m; amount of type-one “charge” and
\/Lmj amount of type-two “charge”, whereas each w; particle carries \/mel amount of
type-one “charge” and ,/mo amount of type-two “charge”. Moreover, z; particles
only see and interact with type-one “charge”, whereas w; particles only see and in-
teract with type-two “charge”. Hence, we have the coupling constants in Fj. In

addition to the z;, w; particles, there is an impurity particle located at £&. We can

deduce its “charges” from the fact that it couples to z; and w; particles through cou-

pling constants p; and ps, respectively. The impurity has \/’;?171 amount of type-one

“charge” and \/’% amount of type-two “charge”. To keep “charge” neutrality of the




31

system everywhere, there must be a number x; of z; particles and a number x5 of
w; particles missing near the impurity. The total “charges” of the missing plasma

particles equal the “charges” of the impurity particle. Hence, we have

b1

Jmir, + \/%xg = = (type-one plasma “charge”)

T e+ /maty = \;’% (type-two plasma “charge”), (1.55)
or in matrix format,

m; n X1 P1

_ . (1.56)

n. msy X2 D2

m2p1—np2

% and g = mP2—TPL - Switching to the realistic FQH system,

This gives xy = .

this means the quasihole at £ is composed of z; number of z; holes (absence of
electrons) and x5 number of w; holes. Both z; holes and w; holes have positive

electric charge e. Hence, the electric charge of the quasihole at ¢ is ge, where

(my — n)p1 + (M1 — n)ps
mimeo — n2

, (1.57)

q=21+ T2 =

which agrees with the result (Eq. (1.52)) in K-matrix formalism.

We now obtain the statistics of quasiholes. In the plasma analogue, we consider
the case when many impurity particles are present in the system. We label the
impurities by &. We complete the expression Fj of classical energy function by

adding the mutual interaction between impurities and the interaction of impurities
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with the background charge,

Fy([z], [wi), [€ :—mlzln|zl—z]|—m221n|wl wﬂ—nZln\zl w;|

1<j 1<J

_plzln|zz €j|_p221n|wz £]|_Tzln|£l 5]

1<J

412 Z’Zl‘z—i_z‘wl 4[2 2‘52’2 (158)

where the coupling constant

r=(vmiz1)? + (yV/maxa)? + (vVmiz)(

m2p1 + map3 — 2np1p2
mimey — n2

) + (

NG mxl)(\/@@)

(1.59)

Using |0, ]2 = e=BF 1 where f = 2, we find the normalized many-quasihole wave

function

Bl . 60) = [~ &7 Tl - T — e 5 = ol fwa),
N N - (1.60)

up to a constant that does not depend on quasihole coordinates §;,&S. Hence, the

normalization factor

c(lel ) = [T 16 — & 2res =", (161)

1<j

up to a constant that does not depend on &;, ;.

The statistical phase of quasiholes is contained in the Berry phase when a quasi-
hole moves around another quasihole. Following Subsection 1.3.2, we can calculate

the effective gauge potential ag, seen by a quasihole located at &, produced by the
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rest degrees of freedom in the FQH system,

L ~ i 0
ag, =i(V1]0g, |¥1) = 58—&1HC
v, q ., T
=—(=—=5& — E . 1.62
2(21,235’“ = —§j> (162

The first term in ag, is due to the external magnetic field and the second term gives
the statistical phase rm when two quasiholes are exchanged. The statistical phase

obtained here agrees with that (Eq. (1.53)) obtained in K-matrix formalism.

We now study the hierarchical states formed by the above quasiholes, with electric
charge ge and statistical phase rm. First of all, let us find the ground state wave
function of a v = 1/mg FQH state made of the quasiholes. The effective Hamiltonian

that describes the dynamics of quasiholes is

Ha= —— 3 (b — a2+ 3 Vir — 1), (1.63)

2m*

7 1<j

where 7 is the quasihole index, m* is the quasihole effective mass and a; is the effective
gauge potential given in Eq. (1.62), which produces correct quasihole statistics. In
writing the Hamiltonian, we have set h = ¢ = 1. V(r; — r;) is the electrostatic
potential between quasiholes. We let it be short-ranged in the quasihole FQH state,
for example, V(r) = 924(r).

We want to find the ground state wave function of H.g. This involves three
steps. First, we drop the second term in the gauge potential a; and set the in-
teraction potential V' = 0. The problem becomes that of a free quasihole in a
magnetic field. Solving Schrodinger equation, the eigenfunctions in the lowest en-

o lel?

ergy level take the form f(¢*)e & | where f(£*) is an arbitrary anti-holomorphic

function of £. The anti-holomorphicity reflects the fact that quasiholes are positively
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charged. If we let f(£*) = (€)™, the eigenfunctions have definite angular momenta
m. Second, we turn on the interaction potential V. We then are dealing with a
strongly-correlated system. According to Subsection (1.3.2), Laughlin state is the
ground state of such a system, provided that V' is sufficiently short-ranged, which we
will use as an assumption. At filling factor v = 1/myg, the quasihole Laughlin wave
function is [, (& — f;)m3€_é el
it is indeed the ground state of V(r) = 926(r) = 9¢0¢-0(r). At this point, note that
s —g)e

In the last step, we recover the mutual statistics of quasiholes by restoring the second

. Using integration by part, we can verify that
describes a collection of quasiholes with trivial statistics.

term in the gauge potential a;, when writing H.g. Correspondingly, we add to the
quasihole Laughlin wave function a normalization factor [[,_;[& — &;|", which can

be obtained through the plasma analogue. The resulting wave function

o = [l — &l — &yme wa =" (1.64)

1<J

is the ground state of the many-quasihole system H,g.

The complete wave function of the hierarchical state is

/H EATIE / 1:[ & | [z — 2™ [ [(wi = wp)™ [ [ (2 = w))"

i<y i<j i,
< TG =& Tl - TTIe — g € - &)
-7 TP P )

(1.65)
The filling factor of this hierarchical state can be found by again the plasma analogue.
This time we have a system of three kinds of plasma particles. Each particle carries
three types “charge”. Let my, ny be the densities of electrons in the first, second

layer, respectively. Let n, be the density of quasiholes. Let ng = 5= be the density

2
27ly
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of states in a Landau level. “Charge” neutrality of the plasma system requires,

0]

Vroway n yat —
min Vmi ng + Vmi Mg = Vmi
_no

\/meznl + \/m_QnQ + \/p%nq = \/WQ

2qng

D1 b2 —
—\/mnl + \/WHQ +vm3 + 27’qu NCrESTE

or in matrix format,

m n b n o
n. Mms P2 Na - no )
p1 P2 m3+2r ng 2qng

(m2—n)p1+(mi1—n)ps and r — map+mi1p3—2np1p2
mims—n?2 - mi1meo—n?

Eq. (1.66) or Eq. (1.67) for ny, ny and n,, we find the filling factor

where ¢ =

,_m +ny  myms + moms — 2msn + pf — 2p1p2 + P
Mg mymamg — man? + maop? — 2np1pa + myp3’

As one can check, this agrees with the result

LT -1
v =1t1,3K5,5t1x3

in K-matrix formalism.

4 by 4 K matrix

(1.66)

(1.67)

were obtained before. Solving

(1.68)

(1.69)

In this case, we consider two types of quasiholes. In the most general case, let &; label

the first type of quasiholes which couple to the z;, w; electrons through integers p1, ps,

and let n; label the second type of quasiholes which couple to the z;, w; electrons
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through integers ps, ps. The wave function for a quasihole of the first type is

I ([z), [wil. €) = 1:[(% - 1:[(%- — &) Wo([z], [wi]). (1.70)
The wave function for a quasihole of the second type is

U1(([za), [wil.m) = H(Zi — )’ H(wi — )" Wo([z], [wi]). (1.71)

We can apply the plasma analogue as before to find the electric charges ¢;e and

go€ of the first type and the second type of quasiholes, respectively. We have ¢; =

(ma—n)p1+(mi—nipz . q G = (m2—n)ps+(m1—n)pa

. Hence, a quasihole of the first type is

mima—n? mima—n2
composed of x; = % amount of z; holes and x5 = % amount of w; holes.
map3—np4

A quasihole of the second type is composed of x3 = 3 amount of z; holes and

mimo—n

mip4—np3

3 amount of w; holes.

Ty =

In the presence of many quasiholes, the coupling constants between different
types of quasiholes are: r; = mix3 + moz3 + 2nx179 between two quasiholes of the
first type, o = myx3 + mox? + 2nx3z4 between two quasiholes of the second type,
and 73 = myx1T3 + Maxoxy + (x4 + 2973) between a quasihole of the first type
and a quasihole of the second type. Using |ﬁll|2 = e*ﬁﬁl, where 8 = 2 and Fj is the
complete classical energy function including mutual interaction between quasiholes
and the interaction of quasiholes with the background, we find the normalized wave

function of many quasiholes

Uy (], [wil, (&), ) = [ [ (2 = &) [T (wi = &) ]z = my)re T [ (wi = my)

ij ij ij ij
< [T1& =& [T —mt= T 16 = nl"
i<j i<j i<j

— i Ll =58 X Imf?
e B B

Wo([2i], [wil), (1.72)
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up to a constant that does not depend on the quasihole coordinates. Hence, the

normalization factor

* * —9or —or — 9 in |£z|2+ % Zz ‘77i|2
C(Kl]? [51]7 [771']7 [m]) = H |fl_€J| o H |77i_77j| 2re H |€i_77j| 2rae 20 5 )
i<j i<j 1<j
(1.73)
up to a constant. Substituting C'into Eq. (1.31), we find the effective gauge potentials

on quasiholes which produce the same statistics as one would obtain in K-matrix

formalism.

Consider now the hierarchical states formed by quasiholes. Suppose the quasi-
holes form a bi-layer FQH state characterized by three integers: mg, my,l. The

complete wave function of the hierarchical state can be written down as

/H ¢ H dn ][ i = )™ [ [Gwr = g™ [ ] (i = )"

1<j 1<J 2
X H H(w‘—f‘)mH(%‘—Uj)p3H(wi—77j)p4
,J ,J
< [T1& = &P T im —mil? T ] 16 — mil
1<j 1<j 1<j
< [T =&y 1o —mym 1 —n)
i<j i<y ,J

. 2,2 > l&ilP— 212 > mil?= 412 OSSP |wi|2)’ (1.74)

following the argument that leads to Eq. (1.65). The filling factor of the hierarchical

state is obtained by solving the matrix equation

mp n Y41 p3 ny ng
no Ms P2 P4 N2 g
= (1.75)
pr pa (ms+2r) (14 2r3) Ng1 2q1ng

P3 Pa (l + 27’3) (m4 + 2T2) Ng2 2(]2710
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in the plasma analogue, where n;, ny are the densities of z;, w; electrons and n,, and
ng, are the densities of §;, n; quasiholes. The result v = %0"2 agrees with the filling
factor

v = t1 Ko tic (1.76)

in K-matrix formalism.

1.3.5 Edge dynamics: Consequence of incompressibility

We now discuss the edge dynamics of a FQH liquid. In Subsection 1.3.1, we have
seen that a FQH liquid is incompressible in the bulk, i.e. there exists an energy gap
which prevents the bulk from being squeezed. As a result, at low energy, gapless
excitations only exist on the one-dimensional edge of the FQH liquid, in the form of
area-preserving shape distortion [29] of the 2DEG. It turns out [5,40] that the edge

physics of a FQH liquid is described by a Luttinger liquid theory [41].

Below, we provide a scenario on how the incompressibility condition turns an
one-dimensional free electron system, which describes the edge of a 2DEG which
partially fills a Landau level, into a Luttinger liquid, which describes the edge of a
FQH liquid.

From Sections 1.1 and 1.2, we know that an electron drifts at a velocity v = cF/ B,
under mutually perpendicular electric field E and magnetic field B. This is true both
from classical and quantum mechanical points of view. Consider a 2DEG which fills
the Landau level partially but does not form a FQH state. In such a case, we view the
electrons as non-interacting particles. Consider the edge of the 2DEG, parameterized

in x coordinate, as shown in Fig. 1.5, left panel. We assume a constant gradient of
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X h(x + Ox)
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Figure 1.5: Edge dynamics of a FQH liquid. The edge is parameterized in x coordinate. The
confining potential of 2DEG provides a radial electric field E. Electrons drift at the velocity
v = cE/B. Local height of the FQH edge is defined with respect to the equilibrium radius (dashed
circle) of the 2DEG and is denoted by h(zx).

the confining potential such that all the electrons feel the same electric field and drift
at the same velocity v. On the edge, the fluctuation of local electron density gives
rise to the variation of the local height of the edge. We can take a slice of the edge
(Fig. 1.5, right panel) and write down its continuity equation,

d(p(x)ox)

d(h(z))
7 —— 0w

= j@)(h(x) = ho +62) ~ —j{2) =

(1.77)

where p(z), j(x) and h(x) are the local electron density, the local electron current
density and the local height of the edge defined with respect to the equilibrium radius
of 2DEG (Fig. 1.5), respectively. We now apply the incompressibility condition. This
means a uniform area density n of electrons throughout the 2DEG. In particular,
electrons are dispersed evenly along the radial direction of the 2DEG. Accordingly,
we demand p(z)dx = nh(z)dx and j(x) = nv in the slice. The continuity equation

then becomes

(1.78)

which is simply the equation of motion of a (right-moving) chiral density wave p(x),

on the edge of the FQH liquid.
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The edge wave obtained here is analogous to the gravity wave in shallow water
where the density of the constituent particles is uniform and all the particles feel the
same gravitational force. Here, the gravitational force is replaced by the electrostatic

force produced by the confining potential.

By a similar logic, we can obtain the Hamiltonian of the chiral edge wave in
Eq. (1.78). We start from a non-interacting 2DEG under magnetic field. By Eq. (1.11),
the kinetic energy of an electron in the lowest Landau level is %ﬁwc + %movz, where
my is the effective mass of electron. The potential energy of an electron due to the
constant-gradient confining potential is eEz, where z is the radial coordinate de-
fined with respect to the equilibrium radius of the 2DEG. The Hamiltonian of the

non-interacting 2DEG is hence
1 1,
Hy= [ dx dz[jiwc + MoV +eEzp(z, 2) (1.79)

where z still parameterizes the azimuthal direction along the edge. p(z,z) is the
local area density of electrons. Next, we turn on the electron-electron interaction
which converts the 2DEG into an incompressible liquid with uniform area density n

of electrons. The incompressibility condition suggests the replacement
5x/dzp(x, z) = dxn(h(x) + o) = dz(p(x) + nro), (1.80)

in Eq. (1.79), where p(x) = nh(x) and r( is the equilibrium radius of the 2DEG,
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such that

1 1 h
Hy— H = /d:z:[§hwc + §m0v2 + eE%][p(:c) + nro)

1 1 1 v
= /dx[(éhwc + §m0v2 + éeEro)p(x) + W;pQ(:E)]

— /d:mr%pQ(x). (1.81)

In the first line, e K @ is the averaged potential energy per electron in a local “tower”
of evenly-spaced electrons with height h(z): An electron at the bottom of the “tower”
has zero potential energy while an electron at the top of the “tower” has a potential
energy eFh(x). In the second line, we have defined the filling factor v = n/ng as
the ratio of the density n of electrons to the density ng = B/®y of magnetic flux
quanta in a Landau level, where ®; = 27 /e. In the third line, we have shifted the
reference with respect to which we define the electron density operator p(x),

v

py— (hwe + mov® + eErg). (1.82)

p—rp—

As we see, upon applying the incompressibility condition, the non-interaction one-

dimensional electron system H, becomes a chiral Luttinger liquid H.

One can proceed to quantize the density mode p in the edge theory H of the FQH

liquid at filling factor ¥ = 1/m. For this end, it is convenient to bosonize [42,43] the

density mode using p(z) = 5=0,¢(z). The commutation relation of the field operator

Y
¢ is
T

[@(2), d(a")] = i—sgn(z — '), (1.83)

where sgn(x) is the signum function. The electron operator W, on the edge of the
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FQH liquid is obtained by the fact that it annihilates a localized electric charge e,

[p(x), Wi(2)] = 6(z — o')Wl (2"), (1.84)

which gives

W, (x) o e™mo@) (1.85)

by Eq. (1.83). We hence have

\Ije<x)qje<x/) = <_)m\De(xl)\I]e<x)7 (186>

such that the electrons obey fermionic statistics. Similarly, the fundamental quasi-

particle operator ¥, annihilates a localized electric charge e/m,

(), W] =~ — /) W ), (1.87)
which gives,
W, (1) oc ), (1.88)
We have
U p(2) Wgp(2') = (_>%\I/qp(x,)\llqp(x)a (1.89)

such that the fundamental quasiparticles obey fractional statistics with exchange

statistical phase 7m/m, in agreement with Eqs. (1.32)(1.42).

The correlation functions of the electron operator ¥, and the fundamental quasi-
particle operator W,, are obtained as follows. First, we combine the equation of

motion (Eq. (1.78)), the Hamiltonian (Eq. (1.81)) and the bosonization identity
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p= %&E(b to write down the Lagrangian density of the v = 1/m FQH liquid,

m
Then, we can compute the correlation function of ¢ field,

(p(x,t)9(0,0)) = —% In[oi(t + z) + a] + constant (1.91)

where a — 0 is the infinitesimal regulator and o = sgn(t) is the sign of time ¢. The

correlation functions of W, (z) o< €@ and W, (z) o €@ then follow easily,

(0, (2, )0, (0,0)) [m]m (1.92)
and
(V194 0.0)) o [ I (1.93)

In general, the edge of a FQH liquid may support multiple density modes ¢,
where I = 1,2,3,---. These density modes may propagate in the same direction or

in opposite directions. The Lagrangian density for a general FQH edge is [5]

1
L=-r ;[Kuamam + Vi0,610:67), (1.94)

where Kj; is the K matrix that appears in the bulk effective theory of the FQH
liquid and V7, is the potential matrix which must be positive-definite to ensure the
stability of the FQH edge. The connection between the edge effective theory and
the bulk effective theory of a FQH liquid is termed as “edge-bulk correspondence”.
It is this correspondence that allows experimentalists to detect the bulk topological

order of a FQH liquid through quasiparticle tunneling [23,24] on the edge. In fact,
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it can be shown [5] that the edge effective theory (Eq. (1.94)) contains the necessary
degrees of freedom one should put on the boundary of the 2DEG in order to keep the
total system (edge + bulk effective theory) invariant under gauge transformation.

Upon quantization, the density modes in Eq. (1.94) have the commutation relations

[¢r(x), ¢s(2")] = im(K ") sgn(z — 2'). (1.95)

A generic quasiparticle operator on the FQH edge described by Eq. (1.94) is

W) oc el 2rlier (1.96)

where 1 is an integer-valued vector, (1); = [;. Using the same argument around
Eqs. (1.84)(1.87), the electric charge of W) can be found to be 1K~ 'te, where t is
the charge vector. Given two quasiparticles ¥,, and W,,, the exchange statistical
phase is 1; K !1ym. These formulas agree with the formulas in Subsection 1.3.3 for

quasiparticles in the bulk of a FQH liquid.

Eq. (1.94) does not exhaust all possible FQH edge physics. For example, in
certain FQH states [10, 44, 45], Majorana fermion modes exist. A (right-moving)

Majorana mode 1) on the edge of a FQH liquid has the Lagrangian density

L = ith(2)(; + v0, )(2). (1.97)

Unlike the density modes which are bosonic and obey commutation relations, Majo-

rana fermions obey anti-commutation relations.
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1.3.6 Quasiparticle tunneling on the quantum Hall edge

In this subsection, we discuss quasiparticle tunneling between two FQH edges, within
a FQH liquid. The material presented here is the theoretical basis of the quasiparticle

tunneling experiments [23,24] discussed in Chapter 2.

As explained in Subsections 1.3.1 and 1.3.5, the low energy physics of a FQH
liquid is on the edge, i.e. as the area-preserving shape distortion of the incompress-
ible bulk. In the absence of edge reconstruction [46], the edge dynamics is described
by a Luttinger liquid theory which captures the topological property of the bulk.
Quasiparticles as collective excitations of electrons exist and propagate on the edge.
Assuming translational invariance on the edge, the linear momenta of edge modes
are well defined. The presence of gauge field requires edge modes with different
linear momenta to be spatially separated, and vice versa. Hence, a mismatch in
linear momentum exists between the upper and the lower FQH edges, which serves
as a barrier for the tunneling of quasiparticles. The mismatch is gauge invariant
and is proportional to the distance between opposite edges. In the vicinity of a
quantum point contact (QPC), the two opposite edges are brought close so that the
momentum mismatch is greatly reduced. On the other hand, quasiparticles on the
QPC have large uncertainties in momenta due to small cross-sectional dimension
of the QPC. Tunneling of quasiparticles is justified when the momentum mismatch
between opposite edges is accomodated by the uncertainties in momenta of quasi-
particles, and is more likely to happen when quasiparticles circumvent impurities in
their ways of propagation. If the QPC is narrow, unscreened Coulomb interaction
couples charged edge modes across the QPC. The interaction modifies the scaling

behaviors of charged modes and as a result, changes the tunneling exponent.

The Hamiltonian for the tunneling of quasiparticles between an upper and a lower
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FQH edges has the general expression
H=Hy+ ) (1,0, +He), (1.98)

where Hj is the Luttinger liquid theory describing dynamics on both FQH edges in
the absence of tunnelings. Terms in Hy include self interactions within the same edge
modes, mutual interactions among different edge modes and unscreened Coulomb
interaction across any narrow QPC involved, all in the form of density-density inter-
action. In the context of a vector space spanned by different species of edge modes,
Hy can be viewed as a symmetric bilinear form, called the potential matrix, which
is positive-definite [5] in order for the FQH edge it describes to be stable. O, is
an operator describing the tunneling of a quasiparticle on the QPC. T',, is a com-
plex parameter characterizing the strength of O,, the tunneling amplitude. In a
tunneling event, a quasiparticle is removed from the upper edge and becomes an-
other quasiparticle added to the lower edge, or vice versa. The removed and the
added quasiparticle operators do not have to be identical as long as the electric and
topological charges are conserved during the process. A tunneling operator O,, has
the form WWe where U* and W¢ are the quasiparticle operators from the upper
and the lower edges, respectively, participating in the tunneling event described by
O,,. For tunnelings at low temperature, it suffices to consider only the most relevant
quasiparticle operators in the given FQH state. Accordingly, the sum ) in the

Hamiltonian includes only the most relevant tunneling operators.

The Hamiltonian can be cast in a bosonized [42,43] form in which edge modes are
described by boson fields. Let ¢ be the bosonized "™ mode on edge y1, where = u, d
labels the upper or the lower edge, respectively, and both edges are parameterized in
x. Hy is written in boson fields after the identity, pf (x) = 5= ((—)" 9.0} (z) + k),

where pf(z) is the local electron number density at  and kj,; is the Fermi momen-
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tum, of edge mode ¢%. 77 = 0 or 1 depending on whether ¢/ is right-moving or left-
moving. Tunneling operators are bosonized following the bosonization of quasiparti-
cle operators, the latter having a general expression W* () = ¢’ Sl 1 (@ @)+ TR o),
or U (x) = Y (x)e' 21 L1 @r @+ kg 12) i Majorana fermions 1 exist on the edges.
The constants [}, ; denote the linear combination in ¢} in order to bosonize W/. For
convenience, we let the tunneling happen at an impurity located at x = 0 such that

Fermi momenta disappear in the bosonized quasiparticle operators and hence in the

tunneling operators.

The tunneling current operator I is the time evolution of total electron number
operator N* on the upper edge (or —N¢ on the lower edge), I = —ie[N* H|] =
ie[N“, H]. Upon bosonization, N* = 3= > ([ dx(=)"8,¢} + k}; L), where L is the
length of the upper edge and ¢} are the charged modes. In the absence of tunneling,
N"is a good quantum number and its commutator with Hy vanishes, [N*, Hy] = 0.
Hence,

I = —ie[N",) ([,0,(zx =0)+H.c)]. (1.99)

n

The commutator is evaluated using commutation relations of ¢}, which gives
I =—ie*) (T,0n(z =0) — He), (1.100)
where e* is the quasiparticle charge.

Quasiparticle tunneling is a nonequilibrium process. One can use Keldysh for-
malism [47] to compute the tunneling current, as the expectation of the tunneling
current operator. We start from an equilibrium system described by Hy in the remote
past t = —oo. Then, we adiabatically turn on the tunneling term in the Hamiltonian

and evolve the system to the moment when tunneling happens. After the interac-
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tion, we rewind time back to ¢ = —oco and return to the initial system. The closed
path of time evolution is the Keldysh contour, with the components before and after
tunneling the + and — branches of the contour. The expectation is conveniently
evaluated in interaction picture. Let V' be the voltage bias between the upper and
the lower edges across which tunneling of quasiparticles happens. The chemical po-
tential difference between the two edges contributes a time dependent factor e =™ to
quasiparticle tunneling operators written in interaction picture, where w = e*V. In
interaction picture, the tunneling current operator is explicitly time dependent and

the tunneling current is

(I()) = %Tr{eﬁHOSK—(—oo,t)I(t)SK+ (t, —00)} (1.101)

at finite temperature 5 = 1/T', where

Skt (t1, 1) = T exp ( —i /tl dt(Y " T,0u(t) + H.c.)) (1.102)

to n

are the interaction picture time-evolution operators on the + and — branches of
Keldysh contour, where 7T is the time-ordering operator. Z is the partition function
of the initial equilibrium system in the remote past. The trace Tr{---} is taken
over energy eigenstates of the initial system. Here and for the rest of the paper,
we suppress the spatial coordinate of tunneling operators and keep in mind they are
valued at x = 0. For weak tunneling, we expand Sk+ to obtain the tunneling current

to lowest nonvanishing order in I',,

“+oo

(I) = e 3|7, 2 / dt(e™t — =) (O} (1)0,(0)), (1.103)

—00

where the bracket (- - - ) is understood to be the finite temperature average in Eq. (1.101).

At finite temperature, the equal-space correlation functions are (O} (t)0,(0)) =
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( ud

m)QQ with ¢ identified as the scaling dimension of the most relevant tun-

neling operators O,, and € the infinitesimal regulator. Evaluating [48] the integral,

— . W . W . w
(I) ~ T 1B(g+z27rT,g—227rT)smh (ﬁ)’ (1.104)

where B(x,y) is the Euler Beta function. The exponent g in the expression of tunnel-
ing current is defined as the tunneling exponent. As we see, the tunneling exponent
comes directly from the scaling dimension in the correlation function. Hence, com-
puting the tunneling exponent in a given FQH state is equivalent to finding the
scaling dimension of the most relevant tunneling operators in the state. The value

of the tunneling exponent is determined by the topological order of the FQH state.

The differential tunneling conductance is the derivative of tunneling current with

respect to the voltage bias V/,

d{I) 292 W e
N T292R g —i—
qv (9+i5 79— i3 7)
x (7 cosh (=) — 2sinh (o) Tn{Y(g + i==)}) (1.105)
T COS 5T sin 5T m g Z27rT , .

where Y(x) = ["(x)/I'(x) is the digamma function with I'(z) the gamma function.

Eq. (1.105) is used to fit the data in the quasiparticle tunneling experiments [23,24].

1.4 The quantum Hall effect at filling factor v = g

Shortly after the first discovery of FQH effect [3], a FQH state at filling factor

v = 5/2 was observed [9]. This interesting FQH state cannot be incorporated into
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the standard hierarchical construction (Subsections 1.3.2 and 1.3.3) of FQH states,
where the filing factors are rational fractions v = p/q with ¢ an odd integer. The

Hall resistance plateau at v = 5/2 is rather robust, with a measured energy gap

~ 500mK.

The even denominator in the filling factor ¥ = 5/2 can be interpreted as due
to a pairing mechanism. Along this line, various models [10-12,44, 45,49-55] were
proposed to explain the v = 5/2 FQH state. In all these proposals, it is assumed that
the physics of the v = 5/2 FQH liquid is completely captured by the v = 1/2 FQH
state in the second Landau level, whereas the completely filled first Landau level is
treated as an inert background. Such an assumption becomes exact at very high

1/2

magnetic field B where Landau level mixing, proportional to B~"/#, is negligible.

Among the proposed v = 5/2 FQH states, the Pfaffian state invented by Moore
and Read [10] is interesting. It predicts quasiparticle excitations with non-Abelian
statistics, which can be used for topological quantum computation [7,8]. The Pfaffian

state has a ground state wave function

1

Zi—Zj

\D([Zz]) _ H(zl _ Zj)Qeié Zi|zi\2Pf{

1<j

1, (1.106)

where Pf{---} is the square root of the determinant of an anti-symmetric matrix,
called the the Pfaffian. The Pfaffian state is fully spin-polarized. A fundamental

quasiparticle excitation located at ¢ is described by the wave function [56]

\Ilqpqzi]?g) = H(Zz - f)% H(Zz _ Zj)Qe_@ Zzlzl‘2pf{

i 1<j

1 (1.107)

Zl'—]

which is the FQH analogue to a vortex in a BCS superfluid like Helium-3. In the
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presence of two fundamental quasiparticles, the wave function [57] is

\I,2qp([zi],§1,£2) = H(Zl — Zj>2€_é > lz 2 Pf{( 51)( gi? - ij §2>( 51)}

(1.108)
Exchange of quasiparticles &, & gives rise to a statistical phase exp(im/4). When
there are four fundamental quasiparticles in the system, interesting things happen.

For such a system, there are two linearly independent wave functions [57]

411%4([2’@] £1,62,83,64) = H( _Zj)2€*@2ilzi|2

cp (3= 6 = 6)( ~ @)l — 8 - @)l )l ~ 85~ By
Ui (2], 61,6, 6. &) = H( — zj)zeiézi &
c pr ) 8 — ) — &)+ (= ©)E — &) —8)(5 — &)y

Zi—Zj

(1.109)

or in a more convenient basis

(513524)i e 4
U, — R/ " L
1 1+ m)% (¥ 13,24 14 23)

(513524)i 4 4
Uy = A Y g o 1.110

where §;; = & — & is the relative coordinates between quasiparticles and x = %
By Eq. (1.110), exchange of quasiparticles &, &3 or quasiparticles &;, &, gives a sta-
tistical phase exp(im/4) but does not change the many-particle state. However, ex-
change of quasiparticles &;, &3 results in a nontrivial rotation in the two-dimensional

Hilbert space spanned by W; and W,, which can be used to encode logic operations

in quantum computation.
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The fusion and statistical properties of the fundamental quasiparticles in the
Pfaffian state agree with those of the MBSs. In addition to FQH systems, MBSs are
predicted in many other condensed matter systems, such as p-wave superconductors
[25,59] and heterostructures [60] of superconductors and topological insulators. The
benefit from using MBSs for quantum computation is that braidings of MBSs are
topological. The linear transformations generated by braiding MBSs are independent
of the trajectories along with the MBSs travel. Hence, deformation of braiding
paths during quantum computation due to local defects and perturbations does not
affect the stored information. Quantum computation with MBSs is an example of

topological quantum computation [7,8].

Despite the fascinating picture of topological quantum computation provided by
the Pfaffian state, the Pfaffian state is not the only candidate for the FQH state at
filling factor v = 5/2. Abelian models [11,12] such as the Halperin 331 state also
exist. The 331 state comes in two versions with different spin polarizations. The

spin-polarized 331 state has the ground state wave function

2 3 % 2 4 *M%Zi |2 *GZ%ZH&P
Hd sz(Zz — zj) H(gz —20,;) H(fz —§&)e VB € "B , (1.111)
i i<j ij i<j
while the spin-unpolarized 331 state has the ground state wave function
T i %1 2+ i Wi 2

H(Zi - Zj)3 1_[<wz _ wj)?) H(Zz _ wj)e % (25 |zl 24225 wsl ). (1.112)
i<j i<j ij

The fact that the Pfaffian state is fully spin-polarized whereas the 331 state can
be spin-unpolarized suggests distinguishing the two states by measuring the spin
polarization of the v = 5/2 FQH liquid. Such attempts, unfortunately, are contro-

versial [17-20]. There is support for both 0 and 100% polarization.
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A more complete list of the theoretical proposals for the v = 5/2 FQH state can

be found in Section 2.2, with an emphasis on the edge theories.

1.5 Outline of dissertation

I end this chapter with a brief outline of the upcoming chapters, which are based on

my past research projects with Prof. Dima Feldman.

In Chapter 2, we consider two experiments [23,24| measuring the temperature
and voltage dependence of quasiparticle tunneling through a QPC in the v = 5/2
FQH liquid. The results of those experiments led to conflicting conclusions about
the nature of the quantum Hall state. We show that the conflict can be resolved by
recognizing different geometries of the devices in the experiments. We argue that
in some of those geometries there is significant unscreened electrostatic interaction
between the segments of the quantum Hall edge on the opposite sides of the point
contact. Coulomb interaction affects the tunneling current. We compare experimen-
tal results with theoretical predictions for the Pfaffian [10], SU(2)y [49], 331 [11]
and K = 8 [12] states and their particle-hole conjugates (some of the particle-hole
conjugate states are constructed in Chapter 3, for the first time). We find that, after
Coulomb corrections are taken into account, measurements in all geometries agree

with the spin-polarized and spin-unpolarized Halperin 331 states.

Two appendices supplement Chapter 2. Appendix A proves a condition which is
crucial for obtaining the results in Chapter 2. Appendix B verifies the conclusion of

Chapter 2 by an explicit numerical study of the 331 state.

The work in Chapter 3 is motivated by the observation [16] of upstream neutral
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edge modes in the v = 5/2 FQH liquid. In that chapter, we discuss particle-hole
symmetry in FQH systems and apply the symmetry to construct new FQH states at
filling factor v = 5/2. We show that some of the constructed states indeed support
upstream neutral modes with universal edge physics. Quasiparticle tunneling in

these new v = 5/2 states is discussed in Chapter 2.

In Chapter 4, we propose a new topological order at filling factor v = 5/2,
based on a scenario of the separation of charged and neutral degrees of freedom on
the edge of the FQH liquid. The proposed model reconciles all existing data from
transport experiments and can be distinguished from other competing models using

an electronic Mach-Zehnder interferometer [61].

Topological quantum computation is an interesting topic. Understanding its
limit and seeking ways of improving its reliability are important. In Chapter 5,
we consider two realistic problems while applying Majorana fermions to topological
quantum computation: (1) Majorana fermions often coexist and interact with nearby
low-energy fermionic excitations [62,63]; and (2) Decoherence in gbit happens when
the Majorana fermion system can interact with the outside environment [64-78].
For problem (1), topological quantum computation requires the use of fermionic
zero modes of the many-body system, in place of the original Majorana fermions. In
Chapter 5, we classify all fermionic zero modes in a system of interacting Majorana
fermions and show how one can maximize the lifetime of a gbit by selecting the
zero mode of best quality. This addresses problem (2). We find that in a typical
interacting system, the maximal lifetime of a qbit is within one order of magnitude

from the life time of a gbit based on the local part of the fermion parity operator.

Chapter 5 focuses on explaining the physical picture and summarizing the ob-

tained results. We include all related technical details in Appendix C.
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Figure 2.1: The three QPC geometries in the experiments. The arrows follow the current prop-
agation direction on the edge. Dashed lines denote quasiparticle tunneling. Dotted lines across
narrow gates in the geometries 2.1a and 2.1b represent the electrostatic interaction.

2.1 Introduction

Among numerous phases of two-dimensional electron gases (2DEG), the even-denominator
quantum Hall states with the filling factors [9] 5/2 and 7/2 are particularly interest-
ing. In contrast to odd-denominator fractional quantum Hall (FQH) liquids, they
cannot be explained by a straightforward generalization of the Laughlin variational
wave function. An early attempt to understand their nature led to the beautiful idea
of non-Abelian states of matter [10]. In non-Abelian systems, the types and posi-
tions of quasiparticles do not uniquely determine the quantum state. This results
in unusual physics and may open a road to topological quantum computation [7,8].
However, the existence of non-Abelian quasiparticles has not been proven and the

nature of the 5/2 state remains a puzzle.

Both Abelian and non-Abelian candidate states were proposed as possible theo-
retical explanations of the 5/2 FQH effect [10-12,44,45,49-55]. A number of meth-

ods [53-55,79-91] were invented and several experiments [13-24] were performed in
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an attempt to determine the right ground state. One approach [23,24] consists in
the measurement of the tunneling current through a quantum point contact (QPC)
between the edges of a 5/2 FQH liquid. The low-temperature conductance exhibits a
power-law behavior G ~ T?972 where the exponent g depends on the topological or-
der in the bulk [5]. The exponent g was measured in two recent experiments [23,24].
The results of the earlier experiment [23] were interpreted as supporting the non-
Abelian anti-Pfaffian or SU(2), states. The best fit for the second experiment [24]

comes from the Abelian 331 state.

We argue that the discrepancy between those results can be explained by different
geometries of point contacts in Refs. [23] and [24]. The geometry of the device from
Ref. [23] is shown schematically in Fig. 2.1a. Figs. 2.1b and 2.1c illustrate the two
geometries from Ref. [24]. In all cases, transport is supported by FQH edge channels
defined by top gates. In Fig. 2.1a and for the upper gate in Fig. 2.1b, the gate widths
are comparable to their distances from 2DEG. The gates are considerably wider in
Fig. 2.1c. Thus, the distance between the edge points, connected by the dotted lines
in Figs. 2.1a and 2.1b, is shorter than the screening length due to the metallic gates.
In other words, the repulsive Coulomb interaction between the FQH edge segments
on the opposite sides of QPC is not fully screened by the gates in the geometries of

Figs. 2.1a,b but is screened completely in the geometry of Fig. 2.1c.

It is well known that repulsive interaction suppresses tunneling in quantum
wires [92]. Similar physics has been addressed in the context of edge transport
in Laughlin FQH states in Refs. [93,94]. We find that in our case the Coulomb
interaction drives the tunneling exponents g4 and gp in the geometries 2.1a and
2.1b above the exponent go in the geometry 2.1c. Only the latter assumes a uni-
versal value while the former depend on the strength of the interaction across the

gates. Hence, information about the nature of the 5/2 state can be extracted from
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a comparison of the experimental go (Ref. [24]) but not g4 and gp with universal
theoretical predictions in various proposed phases. Such predictions are available for
the Abelian K = 8 and spin-polarized and unpolarized 331 states [11,12,52], the
non-Abelian SU(2), and Pfaffian states [10,49,52] and the particle-hole conjugate
of the Pfaffian state, the anti-Pfaffian state [44,45]. Since Ref. [16] provides support
for the existence of contra-propagating edge channels in the 5/2 FQH liquid, it is
particularly interesting to consider candidate states with upstream edge modes. In
the above list, only the anti-Pfaffian state has such property. The particle-hole con-
jugates of the other proposed states also exhibit upstream edge transport and we
compute go in them below. The comparison with the experiment shows that the

Halperin 331 state agrees best with the tunneling data [24].

This chapter is organized as follows. We review theoretically proposed v = 5/2
FQH states in Section 2.2, including the anti-331 state, the anti-SU (2), state and the
anti- K = 8 state, which we have studied for the first time. We refer to Chapter 3 the
detailed constructions of these new 5/2 states. In Section 2.3, we discuss qualitatively
the effects of Coulomb interaction across the gate. Detailed calculations are given
in Section 2.4 and Appendix A. In Section 2.5 we compare our results and the
experimental findings [23,24] with the information obtained from other types of

experiments.

Some of the results presented in this chapter are abstract. In Appendix B, we give
a concrete example using the 331 state to verify those results. We show analytically
and numerically how the Coulomb interaction across a narrow metallic gate affect

the quasiparticle tunneling in the 331 state.
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2.2 Candidate v = g quantum Hall states

Here we review several simplest topological orders, proposed for the 5/2 state, and

address their edge properties which we will need in the subsequent sections.

In all candidate states, the lowest quasiparticle charge is e/4, where e is the
electron charge. This is rather different from the odd denominator states, where
we usually expect that the lowest quasiparticle charge of the p/q state is e/q. The
e/4 charge follows a general rule [95] for even denominator states: The ratio of the
quantized Hall conductance to the lowest possible charge must be 2ne/h, where n
is an integer. The e/4 value of the charge agrees with the experiments [13, 14, 24]
on the 5/2 FQH liquids. The best fits for the quasiparticle charge in the tunneling
experiments [23,24] are 0.17¢ in the geometry 2.1a, 0.25¢ in the geometry 2.1b and
0.22¢ in the geometry 2.1c. In all cases the nearest possible excitation charge is
e/4. Thus, we conclude that in all geometries the tunneling current is carried by

e/4-quasiparticles.

We start our overview with the simplest Abelian topological orders. To simplify

our notation we set h to 1.

We first consider the K = 8 state [12]. We assume that electrons form pairs in
the second Landau level and single-electron excitations are gapped. In particular,
no single-electron tunneling into the FQH edge channel of a 5/2 system is possible
at low energies. The filling factor for bosonic electron pairs is 1/8. Thus, we use
the edge theory of a Laughlin state of bosons at that filling factor. The Lagrangian
density [52]

L= —%[88@&@ + 80(0,0)%] + Lo + Lins, (2.1)
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where

1

i=1,2 ij

describes two integer edge modes, L;,; contains information about the interaction
of the integer and fractional modes, the charge density on the FQH edge is p(x) =
e0,¢/m and the charge density on the integer edges is ps = e(¢} + ¢9)/27. The
operator ¥(x) = exp(i¢(z)) annihilates a charge-e/4 anyon. The pair annihilation

operator on the fractional edge is Wo.(z) = exp(i8p(x)).

We do not make assumptions about the spin of the electron pairs in the K = 8
state. The same edge theory describes spin-polarized and unpolarized FQH liquids.
Certainly, the particle-hole conjugate system has the filling factor 5/2 only for the

spin-polarized K = 8 liquid.

Next, we consider the 331 state [11,52]. This state comes in two shapes with

identical signatures in the tunneling experiment but different spin polarizations [52].

The spin-unpolarized version can be understood as a Halperin bilayer state with

spin-up and -down electrons playing the role of two layers. The Lagrangian density

on the edge
L= o [K170:010:05 + Vis0,010:01] + Ly + Ling, (2.3)
T =12
where the K-matrix [5]
3 1
K = Kunpolarized - (24)
1 3

and Lo and L, are defined in the same way as in the previous subsection. The
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charge density on the fractional edge is e(0,¢1 + 0,¢2)/27 and the most relevant
operators that annihilate quasiparticles with charge e/4 are exp(i¢; 2). There are two
independent electron operators: Wq(z) = exp(i[3¢1 + ¢2]) and Wo(z) = exp(i[3¢s +
¢1]). The spin-unpolarized 331 state is not an eigenstate of the total spin and is

related [96] to the physics of superfluid He-3.

The spin-polarized version of the 331 state emerges from the condensation of the
charge-2¢/3 quasiparticles on top of the Laughlin state with the filling factor 1/3.

The K-matrix

3 =2
K = Kpolarized = (25)
-2 4

can be expressed as Kpolarized = WTKunpolarizedW with

W= (2.6)

and hence describes the same topological order as the matrix (2.4). Note that the
particle-hole conjugate of the 331 state has the filling factor 5/2 only for its spin-

polarized version.

The third candidate is the non-Abelian Pfaffian state [8,10]. The Pfaffian state

can be seen as a p-wave superconductor with the wave function

1

Zi—Zj

Pf|

Moz~ =) exp(— 3l (2.7

where zp = xp + 1y is the position of the kth electron, Pf stays for the Pfaffian of a

matrix and we ignore the two filled Landau levels for a moment. The edge theory is
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described by the following Lagrangian density
2 .
L= _E[at(blarﬁbl + U1(am¢1)2] + 100 (0 + vy0y) Y + Lo + Ling, (2.8)

where the charge density on the fractional edge is ed,¢1/2m, 1 is a neutral Majo-
rana fermion, v; and v, are the velocities of the charged and neutral modes and
the meaning of L, and L;, is the same as in the preceding subsections. The charge
e/4-quasiparticle annihilation operator V(z) = o(z) exp(i¢y(z)/2), where the oper-
ator o changes the boundary conditions for the Majorana fermion from periodic to

antiperiodic and has the scaling dimension 1/16. The Pfaffian state is spin-polarized.

The fourth candidate is the SU(2), state [49]. This is another spin-polarized non-
Abelian state. Its wave function can be derived from the parton construction [49].
We split an electron into a fermion v/, of charge e/2 and two fermions 1 /44, V1/4

of charge e/4:

Ve = 1201 /4,001/4p- (2.9)

The filling factor for the e/2-partons is 1. For each of the two sorts of e/4-partons
the filling factor is 2. For decoupled partons the wave function would simply be a
product of three integer quantum Hall (IQH) wave functions. Taking into account
that the three types of partons occupy exactly the same positions, we find the ground

state wave function of the form [52]

U({z}) = [x2(z) Tz — 2) eXP(—i > ), (2.10)

where Y5 is the polynomial factor in the wave function of two filled Landau levels.

The decomposition (2.9) exhibits U(1) x SU(2) gauge symmetry (the factor SU(2)

acts on /4, and vy,4p; U(1) describes the freedom to choose the phase of v1/5).
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For decoupled partons, the edge theory would contain 5 IQH edge channels. The
theory of the FQH edge is obtained by keeping only gauge invariant states and is

described by the Lagrangian density [52]

/:, - $[2at¢Pa$¢P + atqbnaxqbn + 2Up(8$¢P)2 + U"<ar¢")2]

+ i0)(8; + vy 0 )0, (2.11)

where ¢, is a bosonic mode carrying electric charge, ¢, is an electrically neutral
bosonic mode and % is a neutral Majorana fermion. The charge density is ed,¢,/27.
The neutral mode ¢,, describes “pseudo-polarization”, i.e., the difference in the oc-
cupation of the two Landau levels for e/4-partons. The two integer edge modes
should be included in the same way as in Eqgs. (2.1,2.3,2.8). The e/4-quasiparticle
annihilation operators are o(x)exp(=£ig,(x)/2)exp(i¢,(x)/2), where o twists the
boundary conditions for the Majorana fermion and has the scaling dimension 1/16.

Three operators annihilate an electron on the fractional edge: 1(x) exp(2i¢,(z)) and

exp(£ign(x)) exp(2ip,(x)).

In the presence of disorder the “pseudo-polarization” does not conserve and the
action can contain tunneling operators of the form &y (x)i(x)exp(Lid,(x)), where
&+ () are random functions of the coordinate. Their effect is the same as the effect
of similar operators in the anti-Pfaffian state [44,45] and the anti-331 and anti-
SU(2), states (Subsections 3.2.1 and 3.2.2). The theory acquires an emergent SO(3)
symmetry. The neutral modes should be described as three Majorana fermions with
equal velocities. In contrast to Subsections 3.2.1 and 3.2.2, however, this does not

affect the scaling dimension of the most relevant quasiparticle operators.

We now turn to the particle-hole conjugates of the above four states. In Sub-

section 3.2.3 we argue that the particle-hole conjugate of the K = 8 state does not
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exhibit universal behavior in the tunneling experiment with a broad range of possi-
ble values for the tunneling exponent g. Moreover, we do not expect the quantized
conductance 5¢2/2h in that state at sufficiently low temperatures and voltages. Its
physics is thus quite different from the physics of the other seven states considered

in this chapter.

The particle-hole conjugate of the 331 state, called the anti-331 state, is more
interesting. The edge theory of the anti-331 state can be constructed by reversing
the direction of the two FQH edge modes and adding another integer edge channel in
the opposite direction to the reversed fractional channels. The presence of impurities
ensures electron tunneling between the fractional edge and the additional integer
edge. At weak interaction this tunneling turns out to be irrelevant and the physics
become nonuniversal just like in the anti- K = 8 state. In contrast to the anti-K = 8
case, the anti-331 state exhibits universal conductance and tunneling exponents at
stronger interactions. This is the situation addressed in Subsection 3.2.1. The FQH
edge theory possesses the SO(4) symmetry and contains a bosonic charge mode and

four upstream Majorana fermions with identical velocities. The Lagrangian density

4
L=- _[at¢p 0xp + Vp( :cﬁbp Z (Or — V04 )Wk,
+ zvnlng Z el Untn + Lo+ Ling, (2.12)
6 ijkl

where v, are four Majoranas, the charge density on the FQH edge is €0y ¢,/2m and

the contributions £, and L,y describe two integer channels as above.

The most relevant quasiparticles carry the electric charge e/2. There are four
most relevant e/4-particle annihilation operators of the structure o, (z)exp(i¢,/2)

(=1,...,4), where o, changes the boundary conditions from periodic to antiperi-
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odic for all four Majorana fermions (see Subsection 3.2.1 for an explicit expression)

and has the scaling dimension 1/4.

The particle-hole conjugate of the Pfaffian state, called the anti-Pfaffian state
[44,45], is obtained from the Pfaffian state in exactly the same way as the anti-331
state can be obtained from the 331 state. The edge theory is very similar to (2.12)

and exhibits the SO(3) symmetry. The edge Lagrangian density is

2 °
L= _E[a@pax@sp + vp(ax¢P)2] * ; Z¢k(at - T)na”c)wk + £2 + Eim' (2'13)

The two most relevant e/4-quasiparticle operators express as o, exp(i¢,/2) (o =
1,2), where o, changes the boundary conditions from periodic to antiperiodic for all

Majorana fermions and has the scaling dimension 3/16.

Lastly, we consider the particle-hole conjugate of the SU(2), state, the anti-
SU(2), state. Its edge theory is similar to the anti-Pfaffian and anti-331 cases. Its
derivation is given in Subsection 3.2.2. There are 5 Majorana fermions on the edge.

This corresponds to the emergent SO(5) symmetry. The edge Lagrangian density

9 5
L= = [0000u + 0p(00,)") 4 D in(0 = 0nOa)fn + Lo+ L (214)

k=1

differs from Eq. (2.13) only by the number of upstream neutral modes. The four most
relevant e/4-anyon operators can be written as o, exp(i¢,/2) (o = 1,...,4), where
0. changes the boundary conditions from periodic to antiperiodic for all Majorana

fermions and has the scaling dimension 5/16.
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2.3 Qualitative picture

In Luttinger liquid systems with position-independent interaction constants, such
as the edge theories discussed in Section 2.2, the low-energy tunneling density of
states scales as p(E) ~ E97! where g depends on the details of the system [97]. We
argue below that g assumes different values in different geometries. The tunneling
conductance is proportional to the product of the tunneling densities of states p,
and p; on the upper and lower edges at F ~ kgT (Ref. [97]). In general, the edges
are described by two different exponents g, and g;. At low temperatures, the linear

2

conductance for the tunneling current G ~ T9«t9%~2 Hence, the experimentally

measured g = (g, + g1)/2.

As we discussed in Section 2.2, in all three geometries the tunneling current is
carried by quasiparticles with charge e/4. The best fits [23,24,98] for the tunneling
exponent at this quasiparticle charge are g4 = 0.45, gg = 0.42 and g = 0.38. We

want to connect these numbers with the nature of the topological order.

Since the electric current is carried by the edges, the exponent g depends on the
edge physics near the QPC. The size of the relevant region near the point contact
is set by the distance a charge can travel during the tunneling event: L = vt,
where v is the velocity of the edge excitation and ¢ is the duration of the tunneling
event. The latter can be estimated from the uncertainty relations, t ~ h/E, where
E ~ max(kgT,eV) is the uncertainty of the quasiparticle energy. Assuming that
v ~ 107 cm/s, we find L ~ 10 ym at relevant values of the temperature and voltage

bias.

Let us look at the geometry of the edges within 10 gm from the QPC. The edges

are defined by gates at the distance of 200 nm from 2DEG. The widths of both gates
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in the geometry 2.1a and the upper gate in the geometry 2.1b have the same order
of magnitude of hundreds nanometers [98]. The width is 2200 nm for the lower gate
in the geometry 2.1b and both gates in the geometry 2.1c. The distance between
the edge channel segments on the opposite sides of a gate differs from its width. In
our case there are several edge channels that can run at different locations. It is
not easy to determine those locations. In particular, the annealing procedure used
in Refs. [23,24] changes the device electrostatics but it is unclear what its effect on
the geometry is. A crude estimate of the edge channel positions can be obtained
from Ref. [99]. We find that the edge channels run within the distance of hundreds
nanometers from the gates. This agrees with the upper bound one can derive from
the gate geometry in Fig. 2.1b. The tip of the upper gate is at 600 nm from the
lower gate. The distance between the outermost edge channel and the gate is thus
expected to be below 600/2 nm = 300 nm. We conclude that the gate width, the gate
distance from 2DEG and the distance between the edge modes on the opposite sides
of the gate all have the same order of magnitude for both gates in the geometry 2.1a
and the upper gate in the geometry 2.1b. This means that there is a significant
unscreened Coulomb interaction between the segments of the edge on the opposite
sides of the gates. On the other hand, in the geometry 2.1c and for the lower gate
in the geometry 2.1b, the width of the gates is close to the distance between the
edge channels on their opposite sides and much greater than the gate distance from
the 2DEG plane. Thus, we expect that the Coulomb interaction across the gates
is almost completely screened in the latter geometries. One can also neglect the
electrostatic interaction between the edge channels defined by two different gates in
all geometries. Indeed, an edge point at the distance ~ L ~ 10 um from the tip of
the gate is much further from the edge on the other side of the QPC than from the

gate.
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Figure 2.2: Charge tunnels to point O and travels along the edge to point A. Dotted lines show
Coulomb repulsion. Arrows show the transport direction on the chiral edge.

What is the effect of the electrostatic interaction across the gate on the tunneling
current? It is easy to see that repulsive Coulomb interaction suppresses tunneling.
Indeed, after a tunneling event, the tunneling charge must move away from the QPC.
Due to the chiral transport on the quantum Hall edge, it moves along segment OA
in Fig. 2.2. When the excess charge arrives at point A, it pushes charge from point
B due to their repulsive electrostatic interaction. Because of chirality the charge
from point B can only move towards the tip O of the gate. Thus, excess charge
accumulates in point O. This means lower tunneling density of states than for a
noninteracting system where charge rapidly distributes over a large region. Hence,
one expects higher values of the tunneling exponent ¢ in the geometries 2.1a and

2.1b than in the geometry 2.1c. This is exactly what has been observed.

The lower edge has the same geometry in Figs. 2.1b and 2.1c and its tunneling
density of states is described by the same exponent ¢;. The same exponent also

describes the upper edge in Fig. 2.1c. Thus, g0 = ¢;. The upper edge in the
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Figure 2.3: The Il-shaped gate defines an inner and outer quantum Hall channels. Dotted lines
illustrate Coulomb interaction across the gate.

geometry 2.1b is described by a different exponent g,. Hence, g5 = (g, + g.)/2. If
two identical gates of the same geometry as the upper gate in Fig. 2.1b were used
in Fig. 2.1a then one would obtain g4 = ¢,. In such situation g4, g and go form
an arithmetic series. Interestingly, this agrees with experiment. At the same time,
device 2.1a was made in a different sample and its geometry details are different from
the upper gate in Fig. 2.1b. Besides, the gate width changes linearly [98] with the
distance x from the QPC at the distances x ~ L in the geometry 2.1a. This means
that the effective interaction strength depends on the temperature since it depends
on the gate width at the distance x ~ hv/kgT. Hence, there are corrections to the
power law for the tunneling density of states in the geometry 2.1a. This may be a

reason for a poor fit for the quasiparticle charge e/4 from the data in that geometry.

The above discussion has focused on the geometry 2.1a and the upper gate in
Fig. 2.1b. We now briefly discuss some features of the lower gate in the geometry 2.1b
and both gates in the geometry 2.1c. Those gates are II-shaped, as shown in Fig. 2.3,
with the width of the metal strips on the order of 200nm. Thus, each gate gives

rise to two FQH edge channels inside and outside the gate. We are interested in
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state | K =8 | 331 | Pfaffian | SU(2)y | anti- | anti- | anti-
331 | Pfaffian| SU(2)
g | 1/8 |3/8] 1/4 12 |5/8 [1/2 | 3/4

Table 2.1: Exponent g in the tunneling density of states p(E) ~ E9~! for a straight edge in
various 5/2 states.

the tunneling in the outer channel. Its Coulomb interaction with the inner channel
affects the tunneling exponent g. We investigate that effect in Subsection 2.4.4 below
and show that it can be neglected, provided that the interaction across the gate is

such that the system is not close to the interaction-driven instability.

Our main conclusion is that only g¢ is unaffected by the electrostatic interaction
between different edge segments. Thus, the information about the topological order
at the filling factor 5/2 can be obtained from the comparison of go = 0.38 with
theoretical predictions for the models from Section 2.2. Table I shows the predictions
for g. We find that the 331 state gives the best fit with an excellent agreement
between the theoretical ¢ = 3/8 and the experimental value 0.38. As discussed in
Subsection 2.4.4, for a system on the verge of instability, all three exponents g4, gg
and gc considerably exceed the universal value in the absence of interactions across

the gates. In this unlikely scenario, the data [24] do not exclude the Pfaffian state.

2.4 Edge physics and tunneling current

In this section we compute the tunneling exponents g for various models of the 5/2
state in the presence of unscreened Coulomb interaction across the gate. This will
allow us to estimate the strength of the electrostatic interaction across the gate. Even

though the difference of the tunneling exponents is rather small in the geometries 2.1b
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and 2.1c, we find that the electrostatic interaction is strong: the interaction between
the nearest points of the edge segments on the opposite sides of the upper gate in
Fig. 2.1b turns out comparable with the interaction between the charges, placed in
those points in the absence of a gate. This agrees with what one expects from the

geometry of the gates.

2.4.1 Lagrangian

The general structure of the action of a straight edge is
1 Feo
Lo = / drdtf = —— / drdt Y [Kij0ii0sd; + VijOugiOngy] + Ly, (2.15)
T ) oo —
ij

where ¢; denote various edge Bose-modes and L, is the action of the Majorana
fermion degrees of freedom in the Pfaffian, SU(2)y, anti-SU(2)s, anti-331 and anti-
Pfaffian states. Modes ¢; include two fields describing integer quantum Hall channels.
Stability requires that the symmetric matrix V;; is positive definite. As seen from
Section 2.2, there are no relevant or marginal interactions between the Bose and

Majorana degrees of freedom.

Consider now the geometry of the edge, defined by a narrow gate, Fig. 2.4. We
can still extend integration in Eq. (2.15) from minus to plus infinity, assuming that
x is measured along the edge, i.e., x is negative on the edge segment above the gate
and positive below the gate, Fig. 2.4. However, Eq. (2.15) is no longer the only
contribution to the action. We must also include the electrostatic interaction across
the gate. In the presence of the gate the interaction is short range and hence can be
described by local operators coupling fields at the points z and —x. Since we consider

low temperature physics, we are interested in relevant and marginal operators only.
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Figure 2.4: Two integer modes ¢J and ¢9, the charged FQH mode (;Sff and the neutral mode 3
travel around the shaded gate. Electrostatic interaction across the gate is illustrated by dotted
lines.

In the following discussion we will assume that the list of such operators remains the

same as in the limit of the weak Coulomb interaction. This will allow us to use the

same scaling dimensions as in the absence of the electrostatic force across the gate.

The most obvious interaction contribution to the action is

1 0
L / dt / i dx%:Uijami(x)azqu(—x). (2.16)

All other contributions made of derivatives of Bose fields are irrelevant. What about
contributions with operators of the form exp(i ) a,¢,) which shift charge between
different edge channels on each side of the gate (certainly, no charge tunneling across
the gate is allowed)? One might think that some such operators must be included.
Indeed, consider the operator O; = exp(i[¢)(z) + ¢} (—z) — ¢ (x) — ¢9(—=)]) which
moves one electron between the two integer modes on each side of the gate. It ap-
pears to be marginal. However, there is inevitable disorder in our system. Disorder
can be described by adding contributions of the form ), ((2)0,¢x(x) with random

Ck(z) to the Lagrangian density. We omitted all such contributions in Eq. (2.15)
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since one can gauge out disorder by redefining ¢, — ¢ + 27 >, (V") [ Gdz. We
expect that disorder contains a contribution with no correlation between the oppo-
site sides of the gate. Then our redefinition of the fields introduces randomness in
the operator O; and makes it irrelevant. A similar argument excludes operators,
containing exp(%i¢p,) in the SU(2), state. What about other neutral-mode contri-
butions such as operators with Majorana fermions? The list of possible operators
is restricted by the requirement that the topological charge conserves on each side
of the gate: Indeed, topological charge cannot travel under the gate where there is
no FQH liquid. One might still construct some marginal operators that conserve
topological charge on both sides in some of the states from Section 2.2. For exam-
ple, the operator Oy = 91 (x)thy(2)hs(—x)1hy(—z) is marginal in the anti-331 state.
However, all such operators are prohibited by symmetry. Indeed, as discussed in Sub-
section 3.2.1, disorder gives rise to the emergent SO(4) symmetry in the anti-331
state. The electrostatic coupling between the sides of the gate has the same form as
for an infinitely long gate. In the latter case, the system is invariant with respect to
two independent SO(4) symmetry groups acting on the two electrostatically coupled
edges. The combined SO(4) x SO(4) symmetry excludes the operator Oy. A similar
argument applies in the anti-Pfaffian and anti-SU(2), states. We conclude that the

action can be chosen in the form

1 0
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2.4.2 Tunneling exponent g

The tunneling at the QPC at x = 0 is described by the contribution to the action

Lr= Z/dtraﬁ‘pl,a(gﬁ =0)¥;5(x =0) + H.c,, (2.18)
a7/6

where U, , and W, 3 are quasiparticle operators on the upper and lower edges, «
and ( distinguish different quasiparticle operators, I's = I'os(E,) are the tunneling
amplitudes and F. is the ultraviolet cut-off energy. Certainly, every allowed tunneling
process conserves the electric and topological charges. In order to find the low-
temperature conductance, it is convenient to perform the renormalization group
procedure. We integrate out fast degrees of freedom and rescale I',g. Only the
terms with the most relevant e/4-excitation operators ¥ , and ¥, 5 with the scaling
dimensions A, and A; must be kept. We stop at the energy scale E ~ kgT. At
that scale Tog(E = kgT) ~ (kgT/E.)**t2~1T5(E.). The linear conductance G ~
T%972 = T9t9~=2 can now be found from the perturbation theory: G ~ |T'(kgT)|*.

We conclude that g, = 2A,, g =24, and g = A, + A,

Thus, to find g we need to compute the scaling dimensions of quasiparticle opera-
tors of a general structure ¥,y = o(x = 0) exp(i ) ardr(x = 0)), where the operator
o acts on the Majorana sector (and is just an identity operator in some models) and
ay are constants (see Section 2.2). Since the Majorana sector is decoupled from the
Bose modes, the scaling dimension of the operator ¢ is not affected by the interaction
across the gate and can be taken from Section 2.2. We thus focus on the exponential

factor in W, .

In all models of Section 2.2, the symmetric K-matrix Kj; is positive definite. In

the rest of this subsection we also assume that U;;, Eq. (2.17), is symmetric. This
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is automatically satisfied, if the gate configuration has a symmetry plane such that
reflections in the plane transform the segments of the edge above and below the
gate into each other. The gate configuration [23], Fig. 2.1a, has such a symmetry
plane. The configuration of the upper gate, Fig. 2.1b, used in Ref. [24], does not
have a symmetry plane but is approximately symmetric beyond about 10 pym from
the QPC. Note that U;; can be symmetric even in the absence of a symmetry plane.
This happens if one can neglect all interactions across the gate except the interaction
of the charged modes. Then U;; becomes a 1 x 1 matrix. This is the case in the model
of the next subsection. Thus, in Subsection 2.4.3, we can rely on Subsection 2.4.2
even without assuming the existence of a symmetry plane. Certainly, our qualitative
discussion in Section 2.3 is also free from that assumption. Calculations are similar
but more cumbersome without the symmetry. We focus on the symmetric situation
because it allows a proof of two general theorems: 1) in Appendix A we demonstrate
that U;; is positive definite; 2) we show that the positive definite U;; drives the
tunneling exponent above the universal value without interaction across the gate.

The physical origin of the latter claim has been addressed in Section 2.3.

At this point it is convenient to change notation. We define ¢;(x) = (¢i(x) +
¢i(—2))/V/2 and 0; = (¢5(x) — ¢i(—x))/v/2, 2 < 0. The Bose-mode contribution to

the action now reads

1 0 -
Lp=—— [ dt /_ ) d Z{zKijat@azej
ij
U'ij Uij - -
+ [Vij + 7]&601&5@ + [Vij — 7]@@@0@}. (2.19)
The quasiparticle operator becomes W, /, = o exp(i Y a5 (0)/+/2). Stability implies

that V' 4 U/2 are positive definite matrices. We next diagonalize the bilinear form

Kijat@axej with the transformation ¢; = >k Sikdp: 0; = P S;101, where the matrix
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S is such that STKS = E. The Bose contribution to the action becomes

1 0 ~ ~
Lp=— E/dt /_oo dx %:{25ijat¢iaxej

+ [‘71] + Aij]axéiaacéj + [Vzg — ]\z‘j]aﬂ;iaﬂgg‘h (2.20)

where V = STV S and A = STUS /2 are positive definite symmetric matrices. Inte-

grating out the fields 0; one gets
1 0 o S
LB:L;C@/<mZ}w+AM@@a@—wuu%¢@@@} (2.21)
S
The quasiparticle operator assumes the form V.4 = oexp(i ), axSk;0;(0)/v/2).

We introduce another piece of notation now. Consider a symmetric positive
definite matrix A. We define v/A in the following way. We first find such orthogonal
matrix O that A = OTAO, where A is a diagonal matrix with positive diagonal
entries. Next, we define VA as a diagonal matrix with positive diagonal entries such
that (VA)2 = A. Finally, we set VA = OTVAO. Obviously, VA is a symmetric
positive definite matrix whose square is A; (vVA)~™! = v/A=1. We make the following

change of variables

o= (\/m [Wm(v - [\)\/ﬁ| _1> é;. (2.22)

J i

The action becomes
1 0 AP o
Ly=g [dt | ary {PP0bad,—Pdbod,} (229
ij

where

P:JVV+MV—MVV+A. (2.24)
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At this point we trace back the steps that led us to Eq. (2.21) with Eq. (2.23)
as the starting point. We introduce auxiliary fields 6; and rewrite the action in the

form, similar to Eq. (2.20):
1 0 P PPN PR
Lp=—1 / dt / dr Y {201j0:0:0,0; + Pyj0y0:0,0; + Pj0,0:0,0,}.  (2.25)
I

Next, we define new fields ®; according to ¢;(z) = (®;(2) + B;(—x))/V2 and 6;(x) =
(®s(x) — ®;i(—x))/v/2, x < 0, and end up with the action

1 [*e

dm
e >

In Eq. (2.26) we return to our initial definition of the coordinate —oo < x < 400
and the points x and —z no longer interact. The quasiparticle operator V., =
0 exp {z > ks @k (S\/ﬂ\/ﬁ) y (IJj(O)] . It is now easy to write down the scaling
dimension A of ¥, /4 and g = 2A:

- a;ay, (227)
J

1,

g=28,+ (SVV+AP WV 1+ 1As")
tj
where A, is the scaling dimension of the operator o.

We now prove that for any choice of a;, i.e., for any quasiparticle operator, g in
Eq. (2.27) exceeds the value one would obtain without Coulomb interaction between
the edge segments on the opposite sides of the gate. In the above expression the
electrostatic interaction across the gate enters only through the symmetric positive
definite matrix A. We thus wish to prove that ¢, Eq. (2.27), is greater at A # 0 than

at A = 0.
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A, does not depend on A. The symmetric positive definite matrix

N=VV+APVV +A (2.28)

that enters (2.27) reduces to the identity matrix at A = 0. Hence, it is enough to

prove that all eigenvalues n; of N are greater than 1. For this end, we notice that
NHV + AN~ =(V -A). (2.29)

Let us work in the eigenbasis of N and look at the diagonal elements of the above
Eq. (2.29). We find

1 /-~ - .

— (Vn‘ + Aii) = (Vn' — Aii) (2.30)

and hence n; = +1/4/1 — % Since both matrices A and (V + A) are positive
definite, their diagonal matrix elements are positive. Hence, n; > 1 and g (2.27)

increases indeed at nonzero A compared to the case of A = 0. This agrees with the

relation between the exponents g4, gp and go in Refs. [23,24].

2.4.3 Estimates of the electrostatic force

In this subsection we address an apparent paradox: The geometry suggests a rather
strong interaction across the upper gate in geometry 2.1b; why is then the tunneling

exponent gg close to go?

The expression (2.27) depends on several unknown parameters. They cannot be
extracted from a single observable g. In particular, one cannot compute the strength
of the interaction across the gate. We can only estimate its order of magnitude

from go and gg. Our estimates show that despite a small difference g — g¢, the
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interaction is not weak. Interestingly, our estimates do not depend on the nature of

the bulk topological order.

The estimates will be based on two simple models. In the first model we will
assume that the interaction contribution U to the action reduces to the product of

the charged modes on the opposite sides of the gate,
2 0 2
U= i dt datg)\l(?m@p(x)ax@p(—m), (2.31)
™ —0oQ

where e0,®,/2m stays for the linear charge density. Such model is legitimate, if all
edge channels on each side of the gate run much closer to each other than to the
gate. In our second model the across-the-gate interaction includes only the charge

density in the FQH channel:
2 ° F F
U= _E/dt /OO dx2X20, 9P, (2)0,P, (—x), (2.32)

where e@xfbf /27 is the linear charge density on the edge channel, separating the
v =2 and v = 5/2 regions. Model 2 is legitimate, if the gate is close to 2DEG and
all integer channels run under the gate while fractional channels are sufficiently far

from the gate.

It is unlikely that either of the above two sets of assumptions accurately describes
the experimental system. At the same time, our estimates of A in Egs. (2.31) and

(2.32) will give an idea of the range of possible interaction strength.

For simplicity we will assume that the mode ®, in model 1 and the mode <I>5 in
model 2 do not interact with any other edge modes on the same side of the gate.

The application of Eq. (2.27) then becomes very easy.
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Consider first model 1. We can always make a linear change of the variables ¢;
such that one of the new variables is ®, and all other new variables commute with
®,. Then the dynamics of the charged mode is completely independent from all

other modes. The form of the charged mode action is dictated [5] by the quantum

5e

Hall conductance T

+oo
L,= dt/ { 8,®,0,®, + vpacba@p : (2.33)

where v, is the velocity of the mode. Since the quasiparticle charge is e/4, the field
®, must enter the quasiparticle operator as exp(i®,/[4 x 2]) = exp(i®,/10). Finally,
from Eq. (2.27) one finds:

Vet 1] . (2.34)

In model 2 we similarly assume that the charged mode of the FQH edge is de-

coupled from all other modes. It is controlled by the action
+o0
L,= 4 dt / dx [20,95 0,97 + 20,0,07 0,97 ] | (2.35)
T

where the coefficient 2 reflects [5] the FQH conductance . The quasiparticle oper-

ator contains ®/' in the exponential factor exp(i®f /[4 x 5]) = exp(i®} /2). Hence,

etz 1]. (2.36)
Vp — )\2

Substituting the experimental gp — gc = 0.04 in Eqgs. (2.34,2.36) we find A\ /v, ~

Eq. (2.27) yields

0.9 and Ay/v, ~ 0.45. These values are similar to the estimate [93] in a related

geometry in the 1/3 state. Certainly, the above two models are not very realistic.
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Besides, even small uncertainties in gg and g¢ result in major uncertainties in A 5.
Note also that we neglect the repulsive interaction between the upper and lower edges
of the 2200 nm-wide constriction in the geometry 2.1c since the constriction width
is much shorter than the relevant thermal length. This interaction decreases g and
hence decreases the estimates (2.34,2.36) for A;5. Finally, in the above discussion
we disregarded the repulsive interaction between the edge modes on the inner and
outer sides of the gates in the geometry 2.1c and the lower gate in the geometry 2.1b
(Fig. 2.3). This interaction increases both gp and gco compared to the situation
without an inner edge. In the next subsection we show that it is safe to neglect the
interaction of the inner and outer channels unless it is so strong that the system is
on the verge of instability. This possibility is not a concern for us here because our
goal is to demonstrate that the interaction is not weak. Overall, it appears safe to
conclude that physical \/v, is within an order of magnitude from the above values.

This corresponds to a significant interaction across the gate.

2.4.4 Interaction of inner and outer edge channels

In this subsection we address the interaction between the inner and outer edge chan-
nels, Fig. 2.3, in the geometry 2.1c and around the lower gate in the geometry 2.1b.
We find that for most values of parameters this interaction has considerably less
effect on the tunneling exponents gg and go than the interaction discussed in the
previous subsection. This justifies neglecting the interaction of the inner and outer

channels.

To estimate the change in the exponents g and go we consider a model, similar



82
to the second model of the previous subsection. The action reads

2 oo
L=—[d /_ ) dz 0,100, P + 0,0, 90,0, P%
—0y P10, PT} + 0,0, P10, DT, + 22,0, 05,0, D71, (2.37)
where @50 and <I>51 describe the charge density in the outer and inner fractional edge
channels. We are interested in the tunneling into the outer channel. (IDEO enters the

tunneling operator through the factor exp(i®”,/2). Thus, we wish to compute the

correction dg to the scaling dimension of the above operator due to a nonzero As.

It is convenient to change the variables:

(z+1/2) (z—1/z2)
@50 = 2 ox 9 o—;
z—1/z z+1/z
BF, = %m N %gﬁ_’ (2.38)
where z = ¢{ ZS:F—:\\E In the new variables, we discover the action of two noninteracting

chiral fields:

2
=2 [t [ a000,0:0, 0606+ \JiE = N800, + 06V}

(2.39)

Computing dg is now easy. One finds

1 1
69 = 15 ( = 1> . (2.40)

The experimentally measured ¢ differs from the universal value gupiversar for a
system without an inner channel along a wide gate and Coulomb interaction across

a narrow gate: ¢gc = Guniversal + 209 and g = Guniversal + 09 + Ag, where Ag is
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given by Eq. (2.36) and reflects the effect of the interaction across the upper gate in
Fig. 2.1b. In the previous subsection we estimated Ay/v, ~ 0.45. This corresponds
to Ag ~ 0.04. Substituting the same value of Ay in Eq. (2.40), one finds g ~ 0.007.
This justifies neglecting dg above. It is easy to see that d¢g is much less than 1
and considerably smaller than Ag as long as As/v, is not close to 1. The unlikely
regime /v, ~ 1 describes a system on the verge of an instability due to Coulomb
interaction. Even in that regime dg < Ag/2 for all Ay and hence dg can be ignored
in crude estimates of, e.g., the Coulomb interaction strength. At the same time,
the expressions (2.34), (2.36) and (2.40) all diverge as A\j2/v, — 1 and all three
experimental exponents g4, gg and go provide only upper bounds for gupiversal il

that unlikely limit.

One can avoid complications due to the inner channel by changing the geometry
of the gates. Instead of [I-shaped gates, one can use gates that contain not only the

perimeter but also the inside of a rectangle.

2.5 Discussion

We find that the 331 state with the theoretical go = 3/8 gives the best fit to the
experimental go = 0.38. It is instructive to compare this conclusion with the lessons
from other types of experiments. The data on the spin polarization are controversial
[17-20]. There is support for both 0 and 100% polarization. The 331 state comes in
both spinal-polarized and unpolarized versions with identical transport signatures in
the tunneling experiment. Most other proposed 5/2 states are spin-polarized. Some
features of the thermopower data [21] are qualitatively compatible with theoretical

predictions for the Pfaffian state [91]. However, even Abelian states may exhibit
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Figure 2.5: Sectup of the “smoking gun” experiment. The width of the gates depends on the
distance from the tunneling contact.

qualitatively similar behavior, if different quasiparticle species are degenerate or close
in energy. The Fabry-Perot interference experiments [14,15] were interpreted [100]
as supporting the Pfaffian or anti-Pfaffian state. At the same time, it was shown
that the 331 state can produce identical signatures in a Fabry-Perot interferometer
[101] (but interestingly, not in a Mach-Zehnder interferometer [102]). The anti-331
state may also exhibit identical signatures. The results of the transport experiment
[16] were explained as a sign of an upstream neutral mode. Such interpretation is
incompatible with all proposed states except anti-Pfaffian, anti-331 and anti-SU(2)s.
In particular, the 331 state has no upstream edge modes. As discussed in Section 2.3,
in the unlikely case of a system on the verge of Coulomb-interaction driven instability,
the data [24] do not exclude the Pfaffian state. That state also does not possess

contra-propagating edge modes.

Thus, a conflict appears between the interpretation of the experiments from
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Refs. [16] and [23,24]. Our explanation of the data [23,24] is based on the as-
sumption that the system is in the scaling regime, where universal predictions apply.
We also assume that the edges can be described by a chiral Luttinger liquid model.
It may happen that such description fails due to, e.g., dissipation [103]. At the same
time, edge reconstruction [46] or bulk transport [104] may affect the interpretation
of the experiments on upstream modes. On the other hand, various proposed 5/2
states are rather close in energy [105] and it was suggested that more than one 5/2
state might be present at different conditions or in different samples [106]. It is also
possible that the true 5/2 state is not one of the simplest states considered above.
More light could be shed on the nature of the 5/2 state by tunneling experiments at
lower temperatures. To reduce the effect of Coulomb interaction across the gate, one
needs to modify the 2.1c setup, Fig. 2.3. The inner edge channel can be eliminated
by filling the inside of the II-shaped gate, Fig. 2.3, with metal. Other methods that
could show unique signatures of Abelian and non-Abelian states include thermopower
measurements [21,91] and Mach-Zehnder interferometry [61,81,102,107-112]. The
non-equilibrium fluctuation-dissipation theorem [113,114] would provide an indepen-

dent test of the existence of upstream modes.

Our key idea about the role of gating in the experiments [23,24] can be tested with
a “smoking gun” experiment illustrated in Fig. 2.5. The width of the gate is different
at short distances r < Ly and long distances x > Lo from the gate. The Coulomb
interaction across the gate is strong at x < Ly and negligible at large x. In such
situation our theory predicts two different power dependencies of the conductance
on the temperature at 7' < hv/kgLy and T' > hv/kgLy, where v is the excitation
speed on the edges. The higher temperature regime is similar to the geometry 2.1a
and the low temperature limit corresponds to the geometry 2.1c. Thus, one can go

between two fixed points by simply changing the temperature (or voltage).
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Even though the agreement between the experimental go = 0.38 and theoretical
gc = 3/8 looks excellent, one should be cautious about data accuracy. For exam-
ple, electron tunneling experiments into the 1/3 edge have routinely shown a 10%
discrepancy with the theory [115]. A relative fragility of the 5/2 edge may lead to
even lower experimental resolution. Nevertheless, the difference between go in the
331 and other competing states exceeds 30% in all cases and this lends credibility to

the 331 state as the best fit.

A considerable body of numerical work supports Pfaffian or anti-Pfaffian states
(see, e.g., Refs. [116-119]). As discussed above, the data [23,24] are not compatible
with the anti-Pfaffian state but do not exclude the Pfaffian state in the unlikely case
of the system on the verge of instability. On the other hand, numerical studies of
small simplified model systems have limitations and only experiment can determine
the right state. In particular, the existing numerical results [120-123] for the energy
gap at v = 5/2 significantly exceed experimental findings. One limitation of numerics
is due to the fact that most studies assume full spin polarization outright. This would
exclude the spin-unpolarized 331 state. At the same time, several papers [105, 116,
124,125] lend support to a spin-polarized ground state. Another limitation comes
from the incomplete understanding of the Landau-level mixing effects [126-129].
Disorder apparently plays a major role in the discrepancy of the theoretical and
experimental results for the energy gap [121,130] and may affect the nature of the
ground state. We are not aware on any numerical studies that include disorder.
Moreover, the numerical energy difference between competing states [105] is so small
that even a tiny and generally neglected effect of the spin-orbit interaction [131,132]

might be relevant.

In conclusion, we have proposed an explanation of the discrepancy of the tunnel-

ing exponents in Refs. [23,24]. Two of the three geometries used in Refs. [23,24] are
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affected by the electrostatic interaction across the gates that changes the exponent g.
We compare the exponent go in the third geometry 2.1c with the theoretical predic-
tions for seven states with the simplest topological orders at v = 5/2, Eqs. (2.1-2.14).

We find that the 331 state gives the best fit for the experiments.



CHAPTER THREE

Particle-Hole Symmetry and
Construction of v = % Quantum

Hall States with Upstream

Neutral Edge Transport
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3.1 Particle-hole symmetry in fractional quantum

Hall systems

In a fractional quantum Hall (FQH) system, the uppermost Landau level is partially
filled. The ratio of the number N of electrons to the number N, of available states
in a Landau level is defined as the filling factor v = N/Ny, Eq. (1.10). If we ignore
Landau level mixing and focus only on the partially filled Landau level, there is a
particle-hole symmetry [133] in the electron system: the particle-hole transformation
takes a FQH liquid at filling factor v < 1 into a FQH liquid at filling factor 1—v which
has an identical excitation spectrum to the FQH liquid before the transformation.
As pointed out by Girvin [133], the particle-hole symmetry is useful for constructing

new hierarchical FQH states.

Fig. 3.1 shows the particle-hole transformation schematically. The upper left
panel and the lower left panel are the side view and the top view of a FQH liquid
at filling factor v < 1, respectively. We assume the edge states of this FQH liquid
propagate clockwise. The side view and the top view of the FQH liquid after the
particle-hole transformation are shown in the upper right panel and the lower right
panel, respectively. As we can see, the particle-hole transformation is the operation
which removes electrons from previously occupied state and fills with electrons the
previously unoccupied states. Hence, the resulting FQH liquid, called the particle-
hole conjugate of the original FQH liquid, has a filling factor 1 — v. Intuitively, the
shape of the two-dimensional electron gas (2DEG) changes from a solid circular disk
into an annulus, where the propagation of the original edge modes is inverted and a

new integer edge mode at filling factor 1 appears.

The particle-hole symmetry is more easily understood in the language of second
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7

é

Figure 3.1: A schematic picture of particle-hole transformation in a FQH system. Upper left and
lower left panels: side view and top view of a FQH liquid at filling factor v. Upper right and lower
right panels: side view and top view of the FQH liquid after the transformation, at filling factor
1 — v. Arrows follow the propagation of edge states. Light grey region indicates the unoccupied
states for electrons (or occupied states for holes) in the Landau level.

quantization [28]. In Fock space, a FQH liquid at filling factor v has the Hamiltonian

1
H= 2 Z C:rnllcjnéchle (my, ma|V]my, ms), (3.1)

/ !
mi1,m2,my,Mmy

where c,, and ¢! are the annihilation and creation operators of the single particle
state with definite angular momentum m, Eq. (1.15). V is the electron-electron
interaction whose expectation was evaluated in Eq. (1.17) for a two-electron system
and approximated in Eq. (1.19) using two-electron eigenfunctions as the basis. Let
h. and hl be the annihilation and creation operators of a hole state with angular
momentum m. Then, hl = ¢, and h,, = c|,. The vacuum state |0) for electrons is

identified as the completely occupied Landau level for holes,
No—1

0) = T #d.10)n, (3.2)

where |0);, is the vacuum state for holes. By definitions of h,, and Al and that

{cm, cin,} = Omms, We have {hy,, hjn,} = Omm. Using anti-commutation relations for
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holes, we can write Eq. (3.1) in terms of hole degrees of freedom

1
H=; > bl bl ey g (b M|V |my, me)

m1°Tm2

/
m17m27m17m2

Z B, By (i, mo |V |my, mo) + Z B BL,, (i, mly |V |my, ma)

mi,ma, 'rn1 mi, mz,m2

Z R BE, (i ma [V |my, mo) + Z B By (o, mb |V [my, ms).

mi,maz,m/} m1,ma,m)
(3.3)
It can be shown [28] that
Z(ml,m’2|‘/|m1,m2) = Opmy,my 261
Z(m'l,ml\V\ml,m2> = Omym! 26X, (3.4)

where €5 and ey are constants. Physically, e and —ex are the Hartree and exchange
energies per electron, respectively, of the ground state of a completely filled Landau
level. Substituting Eq. (3.4) into Eq. (3.3), we find

1
Hzi Z L Py B (Y, | V |y, ma)

myTm2

’
m17m27m17m2

+(N—Nh)(€H—€X) (35)

where N, = Ny — N is the number of holes (unoccupied states for electrons) in the
Landau level. The first term in Eq. (3.5) is the Hamiltonian of holes in a FQH liquid
at filling factor ». But it can also be interpreted as the Hamiltonian of electrons
in the particle-hole conjugate system at filling factor 1 — v, if we identify h,, and
hi with the annihilation and creation operators of an electron state with angular
momentum m in the particle-hole conjugate system. Since the matrix elements

(my, my|V|my, my) are real, the Hilbert space of the particle-hole conjugate system
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is isomorphic (identical apart from a constant (N — Nj,)(ey — €x)) to the Hilbert

space of the original FQH system. The dimensions of the two Hilbert spaces are

No! _ No!
NI(No—N)! — Nul(No—Np)!"

certainly the same:

Let E(v) and E(1 — v) be the ground state (Coulomb) energies of a FQH liquid

at filling factors v and 1 — v, respectively. By Egs. (3.1)(3.5),

E(v)=E(l—v)+ (N — Np)(eg — €x). (3.6)

Dividing Eq. (3.6) by the number N of electrons, we find

ve(v) = (1 —v)e(l —v)+ (2v — 1)(eg — €x), (3.7)

where ¢(v) = E(v)/N is the energy per electron as a function of the filling factor v.

Taking derivative of Eq. (3.6) with respect to N, we find

p(v) + p(l —v) =2(en — ex), (3.8)

where p(v) = OE(v)/ON is the chemical potential as a function of the filling factor v.

The chemical potential discontinuity at filling factors v and 1 — v are identical.

Interesting things happen when the Landau level is at half filling v = 1/2. In
such a case, the ground state energies of a FQH liquid and its particle-hole conjugate
are exactly the same, by Eqs. (3.6)(3.7). Moreover, by Egs. (3.1)(3.5), the Hilbert
spaces of the two FQH systems are identical. In Section 3.2, we use these properties

to construct new FQH states at filling factor v = 5/2.
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3.2 Construction of particle-hole conjugate states

In this section, we construct particle-hole conjugate states at filling factor v = 5/2.
This work is motivated by the recent observation of upstream neutral edge modes
in Ref. [16]. The upstream neutral edge modes are a common feature of particle-
hole conjugate states in the presence of many disorders on the edge. Among the
existing proposals, the anti-Pfaffian state [44,45] is the only particle-hole conjugate
state. However, we have seen in Chapter 2 that the anti-Pfaffian state does not agree
with quasiparticle tunneling experiments [23,24]. Hence, we need to construct new

particle-hole conjugate states to account for the observation in Ref. [16].

Assuming no Landau level mixing, we can treat the completely filled first Landau
level as an inert background and focus on the v = 1/2 FQH state in the second
Landau level. We perform particle-hole transformation for the following v = 1/2
FQH states: the spin-polarized 331 state [52], the SU(2), state [49] and the K = 8
state [12]. We call the resulting new states the anti-331 state, the anti-SU(2), state
and the anti-K = 8 state. We do not consider the spin-unpolarized 331 state since
its particle-hole conjugate has a filling factor v = 3/2 (v = 7/2 including the first
Landau level). As shown in Section 3.1, at half filling, the two particle-hole dual
states have identical Hilbert space and the same ground state energy: They are

equally favorable to the FQH Hamiltonian.

We focus on building edge theories for the new particle-hole conjugate states,
which can be used to calculate current-voltage characteristics in transport experi-
ments. We only consider the FQH edge between the v = 2 and v = 5/2 regions. The

two integer edge modes in the first Landau level play little role in our discussion.

It should be noted that, in reality, the particle-hole symmetry is not exact for the



94

v =5/2 FQH liquid. The v = 5/2 FQH liquid is typically observed at magnetic field

172 is not negligible.

B ~ 4 — 6T, where Landau level mixing, proportional to B~
Landau level mixing renormalizes the two-body interactions (Eq. (3.1)) in the upper-
most v = 1/2 Landau level and produces effective three-body interactions [134, 135]

which break the particle-hole symmetry and stabilize one of the two particle-hole

dual states as the true ground state.

Our construction uses an approach similar to the treatment of the disorder-

dominated v = 2/3 state [136] and the anti-Pfaffian state [44,45].

3.2.1 The anti-331 state

In this subsection we formulate the edge theory of the anti-331 state.

We start from a clean particle-hole conjugate of the 331 state which is obtained
by condensing hole excitations of the v = 1 quantum Hall state into the 331 state. In
our picture, the 2DEG has an annular shape with the inner edge being the interface
between the hole 331 state and its parental v = 1 IQH state and the outer edge being
the interface between the v = 1 quantum Hall state and the vacuum. The edge is
the combination of a right-moving v = 1 edge and a left-moving FQH edge of the

331 state with the Lagrangian density

Eo = —— Z [KIJat¢Iam¢J + ‘/}Jaz(bla:v(bJ]a (39>

1,J=0,1,2
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where the K-matrix [5] and the potential matrix are

1 0 0 Voo Vou Voo
K=|o0 -3 2 [adV=| v v wn |, (3.10)
0o 2 -4 Voo Viz Voo

¢p is the right-moving v = 1 charge density mode, ¢; and ¢, are two left-moving
modes in the edge theory of the 331 state. The charge vector that determines how
the modes (¢g, @1, P2) couple to the external gauge field and contribute to the electric
current is t* = (1,1,0). The K-matrix and the charge vector t together characterize
the topological order of the FQH state. To simplify the discussion, we assume at
this point that Vs = —Vae/2. We will also assume that the v = 1 edge mode only
couples with the edge mode in the bottom hierarchy of the hole 331 state so that
Vo2 = 0. This approximation reflects the fact that only the bottom level hierarchy
contains electrons which interact with the v = 1 IQH liquid through the Coulomb
potential. At the end of the discussion, we will relax the above assumptions and will

see that they do not change any conclusions.

The Lagrangian L, describes the low energy edge physics of a clean particle-hole
conjugate of the 331 state. In reality, there are always impurities on the edge. They
destroy the translational invariance on the FQH edge and cause inter-edge tunneling
which leads to the edge mode equilibration. Nontrivial topological charges cannot
travel between the hole 331 edge and the v = 1 channel. Hence, only electrons can
tunnel. The electron operator on the v = 1 edge is €’*. The most relevant electron
operators on the hole 331 edge are e~*(3¢1-292) and e~#¢1+262)  The appropriate term

for the electron tunneling in the Lagrangian density is

Liwn = fl(x)ei(¢0+3¢l_2¢2) + §g(x)ei(¢0+¢l+2¢2) +H.c., (3‘11)
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where we have suppressed the Klein factors that are necessary to ensure correct
statistics among different electron operators. & (z) and &(z) are complex variables
characterizing the strength of random impurities. We assume for simplicity that
their distribution is Gaussian and they are d-correlated: (&;(x)&5(2')) = Wid(z — ')

and (&(x)&3(2")) = Wad(x — 27).

At weak disorder W; and W, the effect of electron tunneling on the FQH edge
is determined by the scaling behavior of the tunneling operators. Using Ly, we find

that the two tunneling operators have the same scaling dimension

1 3—2v2¢c
L3-22

A= ——
2 21 —¢2

(3.12)

where ¢ = 8v/2Vj1/(8Vo + 4Vi1 — Vas). The leading order renormalization group

(RG) equations for the disorder strength are [137]

dw;
dl

= (3—28)W;, (3.13)

where i = 1,2. For A > 3/2, the electron tunneling is irrelevant and the low temper-
ature edge physics is described by Ly in Eq. (3.9) in which no equilibration occurs
between the v = 1 edge and the hole 331 edge. The physics is very similar to the
physics of the anti-K = 8 state, which will be addressed in Subsection 3.2.3. Quasi-
particle tunneling is nonuniversal. At low voltages and temperatures the quantum
Hall conductance is quantized at 7e®/2h instead of the right value 5¢2/2h. This
happens because the integer mode conductance 3¢?/h and the conductance €?/2h
of the fractional edge must be added and not subtracted in the quantum Hall bar
geometry. A detailed discussion of a similar point can be found in Ref. [90]. On
the other hand, if A < 3/2 the electron tunneling is relevant and we end up with a

disorder-dominated phase with equilibrated edge modes at low temperatures. This
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is the situation we consider below.

To study the disorder-dominated phase, it is useful to rewrite the edge dynamics
in terms of a charged mode, represented by the charge vector t, and two independent
neutral modes, represented by the neutral vectors ny, ny. If we treat the matrix K !
as a metric then neutral vectors are those with vanishing inner products with the
charge vector, nf K~'t = 0, nJ K~'t = 0. We choose n = (1,2,0), nl = (0,1, 2).

The corresponding charged ¢, and neutral ¢,,,, ¢,, boson fields are

t — ¢p ¢0+¢1
n; — ¢n = ¢o+2¢

n, — ¢n2 = —¢1 + 2¢2 (314)

In the basis (¢, ¢n,, Pn,), the Lagrangian density of the tunneling problem Ly +

Liwn = L, + Lsym + Lsp, where

2
L,= —E[&gqbp@xqbp + 1,(0:0,)?] (3.15)
and
1
ESym = - E Z [_atqﬁnzaxﬂbm + @n(az¢ni)2]
i=1,2
G Gl i)
2
£SB — — Z 51}111 mgbnz) ﬂ_vpnl r¢p x¢n1 (316)
1=1,2

The velocities of ¢,, ¢, and ¢y, are v, = 2Voo—2Vo1 45 Vi1 — £ Va2, Un, = Voo —2Vo1 +
Vip — %L‘/QQ and v, = i‘/gg, respectively. In writing the Lagrangians, we have defined

the average velocity v,, = %(Um +v,,,) and moved the anisotropic part of the velocities
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OV, = Upn, — Uy, into Lgp. The reason for this is that Lgyy, now has a hidden SO(4)
symmetry whereas Lgg is the symmetry-breaking term. The interaction between the
charged mode ¢, and the neutral mode ¢, is v,,, = —2Vho+3Vo1 — Vi1 + iVQQ. Note
that after the basis change the electron tunneling only couples the neutral modes
and contributes to their equilibration. The charged mode is left alone with its own

velocity v,.

To view the SO(4) symmetry in Lgy,, more clearly, we fermionize ¢,, and ¢,,
into chiral fermions by setting ¥,, = \/%e_id’"l and W, = \/%76_”5"2. We then

further break the two chiral fermions into four real Majorana fermions defined as
1 = ReV,,,, Yo = ImV,,, 35 = Re¥,,, and ¢, = ImV,,,. In terms of the Majorana

fermions, the Lagrangians Lgy,, and Lgp are

ESym - Z¢T(at — @nax)w + Z wT(é-abLab)w;
a,b

Lsg = —it)" (000,)0) — Vpn, (Dupp)tb" M, (3.17)

where YT = (W1,49,13,14) and a,b = 1,2,3,4. The new random variables are
defined as {13 = —27(Imé; +1Im¢y), {14 = —2m(Reéy — Resy), o3 = 2m(Reéy + Rely),
o4 = —2m(Im&; — Im&s), and all other {,, = 0. The Hermitian matrices Ly, are the

generators of the SO(4) group in the fundamental representation,

(Lab)st = (0arOk — dardnr) (3.18)

with k,1 = 1,2, 3,4. The other matrices in Eq. (3.17): dv = Diag(dvy,, dvn,, 0Un,, 0Us,)
and M = —ng.

As the last step, we perform a local rotation of the Majorana fermions @Z(m) =
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R(z)y(x), where | )
R(z) = Pexp (;—n Z /OO dx’&ab(a:’)Lab> (3.19)

and P is the path-ordering operator. Clearly, RTR = 1,4 and det(R) = 1. After

the rotation, the Lagrangians become

ESym = Z&T(at_z_}nazﬁ/;y

Lsp = —it0T (0000 — vyny (Do) 0T M, (3.20)

where 6v = R(z)6vR™!(z) and M = R(z)MR~!(x) are spatially random matrices.
On the second line of the above equation we omit a term with the derivative 0, R~!.
Its structure is similar to the second term on the first line of Eq. (3.17) and it can be
removed with a variable change, similar to Eq. (3.19). The SO(4) symmetry in Lgym,
is now clearly manifest. Let us study the symmetry-breaking terms in Lgg. Naively,
both operators in Lgg have scaling dimension 2 and they are marginal. However,
the random coefficients 6v and M make them irrelevant under a perturbative RG

analysis. [137] Hence, both terms in Lgp scale to zero at low temperature.

In general, our initial simplifying assumptions for the potential matrix may not

hold and we will have two more terms in the Lagrangian,

1 T .~
/Sym - Evn1n28x¢n1ax¢n2 = gvnlng % Eijklwiijkwly
1 ~ -
S5 =~ Evf’waﬂbﬂ&rgbm = ~Upny (az¢p)¢TN¢u (3.21)

where €51 is the Levi-Civita tensor with 4,7, k,0 = 1,2,3,4, and N is a spatially

random matrix. £§ . is a marginal term that respects the SO(4) symmetry. It

/
Sym

should be retained in the edge theory of the anti-331 state. On the other hand, the

operator in Lgp is irrelevant.
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Any SO(4)-invariant combination of the Majorana fermions can be constructed
from the Majorana operators and their derivatives, the Kronecker tensor 4;; and
the Levi-Civita tensor €. Keeping all possible relevant terms we find the full

Lagrangian that describes the low energy edge physics of the anti-331 state:

9 - -
L=- E[at¢pax¢p + Up(ax¢p)2] + in<at = Un0,)¥

zvnm Z 5ijkl1/~}i7vz)j7j)k7j)l- (3.22)

_|_
6 ijkl

The edge theory consists of one right-moving charged density mode and four left-
moving Majorana fermions obeying an explicit SO(4) symmetry. The density mode

and the Majorana fermions decouple.

The thermal conductance of a FQH state is a universal quantity that is deter-
mined by the bulk topological order. It depends only on the numbers of right-moving
and left-moving edge modes and is robust [138] with respect to interactions (for ex-
ample, the off-diagonal elements in the potential matrix) and disorder. Using the
Lagrangian in Eq. (3.9) or Eq. (3.22), we obtain the thermal conductance in the
anti-331 state as kggy =2+1—1—1=2+1—4x =1, in units of 72k%T"/3h (the
first factor of 2 comes from the two integer modes). This is different from the thermal
conductance k331 = 2+ 1+ 1 = 4 in the 331 state, indicating different topological

orders of the 331 and anti-331 state.

A generic quasiparticle operator on the edge of the anti-331 state is ¥ , =
eillodothértlada) with the electric charge Qg = lo— 111 — 11, in units of e, where Iy, Iy, I
are independent integers. Its scaling dimension g,, can be obtained by computing the
correlation function, (! (¢)W,,(0)) ~ t29% at zero temperature, using the SO(4)
invariant Lagrangian from Eq. (3.22). Equivalently yet more easily, we can use the

boson Lagrangians from Eqgs. (3.15,3.16,3.21) by setting dv; = dva = Upp, = Vpp, =0
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and & = & = 0. This is because the rotation R(z) is local and does not change
the equal-space correlation functions of quasiparticle operators. The interaction vy,
between copropagating neutral bosons cannot modify the scaling behavior of a quasi-

particle [5]. Using ¢o = 2¢, — ¢n,, &1 = — @, + ¢, and ¢ = —1(dp — P, — Pp,), We

obtain the universal scaling dimension of ¥, as

(4l — 21, — )2 (2 — 2l — )2 12
_ 2 2

The most relevant quasiparticles are those with the minimal scaling dimension (3.23).
Here, it is e'(%0+®1) with the electric charge /2 and scaling dimension 1/4. The
next-most relevant quasiparticles are e!(®ot+201-02) ¢ildo+o1462) pild2—d1) gpd e~
with the electric charge e/4 and scaling dimension 5/16. The above quasiparticle
operators can all be represented in the form e*®/2eFn1/2¢%i0n2/2 where the last two

exponential factors correspond to the operators o, in Subsection 2.2.6.

3.2.2 The anti-SU(2), state

In this subsection we obtain the edge theory of the anti-SU(2), state.

Our approach is the same as in Subsection 3.2.1. As a starting point, we write

down the edge Lagrangian of a clean particle-hole conjugate of the SU(2), phase

EO = - i[at¢oax¢0 - 28t¢paﬂc¢p - at¢nar¢n + U0(8x¢0>2 + 2Up(aw¢p)2 + Un(am¢n)2]

2

- EUOpaxQSOaxqsp + Zw(at - Uw@:)% (324)

where ¢ is the right-moving v = 1 edge mode and ¢,, ¢,, ¢ are left-moving SU(2),

FQH edge modes. We first assume that only charged modes interact via Coulomb
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potential vp,. At the end of the discussion we will see that our conclusions do not
depend on that assumption. The charge vector of the boson fields (¢g, ¢,, ¢n) is

t7 = (1,1,0). The Majorana fermion 1 is neutral.

In the presence of disorder, electrons may tunnel between the integer edge and the
FQH edge. The electron operator on the v = 1 edge is €. The most relevant elec-
tron operators on the FQH edge are e 2% Re{e r}e~2% and Im{e i }e 2%,
The Lagrangian density that describes the electron tunneling due to impurities on

the edge is

Lown =Ea ()9’ ®T20) 4 & (z)Refe"n fell00200)

+ &(z)Im{e % }el(#0+2%) L Hoc | (3.25)

where &;(z) are complex Gaussian variables characterizing the strength of disorder,
(&i(2)&; (")) = Wid(x — 2')ds5, where 4, j = 1,2, 3. To simplify notation we suppress

Klein factors as in Subsection 3.2.1.

From Ly in Eq. (3.24), we find that the tunneling operators in Eq. (3.25) have the
same scaling dimension A = 1/2+(3—2v/2¢)/(2v/1 — ¢2), where ¢ = v/2vp,/(vo+2,).
The scaling dimension A determines the edge physics at low temperatures. The
leading order RG equations [137] are dW;/dl = (3 — 2A)W;. When A > 3/2, the
electron tunneling is irrelevant and the low temperature edge physics is described
by L£o. When A < 3/2, we arrive at the disorder-dominated phase with equilibrated

edges at low temperature.

The physics of the non-equilibrated case A < 3/2 is nonuniversal. Just like in
Subsection 3.2.3, we find that the quasiparticle tunneling exponent g can assume a

broad range of values. Moreover, the quantum Hall conductance at low tempera-
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tures and voltages does not assume the correct value 5¢?/2h. It becomes 7e?/2h in
the quantum Hall bar geometry. This happens for the same reasons as in Subsec-
tions 3.2.1 and 3.2.3: One has to add the conductance 3e*/h of the integer quantum
Hall subsystem and the conductance e*/2h of the FQH subsystem. Below we focus

on the disorder dominated equilibrated phase.

Let us separate the charged and neutral degrees of freedom on the edge by defining
Op = Qo+ Qp, Ony = ¢ + 2¢, and ¢,, = ¢,. The full Lagrangian Ly + Ly =

[:p' + Esym + £SB; where

2
Eﬁ = - E[atqsﬁaxqbﬁ + Uﬁ(6x¢ﬁ)2];

1
Loym === D _[=0160.0:0n, + 0 (0:6n,)"]

i=1,2

+ [E1pem + ERe{e 2 Yem 4 &Im{e 2 Jem + H.c)]
+ip(0r — 0,0,

1 s 2
»CSB — E Z 5vnz(ax¢nz) Evpnlaxgbpaxgbnl

i=12

— ith(Bvy 0, ). (3.26)

The velocities of ¢z, ¢p,, Pn, are v5 = 209+v,—2v0, Vn, = Vo+2V,—2v0, and v, = Uy,
respectively. The interaction parameter v;,, = —2vy —2v, + 3vg,. Here we have split
the Lagrangian into Lgyy,, which respects a hidden symmetry, and the symmetry-

breaking part Lgg. The velocity anisotropies dvy, = vy — v, and dv,, = vy,

(3

_@n

(i = 1,2) are defined with respect to the average velocity v, = £(vy 4 20n, + 20p,).

We now fermionize the neutral bosons into Majorana fermions according to ¢y =

\/%Re{e‘wm}, g = #Im{e‘%m}, Yy = \/%Re{e_w”?}, s = \/LQ—WIm{e_w”Z} and
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define 11 = 1. In terms of the Majorana fermions,

£Sym = ZwT(at - ﬁnazﬁ/} + Z wT(’gabKab)w
a,b

Lsn = —it" (500,)6 — Upn, (u5) 0" M, (3.27)

where T = (11,99, 3,104,75) and a,b = 1,2,3,4,5. Random variables &, are
defined as &2 = —v27Iméy, §13 = V27ReS1, §ou = 27Iméy, So5 = 2mImés, 34 =

—21Re&s, &35 = —2mReés and all other §,;, = 0. Hermitian matrices K, are the
generators of the SO(5) group in the fundamental representation, (Kup)x = (0q0pk —
darOp) with k1 = 1,2,3,4,5. The other matrices in the Lagrangians are v =
Diag(6vy, 0Un, , 0Un,, 0Up,, 0U,,) and M = —Kos.

Finally, we make a local rotation of the Majorana fermions ¥ (z) = R(z)¢(z),

where

R(z) = P exp (@in 3 /_ Oo dxfgab(x’)Kab> (3.28)

and P is the path-ordering operator. The Lagrangians after the rotation are

Loym = 7 (0y — 0,0,)1)

£SB = _“;T(&Jax)qz — VUpny (ax¢ﬁ)'§;Tj\>[/&a (329)

where dv = R(z)6vR~!(z) and M = R(x)M R™*(z) are spatially random matrices.
As in Subsection 3.2.1, we omit a term with 9, R~!. It can be removed with another
transformation of the type (3.28). Now, the SO(5) symmetry in Lgyp, is clear. The
symmetry-breaking terms in Lgg are irrelevant due to their random coefficients, in

exactly the same way as in the anti-331 state, Subsection 3.2.1.

In the most general case, the neutral boson ¢, in Eq. (3.24) may interact with
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charged bosons ¢y and ¢,. This gives rise to two more symmetry-breaking terms in
the Lagrangian. However, both terms are irrelevant and disappear at low temper-
atures. The edge physics of the anti-SU(2), state is described by £; 4+ Lgym that
contains all relevant operators allowed by the symmetry. In contrast to the anti-
331 case with its SO(4) symmetry group, we do not need to keep any four-fermion

operators in the action.

A generic quasiparticle operator on the edge of the anti-SU(2), state is ¥,, =

Cellodotlodptingn) with the electric charge Qg = lop — 11, in units of e, where ( is

1

one of the three fields 1, o, and ¢ with the scaling dimensions g3 = 0, g, = 1

and gy = % lp is an arbitrary integer. [, and [, are integers or half integers. We
are interested in +e/4 charged quasiparticles. The quasiparticle charge gives the
constraint [y = %lp + i, which is satisfied only if /, is a half integer given that [y is an
integer. In addition, we must require that the quasiparticle is local with respect to
electrons, which means there is no branch cut in the correlation function between the
quasiparticle operator and any of the electron operators in the theory [5]. Hence, [,
must also be a half integer and ( = 0. The most general +e/4 charged quasiparticle
is then W /q = geillodotlpdptindn) with l, and [,, being half integers and Iy = %lpj:%1 an
integer. The scaling dimension g../4 can be computed using the boson Lagrangians
in Eq. (3.26) by setting dvy, = dv1 = dvg = v, = 0 and & = & = & = 0. This gives
1 1

1 o 1y
Jte/a = 2(10 F 2) + 2ln + 5 (3.30)

The most relevant e/4 and —e /4 charged quasiparticles are ge(?0+26%36n)  ge—i(3ép+56n)
and ge (P t2%E30n)  GeilzéE30n) a]] with the scaling dimension 3/8. All these op-
erators are products of a factor e**s/2 and one of the twist operators o,, Subsec-

tion 2.2.8.
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3.2.3 The anti-K = & state

The anti-K = 8 state is the particle-hole conjugate of the K = 8 state, with the

FQH edge Lagrangian density

1 1
Ly = _E[atgboaxgbO — 801910501 + v0(Duho)? + 801(0u01)?] — %vm@x%&cgbl,
(3.31)

where ¢q is the right-moving integer edge mode and ¢; is the left-moving fractional
edge mode from the K = 8 state. As in Subsections 3.2.1 and 3.2.2 we focus on the
FQH edge between the v = 2 and v = 5/2 regions. The charge vector of (¢g, ¢1) is
t = (1,2), which reflects that the K = 8 state is a Laughlin state of electron pairs.
The Lagrangian that describes the tunneling of electron pairs between the integer

and fractional edges due to impurities is
L = ()P890 L He (3.32)

where £(z) is a complex Gaussian random variable that describes local disorder,
(&(z)&*(2")) = Wé(x — a'). The scaling dimension of the tunneling operators is
A = (6 — 4v2¢)/V/1 — 2, where ¢ = 2vp1/(vg + v1). Positive-definiteness of the
Hamiltonian requires vyv; > v, /2, and hence |¢| < 1. The leading order RG equation
[137] for the disorder strength W is dW/dl = (3 —2A)W. By inspection, the scaling
dimension A is always greater than 3/2. Hence, electron-pair tunneling is always
irrelevant and a disorder-dominated phase does not exist. The edge physics of the

anti-K = 8 state is described by L.

A generic quasiparticle ¥,, = ¢illodothidr) (15 [, are independent integers) on

the edge of the anti-K = 8 state has the electric charge Qg = lp — }lll in units of



107

e. Its scaling dimension g,, is nonuniversal and depends on the parameters in the

Hamiltonian. With L, we find

1 2

= ———(I5 +
gfIP 2\/@(0

b

ok (3.33)

Possible values of g, for charge-e/4 excitations range between 1/16 and +oco. The
low temperature quantum Hall bar conductance is quantized at 7e?/2h just like in

other nonequilibrated states with the same filling factor, Ref. [90].

The above discussion ignores the two integer edge modes ¢}, ¢J always present
in the second Landau level states. If we allow tunneling between those modes and
the FQH modes and include operators that transmit three or more electrons then it
is possible to find relevant tunneling operators at certain choices of the interaction
constants in the Hamiltonian. One example would be the operator O3 = exp(i[8¢; +
3po — ¢Y]), where ¢ describes the integer mode with the same spin polarization as
the FQH edge. We expect the amplitude of such many-body operators to be small

and neglect them even if the interaction constants are such that they are relevant.



CHAPTER FOUR

The 113 State: A New Topological

Order at Filling Factor v = %
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4.1 Charge-neutral separation

The quantized Hall conductance plateau at filling factor v = 5/2 is a well-known
exception of the conventional series of fractional quantum Hall (FQH) states based
on hierarchical extensions [5] of Laughlin’s variational wave function. The fact that
the filling factor has an even denominator indicates the possibility of a paired state.
Based on such assumption, both Abelian [11,12] and non-Abelian [10,44,45,49] mod-
els are proposed to describe the v = 5/2 FQH state. In all these candidate models,
a fundamental quasiparticle charge of e/4 is predicted and has been confirmed ex-
perimentally by shot-noise measurement [13] and local electrometry [139]. On the
other hand, different models have different implications on the topological nature of

the quantum liquid.

The physics on the edge of a FQH liquid contains information about the topolog-
ical order in the bulk. Measurement of edge transport characteristics therefore helps
identify the best candidate model for the v = 5/2 FQH state. In two recent exper-
iments [23,24], the temperature dependence of tunneling current was measured for
quasiparticle tunneling at a quantum point contact (QPC). The seemingly conflict-
ing data were understood after a close look at the effect of electrostatic interaction
near the tunneling point (Chapter 2), which provided the support for the Abelian
Halperin 331 state and excluded the possibility of the non-Abelian anti-Pfaffian
state. This conclusion from the tunneling experiments, however, contradicts the ob-
servation [16] of “upstream” neutral edge modes. A common feature of particle-hole
conjugate states, the existence of upstream edge modes points to the anti-Pfaffian
state as the only probable candidate. All together, none of the existing models is

completely satisfactory from experimental point of view.
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In this section, we show that a long overlooked simple topological order offers a
good phenomenological description of the FQH liquid at filling factor v = 5/2. By
analyzing the electron density profile and the microscopic details of interactions on
the edge of the FQH liquid, we argue that the physical degrees of freedom partic-
ipating in transport are charged and neutral edge modes propagating in opposite
directions and at different velocities. The key point in our argument is the existence
of two distinct types of interactions on the edge of the FQH liquid: The long-ranged
Coulomb interaction between charge densities and the ubiquitous short-ranged inter-
action between neighboring edge states due to the overlap of electron wave functions.
Their difference in interaction range leads to the decoupling and the large velocity
difference between charged and neutral edge modes. The separation of charged and
neutral degrees of freedom in transport has been observed [140, 141] in the integer
quantum Hall regime. Here we extend such a scenario to physics in the second Lan-
dau level. With this scenario, we demonstrate that our model reconciles all transport

experiments in the v = 5/2 FQH liquid.

We neglect Landau-level mixing and assume that the physics of the v = 5/2 FQH
liquid is captured by a v = 1/2 FQH state in the second Landau level. Our model
describes an Abelian state formed by condensing charge-2e quasihole excitations of
a v = 1 integer Hall state into a v = 1/4 Laughlin state. The state is spin-polarized.
At low energy, the effective Lagrangian for the bulk is an Abelian Chern-Simons

theory,

1 e
Lk = — Z EKIJGWAGI#&/CLJA + Z %C]ﬁuu,\Au&/&M, (4-1)
1,J I

where K = (3 2) and ¢ = () are the K matrix and charge vector that characterize
the topological order, A, is the electromagnetic field and a;, are the effective gauge
fields describing conserved densities of condensates. The low-energy edge dynamics

is dominated by the shape distortion of the incompressible quantum Hall droplet
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and is effectively a Luttinger liquid theory with two elementary density modes ¢,

and ¢,

1

Lege = =7 D [K1s01610:05 + V110261026, (4.2)
1,J

where V' = (J, %2). To facilitate later discussion, we make a change of variables to
rewrite the edge Lagrangian in terms of the physical charge density mode ¢, = ¢

and a neutral density mode ¢, = —¢1 + 2¢o,

1
£edge = _E[Zatgbpaxgbp - 8t¢n8a:¢n + 2Up(6x¢p)2

+ U (0p0n)? + 20,005 0,05P1], (4.3)

_ 1 1 1 _ 1 _ 1 1 .
where v, = 501 + U2 + V12, Vp = V2, and v,, = 72 + 5v12. The physics of Legge
is nonuniversal because of the nonzero interaction v,, between the charged mode ¢,

and the neutral mode ¢,.

The three physical parameters v,, v,, v,, have different origins. The charged mode
velocity v, is a manifestation of the Coulomb interaction between charged degrees of
freedom in the edge channel. Its magnitude is determined by the two electrostatic
length scales in the system: the width of the edge channel and the distance from the
2D electron gas to the metallic gate defining the edge. The other two parameters
Un, Upn, o1 the other hand, arise from the overlap of nearby electron wave functions.
In a FQH system, the pertinent length scale to the size of electron wave packets is
the magnetic length. It is useful to compare these length scales. For this end, we
recall the physical picture [142] of edge channels in a FQH system. As shown in
Fig. 4.1, the edge of the v = 5/2 FQH liquid is composed of alternating compressible
and incompressible liquid strips. The compressible strips are the conductive edge
channels while the incompressible strips, occurring when the local electron density

reaches integer filling factors, do not contribute to transport. The edge channel in the
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Figure 4.1: Electron density profile on the edge of the v = 5/2 FQH liquid. Shaded areas are
compressible liquid strips contributing to transport. White gaps are incompressible liquid strips at
integer filling factors 1 and 2. Arrows follow the direction of charge current. The curve shows local
filling factor versus position.

second Landau level is the compressible strip restricted by the incompressible strip at
filling factor 2. Its width can be estimated based on an electrostatic argument [99] to
be ~ 10°nm for a typical v = 5/2 FQH state realized at magnetic field B ~ 5T, which
was the case in the quasiparticle tunneling experiments. The magnetic length under
the same experimental conditions is ~ 10'nm, much shorter than the width of the
edge channel and the typical distance ~ 10*nm between the FQH liquid and the gate.
Hence, we expect that the charged mode velocity v,, set by the electrostatic length

scales, is considerably larger than the neutral mode velocity v, and the interaction

strength v,,, both set by the magnetic length.

Experimental evidence on the ratios between v,, vy, v, is lacking. However, for
the v = 2 integer Hall state, Refs. [140, 141] concluded that the velocity of the
charged edge mode is at least one order of magnitude larger than that of the neutral
edge mode and the interaction between two edge modes. Their data also showed

an increase of the charged mode velocity as the bulk filling factor grew from v = 2
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to v = 3, passing the v = 5/2 plateau. At the same time, the magnetic length
remained the same during the variation of the bulk filling factor since the electron
density in the bulk did not change. Hence, it is legitimate to assume v,/v, 2 10 and
U,/Vpn 2, 10 for our new v = 5/2 FQH state, as analytical continuation of the large

ratios between parameters in the v = 2 integer Hall state.

We note that because of the large difference in magnitude between v, and vy, vy,
the charged edge mode ¢, exhibits the features of an independent edge mode, very
weakly coupled to the much slower neutral edge mode ¢,,. The near decoupling of

the physical edge modes is consistent with the observation in Ref. [16].

A generic quasiparticle operator on the edge of the v = 5/2 FQH state in
Egs. (4.2)(4.3) is O = ¢'h9172%2] with electric charge @ = (34 + 1l)e, where [,
are integers. Its scaling dimension A can be extracted from the equal-position cor-
relation function (O(z,t)O(x,0)) ~ t722 at zero temperature. With the change

of variables (/BP = ﬁ(\4/ % Ty %2)@) \4/ }Jri l+c ¢)¢n and bn = f<\4/ 1irc -

/ ;i)qbp (¢4 ¢ +C)¢n, where ¢ = ff:"” we can diagonalize Leqqe and obtain

1B
2A = 2 — /2L, 4.4
where [, = [} + %lg and [, = %lg. From above discussion on the magnitudes of

parameters, ¢ ~ 1—10. Using the smallness of ¢, it is easily seen that the most relevant
quasiparticle operators correspond to [, = :t A = :l:% and [, = :l:%,ln = ¢%, or
l1 =0,y =+1andl; = +1,ly = F1. These quasiparticles all have e/4 electric charge
(up to a sign), in accordance with experiments [13,139]. The scaling dimension of

the most relevant quasiparticles

1 2

1——02[8 ]:—j: +3c2i---, (4.5)

8 16
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oo (2m—D! om
m=0 2m.m! .

where in the second line we have expanded the prefactor \/1+7 =5
The first term in the expansion agrees with the measured [23,24] scaling behavior
of the zero-bias tunneling conductance G with temperature 7" in the v = 5/2 FQH
liquid, G ~ T?972, where the tunneling exponent g ~ 0.38. The second term gives
the leading order correction |dg| & 0.04 to the tunneling exponent, which is beyond

the precision of measurement in the experiments.

So far we have ignored the two integer edge modes in the first Landau level. Like
the fractional edge modes ¢, ¢ in the second Landau level, the integer edge modes
couple strongly with each other and resolve [140] into charged and neutral edge
modes during transport. The integer edge modes are separated from the fractional
edge modes by the incompressible liquid strip at filling factor 2. Through Coulomb
interaction across the incompressible strip, integer edge modes affect transport in
the second Landau level. For example, they modify the scaling dimensions of quasi-
particles and their tunneling behaviors at a QPC. In Section 4.2, we show that a
moderate interaction between the integer modes and the fractional modes gives rise
to a correction to the tunneling exponent that is much smaller than the leading order
correction |dg|. In such a case, the interaction does not change the fact that our new

FQH state predicts the correct tunneling exponent.

There is yet another complication in the quasiparticle tunneling experiments
[23,24]. There, the metallic gates used to define the edges of the FQH liquid are
[I-shaped (Fig. 2.3), rather than solid slabs of metal. In such a case, quantum Hall
edge channels exist inside the metallic gates. The Coulomb interaction between the
inner edge channels and the outer edge channels in the Il-shaped gates modifies the
scaling dimensions of quasiparticles in the outer edge channels and hence changes
the tunneling exponent measured in the experiments. In Section 4.3, we show that

this change of the tunneling exponent due to the shape of the devices is negligible.
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Experimentally, our new v = 5/2 FQH state can be identified with the help
of an electronic Mach-Zehnder interferometer [61]. The interferometer consists of
two QPCs, through which quasiparticles can tunnel and propagate following two
electronic paths that differ in quantum phase, defined by the edges of the FQH
liquid. The quasiparticles are eventually trapped in the area enclosed by the elec-
tronic paths. Interference of quasiparticle wave functions from different paths gives
rise to Aharonov-Bohm oscillation in charge current that depends on the magnetic
flux passing through the interferometer and the accumulated statistical phase of the

trapped quasiparticles.

At low temperature, the most relevant quasiparticles dominate in the interfer-
ence pattern. In our new v = 5/2 state, there are two (up to a sign) most relevant
quasiparticles, corresponding to Iy = 0,/ = 1 and [y = 1,15 = —1. We label them
with superscripts a and b. These two quasiparticles can combine to give eight topo-
logically distinct phases in the interferometer. The transition rates among different
topological phases due to the tunneling of quasiparticles a or b are

T ®

pi:A“”[l%—ul’cos(zq}
0

+ Zk: +67)], (4.6)
where @ is the magnetic flux quantum, ®/® is the number of flux quanta passing
through the enclosed area in the interferometer, x = a,b and k = 0,1,...,7 labels
the eight topological phases. The parameters A”, u* and ¢* depend on experimental
realization of the interferometer, including temperature, the bias voltage and the
transmission amplitudes at the two QPCs. The steady charge current reflects the
averaged interference pattern over all eight topological phases. At zero temperature
and with the assumption that the parameters are symmetric for both flavors of

quasiparticles, A% = A® = A, u* = v* = u, §* = 6* = § and p§ = P = py, it
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Figure 4.2: Comparison of steady currents in Mach-Zehnder interferometer for various v = 5/2
quantum Hall states: the Pfaffian state (dotdashed), the 331 state (dashed) and the 113 state
(solid). For the 331 state and the 113 state, we assume flavor symmetry and set w = 1, § = 0. The
current for the Pfaffian state is acquired from Eq. (8) in Ref. [81], with the setting 7] = 75 = 1,
I’y = T'3. The current for the 331 state is acquired from Eq. (9) in Ref. [102]. We tune the peaks
of the currents in different states to the same height for a better comparison.

simplifies to
3

[=deA)(4+ 3 L2ty (4.7)
o P2k

The current in Mach-Zehnder interferometer distinguishes different topological orders
proposed for the v = 5/2 FQH liquid. In Fig. 4.2, we compare the currents in the
Pfaffian state, the 331 state and the new v = 5/2 state, assuming flavor symmetry
for the two latter states. The currents in all three states oscillate with the period
of a magnetic flux quantum, in agreement with Byers-Yang theorem [143]. Among
three states, the current in the 331 state exhibits the most symmetric shape. It is
also interesting to look at the current with a varying ratio v = A®/A® between the
amplitudes of tunneling of two quasiparticles. We show such a situation in Fig. 4.3.
An immediate doubling of the period of current is observed at the onset of the
tunneling of the second quasiparticle, indicating the paired-state nature of the new

v =5/2 state.

The steady current I and the shot noise S in Mach-Zehnder interferometer are
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Figure 4.3: Comparison of steady currents in Mach-Zehnder interferometer for different v =
AP /A% values in the 113 state: v = 0 (dotted), v = 0.05 (dotdashed), v = 0.25 (dashed), and v = 1
(solid), where we have set A% =1, u® = u® =1 and §* = §* = 0.

related as S = 2e*I, where e* is the Fano factor. In our new v = 5/2 state, e* has
an upper bound of 13.6e, much larger than the upper bound 2.3e in the 331 state
and the value 3.2e in the Pfaffian state. The large Fano factor reflects the excess

noise at the two QPCs in the interferometer, due to counter-propagating edge modes

participating in the tunneling process.

The spin polarization of the v = 5/2 FQH liquid has been controversial [17,
19, 20, 144]. Here, we note a spin-unpolarized counterpart of the above-discussed
new v = 5/2 state, described by K = (13%) and ¢ = (1). Physically, this spin-
unpolarized state is formed by topologically coupling one layer of spin-up electrons
with another layer of spin-down electrons, both layers in the v = 1 integer Hall state.
These two v = 5/2 FQH states we have obtained differ in spin wave functions but
share the same topological order [5]: The K matrices and charge vectors of the two
states are connected by a special linear transformation U = (9 ;). For this reason,
the two states show identical signatures in transport experiments and cannot be

discriminated by a Mach-Zehnder interferometer. We will call our new v = 5/2

FQH state the 113 state.
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In sum, we have proposed a new Abelian description of the FQH state at filling
factor v = 5/2, called the 113 state. The 113 state has the advantage of being
compatible with all existing transport experiments. The 113 state assumes quite
different signatures in Mach-Zehnder interferometer from the Pfaffian state and the

331 state.

4.2 Influence of integer edge channels

In this section, we consider the interaction between the integer edge modes in the
first Landau level and the fractional edge modes in the second Landau level. We show
that a moderate interaction gives rise to a correction to the tunneling exponent g

that is much smaller than the leading order correction |dg| found in Eq. (4.5).

The integer edge modes ¢7, ¢ are described by the Lagrangian density
1
L= _E[aﬁd)(faﬁb({ + 01950.¢5 + ul(amqb(iy + u2(8m¢(2))2 + 20120, 970, 05).  (4.8)

As illustrated in Fig. 4.1, ¢} and ¢$ lie in different edge channels separated by the
incompressible liquid strip at filling factor 1. By Ref. [99], the width w; of this
incompressible strip is comparable to the magnetic length. Hence, in reality, ¢
and ¢§ strongly couple with each other. The physical edge modes participating
in transport are the charged mode ¢7 = \%(qﬁ‘l’ + ¢3) and the neutral mode ¢2 =
\/Li(gb‘l’ — ¢%). ¢ interacts with the charged mode ¢, in the second Landau level
through Coulomb interaction A\; across the width ws of the incompressible strip at

filling factor 2, described by £, = —%Oxgbl (0209 4 0,09) = — V2N 020,005 After

4
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incorporating £° and L), the K matrix and the potential matrix extend to

2 0 00 20, U V2A 0
0 -1 00 Upn  vn 0 0
K = and V = , (4.9)
00 10 VoM 0w, U
0 0 01 0 0 up uy

written in the basis (¢,, ¢n, 97, é5), where u,,, = %ul + %UQ =+ w9 are the velocities
of 9, ¢y, respectively. An estimate based on Ref. [99] gives wy/w; ~ 4. Hence,
we expect that the inter-Landau-level Coulomb interaction \; is weaker than the
Coulomb interactions v,,u, within the Landau levels. This is guaranteed by the
stability condition A\? < wv,u, and the assumption that the charge velocities in the
first and the second Landau levels are comparable: v, ~ u,. Also, we assume that
Upy R Up R Vpy R Uy, since the magnitudes of these parameters are all set by
the magnetic length. Let us define ¢; = ;\)—; ~ 2—; to be ratio which characterizes

the strength of Coulomb interaction \;. The stability condition can be written as

c < 1.

We want to compute the tunneling exponent, or equivalently, twice the scaling
dimension of the most relevant quasiparticle operators, in the presence of Coulomb
interaction A\;. Hence, we need to simultaneously diagonalize the K matrix and the
potential matrix in Eq. (4.9). Let us first diagonalize the two matrices in subspaces
(¢p, n) and (49, #7). This is done using the change of variables that led to Eq. (4.4),
<;~5p = v/2cosh 8¢, + sinh 0¢,,, ¢n = V/2sinh 0¢, + cosh 0¢,,, where tanh 20 = ﬁ—”{ﬁ =

¢ ~ 75, and the rotation: &; = o8 ¢ + sin gy, ¢° = —sin % + cos g, where
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tan 2¢ = uiu_—”u"n < 1. Then,
1 0 00
Pl R (4.10)
0 0 10
0 0 01
and
U, 0 Apcoshfcosp —Ajcoshfsinp
v 0 Up, —Arsinhfcosy  A;sinh6sin g
Apcoshfcosp —Ajsinhfcosp T, 0
—Apcoshfsiny  Ajsinhfsin g 0 Up,
(4.11)
in the basis (¢, o, Nz,q?)fl). The velocities @, = ﬁ(cos2 ou, — sin® puy,), U, =
a3 (c08? uy, —sin® pu,), T, = —L_(cosh? Qv, — sinh® Ov,,), ¥, = —3(cosh® v, —

sinh? v,). By smallness of ¢, we know that 6 and ¢ are both very small angles such

. 192 . ~ ~ ~ ~
that sinh?# < 1 and sin® p < 1. Hence, 0, ~ v, ~ u, ~ 1, and ¥, = v, & U, ~ U,.

A

Also, ¢; = 2+ ~ AL o A
p

E To simplify the discussion, we set in the following:

~
~

<
IS
<

U, — U, and Uy, — Uy,

Next, we diagonalize the subspace (gﬁp, qgg) by defining & = \/Li(ggp + ggg) In the

basis (P, Gy P, qB;;), the K matrix remains unchanged while the potential matrix

Vi —a; 0  —as

—a; Up a1 as

V= , (4.12)
0 aq V_ —ay

—as as —a9 Un,
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where V. = 7,(1 £ %ﬁ‘—’) ~ 0,(1+ i—;) ~ U,(1+c), a1 = \%)\1 sinh 6 cos ¢,
as = \/Li)‘l coshfsinp and as = Asinh@singp. V, > v,. The generic quasiparticle

operator can be written as

pillid1+262] _ illpép+indn] _ ei[ipqlﬁinq}n} _ ei[%ip(qq%b,)#nd?n] (4.13)

where [, =1, + 2,1, =2,1,= %coshe —l,sinh @ and [,, = I,, cosh 6 — %sinhe.

Let us set a; = as = a3 = 0 for now to compute the scaling dimension A’ of

the generic quasiparticle in Eq. (4.13). One finds that A’ = A such that A/ . =

min

Apnin, where A’ . is the scaling dimension of the most relevant quasiparticles and

n

A, Apin are given in Eqgs. (4.4)(4.5). We refer to the difference 2A! . — 2A,;, as the

min
“zeroth-generation” correction to the tunneling exponent, due to the interaction \;

between integer modes and fractional modes. We see it is zero. For higher-generation

corrections, we consider the off-diagonal elements ay, as, as.

The term a; = %/\1 sinh 6 cos ¢ couples the fields ¢, and gz;n If we want to
remove this coupling, we need to “rotate” the two fields by an angle n: &, —

coshn®, + sinhn¢,, ¢, — sinhnd,. + coshne,, where

1 1 A 1 A
sinhn = §tanh217 = —%m sinh 6 cos ¢ ~ _E‘Z sinh 6 cos ¢

1 A 1
N —— sinh 0 cos ¢

ﬂ@_p1+01
1 C1

~ —— 4.14
2\/§1+clc’ (4.14)

A

where we have used Vi & 0,(1 4+ ¢1) > 0,, & & ¢, sinhf ~ Ltanh20 ~ c

)

and cosp ~ 1. By ¢; > 0, we know 7 is a very small angle. Let us study how
this “rotation” affects the tunneling exponent (or 2A,,,). We consider the “first-

generation” correction due to this “rotation” by setting all off-diagonal elements in
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Eq. (4.12) to zero, except this coupling between ®, and én. The leading order terms
come from the cross terms in the square of the prefactor of &, and the square of the
prefactor of gzgn, after the “rotation”. The two cross terms both equal —\%Z pl~n sinh 2.
Consider one of the four most relevant quasiparticle operators in the 113 state,
defined by [, = [, = % (see Section 4.1). We have l COShQ smh@ 5

f

and [, = %COSh@ fsmhe %, using sinh 6 =~ g < 1,coshf ~ 1. Then,

—Ll~l~ inh2n ~ —3 smh =~ —3 smhn ~ 8\[ c. The two cross terms add up

V2P

to the leading order term ~ f rreC < fc in the “first-generation” correction.

1+c

a; also couples the fields ®_ and qgn The “rotation” needed to remove this

coupling is: ®_ — coshn/®_ + sinh 7'y, ¢, — sinhy/®_ + cosh 1/p,, where

1 1 A 1 A 1
inh7' ~ = tanh 2y’ = ————sinh @ N = inh 6
smnmn 5 ann zmn \/§V_+Un sin COoS ¢ \/ivpl—cl—l—f}n/f]p sSin COs @
1 C1

~ 4.15
2\/51 —C +CC’ ( )

where we have used V. ~ 0,(1 —¢;), & =~ ¢, 2 ~ & ~ ¢, sinhf ~ ic and
Up Up Tp 2

cosp =~ 1. Two extreme cases are interesting. For weak Coulomb interaction A;

such that 1 —¢; > ¢ &~ 15, we have sinh7y ~ ﬁililc. On the other hand, for

1

very strong A; such that 1 — ¢ < ¢~ 15,

we have sinh#n’ ~ Lf?l = ﬁcl. The
“rotation” gives rise to a leading order term —\/§l~pl~n sinh 2y’ ~ —3 Lsinh7 in the

1 c1

This term ~ — AT for

“first-generation” correction, using [, & ﬁi and [, ~ 3.

1—cl>>cand%—ﬁ§cl for 1 — ¢ < c.

In the potential matrix in Eq. (4.12), a; couples @, b, and _, &, at the same
time. As a result, “second-generation” corrections arise from the combination of
two a; couplings, in addition to the “first-generation” corrections, even if we assume
as = ag = 0. These “second-generation” corrections are however negligible. To see

this, imagine we first make the “rotation” by n and then the “rotation” by n'. After
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the first “rotation” which generates the “first-generation” correction discussed after
Eq. (4.14), bn, is almost unchanged, since the angle 7 is very small. Hence, to a good
approximation, we assume that the fields participating in the second “rotation” are
®_ and gEn, which produce the “first-generation” correction discussed after Eq. (4.15).

The total correction due to ay, assuming as = a3 = 0, is the sum of the two “first-

generation” corrections, up to an negligible error. In the limit that 1 —c¢; > c = %,
the sum is
1 c1 c1 \/5 c%
_ _ = "eox — 4.16
4\/§<1—cl 1—1—01)0 4 ¢ 1—c} (4.16)

which is much smaller than the leading order correction |dg| ~ ‘/Tic in Eq. (4.5), due

to the small factor % On the other hand, in the unlikely case that 1 —¢; < ¢ &~ %,
1

¢1 ~ 1, the sum is

1 c 1 V2 c1
— 1-— ClLR ———C R ———C X —. 4.17
4\/5( 0"~ a0 47 2 (4.17)

Using ¢; = 1,¢ = %, the factor 5t ~ 5. Hence, for extremely strong Coulomb in-

teraction A, the correction to the tunneling exponent due to a; can be as large as
5 X |dg| ~ %ﬁc. This destroys our claim that the 113 state predicts the correction
tunneling exponent ~ 0.38 measured in the experiments. Certainly, neither of the
above extreme cases is practical. The more likely case is a moderate Coulomb in-

teraction Aq, for example ¢; =~ 0.5. In such a case, Eq. (4.16) is applicable. We find

V2

4C.

that the correction due to a; couplings is much smaller than |0g| ~

The off-diagonal elements as, as couple &, with (52” $_ with qg‘;“ and &n with

7o

¢, respectively. For all of these couplings, the “first-generation” corrections are

quadratic in ¢. This is because the field ggfl does not show up in the definition of
quasiparticle operators, Eq. (4.13). In general, the combination of as, ag with a; may

generate negligible “higher-generation” corrections.
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In conclusion, for a moderate interaction between the integer edge modes in
the first Landau level and the fractional edge modes in the second Landau level,
the correction to the tunneling exponent is much smaller than the leading order

correction |dg| in Eq. (4.5).

4.3 The II-shaped gate

In this section, we consider quasiparticle tunneling between two II-shaped gates.
We show that the interaction between the inner edge channels and the outer edge
channels in the II-shaped gates gives a correction to the tunneling exponent g that is
much smaller than the leading order correction |0g| ~ 0.04 found in Eq. (4.5). This
correction does not change the fact that the 113 state predicts the correct tunneling

exponent g &~ 0.38 measured in the quasiparticle tunneling experiments.

Our argument parallels the logic of the discussion of integer edge modes in Sec-

tion 4.2, with slight changes in the details.

We start by writing down the K matrix and the potential matrix, including both
the outer and the inner edge channels in a II-shaped gate, as well as their interactions.
We will study the two models discussed in Subsection 2.4.3. Model 1 includes both
integer edge modes and fractional edge modes, while model 2 only includes fractional

edge modes. We first consider model 2, and then model 1.
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Model 2

We assume that the inner edge channels are an identical copy of the outer edge
channels. In model 2, the Coulomb interaction between the inner channels and
the outer channels is described by a term £, = —%&cqﬁpoﬁx(ﬁpl in the Lagrangian
density, where ¢,0 and ¢,; are the charged modes in the outer and inner edge

channels, respectively. The K matrix and the potential matrix are

2 0 0 0 20, v, 2X 0
0 -1 0 0 U v, 0 0
K = and V = , (4.18)
0 0 =20 20 0 2v, vy,
0 0 0 1 0 0 v vn

written in the basis (¢,0, ®no, @pr, dnr), Where the parameters v, vy, v,, are defined

after Eq. (4.3). To simplify the notation, let us define ¢ = UA to be the ratio which
P

characterizes the strength of Coulomb interaction A. Stability condition requires

¢ < 1. In Subsection 2.4.3, we estimated ¢ &~ 0.45 for model 2.

The tunneling exponent between two Il-shaped gates is simply twice the scaling
dimension of the most relevant quasiparticles in the outer edge channels. To compute
it, we need to simultaneously diagonalize the K matrix and the potential matrix in
Eq. (4.18). We first diagonalize the two matrices in subspace (¢,0, ¢no) and subspace

(¢p1, dnr). This can be done by the change of variables introduced before Eq. (4.4),

Qng,pI = \/§COSh e(pr,pI + sinh 6¢n0,n[

(ﬁnO,nI - \/§Sinh 9¢p0,p[ + cosh e(bnO,nI; (419>

where tanh 20 = ¢ = ;fi—”f]z ~ %. By smallness of ¢, we know 6 is a very small angle
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such that sinh f ~ tanh 6 ~ %tanh 20 = %c. After the change of variables,

1 0 0 0
0 —1 0 O
K = (4.20)
0 0 -1 0
0 0 0 1
and
U, 0 Acosh? @ —%)\ sinh 26
0 Un —1Xsinh20  Asinh®6
V= (4.21)
A cosh? @ —%A sinh 26 U, 0
—1Xsinh20  Asinh®6 0 Tn
in the basis (épa,éno,épl,q@m), where 0, = m(cosh2 v, — sinh®Ov,,), 0, =

—1(cosh® v, — sinh®v,). Since sinh*# ~ 1> < 1, we know that 0, =~ v,

Uy, & vy, so that ¥, > 0,. Also, ¢ = »UA ~
P

>

Next, we diagonalize the subspace ((;Bpo, gz~5p1) by the change of variables: ®,5 =
cosh B(;Spo + sinh qupf and ®,, = sinh ,Bépo + cosh BQNSPI, where tanh 23 = ’\C%;:l% ~

% ~ ¢, since cosh?§ ~ 1. Using ¢ ~ 0.45, we find 23 ~ 0.4847 such that sinh 8 ~
0.245, cosh B =~ 1.03, sinh 25 ~ 0.504 and cosh 23 =~ 1.12.

In the basis (®,1, bno,s D, gzgnl), the K matrix remains unchanged while the po-

tential matrix

V, by 0 b
by @ b b

v=| " P (4.22)
0 b V, b

by by by Uy
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where V, = m@p ~ 0.90, > ¥y, by = —3Asinh 26 cosh 3, b, = A sinh 26 sinh 3

and b; = Asinh? §. The generic quasiparticle operator can be written as

(illiortiagal _ gillp60tindnol — gillabpotindnol — cillycosh B2y Iy sinh B2 tIndnol (4 93)

where [, = [; + Lo = %2, l~p = \l/—"gcoshe —{,,sinh 6 and l~n = [, coshf — \l/—%sinhe.

At this point, we set by = by = b3 = 0 in the potential matrix to compute
the scaling dimension A” of the generic quasiparticle in Eq. (4.23). Later, we will

consider the corrections due to these off-diagonal elements. We have

20" = l?)(cosh2 B + sinh? B) + I2
=2A+ l?)(cosh 26—1)

~ 20 +0.1217, (4.24)

where 2A = 2+ 2 by Eq. (4.4). As discussed in Section 4.1, the four most relevant

1

quasiparticles correspond to [, = £5

A, = :I:% and [, = j:%,ln = :F%. We pick one of

"
min*

these quasiparticles, defined by [, = [,, = %, and evaluate its scaling dimension A

We have l~p = ﬁi cosh — %Sinhé’ and [,, = %cosh@ — ﬁi sinh 6. Hence,

2A//.

1 1 1
= 2Anin + 0'12(§ cosh 20 + 3 sinh? 0 — m sinh 20)

1 1
~ 2Amin + 0.12(= —

(8 42
~ 2A i + 0.015 — 0.021¢

)

~ 2Apin + 0.013, (4.25)

where 2A,;, is given in Eq. (4.5) by picking up the minus sign. We have ignored

the terms that are quadratic or of higher orders in ¢ by taking the limit sinh 26 =
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\/1%7 — ¢, cosh 20 = ﬁ — 1, sinh? 6 ~ % — 0. In the last line, we set explicitly
c= 1—10. We refer to the difference 2A”. —2A;, ~ 0.013 as the “zeroth-generation”
correction to the tunneling exponent, due to the shape of the II-gates.

Now, we study the corrections to the tunneling exponent (or to 2A”. ) due to

the off-diagonal elements by, be, b3 in Eq. (4.22).

The term b; = —%)\ sinh 20 cosh 3 couples the fields ®,, and gz;no. If we were
to remove this coupling, we must rotate the two fields by a small angle v: ®,, —

cos YP 5 + sin %Eno, ggno — —siny® o + cos vgzgno, where

1 1A 1A
siny ~ 5tan27 S cosh B sinh 20 ~ 37 cosh 3 sinh 26
p— Un p

1A
= ——— cosh 25 cosh (3 sinh 26
20,

1
=3 sinh 23 cosh /3 sinh 26

~ —0.26c, (4.26)

where we have used V, = mﬁp ~ 0.9, > U, tanh 28 ~ % ~ ¢, sinh 20 ~ ¢ and

the numerical value of 8. How does this rotation affect 2A”. 7 The leading order
correction comes from the cross terms in the square of the prefactor of ®,, and the
square of the prefactor of ¢,0, after the rotation. By Eq. (4.23), the two cross terms

both equal l~pl~n sinh 8 sin 2, up to a sign. Consider the most relevant quasiparticle

l, =1, = 5. We have I, = ﬁcosh@—%sinh@ ~ ﬁi and [, = %cosh&—ﬁsinh& ~

< 1,coshf =~ 1. Hence, l~pl~n sinh (sin 2y ~ 2l~pl~n sinh #sin~y ~

N

, using sinh 6 ~
eV siny = —0.023¢ ~ —0.002. Moreover, one can show that the two cross terms
are actually opposite in sign. Hence, the “first-generation” correction, due to solely

the coupling between ®,, and ggno, vanishes. (This is expected since the coupled

two modes ®,o and ggno propagate in the same direction and both appear in the



129

definition of a quasiparticle operator, Eq. (4.23)). Certainly, there may be “second-
generation” corrections, linear in sin~y o ¢, due to the combination of this coupling
with other off-diagonal elements in Eq. (4.22). But their magnitudes cannot exceed
the upper bound |l~pl~n sinh sin 2| &~ 0.002, set by the magnitude of the cross terms

in the “first-generation” correction.

We note that b; also couples the fields ®,; and <;~5n1. The fact that gfsm does
not show up in the definition of a quasiparticle operator, Eq. (4.23), means that the
“first-generation” correction due to solely this coupling does not contain terms linear
in siny o ¢. Taking into account all off-diagonal elements in Eq. (4.22), “second-
generation” corrections linear in siny o ¢ may be generated, whose magnitudes are

subject to the upper bound |l~pl~n sinh /3 sin 27| ~ 0.002.

The term by = %)\ sinh 20 sinh 8 couples the fields ®,; and énO- One needs to
“rotate” the two fields by a small angle v/, ®,; — cosh~'®,; + sinh~/ (5”0, anO —

sinh ' ®,; 4 cosh/ dno, Where

1 1A 1A
sinh ' ~ 3 tanh 29/ = sinh 3 sinh 20 ~ —— sinh 3 sinh 26

§Vp+vn 2V,

1
= §~i cosh 23 sinh /3 sinh 20

Up

1
=3 sinh 23 sinh /3 sinh 26

~ 0.062c, (4.27)

to remove this coupling. There are two cross terms in the square of the prefactor of
®,, and the square of the prefactor of bno, after the rotation. The two terms are
equal in magnitude and have the same sign. They add up to the leading order term
~ —2l~pl~n cosh 3 sinh 27" ~ —% sinh+" ~ —0.005 in the “first-generation” correction,

which balances the positive “zeroth-generation” correction in Eq. (4.25).
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by also couples the fields @, and (5“1. Terms in the resulting “first-generation”
correction are at most quadratic in sinh' o ¢, again since anl does not appear in

the definition of a quasiparticle operator.

The term b; = Asinh?  mixes the fields ¢no, ¢n; with each other by small parts

1 1 0
sinh " ~ §tanh 27" = = —sinh’f =~ - —c* ~ L~ =~ 0.056c, (4.28)
v

1 1
2 b, 80, 80,0, 8

. 2 0] .
where we have used sinh? 6 ~ T L% % and ¢ & 2 ~ 0.45. The leading order

c Un On v

A

term in the “first-generation” correction is quadratic in sinh+y” o ¢. In general, there
may be “second-generation” corrections linear in sinhy” o ¢, due to the combination
of b with by, by, whose magnitudes are subject to the upper bound ~ ]l~ pZNn sinh 27| ~

|ﬁ§ sinhy”| & 0.02¢ =~ 0.002.

The total correction to the tunneling exponent due to the shape of the IlI-gates is
the sum of terms in Eq. (4.25) and after Eqgs. (4.26)(4.27)(4.28). It is much smaller

than the leading order correction |0g| ~ 0.04 in Eq. (4.5).

Model 1

Next, we study model 1. We assume that there is only one neutral edge mode,
propagating in the opposite direction to the charged edge mode. Let ¢,0, ¢, be the
neutral edge modes outside and inside the II-shaped gate, respectively. Let ¢,0, ¢,r
be the charged edge modes outside and inside the gate, respectively. The Coulomb

interaction between ¢,0, ¢,r is described by £y = —ﬁ%@mqﬁpoaﬂc%[. The complete
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K matrix and potential matrix are

20 0 0 20, Upn EX 0
0 -1 0 0 U Va0 0
K = and V = : (4.29)
0 0 —-%20 N0 2vu, up
0 0 0 1 0 0 vy vy

written in the basis (¢,0, Pno, @pr, Pnr). We again define ¢ = % to be the ratio

which characterizes the strength of Coulomb interaction A between ¢,0, ¢,r. Stability

condition requires ¢ < 1. In Subsection 2.4.3, we found ¢’ =~ 0.9 for model 1.

For model 1, a different transformation is needed to diagonalize the two matrices

in subspace (¢,0, ¥no) and in subspace (¢,r, ¢nr). Eq. (4.19) modifies to

. 2 '
Gpopr = \/;cosh 0¢,0,p1 + sinh 0,0 o1

- 2

Onomr = \/;smh 0¢,0,p1 + cosh 0,0 nr, (4.30)
where tanh20 = ¢ = %. Here we make use of the estimate of parameters in
Section 4.1: ffr’g: ~ 5. Hence, we have ¢ ~ ‘1/—(‘;7’ ~ 0.22 for model 1.

After the transformation in Eq. (4.30), the K matrix and potential matrix in
Eq. (4.29) reduce to Eq. (4.20) and Eq. (4.22), respectively. The rest of the arguments
are the same as those in model 2. Neglecting the off-diagonal elements in Eq. (4.22),
the scaling dimension of a generic quasiparticle is given in Eq. (4.24), except that

here the numerical values of ¢ and ¢ are different: ¢ =~ 0.22 and ¢ ~ 0.9. We have
2 1 972
2A" —2A =~ lp(cosh 20 —1) ~ 1.3Zp (4.31)

where tanh28 =~ ¢ = 0.9 such that 25 =~ 1.47, sinh25 ~ 1.0, cosh2p ~ 2.3,
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sinh 5 ~ 0.8, cosh f ~ 1.3.

In model 1, the coefficients ZN,,, I, defined in Eq. (4.23) are: l fl coshf —
l,,sinh # and l~n = [, coshf — \/glp sinh 0. As discussed in Subsection 2.4.3, we set
l, = %o to reproduce the e/4 electric charge of the most relevant quasiparticles.

We assume this is the only difference, between model 1 and model 2: We still set

l, = % Hence, for the most relevant quasiparticle [, = [, = %, we have l~p =

cosh — 3 sinh 6 and l, = scoshf — sinh 6. Substituting l into Eq. (4.31),

2f

the “zeroth-generation” correction

\ﬁ

1 9 1
2A — 2A i = 1. S(E cosh 20 + = sinh? 6 — WiT sinh 26)
1 1
~13(————
<40 4+/10 )
~ 0.0325 — 0.103¢
~ 0.01, (4.32)
where we have ignored the terms that are quadratic in ¢ by setting sinh 20 = 16_62 —
¢, cosh 20 = — 1 and sinh?0 ~ £ — 0. In the last line, we set ¢ =~ 0.22.

\/7

Higher-generation corrections come from the neglected off-diagonal elements in
Eq. (4.22). These terms mix field operators with other field operators by small parts,
whose magnitudes are estimated in Eqgs. (4.26)(4.27)(4.28). The resulting corrections
are small. For example, the “first-generation” correction due to the “rotation” in
Eq. (4.27) can be estimated to be ~ —2l~pl~n cosh 3 sinh 27" ~ —\I/T% sinh v ~ —0.006,
using [, ~ #ﬁ, l, ~ 1, cosh 8 ~ 1.3, sinh+’ & 0.062c and ¢ ~ 0.22 for model 1.
This term balances the positive “zeroth-generation” correction in Eq. (4.32). The

total correction due to the shape of the II-gates is much smaller than the leading

order correction |0g| ~ 0.04 in Eq. (4.5).
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5.1 Introduction

The beautiful idea of topological quantum computation [7,8] offers a conceptually
simple and straightforward approach to quantum information processing: Logical
operations can be performed by braiding topological excitations; The memory re-
mains protected from errors as long as the ground state manifold is separated from
the excitation by a sufficient gap. Several systems are expected to host non-Abelian
particles which can be used to implement topological quantum computation. In par-
ticular, much attention has focused on fractional quantum Hall states in the second
Landau level [8], p-wave superconductors [25,59], and heterostructures of supercon-
ductors and topological insulators [60]. In a majority of those systems, topological
excitations are bound states of Majorana fermions. Majorana fermions are insuffi-
cient for the universal quantum computation [8,145,146] but they do provide a route

to topologically protected memory.

A Majorana fermion can be thought of as a half of a complex fermion. Thus, a
system of two distant Majorana fermions y; and 7, possesses two degenerate quantum
states which differ by their fermion parity. Those two states can be used to form
a gbit (strictly speaking, one needs four Majorana fermions but this will not be
important below). No local operators that affect parity can be constructed from
~v1 and 9 and hence the gbit enjoys topological protection. The situation changes,
if other low-energy fermionic excitations are present. For example, a Majorana
fermion in the core of a superconducting vortex is separated from other excitations
in the vortex by a tiny minigap [62,63]. Within the mean-field approximation those
excitations do not interact with Majorana fermions but corrections to the mean-field

theory are always present and can be significant and comparable to the minigap .

LA crude estimate of the interaction between fermions, localized in a vortex core, can be obtained
from the following model. We describe the core as a disk of normal metal, separated by an infinite
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As a result, the parity of the Majorana gbit no longer conserves.

An elegant way around this problem was proposed by Akhmerov in Ref. [147].
The topological charge of a closed subsystem that contains a Majorana fermion must
always conserve. As a consequence, the local part I' of the fermion parity operator
can be used in place of the original Majorana fermion to obtain a protected gbit.
The form of the local parity operator I' does not depend on any details of the closed
system except the number of its degrees of freedom. Thus, the same solution works
for any interaction, weak or strong, and even time-dependent Hamiltonians. The
only weakness of the proposal is related to the fact that a Majorana gbit is never
an ideal closed system [64-67]. For example, it can exchange fermions with metallic
gates used to control the system [68]. Another problem comes from quasiparticle poi-
soning [69-78|. In the ideal equilibrium limit, the number of bulk excitations scales
as exp(—A/T), where A is the energy gap, and hence is vanishingly small at low
temperatures. However, in real low-temperature superconductors a nonequilibrium
quasiparticle population is present and may considerably limit the gbit lifetime. The
local parity I' is much more vulnerable to these and other decoherence mechanisms

than an individual Majorana fermion.

Ref. [148] has argued that other fermionic zero modes can be used to build a
gbit with a longer lifetime than in Akhmerov’s proposal. An appropriate zero mode
has been identified for a quadratic Hamiltonian. Its use significantly increases the
decoherence time indeed. That observation could be anticipated from the fact that

quadratic Hamiltonians correspond to the mean-field approximation. One can ex-

barrier from the rest of the system. The radius of the disk r ~ hivp /A, where v is the Fermi velocity
and A the bulk gap. Bogoliubov quasiparticles do not participate in the long-range Coulomb
interaction. Their short-range screened Coulomb interaction has the radius of I ~ 1/kp, where kp is
the Fermi momentum. Its strength U ~ hvpkpr. Hence, the interaction energy of two quasiparticles
can be estimated as U(l/r)? and is comparable with the minigap. Additional contributions to the
interaction come from the BCS attraction between electrons.
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pect similar behavior in the limit of weak interactions. What happens beyond that
limit remains an open question. We answer that question below. We find sim-
ple analytic expressions for all zero modes of a general fermionic Hamiltonian, use
those expressions to estimate the maximum decoherence time, and give an algorithm
for designing a gbit with the longest lifetime. At weak interaction, in a system of
2N + 2 Majorana fermions, the lifetime 7 can be increased to about 2N, where
is the decoherence time of the gbit, based on the local parity operator I'. At strong

interaction the gain in the lifetime is less spectacular: 7 < 107y.

This chapter is organized as follows. As a warming-up exercise, in Section 5.2, we
consider the simplest case of one Majorana and one complex fermion. In Section 5.3
we classify all zero modes of a general interacting fermionic Hamiltonian and describe
those modes which can be used in a gbit. A general expression for their decoherence
time is obtained in Section 5.4. We estimate the maximal decoherence time for
strongly interacting systems in Section 5.5. Sections 5.2-5.5 focus on systems made
of fermions only. This is the main question addressed in this article. What happens
in the presence of additional bosonic modes, such as phonons, is briefly discussed in

Section 5.6. We summarize our results in Section 5.7.

In this chapter, we focus on explaining the physical picture and summarizing our

results. We refer all technical details to Appendix C.

5.2 One real and one complex fermion

This case is easy and always reduces to the mean-field limit considered in Ref. [148].

We will generalize for an arbitrary number of degrees of freedom in subsequent
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sections.

One complex fermion is equivalent to two real fermions: ¢! = (y; +iv2)/2. Thus,
it is sufficient to study the problem with three Majorana fermions g, 71, 72 with the

anticommutation relations {v;,v,;} = 20;;.

Let f be another Majorana operator, localized far away from the subsystem,
where ; live. Consider a Majorana operator F', constructed from ~;. Since F' obeys
the Fermi statistics and anticommutes with f, it is a polynomial of an odd degree
as a function of ~;, « = 0,1,2. F must also be Hermitian and satisfy the Majorana
condition F? = 1. Then the operator iF'f has two parity eigenvalues 1 which can
be used to store quantum information. The information is preserved as long as the
parity does not change. In a closed system, the parity conserves indefinitely as long
as I’ commutes with the Hamiltonian, i.e., is a zero mode. Thus, as the first step,

we classify fermionic zero modes.

The Hamiltonian that controls the 7; degrees of freedom is a Bose-operator and
reduces to a sum of products of even numbers of Majorana fermions. Since 77 = 1,

the Hamiltonian is quadratic:
H = 2i(apm172 + 17270 + a2yom) = ZZ Aijyinis (5.1)
(4]
where A;; is a skew-symmetric matrix. Any three-dimensional skew symmetric ma-

trix can be reduced to a block diagonal form

0 0 O
0 0 a [ (5.2)

0 —a O

SN
Il



138

by an orthogonal transformation 4; = > ; Oij7j, where 7; is a new set of Majorana
operators. Hence, the Hamiltonian can be rewritten as H = 2ia7¥;7,. In order to
identify fermionic zero modes F' we need to compute the commutator [H, F| = 0. We
find that all (Hermitian) zero modes F' reduce to linear combinations F' = a7 + ST
with real coefficients o and 3, where I' = 19,7,7» is the local parity operator. Since
F is a Majorana fermion, F? = 1. Therefore there are only two possibilities for
F (up to an overall sign): F' = £5, or F' = £I'. The first choice corresponds to

Ref. [148] and the second choice coincides with Akhmerov’s proposal [147].

Both choices would work equally well in a closed system. We now wish to include
decoherence effects due to external degrees of freedom. As argued in Ref. [148], the
decoherence time 7 for F' = I is shorter than the decoherence time 7y for F' = 7.
We review the estimate of the lifetimes below. We generalize it for larger systems in

subsequent sections.

The lifetime depends on the details of the interaction with the bath. Thus, for
the most general case, only a crude estimate can be obtained for the ratio of 75 and
7. Our estimate is based on a simple model of a bath as a system of noninteracting
electrons ¢, ; with the Hamiltonian Hj = Z,“ emczjickﬂ-. The index £ is continuous
and ¢ labels various discrete degrees of freedom. The calculations simplify slightly, if
we assume that each operator 4; couples only with the bath fermions labeled by the
same index ¢. Thus, the interaction with the bath is described by the Hamiltonian

Hp =3 5 Myi(t)Yick, + H.c.

We will estimate the lifetime 7 of a gbit by computing how long it takes until
the bath flips the sign of the parity eigenvalue iF'f = £1. A similar estimate can be
extracted from the time dependence of the parity correlation function C(s) = (iF(t =

0)fiF(t = s)f) and the condition C(7) ~ C(0)/e = e~!. Both approaches also lead



139

to similar results in a system with an arbitrary number of Majorana fermions.

Let the system be in an initial state |0) with a definite parity of the gbit ¢(t = 0) =
(0liF £10). ¢(0) can be set equal to one without loss of generality. In order to compute
the gbit lifetime we need to estimate the time-dependence of q(t) = (V(t)|iF f|i(t)),
where 1(t) is the time-dependent wave function with the initial condition |¢(0)) =
|0). Let us find the probability of the transition to the state |1,)|¢s) during the time
interval ¢, where [¢,) is a wave function of the gbit and |¢),) a state of the bath.
The probability is given by Fermi’s golden rule, p ~ t|(1,| (5| Hr ,,|0)|?, where Hp,,
is the Fourier harmonic of the interaction at the frequency w, determined by the
energy conservation: hAw = FEgna — Finitia. The matrix element in the above formula
is a linear combination of the products of the matrix elements (1,]9;|0) and matrix
elements of the fermion operators in the bath. The relevant matrix elements and
densities of states depend on the details of the physical realization. For the sake of
a general estimate, we use the simplest assumption that the probability to find the
qbit in a common energy and total parity eigenstate |¢),) is P, = At Y. |(1y]7:0)|?,

where A does not depend on [t),). It is easy to compute ¢(t) now:

a(t) =1 = At Y (gl Bl0) + At Y~ (W liF flog) (gl 5:10)

i,wq iﬂ/’q

=1 — At Y _[{0[5710) — (O3 F f4:[0))], (5.3)

(2

where it is legitimate to include |¢,) = |0) in the sums in the first line. By setting
F = 3y we get q(t) = qo(t) = 1 — 2At at t < 1/A. By setting F' = ' we find
q(t) = qr(t) = 1 — 6At. This shows that 7y = 3 ~ 1/[24].

The above results crucially depend on the existence of a linear zero mode in

any system of three Majorana particles. Such modes do not exist [149] in a generic
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system with more than three Majorana fermions. We address the structure of the

zero modes for an arbitrary number of the degrees of freedom in the next section.

5.3 Zero modes

We consider a system of an arbitrary odd number 2N + 1 of interacting Majorana
fermions 7, ..., ven. This is equivalent to a system of one Majorana and N complex
fermions. We first neglect the interaction with the bath. Then the Hamiltonian H

is a linear combination of various products of even numbers of Majorana operators.

As the discussion in the previous section shows, in order to construct a gbit, we
need to identify a fermionic zero mode operator F', constructed from ~;, such that
F = F', [H,F] = 0 and F? = 1. Then quantum information can be encoded in
the total parity operator ¢F' f, where f is a Majorana fermion far away from ;. We
start with finding all fermionic zero modes O, commuting with H, and impose the

Majorana condition O? = 1 later.

Obviously, I' = iNTI2Y v, is Hermitian and commutes with any Hamiltonian H.

The operator H also commutes with itself. Thus, any operator of the form

O = P(H)T, (5.4)

where P(x) is a polynomial, is a fermionic zero mode. We show in Appendix C.2 that
there are no other fermionic zero modes for a generic Hamiltonian H. We also find
that for a generic Hamiltonian, there are exactly 2V linear independent integrals
of motion of the above form. Note that the number 2V of fermionic zero modes

has been identified in Ref. [148] for non-interacting Hamiltonians and in the case of
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infinitesimal interactions. On the other hand, we establish a general result.

The number of the linear independent zero modes is easy to understand. We
first note that any fermionic zero mode can be obtained by multiplying a bosonic
zero mode by I'. This establishes a one-to-one correspondence between bosonic and
fermionic zero modes. Thus, it is sufficient to establish that there are exactly 2V
linear independent bosonic zero modes. For this end, we notice that the Hamiltonian
acts in the Hilbert space of dimension 2V defined by the (2N + 2) Majorana
operators 7, and f. There are 2V states of even parity i['f and 2V states of odd
parity ¢I'f in the Hilbert space. The two subspaces are connected by the operator
I'. The Hamiltonian and all bosonic zero modes commute with I' as well as with the
parity operator ¢I'f. Hence, they can be represented in the form of block operators
with two identical blocks in the even and odd subspaces. This means, in turn, that
it is sufficient to classify bosonic zero modes of the restriction of H to the even
subspace. After the diagonalization of the Hamiltonian in that subspace, we obtain
a diagonal matrix of size 2. Clearly, such matrix commutes with at least 2V linear
independent Hermitian operators that preserve the parity " f and commute with I,
i.e., bosonic zero modes. Moreover, there are exactly 2V linear independent modes

in the generic case of the Hamiltonian without degenerate eigenvalues.

Appendix C.2 contains a different proof, based on an explicit construction of the

zero modes for particular Hamiltonians.

It is also easy to see that for a generic Hamiltonian, 2V linear independent
fermionic zero modes can be selected in the form O, = H*T', k = 0,...,28 — 1.
Indeed, if those modes were linear dependent then one could find a polynomial P(x)
of a degree n < 2V such that P(H) = 0. Thus, P(E}) = 0 for all eigenvalues Ej, of

the Hamiltonian. However, in a generic situation there are 2V different energy levels
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E} in contradiction with the fundamental theorem of algebra. Hence, the modes Oy
are linear independent. Any other fermionic zero mode is a linear combination of
the modes Oy, i.e., satisfies Eq. (5.4), where the degree of the polynomial P(H) is

less than 2.

Not all zero modes O = P(H)T, deg [P(z)] < 2V, are suitable to build a gbit.
We need to impose the condition

0% = 1. (5.5)

This is equivalent to P?(H) = 1. In turn, the former condition simplifies to P(E}) =
+1 where By, k = 1,..., Ng = 2V, are the eigenenergies of H. All allowed polynomi-

als P can be written in terms of ) with the use of standard interpolation formulas,

e.g.,

ZP Ep)ITk %Ek o HnEka. (5.6)

The number of the possible choices of P depends on the number Nz = 2V of the
energy levels of H and equals 2¥2. This set is made of 2V#~! pairs of opposite

polynomials P and —P. Thus, there are 2V#~! ways to build a topological gbit.

The goal of the next two sections is to estimate the maximal lifetime for such

gbits in the presence of a bath.

5.4 Dephasing

In this section we derive a general formula for the lifetime of a gbit. We will use it to
estimate the maximal possible lifetime in a system of 2NV + 1 interacting Majorana

modes in the next section. The exact value of the lifetime depends on many details
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of the Hamiltonian and cannot be computed in a general situation. Thus, we limit

ourself to an estimate based on a simple model in the spirit of Section 5.2.

Our model Hamiltonian is the sum of three pieces, H+ H,+ H;, where H describes
the Majorana degrees of freedom, Hy, = Z,“ ekﬂ-cl’ick,i is the bath Hamiltonian, and
H; = sz M, i(t)vick,; + H.c. describes the interaction of the gbit with the bath.
Quantum information is encoded in the total parity operator P = i¢F' f, where F is
a fermionic zero mode (Section 5.3) and f is a Majorana fermion, located far away

from the Majorana fermions 7, ...,ven. As discussed above, F' is a polynomial of

)

v’s:

N
F =3 ") ah o B (5.7)
n=0  {k}

where ky < ky < -+ < kopy1 and {k;} is the shorthand for the set of the indices

ki,..., kany1. The fact that F' is Hermitian implies that the coefficients ay, . ., .,
are real. The normalization condition (5.5) means that
TrF? 9

In what follows we ignore the interaction between f and the bath and only
compute the lifetime due to the interaction of the bath with the Majorana modes
k. Assuming that the physics is similar in the regions, where F’ and f are localized,

one can expect that the interaction of f with the bath cuts the lifetime in half.

We assume that initially the gbit is in a common eigenstate |gx) of the total parity
operator P and the Hamiltonian H, P|q;) = £|q.). The 2V states |g) form an
orthonormal basis in the Hilbert space on which P and F' act. Due to the interaction
with the bath, the average ¢(t) = (P(t)) depends on time and eventually approaches

0. Since P? =1 for any choice of |gx), a convenient definition of the relaxation time
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18

T = = (5.9)

t=0 t=0

where the bar denotes the average with respect to all possible choices of |g;) and
the angular brackets denote the average with respect to the time-dependent wave

function.

In order to compute ¢(t) = (P(t)) we need to know the density matrix of the gbit
at the time t. This reduces to the calculation of the transition probabilities from the
initial state to all other states |¢;). The probabilities can be computed with Fermi’s
golden rule and depend on many features of the system. Following Section 5.2, we
make the simplest assumption that the transition probability between the states |g;)
and |g;), ¢ # j, has the form P,; = At >, {q:lvlg;)|?, where A does not depend

on ¢ and j. Then

q(t) = q(O)[1 =Y At[{gilvlae)*] + > At{gilvlas) (| Plai) (ilvslae)

1,J 1,

= (O0)[1 — 2N + 1)Af] + At Y {3, Pylar)

J

= (an|Plqr), (5.10)

where we include ¢ = k in the sums, use the fact that P is diagonal in the |g;) basis,
and set P, = iQ,f with

N

Qu=>Y_[1=202n+ DA™ > " ap,. . kyer T Y- (5.11)
n=0 {ki}
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Note that
— d(P(t)) Tr P, o dQ;
Al T 2(P(t)—, L | T 2(Qr ) o (5.12)

where the inner product (A, B) is defined in Appendix C.1 and we use the fact that
P, is diagonal in the |g) basis. From Egs. (5.12,C.5,5.9) one finds the decoherence

time
1

24% 7, 0(2n+1) X0, Qs

(5.13)

Eq. (5.13) can be used to estimate the decoherence time and select the most
robust of the fermionic zero modes, listed in Section 5.3, for use in a gbit. Longer

lifetimes correspond to zero modes, dominated by contributions of lower orders in

Y

Yi S.

5.5 The longest decoherence time

In this section we estimate the longest decoherence time that can be achieved in an
interacting system of 2N 4+ 1 Majorana fermions. As is illustrated in the case of
N =1 in Section 5.2, at small N all zero modes can be expected to have comparable

decoherence times. Thus, we concentrate on the limit of large N.

Based on Eq. (5.13), one expects that the local parity fermionic zero mode I'
always corresponds to the shortest decoherence time. Thus, any other choice of the
zero mode improves the dephasing time. What is the maximal improvement one can
achieve? Since the number of the Majorana zero modes is very large at large N, one

might think that at least one of the very many Majorana modes has the lifetime,
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much greater than 7p. It turns out, however, that such intuition does not work for

strongly interacting systems.

We start with an easy case of a noninteracting system, where the gqbit Hamiltonian
H is quadratic in Majorana operators. Similar to Section 5.2, an orthogonal change of
the variables reduces the Hamiltonian to the canonical form H =1 25:1 AnYon—1V2ns
where 7, (kK = 0,...,2N) are new Majorana fermions and 7, does not enter the
Hamiltonian. The operator 7, is a fermionic zero mode. It is a linear combination
of the original Majorana fermions 7;. Consider a gbit, based on the Majorana mode
- Eq. (5.13) shows that the decoherence time of such gbit does not depend on

the system size N and equals roughly 1/[2A]. For comparison, the decoherence time

2N
n=0

7 for the local parity operator I' = iV I12Y v, scales as 1/N. Thus, choosing 7, to
build a gbit gives a considerable advantage at large N in agreement with Ref. [148].
Unfortunately, such long lifetime cannot be obtained in a general strongly interacting

system.

To see why, we start with a crude simplistic estimate. We will see that it has the
same order of magnitude as the rigorous result. The fermionic zero modes, classified
in Section 5.3, are linear combinations of products of odd numbers of Majoranas.
For our estimate, we will treat the zero modes as random vectors in the linear space
of all such products. The total number of linear independent fermionic zero modes is
2N In a system with 2N +1 Majorana fermions, one can construct exactly 22V linear
independent products IT;, of odd numbers deg[Il;] of Majorana operators. For the
sake of a crude estimate, let us make a simplifying assumption that up to constant
prefactors a set of 2V linear independent fermionic zero modes can be chosen from
those 22V products, i.e, monomial functions of Majorana operators. We will denote

those linear independent modes Fi, ..., Fyn.
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Let us estimate the decoherence times for the above 2V modes Fy. Eq. (5.13)

shows that this is sufficient to identify the longest possible decoherence time.

A mode Fj is given by a product of deg[F)| Majorana operators. As Eq. (5.13)
shows, to find the maximal decoherence time we need to identify the mode F,;, with
the minimum degree deg[Fyin] = dmin- The dephasing time can then be extracted
from the value of d,,;,. Assuming that each F), is randomly chosen among II;, one
expects that F, is typically one of the K = 2%V /2N = 2N operators II; of the
lowest degrees deg[ll}] = d; < dy < --- < dg. For a crude estimate we can set
dmin ~ di. Then Eq. (5.13) yields the dephasing time ~ 1/[2Adk|. The number K
of the operators I with deg[Ily] < di can be easily found from combinatorics as
K = LCg%. ., where the binomial coefficient Cg, | = (2N +1)!/[dg! (2N + 1 — dg)!]
and (dx/2N)? < L < (dg + 1)/2. Since we are interested in large N, the binomial

coefficient can be approximated with the Stirling formula and

N

K ~ \/ziﬁ {(g)m (1 - %)16/1 , (5.14)

where we define € = dx/N. Next, we use the fact that K = 2V to obtain € ~ 0.22.
Hence, deg[Fiuin| ~ 0.2N and the decoherence time (5.13), Typax ~ ﬁ. This scales
as 1/N and is only one order of magnitude better than the estimate 7 ~ 1/[4ANA]

for a gbit, constructed from the local parity operator I' in place of Fi,.

The above conclusion agrees with the rigorous estimate from Appendix C.3. The
maximal decoherence time depends on the details of the Hamiltonian and can be
higher than the result of Appendix C.3 for special Hamiltonians. To formulate our
results precisely, we introduce a measure on the ensemble of all possible Hamiltonians
H of a system with 2N + 1 Majorana fermions. Specifically, we assume that the

measure depends only on the inner product (H, H), defined in Appendix C.1. The
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details of the dependence are not important. Then, in the limit of a large N, our
estimate applies to all Hamiltonians except a set of measure 0. We find that the
dephasing time

(5.15)

Tmax <

5.6 Interaction with bosons

So far, our focus has been on a system of fermions. In realistic systems, interaction
with Bose degrees of freedom, such as phonons, is possible. The arguments from
Sections 5.3 and 5.4 easily translate to such situation. We first remove physically
unimportant high energy states from the Hilbert space of bosons. Let the dimension
of the truncated Hilbert space of bosons be D,. Any operator of the form (5.4),
where the Hamiltonian H includes both Fermi and Bose degrees of freedom, is still
a fermionic zero mode; All fermionic zero modes satisfy (5.4). The number of the
linear independent zero modes changes but can be found with essentially the same
argument as in Section 5.3. It equals Dy2". Exactly the same prescription (5.6) as
in Section 5.3 can be used to construct zero modes, satisfying Eq. (5.5). The number
of the ways to build a gbit is given by the same expression as before, 2¥2~!, where
the number of the different energy levels expresses now as Np = D2V for a generic

Hamiltonian.

The discussion of dephasing, Section 5.4, also applies. In particular, only a slight
change is necessary in Eq. (5.13). The coefficients ag,y in Eq. (5.7) should now be
understood as Hermitian operators agy in the Hilbert space of bosons. In order
to compute the dephasing time, Tr&fkl} /Dy, should be written instead of a%kl} in

Egs. (5.8) and (5.13).
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We were unable to extend the rigorous proof of the estimate (5.15) from Ap-
pendix C.3 to systems with bosons. Nevertheless, we expect the limit on the maxi-
mal decoherence time (5.15) to hold irrespective of the presence of Bose degrees of

freedom. This expectation is supported by the qualitative argument below.

We first note that there are D} linear independent Hermitian operators Ay, in
the Hilbert space of bosons. They can be selected so that Trfliflj = 0;;. Any of the

Majorana zero modes, satisfying Eq. (5.5), can be represented in the form

F=/Dyy W, Ayt (5.16)
where ky < ky < -+ < koyiq, m = 1,..., D? and Z[cis’){ks}]Q = 1. The dephasing

time is given by Eq. (5.13) with Cﬁ:,){ oy 111 place of ag,y. For the sake of our qualitative
argument we will treat the above Majorana zero modes (5.16) as random vectors in
the space of all possible fermionic operators. The dimension of the latter space is
D?22N Tt will be convenient to set

(n)

b
(n) _ m,{ks}
2B ey

This ansatz takes care about appropriate normalization conditions. For simplicity
we will assume that bfg){ks} are independent Gaussian variables. The results do

not depend on their variance and we select the distribution functions of the form

P“ﬁ?{ks}) ~ eXP[_(bEZ,){kS}

)2D322N /2]. This choice implies that (Y[, \]2) = 1.
Since there are 222"~ Majorana modes (5.16), we can neglect the choices of the

Dy2N b(n)

coefficients bf:;){ ko) whose joint probability is below 2~ . For example, > | . {ks}]Q,

is a random variable with the variance 2/[D222V]. Thus, we can neglect the probabil-

ity of the event that | Z[bs:){ks}]z —1] > 1/v/Dy2"N. Similar considerations show that
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we can neglect the probability of such configurations that ), ., o, N[bf;l?{ks}]Q ~ 1.

Eq. (5.13) then immediately leads to the estimate (5.15).

In contrast to Appendix C.3, the above simple argument is not rigorous. In
Appendix C.4, we use a rigorous approach to compare dephasing times for Hamilto-
nians, quadratic in Majoranas, in the absence and presence of bosonic modes. We
find that Bose modes shorten the decoherence time. Thus, we expect that interac-
tion with Bose modes improves the decoherence time in neither weakly nor strongly

interacting systems.

5.7 Summary

A topological gbit can be constructed from a fermionic zero mode of a system of
2N + 1 Majorana fermions. We classified such modes F} for a generic Hamiltonian
and found a simple analytical expression for all of them. We also proposed how to
design the gbit with the longest decoherence time. One first needs to identify the
modes, satisfying the Majorana condition FZ = 1. Second, one should use Eq. (5.13)
to estimate the decoherence time, corresponding to each choice of the zero mode, and
select the most robust Majorana operator. In noninteracting systems, the decoher-
ence times vary greatly, depending on the choice of F},. We found that the maximum
decoherence time does not depend on the system size in the absence of interactions.
On the other hand, in strongly interacting systems, the shortest decoherence time
T ~ 1/[ANA] and the longest decoherence time (5.15) differ by no more than one
order of magnitude. The contrast between interacting and noninteracting systems
is not surprising. In the absence of interactions, it is possible to find a subsystem

that does not feel most excitations in the bath. Such effectively isolated subsystems
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cannot exist in the presence of strong interactions.

Many-particle systems can exhibit many-body localization [150] (MBL) in the
presence of weak interactions. Localized states may support topological order [151,
152] and it was argued that MBL may be used to build robust topological memory
[152] in a large system. This does not conflict with our results in the case of strong
interactions, where we find a rapid decrease of the decoherence time as a function
of N. First of all, MBL occurs at weak interactions, where our results do not apply.
Even more importantly, a typical Hamiltonian in the space of all Hamiltonians,
Appendix C.3, involves the interaction of all pairs of Majorana modes. This is
natural for Majorana fermions, localized in the same vortex, but quite different from
what happens in systems with MBL. Such systems have zero measure in the space

of the interacting Hamiltonians at N — oo.

It was proposed in Ref. [148] that selecting a zero mode with the longest decoher-
ence time is a route to more robust topological quantum computation. Our results
show that such strategy is rather limited. The structure of all zero modes, except I,
is complicated and sensitive to the system details. It is not obvious how to access
them experimentally. Taking into account a relatively small gain in the decoherence
time from optimizing F}., we see that the advantages of such optimization are narrow.
The only ways to dramatically improve the decay time consist in 1) suppressing the
interaction with the bath; 2) reducing the interaction between the fermions that form
the gbit or 3) cutting the number of low-energy degrees of freedom by increasing the

minigap [153, 154].
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Figure A.1: The charge distribution is mirror symmetric with respect to the y = 0 plane. The
mirror-symmetric gate with the potential ® = 0 is shaded.

In this appendix we prove that the interaction matrix U;; in Eq. (2.17) is positive
definite. We consider a system with mirror symmetry, Fig. A.1. In Fig. A.1 the
x-axis is perpendicular to the plane of the figure and the mirror plane is defined by
the equation y = 0. The only assumption about the dielectric constant outside the

mirror symmetric gates is the mirror symmetry of its coordinate dependence.

Our effective models for edge states are one-dimensional and contain only the
coordinate x but the physical charge distribution is always three-dimensional. The
energy of the electrostatic interaction between the edge segments on the left and
right of the gate, Fig. A.1, depends on the whole three-dimensional distribution of

the charges.

The derivatives of the Bose fields 0,¢; in Eq. (2.17) are determined by the local
charge distribution. It will be convenient for us to consider a situation in which
the charge density p(r) = p(z,vy, z) does not depend on x and exhibits the mirror

symmetry p(x,y, z) = p(x, —y, z). Then all 9,¢; remain constant on the left and right
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of the gate with 0,¢;(left of the gate) = —0,¢;(right of the gate). The interaction
energy (2.17) becomes (+1/4m) fi)oo dr ) _;; Uij0rpi(x < 0)0,¢;(x < 0). The same
energy can be found from electrostatics. It is just the interaction energy of the charge
distribution on the left of the gate, p(z, vy, 2), y < 0, with the mirror symmetric charge
distribution p(z,y, ), y > 0. It is now clear that to prove the positive definiteness of
U it is sufficient to prove that the electrostatic interaction energy of a set of charges
on the left of the mirror plane with the mirror symmetric set of charges on the right
of the plane is always positive. Below we compute such electrostatic energy in the

presence of mirror symmetric metallic gates.

We set the electrostatic potential of the gates to zero. The electrostatic potential
®(r) outside the gates can be represented as the sum of two contributions. ®,(r) is
the electrostatic potential, created by the charges on the left of the mirror plane (i.e.,
the charges from the points with negative y). By definition ®; includes the effect
of the screening charges on the gate surface, i.e., satisfies the boundary condition
®,(r in the gate) = 0. ¥, (r) is created by the charges on the right of the mirror plane
in the presence of a screening gate. The mirror symmetry implies that ®,(z,y, z) =

®,.(z, —y, z). The total electrostatic energy is thus
0
E = /dl’dZ/ dyp(xaya Z)[q)l(l',y,Z)—i—(I)r(l',y,Z)]. (Al)
We wish to prove that the interaction contribution
0
B, = /d;t:dz/ dyp®, (A.2)
is positive.

Let us investigate the effect of two changes in the charge distribution on the
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energy.

1) We remove all charges on the right of the mirror plane, i.e., set p(x,y > 0, z) =

0. The electrostatic energy becomes

B = / dd: / io (2, 2)Bi(z, 5, 2) /2. (A3)

2) Alternatively, let us change the sign of all charges on the right of the mirror
plane: p(z,y,2) — —p(x,y, 2), y > 0. The potential becomes ®;(r) — P, (r). We have
created a situation with ®(x,y = 0,z) = 0. Hence, the total electrostatic potential
at y < 0 would not change after all charges with y > 0 are removed and the region
y > 0 is filled with metal. In the latter situation, the total electrostatic energy

becomes

By = / dvd /_ dyp(a,y, )iz, y, ) — Br(w, 1, 2)]/2, (A4)

where ®; and ®, are the same as in Eq. (A.1), ie., [®)(z,y,2) + . (z,y, 2)] is the

electrostatic potential of a mirror symmetric charge distribution.

According to a theorem of electrostatics [155], the energy always goes down if a
piece of metal is introduced into a system at fixed positions of free charges. Hence,
E, < E;. Subtracting E, from E; we find that Fj;, > 0 and hence Uj; is positive

definite.



APPENDIX B

Effect of Unscreened Coulomb
Interaction on Quasiparticle

Tunneling in the 331 State



157

In this appendix, we study the effect of unscreened Coulomb interaction on tunneling
exponents in the spin-unpolarized 331 state (Eq. (2.4)). The spin-polarized 331 state
(Eq. (2.5)) has the same “orbital” topological order as the spin-unpolarized 331
state. In geometry 2.1c where there is no unscreened Coulomb interaction across
the quantum point contact (QPC), the tunneling exponents predicted by the two
versions of the 331 state are the same. In geometries 2.1a and 2.1b, unscreened
Coulomb interaction couples contra-propagating charge densities on opposite sides of
a narrow QPC. The quasiparticle tunneling is hence nonuniversal and the tunneling
exponent depends on the details in the Hamiltonian. Nevertheless, the tunneling
exponents predicted by the two versions of the 331 state behave qualitatively similar
in geometries 2.1a and 2.1b, since the coupling between charged densities across a

narrow QPC is purely orbital which cannot distinguish the two states.

The Lagrangian density on the edge of the spin-unpolarized 331 state is

L=—— Z (K1501010:05 + Vij03010:0] (B.1)

1,J=12

with the K matrix and the potential matrix V'

3 1 Vir Vig
K = and V = , (B.2)

13 Vig Vao

where ¢, ¢o are two charged bosonic modes, Vi1, Voo are the effective velocities of

@1, ¢a, respectively, and Vi, is the effective interaction between the two edge modes.

Let us study the quasiparticle tunneling in the 331 state. We will consider the
three QPC geometries in Fig. 2.1. First of all, we study the physics on a single
fractional quantum Hall (FQH) edge. The edge can be either a long line channel

or a narrow QPC, depending on the particular geometry it belongs to. If the FQH
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edge is a long line channel, Coulomb interaction is absent and its Lagrangian density,
denoted by LW is simply the bare Lagrangian density in Eq. (B.1). If however, the
FQH edge is a narrow QPC, unscreened Coulomb interaction term should be added
to LY in order to obtain the Lagrangian density £V for a narrow QPC, as shown in
the following. We choose the point where quasiparticles tunnel to be x = 0. Then,
we break the FQH edge in consideration into two semi-infinite spatial pieces with

respect to the tunneling point by defining edge modes

¢1R(CIT) = ¢I(33)
¢rr(r) = ¢r(—x), (B.3)

for x < 0, where I = 1,2. By definition, both two spatial pieces are parameterized
in x < 0. The K matrix in Eq. (B.2) can be diagonalized by making a rotation in
boson fields,

1
Or = E(Cbl + @), (B.4)

and correspondingly, ¢1p 1 = \%((bl r.L £ ¢or 1), after which

1 ~ ~
AL i Z (K170:01r0:0 R — K150:011.0:01
-
+ V1020180 O R + VisOpbr1000 1) (B.5)

written in term of the split edge modes.

K = and V=4 (B.6)

are the K matrix and potential matrix after the rotation. 17++ = %(Vn + Vag +2Vi9),

Voo = L(Viy + Vao — 2Vig) and Voo = L(Viy — Vas). Viy, Voo > 0 by positive-
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definiteness of the potential matrix.

To proceed, we first assume that ¢, and ¢, are equilibrated so they have the same
effective velocity, Vi1 = Vag, in Subsection B.1. Tunneling exponents in this case can
be obtained analytically. In Subsection B.2, we will also consider the case when edge
velocities are not the same, in which tunneling exponents are studied numerically.
Subsection B.3, we study the influence of the underlying » = 2 integer quantum Hall
(IQH) edge on tunneling exponents. We show that the interaction between IQH edge

and the 331 edge does not change the behaviors of tunneling exponents qualitatively.

B.1 Equilibrated fractional edge modes

In this case, we have ‘7+_ = 0 and hence a diagonal potential matrix V. Let us in-
troduce Coulomb interaction which couples total charge densities between two semi-
infinite spatial pieces, which simulates the effect of unscreened Coulomb interaction

across a narrow QPC. This amounts to adding a term

L. = —4nA(pir + p2r)(p1L + por) (B.7)

to L, where ). is a positive real parameter characterizing the strength of repulsive
Coulomb interaction. We assume locality of the coupling, which is a legitimate
approximation since the interaction of charged density fluctuations is dipolar-natured
and dies out fast over distance in the presence of screening. Positive-definiteness of
the potential matrix after adding L. requires A\, < ‘7++. With bosonization identity
PIR,L = %(i@xgbml + kr1), I = 1,2, the Lagrangian density LY = LY + L, for a

narrow QPC is expressed in terms of the K matrix, K= Diag(4, —4,2,—2) and the
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potential matrix,

0 0 V._ o0

0 0 0 V__

in the basis (¢4r, ¢+, 0_r,»_1). To compute correlation functions of tunneling
operators and obtain the scaling dimensions, we must simultaneously diagonalize
these two matrices so that edge modes completely decouple. It suffices to do so in

the subspace (¢4 g, ¢41). With a Bogoliubov transformation

~ o on+1 n—1
orr = 2\/ﬁ ¢+r+ —2\/ﬁ 35
- +1
o1 = 1= NG ¢+R + 772\/5 P+L, (B.9)
where = 4/ % LV is diagonalized to be
1 - - - -
£ = = 40,0, 1Dsdr — A0,0+100041, + 2006-ROs—r
— 20— 1,01, + 40(0s015)” + 40(0n0p11)’
F AV _(0p0_R)* +AV__(9,0_1)%, (B.10)

where v = \/‘7+2 . — A2 is the effective velocity of both new fields ¢,z and ¢, . The

edge modes ¢_g, ¢_1, gE+R and $+L are all free.

The Lagrangian density £V describes the edge dynamics of a narrow QPC in the

331 state only after it is subject to the boundary condition

Prr = Px+L = P4 (B.11)
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at = 0, which removes redundant degrees of freedom at the tunneling point. We

thus have

Orr = i1 = b = /N0 (B.12)

at © = 0. The Lagrangian density £" for a long line channel is subject to the same

boundary condition.

Next, we compute the scaling dimensions of the most relevant tunneling operators
in the three QPC geometries. In geometry 2.1a, both the upper and the lower edges
are described by the Lagrangian density £V. In geometry 2.1b, the upper edge is
described by £V while the lower edge is described by £". In geometry 2.1c, both
two edges are described by £". On the edge of the 331 state, the most relevant
quasiparticle operators entering tunneling events are associated with +e/4 charged
quasiparticles, namely, e*® and e**?2. This is true both for a long line channel
and for a narrow QPC with unscreened Coulomb interaction, as far as the strength
of Coulomb interaction is not too strong. The most relevant tunneling operators
between the upper edge u and the lower edge d of the FQH liquid are e*i¥eFidt,
eii‘i’ge“d’g, all with the same scaling dimension. To obtain leading temperature
dependence of tunneling current, it suffices to pick one of the most relevant tunneling
operators and compute its scaling dimensions in different QPC geometries. We
consider O = ¢¥ e~ which describes the tunneling of quasiparticle ¢!, Let us
denote O in geometries 2.1a, 2.1b and 2.1c to be Oy, Op and O¢, respectively, with
scaling dimensions g4, g and go. Invoking boundary condition at x = 0, we rewrite

O 4 in terms of free fields,

-1 U -1 -1 Ju .1 7
O4 = VA% e B  Tm IR (B.13)
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The correlation function

t _ o3 (8U (1) (0)) o3 (6L (16 (0)) 3 (B4 ()Y (0)) 5 (64 (1)6.(0))
(04 (t)04(0)) = e e e e (B.14)

can be evaluated with the diagonalized £V to give g4 = }l + %. Similarly, we rewrite

Op as
Op = ei%dﬂe_i%‘ﬁeiﬁ&e%%(ﬁi, (B.15)
whose correlation function is
(O (H)O5(0)) = e3@-OO O3 (#LMOL0) o3, FENFLO) 36 (OO, (B.16)

The correlation functions of ¢% are computed with £ while those of ¢* and qglfr

are computed with £V¥. The scaling dimension is evaluated to be gg = 1% + ﬁ. In

geometry 2.1c, the tunneling operator is
Oc = Va1V ¢TIV (B.17)
The correlation function is
(OL(1)Oc(0)) = 03 (0" (192 (0)) o3 (62 (192(0)) o 5(8 (194 (0)) o 5(8¢ (1) (0)) (B.18)

3

and the scaling dimension is gc = £.

Lastly, we verify that the general discussion in Sec. IT holds for the 331 state so
that the scaling dimensions computed above are indeed the tunneling exponents in

respective QPC geometries. The total electron number operator on the upper edge
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of the 331 state is
NY = g /d$81¢+ + %(kF,l + kF,Q)L' <B19)

Substituting N* into Eq. (1.99) and using [¢/{(2), ¢ (/)] = imisgn(z — a’)o",
(0" (x), 9" ()] = imisgn(z — 2/)6* and [p4(z),d_(2')] = 0, where p,v = u,d,
we recover the expressions of tunneling current operator and tunneling current in

Egs. (1.100) and (1.103).

As we see, the tunneling exponents in geometries 2.1a and 2.1b due to the tun-
neling of quasiparticle ¢! depend on the velocity Vi; of ¢, edge, the interaction
V1o between two edges and the unscreened Coulomb interaction A. across the QPC.
Specifically, they are functions of \./ \N/++, which is the reduced strength of unscreened
Coulomb interaction valued in unit of 17++. On an edge with large velocity, quasipar-
ticles move fast and do not feel appreciably the Coulomb interaction across the QPC,
which obstructs their tunnelings. In the extreme case when edge velocity Vi1 — oo,
quasiparticle dynamics and tunneling are completely unaffected by Coulomb inter-
action and we have g4 = gp = %. In Fig. B.1, we plot tunneling exponents in
three QPC geometries as functions of A,/ ‘7++. By fixing ‘7++, we focus on the effect
of unscreened Coulomb interaction only. We immediately observe from g4 and gp
that tunneling exponents are increased by Coulomb interaction. On the contrary,
gc remains unchanged as geometry 2.1c involves no narrow QPCs. In addition, the
tunneling exponent gg in geometry 2.1b is the arithmetic mean of the tunneling ex-
ponent g4 in geometry 2.1a and the tunneling exponent go in geometry 2.1c, which
agrees with measurements in tunneling experiments, such that the effect of Coulomb
interaction depends additively on the number of narrow QPCs in the geometry. The
divergent behaviors of tunneling exponents near \./ ‘7++ = 1 should not be a concern,

as our discussion has always been limited to the regime of weak Coulomb interac-
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Figure B.1: Tunneling exponents as functions of the reduced strength of unscreened Coulomb

interaction (horizontal axis) in the 331 state. A, = 0 and \./V,, = 1 correspond to vanishing and

infinitely strong Coulomb interaction, respectively. At A\, =0, g4 = g = gc = %.

tion. For a very strong Coulomb interaction, the physics near the QPC may be
tremenously altered that a Luttinger liquid theory is no longer a valid description.
Locating experimentally measured g4, gg on the plots, we find they correspond to
Ae/ 17++ ~ 0.44,0.49, respectively. Hence, the measurements in geometries 2.1a and
2.1b can be explained as obtained in the 331 state under weak unscreened Coulomb

interaction across narrow QPCs.

B.2 Non-equilibrated fractional edge modes

In the absence of edge mode equilibration, the effective velocities of ¢, and ¢9 do

not equal and we have nonvanishing velocity anisotropy, ‘~/+, # 0. In the basis
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(¢+r, ¢+L, O_R, ®_1), the potential matrix is

N X Vi 0 V.
Ve=al| 70T . (B.20)
V.. 0 V_ o0

0 V.. 0 V__

Tunneling exponents in this case are functions of four parameters: ‘N/++, 17__, I7+_ and
Ae. We are primarily interested in three physical linear combinations of these param-
eters: the mutual interaction Vi between two edge modes, the velocity anisotropy
‘7+_ and the unscreened Coulomb interaction \.. Below, we study numerically how
they affect the tunneling of quasiparticle €' in geometry 2.1a. Their effects on tun-
neling in geometry 2.1b are the same as in geometry 2.1a, but are halfly pronounced.
We show that despite various parameters in the potential matrix, (1) the smallest
possible value that can be achieved for tunneling exponent g4 is %, and (2) given

fixed other parameters, g4 always increases monotonically as . increases.

As we have seen in the case of equilibrated edges, tunneling exponents diverge
when unscreened Coulomb interaction \. is too strong to destroy the positive-
definiteness of potential matrix. This is also true in the case of non-equilibrated
edges. Our discussion must be limited to the situation when the smallest eigenvalue

of potential matrix is positive. We ensure this by requiring

~ V2
A < Vg — % (B.21)

We first study g4 as a function of the mutual interaction and unscreened Coulomb
interaction, at given velocity anisotropy. Noticing the fact that prefactors of the

potential matrix do not enter tunneling exponents, we factor an energy scale Vj out of
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the potential matrix so that g4 can be viewed as a function of dimensionless reduced
parameters valued in unit of Vj: ‘71+ = ‘7++/V0, V= ‘7__/1/0, ‘71_ = ‘7+_/V0 and
AL = A/ V. Also, V[, = Vio/Vh. Then we set a constraint

(Vi)

Vi =1l42= (B.22)

on parameters such that as long as A, < 1, Eq. (B.21) is satisfied. The constraint
removes one independent parameter in g4 so that at fixed 171_, ‘71 + and hence V)
decrease as V'_ grows. Then, tuning VT s equivalent to tuning Vj, and we can
study ga as a function of V{, and A7, as shown in Fig. B.2(a) where we set ‘7}27 =1
First, we plot the Al = 0 cut of Fig. B.2(a) in Fig. B.2(b), where g4 is a function of
v (V]5). We see that g4 is a flat line with height %. This is expected because when
AL = 0, the only remaining interaction Vj5 couples edge modes propagating in the
same direction. g4 in this case is universal and is independent of V5. Next, we look at
g4 as a function of V"_ at nonvanishing Coulomb interaction. Fig. B.2(c) shows the
AL = 0.5 cut of Fig. B.2(a). A minimum of g4 at intermediate strength of interaction
V' _is observed. Such a minimum is a common behavior of tunneling exponents when
there is interaction coupling counterpropagating edge modes entering the tunneling

operator. The g4 minima at various A values define the “valley” in Fig. B.2(a). We

inspect the suspicious valley to make sure it does not contain g4 values below g.
In Fig. B.2(d), we plot the cut of Fig. B.2(a) inside the valley, as well as two cuts

parallel and close to but outside the valley. We see that inside the valley, g4 starts

3

from 3

at A, = 0 and increases monotonically as A grows, although not as fast as
ga along the cuts outside the valley. Hence, we have confirmed Statements (1)(2) in
Fig. B.2(a). In general, at any given velocity anisotropy XN/];_, both statements can

be verified, despite that the location of g4 minima valley may change.

To study g4 as a function of the velocity anisotropy and unscreened Coulomb
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Figure B.2: The tunneling exponent in geometry 2.1a in the absence of edge equilibration: (a)
as a function of V"_ (V},) and X", at ‘71_ =1; (b) AL =0 cut in (a); (c) AL = 0.5 cut in (a); (d)
Inside (solid) and near (dashed and dotted) the “valley” in (a), with dotted line more outside; (e)
as a function of ‘717 and A7, at V5, = 10; (f) AL = 0.5 cut in (e).
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interaction, we fix V{5 = 2(V7, — V"_), in addition to Eq. (B.22). In Fig. B.2(e),
we plot g4 as a function of \71_ and A, at V, = 10. Along any constant-vl_
cut, g4 increases monotonically as A, grows. The global minima of g4 occur at
vanishing Coulomb interaction A = 0, or when ‘Z[_ — 00. Since both edge velocities
Viy, Voo > 0, the latter case implies an infinite velocity Vi; on ¢; edge. In such a
case, quasiparticles on ¢; edge move so fast that they behave and tunnel as if they
did not feel Coulomb interaction across the QPC. In Fig. B.2(f), we plot the A\ = 0.5
cut of Fig. B.2(e), which clearly shows the effect of edge velocity on quasiparticle
tunneling. The larger the ‘71_, the slower the rate of growth of g4 with increasing

AL As VI_ — 00, ga — 3.

From above analysis, we see that Statements (1)(2) are satisfied regardless of
the velocities and the interaction of two edge modes in the 331 state. The absence
of equilibration on the edge of the 331 state does not invalidate the fact that we
can attribute the larger measurements in geometries 2.1a and 2.1b to the effect of

unscreened Coulomb interaction across narrow QPCs.

B.3 Influence of integer edge modes

We study the influence of v = 2 IQH edge on tunneling. We still consider the
tunneling of quasiparticle e’**. Let ®;, ®, be the two integer modes on IQH edge.
To reduce the number of parameters in discussion while keeping essential physics,
we assume equilibrated integer edge modes at the same velocity ve and equilibrated

fractional edge modes in the 331 state, V17 = V5. The Lagrangian density for v = 2
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IQH edge is

1
Lo=—1| D (0i10:P1 + v80:P10,P1) + 2091020, 10, Do), (B.23)
I1=1,2

where vg192 is the effective interaction between ®;, ®,. We also assume that the
interaction between IQH edge and the 331 edge is Coulomb-natured, which couples
total electron densities on respective edges. The corresponding Lagrangian density
is

Lyo = —47Voa(p1 + p2)(pa, + pa,), (B.24)

where Vye characterizes the strength of interaction, pg, = %(&CCI) 1 + kpo,) with
kr e, the Fermi momentum of ®; and I = 1,2. To discuss physics at a narrow QPC,
we break integer modes into two spatial pieces with respect to tunneling point by
defining ®;r(x) = ®;(x) and ®yp(z) = $7(—2z) for x < 0, with boundary condition
Qr(x = 0) = &y (x = 0) = &;(x = 0). The long-range unscreened Coulomb
interaction across the QPC couples total electron densities between the two spatial

pieces, with a Lagrangian density

L.=—41(p1r + p2r + po,r + po,r)(P1L + par + po,L + Pa,L), (B.25)

where \. characterizes the strength of unscreened Coulomb interaction. Physically,
0 < A < Vyo. It is convenient to define &, = \%(@1 + ®,), and its split modes
®, 1, with respect to tunneling point. The K matrix K and potential matrix V for

a narrow QPC are K = Diag(4, —4,1,—1) @ Diag(2, —2,1,—1) and

Vie =X Vio —Ac

= D Diag("}——a ‘7——7U—7U—) <B26)
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Figure B.3: The tunneling exponent in geometry 2.1a in the presence of v = 2 IQH edge: (a) as
aNfunction of VI, and A7, at Vjg = 2; (b) Ay = 0.5 cut in (a); (c) as a function of Vg and A7, at
(VI —=v}) =2;(d) A, = 0.5 cut in (c).

in basis (gb-‘y—R) ¢+L7 q)—i-Ra ¢)+L) S (¢—R7 ¢—La ®—R7 q)—L)a where Vg = %(U@ivq)l@g) > 0.

Positive-definiteness of the potential matrix requires

1 2
Vv, — Vi

Ae < = .
V++ + Vy — 2V¢q>

(B.27)

By further assuming that the interaction between integer modes on IQH edge and
the interaction between fractional modes on the 331 edge are of the same strength,
Vp1e2 = Vig, we study tunneling exponent g4 as a function of three physical pa-
rameters: the velocity difference (17++ — v4) and Coulomb interaction Ve between
IQH edge and the 331 edge, plus the unscreened Coulomb interaction A.. For con-
venience, we again introduce reduced parameters valued in unit of an energy scale

Vor Viy =Vie/Vo, v} = vp/V, Vie = Voo /Vo, Al = Ac/Vo, and set

C

(Vi =D —1) = (Vip —1)7, (B.28)
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so that Eq. (B.27) is satisfied for Al < 1, and that at fixed V, (‘71 L — v} ) increases
as \Z{" + grows. Hence, tuning \Z’_’ + is equivalent to tuning the velocity difference. In
Fig. B.3(a), we plot g4 as a function of \Z:Jr and A7, at Vjy = 2. The fact that
v, > 0 restricts the range of plot to ‘71 4+ > 1. We find that along any constant-
XN/]; 4 cut, g4 increases monotonically as A, grows, with global minima occurring at
AL = 0 or as ‘71 . (or the velocity difference) goes to infinity. Since edge veloci-
ties ve, Vi1 = Vo > 0, the latter case corresponds to an infinite velocity Vj; of
edge ¢, on which the dynamics and tunneling of quasiparticle ¢! are no longer
affected by Coulomb interaction across the QPC. Alternatively, we can rewrite e**!
as €' V3% V3% and view its tunneling as the combined tunneling of “neutral” quasi-
particle V3%~ on unphysical ¢_ edge at velocity V__ and “charged” quasiparticle
ei%m on unphysical ¢, edge at velocity ‘7++. The tunneling of ei%‘z" is universal,
unaffected by unscreened Coulomb interaction. The tunneling of ¢ V3% however
depends on various parameters ‘7++7 vy, Ve, Ac in the potential matrix. Nonethe-
less, as the velocity of ¢, edge becomes extremely large, quasiparticles on the edge
become insensitive to unscreened Coulomb interaction and their tunnelings become
universal as well. The combined universal tunneling of quasiparticle ei%gb_ and
Vet give rise to the universal global minima of g4. In Fig. B.3(b), we plot the
AL = 0.5 cut of Fig. B.3(a). We see that g4 saturates to 2 as ‘74:+ — oo. Fig. B.3(c)
shows g4 as a function of Vj; and A7, at fixed velocity difference (171 L —vy) =2
When A\, =0, ga = g. A valley of g4 minima appears at intermediate strength of
interaction V; between IQH edge and the 331 edge, similar to the one observed in
Fig. B.2(a) when we study non-equilibrated 331 edge, along which no values of g4

below 2 are found. Given fixed VJ;,, ga grows monotonically with 7. In Fig. B.3(d),

we plot the AL = 0.5 cut of Fig. B.3(c).

In the most general case, more independent parameters show up in the potential
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matrix. The velocity difference between fractional modes on the 331 edge couples
subspaces (¢4 g, ¢4+r) and (¢_g, ¢_1), as we have seen in the previous discussion. The
velocity difference between integer modes on IQH edge couples subspaces (P, g, P 1)
and (P_g,P_1). A more general form of the interaction between IQH edge and the
331 edge than the one in Eq. (B.24) gives rise to off-diagonal elements coupling
subspaces (¢ygr,¢+r) and (P_g, P_1), subspaces (¢p_g,¢_r) and (P, g, Pyy), and
subspaces (¢_g, ¢_r) and (P_g, P_;). However, all such couplings enter the poten-
tial matrix in mathematically the same way as ‘N/Jr_ entering the potential matrix in
Eq. (B.20). We hence expect their effects on tunneling exponents to be similar to
those observed in Fig. B.2. In general, we conclude that unscreened Coulomb inter-
action across the QPC always results in larger measured tunneling exponents and
that tunneling exponents can never be driven to below the universal value g by var-
ious interactions. The presence of v = 2 IQH edge does not affect our interpretation

of tunneling exponents in different QPC geometries.
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Interacting Majorana Fermions
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In this appendix, we provide a detailed analysis of the zero modes in a system of

interacting Majorana fermions.

C.1 Inner product of operators

We first introduce the notion of the inner product of operators, constructed from

Majorana fermions. This notion is used in Sections 5.4 and 5.5 and Sections C.2 and

C.3.

We consider 2N + 2 Majorana fermions 7y, ... vy and f. They act in the Hilbert
space of dimension D = 2¥*!. One can also associate this set of Majoranas with
two linear spaces of operators. The space Leyen includes all Hermitian operators that
express as linear combinations of products of even numbers of the operators ;. We
will denote such products as ) = Eg,,. gy, = i”H?Zﬂkj, where n =0,..., N and

ki < ky < -++ < ko,. The product of zero +’s is defined as £ = 1. Any vector in

We prove below that

"t

Leven can be represented as 25:0 D R T TN  y S
Ey, .k, form a basis in Lewen. Note that the operator f does not enter any of the
expressions for Ej, .. Note also that the Hamiltonian of the gbit is a vector in

the space Leyen-

The space of fermionic Hermitian operators Loqq is constructed in a similar way.
The only difference is that any vector in L,qq is a linear combination of the products
Oty = Oky,.oionsr = " Vhansr o2 Y, of 0odd numbers of the Majorana operators

by <o < Kongt.
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Consider two vectors in the space Leyen:

A= E E ak1a~~-yk2nEk'17--~7k2n and

n k17~-47k2n

B:Z Z Oker . oo Lok .o oo - (C.1)

n  ki,....kon

We define their inner product as
(A, B) = TrAB /2N, (C.2)

It is easy to see that the product is positive definite and satisfies all other require-

ments for an inner product in a FKuclidean space.

Let us check that (E,, Eg) = 0,3, where 0,3 = 1, if the sets of the indices «
and 3 are identical, and 0,3 = 0 otherwise. This statement is equivalent to the
requirement that

TeEy,. 4, = 2415, (C.3)

Proving (C.3) is easy. It follows immediately after we construct the complex fermions

Cm = (Vhom_1 + ks, )/2 and rewrite By, g, as " _,(2ct e, —1).

n

We have thus proved that the Hermitian operators Ey,  j,. form an orthonormal

2
basis in the space Leye,. It then follows that the coefficients ag, . g, and by, . k..
in the expansions (C.1) of the Hermitian operators A and B must be real. We also

get a simple expression for the inner product in terms of the coordinates: (A, B) =

Z ak1,~~~,k2nbk1,m,k2n'
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The definition of the inner product in the space Lyqq is the same: If

A= E E akl7~~~:k2n+10k17--~7k2n+1 and

n o ki,....k2n+1

B = Z Z bkl:-~~vk2n+1Ok17~~~,k2n+1 (04)

n o ki,...kont1

then

(A7 B) = TYAB/2N+1 = Z &k17-~~7k2n+1bk17~~~7k2n+1' (05)

Just as above, the Hermitian operators Oy, form an orthonormal basis in the Eu-

clidean space Loqq and the coordinates agy,y, by, are always real.

C.2 Classification of zero modes

We are looking for Hermitian operators F' = F' that commute with the Hamiltonian
H and anticommute with the Fermi operator f which creates excitations far away

from the Majorana modes ;.

Clearly,
F=P(H), (C.6)

where P(H) is an arbitrary polynomial of the Hamiltonian and T' = iNTI2Y v

the local parity operator, are integrals of motion that satisfy Fermi statistics. For
some Hamiltonians, additional fermionic zero modes are possible. For example, any
fermionic operator commutes with the Hamiltonian, if H = 0. We show below that
for a typical Hamiltonian all fermionic zero modes have the form (C.6) and exactly
2N of such modes are linear independent. Those statements do not hold for a zero-

measure set of Hamiltonians only.
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It was stated in Ref. [148] that there are exactly 2%V fermionic zero modes in the
absence of interactions and for infinitesimal interactions. Here we find the number
of the zero modes for an arbitrary interaction strength. We also give an explicit

formula for all integrals of motion.

We first prove the existence of 2V linear independent integrals of motion of
the form (C.6). This is equivalent to finding 2V linear independent polynomials

P(H). We show below that the appropriate polynomials are P(H) = H* with

We start with an example. Let the Hamiltonian be

N
H = Z Z Uk .k LU g Ot (C.7)

n=0 0<k; <ko<-<kn<N+1

where uy,y are constants and oy = i7y2x—172x. Note that all aj, commute with each
other and square to 1. Hence, the multiplicative group G of all possible products of
several operators «y, is G = ZY. The identity operator plays the role of the identity
element in the group. The Hamiltonian H is an element of the group algebra R|G| of
G. The same is true for any polynomial P(H). The Abelian group G has dim G = 2
one-dimensional representations Ry, k = 1,...,2", whose characters are +1. Thus,
the group can be faithfully represented by 2V x 2V diagonal matrices M(g,), gs € G,
whose nonzero entries My (gs) equal the characters of the elements of G in the repre-
sentation Ry. In such representation, H becomes a diagonal matrix whose diagonal

elements Hj; are linear combinations » > o, . ..o tug, .k, with a dif-

n

<N+1

ferent set of signs in front of the variables ug, ., for each j. For almost any choice
of H, all 2V entries H;; are different from each other. Consider now an arbitrary
linear combination Ziia YeeHY = Q(H) # 0, where the degree of the polynomial

Q(z) = > cpa* is 2V —1 or lower. Q(H) is a diagonal matrix with the entries Q(H,;).
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They could be simultaneously zero only if all the numbers H;; were the roots of Q(x),
in contradiction with the fundamental theorem of algebra. Hence, Q(H) # 0. This

proves that the operators H*, k =0,...,2Y — 1 are linear independent.

So far the desired property of linear independence was established for a special
class of Hamiltonians (C.7) only. We now demonstrate that the result for this special
class implies the general statement. Indeed, any Hamiltonian H can be seen as a
vector in the space Leyen (Section C.1) and is defined by its 22NV coordinates agr,) in
the basis Eyy,y (see Section C.1 for details). The components of any power H* in
the same basis are polynomials of ay,;. Let us write the components of the vectors
H* k=0,...,2Y — 1 in the form of a 2V x 22 matrix T. The coordinates of any
of the 2V vectors H* form one row of the matrix. Let us first select an arbitrary
Hamiltonian H; of the form (C.7). Then the rank of the matrix 7" is 2V since all of
its rows are linear independent. Hence, T has a nonzero minor My of size 2V. Let
us now consider an arbitrary Hamiltonian H. We form the matrix 7" and compute
exactly the same minor as for Hy, i.e., select the same columns that form My and
compute the determinant of the square matrix, formed by those 2V columns. We
obtain a polynomial of ag,;. We know that the minor is nonzero for one particular
choice of the variables ay,. Since it is a polynomial, it follows that it is nonzero for
almost any other choice. Thus, the rank of the matrix 7" is 2V almost everywhere
oN

and hence the operators H* are linear independent indeed.

We need to prove the converse statement now: almost all Hamiltonians have no
more than 2V fermionic zero modes. We will prove instead that there are no more
than 2V bosonic modes. This is enough since multiplying Hermitian bosonic zero
modes by I' establishes a one-to-one correspondence between bosonic and fermionic

zero modes.
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A zero mode F' is a Hermitian operator that satisfies the equation [H, F| = 0.
We consider F' as a vector in Leyen, and introduce a linear operator H from Leven to
Leven such that HF = i[H, F]. Since zero modes form the kernel of H, our goal is to

prove that dim kerH < 2V for almost all H.

As above, we first prove that inequality for a particular Hamiltonian

N
Hy=U Z 2k ey, (C.8)
k=1

where U # 0. An arbitrary zero mode is determined by its coefficients in the basis
Ey,y. It will be convenient to change the notation for the basis vectors. This
will help us better exploit the structure of Hy. We define the following operators:
Z(’il =1, Z[’i_l = g, Zf’l = Vivar_1, Zf’_l = Vivar, 20 = 1, and 2, = Vi, where
k =1,...,N. Any operator Ey,; can be represented as a product stH,szlZ]’;k’sk.

We will denote such products as e, p, Let us cut the set of integers S =

51,--5PN,SN *
{1,2,..., N} into two nonintersecting sets S; and Sy whose union is S. Consider

the subspace Lg, of Leyen, spanned by the vectors ey, ,,. with pr = 0 for

S15--sPN SN
all k € Sy, pp = 1 for all £ € S5, and sy = (card S;)mod 2, where card means
the number of the elements in a set. Any such subspace is an invariant subspace of

H. Thus, in order to find the kernel of H it is sufficient to find the kernels of its

restrictions to the above subspaces.

Let us first consider the subspace Ly that corresponds to S, = (). This space of
dimension 2% is all in the kernel ker . Thus, we need to prove that the restrictions

of H to all other subspaces Lg, have trivial kernels.

Let us focus on one such subspace L = Ls,, Sz # (. Tt will be convenient to

change the notation for the basis vectors in the subspace L one more time. We define
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Csop1.510pnsn = (Skys Skas - - -5 Sk ), where C' is the number of the elements of Sy and
ki > kg > --- > k¢ are the elements of S5. Consider an arbitrary nonzero vector in
L,v= Zask17-~~75kc (Skys---sSko)- Let ap, .. have the maximal absolute value |m)|

among all the components of v. We will now compute the projection of Hv on the
vector (—ry,79,73,...,7x) (the inner product was defined in Section C.1). We find
that the absolute value of the projection is no less than 2|m||U|(2F — S, 2%) >
0. Hence, Hv # 0. Since v is an arbitrary vector, we have established that the
restriction of H to L has a trivial kernel. Tt follows that dim kerH = 2V and Hj has

exactly 2%V bosonic (and hence also fermionic) zero modes.

What about an arbitrary Hamiltonian? The number K of the bosonic (and
fermionic) zero modes is determined by the rank of the linear operator H in the
space Lewen: K = 22N — rank H. We want to prove that rank H > 22V — 2N for
almost all Hamiltonians. The latter inequality has been established for Hy. Consider
the matrix of the operator H, corresponding to H = Hy, in the basis Fy,. It has
a nonzero minor of the dimension (22 — 2V). The minor is a polynomial of the
matrix elements of H. Those matrix elements are, in turn, linear combinations of
the coordinates of H, if H is interpreted as a vector in Leyen and expanded as a linear
combination of Ey,. Thus, the minor is a polynomial function of the components
of H seen as a vector in Ley,. That polynomial is nonzero at H = Hj. It follows
that it is nonzero for almost all choices of the components of H, i.e., for almost all
Hamiltonians. Thus, the rank of H is almost always at least 22V — 2V, This finishes

the proof of the statement of Section C.2.
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C.3 Structure of zero modes.

In this section we derive Eq. (5.15). As discussed in Section 5.5, we are only interested

in the limit of large N.

C.3.1 The idea of the argument

We start with the summary of our argument.

Zero modes are polynomials of 7;’s. Long decoherence times correspond to poly-
nomials with large coefficients in front of the terms of low powers in 7, and small
coefficients in front of the terms of high powers in 7,. We want to prove that for
almost all Hamiltonians, all of their fermionic zero modes have decoherence times

that scale as 1/N and satisfy Eq. (5.15).

In order to make the above statements precise, we introduce a measure on the
set of all possible Hamiltonians of a system of 2N +1 Majorana fermions. This gives
a clear meaning to the phrase “almost all Hamiltonians”. We also need to define
what is meant by low and high powers. We introduce a constant ¢ < 1. Low powers
p satisfy

p < eN. (C.9)

What is meant by long and short decoherence times also depends on the choice of e:
long decoherence times correspond to zero modes whose expressions are dominated
by terms of power < e/N. Thus, the choice of € defines the set of all Hamiltonians Hiong
that possess at least one fermionic zero mode Fiong(Hiong) Wwith a long decoherence

time. We denote the measure of that set of Hamiltonians by o (the measure of the set
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of all Hamiltonians is normalized to 1). Our goal is to find the smallest € such that
o remains finite in the limit of large N. The upper bound (5.15) on the decoherence
time for an arbitrary Hamiltonian outside a set of zero measure can then be derived

from the knowledge of e.

As the first step of the argument, we introduce a family of measure-preserving
unitary transformations Uy. They transform Hamiltonians into Hamiltonians and
zero modes into zero modes. The total number Ny of the transformations in the

family grows rapidly as a function of N.

Next, we consider all Hamiltonians H,,e that possess at least one fermionic
zero mode Fiong(Hiong) with a long decoherence time. We track the fate of the
Hamiltonians from that set under the action of each unitary transformation Uy.
Each pair (Hiong, Fiong) is transformed by U}, into a new Hamiltonian Hy(H)og) and
a fermionic zero mode Fj(Fiong) of the new Hamiltonian Hj(Hng). In general,

Fi.(Flong) may have arbitrary coefficients in front of high- and low-power terms.

At the third step, we sum over k£ the measures of the sets of the Hamiltonians
of the form Hy(Hiong). At large N, the sum 6 = 0Ny > 1. This means that those
sets intersect and some Hamiltonians H can be represented as H = Hj(Hong) at
multiple choices of k and Hy,ng. For each of those choices, Ff = Fy(Fiong(Hiong)) is
a fermionic zero mode of H. Not all of the modes F¥ are linear independent. We
use the structure of the operators Uy, to derive the lower bound N on the number
of the linear independent zero modes F/?. It assumes the form Ny = Ny /r, where
7 is a function of N and €, Eq. (C.9). According to Section C.2, Ny < 2V. Hence,

r > 27N Ny This yields an inequality for € whose solution leads to Eq. (5.15).
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C.3.2 Measure in the space of Hamiltonians

According to Section C.1, every Hamiltonian H is determined by its coordinates
agk,y in the basis Fy;. We define a volume element in terms of those components
and the inner product, introduced in Section C.1: dV = f[(H, H)|Il{, dak,, where
f(zx) is an arbitrary function of the inner square of H. The only restriction is that

the total volume of the space of the Hamiltonians must be finite: f av =1.

We will not prove that relevant sets are measurable or integrals exist. Such
proofs can be deduced from a physically sensible assumption that zero modes depend

continuously on the Hamiltonian for almost all Hamiltonians.

C.3.3 Unitary transformations

Consider the operators

1+iA 1 ‘
Uy = % B ﬁ“ + M ), (C.10)

where M = N for even N, M = N +1 for odd N, and {k;} is a shorthand for the set
of the indices ky < kg < --- < kps. All such operators are unitary. The total number

of different operators U is
92N+1

VN’

— M
Ny = C2N+1 ~

(C.11)

The action of Uy, on a Hamiltonian A and its fermionic zero mode I, is defined
by H— H' = UHU', T, — I, = UL, U. Clearly, I'), is a fermionic zero mode of

H'. 1t is also clear that the action of Uy, preserves the measure, Subsection C.3.2.
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We wish to understand the action of the operators (C.10) on fermionic zero
modes. Each fermionic zero mode can be represented as a linear combination of the
vectors Oy, Eq. (C.4). To simplify notations we will use Greek indices with a bar
to denote sets of the indices {k;}. Thus, we may write Oy instead of Ok, k...
and represent zero modes as I'; = Y _asOs. Let us first consider the action of

Uz = (14iAgz)/v2 on Og. There are two possibilities.

1) The index sets & and 3 have an even number of indices in common. In such

a case, Uz and Oz commute so that UBO@U% = Og.
2) The index sets & and 3 have an odd number of indices in common. Then
Us0aU} = 14504 = +0a, (C.12)
where &' = &/(a, 3) # @. Note also that UBO&’(@,B)U% = FO;.

Thus, there are two types of operators O for each Us: 1) some operators Og
are fixed points of the action of Uz and 2) the rest consists of the pairs of operators

Og, Oy that transform into each other by the action of Us.
Let us fix a number ¢ < 1. Consider a fermionic zero mode
Fi = ZGQO@ (013)

of some Hamiltonian H. We introduce the notation I'{ for the sum of all monomials

of the degrees less than €V in the above expansion of I';:

I = > a504. (C.14)

@ contains fewer than eN indices
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: . ¢ Us €0 -
The action of Uz transforms I'§ into the sum I 41777 where TS includes terms of
. Us ) .
degrees less than e N in ;s and F:- ? combines monomials of degrees between M —eN

f’UE +1_‘1?est,UB

7 (2 Y

and M+eN —2. We define FZeSt’UE according to the equation UBFZ-U% =TI
and expand F;’UB = > b;05 and erSt’UB = > ¢;05. It follows from the way how
Uz acts on the operators Og, that by and ¢y cannot be simultaneously nonzero for

any 7. This statement will be important below. We will refer to it as Proposition

C.3.3.

FE’UB depends on Uj in a complicated way. It will be thus convenient for us to
switch from the discussion of the action of an individual unitary operator Uz on a
zero mode ['; to a discussion of an average action of the whole set of the unitary
operators (C.10) on a given zero mode. Note first that

(7, 0y = > a2 (C.15)

(e %

& has an odd number of common indices with g8
@ contains fewer than eN indices

where ag are defined in Eq. (C.13). Simple combinatorics shows that for each index
set @ with fewer than eV indices there are approximately Ny /2 operators Uz such
that the index sets @ and 3 have an odd number of indices in common. We use that

fact and Eq. (C.15) to obtain that

DoY) > Ny (I, ), (C.16)

B
where the summation runs over all operators Uz and the constant ¢ ~ 1/2. Upper
and lower bounds on ¢ can be easily derived from combinatorics but will not be

needed below.
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C.3.4 Counting zero modes

The Majorana fermion condition (5.5) implies (O,0) = 1. Thus, we may assume

that all zero modes are normalized: (I';,T';) = 1.

Let us estimate the decoherence time for a gbit, built using a fermionic zero
mode I';. We will do it in terms of I'§, introduced in the previous subsection. From
the normalization condition (I';,T;) = 1 one finds: (I'; — T, T, — T'5) = 1 — (I, T).
Combining this expression with Eq. (5.13) and the definition of I'{, one finds the

decoherence time
- 1
T )
2N AL — (T4, 9]

(C.17)

Thus, in the search for a long decoherence time, we need to focus on the zero

modes with large (I'¢, I).

At the same time, we are not interested in special cases, corresponding to a zero-
measure set of Hamiltonians. Below we fix a positive constant f < 1 and consider
the Hamiltonians H such that each of them has at least one fermionic zero mode
'y, satisfying

T4 Ty) > f. (C.18)

We assume that € and f are chosen so that the measure o(S) of the set Sy of all such
Hamiltonians remains nonzero in the limit of large N: o(Sy) > p > 0, where p does
not depend on N. For each Hamiltonian H in S; we select exactly one fermionic

zero mode 'y, satisfying Eq. (C.18).

Note that (I %, T%7) < (I4.T%) < (I'm.Ty) = 1. It follows then from
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Egs. (C.16,C.18) that for each I'y, Eq. (C.18), there are more than

operators Up such that
(T2, T57%) > cf /2. (C.20)

We will denote as Sy the set of all such operators Uz for a given I'y, H € Sy. We
will also define the sets SUE made of all such Hamiltonians H that Uz € Sy. Each

SUB is a subset of Sy.

Consider now the action of Uz on the Hamiltonians in the set SUB' Each Hamil-
tonian H € SUE is transformed into a new Hamiltonian HYs. Each U 5 transforms

Su, into a set Sgg of the same measure,

o(S5Y,) = o(Su,). (C.21)

Below we will evaluate the sum of the measures (C.21) in several ways. The sum

of the measures {2 = 350 (Sy;) can be represented as
Q=Y o(Sy,) = / dVN(Sg), (C.22)
B

where [ dV means integration over all Hamiltonians with the measure, defined in
Subsection C.3.2, and N(Sg) denotes the number of the elements in the set Sy for
H € 8¢, N(Sg) = 0 for H that are not in Sy. The discussion around Eq. (C.19)

shows that all nonzero N(Sy) exceed K. Hence,
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On the other hand, Eq. (C.21) implies that
Q=Y o(Sy,). (C.24)
]

Let us introduce a new piece of notations. For each Hamiltonian H, consider all
such pairs (H,Ujz) that H € Sy, H= UBHU% and Uz € Sy. We will denote the set
of such pairs as S5 and their number as N(H). Note that different pairs (H,Ug) in

S contain different operators Us. We can now rewrite Eq. (C.24) as
Q= / dVN(H). (C.25)

Recall that the total measure of the whole space of Hamiltonians is [1dV = 1.

Hence, a comparison of Eq. (C.25) with (C.23) shows that

N(H) > Kyu (C.26)
for the Hamiltonians H from some set of a nonzero measure.

According to Section C.2, a generic Hamiltonian Hj in that set has exactly 2V
linear independent fermionic zero modes. On the other hand, for each pair (H,Us) €

Sy, there is a fermionic zero mode I'yy such that: 1) it satisfies Eq. (C.18) and 2)
g = UL} (C.27)

is a zero mode of Hy. The number of the zero modes Fg with different sets of indices
Bis N(Hy). At the same time, it is easy to see that N(Hg) > Kyp > 2V at large N.
Thus, if all N(H,) modes Fg were distinct and linear independent we would arrive

at a contradiction. In what follows we count the linear independent modes among
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Tg and use the limit of 2V on their number to estimate e.

Our estimate relies on a geometric lemma and a combinatorial inequality, proven

in the next two subsections.

C.3.5 Geometric lemma

Consider n unit vectors vy,...,v, and another set of n mutually orthogonal unit
vectors ey, ..., e, in a D-dimensional Euclidean space E. Let (v, e;)? > g for each
k. Then the dimension d of the linear space V', spanned by the n vectors vy, is

greater than gn.

Proof. The projection Py(ex) of the vector e; onto the space V cannot be
shorter than the absolute value of the inner product of e, with an arbitrary unit
vector in V. Hence, P2(ex) > (vg,ex)? = g. Since the unit vectors e, k =1,...,n
are mutually orthogonal, we can consider them as a part of the orthonormal basis
€1, €n,Eni1,---,ep in the space E. Clearly, S = S22 P2(e;) > 27, P2(e;) >
gn. Let wy,...,wg be an orthonormal basis in V. Then S = Zm(ei,wj)Q =

>4 (wy, wy) = d. Tt follows that d > gn.

C.3.6 Combinatorial inequality

Consider two sets & and 3 of M indices k® < k§ < -+ < k%, and M indices
k;lﬁ < k:g < - < kjﬁw, assuming values between 0 to 2N. The constant M was

defined in the beginning of Subsection C.3.3. Let us define the overlap o(a, ) of

a and B as the number of the common indices in the sets {k§,kS,..., kS, } and
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{k’f, kg, PN kf/[} For a given &, we wish to estimate the number R of the sets of

indices 3 whose overlap with & exceeds (M — eN).

Consider an arbitrary subset [@]gore Of (M — €N) indices in @. Let us count all
sets 4 which contain the same subset [@]shors. Next, let us add the resulting numbers
for every choice of [@short- This way we will count every 5 with o(@,7y) > (M —eN)
at least once. Thus, we will get an upper estimate for R. One can choose [@]sport i
Cyi =N ways. There are CsN_;_ /. v ways to complement [@]snory by €N additional
indices to make a set of M different indices. Thus, we obtain the inequality R <

C]]\\jfeNCS]NVJrli Mien- Using the inequality

(2N +1— M + eN)!
(M — eN)!

< (2N +1 — M 4 eN)2N+1-2M+2eN

and the Stirling formula, we estimate

rR< S ([Hde)w, (C.28)

N\ e

where the constant C' does not depend on N and e.

C.3.7 Linear independent zero modes

We now come back to the end of Subsection C.3.4 and determine the number of
linear independent zero modes among the modes Fg of the Hamiltonian H,. Recall
that Eq. (C.27) establishes a correspondence between the modes Fg and the zero
modes 'y of the Hamiltonians H such that Hy = UBHUg, (H,Up) € Sn,.

We now observe that the operators F;}UB satisfy Eq. (C.20). Let us introduce the

set S, of the unit vectors ez = F;’{UB /\/ (FZUB , FZ,UB ) in the space Logq. The number
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N(S.) of the vectors in S, satisfies Eq. (C.26), i.e.,
N(S.) > Kypu = feuNy /2. (C.29)

Note that N(S,) counts different index sets 3 and it may happen that some ez = e5

at B #74. Eq. (C.20) can be rewritten as
(e5,T5 ") > cf /2. (C.30)
Proposition C.3.3 implies now that

(€5, T0)% > cf /2. (C.31)

At this point our tactics becomes obvious: In order to find the number of linear
independent modes Fg , we need to use geometric lemma C.3.5 with Tg in place of
v and ez in place of e,. However, a difficulty emerges: In general, the unit vectors
e are not mutually orthogonal. That is where the combinatorial inequality (C.28)

is going to help.

Any vector ez is a linear combination of some operators of the form Of’ﬁ =

U gOng, where the operators Oj satisfy two conditions:
1) 07" # 05;
2) Os are the vectors Oy, Section C.1, with fewer than e/N indices.

We can be sure that (ez,e5) = 0, if there is no overlap between the sets of all

operators OE’B and all operators Of”7. Using Eq. (C.12) one can show that this is
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guaranteed to occur, if o(3,7) < M — eN, where the overlap function o is defined in
Subsection C.3.6. We now select a vector eg,. There are no more than R, Eq. (C.28),
operators e~ in S, such that o(f1,75) > M — €N, ¥ # 3;. Remove all such vectors e
from S.. All remaining vectors eg € S., & # B are orthogonal to ez, - We next select
an arbitrary vector e, # e . By removing no more than R additional vectors from
S. we guarantee that all remaining vectors are orthogonal to ez,. We then select
an arbitrary remaining vector es, # €3, , and continue in the same spirit until only
selected vectors e remain in S.. Clearly, ez, form an orthonormal basis. Since we
started with at least Kyu elements in S., we end with at least Kypu/R orthogonal

vectors e Br-

Finally, we use geometric lemma C.3.5 and Eq. (C.31) to estimate the number
Np of linear independent zero modes among the operators Fg . Fg’“ play the role of
the vectors vy in the lemma and e, play the role of the vectors e;. There may be
additional linear independent modes F'g with 3 # f1, ..., Br. Hy may also have zero
modes that do not assume the form FE . Thus, the total number of linear independent

modes Np > NF. We find

N
F 2R 4 R’

where 4R/[u(cf)?] plays the role of r from Subsection C.3.1.
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C.3.8 The lowest decoherence rate

Only one step is left: we will use Eq. (C.32) to estimate e. Combining Egs. (C.11,C.28,C.32)

and using the fact that Ny = 2V, one finds

oV 5 v (e 2neVN ([ ‘ ]G)M. (C.33)

In the limit of large N, Eq. (C.33) reduces to In2 < 2¢[1 4 In =<]. The solution is
€ > 0.103. In other words, for any € < 0.103 and for almost all Hamiltonians H, all
fermionic zero modes I'y have vanishing (I'y, I'y;). We now substitute ¢ = 0.1 into
Eq. (C.17) and obtain Eq. (5.15). Finally, we must mention that some of the modes
Iy do not satisfy the Majorana fermion condition I'], = 1, Section 5.3, and hence

Eq. (5.15) is meaningless for such modes.

C.4 Bosonic degrees of freedom in contact with

weakly interacting fermions

In this section we investigate the effect of bosonic degrees of freedom on the dephasing
time (5.13). We address only the case of weakly interacting fermions below, i.e., we
assume that the Hamiltonian is quadratic in Majorana operators. We also assume
that the number 2N + 1 of the fermions is large. No assumptions are made about

the dimension D, of the Hilbert space of bosons (certainly, D, > 1).

In the absence of Bose degrees of freedom, any quadratic Hamiltonian has an
integral of motion, linear in Majorana operators. We show below that this is no

longer the case in the presence of bosons. According to Eq. (5.13) this means that
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the interaction with Bose degrees of freedom shortens the dephasing time.

We demonstrate this by working with a particular Hamiltonian:

N
H = ZA YonYon+1 + ZB Z Yon—172n, (034)

where A and B are Hermitian D, x D, matrices acting in the Hilbert space of the
bosons. We select the basis in which B is diagonal and assume that its eigenvalues
by, K =1,..., D, are nondegenerate. We also assume that all matrix elements A;; of

the operator A are nonzero in that basis.

Does a linear zero mode I'y, = > C’k% exist? Here C’k are operators in the Hilbert
space of bosons. In order to answer the question we compute the commutator [H, 'z].
It must be zero for I';, to be an integral of motion. The commutator contains one- and
three-fermion contributions. In particular, for each £ > 3, the commutator contains
contributions X; = iy17y2[B, Ci] and Xy = ivoy17k[A, Cy]. For each k < 2N — 3,
there are contributions Xz = ivkvgN_lvgN[é,ék] and X, = ivkygN_gvgN_l[A,C’k].
Each of those contributions X; = 0. Hence, [B,C}] = [4,C)] = 0. This is only

possible, if each C’k reduces to a ¢ -number: C’k = ¢0;5. Thus, I'y = ¢y, and

=
=
L

[H,T'1] = %A (Cant1Y2n — C2nVon+1) + 2B (Cant2Y2n+1 — 2Con+1Y2n+2) = 0.
(C.35)

3
Il
=)
3
I
o

This means that /AlchH = BCQn_l and /Alch = BCQn+2 and hence all ¢, = 0.

We find that no zero mode, linear in Majoranas, exists for the Hamiltonian (C.34).
It may exist at other choices of the Hamiltonian. Still, a general conclusion about

the relaxation time being 7 = (2N + 1)7r no longer holds in the presence of bosons.
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