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Kapitel 1

Einleitung

Eine zentrale Zielsetzung der modernen Physik ist die Beschreibung der fundamentalen Teilchen und
ihrer Wechselwirkungen innerhalb einer einheitlichen Theorie. Als vielversprechendster Kandidat zur
Beschreibung der starken Wechselwirkung hat sich die Quantenchromodynamik (QCD) etabliert. Die
QCD ist eine relativistische Quantenfeldtheorie (QFT) und sie beschreibt die starke Wechselwirkung
der fundamentalen Fermionen mit Spin %, den Quarks, durch den Austausch von masselosen SU(3)-
Eichbosonen mit Spin 1, den Gluonen. Die Dynamik der beteiligten Teilchen wird durch das Prinzip
der lokalen Eichinvarianz festgelegt. In der QCD tragen nicht nur die Materieteilchen (die Quarks) eine
fundamentale Ladung (die sogenannte Farbladung), sondern auch die Triger der Wechselwirkung, die
Gluonen. Die zugrundeliegende Eichtheorie ist in einem solchen Fall nichtabelsch und die Gluonen kop-
peln in Gegensatz zu den Photonen in der Quantenelektrodynamik (QED) selbst aneinander. Quarks und
Gluonen existieren nicht als beobachtbare freie Zustinde, sondern liegen nur als farbneutrale gebundene
Zustédnde vor und sind in den Hadronen eingeschlossen. Jeder Versuch, ein einzelnes Quark durch ein
Experiment, bei dem sehr hochenergetische Teilchen zur Kollision gebracht werden, aus einem Hadron
herauszulosen, endet nur in der Erzeugung von neuen Hadronen - ein ungebundenes, nicht farbneutrales
Teilchen wird niemals erzeugt.

Wie konnen Hadronen als System von Quarks und Gluonen beschrieben werden? Bei tief inelastischen
Streuexperimenten an Nukleonen zeigen die Streuquerschnitte bei hohen Energien eine immer einfachere
Struktur. Unter diesen Bedingungen erscheinen die Nukleonen wie eine Ansammlung von freien Teil-
chen. Dieses Verhalten wird allgemein als ”Asymptotische Freiheit” bezeichnet und ihm liegt das Pha-
nomen zugrunde, dass die starke Wechselwirkung bei kleinen Abstédnden unterhalb von 0.2 fm schwach
wird, was die Anwendung von stérungstheoretischen (perturbativen) Verfahren ermoglicht.

Das Gegenteil der Asymptotischen Freiheit nennt man etwas blumig “Infrarote Sklaverei”. Bei grof3en
Abstédnden findet lediglich ein kleiner Impulsiibertrag statt. In diesem Bereich steigt die effektive Kopp-
lung stark an, was dazu fiihrt, dass die Quarks in den Hadronen permanent eingeschlossen sind und nicht
als freie Teilchen beobachtet werden konnen. Aus diesem Grund hat man die sogenannte Confinement-
Hypothese formuliert, der zufolge die sichtbaren Teilchen, die der starken Wechselwirkung unterliegen
(Baryonen und Mesonen), nur als farbneutrale Singletts vorliegen diirfen. Es ist wichtig anzumerken,
dass es sich bei der Confinement-Hypothese um ein Postulat handelt. Im Gegensatz zur Asymptotischen
Freiheit konnte das Confinement bisher noch nicht aus den Grundgleichungen der QCD abgeleitet wer-
den. Es wurden im Laufe der Zeit zwar viele Fortschritte erzielt, eine analytische Erkldrung dieser Eigen-
schaft steht aber trotz mehr als dreiflig Jahren intensiver Forschung auf diesem Gebiet nach wie vor aus.
Dafiir existieren mittlerweile eine Reihe von Ansitzen, um den Farbeinschluss der Quarks zu erkliren.
Dazu zéhlen beispielsweise [1] der duale Meissnereffekt, der auf der Kondensation von magnetischen



Monopolen basiert; eine andere Modellvorstellung verwendet das Bild der Wirbelkondensation, bei der
der Farbeinschluss von Quarks durch die Vakuumkondensation von Zentrumswirbeln bewirkt wird. Man
darf also ohne Ubertreibung behaupten, dass die Untersuchung von Mechanismen, die zum Phinomen
des Confinement fiithren, ein anspruchsvolles Problem darstellt.

In dieser Diplomarbeit wird der von Gribov [2] und spiter von Zwanziger [3] vorgeschlagene Forma-
lismus zur Erkldarung des Confinement-Phinomens zugrunde gelegt: Um Mehrdeutigkeiten der Eich-
fixierung (Gribov-Problem) in Coulombeichung zu vermeiden, verlangt man, dass die Korrelationen
zwischen den transversalen Gluonen fiir grole Abstinde verschwinden. Dies fiithrt dazu, dass die Kor-
relationen zwischen den Coulombgluonen mit dem Abstand sehr stark ansteigen. Dies wiederum fiihrt
zu einem Potential zwischen den Quarks, das linear mit dem Abstand zwischen ihnen anwichst und
somit zu Confinement. In diesem Formalismus ist das Confinement-Phinomen eng mit dem Infrarotver-
halten der eichvarianten Propagatoren verkniipft. Deren Berechnung verlangt nichtstdrungstheoretische
Methoden. Im Rahmen der Quantenchromodynamik formen die Dyson-Schwinger Gleichungen (DSEs)
fiir die Propagatoren einen Satz von nichtlinearen, gekoppelten Integralgleichungen. Die Losung dieser
gekoppelten Dyson-Schwinger Gleichungen ermoglicht es, die Eigenschaften von Hadronen im nicht-
perturbativen Bereich in einem Poincaré-kovarianten Formalismus zu studieren.

Diese Diplomarbeit befasst sich mit Optimierungsverfahren zur Losung eines trunkierten Systems von
nichtlinearen Integralgleichungen. Der Schwerpunkt liegt auf dem Quarkpropagator und seiner effizien-
ten numerischen Behandlung. Im ersten Teil von Kapitel 2 werden einige allgemeine Aspekte der QCD
erortert, die fiir die Diskussion der Propagatoren der Theorie von Relevanz sind. Im zweiten Teil die-
ses Kapitels werden dann mit Hilfe des Erzeugenden Funktionals und der effektiven Lagrangedichte die
Dyson-Schwinger Gleichungen fiir den Quarkpropagator hergeleitet. Diese allgemein als Gap-Gleichung
bezeichneten DSEs formen wie alle anderen DSEs auch ein unendliches System von gekoppelten, nicht-
linearen Integralgleichungen. Fiir eine numerische Behandlung ist es notwendig, dieses unendliche In-
tegralgleichungssystem so zu trunkieren, dass die Symmetrieeigenschaften der Theorie beriicksichtigt
werden. AnschlieBend erhdlt man durch Spurnahme einen Satz von gekoppelten nichtlinearen Integral-
gleichungen fiir die Quarkpropagatorfunktionen, die mittels eines iterativen Gesamtschrittverfahrens ge-
16st werden. An Optimierungsstrategien verwende ich unter anderem zwei sich einander ergénzende
Techniken: zum einen adaptive numerische Quadraturverfahren mit automatischer Ergebnisverifikation,
zum anderen ein Konvergenzbeschleunigungsverfahren, das auf nichtlinearen Folgentransformationen
basiert. Zur Losung der Integralgleichungen wurde im Rahmen dieser Diplomarbeit ein Automatischer
Integrator auf Basis der GauB3-Kronrod Quadraturformeln implementiert. Die verschiedenen Teilaspekte
der adaptiven numerischen Quadratur und Kubatur werden in Kapitel 3 behandelt. Das infrarotsingu-
lare Verhalten der Integralkerne verschlechtert insbesondere das Konvergenzverhalten des verwendeten
Iterationsalgorithmus. Abhéngig von der Wahl des Infrarotregulators erhoht sich einerseits die Anzahl
der benotigten Funktionsauswertungen pro Iterationsschritt, andererseits steigt die Gesamtzahl der beno-
tigten Iterationen stark an. Verallgemeinerte Summationsprozesse zur Konvergenzbeschleunigung und
insbesondere der epsilon-Algorithmus werden in Kapitel 4 betrachtet. Das numerische Verfahren zur
Losung der Dyson-Schwinger Gleichungen wird in Kapitel 5 besprochen. Die Diskussion der erzielten
Ergebnisse findet sich in Kapitel 6. Einige Teilaspekte dieser Arbeit wurden im Hinblick auf eine bessere
Lesbarkeit in Anhéinge ausgelagert. Beispielsweise macht es die dynamische Wahl der Stiitzstellen im In-
tegrationsalgorithmus notwendig, die in den Integralgleichungen vorkommenden Propagatorfunktionen
zu interpolieren. In einem solchen Fall wird auf den jeweiligen Anhang verwiesen.



Kapitel 2

Dyson-Schwinger Gleichungen in der
Quantenchromodynamik

I consider that I understand an equation when I can
predict the properties of its solutions, without actually
solving it.

Paul A. M. Dirac

2.1 Quantenchromodynamik (QCD)

Die Quantenfeldtheorie bildet die Basis fiir unser gegenwértiges Verstindnis der Teilchenphysik. Im
Rahmen einer Quantenfeldtheorie wird die Wechselwirkung durch den Austausch von Teilchen be-
schrieben. Wechselwirkung mittels Austauschteilchen bedeutet, dass die Quantenfelder entweder mit-
einander oder gegebenenfalls an sich selbst koppeln. Die mathematische Beschreibung der Wechselwir-
kung zwischen den Konstituenten griindet sich auf das Prinzip der lokalen Eichinvarianz. Eichinvarianz
bedeutet, dass die Aussagen einer Quantenfeldtheorie unverindert bleiben, wenn die Quantenfelder ei-
ner Eichtransformation unterworfen werden. Lokalitdt bedeutet, dass die Felder punktférmig aneinander
koppeln. Die Forderung nach lokaler Eichinvarianz impliziert die Existenz eines Feldes A(z). Dieses
Feld wird als Eichfeld bezeichnet und es beschreibt das Austauschteilchen, welches die Eichwechselwir-
kung vermittelt. Die Quantenchromodynamik (QCD) als Theorie der starken Wechselwirkung ist eine
Eichtheorie auf Basis der fundamentalen Darstellung der nichtabelschen Eichgruppe SU(N.), mit ¢ wie
colorund N. = 3 die Anzahl der Farbfreiheitsgrade. In Analogie zur Quantenelektrodynamik (QED) mit
abelscher Eichgruppe U (1) erfolgt die Konstruktion der QCD durch Verallgemeinerung des Prinzips der
Eichinvarianz auf nichtabelsche Gruppen. Im Gegensatz zur QED koppeln die nichtabelschen Eichfelder
der QCD auch selbst aneinander, was die Strukturen gegeniiber einer abelschen Eichtheorie wesentlich
verdndert.

Die Konstruktion einer Eichtheorie baut auf der Quantenfeldtheorie freier Teilchen auf. Eine renormier-
bare Quantenfeldtheorie ist - bei Angabe eines geeigneten Regularisierungs- und Renormierungsschemas
- durch die Angabe ihres Wirkungsfunktionals
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vollstdndig bestimmt. Wie in jeder Quantenfeldtheorie wird auch in der QCD die Lagrangedichte £
aus den Quantenfeldern der Theorie unter Beriicksichtigung ihrer relevanten Symmetrien konstruiert.
Die Felder der starken Wechselwirkung sind die (lokalen) Quark-Spinorfelder ¢/ (z) und die Gluon-
Vektorfelder AZ(SC) Quarks sind Fermionen mit Spin %, die in sechs verschiedenen Flavors f = u,d, s,
¢, b, t und drei verschiedenen Farben (N, = 3) fiir jeden Flavor vorkommen. Gluonen sind masselose
Vektorbosonen mit Spin 1, die in acht verschiedenen Farbena = 1,2, ...,8 (NC2 — 1 = 8) auftreten.

Die zugrundeliegende Eichsymmetrie zur Konstruktion der Langrangedichte der QCD ist die SU(3).
Das bedeutet formal, dass die Lagrangedichte der QCD invariant unter folgenden lokalen Eichtransfor-
mationen ist:

¢ — q; = Uji(x)q,
Ay — A, =U(2) AU N (z) + ;[8MU(x)]U1(x), (2.2)

mit A, = Ajjt" und @ = 1,2,...,8. In Standardnotierung sind ¢* die N. x N, Farbmatrizen und die
acht hermitischen Gell-Mann Matrizen (A\%)T = \® = 2t sind Elemente einer Lie-Algebra und die
Generatoren der SU(3). Die Gruppenelemente U aus der Lie-Gruppe G konnen in der Form

U = ¢l t* (2.3)

geschrieben werden. Dabei bezeichnen die Winkel «, die reellen Parameter der Gruppenelemente und ¢*
die Generatoren der entsprechenden Lie-Algebra. Die Darstellung der Algebra ist in Ubereinstimmung
mit der Darstellung der Gruppenelemente U zu wihlen. Die Generatoren A® erfiillen die Kommutatorre-
lationen

(A%, \0] = 2 fabe e (2.4)

mit den vollstindig antisymmetrischen Strukturkonstanten f%*° und sind auf 7r(A*\) = 26® normiert.
Die Strukturkonstanten erfiillen die Jakobi-Identitit

fabdfcde + fbcdfade + fcadfbde =0 (25)

und sind auf

fab(:fdbc — Nc(sad (26)

normiert. Die lokale Eichtransformation in Gleichung (2.2) ist unitéir mit det(U) = 1 und

Uji(z) = [exp(i Y aa(x) t)]ji  aa(z) €R. (2.7)



Die so definierte Transformation beschreibt die lokale Abbildung eines fermionischen Spinors ¢(z) - ei-
nes vierkomponentigen Spaltenvektors, bei dem jede Komponente von der Raumzeit abhéngt - an jedem
Raum-Zeit-Punkt = durch ein beliebiges Element U der Lie-Gruppe G.

Der lokal eichinvariante Teil L;,4qriant der Lagrangedichte fiir eine Theorie mit Quark- und Gluonfel-
dern setzt sich zusammen aus der Dirac- und der Yang-Mills-Lagrangedichte:

Eim)ariant = ﬁD + ﬁYM~ (2.8)

Dieser Teil der Lagrangedichte besteht aus einem kinetischen Anteil fiir die Quarkfelder, an die die
Gluonfelder iiber die kovariante Ableitung D), minimal ankoppeln. Die Dynamik des Eichfeldes selbst
wird durch eine Yang-Mills Wechselwirkung beschrieben, die die nichtabelschen Selbstwechselwirkun-
gen der Gluonen enthiilt:

1
ﬁznvarzant q q,A Z ZD m() - ZFQNVF;}V 2.9

fiir eine Theorie mit N unterschiedlichen Flavours, m{; sind die flavourabhingigen Stromquarkmassen'.

Auf der rechten Seite von Gleichung (2.9) wurde die von Feynman eingefiihrte Slash-Schreibweise D =
~v#D,, verwendet, wobei hier die Indizes von 0 bis 3 laufen (siche Anhang A). Durch die Einfiihrung des
Eichfeldes A, = Ajjt” wurde die Ableitung 0, zu einer kovarianten Ableitung

D/.L = 8# —+ igAZta
O +igA, (2.10)

erweitert. Darin bezeichnet g die starke Kopplungskonstante. Das in Gleichung (2.10) eingefiihrte Hilfs-
feld A, ist statisch und trigt somit noch keine Freiheitsgrade. Damit dieses Hilfsfeld A,, zu einer dyna-
mischen Feldvariablen wird, benétigt man in der Lagrangedichte einen Term, der sowohl eichinvariant
ist als auch die quadratischen Ableitungen von A, enthilt. Dazu fiihrt man eine nichtabelsche Verallge-
meinerung des Feldstirketensors ein:

Ff, = 0,A% — 0,A% — g™ AL A (2.11)

Der so definierte Feldstiarketensor transformiert sich unter einer Eichtransformation auf dieselbe Weise
wie die kovariante Ableitung D,,. Unter Verwendung des Feldstirketensors F},,, ldsst sich daraus durch
Spurnahme sofort eine Lagrangedichte konstruieren:

1 1
Lyas = =5 Te(FW" E,,) = — F" . 2.12)

Da das Gluon durch ein Vektorfeld repréasentiert wird, hétte es an sich vier Polarisationsfreiheitsgrade.
Aufgrund seiner Masselosigkeit kann es aber nur zwei transversale Freiheitsgrade haben. Fiir eichinva-
riante GroBlen wie die Greenschen Funktionen muss daher zusétzlich eine Eichung fixiert werden, damit

'Um die Notation kompakt zu halten, wird im fermionischen Anteil der Lagrangedichte iiber die Quarkflavours in weiterer
Folge implizit summiert, d.h. qf — qund m{: — mg.



die zugehorigen Funktionalintegrale nicht verschwinden. Dafiir erweitert man die Lagrangedichte durch
Hinzunahme eines Eichfixierungsterms Lg4,4¢. Dieser lautet in einer allgemeinen kovarianten Eichung

1
Lgauge = —2—&)@%)2- (2.13)

Der Parameter & dient der Eichfixierung und kann im wesentlichen frei gew#hlt werden. Haufig verwen-
dete Spezialfille sind die Landau-Eichung (§; = 0) und die Feynman-Eichung (§y = 1).

Durch die Hinzunahme des Eichfixierungsterms £ 4,4 ist die Lagrangedichte nun nicht mehr eichinva-
riant. Um die Eichinvarianz in kovarianten Eichungen zu erhalten, wurde von Faddeev und Popov (1967)
vorgeschlagen, unphysikalische skalare Hilfsfelder mit Spin O einzufiihren. Diese in weiterer Folge als
w?, w® bezeichneten antikommutierenden Felder nennt man Geistfelder. Dadurch entsteht in einer kova-
rianten Eichung ein zusitzlicher Geistterm L, in der Lagrangedichte. Dieser héngt allgemein von der
Eichfixierung ab und lautet in kovarianter Eichung

Lgnost = (0"@")(6%°0,, — g f** A )w". (2.14)

Mit der Lagrangedichte L;nyqriant aus Gleichung (2.9) erhdlt man so die unrenormierte effektive La-
grangedichte der QCD:

ﬁeff [(Z q, Aua w, w] = Eim)ariant + ﬁgauge + ﬁghost =

1 1
a(iD — _ —puwwpe .~
q(Z7D mo)q 4 nv 260

(0uAp)? + (0"0) (870, — g f** AG ). (2.15)
Durch die Hinzunahme des Eichfixierungsterms und der Faddeev-Popov-Geister ist die effektive Lagra-
gedichte nicht mehr invariant unter lokalen Eichtransformationen. Stattdessen liegt nun die allgemeinere
Klasse der nach Becchi, Rouet und Stora benannten BRS-Transformationen vor. Dabei handelt es sich um
eine Verallgemeinerung der lokalen Eichtransformationen, die die Eichfixierungs- und Geistterme ein-
schlieBt. Die Forderung nach BRS-Invarianz einer Eichtheorie erzeugt automatisch die Eichfixierungs-
und Geistterme und garantiert gleichzeitig die Eichinvarianz der physikalischen Observablen. Aus der
BRS-Invarianz der QCD koénnen dann die Slavnov-Taylor Identitéiten (STIs) abgeleitet werden. Die STIs
entsprechen den Ward-Takahashi Identititen (WTIs) der QED und stehen synonym fiir die Erhaltungs-
sdtze der QCD.

Aus den bilinearen Termen der effektiven Lagrangedichte ergeben sich die Propagatoren der Stérungs-
theorie. Die trilinearen Terme ergeben 3-Vertizes und die quadrilinearen 4-Vertizes (Quelle: [4], Seite
1D),

10
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wobei jetzt iiber doppelt vorkommende Indizes summiert wird. Die Selbstkopplungen der Gluonen exis-
tieren aufgrund der nichtverschwindenden Strukturkonstanten. Sie sind somit eine direkte Folge der nich-
tabelschen Struktur der QCD. Die effektive Wirkung S, ;¢ der QCD im Minkowskiraum erhélt man aus
dem Integral iiber die effektive Lagrangedichte:

1
Serrld ¢, Ap, @, 0] = Sq,q, Au] + /d4w [(auwa)(‘sabau - gfabCAZ)wb - 250(6;114#)2] , (2.16)
wobei hier die Abkiirzung
y 1 auv a
St A = [ s gD~ mo)a— () 217

verwendet wurde.

2.2 Die effektive Wirkung

Wie in jeder anderen physikalischen Theorie auch mochte man in einer Quantenfeldtheorie physikali-
sche Aussagen machen, also Observablen berechnen. Dafiir benétigt man eine Grofle, die die Theorie
definiert. Die zentrale Grofe, die eine Quantenfeldtheorie definiert, ist das Erzeugende Funktional. Alle
physikalischen Aussagen (das heif3t alle Observablen) einer Quantenfeldtheorie kdnnen aus ihrem Erzeu-
genden Funktional berechnet werden. Ein Erzeugendes Funktional ist das feldtheoretische Analogon zur
Zustandssumme in der statistischen Mechanik. Beide sind definiert als Integral iiber alle moglichen Kon-
figurationen oder Zustinde eines Systems gewichtet mit einem exponentiellen Faktor. Die physikalischen
Aussagen einer renormierbaren Quantenfeldtheorie lassen sich mathematisch durch ihre Einteilchen ir-
reduziblen (1PI) Greenschen Funktionen ausdriicken. Die Greenschen Funktionen sind im Pfadintegral-

11



oder Funktionalzugang iiber normierte Funktionalintegrale eines Produkts von n Quantenfeldern ge-
wichtet mit einer exponentiellen effektiven Wirkung S,s; definiert. Die “Theorie 16sen” bedeutet im
wesentlichen, diese Funktionalintegrale auszuwerten.

Das Erzeugende Funktional fiir die Greenschen Funktionen G, ist definiert als

ANES /ch e~SlI+To, (2.18)

wobei in Gleichung (2.18) die Kurzschreibweise J - ¢ = [ d*z J(z)¢(x) verwendet wurde. Der Aus-
druck D¢ ist das Pfadintegralmal. Hier ist J(x) eine duBere Quelle des Feldes ¢(z), dessen Kom-
ponenten mit den Quellenfeldern der Theorie identifiziert werden. Z ist die Zustandssumme, die das
Erzeugende Funktional normiert:

Zo=:Z[J =0] = /D¢ e~Slel, (2.19)

Die Bezeichnung “Erzeugendes Funktional” kommt daher, weil man aus ihm durch funktionale Diffe-
rentiation von Z[.J] nach J(x) an der Stelle J = 0 die Greenschen Funktionen erhilt:

C(1, oo ) = (O[T (1) () |0) = Zlo M(m)"sgj(xn)Z[J] - (2.20)

Hier erkennt man auch die Bedeutung der dufleren Quellen. Man kann sich die Propagation eines Teilchen
von einem Vakuumzustand in einen anderen etwa so vorstellen: Zum Zeitpunkt ¢; wird ein Teilchen durch
eine Quelle ¢ am Ort x; erzeugt. Dieses Teilchen propagiert dann fiir eine bestimmte Zeit, bis es zum
Zeitpunkt ¢; am Ort x; wieder vernichtet wird. Dieser Vorgang wird dann ebenfalls durch eine Quelle
beschrieben. In Feynman-Diagrammen stellt man die Greenschen Funktionen als separate Diagramme
dar, fiir die jeweils getrennt eine Impulserhaltung gilt.

Wihrend man durch funktionales Differenzieren von Z[J]| nach J(x) alle Greenschen Funktionen der
Theorie erzeugen kann, erhilt man die Untermenge der verbundenen Greenschen Funktionen G¥, aus
dem Funktional W[J], das mit Z[J] iiber die Beziehung

Z[J] = " oder
W[J] = In Z[J] 2.21)

mit der Normierungsbedingung Z[0] = 1 bzw. W[0] = 0 verkniipft ist. So wie Z[J] ist auch W[J]
ein Funktional der dufleren Quellen, und man erhilt die verbundenen Greenschen Funktionen durch
funktionales Differenzieren von W[.J] nach J(x) an der Stelle J = 0:

" _wi . (222)

Gn(l'l,..-,wn) = 5J($1)5J($n> J=0

In der Darstellung durch Feynman-Diagramme entsprechen die verbundenen Greenschen Funktionen
Diagrammen, die sich nicht mehr in zwei getrennte Teile zerlegen lassen, ohne eine Linie aufzuschnei-
den.
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Das Erzeugende Funktional fiir die Einteilchen-irreduziblen (1PI) Greenschen Funktionen I';, nennt man
die effektive Wirkung I'[¢]:

5”
5o oo 9 - (2.23)

Lp(z1, .y my) =

In der Darstellung durch Feynman-Diagramme entsprechen die 1PI Greenschen Funktionen I'), jenen
Diagrammen, die man nicht mehr durch Aufschneiden einer Linie in zwei getrennte Diagramme zerlegen
kann. Die effektive Wirkung ist ein geeignetes Werkzeug zur Beschreibung von Vakuumzustinden, da
sie nicht von den dufleren Quellen abhingt, sondern ein Funktional des gemittelten Feldes ¢¢ ist. Um
zur effektiven Wirkung zu gelangen, geht man vom Erzeugenden Funktional W[.J] aus und setzt ¢(z) in
Abhingigkeit einer duleren Quelle J(z):

Nach der Definition des Funktionalintegrals ist das der Vakuumerwartungswert des Feldes ¢(x) in An-
wesenheit einer dulleren Quelle. Man bezeichnet diesen Vakuumerwartungswert als das klassische Feld

0

= (¢(x))};) =: ¢°(@). (2.25)

Das klassische Feld ist das gewichtete Mittel iiber alle Fluktuationen des Feldes. Mit diesem gemittelten
klassischen Feld fiihrt man nun eine funktionale Legendre-Transformation nach den Quellen durch und
erhilt die effektive Wirkung I'[¢€] :

T[¢] := —W[J] + J - ¢". (2.26)

Durch funktionales Differenzieren von I'[¢¢] erhilt man eine weitere wichtige Eigenschaft:

0 c 5W[J] 4 (5J($) c
r = — d J
59°(y) 1 6¢°(y) +/ ) 5<zﬁc(y)qj () +J()
_ 4 6J(z) OW[J] 4 0J(z) .
/ TS ) ) / TSy I
= J(y). 2.27)
Fiir verschwindende dulere Quellen gilt also
d r =0 2.28
50 [625]’ =0. (2.28)

d=¢°
Im Allgemeinen lésst sich I'[¢°] nicht explizit angeben und man ist bei konkreten Rechnungen auf Ni-

herungen angewiesen. Eine Moglichkeit zur niherungsweisen Berechnung von I'[¢¢] ist die Ableitungs-
entwicklung der effektiven Wirkung:
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Do) = [ V(e) + 2606 + Y (@) (0,69 + . 2.29)

Den Term niedrigster Ordnung in dieser Entwicklung bezeichnet man als effektives Potential V' (¢°),
Z ist die Wellenfunktionsrenormierung und die héheren Terme sind Vertexkorrekturen. Man nimmt an,
dass der Vakuumzustand |0) translationsinvariant ist, wodurch als Konsequenz ¢° nicht mehr von z
abhingt. Durch die Einfithrung eines konstanten Feldes ¢¢(x) — ¢° = const. verschwinden dann alle
Ableitungsterme und es gilt:

T[¢°] = / dz V(). (2.30)

Das effektive Potential kann so als die Summe alle 1PI Greenschen Funktionen I';, ausgedriickt werden,
deren duBlere Linien verschwindende Impulse tragen.

2.3 Renormierungsverfahren

Ein wichtiges Kriterium fiir eine Eichtheorie ist ihre Renormierbarkeit. In perturbativen Rechnungen mit
Feynman- Diagrammen treten Schleifendiagramme auf, wodurch im allgemeinen Divergenzen entstehen,
die aus der Integration iiber grole innere Impulse stammen. Die entsprechenden Schleifenintegrale haben
die Form

B d’q 1
=/ @r)d (= M2+ ie)m 23D

und sind fiir 2m < d ultraviolettdivergent. Um diese Divergenzen zu vermeiden, wurde das Konzept der
Renormierung entwickelt. Die Losung dieses Problems erfolgt in zwei Schritten. Zunéchst werden die
divergenten Integrale durch Einfithrung von zusétzlichen Parametern in endliche Ausdriicke iiberfiihrt.
Diese Parametrisierung der Divergenzen bezeichnet man als Regularisierung. Im nichsten Schritt wer-
den die so parametrisierten Divergenzen aus der Theorie entfernt. Dabei wihlt man die Divergenzen der
unrenormierten GrofBen so, dass die Unendlichkeiten in die unrenormierten Felder, Massen und Kopp-
lungen der Lagrangedichte absorbiert werden und so die Divergenzen autheben. Dieser Vorgang wird als
Renormierung bezeichnet. Die Art und Weise, wie die Regularisierung und Renormierung durchgefiihrt
wird, bezeichnet man als Renormierungsverfahren.

Geeignete Verfahren im Zusammenhang mit Yang-Mills-Theorien in Coulombeichung sind die dimen-
sionale Regularisierung mit anschlieBender multiplikativer Renormierung oder die Einfiihrung eines
Impuls-Cutoffs Ayy mit anschlieBender Impulssubtraktion (MOM-Schema, MOM steht fiir “momen-
tum subtraction”). Das Verfahren der dimensionalen Regularisierung basiert auf der Beobachtung, dass
die in vier Raum-Zeit Dimensionen divergenten Integrale in d # 4 Dimensionen existieren. Die Di-
vergenzen konnen dann als Terme proportional 1/e geschrieben werden. Die Vorgehensweise lisst sich
dadurch charakterisieren, dass man die Anzahl der Raum-Zeit Dimensionen von d = 4 auf d = 4 — 2¢
dndert und die Integrale statt in 4 in 4 — 2 Dimensionen 10st:

d4p 9 d4—28p
— W e
(271.)4 (2ﬂ)4725

e=2—

d
5 (2.32)
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In Gleichung (2.32) wurde der beliebige Skalenparameter p eingefiihrt, um die Dimensionen der Felder
und Kopplungen auch in Dimensionen d # 4 zu erhalten. Dieser hat die Dimension einer Masse. In
Coulombeichung ist diese Standardtechnik zur Regularisierung allerdings so noch nicht ausreichend.
Der Grund dafiir liegt in der Form des Eichbosonpropagators:

ab
G/j,l/ (p) ==

T n? p-n
p2 |:g,u,u + ?p,upu - F(punu + nupu) (2.33)

mit n, = (1,0,0,0). Dadurch entstehen Schleifenintegrale der Form

. dp 1
t= [ i —a 239

Diese Integrale sind auch bei Anwendung eines dimensionalen Regularisierungsschemas nicht wohlde-
finiert. Abhilfe schafft das Konzept der sogenannten “split dimensional regularisation” [5]. Bei diesem
Regularisierungsschema werden die Energie- und Impulsintegrale unabhéngig voneinander dimensio-
nal regularisiert. Dafiir setzt man die Anzahl der Raum-Zeit Dimensionen d = 4 — 2¢ = w + p und
driickt die Divergenzen der Energieintegrale als Pole in p neben den gewohnlichen Polen in w aus. Im
anschlieBenden Verfahren der multiplikativen Renormierung werden die unrenormierten Groflen Gy in
der Lagrangedichte durch die Einfithrung von Renormierungskonstanten Z, welche die 1/s-Terme ab-
sorbieren, in endliche renormierte Grof3en G iiberfiihrt:

Go — ZGg. (2.35)

Im MOM-Schema werden die Integrale mit einem Impuls-Cutoff Ay regularisiert, wodurch die UV-
divergenten Integrale endlich werden. Die Divergenzen treten dann erst im Limes Ay — oo auf und
werden durch Subtraktion eines gleichartig divergenten Terms annihiliert. Dieses Verfahren hat den
Nachteil, dass im Allgemeinen eine Abhingigkeit vom Skalenparameter y4 verbleibt. Aus diesem Grund
bezeichnet man y als Regularisierungsskala, da der genaue Wert dieses Parameters durch das Renormie-
rungsverfahren nicht festgelegt wird. Jede Wahl von p fiihrt zu anderen Werten fiir die renormierten Pa-
rameter. Da die QCD nur stérungstheoretisch gut behandelt werden kann, wihlt man im MOM-Schema
aufgrund der Asymptotischen Freiheit fiir i einen grofSen raumartigen Impuls. Das hat aulerdem noch
den Vorteil, dass man auf eine freie Theorie renormieren kann.

2.4 Dyson-Schwinger Gleichungen fiir den Quarkpropagator

Nach diesem Uberblick iiber einige allgemeine Aspekte der QCD, die fiir die Diskussion der Propa-
gatoren der Theorie von Relevanz sind, liegt der Schwerpunkt in diesem Abschnitt auf den Dyson-
Schwinger Gleichungen (Dyson-Schwinger Equations, DSEs) fiir den Quarkpropagator. Die Dyson-
Schwinger Gleichungen sind ein nichtperturbativer, Lorentz-kovarianter Formalismus zum Studium von
Quark- und Gluon- als auch von Hadroneneigenschaften. Die Losung dieser Gleichungen beschreibt
zunichst einmal die Korrelation zwischen den fundamentalen Quantenfeldern aufgrund der Wechselwir-
kung. Des Weiteren kann man die Eigenschaften von Bindungszustinden extrahieren: jeder Bindungs-
zustand - mit anderen Worten jedes Hadron - fiihrt zu einem Pol in einer Greenschen Funktion. Die
Quantenfeldtheorie der starken Wechselwirkung wird in einer kovarianten Eichung formal durch die
Feynman-Schwinger Integraldarstellung fiir das Erzeugende Funktional
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Z[ﬁ? 777 J? 5-7 U] =

/D[q‘, q, A, @, w]exp {—Seff + /d4:ﬁ [qn + g + AjJ; + &% + 5awa]} (2.36)

zusammen mit den Renormierungsvorschriften definiert. In Gleichung (2.36) wurden Quellenfelder 7
und 7 fiir die Antiquarks und Quarks, J fiir die Gluonen sowie o und & fiir die Antigeister und Geister
eingefiihrt. Der Ausdruck D[q, ¢, A, w,w] ist das PfadintegralmaB. Die unrenormierte effektive Lagran-
gedichte in Gleichung (2.15) lautet voll ausgeschrieben

. a = a 1 a a av 12 a
Lepr = q(ip —mo)q + gALqY"t"q + 1(3;“4” — 0, A} (0" A" — 97 AMY)

2
g aoc cv a a g aobe pcae a C, 17
-1 be AP A (0, AL — 9, ALL) — Tf be pede A% AD Ak A%
1

%, (0uAp)? + 0 0%’ — gf*ew o (ASw’). (2.37)

Um die Divergenzen zu eliminieren, werden nun die unrenormierten Gréfen in der effektiven Lagrange-
dichte (2.37) durch die Einfiihrung von multiplikativen Vorfaktoren renormiert:

Q0 =\ Zaq, Af, = ZsAL, wi — \ Zsw,
mo — Zmm, go — Zgg. (2.38)

In Gleichung (2.38) wurden insgesamt fiinf Renormierungskonstanten definiert, und zwar Z,, Z3 und
Z3 fiir die Quark-, Gluon- und Geistfelder, Zy, fiir die Masse und Z, fiir die Kopplung. Die renormierte
effektive Lagrangedichte L. ¢¢(q, ¢, Ay, @,w] = Lef¢[Go, qo, Aous @0, wo] kann dann geschrieben werden
als

. a = a Z a a av 14 a
Lepr = 2oG(i) — Zmm)q + Z1pgASqyt®q + f(a,LAV — 9, AL (DA™ — & AP

g aoc cv a a Z4 aove rcae a C, 17

~Z5 1 be AR A (9, A% — 9, A%) — IQQ fobe pede Aa AD A A%
1 . _

—7&)(%%)2 + Z3w 0w — Z1g fr @ oM (ASw?), (2.39)

wobei die folgenden Abkiirzungen verwendet wurden:

3 ~ ~
Zip = ZgZoNZ3, Z1=2423, Z1=ZgZs\/Z3, Zs=Z;73. (2.40)

Diese Beziehungen sind eine Konsequenz der zugrunde liegenden Slavnov-Taylor Identitdten. Als Fol-
ge sind die Renormierungskonstanten fiir alle Quarks gleichen Flavors, alle Gluonen und alle Geister
identisch. Das Erzeugende Funktional fiir die verbundenen Greenschen Funktionen W7, 1, J, 7, o] ist
definiert als der natiirliche Logarithmus des Erzeugenden Funktionals Z (2.21). Aus dem Erzeugen-
den Funktional W erhilt man nach einer funktionalen Legendre-Transformation die effektive Wirkung
(2.26):
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Ig,q,A,0,w] = -W]iq,n,J,5,0] + /d4x [qn + ng + AL J; + &% + 7w (2.41)

Die effektive Wirkung I ist das Erzeugende Funktional fiir die 1PI irreduziblen Vertexfunktionen. Die
Felder und Quellen konnen als funktionale Ableitungen des entsprechenden Funktionals geschrieben
werden:

%o B-q -4
£ _ i - o J (2.42)
5g b 3¢ =M 5a, =k

Die grassmannwertigen Operatoren

SW R T ., . W . o . .
5Gm) = linksseitige Ableitung, g = rechtsseitige Ableitung (2.43)

definieren links- und rechtsseitige Ableitungen.

2.4.1 Herleitung der Dyson-Schwinger Gleichungen

Setzt man voraus, dass eine Funktionalintegraldarstellung eines Erzeugenden Funktionals definiert ist,
folgt die nichtperturbative Herleitung der DSEs aus der Beobachtung, dass das Funktionalintegral einer
totalen Funktionalableitung fiir geeignete Randbedingungen verschwindet, also

0= / Dp ¢~ SIH1+76 <Mj(x)5[¢] — Ji(az)> =: < 5 ;(:U)S[cb] - Jz-(fv)>m- (2.44)

Dies fiihrt auf die folgende funktionale Differentialgleichung:

(50 70

} - J,(x)) Z[J] =0. (2.45)

Gleichung (2.45) ist die Dyson-Schwinger Gleichung fiir das Erzeugende Funktional Z[7,n, J,, &, o].
Die Herleitung der DSE fiir den Quarkpropagator erfolgt dann analog zu der fiir den Geistpropagator
[6]. Um zur DSE fiir den Quarkpropagator zu gelangen, macht man zunéchst eine linksseitige Ableitung
der Wirkung S := [ d*x £ nach dem Quarkfeld g%, wobei 7 und 1 wie gehabt die Quellenfelder fiir die
Quarks und Antiquarks bezeichnen:

0S 0 9 oS
N2 + @ Z 77 7J7 77 = — + ¢ = 0’ 2.46
(5qa(w) [&f 577] ! m) ke F=a=0 <5qa(ﬂf) ! (x)>[7m,J] 0

wobei der Index [77, 7, J] angibt, welche Quellen fiir die weiteren Ableitungen beibehalten werden. Nach
einer weiteren rechtsseitigen Ableitung &/67°(y) kann die Dyson-Schwinger Bewegungsgleichung fiir
den Quarkpropagator geschrieben werden als
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oS b _ gsabg4 T —
(5o} =05 =) @47

Mit der Definition fiir den Quarkpropagator

2
("@)a" () = M(‘;)gb(y) = 8"z —y) (2.48)

lautet die exakte DSE fiir den Quarkpropagator in Ortsraumdarstellung

) b _ gcabg4 T — —
(5o} =05y

2 (<P + Zom) S —y) = Zuw g [ 'z ' 510 = 2) 84 = ) () () )AL
(2.49)

Diese beinhaltet den inversen freien Propagator (—¢ + m), die Dreipunkt-Vertexfunktion I'}, (7, y, 2) =
— 71 igt®y,0*(y — 2)§*(z — x) und die vollen Quark-Gluon Korrelationen <q(z)cj(y)AZ(x)>

In einem kovarianten Formalismus sind die vollen und verbundenen Dreipunktfunktionen identisch:

(P WAL = (@ W AUD) . (2:50)

conn

Diese verbundene Dreipunktfunktion

8 Wi, n, J]
(P WAL)) = @2.51)
< s >conn on°(2)on°(y)dJi (x) nmfimJ=0
kann in eine 1PI Quark-Gluon Vertexfunktion
5T(q, g, A]
r%e(z,y,2) = oD (2.52)
) = S e @ |

mit damit verbundenen Quarkpropagatoren S () und Gluonpropagatoren Dzl;(x) zerlegt werden.

2.4.2 Die Gap-Gleichung

Nach einer Fouriertransformation erhilt man die Darstellung der exakten DSE fiir den renormierten
Quarkpropagator im Impulsraum (vergleiche beispielsweise [7] [8]). Diese wird iiblicherweise als die
Dyson-Schwinger oder QCD-Gapgleichung

S(p)~" = Za(i P+ Zmm) + X(p) (2.53)
mit der Definition fiir die Quark-Selbstenergie
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Abbildung 2.1: Diagrammatische Darstellung der Gap-Gleichung (Quelle: [9], Seite 16).

Aoy g4 \@
(2754 Dy (p = 4) = S(q) T (a0, p) (2.54)

Y(p) = Zir 92/ 5

bezeichnet. In Gleichung (2.54) bezeichnet D,,,,(k = p— ¢) den renormierten Gluonpropagator, I (g, p)
den renormierten Quark-Gluon-Vertex und m die Ay -abhingige Stromquarkmasse. Ay steht fiir eine
translationsinvariante Cutoff-Skala, bei der regularisiert wird (siche Abschnitt 2.3). Obgleich in Glei-
chung (2.54) nicht explizit angegeben, hingen sowohl der Quarkpropagator S(p) als auch der Quark-
Gluon-Vertex I'%(q, p) vom Quarkflavor ab. Die Renormierungskonstanten fiir den Quark-Gluon-Vertex
und die Quark-Wellenfunktion, das sind Z;(u?, A%y,) und Zo(pu?, A?,,,), hingen sowohl vom Renor-
mierungspunkt ;. als auch von der Regularisierungsskala Ay ab.

Die renormierte Kopplungskonstante g ist mit der laufenden Kopplungskonstante a5 (Q?) := ¢%(Q?)/4m
iiber

92 = 92(Q2)’Q2:#2 = 471'(13(@2)‘@2:#2 (2.55)

verkniipft, wobei —¢® = Q? > 0.

Fiir Q2 > Aéc p ist die laufende Kopplungskonstante in erster Ordnung Stdrungstheorie gegeben durch

o0 127 _ YT

wobei

12

_ 2.57
Tm = (11N, — 2Ny) (2.57)

tiblicherweise als die anomale Dimension der Masse bezeichnet wird. Agcp ist der Skalenparameter der
QCD. Die Losung der Gap-Gleichung (2.53) kann in einem Lorentz-kovarianten Formalismus immer als

i 2
Sp)~'=ip A@* p*) + B(p* p?) = m (2.58)

mit der Massenfunktion M (p?) und der Renormierungsfunktion Z(p?, ?) geschrieben werden. Die Re-
normierungsbedingung lautet

SP) ey = 1P+ M)y (2.59)
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wobei m(u) die Quarkmasse am Renormierungspunkt g ist. Dadurch ist die Theorie asymptotisch frei
fiir kleine Abstinde. Fiir ein hinreichend groBes raumartiges 1> kann die rechte Seite von Gleichung
(2.53) in Storungstheorie berechnet werden und man findet

G v (260

wobei wie in Abschnitt 2.1 N, die Anzahl der Farben und N die Anzahl der aktiven Flavors bezeich-
net; m und Agcp sind Renormierungsgruppeninvarianten: 17 ist die renormierungsgruppeninvariante
Stromquarkmasse, Agcp bezeichnet den Skalenparameter der QCD.

Die Gap-Gleichung (2.53) illustriert die Eigenschaften einer jeden DSE. Sie ist eine nichtlineare Inte-
gralgleichung fiir den Quarkpropagator S(p). Der Kern dieser Integralgleichung beinhaltet die Zwei-
punktfunktion D,,,, (k) und die Dreipunktfunktion I'?,(¢, p). Dadurch ist die Gap-Gleichung an die DSEs
gekoppelt, die diese Funktionen erfiillen; diese DSEs wiederum beinhalten hohere n-Punkt Greensfunk-
tionen und formen so ein unendliches System von gekoppelten, nichtlinearen Integralgleichungen. Eine
numerische Behandlung der Gap-Gleichung erscheint so auf den ersten Blick nicht moglich. Ein erster
Schritt muss daher sein, eine brauchbare nichtperturbative Trunkierung dieses unendlichen Systems von
DSEs zu finden, die die relevanten (globalen) Symmetrien der QCD wie die chirale Symmetrie und die
Renormierungsgruppe beriicksichtigt.

2.4.3 Die Gap-Gleichung in Regenbogenniherung

Die einfachste Niherung, die diese Eigenschaften bewahrt, ist die sogenannte Regenbogenniherung
[10][11]:

iTf = SAT,

ZirTy(k,p) = W

1 A
o /l 9°Dpo(p — D7pS (L + k — p)1uS(1)7,
N, [A
+7 QZDJ/U(Z)DT,T(l+k_p)
l
XY S(p = 1) v T3, (1, =k, k —p) + [ ] (2.61)

Hier bezeichnet I'39 den gedressten Drei-Gluon Vertex. Der fiihrende Term dieser Entwicklung ist Yus
der fithrende Beitrag der explizit ausgeschriebenen Terme ist offensichtlich von O(g?). Die Ellipse re-
prisentiert Terme mit fithrendem Beitrag O(g?). Die Regenbogenniherung fiir die Gap-Gleichung (2.53)
ist dann definiert durch die Wahl von

)\a
Z1p D% (k)T%(q,p) — Di;@e(k)?%, (2.62)

wobei D/7¢“(k) =: D, (k) der freie Gluonpropagator ist. Mit Y°5_, (\/2)2 = 4/3 =: Cp, wobei

Cr die zweite quadratische Casimirinvariante der fundamentalen Darstellung der SU (IV,.) ist, kann die
Gap-Gleichung (2.53) geschrieben werden als
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C A
S()™" = Zali o+ Zum) + 55 / d'q 97 Dy (k) 7 S(9) - (2:63)

2.4.4 Renormierung der Gap-Gleichung

Die Dyson-Schwinger Integralgleichungen (2.63) sind im ultravioletten Sektor divergent und miissen
renormiert werden. Um die korrekte Renormierung zu finden, betrachtet man die renormierten Integral-
gleichungen fiir die Vektor-, Axialvektor- und pseudoskalare Vertexfunktion [12] [13]:

Lu@'p) = Zuwyu+

d4
/(27:])45(19/ +) Tu@ +¢.p+a) Slp+a) K(p+ 4,0 +¢,9),

F/L5(p/7p) - Z(u)57u75+

d4
/(27:])45(19’+q) Tus(' +¢,p+q) S0+ q) K(p+¢,0"+4,9),

Ls(p,p) = Zsys+

d4
/(%;S@“*ﬁfdﬂ+qm+n)ﬂp+®lﬂp+mﬂ+qﬂ) (2.64)

Hier ist K (p,p’, ¢) der Quark-Antiquark Bethe-Salpeter Kern und I sind die gedressten Vertizes. In der
QCD sind die acht Renormierungskonstanten Z(,) und Z(,,)5 gleich. Das ist allerdings nicht der Fall,
wenn nur die Zeit-Zeit Komponente des Gluonpropagators verwendet wird. Dieses Problem kann durch
die Hinzunahme retardierter transversaler Gluonen gelost werden [14]. Damit kann dieses Modell als
nichtkovariante Ndherung an ein kovariant renormiertes Eingluon-Austauschmodell betrachtet werden
[13]. Da in diesem Modell Quarkschleifen vernachlédssigt werden, verschwinden alle Beitrige zur axialen
U(1)-Anomalie. Damit sind die Vertexfunktionen durch die nichtanomalen Ward-Identitdten mit dem
Quarkpropagator verkniipft [12] [15]:

' —p)"Tu(p,p) = iS7' (') — S~ (p),
(' = p)"T s (¥, p) = iS™H (P )5 + 7515~ (p) + 2mI5 (P, p). (2.65)

Hier macht man zunichst die Leiterndherung fiir den Bethe-Salpeter Kern

K(p+q,p +q,9) = k(q). (2.66)

In dieser Nidherung ist k£(q) in niedrigster Ordnung Storungstheorie gegeben durch

k(q) = k(@) = ~iCrg®u @ 1Dy (2.67)
und somit kann k(q) geschrieben werden als
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y i d
k(q) = k(q) = —idrCrryo ® 10V (q) + idrnCryi & v, (67 — qq% Wi (q). (2.68)

In Gleichung (2.68) reprisentiert V> (q) das beriihmte Color-Coulomb Potential und V(q) das Potential
fiir die retardierten transversalen Gluonen. Diese Form des Bethe-Salpeter Kerns gehort zu einem Poten-
tial, dass sich wie die Komponenten eines Vierervektors unter Lorentztransformationen verhilt. Mit den
Gleichungen (2.64) und (2.65) erhilt man fiir die Axialvektorvertexfunktion

@ =) Tus(@,p) = ST W) + 5187 (p) + 2mIs(p),p) =
dq o
Zs s (0 — p)F + on)i> P +q) - ST P + s+

V568~ (p + q) + 2mL5(p' + ¢,p + @)))S(p + @)k (q). (2.69)

Nun benutzt man die Vektoreigenschaften des Potentials, um die v5-Matrix auf die rechte Seite der
Gleichung (2.69) zu antikommutieren:

iSTHP )5 + 75187 (p) + 2mIs (0, p) =

d4
75 <Z(u)5wp“ — Zsym + / ﬁS(p + Q)k(Q)> +
/1L d4q /
Zwys ™ — Zsm+/ (%)45(1? +q)k(q) ) 5 +
2mLs(p', p). (2.70)

Die pseudoskalare Vertexfunktion I's(p’, p) kann in der ersten und letzten Zeile von Gleichung (2.70)
gegeneinander weggekiirzt werden. Die Abhingigkeit von den Impulsen p’ und p ist nun vollstindig se-
pariert, und man erhélt folgende Gleichung fiir den renormierten Quarkpropagator (vergleiche Gleichung
(4.12) in [13]):

L d4q
iST'(p) = Z(u>5wp“—Zsm+/WS(erQ)k(Q)
4

d
= Zuyswp" — Zsm+ g°Cr / Dy (k) vu S(a) v

dlq
(2r)"

i d'q
= Z(/,L)E),lebp — Z5m + 4 CF W .
g Kk
Ve (k)5 (a)v0 — Vr(k)7iS(g)v; (67 — 5] (2.71)

Da die Eigenschaften der Vertexfunktionen unter Parititstransformationen durch diese Ndherungen nicht
verdndert wurden, sind die einander entsprechenden Renormierungskonstanten weiterhin gleich [13]:

o . Z() fiir n = O,
Ziys =Ly = { Z; firp=j=123, (2.72)
Zs " = Zoyop® — Ziv;p . (2.73)
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2.5 Die Gap-Gleichung in Coulombeichung

Ein Schliisselement bei der Realisierung eines Confinementszenarios ist die Wahl einer Eichung. Dabei
ist im Rahmen dieser Arbeit zur Beschreibung der fiir das Confinement verantwortlichen Mechanismen
das urspriinglich von Gribov [2] und Zwanziger [3] formulierte Szenario zum Farbeinschluss von beson-
derem Interesse. In Coulombeichung wird Confinement auf das Verhalten des Color-Coulomb Potentials
Veout (R) zuriickgefiihrt, das bei groBen Absténden linear ansteigt, wodurch die Quarks eingeschlossen
(confined) sind. Bei kleinen Abstéinden verhilt es sich hingegen coulombartig und sollte zumindest nihe-
rungsweise das richtige asymptotische Verhalten besitzen, das aus der Stérungstheorie bekannt ist. Das
Coulomb Potential ist der instantane Anteil der Zeit-Zeit Komponente des Gluonpropagators [3] [16]
[17]

D,y (x) = (gAu(x)gAL(0)) , (2.74)

niamlich

Doo(x,t) = V([x[)d(t). (2.75)

Bei der Konstruktion eines solchen Potentials unterliegt man zwei Einschriankungen: (¢) lineares Quark
Confinement und (ii) Asymptotische Freiheit. Lineares Quark Confinement wird durch die Forderung
implementiert, dass das Potential fiir groe Abstdnde linear ansteigt:

lim V(R) o const X R, (2.76)
AQCDR>>].
oder gleichbedeutend
lim V(g% o const X ——. (.77
—*<A0p (q2)2

Die Bedingung der Asymptotischen Freiheit erfordert, dass sich die starke effektive Kopplungskonstante
ag mit —¢? = Q? > 0 fiir groBe raumartige Impulsiibertrige wie

12
lim  as(Q?) x u

2.78
@SNy (1IN, — 2,) In(Q?/A2) (2.78)

verhilt. Ein Potential, dass den erwdhnten Anforderungen geniigt, ist das Richardson-Potential [18]:

Ve(q) = , (2.79)

127
11N, — 2Nf) In(1 + q2/A2)’

a(q’) = ( (2.80)

Der Skalenparameter A = Agcp ist dann durch die Stringspannung o gegeben:
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Abbildung 2.2: Die Gluonpropagatoren Do (|k|) und D;;(|k|) in instantaner Niherung als Funktion der
duBeren Impulse |k|. Der Skalenparameter A wurde gleich eins gesetzt.

o0 = %A? (2.81)

Damit kann die Zeit-Zeit Komponente Dyg des Gluonpropagators geschrieben werden als
i
Dun([K]) = —g4rVe (k). (2.82)

Fiir die Parametrisierung der transversalen Komponenten D;; des Gluonpropagators verwende ich fol-
genden Ansatz:

K kikd

D;j(ko, |k|) = 7 (69 — 12 Wr(ko, |k|) (2.83)
mit
_ Z(ko, k|)
Vr(ko, [kl) == 72— w2(k]) (2.84)

Dieser Ansatz fiir den Gluonpropagator (sieche Abbildung 2.2) steht in guter Ubereinstimmung mit Er-
gebnissen im Hamiltonformalismus [19] und aktuellen Gitterechnungen [20]. Die Gluonenergie wg(k:)
(siehe Abbildung 2.3) muss aufgrund der Asymptotischen Freiheit im ultravioletten Bereich (k — o0)
das folgende asymptotische Verhalten aufweisen (vergleiche (3.125) in [19]):

wy(k) = VK2,  k — oc. (2.85)

Da der Gluonpropagator D;; bis auf einen Faktor 2 mit der inversen Gluonenergie iibereinstimmt, ver-
ursacht er im infraroten Bereich (¢ — 0) eine unendlich hohe Gluonenergie. Das Verschwinden des
Gluonpropagators manifestiert sich in der Abwesenheit der Gluonen aus dem physikalischen Spektrum,
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Abbildung 2.3: Die Gluonenergie wy(|k|) als Funktion der duleren Impulse |k|. Der Skalenparameter A
wurde gleich eins gesetzt.

was einen starken Hinweis auf den Farbeinschluss der Gluonen im Yang-Mills-Vakuum bedeutet [19].
Dies fiihrt auf den folgenden Ansatz fiir die Gluonenergie im Infraroten (vergleiche (3.163) in [19]):

wy(k) = =—. (2.86)

Mit einer einfachen Interpolation zwischen dem angenommenen infraroten und dem bekannten ultravio-
letten Verhalten kann die Gluonenergie geschrieben werden als

A2
wy(k[) = K + |K|. (2.87)

Die Retardierungseffekte wirden mittels kg = pg — qo einbezogen. In dieser nichtrelativistischen Nihe-
rung macht man folgenden Ansatz fiir den inversen Quarkpropagator:

S~ (p) = [vopo A(po, |P) — 7 P C(po, [P|) — Bpo, |p|) + ie]. (2.88)

Mit diesem Ansatz kann der Quarkpropagator geschrieben werden als:

S(p) = i 1o A(po, [pl) =7 - P C(po, [P|) + B(po, [Pl) (2.89)

pg A%(po, [p[) — P C%(po, [p|) — B(po, |P|)
Setzt man diese Nidherungen und Ansétze in die Gap-Gleichung fiir den renormierten Quarkpropagator
(2.71) ein, kann man durch Spurnahme und anschlieBende Wick-Rotation der pg-Komponente (Anhang
C) ein System aus drei gekoppelten nichtlinearen Integralgleichungen fiir die Quarkpropagatorfunktio-
nen A(pg, |p|), B(pe, |p|) und C(pg, |p|) ableiten (Anhang B):
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fe') [e'e] +1
Cr 2/ /
A = Z
(pe, Ipl) O+pE(27T)3 0/dlql la|” [ dgg | d(cos )

27 (kg, |k|) 148 A(qg, |ql)

47V (lk 2.90
Ve ([k]) + —k3, — w2(|k]) denom ’ (2.90)
C 0 o) +1
Blo.pl) = Zum— 5t [[dlal la* [ das [ d(eosd)
0 —00 -1
47V (k) — 291
Vo (k) —k3, — w2(]k|)” denom 291
[e%s) 0 +1
Cr 3
C(pe,Ipl) = Zj—W dlq| |q dqg | d(cos?)
0 —00 —1
p|laf (cos? ¥ — 1) 2Z(kg, |k|) ,Clqg,lql)
4 k Y — 9
Vo (lkl) cos 9 = (cos ¥ + K2 )—kg—wgqm)] denom
(2.92)
wobei hier die Kurzschreibweise
denom := —q3A*(qg, |a]) — 4°C*(qe, la]) — B*(¢z, |ql) (2.93)

verwendet wurde. In den Gleichungen (2.90) - (2.92) bezeichnet q den inneren Schleifenimpuls, k =
p — q den duBeren Impuls und ¥ den Winkel, den beide Vektoren miteinander einschlieBen. Um die
Notation kompakt zu halten, ist es zweckmabBig, fiir die Winkelintegrale (Anhang B) die folgende Kurz-

schreibweise einzufiihren:

+1
Bekl(|p|,?) = /d(cos V) 4V (|k|),
1
+1
Bek2(|p|,v) = /d(cosﬂ) 47 Ve (|k|) cos ),

-1

+1
22 (k. k)
Bek3(pz pl . 9) = [ d(cosv) 5
J R~ w2(K)
T [pllal (cos” 9 — 1), 2Z(kp, [K])
p||a| (cos“ ¥ — E;
Bekd(pe bl ) = [ d(cos) (cony + PHAEGE ) S RE

-1
Die |p|-Koordinate ist fiir die Propagatorfunktionen eine Symmetrieachse:
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ABC(pg, |p|) = ABC(—pg, [p))- (2.98)

Da das Integral einer Summe gleich der Summe iiber die Integrale ist, folgt mit (2.98):

oo o0 A |
[dlal a* [ dor Bexa(pl.v) 251819 2.99)
enom
0 —00
i i B(gg,|a r T B(gg, |q
Jatalta? [ ageexaqol o) 21Dy ajq) jq [ g mekipl, o) 2219,
0 —00 0 0
(2.100)
Clqr,|la Clqm |q
[atalla [ das B2l 0 S —o [ajq) q* [ dge mekaqpl, v 1),
denom denom
0 —00 0 0
(2.101)

Damit kénnen die Dyson—-Schwinger Gleichungen fiir die Quarkpropagatorfunktionen A(pg, |p|), B(pg, |P|)
und C(pg, |p|) im kompakter Form geschrieben werden als

oo 0o +1

C
Awrlpl) = Zo+ — s [dlal o? [ da [ dicos)
0 —00 —1
Alqg,
[Bek3(pg, |p| ﬁ)]W’ (2.102)

0o 00 +1

Blop.pl) = Zum— b5 [dlal la [ das [ dGeosd)
0

—00 —1

B(qe,|q|)

[Bek1(|p| ) — Bek3(p, [p|, ¥)] = —

(2.103)

)

0 fo'e) +1
C
C(pe,|p|) = Zj—m“;r)g/dh laf® / dQE/d(COSﬂ)
0 —00 -1

Claplal)

[Bek2(|p|, ) — Bekd(pg, |p|, )] denom

(2.104)

Die Regularisierung der Integrale im Ultravioletten erfolgt mit einem Impuls-Cutoff Ayy . Die Renor-
mierung der Gleichungen wird unter Verwendung eines MOM-Schemas (siehe Abschnitt 2.3), wobei g
und |p| die jeweiligen Regularisierungsskalen bezeichnen, durch Subtraktion am Renormierungspunkt
(uE, |u|) durchgefiihrt. Wegen der Asymptotischen Freiheit kann man dann schlieBen, dass

Zo=1, Zmm=my, Z;=1. (2.105)

Insgesamt konnen die renormierten Dyson Schwinger Integralgleichungen fiir die Quarkpropagatorfunk-
tionen A(pg, |p|). B(pE, |p|) und C(pg, |p|) geschrieben werden als:
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Ayv Ayvy +1

C
Alpplpl) = 1+ 8 / dlql |q? / da / d(cos )

pr(2m)3
0 “Apv el
A
Bek3 (p, p| )] L2 1)) 2.106)
denom
o Ayv Ayv +1
Blos. o) = mo- ot [ dlallaP [ das [ dcos)
0 —Auv el
Blgp |a)
Bekl — Bek _— 2.107
[Beki (b, #) — Bek3(p [p| )] L2 90, (2.107)
o Agv Auv +1
F 3
= 11— — d d d(cos?
C(pe.Ip) S [ dlal [ das [ dteosd)
0 “Auv )
Clap |a)
[Bek2(|p|,?¥) — Bekd(pg, |p|,?)] denom. (2.108)

Die Gleichungen (2.106) - (2.108) sind nun ultraviolettendlich. Wie jede andere physikalisch sinnvolle
Wabhl fiir V> (|k|) hat auch das Richardson-Potential notwendigerweise eine nichtintegrierbare Divergenz
bei |k| = |p — q| = 0. Deshalb sind B(pg, |p|) und C(pg, |p|) divergente GroBen, wenn p — g geht.
Diese Infrarotdivergenzen werden durch Einfiihrung eines Infrarotregulators p; g kontrolliert:

k? — k% + p2p. (2.109)

Ein analytischer Beweis fiir die Konvergenz eines solchen Regularisierungsschemas findet sich in [13].
Hingegen ist das Verhéltnis

B(pe, |pl)

M(pE. |p) = C(pz, p|)

(2.110)

im Limes ,u% r- — 0 endlich und kann dazu verwendet werden, eine impulsabhéngige Konstituenten-
quarkmasse zu definieren [13] [21]. Die einzig verbliebene Unbekannte in den Gleichungen (2.106) -
(2.108) ist Z (kg, |k|). Im vorliegenden Modell wird die instantane Néiiherung durch die Wahl von

Z(kg, |k|) =0 instantane Niherung (2.111)

realisiert. Bei Hinzunahme von transversalen Komponenten und Retardierungseffekten wird Z(kg, |k|)
zur Vereinfachung auf den konstanten Wert 1 gesetzt:

Z(kg,|k|) =1 mit retardierten transversalen Gluonen. (2.112)
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2.6 Optimierungsstrategien

Eine numerische Losung der Dyson-Schwinger Integralgleichungen fiir die Quarkpropagatorfunktionen
gestaltet sich aus zwei Griinden schwierig. Zum einen sind diese Integralgleichungen nichtlinear, so dass
Standardmethoden zur Losung von linearen Integralgleichungen (Nystrom-Methode, method of iterated
kernels) nicht verwendet werden konnen. Das Integralgleichungssystem (2.106) - (2.108) wird deshalb
mittels eines iterativen Gesamtschrittverfahrens gelost. Dabei werden die Ergebnisse der aktuellen Itera-
tion als Startwerte fiir die nichste Iteration verwendet. Dieser Vorgang wird solange wiederholt, bis die
vom Benutzer vorgegebenen Konvergenzkriterien erfiillt sind. Dieses Verfahren wird in weiterer Folge
als Standardtechnik bezeichnet. Zum anderen wird der Kern der Integralgleichungen fiir u% r — 0hoch-
gradig infrarotsinguldr. Dieses infrarotsingulédre Verhalten der Integralkerne hat weitreichende Auswir-
kungen auf die Konvergenzgeschwindigkeit: abhéngig von der Wahl des Infrarotregulators ,u% r, erhoht
sich einerseits die Anzahl der benétigten Funktionsauswertungen pro Iterationsschritt, andererseits steigt
die Gesamtzahl der benétigten Iterationen stark an. Gerade im interessanten Fall der retardierten trans-
versalen Gluonen ist man nicht in der Lage, mehr als eine vergleichsweise geringe Anzahl von Iterationen
durchzufiihren. An Optimierungsstrategien bieten sich somit zwei einander ergénzende Vorgehensweisen
an:

1. Die Rechenzeit fiir eine einzelne Iteration minimieren

e Hier muss das Hauptaugenmerk zunichst darauf liegen, die Integrale in den Gleichungen
(2.106)—(2.108) moglichst effizient auszuwerten. Dafiir wurde im Rahmen dieser Diplom-
arbeit ein Automatischer Integrator auf Basis der Gauf-Kronrod Quadraturformeln mit
adaptiver rekursiver Bisektion implementiert. Die verschiedenen Teilaspekte der adaptiven
numerischen Quadratur und Kubatur werden in Kapitel 3 behandelt.

e Das von mir in weiterer Folge als Freezing bezeichnete Verfahren leitet sich aus der Be-
obachtung ab, dass die Integrale im Ultravioletten deutlich schneller konvergieren als im
Infraroten. Wesentlich in diesem Zusammenhang ist die Definition des Abbruchkriteriums.
Wihrend bei der Standardmethode fiir das Erreichen von Kovergenz die Bedingung

fa+1(pEi, [P;)

1—
fn(PEis Pl;)

<e Vij, 0<ij<N, (2.113)

wobei fy(pEi, [p[;) den Wert der Propagatorfunktion nach n Iterationen am Gitterpunkt
(pE:, |P| j) bezeichnet, V 4,7 nach n Iterationen erfiillt sein muss, wird bei der Freezing-
technik der Wert der Propagatorfunktion am Gitterpunkt (pg;, |p|;) bereits nach einmaligem
Erfiillen dieser Bedingung “eingefroren”.

e Ein weiterer naheliegender Weg, um die Rechenzeit fiir eine einzelne Iteration zu minimie-
ren, ist natiirlich die Parallelisierung des Programms.

2. Die Gesamtzahl der Iterationen minimieren

o Allen gingigen Iterationsverfahren ist inhdrent (vorausgesetzt das Iterationsverfahren kon-
vergiert), dass die Anzahl der Iterationen mit der Problemgrofie anwéchst. Hier kann durch
den Einsatz von Konvergenzbeschleunigungsverfahren eine Verringerung des Rechenzeit-
bedarfs erreicht werden. In dieser Arbeit wird Wynn’s e-Algorithmus auf eine Folge von
Partialsummen der Quarkpropagatorfunktionen angewendet. Niheres zu nichtlinearen Fol-
gentransformationen und dem e—Algorithmus findet sich in Kapitel 4.
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Kapitel 3

Numerische Quadratur

The game is to obtain the integral as accurately as pos-
sible with the smallest number of function evaluations
of the integrand.

Press et al. (1992)

Der Begriff Quadratur hat (zumindest) drei inkompatible Bedeutungen [22]. Integration durch Quadratur
bedeutet entweder die analytische Auswertung (z.B. symbolisch in Form von bekannten Funktionen)
oder die numerische Approximation (z.B. durch Quadraturformeln) von Integralen. Daneben versteht
man unter Quadratur auch ein klassisches Problem der Geometrie: die Konstruktion eines Vierecks nur
mit Zirkel und Lineal mit demselben Flicheninhalt wie eine gegebene geometrische Figur.

Unter numerischer Quadratur bzw. numerischer Integration versteht man die ndherungsweise Berech-
nung von bestimmten Integralen

b
1) = [ fla)da G.1)

mit einer gegebenen integrierbaren Funktion f und einem endlichen Intervall [a, b] als Integrationsbe-
reich. Die Formeln zur niherungsweisen Berechnung von I( f) heifien Integrations- oder Quadraturfor-
meln. Die geeignete Methode zur Bestimmung von I(f) hingt wesentlich von den Eigenschaften des
Integranden im Integrationsintervall ab: ist der Integrand glatt oder gibt es Singularititen der Funktion
f(x)? Liegt eine Wertetabelle vor oder ist f(x) fiir beliebige Argumente x berechenbar? Was ist die
gewiinschte Genauigkeit und wie viele verschiedene Integrale sind zu berechnen?

Zur Durchfiihrung der numerischen Integration sind zwei Teilaufgaben zu bewiltigen [23]: Die eine
beschiftigt sich mit der Konstruktion von Quadraturformeln, die andere mit der Abschitzung der Ap-
proximationsgiite. Dabei hat man natiirlich gewisse Freiheiten, was sich recht deutlich in den unter-
schiedlichen Konzepten der giingigen Integrationsmethoden zeigt (Newton-Cotes-Formeln, Romberg-
Integration, GauB3-Quadratur, Monte-Carlo-Integration).

Das einfachste Beispiel fiir die Konstruktion einer Quadraturformel @),, ist, das bestimmte Integral als
Fliache zwischen dem Funktionsgraphen und der x-Achse zu definieren und den Wert des Integrals mit
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Hilfe von Riemann-Summen

b o=
/f(x)dm(bn )Zf(xi) = Qn (32)

und einer dquidistanten Zerlegung x; = a + i(b — a)/n von [a, b] zu approximieren. Allerdings zeigt
sich, dass diese Methode in der Regel sehr langsam konvergiert und damit fiir praktische Anwendungen
kaum geeignet ist.

3.1 Interpolatorische Quadraturformeln

Ein anderer naheliegender Weg zur Konstruktion von Quadraturformeln ist der iiber Polynominterpola-
tion. Dabei wird die zu integrierende Fumktion f(z) im Integrationsintervall [a, b] durch ein Interpola-
tionspolynom p,,(x) an (n + 1) verschiedenen Stiitzstellen (Knoten, Abszissen) a < xp < x1 < ... <
ZTp—1 < x, < bangendhert und man verwendet als Niherung fiir den Wert I(f) das Integral iiber das

Interpolationspolynom:
b b
- / f(z)dz ~ / p(x)dz. (3.3)

Unter Verwendung der Lagrangeschen Interpolationsformel

= L) f(x:) (3.4)
1=0

mit den (n + 1) speziellen Lagrangeschen Interpolationspolynomen

i r — Ty
L(z) =] — lf (3.5)
j=0"" "
i#£]

ergibt sich so

b n+1) n
/ J:Z)dx—i-/a nH'ZHOx—xZ x. (3.6)

Aus dem ersten Anteil resultiert die Quadraturformel

n b n
Qn=>_ f(:vl-)/ Li(z)de =: (b—a) > wif(x:), (3.7)
i=0 @ i=0

die nur von den gewihlten Stiitzstellen zq, x1, ..., x,, und den Integrationsgewichten
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b
wj = / li(x)de (k=0,1,...,n) (3.8)

l
n+1 Pl

f n+1 n

E,[f]:=1 / (x — x;)d, 3.9
kann im Fall von dquidistant verteilten Stiitzstellen explizit angegeben werden. Der Gesamtfehler setzt
sich dann aus dem Quadraturfehler und dem bei numerischen Verfahren immer vorhandenen Rundungs-
fehler zusammen. Alle diese interpolatorischen Quadraturformeln besitzen konstruktionsbedingt die Ei-
genschaft, dass @, fiir I( f) den exakten Wert liefert, falls der Integrand f(x) ein Polynom p,, vom Grad
deg p, < n ist. So hat eine beliebige Quadraturformel (),, die Fehlerordnung m, wenn fiir den Fehler
(i) E[p] = 0 fiir alle Polynome p € [[,,_; und (ii) E[p] # O fiir ein Polynom p € [], . gilt.

Wihlt man die Stiitzstellen x; dquidistant, erhilt man die Newton-Cotes-Formeln. Die einfachsten Newton-
Cotes-Formeln ergeben sich aus der linearen Interpolation (Trapezregel) und der quadratischen Interpo-
lation (Simpson-Formel oder Keplersche Fassregel). Entsprechende Formeln hoherer Ordnung bisn < 8
konnen auch konstruiert werden. Diese Verfahren sind ausgenommen die zusammengesetzte Trapezregel
in Kombination mit der Richardson-Extrapolation (Romberg-Integration) heute aber nur mehr ’schone
Museumsstiicke” [24].

3.2 GauB-Quadratur und Orthogonalpolynome

Die Idee bei der GauB3-Quadratur besteht darin, die Einschrankung von dquidistant verteilten Stiitzstellen
aufzugeben und dieselben zusammen mit den Integrationsgewichten so zu wihlen, dass die resultierende
Quadraturformel maximale Genauigkeit besitzt. Das fundamentale Theorem der Gau3-Quadratur besagt,
dass die durch die Summe definierte Quadraturformel

I(f) ::/b dx—Zwa x;) f(2n (5 / ﬁaﬁ—xz dx (3.10)
a =1

mit einer positiven Gewichtsfunktion w(z) > 0 den maximalen Genauigkeitsgrad m = (2n — 1) be-
sitzt (also Fehlerordnung 2n hat), falls die Stiitzstellen der Quadraturformel genau mit den Nullstel-
len eines Satzes von Orthogonalpolynomen im selben Intervall zusammenfallen. Eine n-Punkt GauB-
Quadraturformel

)= wif(:) G.11)
=1

ist also exakt (E,[f] = 0), falls f(z) ein Polynom p vom Grad deg (2n— 1) oder weniger ist. Wir suchen
nun nach einer notwendigen Bedingung dafiir, dass die Quadraturformel (3.11) die Fehlerordnung 2n
besitzt. Dazu bezeichnet man mit p,, € [[,, das Polynom
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pulx) =[x — 2:). (3.12)
Ist p € [],,,_, beliebig, so gibt es Polynome ¢, € [],,_; mit

p(x) = pn(x)q(z) + (). (3.13)

Aus der Exaktheit von (3.11) folgt

b b
| w@pa)ds = [ w@lpa(alaa) + r(@)ds
n n b
= sz[pn(azz)q(a:z) +r(x;)] = Zwir(a:i) = / w(z)r(x)dz, (3.14)
i=1 i=1 a

also

b
/ w(x)pn(z)q(x)dz = 0. (3.15)

Durchlduft p die Menge aller Polynome [ [,,, _, so durchléuft ¢ in der obigen Zerlegung von p die Menge
[L,,_;- Notwendig fiir die Exaktheit der Quadraturformel (3.11) ist also, dass p,, orthogonal zu [,
bzgl. des Skalarprodukts

b
(f.9) = / w(@) f(2)g(x)da (3.16)

ist. Die gesuchten Stiitzstellen x; miissen also also die Nullstellen von Orthogonalpolynomen p,, vom
Grad deg p, = n sein. Man bezeichnet mit

n—1

Hn ={pe Hn cp(x) =2" + Zaixl} (3.17)
i=0

die Menge der normierten Polynome. Fiir eine Menge von normierten orthogonalen Polynomen gilt:

1 m=n

(pmpm) = { 0 sonst (3.18)

Solche orthogonalen Polynomsysteme kdnnen mittels Gram-Schmidt Orthogonalisierung aus den Mo-
nonomen {1, z, x?, ...} konstruiert werden. Die Gewichte und Stiitzstellen der Quadraturformel hiingen
dann von der jeweiligen Wahl der Gewichtsfunktion w(z) ab. Die gingigsten Gewichtsfunktionen und
die zugehorigen Orthogonalpolynome sind in Tabelle 3.2 zusammengestellt.
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w(x) Intervall [a,b]  Orthogonalpolynome

1 -1<x<1 Legendre-Polynome P,
(1—22%)~1/2 -1<z<1 Chebychev-Polynome 7,
e’ 0<z <0 Laguerre-Polynome L,
e~ —o0 < x < oo Hermite-Polynome H,,
1—-z)*(1+2)’ —-1<2<1 Jacobi-Polynome PS""

Tabelle 3.1: Gidngige Gewichtsfunktionen und zugehorige Orthogonalpolynome.

3.3 Berechnung der Stiitzstellen und Gewichte

Es gibt (vergleiche z.B. [23] [25]) zu jeder zuldssigen Gewichtsfunktion w(z) ein System von Orthogo-
nalpolynomen {p, }, die bis auf einen Normierungsfaktor eindeutig bestimmt sind. Diese geniigen einer
Drei-Term-Rekursionsformel

p—1(z) =0 (3.19)
po(z) = (3.20)
Pnt1(z) = (T — an)pn(x) — b2pn_1(x), n €Ny (3.21)
mit
.= (@PnlPn) 0,1,...,n (3.22)
(Pnlpn)
by, = _(Palpn) 1,2,...,n (3.23)
(pn—llpn—l)

Bei den in der Praxis vorkommenden Polynomen handelt es sich in der Regel um charakteristische Po-
lynome von Matrizen [25]. Die Nullstellen x; = z1, ..., x,, des n-ten Orthogonalpolynoms p,, sind dann
die Eigenwerte der symmetrischen Tridiagonalmatrix

ar by

T, = - : (3.24)

b, an

die beispielsweise mit einem QR-Dekompositionsverfahren berechnet werden kénnen. 7}, nennt man die
zur GauB-Formel G,, gehorige Jacobi-Matrix. Die zugehorigen Gewichte w; konnen ebenfalls mit Hilfe
der Jacobi-Matrix T;, berechnet werden, da fiir die Gewichte w; die Gleichung (vergleiche [25])

wi = ()2, i=1,2,...n (3.25)

gilt, wobei v = (v%i), vy vg))T Eigenvektor zum Eigenwert z; von 7, ist. Die erste Komponente vy)
des Eigenvektors v(Y) und damit w; kann so beim QR-Verfahren zur Bestimmung der Eigenwerte leicht

mitberechnet werden.
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3.4 GaubB-Legendre Quadratur

Fiir das Intervall [—1, 1] und die Gewichtsfunktion w(z) = 1 sind die zugehdrigen Orthogonalpolynome

onldr n
pn(x)—wdxﬁ(x —1) (3.26)

bis auf einen Normierungsfaktor gerade die Legendre-Polynome. Die Nullstellen der Legendre-Polynome
sind alle verschieden, liegen im offenen Intervall (—1, 1) und sind beziiglich des Ursprungs symmetrisch.
Sie dienen als Stiitzstellen z; in den Gauss-Legendre Formeln und kénnen unter Verwendung der Rekur-
sionsbeziehungen

(n + 1)Pn+1 = (2n + 1)$Pn —nP,_1
(22 —1)P1, = nxP; —nPj_4 3.27)

entweder mit den in Abschnitt 3.3 beschriebenen Methoden oder durch Nullstellensuche beispielsweise
mit dem Newton-Raphson Verfahren bestimmt werden:

fr(zn)

Tl = &y — (3.28)

Eine hilfreiche Tatsache bei der Implementierung eines Root-Finders fiir die Legendre-Polynome ist die
Tatsache, dass die Nullstellen von F,,; zwischen denen von P, liegen und diese als Startwerte fiir die
Berechnung der Nullstellen von FP,,;; verwendet werden konnen. Alternativ kann auch die Niherung
(vergleiche z.B. [24])

xy & cos[m(n —1/4)/(N + 1/2)] (3.29)

als Startwert verwendet werden. Die Gewichte konnen auf mehrere Arten berechnet werden:

e Direkt aus dem nichtlinearen Gleichungssystem
b n
/ w(@)p(z)de =) wip(w;) (3.30)
@ i=1

e Durch Losung des linearen Gleichungssystems

ijpi(xj) = dio (Po, Po),, - (3.31)
j=1

e Eine effiziente Methode ist folgende: man berechnet das Lagrangesche Interpolationspolynom fiir
f(z) durch [26]:
n
pn(x) = H(x —xj), (3.32)

J=1
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’ N T
pn(x]) - dI

(3.33)

und fittet mit der Lagrangeschen Interpolationsformel (3.4) durch n Punkte (Gleichungen (3.5) bis

(3.7)):

[ e = [ oter ot e = Yt

mit Gewicht

o 1 wa pn(m) "
o= i L@

Fiir orthogonale Polynome P, (x) gilt [26]:

Pn(x) = Anpn('r)a

(3.34)

(3.35)

(3.36)

wobei A,, der Koeffizient von 2™ in P, (z) ist. (3.35) wird dann unter Verwendung der Christoffel-

Darboux Identitidten [27] integriert und man erhilt

Ay [|Pai(2))? da
Ap_1 Poi(z;) Phy ()

W; =

(3.37)

Die Gewichte (3.37) konnen mit Hilfe der Rekursionsbeziehungen (3.27) und folgenden Identita-

ten [26] vereinfacht werden:

1 ) 9
P, dx =
/_1 n(@)" de 2n+1’

Ay 2n—1
An,1 N n '

Die Gewichte w; erhalten so die fiir die numerische Berechnung giinstige Form:

2
(1 = @) [Py () ]*

Wi =

Fiir beliebige Integrationsbereiche [a, b] kann das Integral fab f(x)dx mit der Transformation

b b-— b—
x=g(t) = a—2i— +Tat, dr = adt,

a=g(t) = ~1, b=g(tr) = 1

in ein Integral iiber das Intervall [—1, 1] iiberfiihrt werden:

/abf(x)da:

a a+b

)dt.

36

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)



Insgesamt erhalten die GauB3-Legendre Formeln die Gestalt

b b—a b—a a+b
/a f(z)dz =~ 5 ;wzf( 5 x; + 5 ). (3.44)
Der Quadraturfehler ist
22n+1 ! 4
Edlf] = W _pne), e (-11). (345

[(2n)!]3(2n + 1)

Integrale iiber unbeschriinkte Intervalle! werden hiufig unter Verwendung der Knoten und Gewichte
von Orthogonalpolynomen mit exponentiellen Gewichtsfunktionen, beispielsweise den Laguerre- oder
Hermite-Polynomen berechnet. In der Regel erhilt man bessere Ergebnisse, wenn man versucht, Or-
thogonalpolynome fiir ein endliches Intervall durch eine geeignete Transformation auf ein unendliches
Intervall abzubilden. So kdnnen etwa die Gaul3-Legendre Formeln mittels der logarithmischen Transfor-
mation

2

z(t) = log (1—t> (3.46)

auf das semi-unendliche Intervall [0, co) abgebildet werden:
(o) 1 dx
f(z)dz = f(z(t))—dt. (3.47)
0 -1 dt

3.5 GauB-Kronrod-Quadratur

Wie alle GauB3-Formeln haben auch die GauB-Legendre-Formeln bei der praktischen Anwendung auf
Integrationsprobleme einen gravierenden Nachteil: zwei beliebige Quadraturformeln G, (f), G, (f) mit
m # n haben (auler eventuell den Intervallmittelpunkt) keine Knoten gemeinsam. Damit gibt es keine
effiziente Methode, um zu einer praktisch berechenbaren Fehlerabschitzung zu gelangen. Die iibliche
Vorgehensweise, Formeln mit verschiedener Knotenzahl auszuwerten und die Differenz als Fehlerab-
schitzung zu verwenden, wiirde zu viele Auswertungen des Integranden benotigen und damit einen zu
hohen Aufwand verursachen. Von A. S. Kronrod [29] wurde 1965 eine Vorgehensweise vorgeschlagen,
die diesen Nachteil weitgehend vermeidet. Ausgehend von einer n-Punkt Gauf3-Formel

Gn(f) = wif(x:) (3.48)
=1

der Ordnung 2n mit n Abszissen 1, ..., x, € (—1,1) bestimmt man (n + 1) weitere Knoten yg, ..., y, €
(—1,1) und (2n + 1) Gewichte «;, (3; so, dass die Quadraturformel

In der dlteren Literatur wird hiufig die irrefithrende Bezeichnung “uneigentliche” Integrale verwendet. Tatsichlich gibt
es nur einen einzigen Integralbegriff (das Lebesgueintegral), der sowohl beschrinkte als auch unbeschrinkte Integranden und
Integrationsgebiete umfasst [28].
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Koni1(f) =Y ouf(xi) + > Bif (i) (3.49)
i=1 =0

moglichst hohe Ordnung besitzt. Die resultierende (2n + 1)-Punkt Gauf3-Kronrod-Quadraturformel hat
die Form

2n+1

Koni1(f) == > wif (@) (3.50)

i=1

mit den folgenden beiden Eigenschaften:

e 1 Knoten von Ko, 1 fallen mit denen einer n-Punkt Gau3-Formel G, fiir dieselbe Gewichtsfunk-
tion zusammen.

o Koni1(f)=1(f), falls f ein Polynom vom Grad (3n + 1) oder weniger ist.

Der offensichtliche Vorteil ist nun, dass wegen der ersten Eigenschaft Funktionsauswertungen des In-
tegranden zur Fehlerabschitzung wiederverwendet werden konnen. Aus diesem Grund ist die Gaul3-
Kronrod-Quadratur in den meisten Mathematikpaketen (Mathematica, MAPLE, QUADPACK-Library,
GSL-Library,...) das Standardverfahren zur eindimensionalen numerischen Integration. Auflerdem las-
sen sich aus (3.49) iterativ Kronrod-Formeln hoherer Ordnung konstruieren, die sogenannten Patterson-
Extensions [30].

Zur Berechnung der Knoten und Gewichte existieren verschiedene Methoden, die grofiteils auf dem in
Abschnitt 3.2 beschriebenen Verfahren basieren [31] [32] [33]. Ihre effiziente Berechnung erweist sich
allerdings als schwierig. So schreiben z.B. die Autoren von [33]: “The presented iterative method is
very sensitive with respect to perturbations in an early step. Numerical validation therefore requires
high precision arithmetic.” und die Autoren von [32] "...that allow the computation of the nodes and
weights ... in O(n?) or O(n3) arithmetic operations. The faster algorithm yields nodes and weights with
sufficient accuracy for most applications. The slower algorithm gives higher accuracy for certain difficult
problems.” Um die Stabilitdt des Verfahrens zu gewéhrleisten, empfiehlt es sich daher, auf tabellierte
Werte zuriickgreifen.

3.6 Automatische Integration

Aus Sicht des Benutzers muss ein Quadraturverfahren - unabhingig vom konkreten Zugang - fiir das
bestimmte Integral

I(f) := / f(x)dx, QCR" (3.51)
Q
eine Niherung I derart finden, so dass

[1(f) = I < max(eq, &y - [1]) (3.52)
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gilt, wobei €, und ¢, vom Benutzer vorgegebene Oberschranken fiir den absoluten bzw. relativen Fehler
sind. Um die notwendige Genauigkeit moglichst effizient zu erreichen, erweist es sich als zweckmiBig,
den Integrationsbereich abhidngig vom Funktionsverhalten des Integranden und der geforderten Genauig-
keit dynamisch in verschiedene Teilbereiche zu zerlegen. Fiir jeden Teilbereich wird dann eine Integrati-
onsformel verwendet. Ein Automatischer Integrator unterteilt das Integrationsintervall solange rekursiv,
bis in jedem Teilintervall die erforderliche Genauigkeit erreicht ist. Diese dynamische Zerlegung des
Integrationsbereiches wird auch adaptive Verfeinerung genannt [23]. Fiir die Bereichsverfeinerung un-
terteilen sich die verwendeten Methoden in zwei Klassen, die als lokale bzw. globale Strategie bezeichnet
werden. Bei der globalen Strategie wird die Bedingung

> d([IV)]) < max(eq, &, - 1)) (3.53)

Jj=1

gepriift. Erreicht die erzielte Integralndherung mit der aktuellen Zerlegung die geforderte Genauigkeit
nicht, dann wird der Teilbereich mit dem maximalen lokalen Fehler weiter unterteilt. Dieser Vorgang
wird solange fortgesetzt, bis entweder die Bedingung (3.53) erfiillt ist oder eine vorgegebene maximale
Anzahl von Zerlegungen erreicht wurde. Hingegen wird bei der lokalen Strategie verlangt, dass fiir jeden
Teilbereich (2; die Bedingung

d([IV]) < ’|QQJ|‘ max(eq, &, - |1]) (3.54)

erfiillt werden muss. Die lokale Strategie ist im Allgemeinen weniger effizient als die globale Strate-
gie, da sie mehr Rechenaufwand erfordert und im Extremfall ein unendlicher Programmlauf verursacht
werden kann [23].

3.7 Mehrdimensionale Integration

Ein numerisches Kubaturverfahren (manchmal auch als mehrdimensionale numerische Quadratur be-
zeichnet) hat die Aufgabe, ein bestimmtes Integral einer Funktion f(x) in mehr als einer Dimension zu
approximieren. Formal sind mehrdimensionale Integrale einfach wiederholte Integrationen iiber jeweils
andere Integrationsvariablen, sogenannte iterierte eindimensionale Integrale. Fiir diese gilt der Satz von
Fubini (iterierte Integration): Hat der Integrationsbereich €2 = Q; x 29 Produktstruktur, dann gilt

[ sy = [ ( f(fv,y)dx>dy= /( f(:c,y>dy)dx. (3.55)
Q1 %0 Qs Q1 1951 Qo

Wenn die Integrationsgrenzen konstant sind, dann ist dieses iterierte Integral unabhéngig von der Inte-
grationsreihenfolge. Um Kubaturverfahren zu entwickeln, die dhnlich funktionieren wie im eindimen-
sionalen Fall, kann man unter Verwendung des Satzes von Fubini das mehrdimensionale Integral auf
wiederholte Integrationen von eindimensionalen Integralen zuriickfiihren.

Alle direkten Integrationsverfahren haben jedoch denselben Nachteil, der anhand einer einfachen GauB3-
formel G, erldutert werden soll. Dazu sei Q = [—1,1]¢ und f beliebig. Im mehrdimensionalen Fall
d > 1 erhilt man mit dem Satz von Fubini
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1 1 n n
/Qf(x)dx—/ / f(z1,..,xg)dry...drg ~ E E Wiy - Wip [(Tiyy ooy Tiy)- (3.56)
-1 -1

11=0 ig4=0

Um den Aufwand abzuschitzen, muss man zéhlen, wie viele Funktionsauswertungen die Approximation
bendtigt (Funktionsauswertungen sind bei der numerischen Integration die aufwéndigste Operation). Die
Anzahl der Auswertungen betriigt N = (n + 1)?. Als erstes sollte man sich bei der Behandlung von
mehrdimensionalen Integralen daher die Frage stellen, ob es moglich ist, das Integral analytisch auf eine
niedrigere Dimension zu bringen.
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Kapitel 4

Der epsilon-Algorithmus

The epsilon algorithm is recommended as the best
all-purpose method for slowly converging sequences.

Graves-Morris, Roberts, Salam (1999)

In vielen Bereichen der Physik und anderen Naturwissenschaften ist man auf Losungen in Form von
unendlichen Reihen angewiesen. Das konventionelle Verfahren zur ndherungsweisen Berechnung des
Wertes einer unendlichen Reihe s besteht darin, die Glieder der Reihe a,, einfach solange aufzuaddieren,
bis Konvergenz erreicht ist:

lim s, = s. 4.1)

n—oo

Ein solches Verfahren stoft natiirlich rasch an seine Grenzen. Ein gutes Beispiel dafiir ist die Reihenent-
wicklung der Riemannschen Zeta-Funktion

o0

((2) =) (n+1)7~ (4.2)

n=0

Es ist bekannt, dass diese Reihe fiir alle komplexen Zahlen mit Re(z) > 1 konvergiert. Ist allerdings
Re(z) nur wenig grofer als 1, konvergiert diese Reihe extrem langsam. So benétigt man beispielswei-
se ungefihr 102 Reihenglieder, um ¢(1.1) auf wenigstens ein Prozent genau zu berechnen (verglei-
che [34]). Die Idee, die Konvergenz einer Reihe durch einen verallgemeinerten Summationsprozess zu
verbessern, ist deshalb beinahe so alt wie die Analysis selbst. Bereits Euler verdffentlichte 1755 eine
Reihentransformation, die heute nach ihm benannt ist.

4.1 Verallgemeinerte Summationsprozesse

Unter einem verallgemeinerten Summationsprozess versteht man eine Transformation 7, die eine gege-
bene Folge von Partialsummen {s,, } in eine neue Folge {s/, } iiberfiihrt:
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T:{sp} — {sh}. (4.3)

Um die Konvergenz einer Folge {s,,} zu verbessern, muss 7'({ s, }) schneller konvergieren als {s,, }. Es
liegt nahe zu fordern, dass eine solche Transformation reguldir sein muss: wenn {s,, } konvergiert, dann
konvergiert auch 7' ({ s, }) gegen den gleichen Grenzwert. Fordert man noch zusitzlich

T({sn} +{tn}) = T({sn}) + T({tn}), 4.4

dann nennt man diese Transformation linear. Solche Transformationen haben eine besonders einfache
Struktur, da die Elemente von {s/,} aus gewichteten Mittelwerten der urspriinglichen Folge {s,} ge-
bildet werden konnen [35]. Daran lassen sich Bedingungen kniipfen, die die Regularitit des Verfahrens
garantieren. Trotzdem ist der praktische Nutzen von reguldren linearen Transformationen beschrinkt.
Der Grund dafiir mutet zundchst paradox an: die Klasse von Folgen, fiir die lineare Methoden regulér
sind, ist einfach zu grofl. Aber wie die Erfahrung zeigt, existiert in den seltensten Féllen ein Verfahren,
das fiir eine Klasse von Problemen fiir jeden Spezialfall gleich gut konditioniert ist.

Verbesserungen bringen die allgemeineren nichtlinearen Verfahren, die allerdings in der Regel auch
nichtregulér sind. Ein nichtlinearer verallgemeinerter Summationsprozess unterscheidet sich von einem
linearen dadurch, dass die Linearititsbedingung (4.4) nicht mehr gilt. Stattdessen kann man nur mehr
Translationsinvarianz fordern:

T({sn} +{cn}) =T({sn}) + T'({cn}) fiir jede konstante Folge {c,} . (4.5)

Nichtlinearitéit und Nichtregularitit sind sicher Eigenschaften, die man eigentlich lieber vermeiden méch-
te. Trotzdem sind sie unverzichtbar, da die Leistungsfihigkeit vieler verallgemeinerter nichtlinearer Sum-
mationsprozesse eine direkte Folge ihrer Nichtlinearitit und Nichtregularitét ist.

4.2 Die Schmidt-Transformation und Wynn’s epsilon-Algorithmus

Der e-Algorithmus ist eines der wichtigsten numerischen Verfahren zur Berechnung eines verallge-
meinerten nichtlinearen Summationsprozesses. Die Methode findet beispielsweise Verwendung in den
Mathematica-Befehlen SequenceLimit, NSum, NProduct und NLimit, auch basieren alle Konvergenzbe-
schleunigungsverfahren des QUADPACK auf diesem Algorithmus.

Der e—Algorithmus ist ein zweidimensionales nichtlineares Rekursionsschema zur Berechnung der 1941
veroffentlichten Transformation von Schmidt [36], die 1955 von Shanks [37] wiederentdeckt wurde. Die
Herleitung der Schmidt- Transformation ist vollig heuristisch und folgt aus der Beobachtung, dass viele
unendliche Reihen von praktischer Bedeutung so konvergieren, als ob sie aus ihrem Grenzwert und ei-
ner Linearkombination aus exponentiellen mathematischen Transienten — in Analogie zu physikalischen
Transienten, die nach hinreichend langer Zeit verschwinden — zusammengesetzt wiren:

k—1
Sn=s5+ Y a\, n € Nog, Ao # Ag # 0. (4.6)
=0

In dieser Modellfolge ist der Restterm
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k—1
e =3 a\r. @7
=0

Da sich r,, offenkundig aus einer Linearkombination von k Exponentialfunktionen zusammensetzt, exis-
tiert auch ein linearer finiter Differenzenoperator A der Ordnung k£ mit konstanten Koeffizienten b;, der
ry, annihiliert [35]:

k
Z bjrnJrj == O, bobj 75 0. (48)
7=0

Man sieht leicht, dass

Tntj =Tn +Arp + Arppr + ..+ Arppj 1 =1 + Asy + Asppr + ...+ Aspg 1. 4.9)

Einsetzen von (4.9) in (4.8), Division durch ) | b; und anschliefende Redefinition der Konstanten liefert

k—1

Sp = S+ Z CjAsp ;. (4.10)
§=0

Die Modellfolge (4.10) enthélt k¥ + 1 Unbekannte: den Grenzwert s und die % linearen Koeffizienten
o, ---, c;—1. Unter Verwendung der Cramerschen Regel erhilt man fiir den verallgemeinerten Summati-
onsprozess e (s, ) der Modellfolge (4.10) eine Darstellung als Quotient zweier Determinanten:

Sn Sn+1 . Sn+k
As, Aspy1 ... Aspyg
As +k—1 ce ... As +2k—1
er(sn) = ”1 : "1 . (4.11)
As, Aspt1 oo Aspig
Asn—i—k—l PN PN A5n+2k—1

Gleichung (4.11) ist die Schmidt-Transformation. Es fillt sofort auf, dass die Schmidt Transformati-
on eg(sy) aufgrund ihrer Definition als Quotient zweier Determinanten fiir praktische Zwecke wenig
brauchbar ist (auBer vielleicht fiir kleine k). Diese Problematik konnte bereits ein Jahr nach der Ver-
offentlichung von Shanks durch Wynn [38] iiberwunden werden, der zeigen konnte, dass die Transfor-
mation von Schmidt mit Hilfe des folgenden zweidimensionalen Rekursionsschemas auf ausgesprochen
effiziente Weise berechnet werden kann. Er setzte

e = e (sn), (4.12)
ey = 1/en(sne1 —su), k€N (4.13)
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und konnte zeigen, dass die folgenden Rekursionsbeziehungen gelten:

") =0, eV = su, (4.14)
61(#1 =" 41/ — M ke N (4.15)

Die Gleichungen (4.14) und (4.15) werden heute allgemein als e-Algorithmus bezeichnet. Die Elemente
(n) der Transformation werden iiblicherweise in Form einer unendlichen Matrix dargestellt [34], wobei
der obere Index n die Zeile und der untere Index & die Spalte der Matrix bezeichnet:

©0)  (0) (0)

€ € .. €
O C I

@ @ )
€ € .. €y

o (4.16)
OO

(n)

Die Eintrige in der ersten Spalte € ~ sind die ersten n Partialsummen s, s2, ..., s, der Reihe und dienen
als Startwerte im e-Algorithmus. Die restlichen Elemente kénnen dann mit der Rekursionsbeziehung
(4.15) berechnet werden. Dieses nichtlineare 4-Term Rekursionsschema verbindet jeweils 4 Elemente
der e-Tabelle (4.16), die wie die Eckpunkte eines Rhombus angeordnet sind:

€ €
(n+1) (fﬂ) P 4.17)
-1 €k

Offensichtlich bilden diese Elemente ein gleichseitiges Dreieck in der linken oberen Hilfte der e-Tabelle.
Diese Zusammenhinge werden deutlicher, wenn man den e-Algorithmus auf folgende Weise umformu-
liert [39]:

) el = s, (4.18)

) = I e ) D) e 2< < (4.19)

4.2.1 Programmierung des epsilon-Algorithmus

Die systematische Berechnung der e-Tabelle (4.16) kann auf zwei verschiedene Arten erfolgen:
Spaltenweise: ausgehend von den Startwerten e(()n) werden die Elemente der zweiten Spalte berechnet,
dann die Elemente der dritten Spalte usw.

Moving Lozenge Technique: Diese Art der Implementierung basiert auf der Beobachtung, dass bei
der Berechnung einer neuen Gegendiagonale diese nur Eingabedaten von sich selbst und der unmittelbar

(n)

zuvor hinzugefiigten Gegendiagonale bendtigt. Sobald ein neues Element € * = s,, zur Verfiigung steht,
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(n)

(n)

(n)

(n)

k Sn € € €3 €4

0 0 2 0.57142857 89.111111 0.58574349
1 0.5 16 0.58510638 1658.7132 0.58578573
2 0.5625 60.235294 0.58573198 20262.247

3 0.57910156 211.0554 0.58578185

4 0.58383965 725.93661

5 0.58521719

Tabelle 4.1: Numerisches Beispiel fiir den e-Algorithmus (die Nullstelle von z? — 4z — 2 ist
0.5857864375).

. . “1),. (0 . . N
werden sukzessive die neuen Elemente e§” ) bis e% ) berechnet. Programmiertechnisch etwas aufwindi-

ger, reduziert diese Technik den Speicherbedarf, da die e-Tabelle (4.16) unter Verwendung von nur zwei
eindimensionalen Arrays berechnet werden kann.

Als numerisches Beispiel betrachten wir zuerst die bereits von Wynn untersuchte iterative Folge

1
sn1 = (55 +2), n € Ny, s = 0. (4.20)

Diese Folge konvergiert (ausgesprochen langsam) gegen die kleinere der beiden Nullstellen des Laguerre-

Polynoms Ly(7) = 22 —4x —2, d.h. z = 0.5857864375. Tabelle 4.1 zeigt den Effekt des e-Algorithmus

(n)

auf s,,. Man erkennt, dass die ungeraden Elemente der e-Tabelle €, |

Verhalten ist allgemein der Fall.

fiir n — oo divergieren. Dieses

Tabelle 4.2 illustriert den Effekt des e-Algorithmus auf die Gregory-Formel > 7o (—1)*+1(2k — 1)~
die zur Berechnung der Kreiszahl 7 verwendet werden kann, und die Riemannsche Zeta-Funktion ((2) =
> o(n+1)7* fiir ((2) = 7 /6. Es fillt auf, dass der e-Algorithmus die Konvergenz der Riemannschen
Zeta-Funktion ((2) wesentlich schlechter beschleunigen kann als die der Gregory-Formel.

Zum Abschluss dieses Abschnitts mochte ich die Aufmerksamkeit daher nochmals auf den Giiltigkeits-
bereich von Algorithmen richten. Es ist bekannt, dass der e-Algorithmus nicht in der Lage ist, logarithmi-
sche Konvergenz zu beschleunigen. Definitionsgemi$ konvergiert eine Folge von Partialsummen {s,, }
logarithmisch gegen ihren Grenzwert s, wenn gilt:

. Sn+l1 — S
lim 2°fLl—°

n—oo Sy — 8

=1 4.21)

Die Situation kann dann etwa durch Verwendung des dem e-Algorithmus strukturell sehr dhnlichen p-
Algorithmus

" =0, Py = sn, 4.22)
() _ H(ntd) kil k,neN 423
Pr+1 = Pr—1 + (n+1) (n)’ , &€ No (4.23)

k — Pk

verbessert werden (Tabelle 4.2).
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(0)

(0)

(0)

k Tk k C2)k €k Pk

0 4 4 1 1 1

2 3.466666667 3.166666667 1.361111111 1.45 1.65

4 3.33968254 3.142342342 1.463611111 1.55161744 1.644894895
6 3.283738484 3.141614907 1.511797052 1.59030541 1.644934376
8 3.252365935 3.141593312 1.539767731 1.60908691 1.644934064
10 3.232315809 3.141592673 1.558032194 1.61960991 1.644934067
12 3.218402766 3.141592654 1.570893798 1.62609473 1.644934067
14 3.208185652 3.141592654 1.580440283 1.63037238 1.644934067

Tabelle 4.2: Vergleich von e- und p-Algorithmus (7 = 3.141592653589, 72 /6 = 1.644934066848).

Daher habe ich auch Vergleichsrechnungen mit dem p-Algorithmus vorgenommen. Dabei hat sich her-
ausgestellt, dass die in der vorliegenden Arbeit untersuchten Folgen lineare Konvergenz zeigen:

. Sn+l — S
lim 2°L—°

n—oo Sn — S

—p 0<ll<l (424)
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Kapitel 5

Programmierung

A theory is worthless without good supporting data.

Alexis L. Romanoff, Encyclopedia of Thoughts, Aphorismus 2410

Zur Berechnung der renormierten Quarkpropagatorfunktionen A(pg, |p|), B(pg, |p|) und C(pg, |p|)
wurde im Rahmen dieser Diplomarbeit das Programm QuarkpropagatorMPI entwickelt. Die Realisie-
rung erfolgte in der Programmiersprache C++ [40][41][42], wobei der ANSI-Standard [43] zugrunde
gelegt wurde. Diese Wahl war neben dem obligatorischen Klassenkonzept vor allem durch die Stan-
dard Template Library (STL) als wesentlichem Bestandteil von C++ motiviert. Im Entwicklungsprozess
selbst wurde auf die wichtigen Kriterien der einfachen Wartbarkeit und hohen Wiederverwendbarkeit
besonderer Wert gelegt.

Fiir die Interprozesskommunikation im Zuge der Parallelisierung wurden die MPICH-Bibliotheken ver-
wendet. MPICH [44] ist eine freie Implementierung des Message Passing Interface (MPI) Standards [45],
der sich mittlerweile als Quasistandard fiir wissenschaftliche Berechnungen etabliert hat. Der grundle-
gende Mechanismus fiir die Kommunikation in MPI ist das Senden und Empfangen von Nachrichten.
Dabei wird davon davon ausgegangen, dass eine fixe Anzahl von Prozessen vorhanden ist und im allge-
meinen jeder Prozess auf einem eigenen Prozessor lduft. Jeder Prozess arbeitet mit seinen eigenen Daten
und seinem eigenen Programm. Die Prozesse kommunizieren untereinander via Message Passing, d.h.
der benotigte Datenaustausch geschieht, indem Nachrichten von einem Prozess zum nichsten geschickt
werden.

Um eine {iibersichtliche Dokumentation der Quelltextdateien zu erstellen, wurde das Dokumentations-
werkzeug Doxygen [46] verwendet, das seit 1997 von Dimitri van Heesch entwickelt wird. Doxygen
unterstiitzt neben C/C++ auch Java, (Corba and Microsoft) Java, Python, IDL, C#, Objective-C sowie
teilweise D and PHP Sources. Die von Doxygen unterstiitzten Ausgabeformate sind HTML, RTF, LA-
TEX, XML und Unix-Man page. Um Kommentare von Doxygen bearbeiten zu lassen, werden spezielle
Dokumentationsblocke im Quellcode gesetzt. Zusitzlich zur Beschreibung kénnen mit Doxygen For-
meln eingebunden sowie Vererbungs- und Kompositionsdiagramme erstellt werden.

In den beiden nédchsten Abschnitten beschreibe ich den strukturellen Aufbau des Programms Quarkpro-
pagatorMPI und den Algorithmus zur Losung der gekoppelten Dyson-Schwinger Integralgleichungen.
Anschliefend folgt eine kurze Beschreibung der Benutzerschnittstelle. Die Software wurde mit einer
ausfiihrlichen Programmdokumentation im html-Format auf CD-ROM der Arbeit beigefiigt.
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5.1 Das Programm QuarkpropagatorMPI

Das folgende Diagramm zeigt die hierarchische Struktur der Bausteine des Programms Quarkpropaga-
torMPI:

main

Constants CLattice Output

|

CEpsilon GaussKronrod

Integrandq | |IntegrandqE IntegrandBeka

CSpline GaussKronrodQC

Spline

Abbildung 5.1: Struktureller Aufbau des Programms QuarkpropagatorMPL.

e main

Im Hauptmodul main werden die folgenden Teilaufgaben erledigt:

1. Die Initialisierung der in den Modulen CLattice, CEpsilon und CSpline definierten Contai-
ner mit Anfangswerten.

2. Die Verwaltung der Interprozesskommunikation. Dafiir wird das Gitter in Streifen zerlegt,
die auf die verschiedenen Prozesse aufgeteilt werden.

3. Die Berechnung der Quarkpropagatorfunktionen A(pg, |p|), B(pe, |p|) und C(pg, |p|) durch
Aufruf der entsprechenden Unterfunktionen.

4. Die Berechnung des e-Algorithmus.
5. Die Uberpriifung der vom Benutzer festgelegten Abbruchkriterien.

6. Die Ausgabeverwaltung der numerischen Ergebnisse in Dateien.
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Constants

Im Modul Constants werden die systemweiten Konstanten definiert. Dieses Modul dient gleich-
zeitig als Benutzerschnittstelle. Hier kann der Benutzer festlegen, mit welchen Parametern das
Programm ausgefiihrt werden soll. Daneben sind in diesem Modul noch Konstanten wie 7 oder
C'Fr definiert.

CLattice

Das Modul CLattice enthélt die Klasse LatticeppE(). Diese Klasse ist ein Container, der die Eigen-
schaften des Gitters wie die Energien pg, die Impulse |p| sowie die Quarkpropagatorfunktionen
A(pg,|pl), B(pe, |p|) und C(pE, |p|) an jedem Gitterpunkt (pg;, |p|;) verwaltet. Dafiir enthilt
das Modul die Methoden clearLattice() und occupyLattice() zur Besetzung des Gitters, update-
Lattice() zur Aktualisierung der Gitterdaten sowie setSaveDataLattice() und getSaveDataLattice()
zum Anlegen und Wiedereinlesen von Sicherungsdateien.

Output

In diesem Modul sind die Prozeduren zur Ausgabe der numerischen Ergebnisse zusammengefasst.

CEpsilon

Das Modul CEpsilon enthilt die Klasse LatticeEpsilon(). Diese Klasse ist ein Container, der die
Eigenschaften und Methoden des Gitters zur Berechnung des e-Algorithmus verwaltet. In die-
sem Modul sind die Methoden getEpsilonTransformation() zur Berechnung des e-Algorithmus
und updateLatticeEpsilon() zum Speichern der Werte der Quarkpropagatorfunktionen A(pg, |p|),
B(pg, |p|) und C(pg, |p|) aus den vorherigen Iterationen definiert.

GaussKronrod

Das Modul GaussKronrod enthilt die Funktionen GKAdaptive() und GKRule1021(). Die Funk-
tion GKAdaptive() erhilt als Eingabeparameter einen Pointer auf eine extern definierte Funktion
f(z) und zerlegt den Integrationsbereich adaptiv in verschiedene Teilintervalle. Dabei speichert
und akkumuliert GKAdaptive() die verschiedenen Teilergebnisse, bis eine Nédherung fiir den Wert
des Integrals innerhalb der vom Benutzer vorgegebenen Genauigkeit erzielt wird. Die notwendigen
Integrationsroutinen sind in der Funktion GKRule1021() enthalten.

Integrandq

Dieses Modul beinhaltet die Subroutinen zur Berechnung der Impulsintegrale.

IntegrandqE

Dieses Modul beinhaltet die Subroutinen zur Berechnung der Energieintegrale.

IntegrandBeka

Dieses Modul beinhaltet die Subroutinen zur Berechnung der Winkelintegrale.

GaussKronrodQC

In diesem Modul werden die Stiitzstellen x; und Gewichte w; fiir eine Gauf3-Kronrod 10-21 Punkt
Quadraturformel definiert.

CSpline

Das Modul CSpline enthilt die Klasse Splinep(). Diese Klasse ist ein Container, der die Eigen-
schaften und Methoden zur Berechnung der kubischen Splineinterpolation verwaltet. Die Member
der Klasse sind vector Templates. Dadurch kann die Klasse sowohl zur Berechnung der kubischen
(instantane Néherung) als auch der bikubischen (bei Hinzunahme von retardierten transversalen
Gluonen) Splineinterpolation verwendet werden (Anhang D).
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e Spline

Das Modul Spline enthilt die Subroutinen zur Berechnung der kubischen Splineinterpolation
(Anhang D). Es besteht aus den Funktionen setSpline() zur Berechnung der Koeffizientenma-
trix (D.15) fiir natiirliche Randbedingungen unter Verwendung des Tridiagonal-Algorithmus sowie
getSpline() zur Berechnung eines splineinterpolierenden Wertes y. Die Funktionen setSpline() und
getSpline() sind Adaptierungen der Routinen spline() und splint() aus Numerical Recipes [24],
Seiten 115ff.

5.2 Beschreibung des Losungsverfahrens

Nach der Initialisierung von MPI erzeugt das Programm zunéchst ein Gitter (Lattice, Grid) der Grofe
N x N, auf dem die Energien pr und Impulse |p| gemiB der Konstruktionsvorschrift

PE: = kipEmina
Ipl; = k" |P|omin (5.1)

diskretisiert werden. Dabei sind pgmin und |p|min vom Benutzer vorgebene Unterschranken fiir die
Energien und Impulse. Der Parameter k& wird durch die Nebenbedingungen

|p‘min = |p|0 = PEO0,
|p’max = kNil |p’0 = kN?lpEO (52)

und anschlieBendes Auflosen der Gleichungen (5.2) nach k festgelegt:

1

N-1

k= <|p|m‘> . (5.3)
|p|min

Diese Art der Gitterskalierung erzeugt ein symmetrisches Gitter und tragt dem Abfall der Integranden
bei hohen Impulsen Rechnung. Im néchsten Schritt werden jedem Wertepaar (pg;, |p| j) Anfangswerte
zugeordnet:

A(pg, |pl) =1, (5.4
1
B(pg,|p|) = T5p? (5.5
1
Clop:lpl) = 1= ot L. (5.6)

Mit diesen Anfangswerten werden die Routinen zur Berechnung der kubischen Splineinterpolation und
des e-Algorithmus initialisiert.

Fiir die Parallelisierung wird das Gitter in instantaner Ndherung in der |p|-Koordinate in Streifen zerlegt
und auf die zur Verfiigung stehenden Prozessoren verteilt. Bei Hinzunahme von transversalen Gluonen
und Retardierungseffekten erfolgt die Parallelisierung entlang der pg-Koordinate.
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Die Berechnung der Quarkpropagatorfunktionen A(pg, |p|), B(pE,|p|) und C(pg, |p|) erfolgt iterativ
innerhalb der Hauptschleife. Dafiir werden die dreidimensionalen Integrale durch wiederholte Integra-
tionen iiber die jeweils anderen Integrationsvariablen approximiert (iterierte eindimensionale Integrale,
vergleiche Abschnitt 2.7). Die Berechnung selbst erfolgt innerhalb der automatischen Integrationsroutine
GKAdaptive() mit einer Gau3-Kronrod 10-21 Punkt Quadraturformel (Automatischer Integrator, siche
Abschnitt 2.6). Die Integration erfolgt "von auBen nach innen", d.h. die Impuls-, Energie- und Win-
kelintegrationsroutinen werden solange rekursiv aufgerufen und dabei der Integrationsbereich adaptiv
verfeinert, bis das Ergebnis die vom Benutzer vorgegebene Genauigkeit erfiillt. Die im Integranden vor-
kommenden Quarkpropagatorfunktionen A(qg, |q|), B(¢g,|d|) und C(qg, |q|) werden dabei mit Hilfe
der kubischen Splineinterpolation (Anhang D) bestimmt. Nachdem jeder Prozessor den ihm zugewiese-
nen Teilbereich berechnet hat, verschickt er eine Kopie seiner Ergebnisse an alle anderen Prozessoren.
AnschlieBend erfolgt die Berechnung des e-Algorithmus und die Ausgabe der Zwischenergebnisse in
Dateien.

Die Ergebnisse der aktuellen Iteration werden wiederum als Startwerte fiir die nichste Iteration verwen-
det. Dieser Vorgang wird solange wiederholt, bis die vom Benutzer vorgegebenen Konvergenzkriterien
erfiillt sind. Wesentlich in diesem Zusammenhang ist die Wahl eines geeigneten Abbruchkriteriums.
Zum einen konvergiert das Integral im Zahler von Gleichung (2.110) deutlich langsamer als im Nenner,
zum anderen konvergieren beide Integrale im ultravioletten Bereich deutlich schneller als im Infraroten,
was auf das infrarotsingulédre Verhalten des Integralkerns zuriickzufiihren ist. Ein Abbruchkriterium, das
dieses Verhalten beriicksichtigt, lautet

frs1(pEi, [P|;)

1—
fn(PEis Pl;)

<e VYi,j, 0<i,j<N, (5.7)

wobei fn(pEi, [p|;) den Wert der Propagatorfunktion nach n Iterationen am Gitterpunkt (pE;, |p|;) be-
zeichnet. Damit wird erreicht, dass die Iteration so lange weitergefiihrt wird, bis sich jeder einzelne Wert
hochstens um einen Faktor € @ndert. Bei aktiviertem “Freezing” gilt (5.7) fiir die jeweilige Propagator-
funktion bereits nach einmaligem Erreichen als dauerhaft eriillt.

Die numerischen Ergebnisse werden nach jedem Durchlauf der Hauptschleife in Dateien geschrieben.
Zusitzlich werden noch Sicherungsdateien angelegt, um gegen eventuell auftretende systembedingte
Probleme gewappnet zu sein.
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5.3 Benutzerschnittstelle

Der Benutzer kommuniziert mit dem Programm iiber das Modul Constants. Vor der Berechnung der
Quarkpropagatorfunktionen A(pg, |p|), B(pg, |p|) und C(pg, |p|) konnen zunichst die gewiinschten
Parameter angepasst werden. Anschliefend wird das Programm mittels mpicxx -Olevel -ansi Quark-
propagatorMPIL.cpp -o outfile kompiliert. level legt die Optimierungsstufe fest. Das Programm sollte
zumindest mit -O3 kompiliert werden, damit Optimierungen wie Inlining und Loop Unrolling benutzt
werden [47][48]. Die Option ”-0” des Compilers legt den Namen der erzeugten ausfiihrbaren Datei
outfile fest. Wird das Programm auf einem Hochleistungsrechner der Karl-Franzens-Universitit Graz
ausgefiihrt [49], wird noch zusitzlich ein SGE-Skript bendtigt. Abgesetzt wird der Job dann mit gsub
Jscriptname.sh, wobei scriptname.sh der Name des obigen Skripts ist. Ein Beispielskript auf CD-ROM
wurde der Arbeit beigefiigt.

Die nachfolgende Tabelle gibt einen Uberblick iiber die modifizierbaren Parameter des Programms
QuarkpropagatorMPI. Eine detaillierte Beschreibung der Parameter findet sich im Text und in der

Programmdokumentation.

Bezeichnung Typ Parameter siehe

MO double  Stromquarkmasse mg Gleichung (2.9)
NC integer  Anzahl der Farben NV, Abschnitt 2.1, 2.4
NF integer  Anzahl der aktiven Flavours N Abschnitt 2.1, 2.4
SIGMA double  Coulomb Stringspannung o Gleichung (2.81)
MU_SQUARED double  Infrarotregulator ,u% R Gleichung (2.109)
CUTOFF double  UV-Cutoft Ayy Abschnitt 2.3, 2.4
MU double  Renormierungspunkt || Abschnitt 2.4
MUE double  Renormierungspunkt i p Abschnitt 2.4
WITH_TRANSVERSAL boolean mit/ ohne transversale Komponenten Dokumentation
P_POINTS integer  Anzahl der Gitterpunkte in |p| Abschnitt 5.2
PE_POINTS integer  Anzahl der Gitterpunkte in pg Abschnitt 5.2
P_START double  kleinster |p|-Wert Gleichung (5.2)
P_END double  groBter |p|-Wert Gleichung (5.2)
PE_START double  kleinster pp-Wert Gleichung (5.2)
PE_END double  grofiter pp-Wert Gleichung (5.2)
IMPROVEMENT boolean mit/ ohne Freezing Abschnitt 2.6
MAX_ITERATIONS integer  max. Bisektionen in GaussKronrod Abschnitt 3.6
MAX_REL_ERROR double  max. rel. Fehler in GaussKronrod Gleichung (3.53)
MAX_ABS_ERROR double  max. abs. Fehler in GaussKronrod Gleichung (3.53)
MAX_SIZE integer  max. GroBe der e-Tabelle Gleichung (4.16)
COOLING_INTERATIONS integer  Einsprungpunkt fiir den e-Algorithmus Dokumentation
EPSILON_EPSALGO double  Abbruchkriterium fiir e-Algorithmus Dokumentation
EPSILON double  Abbruchkriterium fiir Iterationsschema Gleichung (5.7)
ZKKE double Z(kg,|k|) =1 Gleichung (2.111f)
FOLDERNAME string Ausgabeordner Dokumentation
NEW_RUN boolean neue Rechnung / Wiederaufnahme Dokumentation

Tabelle 5.1: Parameter in QuarkpropagatorMPI
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Kapitel 6

Numerische Ergebnisse

In diesem Kapitel présentiere ich die numerischen Ergebnisse fiir die renormierten Quarkpropagator-
funktionen A(pg, |p|), B(pe, |p|) und C(pg, |p|) in instantaner Néherung und unter Hinzunahme von
retardierten transversalen Gluonen. Die Rechnungen wurden im chiralen Limes (mo = 0) und fiir ein
leichtes Quark mit Strommasse my = 0.0037 GeV durchgefiihrt. Die instantane N@herung dient als Mo-
dell zur Erprobung der in Abschnitt 2.6 diskutierten Optimierungsstrategien, die dann zur Berechnung
des numerisch aufwiéndigeren Falls bei Hinzunahme der transversalen Komponenten des Gluonpropaga-
tors in Verbindung mit Retardierungseffekten verwendet werden.

6.1 Instantane Niherung

Im vorliegenden Modell wird die instantane Ndherung durch die Wahl von
Z(kg, [k|) =0 6.1)

realisiert. Die Rechnungen wurden in Regenbogenniherung unter Verwendung eines nackten Quark-
Gluon Vertex durchgefiihrt. Die Integralgleichungen wurden wie in Kapitel 5 beschrieben mit einem ite-
rativen Gesamtschrittverfahren gelost. Fiir die Kopplungskonstante wurde die Richardson-Form (2.79)
verwendet. Der Skalenparameter A ist dann durch die Stringspannung oo gegeben (2.81). Die Inte-
grale wurden infrarotregularisiert durch Addieren eines kleinen Massenterm k? — k%+ u7, (2.109)
und ultraviolettregularisiert mit einem Impuls-Cutoff Ay = 80000 GeV. Fiir groBere Werte von Ay
dndern sich die Ergebnisse nur mehr unwesentlich. Die Integrale wurden in jeder Dimension mit ei-
ner relativen Genauigkeit von 10~° bzw. einer absoluten Genauigkeit von 10716 berechnet (3.53). Als
Renormierungspunkt habe ich || = 45000 GeV genommen. Die Rechnungen wurden mit 48 diskre-
ten Werte in der |p|-Koordinate durchgefiihrt, um anschlieBend ein Vergleichset fiir die Ergebnisse im
transversalen Fall mit Retardierungseffekten zu haben. Die numerische Losung fiir die Massenfunktion
M(|p|) := B(|p|)/C(|p|) zeigt ein charakteristisches Plateau im Infraroten (Abbildungen 6.1 und 6.2)
ebenso wie das richtige asymptotische Verhalten fiir gro3e duflere Impulse (Abbildung 6.3). Der Wert
der Massenfunktion M (|p|) im Infraroten kann dazu verwendet werden, eine Konstituentenquarkmasse
zu definieren [21]. Mit dem verwendeten Wert fiir die Coulomb-Stringspannung o = 0.5476 GeV? aus
[50] betragt der Wert der Massenfunktion im Infraroten nur etwa ein Drittel des gewiinschten Wertes
[21][51]. Um die Situation zu verbessern, bestand die weitere Vorgehensweise darin, durch Hinzunah-
me von transversalen Gluonen in Verbindung mit Retardierungseffekten einen merklichen Einfluss auf
den Wert der Massenfunktion im Infraroten zu erzielen. Die entsprechenden numerischen Ergebnisse
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befinden sich im nédchsten Abschnitt. Zwar liefert die instantane Nédherung nicht die gewiinschten Er-
gebnisse, dafiir eignet sie sich ausgesprochen gut als Modell zur Erprobung der Optimierungsstrategien.
Im folgenden werden die Auswirkungen des e-Algorithmus in Kombination mit der Freezing-Methode
auf die Gesamtzahl der bendtigten Iterationen sowie auf die Anzahl der zu I6senden Integralgleichungen
betrachtet. Die Gesamtzahl der zu berechnenden Integrale GG; in instantaner Ndherung unter Verwendung
der Standardmethode ergibt sich aus

G; = 2 x Anzahl der Iterationen x [Punkte in |p| + ] (6.2)

(6.3)

{ 0.5 im chiralen Limes,
0=
1 sonst.

Der Faktor {2 wurde eingefiihrt, um die in jedem Schritt ebenfalls neu zu berechnenden Renormie-
rungsintegrale richtig mitzuzéihlen (im chiralen Limes entféllt die Renormierung der Propagatorfunk-
tion B(|p|)). Die Ergebnisse in den Abbildungen 6.5 und 6.6 wurden auf x,[1073] = 1 im chiralen
Limes skaliert, um deren Werte in einen fiir die graphische Darstellung vergleichbaren Zahlenbereich
zu transformieren. Wie die Abbildung 6.5 zeigt, konvergiert das Verfahren fiir kleinere Werte von ,u% R
deutlich langsamer. Der andere skalierende Faktor ist die Strommasse mg. Diese Erhohung der Anzahl
an Iterationen schligt doppelt zu Buche, da der Rechenaufwand fiir jeden einzelnen Iterationsschritt fiir
kleinere Werte von ,u% r ebenfalls anwichst. Durch die Verwendung des e-Algorithmus in Kombination
mit der Freezing-Technik kann die Anzahl der Iterationen effizient reduziert werden (Abbildung 6.5).
Wie aus Abbildung 6.6 ersichtlich, konvergiert das C'(|p|)-Integral bei Anwendung der Konvergenzbe-
schleunigungsverfahren schneller als das B(|p|)-Integral. Insgesamt lisst sich die Gesamtzahl der zu
berechnenden Integrale bei vergleichbarer Genauigkeit der Ergebnisse (Abbildung 6.4) um etwa eine
GroBenordnung reduzieren.

6.2 Hinzunahme von retardierten transversalen Gluonen

Im vorliegenden Modell wird die Hinzunahme von transversalen Komponenten und Retardierungseffek-
ten durch die Wahl von
Z(kg, k) =1 6.4)

realisiert. Die Rechnungen wurden wie in Aschnitt 6.1 in Regenbogennidherung unter Verwendung ei-
nes nackten Quark-Gluon Vertex durchgefiihrt. Dafiir wurden je 48 diskrete Werte in der pr und |p|-
Koordinate verwendet. Als Renormierungspunkt habe ich up = |u| = 45000 GeV genommen. Die
Parameter sind ansonsten diesselben wie in Abschnitt 6.1. Bei den in den folgenden Abbildungen darge-
stellten Ergebnissen handelt es sich um Vorhersagen des e-Algorithmus in Kombination mit der Freezing-
Technik, die mit einer relativen Genauigkeit von 10~3 berechnet wurden. Die |p|-Achse ist fiir alle ge-
zeigten Funktionen eine Symmetrieachse. Die Propagatorfunktion A(pg, |p|) steigt im Infraroten fiir
groflere Werte von u% r leicht an. Dieser Effekt schwiicht sich fiir kleinere Werte von /ﬁ r Wieder ab
(Abbildung 6.7). Die Propagatorfunktionen B(pg, |p|) und C(pg, |p|) divergieren fiir %, — 0 (Ab-
bildungen 6.8 und 6.9), die Massenfunktion M (pg, |p|) hingegen konvergiert fiir 17, — 0 (Abbildung
6.10). Eine Aufspaltung der Massenfunktion entlang der pg-Achse ist nicht zu beobachten. Die numeri-
schen Ergebnisse fiir die Massenfunktion M (pg, |p|) (Abbildungen 6.11 und 6.12) sind im wesentlichen
identisch mit denen fiir die Massenfunktion M (|p|) in instantaner Néiherung (Abbildungen 6.1 und 6.2).
Die Propagatorfunktionen B(pg, |p|) und C(pg, |p|) weichen zwar voneinander ab (Abbildungen 6.13
und 6.14), ein Anstieg der Massenfunktion M (pg, |p|) ist im Infraroten fir Z(kg, |k|) = 1 aber nicht
zu beobachten.
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Abbildung 6.1: Die Massenfunktion M (|p|) fiir vier verschiedene Werte von 3, im chiralen Limes.
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Abbildung 6.2: Die Massenfunktion M (|p|) fiir vier verschiedene Werte von 17 , fiir mg = 0.0037 GeV.
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Abbildung 6.3: Vergleich der Massenfunktionen M (|p|) fiir 4%, = 107% im chiralen Limes und mg =
0.0037 GeV in doppellogarithmischer Darstellung.
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Abbildung 6.4: Vergleich der mit der Standardmethode (Linien) und dem e-Algorithmus in Kombination
mit der Freezing-Technik (Punkte) berechneten Ergebnisse im chiralen Limes.
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Abbildung 6.5: Relative Anzahl der benotigten Iterationen bei Verwendung der Standardmethode (leere
Symbole) und des e-Algorithmus in Kombination mit der Freezing-Technik (volle Symbole) im chiralen
Limes (rote Dreiecke) und mg = 0.0037 GeV (blaue Kreise) in Abhédngigkeit vom Infrarotregulator ,u% R
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Abbildung 6.6: Relative Anzahl der zu berechnenden Integrale bei Verwendung der Standardmetho-
de (Dreiecke) und des e-Algorithmus in Kombination mit der Freezing-Technik (Kreise, Vierecke) im
chiralen Limes (leere Symbole) und my = 0.0037 GeV (volle Symbole) in Abhéngigkeit vom Infrarot-
regulator ;% .
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Abbildung 6.9: (analog zu Abbildung 6.7) Die Propagatorfunktion C'(pg, |p|). Die Funktion divergiert
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Abbildung 6.10: (analog zu Abbildung 6.7) Die Massenfunktion M (pg, |p|) . Die Massenfunktion kon-
vergiert im Limes 2 5. — 0.
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Abbildung 6.11: Die Massenfunktion M (pg, |p|) fiir vier verschiedene Werte von 47 5, im chiralen Limes
mit unterdriickter p p-Koordinate.
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Abbildung 6.12: (analog zu Abbildung 6.11) Die Massenfunktion M (pg, |p|) fiir mg = 0.0037 GeV.
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Abbildung 6.13: Die Propagatorfunktion B(pg, |p|) fiir 45 = 107 im chiralen Limes mit unterdriick-
ter pg-Koordinate.
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Abbildung 6.14: (analog zu Abbildung 6.13) Die Propagatorfunktion C'(pg, |p|).
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Zusammenfassung und Ausblick

In dieser Diplomarbeit wurde ein numerisches Losungsverfahren fiir ein nichtlineares Integralgleichungs-
system optimiert. Die Berechnungen erfolgten auf Grundlage des von Gribov [2] und Zwanziger [3] vor-
geschlagenen Formalismus zur Erkldrung des Confinement-Phédnomens und wurden in Coulombeichung
durchgefiihrt. Nach einem Uberblick iiber einige allgemeine Aspekte der QCD (Abschnitt 2.1 bis 2.3)
wurden zunichst die Dyson-Schwinger Gleichungen (DSEs) fiir den Quarkpropagator hergeleitet (Ab-
schnitt 2.4). Diese allgemein als Gap-Gleichung bezeichneten DSEs formen wie alle anderen DSEs auch
ein unendliches System von gekoppelten, nichtlinearen Integralgleichungen. Fiir eine numerische Be-
handlung ist es notwendig, eine nichtperturbative Trunkierung dieses unendlichen Systems von DSEs zu
finden, die die relevanten Symmetrien der QCD beriicksichtigt (Abschnitt 2.4.3) und die im ultravioletten
Sektor divergenten Gleichungen zu renormieren (Abschnitt 2.4.4). In Coulombeichung wird Confine-
ment auf das Verhalten des Color-Coulomb Potentials V,,,;( R) zuriickgefiihrt, das mit dem instantanen
Anteil der Zeit-Zeit Komponente des Gluonpropagators identifiziert werden kann. In diesem Modell kann
man durch Spurnahme (Anhang B) und anschlieBende Wick-Rotation der pg-Komponente (Anhang C)
ein System aus drei gekoppelten, nichtlinearen Integralgleichungen fiir die Quarkpropagatorfunktionen
A(pg, |p|). B(pg, |p|) und C(pg, |p|) ableiten (Abschnitt 2.5). Da Standardmethoden zur Losung von
linearen Integralgleichungen nicht verwendet werden konnten, wurde dieses Integralgleichungssystem
mit einem iterativen Gesamtschrittverfahren gelost. Dafiir wurde im Rahmen dieser Diplomarbeit ein
Automatischer Integrator auf Basis der Gaul3-Kronrod Quadraturformeln implementiert. Die verschiede-
nen Teilaspekte der adaptiven numerischen Quadratur und Kubatur wurden in Kapitel 3 behandelt. Durch
das infrarotsinguldre Verhalten der Integralkerne verschlechtert sich das Konvergenzverhalten des ver-
wendeten Iterationsalgorithmus. Verallgemeinerte Summationsprozesse zur Konvergenzbeschleunigung
und insbesondere der epsilon-Algorithmus wurden in Kapitel 4 betrachtet. Das numerische Losungsver-
fahren wurde in Kapitel 5 besprochen.

Die Ergebnisse in instantaner Ndherung entsprechen den Erwartungen. Dass der Wert der Massenfunkti-
on in diesem Fall zu niedrig ausfillt, war bereits seit lingerem bekannt [13][21]. Die Performancesteige-
rung durch die Anwendung von numerischen Techniken zur Konvergenzbeschleunigung ist ausgespro-
chen erfreulich, vor allem hinsichtlich der Tatsache, dass ein einzelner Durchlauf ansonsten auch auf
einem Hochleistungsrechner mehrere Wochen in Anspruch nehmen wiirde. Moglicherweise sind hier in
der Zukunft noch weitere Effizienzsteigerungen zu erzielen, beispielsweise durch die Anwendung von
anderen nichtlinearen Folgentransformationen, die in dieser Arbeit aus Zeitgriinden nicht niher unter-
sucht werden konnten. Die Ergebnisse bei Hinzunahme von retardierten transversalen Gluonen decken
sich mit denen von Markus Kloker, die er im Rahmen seiner Dissertation [51] erzielt hat. Diese sind doch
einigermafien iiberraschend. Hier hétten wir uns einen merklichen Einfluss auf den Wert der Massen-
funktion im Infraroten erwartet. Vergleichsrechnungen mit Z(kg, |k|) > 1 heben die Massenfunktion
in diesem Bereich zwar an, dieser Effekt verschwindet aber fiir /ﬁ r — 0. Auch zeigen diese Ergebnisse
keine Frequenzabhiingigkeit. Das deutet darauf hin, dass Z eine fiir kleine Gluonimpulse divergierende
Funktion sein muss. Verbesserungen konnten hier durch ein Dressing des nackten raumartigen Vertex
mit einer skalaren Funktion oder durch Einbau von zusitzlichen Tensorstrukturen erreicht werden [52].
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Anhang A

Notationen

A.1 Einheiten

In der vorliegenden Arbeit werden die natiirlichen Einheiten

h=c=1 (A.D)

verwendet. Mit dieser Wahl ist insbesondere die Beziehung zwischen Linge und Energie

1fm=10""m = (197.33 MeV) . (A.2)

A.2 Minkowskiraum

In dieser Arbeit wird die iibliche Standardnotierung verwendet, vor allem bezeichnet a einen Vierervektor
und a einen Dreiervektor. In Verallgemeinerung des Distanzbegriffes zwischen zwei Punkten im Raum
ist der ”Abstand” zwischen zwei Punkten in der Raumzeit

ds? = dt? — da? — dy? — d22. (A.3)

Mit dieser Definition sind zwei Ereignisse in der Raumzeit entweder durch ein zeitartiges (ds? > 0),
raumartiges (ds? < 0) oder lichtartiges (ds? = 0) Intervall voneinander separiert.

Im Minkowskiraum wird ein kontravarianter Vierervektor dargestellt durch

gt = (2% 2t 22 23) = (t, 2,9, 2). (A4

Ein kovarianter Vierervektor entsteht, indem man die Vorzeichen der rdumlichen Komponenten eines
kontravarianten Vierervektors dndert:
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Ty = (x()a zy,T2, ~T3) = (ta -, =Y, _Z) = g,uzxxu

mit dem metrischen Tensor

1 0 0 0

~ w_ |0 -1 0 0
G =g = 0 0 -1 0
0O 0 0 -1

Das Skalarprodukt zweier Vierervektoren

a-b:= gua'b’ =a,b" = agby — a;b;

(AS)

(A.6)

(A7)

(A.8)

ist ein kontrahiertes Produkt eines kovarianten und eines kontravarianten Vierervektors und eine In-
variante (ein Skalar). Dabei werden die Lorentz-Indizes, welche von O bis 3 laufen, mit griechischen
Buchstaben bezeichnet, wogegen die lateinischen Indizes die Raumrichtungen bezeichnen und von 1 bis

3 laufen.

Die Energie-Impuls Vierervektoren sind dhnlich definiert:

P = (E,ps,py,pz) = (E,p)

Pu = (E, =pe, —py, —p2) = (£, —p)

mit der Invariante

p*=p'py=E* —p*=m

und

p-k=p,kt'=EE,—p-k.

Die vierdimensionalen Ableitungsoperatoren sind auf folgende Weise definiert:

=2 =2y, =L (2

- aixu - (aa —V),

wobei V; = 8%1- gilt. Der Impulsoperator
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0 0 1
Pi=fee = (1—,=V) =: ¢ V¥ A.l
p Zax# (Z at7 Z v) Zv ( 3)

transformiert sich wie ein kontravarianter Vierervektor. Das Poincaré-invariante Analogon zum Laplace-
Operator ist der d’Alembert-Operator:

2
O =0"0, = % — V2. (A.14)

Die elektrischen und magnetischen Feldstirken erhélt man aus dem Feldstirketensor
Fu =0,A, — 0,A,. (A.15)

Die nichtabelsche Verallgemeinerung des Feldstirketensors

Fp, = 8,45 — 0, A5 — gf " A A7 (A.16)

mit den vollstindig antisymmetrischen Strukturkonstanten f%*¢ transformiert sich unter einer Eichtrans-
formation auf dieselbe Weise wie die kovariante Ableitung

Dy, = 0y, +igAste. (A.17)

A.3 Gamma-Matrizen

Die Gamma- bzw. Dirac-Matrizen sind ein essentieller Bestandteil einer manifest Poincaré-kovarianten
Beschreibung von Teilchen mit Spin. Die Gamma-Matrizen formen eine Clifford-Algebra und sind defi-
niert durch

A7) =AY A =291 (A.18)

Die zugrunde liegende Gruppe ist die Lorentz-Gruppe. Die 4x4 Einheitsmatrix 1 auf der rechten Seite
von Gleichung (A.18) ist implizit.

Eine hiufig verwendete, kompakte Darstellung der Gamma-Matrizen ist die iiblicherweise als Standard-
darstellung bezeichnete Dirac-Darstellung (jeder Eintrag reprisentiert eine 2x2 Matrix):

o (10 i (0 o
v _<0 1L>’ v _<—a 0) A1)

mit den Pauli-Matrizen o

m:(g %) 02:(3 BZ), 03:@ _Oﬂ> (A.20)
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mit v° = i7%y1+243 und der 4x4 Einheitsmatrix 1. Offensichtlich ist 'yg = v und 7 = —~. Diese

Eigenschaften hidngen nicht von der gewihlten Darstellung ab. Vielmehr sind alle Matrizen, die durch
Ahnlichkeitstransformationen aus den genannten Matrizen hervorgehen, Darstellungen einer Clifford-
Algebra. Neben der Dirac-Basis werden noch héufig die Weyl- und die Majorana-Basis verwendet.

Im Zusammenhang mit Gamma-Matrizen trifft man hiufig auf die von Feynman eingefiihrte Slash-
Schreibweise:

YA, = A=A —~ . A, (A.21)
Ypu = p=7"E—v-p, (A.22)

) . . 0
YW, =iV =i = Z’}/M@. (A.23)

Die folgenden Identitéiten sind bei Rechnungen mit Gamma-Matrizen niitzlich. Da sie aus den funda-
mentalen Kommutatorrelationen folgen, gelten sie in jeder Basis.

Tr[1] = 4, (A.24)

Tr[v*...4"],, = 0 fiir n ungerade, (A.25)

Try*y"] = 49", (A.26)

Tr[y 7"y = 4(g" 9" = 9" 9" + "7 9™"), (A27)
Trly?] = 0, (A28)

Te[d] = 4(a - b), (A.29)

Trldfgd] = 4[(a - b)(c-d) — (a-c)(b-d) + (a-d)(b-c)]. (A.30)
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Anhang B

Herleitung der
Quarkpropagatorfunktionen

B.1 Setup

Im folgenden bezeichnet p einen Vierervektor und p einen Dreiervektor (sieche Anhang A.2). Die Gap-
Gleichung fiir den renormierten Quarkpropagator ist

4

d
Z'Sfl(p) = Z(#)’)/Mp‘u — me + iQQCF / 7(]

(27T)4 DIW(k) Tu S(Q) iz (B.1)

Fiir die nichtverschwindenden Komponenten des Gluonpropagators werden die folgenden Nidherungen
angenommen:

Doo([kl) = éllﬂ/c(lk\), (B.2)
o a(kz) oy 127

Vo(lk)) = =57 ak?) = (11N, — 2N;) In(1 + k2/A2) ®-3)

und o

i kK
Dij(k()? |k‘) = ?(5] - k2 )VT(k07 |k‘)7 (B4)

Z(ko, |k|)

Vir(ko, |K|) 1= 00 XD (B.5)

Der Skalenparameter A ist durch die Stringspannung o gegeben:

8
= — A2 B.
oC = o (B.6)

Setzt man diese Niherungen in die Gap-Gleichung (B.1) ein, kann man folgende Gleichung fiir den
renormierten Quarkpropagator ableiten:
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dq
(2m)*
[4rVe (Ik|)v0S(9)v0 + Vi (ko, [K[)]7i S (q)7; (67 —

iS™'p) = Z(u)%p“—me—CF/

Fiir die zugehdrigen Renormierungskonstanten gilt:

Z(

Zo firp =0,
v =

"\ 2 firp=35=1,2,3

Die Parametrisierung fiir den inversen Quarkpropagator lautet

iS™(p) = [opo A(po, [p|) = - P C(po, IP|) — B(po, |P|) + ie].

Mit diesem Ansatz kann der Quarkpropagator geschrieben werden als:

S(p) = i 2220 Ao [P) =7 - P Cpo, [P]) + Blpo, [P)
p5 A%(po, [p) — p* C*(po. Ip|) — B2(po. [p])

Das angenommene Verhalten fiir die Gluonenergie w,fiihrt auf

A
wg([k[) = T K] .

kik
k2

). (B.7)

(B.8)

(B.9)

(B.10)

(B.11)

Fiir die weitere Herleitung werden sich die folgenden Definitionen als zweckméBig erweisen:

denom := g5 A%(qo, [a]) — a*C*(qo, |a|) — B*(qo, |al),
kikj) Z(ko, |k|)
k2 "k§ — w2(|k|)

GY .= (69 —

B.2 Herleitung

(B.12)

(B.13)

Mit den Definitionen aus Abschnitt B.1 kann die Gap-Gleichung (B.1) geschrieben werden als

[YopoA(po, |P]) =7 - P C(po, [P|) — B(po, |P|)] = Zovoro — Zj(7y - P) — Zmm—

4
iCp / (%4 4V (1K) 70S(a)70 + GUiS ().

(B.14)

Durch Spurnahme erhilt man ein System aus drei gekoppelten Integralgleichungen fiir die Quarkpropa-

gatorfunktionen A(po, |p|), B(po, |p|) und C(po, |p|):
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A(po, p|) — Tr[yo- (B.14)]:

. d4q . A
4poA(po, [pl) = 4Zopo —ZCF/24 [4mVe ([k|) Trhvovov070] +G”Tr[70%70%.]]w
( W) — — > denom
4 484
pOA(pO>|p|) = Zopg — iC / 47V (K] + (6% — Sii 0, qoA(qo, |19
P (%)4[ o (k) + ( kg) Jngrwg(‘kD] S
3—1=2
: d'q 27 (ko, [k|) ,a0A(0, |a])
poA(po, [p|) = Zopo — iC /4V k|) + ’ 0440, |4
B (po, |p|) — Trl(B.14)]:
. d -~
~4B( pl) = ~4Znm — iCr [ L Vo () Trbno + 6Ty S )
(2m) —— —_—~ denom
—4(51'3'
- d'q o KK Z(ko, [K]) - Blgo, lal)
B(po, |p|) = Zmm +iC / A7 Ve (k|) = (69 — 5 0, e
P [ Gy Ve (KD = 07 0 ) denom
3—1=2
: d'q 27 (ko, |k|) , B(qo, lal)
B bo, P :me+lc /4 VA~ (lk|) — 0, do, |4
(po, [P]) F (277)4[ mVo([k]) kg—w§(|k|)] denom (B.16)

C (po, |p|) = Trl(v - p)- (B.14)]:

Tr[(v - P) (=7 - P)IC(po, [P]) = Z;Tt[(v - P) (=7 - P)|+

4
Z'C'F/(;lﬂq)4 [4nVe (|K|) Tr[(y - p)yo(=v - P)Yo] + GY Tr[(y - p)vi(—7 - Q)’Yjﬂcm

Vergleiche (A.29): Tr[(y-a)(y-b)] = 4(a-b):

) d*
1o lpl) = 4Zp*—icr [ 5,
3 C(qo,
[47 Ve (1K|) pig; Trlvivoyiv0] + G”kaHTr[%%%VjHM (B.17)
—_— ——_— " denom
464 4(043015— 011055 +0k031)

Mit
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Piqidi; = (P~ q), (B.18)

I 3 %) 2(p-k)(q-k
Prqr (67 — ?)(51%51]‘ — Ok10ij + Okj0i) = —(pk)Q(q) (B.19)
folgt
dq
2 2 .
p C(p0>|P|) = ij _ZCF/W
2(p-k)(a k) 2Z(ko, k|) ,C(qo, |al)
4 k -q) — B.2

Die in diesen nichtlinearen Integralgleichungen auftretenden vierdimensionalen Einschleifenintegrale
haben in sphirischen Koordinaten die allgemeine Form

I(h) = / d'q g(g, k)

o 27 ™
- / dao / dlql |q? / dg / sind f(k,q, ). B.21)
0 0
0

Dabei bezeichnet q den inneren Schleifenimpuls, k den duBeren Impuls und ¥ den Winkel, den bei-
de Vektoren miteinander einschliefen. Da der Integrand von ¢ unabhéngig ist, kann diese Integration
analytisch ausgefiihrt werden und man findet

I(k) :=2m / dqo / d|q| |q* Bek(k,q,cos®) (B.22)
0
mit dem Winkelintegral
1
Bek(k, g, ) :/ d(cos¥) f(k,q,cos?d). (B.23)
-1

Nach einer Wick-Rotation um 90° (Anhang C)

Po — PE, Qo — 9B, /dCJo —>i/CJE, (B.24)

denom := —¢%,A%(qp, d|) — a*C*(qg, |a]) — B*(¢x, |a]) (B.25)

kann die gg-Integration im Euklidischen ausgefiihrt werden. Die Skalarprodukte kénnen dann geschrie-
ben werden als:

(p-q) = |p||q|cos ¥, (B.26)
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[p| laf (cos® ¥ — 1)
k2

P — o g (cost +

) (B.27)

Daraus erhilt man die folgenden gekoppelten nichtlinearen Dyson-Schwinger Integralgleichungen fiir
die Quarkpropagatorfunktionen:

o0 [e’e) —+1
o d1al lal* [ dae |
Alpg, = Zo+——= [ d d d(cos
(pE; IPl) 0 pE(%)go | |d J QE_l (cos )
2Z(kg,|k|) .98 A(gg,|dl)
A7V (lk B.28
Vel + =" 2y denom (.28
C 0 00 +1
Boe.lpl) = Zum = g5 [dlal a? [ dae [ atcoss)
0 —00 —1
27(kg, k|) ,B(qg,|ql)
A7V (lk|) — B.29
HrVe(k) = =" 3 denom (529
C o0 o) +1
Clonlpl) = Z— s [awalla® [ das [ aeoso)
0 —00 —1

[p||al (cos® ¥ — 1)) 2Z(kg, [k|) ,C(gr,ld])
k2 —k3, — w2(|k[)" denom
(B.30)

[47 Ve (|k|) cos ¥ — (cos ¥ +

Der Fall Z(kg, |k|) = 0 entspricht in diesem Modell der instantanen Niherung, bei Hinzunahme von
transversalen Komponenten und Retardierungseffekten wird Z(kg, |k|) zur Vereinfachung gleich 1 ge-
setzt. Die Infrarotdivergenzen werden durch Einfiithrung eines Infrarotregulators iy kontrolliert:

k? — K? + g, (B.31)

Die Renormierung der Integralgleichungen erfolgt mit Hilfe der Bedingungen

Alpe, |pl) =1, (B.32)
B(pg, |ul) = mo, (B.33)
Clup, |pl) =1, (B.34)

wobei pp und |u| die jeweiligen Renormierungspunkte bezeichnen.
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Anhang C

Wick-Rotation

C.1 Wick-Rotation

Unter einer Wick-Rotation versteht man die Drehung der zeitartigen Komponente eines Vierervektors
um 90° in der komplexen Ebene, wobei die Ortskoordinaten beibehalten werden. Es handelt sich um
eine analytische Fortsetzung vom Minkowskiraum ins Euklidische. Dafiir setzt man

i

po = €2 py = ipp, (C.1)
P = pg und integriert tiber p% von —oo bis 4-00.

Impo

P2+ M +ie

b RC[?()
[p?+M? —ie

Abbildung C.1: Rotation der pp-Kontour um 90°.

Kontourintegrale der Form

. ddp 1
LT/m%%—MM%W (€2

konnen so im Euklidischen berechnet werden, ohne dabei den Wert des Integrals zu veridndern:

. m [ dpE 1
[=i(-1) /(%)4 T (C.3)
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Anhang D

Interpolation und Extrapolation

D.1 Kubische Spline-Interpolation

Unter einer Spline-Funktion versteht man eine stiickweise auf Teilintervallen definierte Funktion, deren
Teile an den Nahtstellen zumindest stetig oder ein- bzw. mehrfach stetig differenzierbar aneinandersto-
Ben. Ein Spline n-ten Grades ist eine Funktion, die stiickweise aus Polynomen vom maximalen Grad n
zusammengesetzt ist. Im Gegensatz zur Polynominterpolation, bei der die Polynome zu einer groferen
Anzahl von Stiitzstellen die Tendenz haben, gegen die Enden des Interpolationsintervalls sehr stark zu
oszillieren, liefert die Spline-Interpolation eine glatte Interpolationsfunktion. Glatt bedeutet im mathe-
matischen Sinne, dass die Funktion zumindest zweimal stetig differenzierbar sein soll. Alle gegebenen
Punkte der Funktion stellen Nahtstellen zwischen den Teilkurven dar, an denen sowohl die Funktions-
werte als auch die ersten und zweiten Ableitungen der zusammentreffenden Teilkurven iibereinstimmen.

Der im folgenden betrachtete Spezialfall der kubischen Spline-Interpolation ist motiviert durch das Mo-
dell einer diinnen Holzlatte (englisch spline), die an einzelnen Punkten fixiert wird und sich genau wie
ein kubischer Spline mit natiirlichen Randbedingungen (natural spline) biegt. Die natiirlichen Randbe-
dingungen entsprechen der Situation, dass die Latte aufierhalb des Intervalls [a, b] gerade ist.

Im folgenden bezeichnet

lglly == (/b \g(w)P) - (D.1)

die Ly-Norm fiir Funktionen g € Cla, b]. Die Krimmung einer parametrisierten Kurve g in der Ebene
an der Stelle x € [a, b] ist gegeben durch

g"(x)

_ D.2
1+ g'(z)2)%? 2

k(z) =
Beschreibt g(x) die Lage einer diinnen Holzlatte, so misst

B b g//(x) 2
" ‘/a ((1+g'(x)2)3/2> " o
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die ”"Biegeenergie” dieser Latte. Aufgrund des Hamiltonschen Prinzips stellt sich die Latte so ein, dass
diese Energie minimiert wird. Fiir kleine Auslenkungen ¢’(), wie sie typischerweise bei solchen Latten
auftreten, gilt ndherungsweise x(x) ~ ¢”(z) und damit

b
E ;u/ §"(x)dz = ||g"||5. (D.4)

Ist g € C[a, b] eine beliebige Funktion und s ein zugehoriger interpolierender kubischer Spline, gilt fiir
g und s die Beziehung

Is"[ly < {191l - (D.5)

Kubische Splines besitzen also gemaB (D.5) im genédherten Sinne (D.4) minimale Kriimmung.

Ein interpolierender kubischer Spline s mit den Stiitzstellen xy < z; < ... < xp—1 < =, und den
zugehorigen gegebenen Funktionswerten y;, ¢+ = 0,1,2,...,n ist durch die folgenden Eigenschaften
festgelegt [28, Seite 1126]:

a) s(z;))=vy, 1=0,1,..,n
b) s(z)istfirx € [x;,z11], i =0,1,...,n — 1 ein Polynom vom Grad 3, (D.6)
c) s(x) € C%([zo,zn)).

Die Funktionsklasse C?[a, b] besteht aus allen Funktionen f € C|[a,b], die auf dem offenen Intervall
Ja, b[ stetige Ableitungen f’, f” besitzen, die sich zu stetigen Funktionen auf [a, b] fortsetzen lassen. Da
ein interpolierender kubischer Spline per definitionem auf jedem Intervall [z;, x; 1], ¢ = 0,1,....,n — 1
mit einem Polynom dritten Grades p; € II3 identisch ist, macht man folgenden Ansatz:

s(x) = pi(z) == a; + bi(z — @) + ¢i(x — 2;) + di(x — x;)°,
s'(x) = pl(x) = by + 2¢;(x — x;) + 3d;(x — ;)2 (D.7)
§"(z) = pll(x) = 2¢; + 6d;(x — ).

Insgesamt wird ein kubischer Spline also durch 4n Koeffizienten a;, b;, c; und d;, ¢ = 0,1, 2
bestimmt. An den inneren Stiitzstellen ;41 gelten wegen s(x) € C?([zg,xn)), i = 0,1,2,...,n — 2
insgesamt 3(n — 1) Glattheitsbedingungen:

a) Stetigkeit: pi(xiy1) = pit1(ziv1) (n—1)
b) -einfach stetig differenzierbar:  pj(zi11) = pj i (zip1) (n—1) (D.8)
c) zweifach stetig differenzierbar:  pj(z;y1) = pi, i (zir1) (n—1)

Dazu kommen wegen s(x;) = y;, i = 0,1,2,...,n — 1 noch (n + 1) Interpolationsbedingungen:

d) Interpolation: pi(xi) = Yi, Pn—1(xn) =yn (n+1) (D.9)

Damit stehen fiir die Konstruktion eines interpolierenden kubischen Splines mit den (n + 1) Interpolati-
onsbedingungen und den 3(n — 1) Glattheitsbedingungen zunéchst (4n — 2) Gleichungen zur Verfiigung.
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Die Festlegung der zwei noch fehlenden Freiheitsgrade erfolgt durch eine der folgenden Randbedingun-
gen:

a) sp(z0) = sp_1(zn) =0 natiirliche RB,

b) sp(®0) = Yo, Sp_1(Tn) = Yn, eingespannter Rand,

c) 56@0) = s7,_1(xn), 86’ x0) = sh_1(zn) periodische RB, (D.10)
d) 3(()3) (21) = 353) (z1), 87(13_)2(%—1) = sfl 1(zn—1) Not-a-knot-Bedingung.

Neben den gegebenen Funktionswerten y; sollen noch die zweiten Ableitungen y.’ zur Berechnung der
Teilpolynome s;(z) verwendet werden. Zuerst definiert man

hi =xj41—x; >0, 1=0,1,2,...n—1 (D.11)

die Lingen der Teilintervalle [x;, z;41]. Durch Einsetzen von (D.8) und (D.9) in (D.7) erhélt man dann
fir die Koeffizienten a;, b;, ¢; und d; fiir s;(x) die Formeln

- e Yit1—Yi hi (1 "
a; ==y, b= h; 6 (5i+1 + 2Si )v
" et (D.12)
=% g S
Cii= 5, 4 6h;

Mit diesen Setzungen liefert die Bedingung der Stetigkeit der ersten Ableitungen (D.8b) an den (n — 1)
inneren Stiitzstellen x; die (n — 1) gekoppelten linearen Gleichungen

hi_lsg_l + Q(hi_l + hi)sgl + his;-'_H =g, 1=12,...n—1, (D.13)

Yit1 —Yi 6% —Yi-1
h; hi—1

gi ‘=6 (D.14)

"

Dies stellt ein lineares Gleichungssystem fiir die (n — 1) Unbekannten s/, s5, ..., s/’ _; dar. Im Fall natiir-

licher Randbedingungen s = s/, = 0 lassen sich die Gleichungen (D.13) in folgender Form angeben:

2(ho + h1) ha 0o ... 0
h1 2(h1 + h2) hy . : s g1
0 hy 0 = (D.15)
: By 5;;—1 In—1
0 e 0 hp2 2(hp—o+hp_1)

Die Koeffizientenmatrix ist symmetrisch, tridiagonal und diagonal dominant. Solche Gleichungssyste-
me haben eine eindeutige Losung, die beispielsweise mit einem LU-Dekompositionsverfahren durch
Vorwirts- und Riickwirtssubstitution in O(n) Operationen berechnet werden kann.

Es ist wichtig anzumerken, dass diese Zerlegung nur einmal durchgefiihrt werden muss. Die kubische
Splinefunktion s kann dann mittels (D.7) fiir jeden Wert von z beliebig oft in O(logn) Operationen

75



ausgewertet werden. Routinen zur Berechnung von kubischen Splines finden sich beispielsweise in [24,
Seiten 113-116].

D.2 Bikubische Spline-Interpolation

Die bikubische Spline—Interpolation ist eine hiufig verwendete Technik zur Berechnung von kubischen
Splines in zwei Dimensionen. Angenommen, es liegen die Stiitzwerte z;; =: f(z;,y;),1=0,1,2,...,m,
7 =0,1,2,...,n in Form einer Tabelle vor, dann berechnet man zunichst m eindimensionale Splines
entlang der Zeilen in der Tabelle, gefolgt von einem zusitzlichen eindimensionalen Spline entlang der
neu entstandenen Spalte.

Um den Rechenaufwand zu minimieren, geht man im Regelfall so vor: Man berechnet zunéchst die zwei-
ten Ableitungen nur in einer Richtung und speichert die Ergebnisse in Form einer Hilfstabelle ab. Um
einen Funktionswert zu interpolieren, konstruiert man dann m Splines entlang der Zeilen (O(logm)).
Diese dienen als Basis fiir die Berechnung der zweiten Ableitungen entlang der neuen Spalte (O(n)),
gefolgt von einer O(logn) Operation fiir die Auswertung.
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