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Kapitel 1

Einleitung

Eine zentrale Zielsetzung der modernen Physik ist die Beschreibung der fundamentalen Teilchen und
ihrer Wechselwirkungen innerhalb einer einheitlichen Theorie. Als vielversprechendster Kandidat zur
Beschreibung der starken Wechselwirkung hat sich die Quantenchromodynamik (QCD) etabliert. Die
QCD ist eine relativistische Quantenfeldtheorie (QFT) und sie beschreibt die starke Wechselwirkung
der fundamentalen Fermionen mit Spin 1

2 , den Quarks, durch den Austausch von masselosen SU(3)-
Eichbosonen mit Spin 1, den Gluonen. Die Dynamik der beteiligten Teilchen wird durch das Prinzip
der lokalen Eichinvarianz festgelegt. In der QCD tragen nicht nur die Materieteilchen (die Quarks) eine
fundamentale Ladung (die sogenannte Farbladung), sondern auch die Träger der Wechselwirkung, die
Gluonen. Die zugrundeliegende Eichtheorie ist in einem solchen Fall nichtabelsch und die Gluonen kop-
peln in Gegensatz zu den Photonen in der Quantenelektrodynamik (QED) selbst aneinander. Quarks und
Gluonen existieren nicht als beobachtbare freie Zustände, sondern liegen nur als farbneutrale gebundene
Zustände vor und sind in den Hadronen eingeschlossen. Jeder Versuch, ein einzelnes Quark durch ein
Experiment, bei dem sehr hochenergetische Teilchen zur Kollision gebracht werden, aus einem Hadron
herauszulösen, endet nur in der Erzeugung von neuen Hadronen - ein ungebundenes, nicht farbneutrales
Teilchen wird niemals erzeugt.

Wie können Hadronen als System von Quarks und Gluonen beschrieben werden? Bei tief inelastischen
Streuexperimenten an Nukleonen zeigen die Streuquerschnitte bei hohen Energien eine immer einfachere
Struktur. Unter diesen Bedingungen erscheinen die Nukleonen wie eine Ansammlung von freien Teil-
chen. Dieses Verhalten wird allgemein als ”Asymptotische Freiheit” bezeichnet und ihm liegt das Phä-
nomen zugrunde, dass die starke Wechselwirkung bei kleinen Abständen unterhalb von 0.2 fm schwach
wird, was die Anwendung von störungstheoretischen (perturbativen) Verfahren ermöglicht.

Das Gegenteil der Asymptotischen Freiheit nennt man etwas blumig ”Infrarote Sklaverei”. Bei großen
Abständen findet lediglich ein kleiner Impulsübertrag statt. In diesem Bereich steigt die effektive Kopp-
lung stark an, was dazu führt, dass die Quarks in den Hadronen permanent eingeschlossen sind und nicht
als freie Teilchen beobachtet werden können. Aus diesem Grund hat man die sogenannte Confinement-
Hypothese formuliert, der zufolge die sichtbaren Teilchen, die der starken Wechselwirkung unterliegen
(Baryonen und Mesonen), nur als farbneutrale Singletts vorliegen dürfen. Es ist wichtig anzumerken,
dass es sich bei der Confinement-Hypothese um ein Postulat handelt. Im Gegensatz zur Asymptotischen
Freiheit konnte das Confinement bisher noch nicht aus den Grundgleichungen der QCD abgeleitet wer-
den. Es wurden im Laufe der Zeit zwar viele Fortschritte erzielt, eine analytische Erklärung dieser Eigen-
schaft steht aber trotz mehr als dreißig Jahren intensiver Forschung auf diesem Gebiet nach wie vor aus.
Dafür existieren mittlerweile eine Reihe von Ansätzen, um den Farbeinschluss der Quarks zu erklären.
Dazu zählen beispielsweise [1] der duale Meissnereffekt, der auf der Kondensation von magnetischen
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Monopolen basiert; eine andere Modellvorstellung verwendet das Bild der Wirbelkondensation, bei der
der Farbeinschluss von Quarks durch die Vakuumkondensation von Zentrumswirbeln bewirkt wird. Man
darf also ohne Übertreibung behaupten, dass die Untersuchung von Mechanismen, die zum Phänomen
des Confinement führen, ein anspruchsvolles Problem darstellt.

In dieser Diplomarbeit wird der von Gribov [2] und später von Zwanziger [3] vorgeschlagene Forma-
lismus zur Erklärung des Confinement-Phänomens zugrunde gelegt: Um Mehrdeutigkeiten der Eich-
fixierung (Gribov-Problem) in Coulombeichung zu vermeiden, verlangt man, dass die Korrelationen
zwischen den transversalen Gluonen für große Abstände verschwinden. Dies führt dazu, dass die Kor-
relationen zwischen den Coulombgluonen mit dem Abstand sehr stark ansteigen. Dies wiederum führt
zu einem Potential zwischen den Quarks, das linear mit dem Abstand zwischen ihnen anwächst und
somit zu Confinement. In diesem Formalismus ist das Confinement-Phänomen eng mit dem Infrarotver-
halten der eichvarianten Propagatoren verknüpft. Deren Berechnung verlangt nichtstörungstheoretische
Methoden. Im Rahmen der Quantenchromodynamik formen die Dyson-Schwinger Gleichungen (DSEs)
für die Propagatoren einen Satz von nichtlinearen, gekoppelten Integralgleichungen. Die Lösung dieser
gekoppelten Dyson-Schwinger Gleichungen ermöglicht es, die Eigenschaften von Hadronen im nicht-
perturbativen Bereich in einem Poincaré-kovarianten Formalismus zu studieren.

Diese Diplomarbeit befasst sich mit Optimierungsverfahren zur Lösung eines trunkierten Systems von
nichtlinearen Integralgleichungen. Der Schwerpunkt liegt auf dem Quarkpropagator und seiner effizien-
ten numerischen Behandlung. Im ersten Teil von Kapitel 2 werden einige allgemeine Aspekte der QCD
erörtert, die für die Diskussion der Propagatoren der Theorie von Relevanz sind. Im zweiten Teil die-
ses Kapitels werden dann mit Hilfe des Erzeugenden Funktionals und der effektiven Lagrangedichte die
Dyson-Schwinger Gleichungen für den Quarkpropagator hergeleitet. Diese allgemein als Gap-Gleichung
bezeichneten DSEs formen wie alle anderen DSEs auch ein unendliches System von gekoppelten, nicht-
linearen Integralgleichungen. Für eine numerische Behandlung ist es notwendig, dieses unendliche In-
tegralgleichungssystem so zu trunkieren, dass die Symmetrieeigenschaften der Theorie berücksichtigt
werden. Anschließend erhält man durch Spurnahme einen Satz von gekoppelten nichtlinearen Integral-
gleichungen für die Quarkpropagatorfunktionen, die mittels eines iterativen Gesamtschrittverfahrens ge-
löst werden. An Optimierungsstrategien verwende ich unter anderem zwei sich einander ergänzende
Techniken: zum einen adaptive numerische Quadraturverfahren mit automatischer Ergebnisverifikation,
zum anderen ein Konvergenzbeschleunigungsverfahren, das auf nichtlinearen Folgentransformationen
basiert. Zur Lösung der Integralgleichungen wurde im Rahmen dieser Diplomarbeit ein Automatischer
Integrator auf Basis der Gauß-Kronrod Quadraturformeln implementiert. Die verschiedenen Teilaspekte
der adaptiven numerischen Quadratur und Kubatur werden in Kapitel 3 behandelt. Das infrarotsingu-
läre Verhalten der Integralkerne verschlechtert insbesondere das Konvergenzverhalten des verwendeten
Iterationsalgorithmus. Abhängig von der Wahl des Infrarotregulators erhöht sich einerseits die Anzahl
der benötigten Funktionsauswertungen pro Iterationsschritt, andererseits steigt die Gesamtzahl der benö-
tigten Iterationen stark an. Verallgemeinerte Summationsprozesse zur Konvergenzbeschleunigung und
insbesondere der epsilon-Algorithmus werden in Kapitel 4 betrachtet. Das numerische Verfahren zur
Lösung der Dyson-Schwinger Gleichungen wird in Kapitel 5 besprochen. Die Diskussion der erzielten
Ergebnisse findet sich in Kapitel 6. Einige Teilaspekte dieser Arbeit wurden im Hinblick auf eine bessere
Lesbarkeit in Anhänge ausgelagert. Beispielsweise macht es die dynamische Wahl der Stützstellen im In-
tegrationsalgorithmus notwendig, die in den Integralgleichungen vorkommenden Propagatorfunktionen
zu interpolieren. In einem solchen Fall wird auf den jeweiligen Anhang verwiesen.
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Kapitel 2

Dyson-Schwinger Gleichungen in der
Quantenchromodynamik

I consider that I understand an equation when I can
predict the properties of its solutions, without actually
solving it.

Paul A. M. Dirac

2.1 Quantenchromodynamik (QCD)

Die Quantenfeldtheorie bildet die Basis für unser gegenwärtiges Verständnis der Teilchenphysik. Im
Rahmen einer Quantenfeldtheorie wird die Wechselwirkung durch den Austausch von Teilchen be-
schrieben. Wechselwirkung mittels Austauschteilchen bedeutet, dass die Quantenfelder entweder mit-
einander oder gegebenenfalls an sich selbst koppeln. Die mathematische Beschreibung der Wechselwir-
kung zwischen den Konstituenten gründet sich auf das Prinzip der lokalen Eichinvarianz. Eichinvarianz
bedeutet, dass die Aussagen einer Quantenfeldtheorie unverändert bleiben, wenn die Quantenfelder ei-
ner Eichtransformation unterworfen werden. Lokalität bedeutet, dass die Felder punktförmig aneinander
koppeln. Die Forderung nach lokaler Eichinvarianz impliziert die Existenz eines Feldes A(x). Dieses
Feld wird als Eichfeld bezeichnet und es beschreibt das Austauschteilchen, welches die Eichwechselwir-
kung vermittelt. Die Quantenchromodynamik (QCD) als Theorie der starken Wechselwirkung ist eine
Eichtheorie auf Basis der fundamentalen Darstellung der nichtabelschen Eichgruppe SU(Nc), mit c wie
color und Nc = 3 die Anzahl der Farbfreiheitsgrade. In Analogie zur Quantenelektrodynamik (QED) mit
abelscher Eichgruppe U(1) erfolgt die Konstruktion der QCD durch Verallgemeinerung des Prinzips der
Eichinvarianz auf nichtabelsche Gruppen. Im Gegensatz zur QED koppeln die nichtabelschen Eichfelder
der QCD auch selbst aneinander, was die Strukturen gegenüber einer abelschen Eichtheorie wesentlich
verändert.

Die Konstruktion einer Eichtheorie baut auf der Quantenfeldtheorie freier Teilchen auf. Eine renormier-
bare Quantenfeldtheorie ist - bei Angabe eines geeigneten Regularisierungs- und Renormierungsschemas
- durch die Angabe ihres Wirkungsfunktionals
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S[φ] =
∫

dx L[φ] (2.1)

vollständig bestimmt. Wie in jeder Quantenfeldtheorie wird auch in der QCD die Lagrangedichte L
aus den Quantenfeldern der Theorie unter Berücksichtigung ihrer relevanten Symmetrien konstruiert.
Die Felder der starken Wechselwirkung sind die (lokalen) Quark-Spinorfelder qf (x) und die Gluon-
Vektorfelder Aa

µ(x). Quarks sind Fermionen mit Spin 1
2 , die in sechs verschiedenen Flavors f = u, d, s,

c, b, t und drei verschiedenen Farben (Nc = 3) für jeden Flavor vorkommen. Gluonen sind masselose
Vektorbosonen mit Spin 1, die in acht verschiedenen Farben a = 1, 2, ..., 8 (N2

c − 1 = 8) auftreten.

Die zugrundeliegende Eichsymmetrie zur Konstruktion der Langrangedichte der QCD ist die SU(3).
Das bedeutet formal, dass die Lagrangedichte der QCD invariant unter folgenden lokalen Eichtransfor-
mationen ist:

qi → q′j = Uji(x)qi,

Aµ → A′µ = U(x)AµU−1(x) +
i

g
[∂µU(x)]U−1(x), (2.2)

mit Aµ ≡ Aa
µta und a = 1, 2, ..., 8. In Standardnotierung sind ta die Nc × Nc Farbmatrizen und die

acht hermitischen Gell-Mann Matrizen (λa)† = λa ≡ 2ta sind Elemente einer Lie-Algebra und die
Generatoren der SU(3). Die Gruppenelemente U aus der Lie-Gruppe G können in der Form

U = eiαa ta (2.3)

geschrieben werden. Dabei bezeichnen die Winkel αa die reellen Parameter der Gruppenelemente und ta

die Generatoren der entsprechenden Lie-Algebra. Die Darstellung der Algebra ist in Übereinstimmung
mit der Darstellung der Gruppenelemente U zu wählen. Die Generatoren λa erfüllen die Kommutatorre-
lationen

[λa, λb] = 2ifabcλc (2.4)

mit den vollständig antisymmetrischen Strukturkonstanten fabc und sind auf Tr(λaλb) = 2δab normiert.
Die Strukturkonstanten erfüllen die Jakobi-Identität

fabdf cde + f bcdfade + f cadf bde = 0 (2.5)

und sind auf

fabcfdbc = Ncδ
ad (2.6)

normiert. Die lokale Eichtransformation in Gleichung (2.2) ist unitär mit det(U) = 1 und

Uji(x) = [exp(i
∑

a

αa(x) ta)]ji, αa(x) ∈ R. (2.7)
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Die so definierte Transformation beschreibt die lokale Abbildung eines fermionischen Spinors q(x) - ei-
nes vierkomponentigen Spaltenvektors, bei dem jede Komponente von der Raumzeit abhängt - an jedem
Raum-Zeit-Punkt x durch ein beliebiges Element U der Lie-Gruppe G.

Der lokal eichinvariante Teil Linvariant der Lagrangedichte für eine Theorie mit Quark- und Gluonfel-
dern setzt sich zusammen aus der Dirac- und der Yang-Mills-Lagrangedichte:

Linvariant = LD + LY M . (2.8)

Dieser Teil der Lagrangedichte besteht aus einem kinetischen Anteil für die Quarkfelder, an die die
Gluonfelder über die kovariante Ableitung Dµ minimal ankoppeln. Die Dynamik des Eichfeldes selbst
wird durch eine Yang-Mills Wechselwirkung beschrieben, die die nichtabelschen Selbstwechselwirkun-
gen der Gluonen enthält:

Linvariant[q̄, q, A] =
Nf∑

f=1

q̄f (i/D −mf
0)qf − 1

4
F aµνF a

µν (2.9)

für eine Theorie mit Nf unterschiedlichen Flavours, mf
0 sind die flavourabhängigen Stromquarkmassen1.

Auf der rechten Seite von Gleichung (2.9) wurde die von Feynman eingeführte Slash-Schreibweise /D ≡
γµDµ verwendet, wobei hier die Indizes von 0 bis 3 laufen (siehe Anhang A). Durch die Einführung des
Eichfeldes Aµ ≡ Aa

µta wurde die Ableitung ∂µ zu einer kovarianten Ableitung

Dµ = ∂µ + igAa
µta

≡ ∂µ + igAµ (2.10)

erweitert. Darin bezeichnet g die starke Kopplungskonstante. Das in Gleichung (2.10) eingeführte Hilfs-
feld Aµ ist statisch und trägt somit noch keine Freiheitsgrade. Damit dieses Hilfsfeld Aµ zu einer dyna-
mischen Feldvariablen wird, benötigt man in der Lagrangedichte einen Term, der sowohl eichinvariant
ist als auch die quadratischen Ableitungen von Aµ enthält. Dazu führt man eine nichtabelsche Verallge-
meinerung des Feldstärketensors ein:

F a
µν = ∂µAa

ν − ∂νA
a
µ − gfabcAb

µAc
ν . (2.11)

Der so definierte Feldstärketensor transformiert sich unter einer Eichtransformation auf dieselbe Weise
wie die kovariante Ableitung Dµ. Unter Verwendung des Feldstärketensors Fµν lässt sich daraus durch
Spurnahme sofort eine Lagrangedichte konstruieren:

LY M = −1
2

Tr(FµνFµν) = −1
4
F aµνF a

µν . (2.12)

Da das Gluon durch ein Vektorfeld repräsentiert wird, hätte es an sich vier Polarisationsfreiheitsgrade.
Aufgrund seiner Masselosigkeit kann es aber nur zwei transversale Freiheitsgrade haben. Für eichinva-
riante Größen wie die Greenschen Funktionen muss daher zusätzlich eine Eichung fixiert werden, damit

1Um die Notation kompakt zu halten, wird im fermionischen Anteil der Lagrangedichte über die Quarkflavours in weiterer
Folge implizit summiert, d.h. qf → q und mf

0 → m0.
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die zugehörigen Funktionalintegrale nicht verschwinden. Dafür erweitert man die Lagrangedichte durch
Hinzunahme eines Eichfixierungsterms Lgauge. Dieser lautet in einer allgemeinen kovarianten Eichung

Lgauge = − 1
2ξ0

(∂µAµ)2. (2.13)

Der Parameter ξ0 dient der Eichfixierung und kann im wesentlichen frei gewählt werden. Häufig verwen-
dete Spezialfälle sind die Landau-Eichung (ξ0 = 0) und die Feynman-Eichung (ξ0 = 1).

Durch die Hinzunahme des Eichfixierungsterms Lgauge ist die Lagrangedichte nun nicht mehr eichinva-
riant. Um die Eichinvarianz in kovarianten Eichungen zu erhalten, wurde von Faddeev und Popov (1967)
vorgeschlagen, unphysikalische skalare Hilfsfelder mit Spin 0 einzuführen. Diese in weiterer Folge als
ω̄a, ωa bezeichneten antikommutierenden Felder nennt man Geistfelder. Dadurch entsteht in einer kova-
rianten Eichung ein zusätzlicher Geistterm Lghost in der Lagrangedichte. Dieser hängt allgemein von der
Eichfixierung ab und lautet in kovarianter Eichung

Lghost = (∂µω̄a)(δab∂µ − gfabcAc
µ)ωb. (2.14)

Mit der Lagrangedichte Linvariant aus Gleichung (2.9) erhält man so die unrenormierte effektive La-
grangedichte der QCD:

Leff [q̄, q, Aµ, ω̄, ω] = Linvariant + Lgauge + Lghost =

q̄(i/D −m0)q − 1
4
F aµνF a

µν −
1

2ξ0
(∂µAµ)2 + (∂µω̄a)(δab∂µ − gfabcAc

µ)ωb. (2.15)

Durch die Hinzunahme des Eichfixierungsterms und der Faddeev-Popov-Geister ist die effektive Lagra-
gedichte nicht mehr invariant unter lokalen Eichtransformationen. Stattdessen liegt nun die allgemeinere
Klasse der nach Becchi, Rouet und Stora benannten BRS-Transformationen vor. Dabei handelt es sich um
eine Verallgemeinerung der lokalen Eichtransformationen, die die Eichfixierungs- und Geistterme ein-
schließt. Die Forderung nach BRS-Invarianz einer Eichtheorie erzeugt automatisch die Eichfixierungs-
und Geistterme und garantiert gleichzeitig die Eichinvarianz der physikalischen Observablen. Aus der
BRS-Invarianz der QCD können dann die Slavnov-Taylor Identitäten (STIs) abgeleitet werden. Die STIs
entsprechen den Ward-Takahashi Identitäten (WTIs) der QED und stehen synonym für die Erhaltungs-
sätze der QCD.

Aus den bilinearen Termen der effektiven Lagrangedichte ergeben sich die Propagatoren der Störungs-
theorie. Die trilinearen Terme ergeben 3-Vertizes und die quadrilinearen 4-Vertizes (Quelle: [4], Seite
11),
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Leff = q̄(i/∂ −m0)q + 1
4(∂µAa

ν − ∂νA
a
µ)2

−g
2fabcAbµAcν(∂µAa

ν − ∂νA
a
µ) − g2

4 fabef cdeAa
µAb

νA
cµAdν

+gq̄/Aq + Eichterme,

wobei jetzt über doppelt vorkommende Indizes summiert wird. Die Selbstkopplungen der Gluonen exis-
tieren aufgrund der nichtverschwindenden Strukturkonstanten. Sie sind somit eine direkte Folge der nich-
tabelschen Struktur der QCD. Die effektive Wirkung Seff der QCD im Minkowskiraum erhält man aus
dem Integral über die effektive Lagrangedichte:

Seff [q̄, q, Aµ, ω̄, ω] = S[q̄, q, Aµ] +
∫

d4x

[
(∂µω̄a)(δab∂µ − gfabcAc

µ)ωb − 1
2ξ0

(∂µAµ)2
]

, (2.16)

wobei hier die Abkürzung

S[q̄, q, Aµ] =
∫

d4x

[
q̄(i/D −m0)q − 1

4
F aµνF a

µν

]
(2.17)

verwendet wurde.

2.2 Die effektive Wirkung

Wie in jeder anderen physikalischen Theorie auch möchte man in einer Quantenfeldtheorie physikali-
sche Aussagen machen, also Observablen berechnen. Dafür benötigt man eine Größe, die die Theorie
definiert. Die zentrale Größe, die eine Quantenfeldtheorie definiert, ist das Erzeugende Funktional. Alle
physikalischen Aussagen (das heißt alle Observablen) einer Quantenfeldtheorie können aus ihrem Erzeu-
genden Funktional berechnet werden. Ein Erzeugendes Funktional ist das feldtheoretische Analogon zur
Zustandssumme in der statistischen Mechanik. Beide sind definiert als Integral über alle möglichen Kon-
figurationen oder Zustände eines Systems gewichtet mit einem exponentiellen Faktor. Die physikalischen
Aussagen einer renormierbaren Quantenfeldtheorie lassen sich mathematisch durch ihre Einteilchen ir-
reduziblen (1PI) Greenschen Funktionen ausdrücken. Die Greenschen Funktionen sind im Pfadintegral-
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oder Funktionalzugang über normierte Funktionalintegrale eines Produkts von n Quantenfeldern ge-
wichtet mit einer exponentiellen effektiven Wirkung Seff definiert. Die ”Theorie lösen” bedeutet im
wesentlichen, diese Funktionalintegrale auszuwerten.

Das Erzeugende Funktional für die Greenschen Funktionen Gn ist definiert als

Z[J ] = Z−1
0

∫
Dφ e−S[φ]+J ·φ, (2.18)

wobei in Gleichung (2.18) die Kurzschreibweise J · φ ≡ ∫
d4x J(x)φ(x) verwendet wurde. Der Aus-

druck Dφ ist das Pfadintegralmaß. Hier ist J(x) eine äußere Quelle des Feldes φ(x), dessen Kom-
ponenten mit den Quellenfeldern der Theorie identifiziert werden. Z0 ist die Zustandssumme, die das
Erzeugende Funktional normiert:

Z0 =: Z[J = 0] =
∫
Dφ e−S[φ]. (2.19)

Die Bezeichnung ”Erzeugendes Funktional” kommt daher, weil man aus ihm durch funktionale Diffe-
rentiation von Z[J ] nach J(x) an der Stelle J = 0 die Greenschen Funktionen erhält:

Gn(x1, ..., xn) = 〈0|Tφ(x1)...φ(xn)|0〉 =
1
Z0

δn

δJ(x1)...δJ(xn)
Z[J ]

∣∣∣∣
J=0

. (2.20)

Hier erkennt man auch die Bedeutung der äußeren Quellen. Man kann sich die Propagation eines Teilchen
von einem Vakuumzustand in einen anderen etwa so vorstellen: Zum Zeitpunkt ti wird ein Teilchen durch
eine Quelle φ am Ort xi erzeugt. Dieses Teilchen propagiert dann für eine bestimmte Zeit, bis es zum
Zeitpunkt tj am Ort xj wieder vernichtet wird. Dieser Vorgang wird dann ebenfalls durch eine Quelle
beschrieben. In Feynman-Diagrammen stellt man die Greenschen Funktionen als separate Diagramme
dar, für die jeweils getrennt eine Impulserhaltung gilt.

Während man durch funktionales Differenzieren von Z[J ] nach J(x) alle Greenschen Funktionen der
Theorie erzeugen kann, erhält man die Untermenge der verbundenen Greenschen Funktionen Gc

n aus
dem Funktional W [J ], das mit Z[J ] über die Beziehung

Z[J ] = eW [J ] oder

W [J ] = lnZ[J ] (2.21)

mit der Normierungsbedingung Z[0] = 1 bzw. W [0] = 0 verknüpft ist. So wie Z[J ] ist auch W [J ]
ein Funktional der äußeren Quellen, und man erhält die verbundenen Greenschen Funktionen durch
funktionales Differenzieren von W [J ] nach J(x) an der Stelle J = 0:

Gc
n(x1, ..., xn) =

δn

δJ(x1)...δJ(xn)
W [J ]

∣∣∣∣
J=0

. (2.22)

In der Darstellung durch Feynman-Diagramme entsprechen die verbundenen Greenschen Funktionen
Diagrammen, die sich nicht mehr in zwei getrennte Teile zerlegen lassen, ohne eine Linie aufzuschnei-
den.
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Das Erzeugende Funktional für die Einteilchen-irreduziblen (1PI) Greenschen Funktionen Γn nennt man
die effektive Wirkung Γ[φ]:

Γn(x1, ..., xn) =
δn

δφ(x1)...δφ(xn)
Γ[φ]

∣∣∣∣
φ=0

(2.23)

In der Darstellung durch Feynman-Diagramme entsprechen die 1PI Greenschen Funktionen Γn jenen
Diagrammen, die man nicht mehr durch Aufschneiden einer Linie in zwei getrennte Diagramme zerlegen
kann. Die effektive Wirkung ist ein geeignetes Werkzeug zur Beschreibung von Vakuumzuständen, da
sie nicht von den äußeren Quellen abhängt, sondern ein Funktional des gemittelten Feldes φc ist. Um
zur effektiven Wirkung zu gelangen, geht man vom Erzeugenden Funktional W [J ] aus und setzt φ(x) in
Abhängigkeit einer äußeren Quelle J(x):

δW [J ]
δJ(x)

= 〈φ(x)〉[J ] . (2.24)

Nach der Definition des Funktionalintegrals ist das der Vakuumerwartungswert des Feldes φ(x) in An-
wesenheit einer äußeren Quelle. Man bezeichnet diesen Vakuumerwartungswert als das klassische Feld
φc:

δW [J ]
δJ(x)

= 〈φ(x)〉[j] =: φc(x). (2.25)

Das klassische Feld ist das gewichtete Mittel über alle Fluktuationen des Feldes. Mit diesem gemittelten
klassischen Feld führt man nun eine funktionale Legendre-Transformation nach den Quellen durch und
erhält die effektive Wirkung Γ[φc] :

Γ[φc] := −W [J ] + J · φc. (2.26)

Durch funktionales Differenzieren von Γ[φc] erhält man eine weitere wichtige Eigenschaft:

δ

δφc(y)
Γ[φc] = −δW [J ]

δφc(y)
+

∫
d4x

δJ(x)
δφc(y)

φc(x) + J(y)

= −
∫

d4x
δJ(x)
δφc(y)

δW [J ]
δJ(x)

+
∫

d4x
δJ(x)
δφc(y)

φc(x) + J(y)

= J(y). (2.27)

Für verschwindende äußere Quellen gilt also

δ

δφ
Γ[φ]

∣∣∣∣
φ=φc

= 0. (2.28)

Im Allgemeinen lässt sich Γ[φc] nicht explizit angeben und man ist bei konkreten Rechnungen auf Nä-
herungen angewiesen. Eine Möglichkeit zur näherungsweisen Berechnung von Γ[φc] ist die Ableitungs-
entwicklung der effektiven Wirkung:
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Γ[φc] =
∫

d4x V (φc) +
1
2
Z(φc)(∂µφc)2 + Y (φc)

(
(∂µφc)2

)2 + ... (2.29)

Den Term niedrigster Ordnung in dieser Entwicklung bezeichnet man als effektives Potential V (φc),
Z ist die Wellenfunktionsrenormierung und die höheren Terme sind Vertexkorrekturen. Man nimmt an,
dass der Vakuumzustand |0〉 translationsinvariant ist, wodurch als Konsequenz φc nicht mehr von x
abhängt. Durch die Einführung eines konstanten Feldes φc(x) → φc = const. verschwinden dann alle
Ableitungsterme und es gilt:

Γ[φc] =
∫

d4x V (φc). (2.30)

Das effektive Potential kann so als die Summe alle 1PI Greenschen Funktionen Γn ausgedrückt werden,
deren äußere Linien verschwindende Impulse tragen.

2.3 Renormierungsverfahren

Ein wichtiges Kriterium für eine Eichtheorie ist ihre Renormierbarkeit. In perturbativen Rechnungen mit
Feynman- Diagrammen treten Schleifendiagramme auf, wodurch im allgemeinen Divergenzen entstehen,
die aus der Integration über große innere Impulse stammen. Die entsprechenden Schleifenintegrale haben
die Form

I :=
∫

ddq

(2π)d

1
(q2 −M2 + iε)m

(2.31)

und sind für 2m < d ultraviolettdivergent. Um diese Divergenzen zu vermeiden, wurde das Konzept der
Renormierung entwickelt. Die Lösung dieses Problems erfolgt in zwei Schritten. Zunächst werden die
divergenten Integrale durch Einführung von zusätzlichen Parametern in endliche Ausdrücke überführt.
Diese Parametrisierung der Divergenzen bezeichnet man als Regularisierung. Im nächsten Schritt wer-
den die so parametrisierten Divergenzen aus der Theorie entfernt. Dabei wählt man die Divergenzen der
unrenormierten Größen so, dass die Unendlichkeiten in die unrenormierten Felder, Massen und Kopp-
lungen der Lagrangedichte absorbiert werden und so die Divergenzen aufheben. Dieser Vorgang wird als
Renormierung bezeichnet. Die Art und Weise, wie die Regularisierung und Renormierung durchgeführt
wird, bezeichnet man als Renormierungsverfahren.

Geeignete Verfahren im Zusammenhang mit Yang-Mills-Theorien in Coulombeichung sind die dimen-
sionale Regularisierung mit anschließender multiplikativer Renormierung oder die Einführung eines
Impuls-Cutoffs ΛUV mit anschließender Impulssubtraktion (MOM-Schema, MOM steht für ”momen-
tum subtraction”). Das Verfahren der dimensionalen Regularisierung basiert auf der Beobachtung, dass
die in vier Raum-Zeit Dimensionen divergenten Integrale in d 6= 4 Dimensionen existieren. Die Di-
vergenzen können dann als Terme proportional 1/ε geschrieben werden. Die Vorgehensweise lässt sich
dadurch charakterisieren, dass man die Anzahl der Raum-Zeit Dimensionen von d = 4 auf d = 4 − 2ε
ändert und die Integrale statt in 4 in 4− 2ε Dimensionen löst:

d4p

(2π)4
→ µ2ε d4−2εp

(2π)4−2ε
, ε = 2− d

2
. (2.32)
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In Gleichung (2.32) wurde der beliebige Skalenparameter µ eingeführt, um die Dimensionen der Felder
und Kopplungen auch in Dimensionen d 6= 4 zu erhalten. Dieser hat die Dimension einer Masse. In
Coulombeichung ist diese Standardtechnik zur Regularisierung allerdings so noch nicht ausreichend.
Der Grund dafür liegt in der Form des Eichbosonpropagators:

Gab
µν(p) = − iδab

p2

[
gµν +

n2

p2
pµpν − p · n

p2
(pµnν + nµpν)

]
(2.33)

mit nµ = (1, 0, 0, 0). Dadurch entstehen Schleifenintegrale der Form

I :=
∫

ddp

(2π)4
1

p2(p− q)2
. (2.34)

Diese Integrale sind auch bei Anwendung eines dimensionalen Regularisierungsschemas nicht wohlde-
finiert. Abhilfe schafft das Konzept der sogenannten ”split dimensional regularisation” [5]. Bei diesem
Regularisierungsschema werden die Energie- und Impulsintegrale unabhängig voneinander dimensio-
nal regularisiert. Dafür setzt man die Anzahl der Raum-Zeit Dimensionen d = 4 − 2ε = ω + ρ und
drückt die Divergenzen der Energieintegrale als Pole in ρ neben den gewöhnlichen Polen in ω aus. Im
anschließenden Verfahren der multiplikativen Renormierung werden die unrenormierten Größen G0 in
der Lagrangedichte durch die Einführung von Renormierungskonstanten Z, welche die 1/ε-Terme ab-
sorbieren, in endliche renormierte Größen GR überführt:

G0 → ZGR. (2.35)

Im MOM-Schema werden die Integrale mit einem Impuls-Cutoff ΛUV regularisiert, wodurch die UV-
divergenten Integrale endlich werden. Die Divergenzen treten dann erst im Limes ΛUV → ∞ auf und
werden durch Subtraktion eines gleichartig divergenten Terms annihiliert. Dieses Verfahren hat den
Nachteil, dass im Allgemeinen eine Abhängigkeit vom Skalenparameter µ verbleibt. Aus diesem Grund
bezeichnet man µ als Regularisierungsskala, da der genaue Wert dieses Parameters durch das Renormie-
rungsverfahren nicht festgelegt wird. Jede Wahl von µ führt zu anderen Werten für die renormierten Pa-
rameter. Da die QCD nur störungstheoretisch gut behandelt werden kann, wählt man im MOM-Schema
aufgrund der Asymptotischen Freiheit für µ einen großen raumartigen Impuls. Das hat außerdem noch
den Vorteil, dass man auf eine freie Theorie renormieren kann.

2.4 Dyson-Schwinger Gleichungen für den Quarkpropagator

Nach diesem Überblick über einige allgemeine Aspekte der QCD, die für die Diskussion der Propa-
gatoren der Theorie von Relevanz sind, liegt der Schwerpunkt in diesem Abschnitt auf den Dyson-
Schwinger Gleichungen (Dyson-Schwinger Equations, DSEs) für den Quarkpropagator. Die Dyson-
Schwinger Gleichungen sind ein nichtperturbativer, Lorentz-kovarianter Formalismus zum Studium von
Quark- und Gluon- als auch von Hadroneneigenschaften. Die Lösung dieser Gleichungen beschreibt
zunächst einmal die Korrelation zwischen den fundamentalen Quantenfeldern aufgrund der Wechselwir-
kung. Des Weiteren kann man die Eigenschaften von Bindungszuständen extrahieren: jeder Bindungs-
zustand - mit anderen Worten jedes Hadron - führt zu einem Pol in einer Greenschen Funktion. Die
Quantenfeldtheorie der starken Wechselwirkung wird in einer kovarianten Eichung formal durch die
Feynman-Schwinger Integraldarstellung für das Erzeugende Funktional
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Z[η̄, η, J, σ̄, σ] =
∫
D[q̄, q, A, ω̄, ω] exp

{
−Seff +

∫
d4x [q̄η + η̄q + Aa

µJa
µ + ω̄aσa + σ̄aωa]

}
(2.36)

zusammen mit den Renormierungsvorschriften definiert. In Gleichung (2.36) wurden Quellenfelder η
und η̄ für die Antiquarks und Quarks, J für die Gluonen sowie σ und σ̄ für die Antigeister und Geister
eingeführt. Der Ausdruck D[q̄, q, A, ω̄, ω] ist das Pfadintegralmaß. Die unrenormierte effektive Lagran-
gedichte in Gleichung (2.15) lautet voll ausgeschrieben

Leff = q̄(i/∂ −m0)q + gAa
µq̄γµtaq +

1
4
(∂µAa

ν − ∂νA
a
µ)(∂µAaν − ∂νAµa)

−g

2
fabcAbµAcν(∂µAa

ν − ∂νA
a
µ)− g2

4
fabef cdeAa

µAb
νA

cµAdν

− 1
2ξ0

(∂µAµ)2 + ω̄a∂2ωb − gfabcω̄a∂µ(Ac
µωb). (2.37)

Um die Divergenzen zu eliminieren, werden nun die unrenormierten Größen in der effektiven Lagrange-
dichte (2.37) durch die Einführung von multiplikativen Vorfaktoren renormiert:

q0 →
√

Z2q, Aa
0µ →

√
Z3A

a
µ, ωa

0 →
√

Z̃3ω
a,

m0 → Zmm, g0 → Zgg. (2.38)

In Gleichung (2.38) wurden insgesamt fünf Renormierungskonstanten definiert, und zwar Z2, Z3 und
Z̃3 für die Quark-, Gluon- und Geistfelder, Zm für die Masse und Zg für die Kopplung. Die renormierte
effektive Lagrangedichte L̃eff [q̄, q, Aµ, ω̄, ω] ≡ Leff [q̄0, q0, A0µ, ω̄0, ω0] kann dann geschrieben werden
als

L̃eff = Z2q̄(i/∂ − Zmm)q + Z1F gAa
µq̄γµtaq +

Z3

4
(∂µAa

ν − ∂νA
a
µ)(∂µAaν − ∂νAµa)

−Z1
g

2
fabcAbµAcν(∂µAa

ν − ∂νA
a
µ)− Z4

4
g2fabef cdeAa

µAb
νA

cµAdν

− 1
2ξ0

(∂µAµ)2 + Z̃3ω̄
a∂2ωb − Z̃1gfabcω̄a∂µ(Ac

µωb), (2.39)

wobei die folgenden Abkürzungen verwendet wurden:

Z1F = ZgZ2

√
Z3, Z1 = ZgZ

3
2
3 , Z̃1 = ZgZ̃3

√
Z3, Z4 = Z2

gZ2
3 . (2.40)

Diese Beziehungen sind eine Konsequenz der zugrunde liegenden Slavnov-Taylor Identitäten. Als Fol-
ge sind die Renormierungskonstanten für alle Quarks gleichen Flavors, alle Gluonen und alle Geister
identisch. Das Erzeugende Funktional für die verbundenen Greenschen Funktionen W [η̄, η, J, σ̄, σ] ist
definiert als der natürliche Logarithmus des Erzeugenden Funktionals Z (2.21). Aus dem Erzeugen-
den Funktional W erhält man nach einer funktionalen Legendre-Transformation die effektive Wirkung
(2.26):
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Γ[q̄, q, A, ω̄, ω] = −W [η̄, η, J, σ̄, σ] +
∫

d4x [q̄η + η̄q + Aa
µJa

µ + ω̄aσa + σ̄aωa]. (2.41)

Die effektive Wirkung Γ ist das Erzeugende Funktional für die 1PI irreduziblen Vertexfunktionen. Die
Felder und Quellen können als funktionale Ableitungen des entsprechenden Funktionals geschrieben
werden:

δW
δη̄ = q, δW

δη = q̄, δW
δJµ

= Aµ,
δΓ
δq̄ = η, δΓ

δq = η̄, δΓ
δAµ

= Jµ.
(2.42)

Die grassmannwertigen Operatoren

δW
δ(q̄,η̄) =: linksseitige Ableitung, δW

δ(q,η) =: rechtsseitige Ableitung (2.43)

definieren links- und rechtsseitige Ableitungen.

2.4.1 Herleitung der Dyson-Schwinger Gleichungen

Setzt man voraus, dass eine Funktionalintegraldarstellung eines Erzeugenden Funktionals definiert ist,
folgt die nichtperturbative Herleitung der DSEs aus der Beobachtung, dass das Funktionalintegral einer
totalen Funktionalableitung für geeignete Randbedingungen verschwindet, also

0 =
∫
Dφ e−S[φ]+J ·φ

(
δ

δφi(x)
S[φ]− Ji(x)

)
=:

〈
δ

δφi(x)
S[φ]− Ji(x)

〉

[J ]

. (2.44)

Dies führt auf die folgende funktionale Differentialgleichung:

(
δS[φ]
δφi(x)

[
δ

δJ(x)

]
− Ji(x)

)
Z[J ] = 0. (2.45)

Gleichung (2.45) ist die Dyson-Schwinger Gleichung für das Erzeugende Funktional Z[η̄, η, Jµ, σ̄, σ].
Die Herleitung der DSE für den Quarkpropagator erfolgt dann analog zu der für den Geistpropagator
[6]. Um zur DSE für den Quarkpropagator zu gelangen, macht man zunächst eine linksseitige Ableitung
der Wirkung S :=

∫
d4x L nach dem Quarkfeld q̄a, wobei η̄ und η wie gehabt die Quellenfelder für die

Quarks und Antiquarks bezeichnen:

(
δS

δq̄a(x)

[
δ

δJ
,

δ

δη̄

]
+ ηa(x)

)
Z[η̄, η, J, σ̄, σ]

∣∣∣∣
σ̄=σ=0

=
〈

δS
δq̄a(x)

+ ηa(x)
〉

[η̄,η,J ]

= 0, (2.46)

wobei der Index [η̄, η, J ] angibt, welche Quellen für die weiteren Ableitungen beibehalten werden. Nach
einer weiteren rechtsseitigen Ableitung δ/δηb(y) kann die Dyson-Schwinger Bewegungsgleichung für
den Quarkpropagator geschrieben werden als
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〈
δS

δq̄a(x)
q̄b(y)

〉
= δabδ4(x− y). (2.47)

Mit der Definition für den Quarkpropagator

〈
q̄a(x)qb(y)

〉
=

δ2W

δηa(x)δη̄b(y)
=: Sab(x− y) (2.48)

lautet die exakte DSE für den Quarkpropagator in Ortsraumdarstellung

〈
δS

δq̄a(x)
q̄b(y)

〉
= δabδ4(x− y) =

Z2 (−/∂ + Zmm) Sab(x− y)− Z1F ig

∫
d4z d4z′ δ4(x− z) δ4(x− z′) (taγµ)

〈
qc(z)q̄b(y)Aa

µ(z′)
〉

.

(2.49)

Diese beinhaltet den inversen freien Propagator (−/∂ + m), die Dreipunkt-Vertexfunktion Γa
µ(x, y, z) =

−Z1F igtaγµδ4(y − x)δ4(z − x) und die vollen Quark-Gluon Korrelationen
〈
q(z)q̄(y)Aa

µ(x)
〉
.

In einem kovarianten Formalismus sind die vollen und verbundenen Dreipunktfunktionen identisch:

〈
qc(z)q̄b(y)Aa

µ(z′)
〉

=
〈
qc(z)q̄b(y)Aa

µ(z′)
〉

conn
. (2.50)

Diese verbundene Dreipunktfunktion

〈
qc(z)q̄b(y)Aa

µ(z′)
〉

conn
:=

δ3W [η̄, η, J ]
δηc(z)δη̄b(y)δJa

µ(x)

∣∣∣∣
η=η̄=J=0

(2.51)

kann in eine 1PI Quark-Gluon Vertexfunktion

Γabc
µ (x, y, z) =

δ3Γ[q̄, q, A]
δqc(z)δq̄b(y)δAa

µ(x)

∣∣∣∣
q=q̄=A=0

(2.52)

mit damit verbundenen Quarkpropagatoren Sab(x) und Gluonpropagatoren Dab
µν(x) zerlegt werden.

2.4.2 Die Gap-Gleichung

Nach einer Fouriertransformation erhält man die Darstellung der exakten DSE für den renormierten
Quarkpropagator im Impulsraum (vergleiche beispielsweise [7] [8]). Diese wird üblicherweise als die
Dyson-Schwinger oder QCD-Gapgleichung

S(p)−1 := Z2(i /p + Zmm) + Σ(p) (2.53)

mit der Definition für die Quark-Selbstenergie
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Abbildung 2.1: Diagrammatische Darstellung der Gap-Gleichung (Quelle: [9], Seite 16).

Σ(p) ≡ Z1F g2

∫ ΛUV d4q

(2π)4
Dµν(p− q)

λa

2
γµ S(q) Γa

ν(q, p) (2.54)

bezeichnet. In Gleichung (2.54) bezeichnet Dµν(k = p−q) den renormierten Gluonpropagator, Γa
ν(q, p)

den renormierten Quark-Gluon-Vertex und m die ΛUV -abhängige Stromquarkmasse. ΛUV steht für eine
translationsinvariante Cutoff-Skala, bei der regularisiert wird (siehe Abschnitt 2.3). Obgleich in Glei-
chung (2.54) nicht explizit angegeben, hängen sowohl der Quarkpropagator S(p) als auch der Quark-
Gluon-Vertex Γa

ν(q, p) vom Quarkflavor ab. Die Renormierungskonstanten für den Quark-Gluon-Vertex
und die Quark-Wellenfunktion, das sind Z1F (µ2,Λ2

UV ) und Z2(µ2, Λ2
UV ), hängen sowohl vom Renor-

mierungspunkt µ als auch von der Regularisierungsskala ΛUV ab.

Die renormierte Kopplungskonstante g ist mit der laufenden Kopplungskonstante αs(Q2) := g2(Q2)/4π
über

g2 = g2(Q2)
∣∣
Q2=µ2 ≡ 4παs(Q2)

∣∣
Q2=µ2 (2.55)

verknüpft, wobei −q2 ≡ Q2 > 0.

Für Q2 À Λ2
QCD ist die laufende Kopplungskonstante in erster Ordnung Störungstheorie gegeben durch

αs(Q2) =
12π

(11Nc − 2Nf ) ln(Q2/Λ2
QCD)

≡ γmπ

ln(Q2/Λ2
QCD)

, (2.56)

wobei

γm =
12

(11Nc − 2Nf )
(2.57)

üblicherweise als die anomale Dimension der Masse bezeichnet wird. ΛQCD ist der Skalenparameter der
QCD. Die Lösung der Gap-Gleichung (2.53) kann in einem Lorentz-kovarianten Formalismus immer als

S(p)−1 = i /p A(p2, µ2) + B(p2, µ2) =
i /p + M(p2)
Z(p2, µ2)

(2.58)

mit der Massenfunktion M(p2) und der Renormierungsfunktion Z(p2, µ2) geschrieben werden. Die Re-
normierungsbedingung lautet

S(p)−1
∣∣
p2=µ2 = i /p + m(µ)|p2=µ2 , (2.59)
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wobei m(µ) die Quarkmasse am Renormierungspunkt µ ist. Dadurch ist die Theorie asymptotisch frei
für kleine Abstände. Für ein hinreichend großes raumartiges µ2 kann die rechte Seite von Gleichung
(2.53) in Störungstheorie berechnet werden und man findet

m(µ) =
m̂

(ln[µ/ΛQCD])γm
, (2.60)

wobei wie in Abschnitt 2.1 Nc die Anzahl der Farben und Nf die Anzahl der aktiven Flavors bezeich-
net; m̂ und ΛQCD sind Renormierungsgruppeninvarianten: m̂ ist die renormierungsgruppeninvariante
Stromquarkmasse, ΛQCD bezeichnet den Skalenparameter der QCD.

Die Gap-Gleichung (2.53) illustriert die Eigenschaften einer jeden DSE. Sie ist eine nichtlineare Inte-
gralgleichung für den Quarkpropagator S(p). Der Kern dieser Integralgleichung beinhaltet die Zwei-
punktfunktion Dµν(k) und die Dreipunktfunktion Γa

ν(q, p). Dadurch ist die Gap-Gleichung an die DSEs
gekoppelt, die diese Funktionen erfüllen; diese DSEs wiederum beinhalten höhere n-Punkt Greensfunk-
tionen und formen so ein unendliches System von gekoppelten, nichtlinearen Integralgleichungen. Eine
numerische Behandlung der Gap-Gleichung erscheint so auf den ersten Blick nicht möglich. Ein erster
Schritt muss daher sein, eine brauchbare nichtperturbative Trunkierung dieses unendlichen Systems von
DSEs zu finden, die die relevanten (globalen) Symmetrien der QCD wie die chirale Symmetrie und die
Renormierungsgruppe berücksichtigt.

2.4.3 Die Gap-Gleichung in Regenbogennäherung

Die einfachste Näherung, die diese Eigenschaften bewahrt, ist die sogenannte Regenbogennäherung
[10][11]:

i Γa
µ =

i

2
λaΓµ :

Z1F Γa
µ(k, p) = γµ

+
1

2Nc

∫ Λ

l
g2Dρσ(p− l)γρS(l + k − p)γµS(l)γρ

+
Nc

2

∫ Λ

l
g2Dσ′σ(l)Dτ ′τ (l + k − p)

×γτ ′ S(p− l) γσ′ Γ3g
ρτµ(l,−k, k − p) + [. . .] (2.61)

Hier bezeichnet Γ3g den gedressten Drei-Gluon Vertex. Der führende Term dieser Entwicklung ist γµ,
der führende Beitrag der explizit ausgeschriebenen Terme ist offensichtlich von O(g2). Die Ellipse re-
präsentiert Terme mit führendem Beitrag O(g4). Die Regenbogennäherung für die Gap-Gleichung (2.53)
ist dann definiert durch die Wahl von

Z1F Dab
µν(k)Γa

ν(q, p) → Dfree
µν (k)

λa

2
γν , (2.62)

wobei Dfree
µν (k) =: Dµν(k) der freie Gluonpropagator ist. Mit

∑8
a=1(λ

a/2)2 = 4/3 =: CF , wobei
CF die zweite quadratische Casimirinvariante der fundamentalen Darstellung der SU(Nc) ist, kann die
Gap-Gleichung (2.53) geschrieben werden als
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S(p)−1 := Z2(i /p + Zmm) +
CF

(2π)4

∫ Λ

d4q g2 Dµν(k) γµ S(q) γν . (2.63)

2.4.4 Renormierung der Gap-Gleichung

Die Dyson-Schwinger Integralgleichungen (2.63) sind im ultravioletten Sektor divergent und müssen
renormiert werden. Um die korrekte Renormierung zu finden, betrachtet man die renormierten Integral-
gleichungen für die Vektor-, Axialvektor- und pseudoskalare Vertexfunktion [12] [13]:

Γµ(p′, p) = Z(µ)γµ +
∫

d4q

(2π)4
S(p′ + q) Γµ(p′ + q, p + q) S(p + q) K(p + q, p′ + q, q),

Γµ5(p′, p) = Z(µ)5γµγ5 +
∫

d4q

(2π)4
S(p′ + q) Γµ5(p′ + q, p + q) S(p + q) K(p + q, p′ + q, q),

Γ5(p′, p) = Z5γ5 +∫
d4q

(2π)4
S(p′ + q) Γ5(p′ + q, p + q) S(p + q) K(p + q, p′ + q, q). (2.64)

Hier ist K(p, p′, q) der Quark-Antiquark Bethe-Salpeter Kern und Γ sind die gedressten Vertizes. In der
QCD sind die acht Renormierungskonstanten Z(µ) und Z(µ)5 gleich. Das ist allerdings nicht der Fall,
wenn nur die Zeit-Zeit Komponente des Gluonpropagators verwendet wird. Dieses Problem kann durch
die Hinzunahme retardierter transversaler Gluonen gelöst werden [14]. Damit kann dieses Modell als
nichtkovariante Näherung an ein kovariant renormiertes Eingluon-Austauschmodell betrachtet werden
[13]. Da in diesem Modell Quarkschleifen vernachlässigt werden, verschwinden alle Beiträge zur axialen
U(1)-Anomalie. Damit sind die Vertexfunktionen durch die nichtanomalen Ward-Identitäten mit dem
Quarkpropagator verknüpft [12] [15]:

(p′ − p)µΓµ(p′, p) = iS−1(p′)− iS−1(p),

(p′ − p)µΓµ5(p′, p) = iS−1(p′)γ5 + γ5iS
−1(p) + 2mΓ5(p′, p). (2.65)

Hier macht man zunächst die Leiternäherung für den Bethe-Salpeter Kern

K(p + q, p′ + q, q) ≈ k(q). (2.66)

In dieser Näherung ist k(q) in niedrigster Ordnung Störungstheorie gegeben durch

k(q) = k(q) = −iCF g2γµ ⊗ γνDµν (2.67)

und somit kann k(q) geschrieben werden als
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k(q) = k(q) = −i4πCF γ0 ⊗ γ0VC(q) + i4πCF γi ⊗ γj(δij − qiqj

q2
)VT (q). (2.68)

In Gleichung (2.68) repräsentiert VC(q) das berühmte Color-Coulomb Potential und VT (q) das Potential
für die retardierten transversalen Gluonen. Diese Form des Bethe-Salpeter Kerns gehört zu einem Poten-
tial, dass sich wie die Komponenten eines Vierervektors unter Lorentztransformationen verhält. Mit den
Gleichungen (2.64) und (2.65) erhält man für die Axialvektorvertexfunktion

(p′ − p)µΓµ5(p′, p) = iS−1(p′)γ5 + γ5iS
−1(p) + 2mΓ5(p′, p) =

Z(µ)5γµγ5(p′ − p)µ +
∫

d4q

(2π)4
S(p′ + q) · [iS−1(p′ + q)γ5 +

γ5iS
−1(p + q) + 2mΓ5(p′ + q, p + q)])S(p + q)k(q). (2.69)

Nun benutzt man die Vektoreigenschaften des Potentials, um die γ5-Matrix auf die rechte Seite der
Gleichung (2.69) zu antikommutieren:

iS−1(p′)γ5 + γ5iS
−1(p) + 2mΓ5(p′, p) =

γ5

(
Z(µ)5γµpµ − Z5m +

∫
d4q

(2π)4
S(p + q)k(q)

)
+

(
Z(µ)5γµp′µ − Z5m +

∫
d4q

(2π)4
S(p′ + q)k(q)

)
γ5 +

2mΓ5(p′, p). (2.70)

Die pseudoskalare Vertexfunktion Γ5(p′, p) kann in der ersten und letzten Zeile von Gleichung (2.70)
gegeneinander weggekürzt werden. Die Abhängigkeit von den Impulsen p′ und p ist nun vollständig se-
pariert, und man erhält folgende Gleichung für den renormierten Quarkpropagator (vergleiche Gleichung
(4.12) in [13]):

iS−1(p) = Z(µ)5γµpµ − Z5m +
∫

d4q

(2π)4
S(p + q)k(q)

= Z(µ)5γµpµ − Z5m + g2CF

∫
d4q

(2π)4
Dµν(k) γµ S(q) γν

= Z(µ)5γµpµ − Z5m + 4π CF

∫
d4q

(2π)4
·

[VC(k)γ0S(q)γ0 − VT (k)γiS(q)γj(δij − kikj

k2
)] (2.71)

Da die Eigenschaften der Vertexfunktionen unter Paritätstransformationen durch diese Näherungen nicht
verändert wurden, sind die einander entsprechenden Renormierungskonstanten weiterhin gleich [13]:

Z(µ)5 = Z(µ) =
{

Z0 für µ = 0,
Zj für µ = j = 1, 2, 3,

(2.72)

Z(µ)5γµpµ = Z0γ0p
0 − Zjγjp

j . (2.73)
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2.5 Die Gap-Gleichung in Coulombeichung

Ein Schlüsselement bei der Realisierung eines Confinementszenarios ist die Wahl einer Eichung. Dabei
ist im Rahmen dieser Arbeit zur Beschreibung der für das Confinement verantwortlichen Mechanismen
das ursprünglich von Gribov [2] und Zwanziger [3] formulierte Szenario zum Farbeinschluss von beson-
derem Interesse. In Coulombeichung wird Confinement auf das Verhalten des Color-Coulomb Potentials
Vcoul(R) zurückgeführt, das bei großen Abständen linear ansteigt, wodurch die Quarks eingeschlossen
(confined) sind. Bei kleinen Abständen verhält es sich hingegen coulombartig und sollte zumindest nähe-
rungsweise das richtige asymptotische Verhalten besitzen, das aus der Störungstheorie bekannt ist. Das
Coulomb Potential ist der instantane Anteil der Zeit-Zeit Komponente des Gluonpropagators [3] [16]
[17]

Dµν(x) ≡ 〈gAµ(x)gAν(0)〉 , (2.74)

nämlich

D00(x, t) = V (|x|)δ(t). (2.75)

Bei der Konstruktion eines solchen Potentials unterliegt man zwei Einschränkungen: (i) lineares Quark
Confinement und (ii) Asymptotische Freiheit. Lineares Quark Confinement wird durch die Forderung
implementiert, dass das Potential für große Abstände linear ansteigt:

lim
ΛQCDRÀ1

V (R) ∝ const×R, (2.76)

oder gleichbedeutend

lim
−q2¿Λ2

QCD

V (q2) ∝ const× 1
(q2)2

. (2.77)

Die Bedingung der Asymptotischen Freiheit erfordert, dass sich die starke effektive Kopplungskonstante
αs mit −q2 ≡ Q2 > 0 für große raumartige Impulsüberträge wie

lim
Q2ÀΛ2

QCD

αs(Q2) ∝ 12π

(11Nc − 2Nf ) ln(Q2/Λ2)
(2.78)

verhält. Ein Potential, dass den erwähnten Anforderungen genügt, ist das Richardson-Potential [18]:

VC(q) :=
α(q2)
q2

, (2.79)

α(q2) =
12π

(11Nc − 2Nf ) ln(1 + q2/Λ2)
. (2.80)

Der Skalenparameter Λ ≡ ΛQCD ist dann durch die Stringspannung σC gegeben:
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Abbildung 2.2: Die Gluonpropagatoren D00(|k|) und Dij(|k|) in instantaner Näherung als Funktion der
äußeren Impulse |k|. Der Skalenparameter Λ wurde gleich eins gesetzt.

σC =
8π

27
Λ2. (2.81)

Damit kann die Zeit-Zeit Komponente D00 des Gluonpropagators geschrieben werden als

D00(|k|) =
i

g2
4πVC(|k|). (2.82)

Für die Parametrisierung der transversalen Komponenten Dij des Gluonpropagators verwende ich fol-
genden Ansatz:

Dij(k0, |k|) =
i

g2
(δij − kikj

k2
)VT (k0, |k|) (2.83)

mit

VT (k0, |k|) :=
Z(k0, |k|)

k2
0 − ω2

g(|k|)
. (2.84)

Dieser Ansatz für den Gluonpropagator (siehe Abbildung 2.2) steht in guter Übereinstimmung mit Er-
gebnissen im Hamiltonformalismus [19] und aktuellen Gitterechnungen [20]. Die Gluonenergie ωg(k)
(siehe Abbildung 2.3) muss aufgrund der Asymptotischen Freiheit im ultravioletten Bereich (k → ∞)
das folgende asymptotische Verhalten aufweisen (vergleiche (3.125) in [19]):

ωg(k) →
√

k2, k →∞. (2.85)

Da der Gluonpropagator Dij bis auf einen Faktor 2 mit der inversen Gluonenergie übereinstimmt, ver-
ursacht er im infraroten Bereich (k → 0) eine unendlich hohe Gluonenergie. Das Verschwinden des
Gluonpropagators manifestiert sich in der Abwesenheit der Gluonen aus dem physikalischen Spektrum,
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Abbildung 2.3: Die Gluonenergie ωg(|k|) als Funktion der äußeren Impulse |k|. Der Skalenparameter Λ
wurde gleich eins gesetzt.

was einen starken Hinweis auf den Farbeinschluss der Gluonen im Yang-Mills-Vakuum bedeutet [19].
Dies führt auf den folgenden Ansatz für die Gluonenergie im Infraroten (vergleiche (3.163) in [19]):

ωg(k) =
Λ2

k
. (2.86)

Mit einer einfachen Interpolation zwischen dem angenommenen infraroten und dem bekannten ultravio-
letten Verhalten kann die Gluonenergie geschrieben werden als

ωg(|k|) =
Λ2

|k| + |k|. (2.87)

Die Retardierungseffekte wirden mittels k0 = p0 − q0 einbezogen. In dieser nichtrelativistischen Nähe-
rung macht man folgenden Ansatz für den inversen Quarkpropagator:

iS−1(p) = [γ0p0 A(p0, |p|)− γ · p C(p0, |p|)−B(p0, |p|) + iε]. (2.88)

Mit diesem Ansatz kann der Quarkpropagator geschrieben werden als:

S(p) = i
γ0p0 A(p0, |p|)− γ · p C(p0, |p|) + B(p0, |p|)
p2
0 A2(p0, |p|)− p2 C2(p0, |p|)−B2(p0, |p|)

. (2.89)

Setzt man diese Näherungen und Ansätze in die Gap-Gleichung für den renormierten Quarkpropagator
(2.71) ein, kann man durch Spurnahme und anschließende Wick-Rotation der p0-Komponente (Anhang
C) ein System aus drei gekoppelten nichtlinearen Integralgleichungen für die Quarkpropagatorfunktio-
nen A(pE , |p|), B(pE , |p|) und C(pE , |p|) ableiten (Anhang B):
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A(pE , |p|) = Z0 +
CF

pE(2π)3

∞∫

0

d |q| |q|2
∞∫

−∞
dqE

+1∫

−1

d(cos ϑ)

[4πVC(|k|) +
2Z(kE , |k|)
−k2

E − ω2
g(|k|)

]
qE A(qE , |q|)

denom
, (2.90)

B(pE , |p|) = Zmm− CF

(2π)3

∞∫

0

d |q| |q|2
∞∫

−∞
dqE

+1∫

−1

d(cosϑ)

[4πVC(|k|)− 2Z(kE , |k|)
−k2

E − ω2
g(|k|)

]
B(qE , |q|)

denom
, (2.91)

C(pE , |p|) = Zj − CF

|p| (2π)3

∞∫

0

d |q| |q|3
∞∫

−∞
dqE

+1∫

−1

d(cosϑ)

[4πVC(|k|) cos ϑ− (cosϑ +
|p| |q| (cos2 ϑ− 1)

k2
)

2Z(kE , |k|)
−k2

E − ω2
g(|k|)

]
C(qE , |q|)

denom
,

(2.92)

wobei hier die Kurzschreibweise

denom := −q2
EA2(qE , |q|)− q2C2(qE , |q|)−B2(qE , |q|) (2.93)

verwendet wurde. In den Gleichungen (2.90) - (2.92) bezeichnet q den inneren Schleifenimpuls, k =
p− q den äußeren Impuls und ϑ den Winkel, den beide Vektoren miteinander einschließen. Um die
Notation kompakt zu halten, ist es zweckmäßig, für die Winkelintegrale (Anhang B) die folgende Kurz-
schreibweise einzuführen:

Bek1(|p| , ϑ) =

+1∫

−1

d(cosϑ) 4πVC(|k|), (2.94)

Bek2(|p| , ϑ) =

+1∫

−1

d(cos ϑ) 4πVC(|k|) cos ϑ, (2.95)

Bek3(pE , |p| , ϑ) =

+1∫

−1

d(cosϑ)
2Z(kE , |k|)
−k2

E − ω2
g(|k|)

, (2.96)

Bek4(pE , |p| , ϑ) =

+1∫

−1

d(cosϑ) (cosϑ +
|p| |q| (cos2 ϑ− 1)

k2
)

2Z(kE , |k|)
−k2

E − ω2
g(|k|)

. (2.97)

Die |p|-Koordinate ist für die Propagatorfunktionen eine Symmetrieachse:
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ABC(pE , |p|) = ABC(−pE , |p|). (2.98)

Da das Integral einer Summe gleich der Summe über die Integrale ist, folgt mit (2.98):

∞∫

0

d |q| |q|2
∞∫

−∞
dqE Bek1(|p| , ϑ)

qE A(qE , |q|)
denom

= 0, (2.99)

∞∫

0

d |q| |q|2
∞∫

−∞
dqE Bek1(|p| , ϑ)

B(qE , |q|)
denom

= 2

∞∫

0

d |q| |q|2
∞∫

0

dqE Bek1(|p| , ϑ)
B(qE , |q|)

denom
,

(2.100)
∞∫

0

d |q| |q|3
∞∫

−∞
dqE Bek2(|p| , ϑ)

C(qE , |q|)
denom

= 2

∞∫

0

d |q| |q|3
∞∫

0

dqE Bek2(|p| , ϑ)
C(qE , |q|)

denom
.

(2.101)

Damit können die Dyson–Schwinger Gleichungen für die Quarkpropagatorfunktionen A(pE , |p|), B(pE , |p|)
und C(pE , |p|) im kompakter Form geschrieben werden als

A(pE , |p|) = Z0 +
CF

pE(2π)3

∞∫

0

d |q| |q|2
∞∫

−∞
dqE

+1∫

−1

d(cos ϑ)

[Bek3(pE , |p| , ϑ)]
qE A(qE , |q|)

denom
, (2.102)

B(pE , |p|) = Zmm− CF

(2π)3

∞∫

0

d |q| |q|2
∞∫

−∞
dqE

+1∫

−1

d(cosϑ)

[Bek1(|p| , ϑ)− Bek3(pE , |p| , ϑ)]
B(qE , |q|)

denom
, (2.103)

C(pE , |p|) = Zj − CF

|p| (2π)3

∞∫

0

d |q| |q|3
∞∫

−∞
dqE

+1∫

−1

d(cosϑ)

[Bek2(|p| , ϑ)− Bek4(pE , |p| , ϑ)]
C(qE , |q|)

denom
. (2.104)

Die Regularisierung der Integrale im Ultravioletten erfolgt mit einem Impuls-Cutoff ΛUV . Die Renor-
mierung der Gleichungen wird unter Verwendung eines MOM-Schemas (siehe Abschnitt 2.3), wobei µE

und |µ| die jeweiligen Regularisierungsskalen bezeichnen, durch Subtraktion am Renormierungspunkt
(µE , |µ|) durchgeführt. Wegen der Asymptotischen Freiheit kann man dann schließen, dass

Z0 = 1, Zmm = m0, Zj = 1. (2.105)

Insgesamt können die renormierten Dyson Schwinger Integralgleichungen für die Quarkpropagatorfunk-
tionen A(pE , |p|), B(pE , |p|) und C(pE , |p|) geschrieben werden als:
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A(pE , |p|) = 1 +
CF

pE(2π)3

ΛUV∫

0

d |q| |q|2
ΛUV∫

−ΛUV

dqE

+1∫

−1

d(cosϑ)

[Bek3(pE , |p| , ϑ)]
qE A(qE , |q|)

denom
, (2.106)

B(pE , |p|) = m0 − CF

(2π)3

ΛUV∫

0

d |q| |q|2
ΛUV∫

−ΛUV

dqE

+1∫

−1

d(cosϑ)

[Bek1(|p| , ϑ)− Bek3(pE , |p| , ϑ)]
B(qE , |q|)

denom
, (2.107)

C(pE , |p|) = 1− CF

|p| (2π)3

ΛUV∫

0

d |q| |q|3
ΛUV∫

−ΛUV

dqE

+1∫

−1

d(cosϑ)

[Bek2(|p| , ϑ)− Bek4(pE , |p| , ϑ)]
C(qE , |q|)

denom
. (2.108)

Die Gleichungen (2.106) - (2.108) sind nun ultraviolettendlich. Wie jede andere physikalisch sinnvolle
Wahl für VC(|k|) hat auch das Richardson-Potential notwendigerweise eine nichtintegrierbare Divergenz
bei |k| = |p− q| = 0. Deshalb sind B(pE , |p|) und C(pE , |p|) divergente Größen, wenn p → q geht.
Diese Infrarotdivergenzen werden durch Einführung eines Infrarotregulators µIR kontrolliert:

k2 → k2 + µ2
IR. (2.109)

Ein analytischer Beweis für die Konvergenz eines solchen Regularisierungsschemas findet sich in [13].
Hingegen ist das Verhältnis

M(pE , |p|) :=
B(pE , |p|)
C(pE , |p|) (2.110)

im Limes µ2
IR. → 0 endlich und kann dazu verwendet werden, eine impulsabhängige Konstituenten-

quarkmasse zu definieren [13] [21]. Die einzig verbliebene Unbekannte in den Gleichungen (2.106) -
(2.108) ist Z(kE , |k|). Im vorliegenden Modell wird die instantane Näherung durch die Wahl von

Z(kE , |k|) ≡ 0 instantane Näherung (2.111)

realisiert. Bei Hinzunahme von transversalen Komponenten und Retardierungseffekten wird Z(kE , |k|)
zur Vereinfachung auf den konstanten Wert 1 gesetzt:

Z(kE , |k|) ≡ 1 mit retardierten transversalen Gluonen. (2.112)
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2.6 Optimierungsstrategien

Eine numerische Lösung der Dyson-Schwinger Integralgleichungen für die Quarkpropagatorfunktionen
gestaltet sich aus zwei Gründen schwierig. Zum einen sind diese Integralgleichungen nichtlinear, so dass
Standardmethoden zur Lösung von linearen Integralgleichungen (Nystrom-Methode, method of iterated
kernels) nicht verwendet werden können. Das Integralgleichungssystem (2.106) - (2.108) wird deshalb
mittels eines iterativen Gesamtschrittverfahrens gelöst. Dabei werden die Ergebnisse der aktuellen Itera-
tion als Startwerte für die nächste Iteration verwendet. Dieser Vorgang wird solange wiederholt, bis die
vom Benutzer vorgegebenen Konvergenzkriterien erfüllt sind. Dieses Verfahren wird in weiterer Folge
als Standardtechnik bezeichnet. Zum anderen wird der Kern der Integralgleichungen für µ2

IR → 0 hoch-
gradig infrarotsingulär. Dieses infrarotsinguläre Verhalten der Integralkerne hat weitreichende Auswir-
kungen auf die Konvergenzgeschwindigkeit: abhängig von der Wahl des Infrarotregulators µ2

IR erhöht
sich einerseits die Anzahl der benötigten Funktionsauswertungen pro Iterationsschritt, andererseits steigt
die Gesamtzahl der benötigten Iterationen stark an. Gerade im interessanten Fall der retardierten trans-
versalen Gluonen ist man nicht in der Lage, mehr als eine vergleichsweise geringe Anzahl von Iterationen
durchzuführen. An Optimierungsstrategien bieten sich somit zwei einander ergänzende Vorgehensweisen
an:

1. Die Rechenzeit für eine einzelne Iteration minimieren

• Hier muss das Hauptaugenmerk zunächst darauf liegen, die Integrale in den Gleichungen
(2.106)–(2.108) möglichst effizient auszuwerten. Dafür wurde im Rahmen dieser Diplom-
arbeit ein Automatischer Integrator auf Basis der Gauß-Kronrod Quadraturformeln mit
adaptiver rekursiver Bisektion implementiert. Die verschiedenen Teilaspekte der adaptiven
numerischen Quadratur und Kubatur werden in Kapitel 3 behandelt.

• Das von mir in weiterer Folge als Freezing bezeichnete Verfahren leitet sich aus der Be-
obachtung ab, dass die Integrale im Ultravioletten deutlich schneller konvergieren als im
Infraroten. Wesentlich in diesem Zusammenhang ist die Definition des Abbruchkriteriums.
Während bei der Standardmethode für das Erreichen von Kovergenz die Bedingung

∣∣∣∣∣1−
fn+1(pEi, |p|j)
fn(pEi, |p|j)

∣∣∣∣∣ < ε ∀ i, j, 0 ≤ i, j < N, (2.113)

wobei fn(pEi, |p|j) den Wert der Propagatorfunktion nach n Iterationen am Gitterpunkt
(pEi, |p|j) bezeichnet, ∀ i, j nach n Iterationen erfüllt sein muss, wird bei der Freezing-
technik der Wert der Propagatorfunktion am Gitterpunkt (pEi, |p|j) bereits nach einmaligem
Erfüllen dieser Bedingung ”eingefroren”.

• Ein weiterer naheliegender Weg, um die Rechenzeit für eine einzelne Iteration zu minimie-
ren, ist natürlich die Parallelisierung des Programms.

2. Die Gesamtzahl der Iterationen minimieren

• Allen gängigen Iterationsverfahren ist inhärent (vorausgesetzt das Iterationsverfahren kon-
vergiert), dass die Anzahl der Iterationen mit der Problemgröße anwächst. Hier kann durch
den Einsatz von Konvergenzbeschleunigungsverfahren eine Verringerung des Rechenzeit-
bedarfs erreicht werden. In dieser Arbeit wird Wynn’s ε-Algorithmus auf eine Folge von
Partialsummen der Quarkpropagatorfunktionen angewendet. Näheres zu nichtlinearen Fol-
gentransformationen und dem ε–Algorithmus findet sich in Kapitel 4.
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Kapitel 3

Numerische Quadratur

The game is to obtain the integral as accurately as pos-
sible with the smallest number of function evaluations
of the integrand.

Press et al. (1992)

Der Begriff Quadratur hat (zumindest) drei inkompatible Bedeutungen [22]. Integration durch Quadratur
bedeutet entweder die analytische Auswertung (z.B. symbolisch in Form von bekannten Funktionen)
oder die numerische Approximation (z.B. durch Quadraturformeln) von Integralen. Daneben versteht
man unter Quadratur auch ein klassisches Problem der Geometrie: die Konstruktion eines Vierecks nur
mit Zirkel und Lineal mit demselben Flächeninhalt wie eine gegebene geometrische Figur.

Unter numerischer Quadratur bzw. numerischer Integration versteht man die näherungsweise Berech-
nung von bestimmten Integralen

I(f) :=
∫ b

a
f(x)dx (3.1)

mit einer gegebenen integrierbaren Funktion f und einem endlichen Intervall [a, b] als Integrationsbe-
reich. Die Formeln zur näherungsweisen Berechnung von I(f) heißen Integrations- oder Quadraturfor-
meln. Die geeignete Methode zur Bestimmung von I(f) hängt wesentlich von den Eigenschaften des
Integranden im Integrationsintervall ab: ist der Integrand glatt oder gibt es Singularitäten der Funktion
f(x)? Liegt eine Wertetabelle vor oder ist f(x) für beliebige Argumente x berechenbar? Was ist die
gewünschte Genauigkeit und wie viele verschiedene Integrale sind zu berechnen?

Zur Durchführung der numerischen Integration sind zwei Teilaufgaben zu bewältigen [23]: Die eine
beschäftigt sich mit der Konstruktion von Quadraturformeln, die andere mit der Abschätzung der Ap-
proximationsgüte. Dabei hat man natürlich gewisse Freiheiten, was sich recht deutlich in den unter-
schiedlichen Konzepten der gängigen Integrationsmethoden zeigt (Newton-Cotes-Formeln, Romberg-
Integration, Gauß-Quadratur, Monte-Carlo-Integration).

Das einfachste Beispiel für die Konstruktion einer Quadraturformel Qn ist, das bestimmte Integral als
Fläche zwischen dem Funktionsgraphen und der x-Achse zu definieren und den Wert des Integrals mit
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Hilfe von Riemann-Summen

∫ b

a
f(x)dx ≈ (b− a)

n

n−1∑

i=0

f(xi) =: Qn (3.2)

und einer äquidistanten Zerlegung xi = a + i(b − a)/n von [a, b] zu approximieren. Allerdings zeigt
sich, dass diese Methode in der Regel sehr langsam konvergiert und damit für praktische Anwendungen
kaum geeignet ist.

3.1 Interpolatorische Quadraturformeln

Ein anderer naheliegender Weg zur Konstruktion von Quadraturformeln ist der über Polynominterpola-
tion. Dabei wird die zu integrierende Fumktion f(x) im Integrationsintervall [a, b] durch ein Interpola-
tionspolynom pn(x) an (n + 1) verschiedenen Stützstellen (Knoten, Abszissen) a ≤ x0 < x1 < ... <
xn−1 < xn < b angenähert und man verwendet als Näherung für den Wert I(f) das Integral über das
Interpolationspolynom:

I(f) :=
∫ b

a
f(x)dx ≈

∫ b

a
p(x)dx. (3.3)

Unter Verwendung der Lagrangeschen Interpolationsformel

pn(x) =
n∑

i=0

li(x)f(xi) (3.4)

mit den (n + 1) speziellen Lagrangeschen Interpolationspolynomen

li(x) :=
n∏

j=0
i6=j

x− xj

xi − xj
(3.5)

ergibt sich so

I(f) =
∫ b

a

n∑

i=0

li(x)f(xi)dx +
∫ b

a

f (n+1)(ξ)
(n + 1)!

n∏

i=0

(x− xi)dx. (3.6)

Aus dem ersten Anteil resultiert die Quadraturformel

Qn =
n∑

i=0

f(xi)
∫ b

a
li(x)dx =: (b− a)

n∑

i=0

ωif(xi), (3.7)

die nur von den gewählten Stützstellen x0, x1, ..., xn und den Integrationsgewichten
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ωi :=
1

(b− a)

∫ b

a
li(x)dx (k = 0, 1, ..., n) (3.8)

abhängt. Der Quadraturfehler

En[f ] := I(f)−Qn =
∫ b

a

f (n+1)(ξ)
(n + 1)!

n∏

i=0

(x− xi)dx (3.9)

kann im Fall von äquidistant verteilten Stützstellen explizit angegeben werden. Der Gesamtfehler setzt
sich dann aus dem Quadraturfehler und dem bei numerischen Verfahren immer vorhandenen Rundungs-
fehler zusammen. Alle diese interpolatorischen Quadraturformeln besitzen konstruktionsbedingt die Ei-
genschaft, dass Qn für I(f) den exakten Wert liefert, falls der Integrand f(x) ein Polynom pn vom Grad
deg pn ≤ n ist. So hat eine beliebige Quadraturformel Qn die Fehlerordnung m, wenn für den Fehler
(i) E[p] = 0 für alle Polynome p ∈ ∏

m−1 und (ii) E[p] 6= 0 für ein Polynom p ∈ ∏
m gilt.

Wählt man die Stützstellen xi äquidistant, erhält man die Newton-Cotes-Formeln. Die einfachsten Newton-
Cotes-Formeln ergeben sich aus der linearen Interpolation (Trapezregel) und der quadratischen Interpo-
lation (Simpson-Formel oder Keplersche Fassregel). Entsprechende Formeln höherer Ordnung bis n ≤ 8
können auch konstruiert werden. Diese Verfahren sind ausgenommen die zusammengesetzte Trapezregel
in Kombination mit der Richardson-Extrapolation (Romberg-Integration) heute aber nur mehr ”schöne
Museumsstücke” [24].

3.2 Gauß-Quadratur und Orthogonalpolynome

Die Idee bei der Gauß-Quadratur besteht darin, die Einschränkung von äquidistant verteilten Stützstellen
aufzugeben und dieselben zusammen mit den Integrationsgewichten so zu wählen, dass die resultierende
Quadraturformel maximale Genauigkeit besitzt. Das fundamentale Theorem der Gauß-Quadratur besagt,
dass die durch die Summe definierte Quadraturformel

I(f) :=
∫ b

a
ω(x)f(x)dx =

n∑

i=1

ωif(xi) +
f (2n)(ξ)
(2n)!

∫ b

a
ω(x)

n∏

i=1

(x− xi)2dx (3.10)

mit einer positiven Gewichtsfunktion ω(x) > 0 den maximalen Genauigkeitsgrad m = (2n − 1) be-
sitzt (also Fehlerordnung 2n hat), falls die Stützstellen der Quadraturformel genau mit den Nullstel-
len eines Satzes von Orthogonalpolynomen im selben Intervall zusammenfallen. Eine n-Punkt Gauß-
Quadraturformel

Gn(f) :=
n∑

i=1

ωif(xi) (3.11)

ist also exakt (En[f ] = 0), falls f(x) ein Polynom p vom Grad deg (2n−1) oder weniger ist. Wir suchen
nun nach einer notwendigen Bedingung dafür, dass die Quadraturformel (3.11) die Fehlerordnung 2n
besitzt. Dazu bezeichnet man mit pn ∈

∏
n das Polynom
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pn(x) :=
n∏

i=1

(x− xi). (3.12)

Ist p ∈ ∏
2n−1 beliebig, so gibt es Polynome q, r ∈ ∏

n−1 mit

p(x) = pn(x)q(x) + r(x). (3.13)

Aus der Exaktheit von (3.11) folgt

∫ b

a
ω(x)p(x)dx =

∫ b

a
ω(x)[pn(x)q(x) + r(x)]dx

=
n∑

i=1

ωi[pn(xi)q(xi) + r(xi)] =
n∑

i=1

ωir(xi) =
∫ b

a
ω(x)r(x)dx, (3.14)

also

∫ b

a
ω(x)pn(x)q(x)dx = 0. (3.15)

Durchläuft p die Menge aller Polynome
∏

2n−1, so durchläuft q in der obigen Zerlegung von p die Menge∏
n−1. Notwendig für die Exaktheit der Quadraturformel (3.11) ist also, dass pn orthogonal zu

∏
n−1

bzgl. des Skalarprodukts

(f, g)ω =
∫ b

a
ω(x)f(x)g(x)dx (3.16)

ist. Die gesuchten Stützstellen xi müssen also also die Nullstellen von Orthogonalpolynomen pn vom
Grad deg pn = n sein. Man bezeichnet mit

∏
n

:= {p ∈
∏

n
: p(x) = xn +

n−1∑

i=0

aix
i} (3.17)

die Menge der normierten Polynome. Für eine Menge von normierten orthogonalen Polynomen gilt:

(pn, pm) =
{

1 m = n
0 sonst

(3.18)

Solche orthogonalen Polynomsysteme können mittels Gram-Schmidt Orthogonalisierung aus den Mo-
nonomen {1, x, x2, ...} konstruiert werden. Die Gewichte und Stützstellen der Quadraturformel hängen
dann von der jeweiligen Wahl der Gewichtsfunktion ω(x) ab. Die gängigsten Gewichtsfunktionen und
die zugehörigen Orthogonalpolynome sind in Tabelle 3.2 zusammengestellt.
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ω(x) Intervall [a, b] Orthogonalpolynome
1 −1 ≤ x ≤ 1 Legendre-Polynome Pn

(1− x2)−1/2 −1 ≤ x ≤ 1 Chebychev-Polynome Tn

e−x 0 ≤ x < ∞ Laguerre-Polynome Ln

e−x2 −∞ < x < ∞ Hermite-Polynome Hn

(1− x)α(1 + x)β −1 ≤ x ≤ 1 Jacobi-Polynome Pα,β
n

Tabelle 3.1: Gängige Gewichtsfunktionen und zugehörige Orthogonalpolynome.

3.3 Berechnung der Stützstellen und Gewichte

Es gibt (vergleiche z.B. [23] [25]) zu jeder zulässigen Gewichtsfunktion ω(x) ein System von Orthogo-
nalpolynomen {pn}, die bis auf einen Normierungsfaktor eindeutig bestimmt sind. Diese genügen einer
Drei-Term-Rekursionsformel

p−1(x) ≡ 0 (3.19)

p0(x) ≡ 1 (3.20)

pn+1(x) = (x− an)pn(x)− b2
npn−1(x), n ∈ N0 (3.21)

mit

an :=
(xpn|pn)
(pn|pn)

0, 1, ..., n (3.22)

bn :=
(pn|pn)

(pn−1|pn−1)
1, 2, ..., n (3.23)

Bei den in der Praxis vorkommenden Polynomen handelt es sich in der Regel um charakteristische Po-
lynome von Matrizen [25]. Die Nullstellen xi = x1, ..., xn des n-ten Orthogonalpolynoms pn sind dann
die Eigenwerte der symmetrischen Tridiagonalmatrix

Tn :=




a1 b2

b2 a2
. . .

. . . . . . bn

bn an




, (3.24)

die beispielsweise mit einem QR-Dekompositionsverfahren berechnet werden können. Tn nennt man die
zur Gauß-Formel Gn gehörige Jacobi-Matrix. Die zugehörigen Gewichte ωi können ebenfalls mit Hilfe
der Jacobi-Matrix Tn berechnet werden, da für die Gewichte ωi die Gleichung (vergleiche [25])

ωi = (v(i)
1 )2, i = 1, 2, ..., n (3.25)

gilt, wobei v(i) = (v(i)
1 , ..., v

(i)
n )T Eigenvektor zum Eigenwert xi von Tn ist. Die erste Komponente v

(i)
1

des Eigenvektors v(i) und damit ωi kann so beim QR-Verfahren zur Bestimmung der Eigenwerte leicht
mitberechnet werden.

34



3.4 Gauß-Legendre Quadratur

Für das Intervall [−1, 1] und die Gewichtsfunktion ω(x) ≡ 1 sind die zugehörigen Orthogonalpolynome

pn(x) =
n!

(2n!)
dn

dxn
(x2 − 1)n (3.26)

bis auf einen Normierungsfaktor gerade die Legendre-Polynome. Die Nullstellen der Legendre-Polynome
sind alle verschieden, liegen im offenen Intervall (−1, 1) und sind bezüglich des Ursprungs symmetrisch.
Sie dienen als Stützstellen xi in den Gauss-Legendre Formeln und können unter Verwendung der Rekur-
sionsbeziehungen

(n + 1)Pn+1 = (2n + 1)xPn − nPn−1

(x2 − 1)P ′n = nxPj − nPj−1 (3.27)

entweder mit den in Abschnitt 3.3 beschriebenen Methoden oder durch Nullstellensuche beispielsweise
mit dem Newton-Raphson Verfahren bestimmt werden:

xn+1 = xn − f(xn)
f ′(xn)

. (3.28)

Eine hilfreiche Tatsache bei der Implementierung eines Root-Finders für die Legendre-Polynome ist die
Tatsache, dass die Nullstellen von Pn+1 zwischen denen von Pn liegen und diese als Startwerte für die
Berechnung der Nullstellen von Pn+1 verwendet werden können. Alternativ kann auch die Näherung
(vergleiche z.B. [24])

xn ≈ cos[π(n− 1/4)/(N + 1/2)] (3.29)

als Startwert verwendet werden. Die Gewichte können auf mehrere Arten berechnet werden:

• Direkt aus dem nichtlinearen Gleichungssystem

∫ b

a
ω(x)p(x)dx =

n∑

i=1

ωip(xi) (3.30)

• Durch Lösung des linearen Gleichungssystems

n∑

j=1

ωjpi(xj) = δi0 〈p0, p0〉ω . (3.31)

• Eine effiziente Methode ist folgende: man berechnet das Lagrangesche Interpolationspolynom für
f(x) durch [26]:

pn(x) =
n∏

j=1

(x− xj), (3.32)
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p′n(xj) =
dpn(x)

dx

∣∣∣∣
x=xj

=
n∏

i=1
i6=j

(xj − xi) (3.33)

und fittet mit der Lagrangeschen Interpolationsformel (3.4) durch n Punkte (Gleichungen (3.5) bis
(3.7)):

∫ b

a
ω(x)f(x)dx =

∫ b

a

n∑

i=1

ω(x)
pn(x)

(x− xi)p′n(xi)
dxf(xi) =

n∑

i=1

ωif(xi) (3.34)

mit Gewicht

ωi =
1

p′n(xi)

∫ b

a
ω(x)

pn(x)
(x− xi)

dx. (3.35)

Für orthogonale Polynome Pn(x) gilt [26]:

Pn(x) = Anpn(x), (3.36)

wobei An der Koeffizient von xn in Pn(x) ist. (3.35) wird dann unter Verwendung der Christoffel-
Darboux Identitäten [27] integriert und man erhält

ωi =
An

An−1

∫ |Pn−1(x)|2 dx

Pn−1(xi)P ′n(xi)
. (3.37)

Die Gewichte (3.37) können mit Hilfe der Rekursionsbeziehungen (3.27) und folgenden Identitä-
ten [26] vereinfacht werden:

∫ 1

−1
|Pn(x)|2 dx =

2
2n + 1

, (3.38)

An

An−1
=

2n− 1
n

. (3.39)

Die Gewichte ωi erhalten so die für die numerische Berechnung günstige Form:

ωi =
2

(1− xi)2[P ′
n(xi)]2

. (3.40)

Für beliebige Integrationsbereiche [a, b] kann das Integral
∫ b
a f(x)dx mit der Transformation

x = g(t) =
a + b

2
+

b− a

2
t, dx =

b− a

2
dt, (3.41)

a = g(t1) = −1, b = g(t2) = 1 (3.42)

in ein Integral über das Intervall [−1, 1] überführt werden:

∫ b

a
f(x)dx =

b− a

2

∫ 1

−1
f(

b− a

2
t +

a + b

2
)dt. (3.43)
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Insgesamt erhalten die Gauß-Legendre Formeln die Gestalt

∫ b

a
f(x)dx ≈ b− a

2

n∑

i=1

ωif(
b− a

2
xi +

a + b

2
). (3.44)

Der Quadraturfehler ist

En[f ] =
22n+1(n!)4

[(2n)!]3(2n + 1)
f2n(ξ), ξ ∈ (−1, 1). (3.45)

Integrale über unbeschränkte Intervalle1 werden häufig unter Verwendung der Knoten und Gewichte
von Orthogonalpolynomen mit exponentiellen Gewichtsfunktionen, beispielsweise den Laguerre- oder
Hermite-Polynomen berechnet. In der Regel erhält man bessere Ergebnisse, wenn man versucht, Or-
thogonalpolynome für ein endliches Intervall durch eine geeignete Transformation auf ein unendliches
Intervall abzubilden. So können etwa die Gauß-Legendre Formeln mittels der logarithmischen Transfor-
mation

x(t) = log
(

2
1− t

)
(3.46)

auf das semi-unendliche Intervall [0,∞) abgebildet werden:

∫ ∞

0
f(x)dx =

∫ 1

−1
f(x(t))

dx

dt
dt. (3.47)

3.5 Gauß-Kronrod-Quadratur

Wie alle Gauß-Formeln haben auch die Gauß-Legendre-Formeln bei der praktischen Anwendung auf
Integrationsprobleme einen gravierenden Nachteil: zwei beliebige Quadraturformeln Gm(f), Gn(f) mit
m 6= n haben (außer eventuell den Intervallmittelpunkt) keine Knoten gemeinsam. Damit gibt es keine
effiziente Methode, um zu einer praktisch berechenbaren Fehlerabschätzung zu gelangen. Die übliche
Vorgehensweise, Formeln mit verschiedener Knotenzahl auszuwerten und die Differenz als Fehlerab-
schätzung zu verwenden, würde zu viele Auswertungen des Integranden benötigen und damit einen zu
hohen Aufwand verursachen. Von A. S. Kronrod [29] wurde 1965 eine Vorgehensweise vorgeschlagen,
die diesen Nachteil weitgehend vermeidet. Ausgehend von einer n-Punkt Gauß-Formel

Gn(f) :=
n∑

i=1

ωif(xi) (3.48)

der Ordnung 2n mit n Abszissen x1, ..., xn ∈ (−1, 1) bestimmt man (n + 1) weitere Knoten y0, ..., yn ∈
(−1, 1) und (2n + 1) Gewichte αi, βi so, dass die Quadraturformel

1In der älteren Literatur wird häufig die irreführende Bezeichnung ”uneigentliche” Integrale verwendet. Tatsächlich gibt
es nur einen einzigen Integralbegriff (das Lebesgueintegral), der sowohl beschränkte als auch unbeschränkte Integranden und
Integrationsgebiete umfasst [28].
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K2n+1(f) :=
n∑

i=1

αif(xi) +
n∑

i=0

βif(yi) (3.49)

möglichst hohe Ordnung besitzt. Die resultierende (2n + 1)-Punkt Gauß-Kronrod-Quadraturformel hat
die Form

K2n+1(f) :=
2n+1∑

i=1

ωif(xi) (3.50)

mit den folgenden beiden Eigenschaften:

• n Knoten von K2n+1 fallen mit denen einer n-Punkt Gauß-Formel Gn für dieselbe Gewichtsfunk-
tion zusammen.

• K2n+1(f) = I(f), falls f ein Polynom vom Grad (3n + 1) oder weniger ist.

Der offensichtliche Vorteil ist nun, dass wegen der ersten Eigenschaft Funktionsauswertungen des In-
tegranden zur Fehlerabschätzung wiederverwendet werden können. Aus diesem Grund ist die Gauß-
Kronrod-Quadratur in den meisten Mathematikpaketen (Mathematica, MAPLE, QUADPACK-Library,
GSL-Library,...) das Standardverfahren zur eindimensionalen numerischen Integration. Außerdem las-
sen sich aus (3.49) iterativ Kronrod-Formeln höherer Ordnung konstruieren, die sogenannten Patterson-
Extensions [30].

Zur Berechnung der Knoten und Gewichte existieren verschiedene Methoden, die großteils auf dem in
Abschnitt 3.2 beschriebenen Verfahren basieren [31] [32] [33]. Ihre effiziente Berechnung erweist sich
allerdings als schwierig. So schreiben z.B. die Autoren von [33]: ”The presented iterative method is
very sensitive with respect to perturbations in an early step. Numerical validation therefore requires
high precision arithmetic.” und die Autoren von [32] ”...that allow the computation of the nodes and
weights ... in O(n2) or O(n3) arithmetic operations. The faster algorithm yields nodes and weights with
sufficient accuracy for most applications. The slower algorithm gives higher accuracy for certain difficult
problems.” Um die Stabilität des Verfahrens zu gewährleisten, empfiehlt es sich daher, auf tabellierte
Werte zurückgreifen.

3.6 Automatische Integration

Aus Sicht des Benutzers muss ein Quadraturverfahren - unabhängig vom konkreten Zugang - für das
bestimmte Integral

I(f) :=
∫

Ω
f(x)dx, Ω ⊆ Rn (3.51)

eine Näherung I derart finden, so dass

|I(f)− I| < max(εa, εr · |I|) (3.52)
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gilt, wobei εa und εr vom Benutzer vorgegebene Oberschranken für den absoluten bzw. relativen Fehler
sind. Um die notwendige Genauigkeit möglichst effizient zu erreichen, erweist es sich als zweckmäßig,
den Integrationsbereich abhängig vom Funktionsverhalten des Integranden und der geforderten Genauig-
keit dynamisch in verschiedene Teilbereiche zu zerlegen. Für jeden Teilbereich wird dann eine Integrati-
onsformel verwendet. Ein Automatischer Integrator unterteilt das Integrationsintervall solange rekursiv,
bis in jedem Teilintervall die erforderliche Genauigkeit erreicht ist. Diese dynamische Zerlegung des
Integrationsbereiches wird auch adaptive Verfeinerung genannt [23]. Für die Bereichsverfeinerung un-
terteilen sich die verwendeten Methoden in zwei Klassen, die als lokale bzw. globale Strategie bezeichnet
werden. Bei der globalen Strategie wird die Bedingung

N∑

j=1

d([I(j)]) < max(εa, εr · |I|) (3.53)

geprüft. Erreicht die erzielte Integralnäherung mit der aktuellen Zerlegung die geforderte Genauigkeit
nicht, dann wird der Teilbereich mit dem maximalen lokalen Fehler weiter unterteilt. Dieser Vorgang
wird solange fortgesetzt, bis entweder die Bedingung (3.53) erfüllt ist oder eine vorgegebene maximale
Anzahl von Zerlegungen erreicht wurde. Hingegen wird bei der lokalen Strategie verlangt, dass für jeden
Teilbereich Ωj die Bedingung

d([I(j)]) <
|Ωj |
|Ω| max(εa, εr · |I|) (3.54)

erfüllt werden muss. Die lokale Strategie ist im Allgemeinen weniger effizient als die globale Strate-
gie, da sie mehr Rechenaufwand erfordert und im Extremfall ein unendlicher Programmlauf verursacht
werden kann [23].

3.7 Mehrdimensionale Integration

Ein numerisches Kubaturverfahren (manchmal auch als mehrdimensionale numerische Quadratur be-
zeichnet) hat die Aufgabe, ein bestimmtes Integral einer Funktion f(x) in mehr als einer Dimension zu
approximieren. Formal sind mehrdimensionale Integrale einfach wiederholte Integrationen über jeweils
andere Integrationsvariablen, sogenannte iterierte eindimensionale Integrale. Für diese gilt der Satz von
Fubini (iterierte Integration): Hat der Integrationsbereich Ω = Ω1 × Ω2 Produktstruktur, dann gilt

∫

Ω1×Ω2

f(x, y)dxdy =
∫

Ω2

(∫

Ω1

f(x, y)dx

)
dy =

∫

Ω1

(∫

Ω2

f(x, y)dy

)
dx. (3.55)

Wenn die Integrationsgrenzen konstant sind, dann ist dieses iterierte Integral unabhängig von der Inte-
grationsreihenfolge. Um Kubaturverfahren zu entwickeln, die ähnlich funktionieren wie im eindimen-
sionalen Fall, kann man unter Verwendung des Satzes von Fubini das mehrdimensionale Integral auf
wiederholte Integrationen von eindimensionalen Integralen zurückführen.

Alle direkten Integrationsverfahren haben jedoch denselben Nachteil, der anhand einer einfachen Gauß-
formel Gn erläutert werden soll. Dazu sei Ω = [−1, 1]d und f beliebig. Im mehrdimensionalen Fall
d > 1 erhält man mit dem Satz von Fubini
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∫

Ω
f(x)dx =

∫ 1

−1
...

∫ 1

−1
f(x1, ..., xd)dx1...dxd ≈

n∑

i1=0

...
n∑

id=0

ωi1 ...ωiDf(xi1 , ..., xid). (3.56)

Um den Aufwand abzuschätzen, muss man zählen, wie viele Funktionsauswertungen die Approximation
benötigt (Funktionsauswertungen sind bei der numerischen Integration die aufwändigste Operation). Die
Anzahl der Auswertungen beträgt N = (n + 1)d. Als erstes sollte man sich bei der Behandlung von
mehrdimensionalen Integralen daher die Frage stellen, ob es möglich ist, das Integral analytisch auf eine
niedrigere Dimension zu bringen.
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Kapitel 4

Der epsilon-Algorithmus

The epsilon algorithm is recommended as the best
all-purpose method for slowly converging sequences.

Graves-Morris, Roberts, Salam (1999)

In vielen Bereichen der Physik und anderen Naturwissenschaften ist man auf Lösungen in Form von
unendlichen Reihen angewiesen. Das konventionelle Verfahren zur näherungsweisen Berechnung des
Wertes einer unendlichen Reihe s besteht darin, die Glieder der Reihe an einfach solange aufzuaddieren,
bis Konvergenz erreicht ist:

lim
n→∞ sn = s. (4.1)

Ein solches Verfahren stößt natürlich rasch an seine Grenzen. Ein gutes Beispiel dafür ist die Reihenent-
wicklung der Riemannschen Zeta-Funktion

ζ(z) =
∞∑

n=0

(n + 1)−z. (4.2)

Es ist bekannt, dass diese Reihe für alle komplexen Zahlen mit Re(z) > 1 konvergiert. Ist allerdings
Re(z) nur wenig größer als 1, konvergiert diese Reihe extrem langsam. So benötigt man beispielswei-
se ungefähr 1020 Reihenglieder, um ζ(1.1) auf wenigstens ein Prozent genau zu berechnen (verglei-
che [34]). Die Idee, die Konvergenz einer Reihe durch einen verallgemeinerten Summationsprozess zu
verbessern, ist deshalb beinahe so alt wie die Analysis selbst. Bereits Euler veröffentlichte 1755 eine
Reihentransformation, die heute nach ihm benannt ist.

4.1 Verallgemeinerte Summationsprozesse

Unter einem verallgemeinerten Summationsprozess versteht man eine Transformation T , die eine gege-
bene Folge von Partialsummen {sn} in eine neue Folge {s′n} überführt:
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T : {sn} →
{
s′n

}
. (4.3)

Um die Konvergenz einer Folge {sn} zu verbessern, muss T ({sn}) schneller konvergieren als {sn}. Es
liegt nahe zu fordern, dass eine solche Transformation regulär sein muss: wenn {sn} konvergiert, dann
konvergiert auch T ({sn}) gegen den gleichen Grenzwert. Fordert man noch zusätzlich

T ({sn}+ {tn}) = T ({sn}) + T ({tn}), (4.4)

dann nennt man diese Transformation linear. Solche Transformationen haben eine besonders einfache
Struktur, da die Elemente von {s′n} aus gewichteten Mittelwerten der ursprünglichen Folge {sn} ge-
bildet werden können [35]. Daran lassen sich Bedingungen knüpfen, die die Regularität des Verfahrens
garantieren. Trotzdem ist der praktische Nutzen von regulären linearen Transformationen beschränkt.
Der Grund dafür mutet zunächst paradox an: die Klasse von Folgen, für die lineare Methoden regulär
sind, ist einfach zu groß. Aber wie die Erfahrung zeigt, existiert in den seltensten Fällen ein Verfahren,
das für eine Klasse von Problemen für jeden Spezialfall gleich gut konditioniert ist.

Verbesserungen bringen die allgemeineren nichtlinearen Verfahren, die allerdings in der Regel auch
nichtregulär sind. Ein nichtlinearer verallgemeinerter Summationsprozess unterscheidet sich von einem
linearen dadurch, dass die Linearitätsbedingung (4.4) nicht mehr gilt. Stattdessen kann man nur mehr
Translationsinvarianz fordern:

T ({sn}+ {cn}) = T ({sn}) + T ({cn}) für jede konstante Folge {cn} . (4.5)

Nichtlinearität und Nichtregularität sind sicher Eigenschaften, die man eigentlich lieber vermeiden möch-
te. Trotzdem sind sie unverzichtbar, da die Leistungsfähigkeit vieler verallgemeinerter nichtlinearer Sum-
mationsprozesse eine direkte Folge ihrer Nichtlinearität und Nichtregularität ist.

4.2 Die Schmidt-Transformation und Wynn’s epsilon-Algorithmus

Der ε-Algorithmus ist eines der wichtigsten numerischen Verfahren zur Berechnung eines verallge-
meinerten nichtlinearen Summationsprozesses. Die Methode findet beispielsweise Verwendung in den
Mathematica-Befehlen SequenceLimit, NSum, NProduct und NLimit, auch basieren alle Konvergenzbe-
schleunigungsverfahren des QUADPACK auf diesem Algorithmus.

Der ε–Algorithmus ist ein zweidimensionales nichtlineares Rekursionsschema zur Berechnung der 1941
veröffentlichten Transformation von Schmidt [36], die 1955 von Shanks [37] wiederentdeckt wurde. Die
Herleitung der Schmidt- Transformation ist völlig heuristisch und folgt aus der Beobachtung, dass viele
unendliche Reihen von praktischer Bedeutung so konvergieren, als ob sie aus ihrem Grenzwert und ei-
ner Linearkombination aus exponentiellen mathematischen Transienten – in Analogie zu physikalischen
Transienten, die nach hinreichend langer Zeit verschwinden – zusammengesetzt wären:

sn = s +
k−1∑

i=0

aiλ
n
i , n ∈ N0, λα 6= λβ 6= 0. (4.6)

In dieser Modellfolge ist der Restterm
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rn =
k−1∑

i=0

aiλ
n
i . (4.7)

Da sich rn offenkundig aus einer Linearkombination von k Exponentialfunktionen zusammensetzt, exis-
tiert auch ein linearer finiter Differenzenoperator ∆ der Ordnung k mit konstanten Koeffizienten bj , der
rn annihiliert [35]:

k∑

j=0

bjrn+j = 0, b0bj 6= 0. (4.8)

Man sieht leicht, dass

rn+j = rn + ∆rn + ∆rn+1 + . . . + ∆rn+j−1 = rn + ∆sn + ∆sn+1 + . . . + ∆sn+j−1. (4.9)

Einsetzen von (4.9) in (4.8), Division durch
∑

bj und anschließende Redefinition der Konstanten liefert

sn = s +
k−1∑

j=0

cj∆sn+j . (4.10)

Die Modellfolge (4.10) enthält k + 1 Unbekannte: den Grenzwert s und die k linearen Koeffizienten
c0, ..., ck−1. Unter Verwendung der Cramerschen Regel erhält man für den verallgemeinerten Summati-
onsprozess ek(sn) der Modellfolge (4.10) eine Darstellung als Quotient zweier Determinanten:

ek(sn) =

∣∣∣∣∣∣∣∣∣

sn sn+1 . . . sn+k

∆sn ∆sn+1 . . . ∆sn+k
...

...
. . .

...
∆sn+k−1 . . . . . . ∆sn+2k−1

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣

1 1 . . . 1
∆sn ∆sn+1 . . . ∆sn+k

...
...

. . .
...

∆sn+k−1 . . . . . . ∆sn+2k−1

∣∣∣∣∣∣∣∣∣

. (4.11)

Gleichung (4.11) ist die Schmidt-Transformation. Es fällt sofort auf, dass die Schmidt Transformati-
on ek(sn) aufgrund ihrer Definition als Quotient zweier Determinanten für praktische Zwecke wenig
brauchbar ist (außer vielleicht für kleine k). Diese Problematik konnte bereits ein Jahr nach der Ver-
öffentlichung von Shanks durch Wynn [38] überwunden werden, der zeigen konnte, dass die Transfor-
mation von Schmidt mit Hilfe des folgenden zweidimensionalen Rekursionsschemas auf ausgesprochen
effiziente Weise berechnet werden kann. Er setzte

ε
(n)
2k = ek(sn), (4.12)

ε
(n)
2k+1 = 1/ek(sn+1 − sn), k, n ∈ N0 (4.13)
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und konnte zeigen, dass die folgenden Rekursionsbeziehungen gelten:

ε
(n)
−1 = 0, ε

(n)
0 = sn, (4.14)

ε
(n)
k+1 = ε

(n+1)
k−1 + 1/[ε(n+1)

k − ε
(n)
k ], k, n ∈ N0. (4.15)

Die Gleichungen (4.14) und (4.15) werden heute allgemein als ε-Algorithmus bezeichnet. Die Elemente
ε
(n)
k der Transformation werden üblicherweise in Form einer unendlichen Matrix dargestellt [34], wobei

der obere Index n die Zeile und der untere Index k die Spalte der Matrix bezeichnet:

ε
(0)
0 ε

(0)
1 . . . ε

(0)
n . . .

ε
(1)
0 ε

(1)
1 . . . ε

(1)
n . . .

ε
(2)
0 ε

(2)
1 . . . ε

(2)
n . . .

...
...

. . .
...

. . .

ε
(n)
0 ε

(n)
1 . . . ε

(n)
n . . .

...
...

. . .
...

. . .

. (4.16)

Die Einträge in der ersten Spalte ε
(n)
0 sind die ersten n Partialsummen s1, s2, ..., sn der Reihe und dienen

als Startwerte im ε-Algorithmus. Die restlichen Elemente können dann mit der Rekursionsbeziehung
(4.15) berechnet werden. Dieses nichtlineare 4-Term Rekursionsschema verbindet jeweils 4 Elemente
der ε-Tabelle (4.16), die wie die Eckpunkte eines Rhombus angeordnet sind:

ε
(n)
k ε

(n)
k+1

ε
(n+1)
k−1 ε

(n+1)
k

(4.17)

Offensichtlich bilden diese Elemente ein gleichseitiges Dreieck in der linken oberen Hälfte der ε-Tabelle.
Diese Zusammenhänge werden deutlicher, wenn man den ε-Algorithmus auf folgende Weise umformu-
liert [39]:

ε
(n)
−1 = 0, ε

(n)
0 = sn, (4.18)

ε
(n−j)
j = ε

(n−j+1)
j−2 + 1/[ε(n−j+1)

j−1 − ε
(n−j)
j−1 ], n ≥ 2, 2 ≤ j ≤ n. (4.19)

4.2.1 Programmierung des epsilon-Algorithmus

Die systematische Berechnung der ε-Tabelle (4.16) kann auf zwei verschiedene Arten erfolgen:

Spaltenweise: ausgehend von den Startwerten ε
(n)
0 werden die Elemente der zweiten Spalte berechnet,

dann die Elemente der dritten Spalte usw.

Moving Lozenge Technique: Diese Art der Implementierung basiert auf der Beobachtung, dass bei
der Berechnung einer neuen Gegendiagonale diese nur Eingabedaten von sich selbst und der unmittelbar
zuvor hinzugefügten Gegendiagonale benötigt. Sobald ein neues Element ε

(n)
0 = sn zur Verfügung steht,
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k sn ε
(n)
1 ε

(n)
2 ε

(n)
3 ε

(n)
4

0 0 2 0.57142857 89.111111 0.58574349
1 0.5 16 0.58510638 1658.7132 0.58578573
2 0.5625 60.235294 0.58573198 20262.247
3 0.57910156 211.0554 0.58578185
4 0.58383965 725.93661
5 0.58521719

Tabelle 4.1: Numerisches Beispiel für den ε-Algorithmus (die Nullstelle von x2 − 4x − 2 ist
0.5857864375).

werden sukzessive die neuen Elemente ε
(n−1)
1 bis ε

(0)
n berechnet. Programmiertechnisch etwas aufwändi-

ger, reduziert diese Technik den Speicherbedarf, da die ε-Tabelle (4.16) unter Verwendung von nur zwei
eindimensionalen Arrays berechnet werden kann.

Als numerisches Beispiel betrachten wir zuerst die bereits von Wynn untersuchte iterative Folge

sn+1 =
1
4
(s2

n + 2), n ∈ N0, s0 = 0. (4.20)

Diese Folge konvergiert (ausgesprochen langsam) gegen die kleinere der beiden Nullstellen des Laguerre-
Polynoms L2(x) = x2−4x−2, d.h. x = 0.5857864375. Tabelle 4.1 zeigt den Effekt des ε–Algorithmus
auf sn. Man erkennt, dass die ungeraden Elemente der ε-Tabelle ε

(n)
2k+1 für n → ∞ divergieren. Dieses

Verhalten ist allgemein der Fall.

Tabelle 4.2 illustriert den Effekt des ε-Algorithmus auf die Gregory-Formel
∑∞

k=1(−1)k+1(2k − 1)−1,
die zur Berechnung der Kreiszahl π verwendet werden kann, und die Riemannsche Zeta-Funktion ζ(z) =∑∞

n=0(n+1)−z für ζ(2) = π2/6. Es fällt auf, dass der ε–Algorithmus die Konvergenz der Riemannschen
Zeta-Funktion ζ(2) wesentlich schlechter beschleunigen kann als die der Gregory-Formel.

Zum Abschluss dieses Abschnitts möchte ich die Aufmerksamkeit daher nochmals auf den Gültigkeits-
bereich von Algorithmen richten. Es ist bekannt, dass der ε-Algorithmus nicht in der Lage ist, logarithmi-
sche Konvergenz zu beschleunigen. Definitionsgemäß konvergiert eine Folge von Partialsummen {sn}
logarithmisch gegen ihren Grenzwert s, wenn gilt:

lim
n→∞

sn+1 − s

sn − s
= 1 (4.21)

Die Situation kann dann etwa durch Verwendung des dem ε-Algorithmus strukturell sehr ähnlichen ρ-
Algorithmus

ρ
(n)
−1 = 0, ρ

(n)
0 = sn, (4.22)

ρ
(n)
k+1 = ρ

(n+1)
k−1 +

k + 1

ρ
(n+1)
k − ρ

(n)
k

, k, n ∈ N0 (4.23)

verbessert werden (Tabelle 4.2).
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k πk ε
(0)
k ζ(2)k ε

(0)
k ρ

(0)
k

0 4 4 1 1 1
2 3.466666667 3.166666667 1.361111111 1.45 1.65
4 3.33968254 3.142342342 1.463611111 1.55161744 1.644894895
6 3.283738484 3.141614907 1.511797052 1.59030541 1.644934376
8 3.252365935 3.141593312 1.539767731 1.60908691 1.644934064

10 3.232315809 3.141592673 1.558032194 1.61960991 1.644934067
12 3.218402766 3.141592654 1.570893798 1.62609473 1.644934067
14 3.208185652 3.141592654 1.580440283 1.63037238 1.644934067

Tabelle 4.2: Vergleich von ε- und ρ-Algorithmus (π = 3.141592653589, π2/6 = 1.644934066848).

Daher habe ich auch Vergleichsrechnungen mit dem ρ-Algorithmus vorgenommen. Dabei hat sich her-
ausgestellt, dass die in der vorliegenden Arbeit untersuchten Folgen lineare Konvergenz zeigen:

lim
n→∞

sn+1 − s

sn − s
= ρ, 0 ≤ |ρ| ≤ 1. (4.24)
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Kapitel 5

Programmierung

A theory is worthless without good supporting data.

Alexis L. Romanoff, Encyclopedia of Thoughts, Aphorismus 2410

Zur Berechnung der renormierten Quarkpropagatorfunktionen A(pE , |p|), B(pE , |p|) und C(pE , |p|)
wurde im Rahmen dieser Diplomarbeit das Programm QuarkpropagatorMPI entwickelt. Die Realisie-
rung erfolgte in der Programmiersprache C++ [40][41][42], wobei der ANSI-Standard [43] zugrunde
gelegt wurde. Diese Wahl war neben dem obligatorischen Klassenkonzept vor allem durch die Stan-
dard Template Library (STL) als wesentlichem Bestandteil von C++ motiviert. Im Entwicklungsprozess
selbst wurde auf die wichtigen Kriterien der einfachen Wartbarkeit und hohen Wiederverwendbarkeit
besonderer Wert gelegt.

Für die Interprozesskommunikation im Zuge der Parallelisierung wurden die MPICH-Bibliotheken ver-
wendet. MPICH [44] ist eine freie Implementierung des Message Passing Interface (MPI) Standards [45],
der sich mittlerweile als Quasistandard für wissenschaftliche Berechnungen etabliert hat. Der grundle-
gende Mechanismus für die Kommunikation in MPI ist das Senden und Empfangen von Nachrichten.
Dabei wird davon davon ausgegangen, dass eine fixe Anzahl von Prozessen vorhanden ist und im allge-
meinen jeder Prozess auf einem eigenen Prozessor läuft. Jeder Prozess arbeitet mit seinen eigenen Daten
und seinem eigenen Programm. Die Prozesse kommunizieren untereinander via Message Passing, d.h.
der benötigte Datenaustausch geschieht, indem Nachrichten von einem Prozess zum nächsten geschickt
werden.

Um eine übersichtliche Dokumentation der Quelltextdateien zu erstellen, wurde das Dokumentations-
werkzeug Doxygen [46] verwendet, das seit 1997 von Dimitri van Heesch entwickelt wird. Doxygen
unterstützt neben C/C++ auch Java, (Corba and Microsoft) Java, Python, IDL, C#, Objective-C sowie
teilweise D and PHP Sources. Die von Doxygen unterstützten Ausgabeformate sind HTML, RTF, LA-
TEX, XML und Unix-Man page. Um Kommentare von Doxygen bearbeiten zu lassen, werden spezielle
Dokumentationsblöcke im Quellcode gesetzt. Zusätzlich zur Beschreibung können mit Doxygen For-
meln eingebunden sowie Vererbungs- und Kompositionsdiagramme erstellt werden.

In den beiden nächsten Abschnitten beschreibe ich den strukturellen Aufbau des Programms Quarkpro-
pagatorMPI und den Algorithmus zur Lösung der gekoppelten Dyson-Schwinger Integralgleichungen.
Anschließend folgt eine kurze Beschreibung der Benutzerschnittstelle. Die Software wurde mit einer
ausführlichen Programmdokumentation im html-Format auf CD-ROM der Arbeit beigefügt.
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5.1 Das Programm QuarkpropagatorMPI

Das folgende Diagramm zeigt die hierarchische Struktur der Bausteine des Programms Quarkpropaga-
torMPI:

Abbildung 5.1: Struktureller Aufbau des Programms QuarkpropagatorMPI.

• main

Im Hauptmodul main werden die folgenden Teilaufgaben erledigt:

1. Die Initialisierung der in den Modulen CLattice, CEpsilon und CSpline definierten Contai-
ner mit Anfangswerten.

2. Die Verwaltung der Interprozesskommunikation. Dafür wird das Gitter in Streifen zerlegt,
die auf die verschiedenen Prozesse aufgeteilt werden.

3. Die Berechnung der Quarkpropagatorfunktionen A(pE , |p|), B(pE , |p|) und C(pE , |p|) durch
Aufruf der entsprechenden Unterfunktionen.

4. Die Berechnung des ε-Algorithmus.

5. Die Überprüfung der vom Benutzer festgelegten Abbruchkriterien.

6. Die Ausgabeverwaltung der numerischen Ergebnisse in Dateien.
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• Constants
Im Modul Constants werden die systemweiten Konstanten definiert. Dieses Modul dient gleich-
zeitig als Benutzerschnittstelle. Hier kann der Benutzer festlegen, mit welchen Parametern das
Programm ausgeführt werden soll. Daneben sind in diesem Modul noch Konstanten wie π oder
CF definiert.

• CLattice
Das Modul CLattice enthält die Klasse LatticeppE(). Diese Klasse ist ein Container, der die Eigen-
schaften des Gitters wie die Energien pE , die Impulse |p| sowie die Quarkpropagatorfunktionen
A(pE , |p|), B(pE , |p|) und C(pE , |p|) an jedem Gitterpunkt (pEi, |p|j) verwaltet. Dafür enthält
das Modul die Methoden clearLattice() und occupyLattice() zur Besetzung des Gitters, update-
Lattice() zur Aktualisierung der Gitterdaten sowie setSaveDataLattice() und getSaveDataLattice()
zum Anlegen und Wiedereinlesen von Sicherungsdateien.

• Output
In diesem Modul sind die Prozeduren zur Ausgabe der numerischen Ergebnisse zusammengefasst.

• CEpsilon
Das Modul CEpsilon enthält die Klasse LatticeEpsilon(). Diese Klasse ist ein Container, der die
Eigenschaften und Methoden des Gitters zur Berechnung des ε-Algorithmus verwaltet. In die-
sem Modul sind die Methoden getEpsilonTransformation() zur Berechnung des ε-Algorithmus
und updateLatticeEpsilon() zum Speichern der Werte der Quarkpropagatorfunktionen A(pE , |p|),
B(pE , |p|) und C(pE , |p|) aus den vorherigen Iterationen definiert.

• GaussKronrod
Das Modul GaussKronrod enthält die Funktionen GKAdaptive() und GKRule1021(). Die Funk-
tion GKAdaptive() erhält als Eingabeparameter einen Pointer auf eine extern definierte Funktion
f(x) und zerlegt den Integrationsbereich adaptiv in verschiedene Teilintervalle. Dabei speichert
und akkumuliert GKAdaptive() die verschiedenen Teilergebnisse, bis eine Näherung für den Wert
des Integrals innerhalb der vom Benutzer vorgegebenen Genauigkeit erzielt wird. Die notwendigen
Integrationsroutinen sind in der Funktion GKRule1021() enthalten.

• Integrandq
Dieses Modul beinhaltet die Subroutinen zur Berechnung der Impulsintegrale.

• IntegrandqE
Dieses Modul beinhaltet die Subroutinen zur Berechnung der Energieintegrale.

• IntegrandBeka
Dieses Modul beinhaltet die Subroutinen zur Berechnung der Winkelintegrale.

• GaussKronrodQC
In diesem Modul werden die Stützstellen xi und Gewichte ωi für eine Gauß-Kronrod 10-21 Punkt
Quadraturformel definiert.

• CSpline
Das Modul CSpline enthält die Klasse Splinep(). Diese Klasse ist ein Container, der die Eigen-
schaften und Methoden zur Berechnung der kubischen Splineinterpolation verwaltet. Die Member
der Klasse sind vector Templates. Dadurch kann die Klasse sowohl zur Berechnung der kubischen
(instantane Näherung) als auch der bikubischen (bei Hinzunahme von retardierten transversalen
Gluonen) Splineinterpolation verwendet werden (Anhang D).
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• Spline

Das Modul Spline enthält die Subroutinen zur Berechnung der kubischen Splineinterpolation
(Anhang D). Es besteht aus den Funktionen setSpline() zur Berechnung der Koeffizientenma-
trix (D.15) für natürliche Randbedingungen unter Verwendung des Tridiagonal-Algorithmus sowie
getSpline() zur Berechnung eines splineinterpolierenden Wertes y. Die Funktionen setSpline() und
getSpline() sind Adaptierungen der Routinen spline() und splint() aus Numerical Recipes [24],
Seiten 115ff.

5.2 Beschreibung des Lösungsverfahrens

Nach der Initialisierung von MPI erzeugt das Programm zunächst ein Gitter (Lattice, Grid) der Größe
N ×N , auf dem die Energien pE und Impulse |p| gemäß der Konstruktionsvorschrift

pEi = kipE min,

|p|i = ki |p|min (5.1)

diskretisiert werden. Dabei sind pE min und |p|min vom Benutzer vorgebene Unterschranken für die
Energien und Impulse. Der Parameter k wird durch die Nebenbedingungen

|p|min = |p|0 = pE0,

|p|max = kN−1 |p|0 = kN−1pE0 (5.2)

und anschließendes Auflösen der Gleichungen (5.2) nach k festgelegt:

k =
( |p|max

|p|min

) 1
N−1

. (5.3)

Diese Art der Gitterskalierung erzeugt ein symmetrisches Gitter und trägt dem Abfall der Integranden
bei hohen Impulsen Rechnung. Im nächsten Schritt werden jedem Wertepaar (pEi, |p|j) Anfangswerte
zugeordnet:

A(pE , |p|) = 1, (5.4)

B(pE , |p|) =
1

1 + p2
, (5.5)

C(pE , |p|) =
1

1 + p2
+ 1. (5.6)

Mit diesen Anfangswerten werden die Routinen zur Berechnung der kubischen Splineinterpolation und
des ε-Algorithmus initialisiert.

Für die Parallelisierung wird das Gitter in instantaner Näherung in der |p|-Koordinate in Streifen zerlegt
und auf die zur Verfügung stehenden Prozessoren verteilt. Bei Hinzunahme von transversalen Gluonen
und Retardierungseffekten erfolgt die Parallelisierung entlang der pE-Koordinate.
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Die Berechnung der Quarkpropagatorfunktionen A(pE , |p|), B(pE , |p|) und C(pE , |p|) erfolgt iterativ
innerhalb der Hauptschleife. Dafür werden die dreidimensionalen Integrale durch wiederholte Integra-
tionen über die jeweils anderen Integrationsvariablen approximiert (iterierte eindimensionale Integrale,
vergleiche Abschnitt 2.7). Die Berechnung selbst erfolgt innerhalb der automatischen Integrationsroutine
GKAdaptive() mit einer Gauß-Kronrod 10-21 Punkt Quadraturformel (Automatischer Integrator, siehe
Abschnitt 2.6). Die Integration erfolgt "von außen nach innen", d.h. die Impuls-, Energie- und Win-
kelintegrationsroutinen werden solange rekursiv aufgerufen und dabei der Integrationsbereich adaptiv
verfeinert, bis das Ergebnis die vom Benutzer vorgegebene Genauigkeit erfüllt. Die im Integranden vor-
kommenden Quarkpropagatorfunktionen A(qE , |q|), B(qE , |q|) und C(qE , |q|) werden dabei mit Hilfe
der kubischen Splineinterpolation (Anhang D) bestimmt. Nachdem jeder Prozessor den ihm zugewiese-
nen Teilbereich berechnet hat, verschickt er eine Kopie seiner Ergebnisse an alle anderen Prozessoren.
Anschließend erfolgt die Berechnung des ε-Algorithmus und die Ausgabe der Zwischenergebnisse in
Dateien.

Die Ergebnisse der aktuellen Iteration werden wiederum als Startwerte für die nächste Iteration verwen-
det. Dieser Vorgang wird solange wiederholt, bis die vom Benutzer vorgegebenen Konvergenzkriterien
erfüllt sind. Wesentlich in diesem Zusammenhang ist die Wahl eines geeigneten Abbruchkriteriums.
Zum einen konvergiert das Integral im Zähler von Gleichung (2.110) deutlich langsamer als im Nenner,
zum anderen konvergieren beide Integrale im ultravioletten Bereich deutlich schneller als im Infraroten,
was auf das infrarotsinguläre Verhalten des Integralkerns zurückzuführen ist. Ein Abbruchkriterium, das
dieses Verhalten berücksichtigt, lautet

∣∣∣∣∣1−
fn+1(pEi, |p|j)
fn(pEi, |p|j)

∣∣∣∣∣ < ε ∀ i, j, 0 ≤ i, j < N, (5.7)

wobei fn(pEi, |p|j) den Wert der Propagatorfunktion nach n Iterationen am Gitterpunkt (pEi, |p|j) be-
zeichnet. Damit wird erreicht, dass die Iteration so lange weitergeführt wird, bis sich jeder einzelne Wert
höchstens um einen Faktor ε ändert. Bei aktiviertem ”Freezing” gilt (5.7) für die jeweilige Propagator-
funktion bereits nach einmaligem Erreichen als dauerhaft erüllt.

Die numerischen Ergebnisse werden nach jedem Durchlauf der Hauptschleife in Dateien geschrieben.
Zusätzlich werden noch Sicherungsdateien angelegt, um gegen eventuell auftretende systembedingte
Probleme gewappnet zu sein.
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5.3 Benutzerschnittstelle

Der Benutzer kommuniziert mit dem Programm über das Modul Constants. Vor der Berechnung der
Quarkpropagatorfunktionen A(pE , |p|), B(pE , |p|) und C(pE , |p|) können zunächst die gewünschten
Parameter angepasst werden. Anschließend wird das Programm mittels mpicxx -Olevel -ansi Quark-
propagatorMPI.cpp -o outfile kompiliert. level legt die Optimierungsstufe fest. Das Programm sollte
zumindest mit -O3 kompiliert werden, damit Optimierungen wie Inlining und Loop Unrolling benutzt
werden [47][48]. Die Option ”-o” des Compilers legt den Namen der erzeugten ausführbaren Datei
outfile fest. Wird das Programm auf einem Hochleistungsrechner der Karl-Franzens-Universität Graz
ausgeführt [49], wird noch zusätzlich ein SGE-Skript benötigt. Abgesetzt wird der Job dann mit qsub
./scriptname.sh, wobei scriptname.sh der Name des obigen Skripts ist. Ein Beispielskript auf CD-ROM
wurde der Arbeit beigefügt.

Die nachfolgende Tabelle gibt einen Überblick über die modifizierbaren Parameter des Programms
QuarkpropagatorMPI. Eine detaillierte Beschreibung der Parameter findet sich im Text und in der
Programmdokumentation.

Bezeichnung Typ Parameter siehe
M0 double Stromquarkmasse m0 Gleichung (2.9)
NC integer Anzahl der Farben Nc Abschnitt 2.1, 2.4
NF integer Anzahl der aktiven Flavours Nf Abschnitt 2.1, 2.4
SIGMA double Coulomb Stringspannung σC Gleichung (2.81)
MU_SQUARED double Infrarotregulator µ2

IR Gleichung (2.109)
CUTOFF double UV-Cutoff ΛUV Abschnitt 2.3, 2.4
MU double Renormierungspunkt |µ| Abschnitt 2.4
MUE double Renormierungspunkt µE Abschnitt 2.4
WITH_TRANSVERSAL boolean mit / ohne transversale Komponenten Dokumentation
P_POINTS integer Anzahl der Gitterpunkte in |p| Abschnitt 5.2
PE_POINTS integer Anzahl der Gitterpunkte in pE Abschnitt 5.2
P_START double kleinster |p|-Wert Gleichung (5.2)
P_END double größter |p|-Wert Gleichung (5.2)
PE_START double kleinster pE-Wert Gleichung (5.2)
PE_END double größter pE-Wert Gleichung (5.2)
IMPROVEMENT boolean mit / ohne Freezing Abschnitt 2.6
MAX_ITERATIONS integer max. Bisektionen in GaussKronrod Abschnitt 3.6
MAX_REL_ERROR double max. rel. Fehler in GaussKronrod Gleichung (3.53)
MAX_ABS_ERROR double max. abs. Fehler in GaussKronrod Gleichung (3.53)
MAX_SIZE integer max. Größe der ε-Tabelle Gleichung (4.16)
COOLING_INTERATIONS integer Einsprungpunkt für den ε-Algorithmus Dokumentation
EPSILON_EPSALGO double Abbruchkriterium für ε-Algorithmus Dokumentation
EPSILON double Abbruchkriterium für Iterationsschema Gleichung (5.7)
ZKKE double Z(kE , |k|) = 1 Gleichung (2.111f)
FOLDERNAME string Ausgabeordner Dokumentation
NEW_RUN boolean neue Rechnung / Wiederaufnahme Dokumentation

Tabelle 5.1: Parameter in QuarkpropagatorMPI
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Kapitel 6

Numerische Ergebnisse

In diesem Kapitel präsentiere ich die numerischen Ergebnisse für die renormierten Quarkpropagator-
funktionen A(pE , |p|), B(pE , |p|) und C(pE , |p|) in instantaner Näherung und unter Hinzunahme von
retardierten transversalen Gluonen. Die Rechnungen wurden im chiralen Limes (m0 = 0) und für ein
leichtes Quark mit Strommasse m0 = 0.0037 GeV durchgeführt. Die instantane Näherung dient als Mo-
dell zur Erprobung der in Abschnitt 2.6 diskutierten Optimierungsstrategien, die dann zur Berechnung
des numerisch aufwändigeren Falls bei Hinzunahme der transversalen Komponenten des Gluonpropaga-
tors in Verbindung mit Retardierungseffekten verwendet werden.

6.1 Instantane Näherung

Im vorliegenden Modell wird die instantane Näherung durch die Wahl von

Z(kE , |k|) ≡ 0 (6.1)

realisiert. Die Rechnungen wurden in Regenbogennäherung unter Verwendung eines nackten Quark-
Gluon Vertex durchgeführt. Die Integralgleichungen wurden wie in Kapitel 5 beschrieben mit einem ite-
rativen Gesamtschrittverfahren gelöst. Für die Kopplungskonstante wurde die Richardson-Form (2.79)
verwendet. Der Skalenparameter Λ ist dann durch die Stringspannung σC gegeben (2.81). Die Inte-
grale wurden infrarotregularisiert durch Addieren eines kleinen Massenterm k2 → k2+ µ2

IR (2.109)
und ultraviolettregularisiert mit einem Impuls-Cutoff ΛUV = 80000 GeV. Für größere Werte von ΛUV

ändern sich die Ergebnisse nur mehr unwesentlich. Die Integrale wurden in jeder Dimension mit ei-
ner relativen Genauigkeit von 10−5 bzw. einer absoluten Genauigkeit von 10−16 berechnet (3.53). Als
Renormierungspunkt habe ich |µ| = 45000 GeV genommen. Die Rechnungen wurden mit 48 diskre-
ten Werte in der |p|-Koordinate durchgeführt, um anschließend ein Vergleichset für die Ergebnisse im
transversalen Fall mit Retardierungseffekten zu haben. Die numerische Lösung für die Massenfunktion
M(|p|) := B(|p|)/C(|p|) zeigt ein charakteristisches Plateau im Infraroten (Abbildungen 6.1 und 6.2)
ebenso wie das richtige asymptotische Verhalten für große äußere Impulse (Abbildung 6.3). Der Wert
der Massenfunktion M(|p|) im Infraroten kann dazu verwendet werden, eine Konstituentenquarkmasse
zu definieren [21]. Mit dem verwendeten Wert für die Coulomb-Stringspannung σC = 0.5476 GeV2 aus
[50] beträgt der Wert der Massenfunktion im Infraroten nur etwa ein Drittel des gewünschten Wertes
[21][51]. Um die Situation zu verbessern, bestand die weitere Vorgehensweise darin, durch Hinzunah-
me von transversalen Gluonen in Verbindung mit Retardierungseffekten einen merklichen Einfluss auf
den Wert der Massenfunktion im Infraroten zu erzielen. Die entsprechenden numerischen Ergebnisse
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befinden sich im nächsten Abschnitt. Zwar liefert die instantane Näherung nicht die gewünschten Er-
gebnisse, dafür eignet sie sich ausgesprochen gut als Modell zur Erprobung der Optimierungsstrategien.
Im folgenden werden die Auswirkungen des ε-Algorithmus in Kombination mit der Freezing-Methode
auf die Gesamtzahl der benötigten Iterationen sowie auf die Anzahl der zu lösenden Integralgleichungen
betrachtet. Die Gesamtzahl der zu berechnenden Integrale Gi in instantaner Näherung unter Verwendung
der Standardmethode ergibt sich aus

Gi = 2× Anzahl der Iterationen× [Punkte in |p|+ Ω] (6.2)

mit

Ω =
{

0.5 im chiralen Limes,
1 sonst.

(6.3)

Der Faktor Ω wurde eingeführt, um die in jedem Schritt ebenfalls neu zu berechnenden Renormie-
rungsintegrale richtig mitzuzählen (im chiralen Limes entfällt die Renormierung der Propagatorfunk-
tion B(|p|)). Die Ergebnisse in den Abbildungen 6.5 und 6.6 wurden auf µ2

IR[10−3] = 1 im chiralen
Limes skaliert, um deren Werte in einen für die graphische Darstellung vergleichbaren Zahlenbereich
zu transformieren. Wie die Abbildung 6.5 zeigt, konvergiert das Verfahren für kleinere Werte von µ2

IR

deutlich langsamer. Der andere skalierende Faktor ist die Strommasse m0. Diese Erhöhung der Anzahl
an Iterationen schlägt doppelt zu Buche, da der Rechenaufwand für jeden einzelnen Iterationsschritt für
kleinere Werte von µ2

IR ebenfalls anwächst. Durch die Verwendung des ε-Algorithmus in Kombination
mit der Freezing-Technik kann die Anzahl der Iterationen effizient reduziert werden (Abbildung 6.5).
Wie aus Abbildung 6.6 ersichtlich, konvergiert das C(|p|)-Integral bei Anwendung der Konvergenzbe-
schleunigungsverfahren schneller als das B(|p|)-Integral. Insgesamt lässt sich die Gesamtzahl der zu
berechnenden Integrale bei vergleichbarer Genauigkeit der Ergebnisse (Abbildung 6.4) um etwa eine
Größenordnung reduzieren.

6.2 Hinzunahme von retardierten transversalen Gluonen

Im vorliegenden Modell wird die Hinzunahme von transversalen Komponenten und Retardierungseffek-
ten durch die Wahl von

Z(kE , |k|) ≡ 1 (6.4)

realisiert. Die Rechnungen wurden wie in Aschnitt 6.1 in Regenbogennäherung unter Verwendung ei-
nes nackten Quark-Gluon Vertex durchgeführt. Dafür wurden je 48 diskrete Werte in der pE und |p|-
Koordinate verwendet. Als Renormierungspunkt habe ich µE = |µ| = 45000 GeV genommen. Die
Parameter sind ansonsten diesselben wie in Abschnitt 6.1. Bei den in den folgenden Abbildungen darge-
stellten Ergebnissen handelt es sich um Vorhersagen des ε-Algorithmus in Kombination mit der Freezing-
Technik, die mit einer relativen Genauigkeit von 10−3 berechnet wurden. Die |p|-Achse ist für alle ge-
zeigten Funktionen eine Symmetrieachse. Die Propagatorfunktion A(pE , |p|) steigt im Infraroten für
größere Werte von µ2

IR leicht an. Dieser Effekt schwächt sich für kleinere Werte von µ2
IR wieder ab

(Abbildung 6.7). Die Propagatorfunktionen B(pE , |p|) und C(pE , |p|) divergieren für µ2
IR → 0 (Ab-

bildungen 6.8 und 6.9), die Massenfunktion M(pE , |p|) hingegen konvergiert für µ2
IR → 0 (Abbildung

6.10). Eine Aufspaltung der Massenfunktion entlang der pE-Achse ist nicht zu beobachten. Die numeri-
schen Ergebnisse für die Massenfunktion M(pE , |p|) (Abbildungen 6.11 und 6.12) sind im wesentlichen
identisch mit denen für die Massenfunktion M(|p|) in instantaner Näherung (Abbildungen 6.1 und 6.2).
Die Propagatorfunktionen B(pE , |p|) und C(pE , |p|) weichen zwar voneinander ab (Abbildungen 6.13
und 6.14), ein Anstieg der Massenfunktion M(pE , |p|) ist im Infraroten für Z(kE , |k|) ≡ 1 aber nicht
zu beobachten.
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Abbildung 6.1: Die Massenfunktion M(|p|) für vier verschiedene Werte von µ2
IR im chiralen Limes.
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Abbildung 6.2: Die Massenfunktion M(|p|) für vier verschiedene Werte von µ2
IR für m0 = 0.0037 GeV.
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Abbildung 6.3: Vergleich der Massenfunktionen M(|p|) für µ2
IR = 10−6 im chiralen Limes und m0 =

0.0037 GeV in doppellogarithmischer Darstellung.
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Abbildung 6.4: Vergleich der mit der Standardmethode (Linien) und dem ε-Algorithmus in Kombination
mit der Freezing-Technik (Punkte) berechneten Ergebnisse im chiralen Limes.
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Abbildung 6.5: Relative Anzahl der benötigten Iterationen bei Verwendung der Standardmethode (leere
Symbole) und des ε-Algorithmus in Kombination mit der Freezing-Technik (volle Symbole) im chiralen
Limes (rote Dreiecke) und m0 = 0.0037 GeV (blaue Kreise) in Abhängigkeit vom Infrarotregulator µ2
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Abbildung 6.6: Relative Anzahl der zu berechnenden Integrale bei Verwendung der Standardmetho-
de (Dreiecke) und des ε-Algorithmus in Kombination mit der Freezing-Technik (Kreise, Vierecke) im
chiralen Limes (leere Symbole) und m0 = 0.0037 GeV (volle Symbole) in Abhängigkeit vom Infrarot-
regulator µ2

IR.
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Abbildung 6.7: Die Propagatorfunktion A(pE , |p|) im chiralen Limes in Abhängigkeit vom Infrarotre-
gulator µ2

IR.
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Abbildung 6.8: (analog zu Abbildung 6.7) Die Propagatorfunktion B(pE , |p|). Die Funktion divergiert
im Limes µ2

IR. → 0.
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Abbildung 6.9: (analog zu Abbildung 6.7) Die Propagatorfunktion C(pE , |p|). Die Funktion divergiert
im Limes µ2

IR. → 0.
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Abbildung 6.10: (analog zu Abbildung 6.7) Die Massenfunktion M(pE , |p|) . Die Massenfunktion kon-
vergiert im Limes µ2

IR. → 0.
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Abbildung 6.11: Die Massenfunktion M(pE , |p|) für vier verschiedene Werte von µ2
IR im chiralen Limes

mit unterdrückter pE-Koordinate.
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Abbildung 6.12: (analog zu Abbildung 6.11) Die Massenfunktion M(pE , |p|) für m0 = 0.0037 GeV.
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Abbildung 6.13: Die Propagatorfunktion B(pE , |p|) für µ2
IR = 10−6 im chiralen Limes mit unterdrück-

ter pE-Koordinate.
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Abbildung 6.14: (analog zu Abbildung 6.13) Die Propagatorfunktion C(pE , |p|).
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Zusammenfassung und Ausblick

In dieser Diplomarbeit wurde ein numerisches Lösungsverfahren für ein nichtlineares Integralgleichungs-
system optimiert. Die Berechnungen erfolgten auf Grundlage des von Gribov [2] und Zwanziger [3] vor-
geschlagenen Formalismus zur Erklärung des Confinement-Phänomens und wurden in Coulombeichung
durchgeführt. Nach einem Überblick über einige allgemeine Aspekte der QCD (Abschnitt 2.1 bis 2.3)
wurden zunächst die Dyson-Schwinger Gleichungen (DSEs) für den Quarkpropagator hergeleitet (Ab-
schnitt 2.4). Diese allgemein als Gap-Gleichung bezeichneten DSEs formen wie alle anderen DSEs auch
ein unendliches System von gekoppelten, nichtlinearen Integralgleichungen. Für eine numerische Be-
handlung ist es notwendig, eine nichtperturbative Trunkierung dieses unendlichen Systems von DSEs zu
finden, die die relevanten Symmetrien der QCD berücksichtigt (Abschnitt 2.4.3) und die im ultravioletten
Sektor divergenten Gleichungen zu renormieren (Abschnitt 2.4.4). In Coulombeichung wird Confine-
ment auf das Verhalten des Color-Coulomb Potentials Vcoul(R) zurückgeführt, das mit dem instantanen
Anteil der Zeit-Zeit Komponente des Gluonpropagators identifiziert werden kann. In diesem Modell kann
man durch Spurnahme (Anhang B) und anschließende Wick-Rotation der p0-Komponente (Anhang C)
ein System aus drei gekoppelten, nichtlinearen Integralgleichungen für die Quarkpropagatorfunktionen
A(pE , |p|), B(pE , |p|) und C(pE , |p|) ableiten (Abschnitt 2.5). Da Standardmethoden zur Lösung von
linearen Integralgleichungen nicht verwendet werden konnten, wurde dieses Integralgleichungssystem
mit einem iterativen Gesamtschrittverfahren gelöst. Dafür wurde im Rahmen dieser Diplomarbeit ein
Automatischer Integrator auf Basis der Gauß-Kronrod Quadraturformeln implementiert. Die verschiede-
nen Teilaspekte der adaptiven numerischen Quadratur und Kubatur wurden in Kapitel 3 behandelt. Durch
das infrarotsinguläre Verhalten der Integralkerne verschlechtert sich das Konvergenzverhalten des ver-
wendeten Iterationsalgorithmus. Verallgemeinerte Summationsprozesse zur Konvergenzbeschleunigung
und insbesondere der epsilon-Algorithmus wurden in Kapitel 4 betrachtet. Das numerische Lösungsver-
fahren wurde in Kapitel 5 besprochen.

Die Ergebnisse in instantaner Näherung entsprechen den Erwartungen. Dass der Wert der Massenfunkti-
on in diesem Fall zu niedrig ausfällt, war bereits seit längerem bekannt [13][21]. Die Performancesteige-
rung durch die Anwendung von numerischen Techniken zur Konvergenzbeschleunigung ist ausgespro-
chen erfreulich, vor allem hinsichtlich der Tatsache, dass ein einzelner Durchlauf ansonsten auch auf
einem Hochleistungsrechner mehrere Wochen in Anspruch nehmen würde. Möglicherweise sind hier in
der Zukunft noch weitere Effizienzsteigerungen zu erzielen, beispielsweise durch die Anwendung von
anderen nichtlinearen Folgentransformationen, die in dieser Arbeit aus Zeitgründen nicht näher unter-
sucht werden konnten. Die Ergebnisse bei Hinzunahme von retardierten transversalen Gluonen decken
sich mit denen von Markus Kloker, die er im Rahmen seiner Dissertation [51] erzielt hat. Diese sind doch
einigermaßen überraschend. Hier hätten wir uns einen merklichen Einfluss auf den Wert der Massen-
funktion im Infraroten erwartet. Vergleichsrechnungen mit Z(kE , |k|) À 1 heben die Massenfunktion
in diesem Bereich zwar an, dieser Effekt verschwindet aber für µ2

IR → 0. Auch zeigen diese Ergebnisse
keine Frequenzabhängigkeit. Das deutet darauf hin, dass Z eine für kleine Gluonimpulse divergierende
Funktion sein muss. Verbesserungen könnten hier durch ein Dressing des nackten raumartigen Vertex
mit einer skalaren Funktion oder durch Einbau von zusätzlichen Tensorstrukturen erreicht werden [52].
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Anhang A

Notationen

A.1 Einheiten

In der vorliegenden Arbeit werden die natürlichen Einheiten

~ = c = 1 (A.1)

verwendet. Mit dieser Wahl ist insbesondere die Beziehung zwischen Länge und Energie

1 fm = 10−15 m = (197.33 MeV)−1. (A.2)

A.2 Minkowskiraum

In dieser Arbeit wird die übliche Standardnotierung verwendet, vor allem bezeichnet a einen Vierervektor
und a einen Dreiervektor. In Verallgemeinerung des Distanzbegriffes zwischen zwei Punkten im Raum
ist der ”Abstand” zwischen zwei Punkten in der Raumzeit

ds2 = dt2 − dx2 − dy2 − dz2. (A.3)

Mit dieser Definition sind zwei Ereignisse in der Raumzeit entweder durch ein zeitartiges (ds2 > 0),
raumartiges (ds2 < 0) oder lichtartiges (ds2 = 0) Intervall voneinander separiert.

Im Minkowskiraum wird ein kontravarianter Vierervektor dargestellt durch

xµ := (x0, x1, x2, x3) ≡ (t, x, y, z). (A.4)

Ein kovarianter Vierervektor entsteht, indem man die Vorzeichen der räumlichen Komponenten eines
kontravarianten Vierervektors ändert:
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xµ := (x0, x1, x2, x3) ≡ (t,−x,−y,−z) = gµνx
ν (A.5)

mit dem metrischen Tensor

gµν = gµν =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 . (A.6)

Die Poincaré-invariante Länge eines jeden Vektors ist

x2 := x · x = t2 − x2. (A.7)

Das Skalarprodukt zweier Vierervektoren

a · b := gµνa
µbν = aµbµ = a0b0 − aibi (A.8)

ist ein kontrahiertes Produkt eines kovarianten und eines kontravarianten Vierervektors und eine In-
variante (ein Skalar). Dabei werden die Lorentz-Indizes, welche von 0 bis 3 laufen, mit griechischen
Buchstaben bezeichnet, wogegen die lateinischen Indizes die Raumrichtungen bezeichnen und von 1 bis
3 laufen.

Die Energie-Impuls Vierervektoren sind ähnlich definiert:

pµ = (E, px, py, pz) = (E,p)

pµ = (E,−px,−py,−pz) = (E,−p) (A.9)

mit der Invariante

p2 = pµpµ = E2 − p2 = m2 (A.10)

und

p · k = pµkµ = EpEk − p · k. (A.11)

Die vierdimensionalen Ableitungsoperatoren sind auf folgende Weise definiert:

∂µ =
∂

∂xµ
= (

∂

∂t
,∇), ∂µ =

∂

∂xµ
= (

∂

∂t
,−∇), (A.12)

wobei ∇i = ∂
∂xi

gilt. Der Impulsoperator
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pµ := i
∂

∂xµ
= (i

∂

∂t
,
1
i
∇) =: i∇µ (A.13)

transformiert sich wie ein kontravarianter Vierervektor. Das Poincaré-invariante Analogon zum Laplace-
Operator ist der d’Alembert-Operator:

2 = ∂µ∂µ =
∂2

∂t2
−∇2. (A.14)

Die elektrischen und magnetischen Feldstärken erhält man aus dem Feldstärketensor

Fµν = ∂µAν − ∂νAµ. (A.15)

Die nichtabelsche Verallgemeinerung des Feldstärketensors

F a
µν = ∂µAa

ν − ∂νA
a
µ − gfabcAb

µAc
ν (A.16)

mit den vollständig antisymmetrischen Strukturkonstanten fabc transformiert sich unter einer Eichtrans-
formation auf dieselbe Weise wie die kovariante Ableitung

Dµ = ∂µ + igAa
µta. (A.17)

A.3 Gamma-Matrizen

Die Gamma- bzw. Dirac-Matrizen sind ein essentieller Bestandteil einer manifest Poincaré-kovarianten
Beschreibung von Teilchen mit Spin. Die Gamma-Matrizen formen eine Clifford-Algebra und sind defi-
niert durch

{γµ, γν} = γµγν + γνγµ = 2gµν . (A.18)

Die zugrunde liegende Gruppe ist die Lorentz-Gruppe. Die 4x4 Einheitsmatrix 1 auf der rechten Seite
von Gleichung (A.18) ist implizit.

Eine häufig verwendete, kompakte Darstellung der Gamma-Matrizen ist die üblicherweise als Standard-
darstellung bezeichnete Dirac-Darstellung (jeder Eintrag repräsentiert eine 2x2 Matrix):

γ0 =
(
1 0
0 1

)
, γi =

(
0 σ
−σ 0

)
(A.19)

mit den Pauli-Matrizen σ

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(A.20)
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mit γ5 = iγ0γ1γ2γ3 und der 4x4 Einheitsmatrix 1. Offensichtlich ist γ†0 = γ0 und γ† = −γ. Diese
Eigenschaften hängen nicht von der gewählten Darstellung ab. Vielmehr sind alle Matrizen, die durch
Ähnlichkeitstransformationen aus den genannten Matrizen hervorgehen, Darstellungen einer Clifford-
Algebra. Neben der Dirac-Basis werden noch häufig die Weyl- und die Majorana-Basis verwendet.

Im Zusammenhang mit Gamma-Matrizen trifft man häufig auf die von Feynman eingeführte Slash-
Schreibweise:

γµAµ =: /A = γ0A0 − γ ·A, (A.21)

γµpµ =: /p = γ0E − γ · p, (A.22)

γµpµ =: i/∇ ≡ i/∂ = iγµ ∂

∂xµ
. (A.23)

Die folgenden Identitäten sind bei Rechnungen mit Gamma-Matrizen nützlich. Da sie aus den funda-
mentalen Kommutatorrelationen folgen, gelten sie in jeder Basis.

Tr[1] = 4, (A.24)

Tr[γµ...γν ]n = 0 für n ungerade, (A.25)

Tr[γµγν ] = 4gµν , (A.26)

Tr[γµγνγργσ] = 4(gµνgρσ − gµρgνσ + gµσgνρ), (A.27)

Tr[γ5] = 0, (A.28)

Tr[/a/b] = 4(a · b), (A.29)

Tr[/a/b/c/d] = 4[(a · b)(c · d)− (a · c)(b · d) + (a · d)(b · c)]. (A.30)
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Anhang B

Herleitung der
Quarkpropagatorfunktionen

B.1 Setup

Im folgenden bezeichnet p einen Vierervektor und p einen Dreiervektor (siehe Anhang A.2). Die Gap-
Gleichung für den renormierten Quarkpropagator ist

iS−1(p) = Z(µ)γµpµ − Zmm + ig2CF

∫
d4q

(2π)4
Dµν(k) γµ S(q) γν . (B.1)

Für die nichtverschwindenden Komponenten des Gluonpropagators werden die folgenden Näherungen
angenommen:

D00(|k|) =
i

g2
4πVC(|k|), (B.2)

VC(|k|) :=
α(k2)
k2

, α(k2) =
12π

(11Nc − 2Nf ) ln(1 + k2/Λ2)
(B.3)

und

Dij(k0, |k|) =
i

g2
(δij − kikj

k2
)VT (k0, |k|), (B.4)

VT (k0, |k|) :=
Z(k0, |k|)

k2
0 − ω2

g(|k|)
. (B.5)

Der Skalenparameter Λ ist durch die Stringspannung σC gegeben:

σC =
8π

27
Λ2. (B.6)

Setzt man diese Näherungen in die Gap-Gleichung (B.1) ein, kann man folgende Gleichung für den
renormierten Quarkpropagator ableiten:
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iS−1(p) = Z(µ)γµpµ − Zmm− CF

∫
d4q

(2π)4

[4πVC(|k|)γ0S(q)γ0 + VT (k0, |k|)]γiS(q)γj(δij − kikj

k2
). (B.7)

Für die zugehörigen Renormierungskonstanten gilt:

Z(µ) =
{

Z0 für µ = 0,
Zj für µ = j = 1, 2, 3.

(B.8)

Die Parametrisierung für den inversen Quarkpropagator lautet

iS−1(p) = [γ0p0 A(p0, |p|)− γ · p C(p0, |p|)−B(p0, |p|) + iε]. (B.9)

Mit diesem Ansatz kann der Quarkpropagator geschrieben werden als:

S(p) = i
γ0p0 A(p0, |p|)− γ · p C(p0, |p|) + B(p0, |p|)
p2
0 A2(p0, |p|)− p2 C2(p0, |p|)−B2(p0, |p|)

. (B.10)

Das angenommene Verhalten für die Gluonenergie ωgführt auf

ωg(|k|) =
Λ
|k| + |k| . (B.11)

Für die weitere Herleitung werden sich die folgenden Definitionen als zweckmäßig erweisen:

denom := q2
0A

2(q0, |q|)− q2C2(q0, |q|)−B2(q0, |q|), (B.12)

Gij := (δij − kikj

k2
)

Z(k0, |k|)
k2

0 − ω2
g(|k|)

. (B.13)

B.2 Herleitung

Mit den Definitionen aus Abschnitt B.1 kann die Gap-Gleichung (B.1) geschrieben werden als

[γ0p0A(p0, |p|)− γ · p C(p0, |p|)−B(p0, |p|)] = Z0γ0p0 − Zj(γ · p)− Zmm−

iCF

∫
d4q

(2π)4
[4πVC (|k|) γ0S(q)γ0 + GijγiS(q)γj ]. (B.14)

Durch Spurnahme erhält man ein System aus drei gekoppelten Integralgleichungen für die Quarkpropa-
gatorfunktionen A(p0, |p|), B(p0, |p|) und C(p0, |p|):
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A(p0, |p|)→ Tr[γ0· (B.14)]:

4p0A(p0, |p|) = 4Z0p0 − iCF

∫
d4q

(2π)4
[4πVC (|k|) Tr[γ0γ0γ0γ0]︸ ︷︷ ︸

4

+ GijTr[γ0γiγ0γj ]︸ ︷︷ ︸
4δij

]
q0A(q0, |q|)

denom

p0A(p0, |p|) = Z0p0 − iCF

∫
d4q

(2π)4
[4πVC (|k|) + (δij − kikj

k2
)δij

︸ ︷︷ ︸
3−1=2

Z(k0, |k|)
k2

0 + ω2
g(|k|)

]
q0A(q0, |q|)

denom

p0A(p0, |p|) = Z0p0 − iCF

∫
d4q

(2π)4
[4πVC(|k|) +

2Z(k0, |k|)
k2

0 − ω2
g(|k|)

]
q0A(q0, |q|)

denom
(B.15)

B (p0, |p|)→ Tr[(B.14)]:

−4B(p0, |p|) = −4Zmm− iCF

∫
d4q

(2π)4
[4πVC (|k|) Tr[γ0γ0]︸ ︷︷ ︸

4

+ GijTr[γiγj ]︸ ︷︷ ︸
−4δij

]
B(q0, |q|)

denom

B(p0, |p|) = Zmm + iCF

∫
d4q

(2π)4
[4πVC (|k|)− (δij − kikj

k2
)δij

︸ ︷︷ ︸
3−1=2

Z(k0, |k|)
k2

0 − ω2
g(|k|)

]
B(q0, |q|)

denom

B (p0, |p|) = Zmm + iCF

∫
d4q

(2π)4
[4πVC(|k|)− 2Z(k0, |k|)

k2
0 − ω2

g(|k|)
]
B(q0, |q|)

denom
(B.16)

C (p0, |p|)→ Tr[(γ · p)· (B.14)]:

Tr[(γ · p)(−γ · p)]C(p0, |p|) = ZjTr[(γ · p)(−γ · p)]+

iCF

∫
d4q

(2π)4
[4πVC (|k|) Tr[(γ · p)γ0(−γ · p)γ0] + Gij Tr[(γ · p)γi(−γ · q)γj ]]

C(q0, |q|)
denom

Vergleiche (A.29): Tr[(γ · a)(γ · b)] = 4(a · b):

4p2C(p0, |p|) = 4Zjp2 − iCF

∫
d4q

(2π)4

[4πVC (|k|) piqjTr[γiγ0γjγ0]︸ ︷︷ ︸
4δij

+ GijpkqlTr[γkγiγlγj ]︸ ︷︷ ︸]
C(q0, |q|)

denom
4(δkiδlj−δklδij+δkjδil)

(B.17)

Mit
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piqjδij = (p · q), (B.18)

pkql (δij − kikj

k2
)(δkiδlj − δklδij + δkjδil) = −2(p · k)(q · k)

k2
(B.19)

folgt

p2C(p0, |p|) = Zjp2 − iCF

∫
d4q

(2π)4

[4πVC(|k|)(p · q)− 2(p · k)(q · k)
k2

2Z(k0, |k|)
k2

0 − ω2
g(|k|)

]
C(q0, |q|)

denom
(B.20)

Die in diesen nichtlinearen Integralgleichungen auftretenden vierdimensionalen Einschleifenintegrale
haben in sphärischen Koordinaten die allgemeine Form

I(k) :=
∫

d4q g(q, k)

=
∫

dq0

∞∫

0

d |q| |q|2
∫ 2π

0
dϕ

∫ π

0
dϑ sinϑ f(k, q, ϑ). (B.21)

Dabei bezeichnet q den inneren Schleifenimpuls, k den äußeren Impuls und ϑ den Winkel, den bei-
de Vektoren miteinander einschließen. Da der Integrand von ϕ unabhängig ist, kann diese Integration
analytisch ausgeführt werden und man findet

I(k) := 2π

∫
dq0

∞∫

0

d |q| |q|2 Bek(k, q, cosϑ) (B.22)

mit dem Winkelintegral

Bek(k, q, ϑ) =
∫ 1

−1
d(cosϑ) f(k, q, cosϑ). (B.23)

Nach einer Wick-Rotation um 90◦ (Anhang C)

p0 → ipE , q0 → iqE ,

∫
dq0 → i

∫
qE , (B.24)

denom := −q2
EA2(qE , |q|)− q2C2(qE , |q|)−B2(qE , |q|) (B.25)

kann die q0-Integration im Euklidischen ausgeführt werden. Die Skalarprodukte können dann geschrie-
ben werden als:

(p · q) = |p| |q| cosϑ, (B.26)
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(p · k)(q · k)
k2

= |p| |q| (cosϑ +
|p| |q| (cos2 ϑ− 1)

k2
) (B.27)

Daraus erhält man die folgenden gekoppelten nichtlinearen Dyson-Schwinger Integralgleichungen für
die Quarkpropagatorfunktionen:

A(pE , |p|) = Z0 +
CF

pE(2π)3

∞∫

0

d |q| |q|2
∞∫

−∞
dqE

+1∫

−1

d(cos ϑ)

[4πVC(|k|) +
2Z(kE , |k|)
−k2

E − ω2
g(|k|)

]
qE A(qE , |q|)

denom
, (B.28)

B(pE , |p|) = Zmm− CF

(2π)3

∞∫

0

d |q| |q|2
∞∫

−∞
dqE

+1∫

−1

d(cosϑ)

[4πVC(|k|)− 2Z(kE , |k|)
−k2

E − ω2
g(|k|)

]
B(qE , |q|)

denom
, (B.29)

C(pE , |p|) = Zj − CF

|p| (2π)3

∞∫

0

d |q| |q|3
∞∫

−∞
dqE

+1∫

−1

d(cosϑ)

[4πVC(|k|) cos ϑ− (cosϑ +
|p| |q| (cos2 ϑ− 1)

k2
)

2Z(kE , |k|)
−k2

E − ω2
g(|k|)

]
C(qE , |q|)

denom
.

(B.30)

Der Fall Z(kE , |k|) = 0 entspricht in diesem Modell der instantanen Näherung, bei Hinzunahme von
transversalen Komponenten und Retardierungseffekten wird Z(kE , |k|) zur Vereinfachung gleich 1 ge-
setzt. Die Infrarotdivergenzen werden durch Einführung eines Infrarotregulators µIR kontrolliert:

k2 → k2 + µ2
IR. (B.31)

Die Renormierung der Integralgleichungen erfolgt mit Hilfe der Bedingungen

A(µE , |µ|) = 1, (B.32)

B(µE , |µ|) = m0, (B.33)

C(µE , |µ|) = 1, (B.34)

wobei µE und |µ| die jeweiligen Renormierungspunkte bezeichnen.
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Anhang C

Wick-Rotation

C.1 Wick-Rotation

Unter einer Wick-Rotation versteht man die Drehung der zeitartigen Komponente eines Vierervektors
um 90◦ in der komplexen Ebene, wobei die Ortskoordinaten beibehalten werden. Es handelt sich um
eine analytische Fortsetzung vom Minkowskiraum ins Euklidische. Dafür setzt man

p0 = e
iπ
2 p0

E = ip0
E , (C.1)

p = pE und integriert über p0
E von −∞ bis +∞.

Abbildung C.1: Rotation der p0-Kontour um 90◦.

Kontourintegrale der Form

I :=
∫

ddp

(2π)4
1

(p2 −M2 + iε)m
(C.2)

können so im Euklidischen berechnet werden, ohne dabei den Wert des Integrals zu verändern:

I = i(−1)m

∫
ddpE

(2π)4
1

(p2 + M2)m
. (C.3)
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Anhang D

Interpolation und Extrapolation

D.1 Kubische Spline-Interpolation

Unter einer Spline-Funktion versteht man eine stückweise auf Teilintervallen definierte Funktion, deren
Teile an den Nahtstellen zumindest stetig oder ein- bzw. mehrfach stetig differenzierbar aneinandersto-
ßen. Ein Spline n-ten Grades ist eine Funktion, die stückweise aus Polynomen vom maximalen Grad n
zusammengesetzt ist. Im Gegensatz zur Polynominterpolation, bei der die Polynome zu einer größeren
Anzahl von Stützstellen die Tendenz haben, gegen die Enden des Interpolationsintervalls sehr stark zu
oszillieren, liefert die Spline-Interpolation eine glatte Interpolationsfunktion. Glatt bedeutet im mathe-
matischen Sinne, dass die Funktion zumindest zweimal stetig differenzierbar sein soll. Alle gegebenen
Punkte der Funktion stellen Nahtstellen zwischen den Teilkurven dar, an denen sowohl die Funktions-
werte als auch die ersten und zweiten Ableitungen der zusammentreffenden Teilkurven übereinstimmen.

Der im folgenden betrachtete Spezialfall der kubischen Spline-Interpolation ist motiviert durch das Mo-
dell einer dünnen Holzlatte (englisch spline), die an einzelnen Punkten fixiert wird und sich genau wie
ein kubischer Spline mit natürlichen Randbedingungen (natural spline) biegt. Die natürlichen Randbe-
dingungen entsprechen der Situation, dass die Latte außerhalb des Intervalls [a, b] gerade ist.

Im folgenden bezeichnet

‖g‖2 :=
(∫ b

a
|g(x)|2

)1/2

(D.1)

die L2-Norm für Funktionen g ∈ C[a, b]. Die Krümmung einer parametrisierten Kurve g in der Ebene
an der Stelle x ∈ [a, b] ist gegeben durch

κ(x) :=
g′′(x)

(1 + g′(x)2)3/2
. (D.2)

Beschreibt g(x) die Lage einer dünnen Holzlatte, so misst

E =
∫ b

a

(
g′′(x)

(1 + g′(x)2)3/2

)2

dx (D.3)
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die ”Biegeenergie” dieser Latte. Aufgrund des Hamiltonschen Prinzips stellt sich die Latte so ein, dass
diese Energie minimiert wird. Für kleine Auslenkungen g′(x), wie sie typischerweise bei solchen Latten
auftreten, gilt näherungsweise κ(x) ≈ g′′(x) und damit

E ≈
∫ b

a
g′′(x)2dx =

∥∥g′′
∥∥2

2
. (D.4)

Ist g ∈ C[a, b] eine beliebige Funktion und s ein zugehöriger interpolierender kubischer Spline, gilt für
g und s die Beziehung

∥∥s′′
∥∥

2
≤ ∥∥g′′

∥∥
2
. (D.5)

Kubische Splines besitzen also gemäß (D.5) im genäherten Sinne (D.4) minimale Krümmung.

Ein interpolierender kubischer Spline s mit den Stützstellen x0 < x1 < ... < xn−1 < xn und den
zugehörigen gegebenen Funktionswerten yi, i = 0, 1, 2, ..., n ist durch die folgenden Eigenschaften
festgelegt [28, Seite 1126]:

a) s(xi) = yi, i = 0, 1, ..., n
b) s(x) ist für x ∈ [xi, xi+1], i = 0, 1, ..., n− 1 ein Polynom vom Grad 3,
c) s(x) ∈ C2([x0, xn]).

(D.6)

Die Funktionsklasse C2[a, b] besteht aus allen Funktionen f ∈ C[a, b], die auf dem offenen Intervall
]a, b[ stetige Ableitungen f ′, f ′′ besitzen, die sich zu stetigen Funktionen auf [a, b] fortsetzen lassen. Da
ein interpolierender kubischer Spline per definitionem auf jedem Intervall [xi, xi+1], i = 0, 1, ..., n− 1
mit einem Polynom dritten Grades pi ∈ Π3 identisch ist, macht man folgenden Ansatz:

s(x) = pi(x) := ai + bi(x− xi) + ci(x− xi)2 + di(x− xi)3,
s′(x) = p′i(x) = bi + 2ci(x− xi) + 3di(x− xi)2,
s′′(x) = p′′i (x) = 2ci + 6di(x− xi).

(D.7)

Insgesamt wird ein kubischer Spline also durch 4n Koeffizienten ai, bi, ci und di, i = 0, 1, 2, ..., n − 1
bestimmt. An den inneren Stützstellen xi+1 gelten wegen s(x) ∈ C2([x0, xn]), i = 0, 1, 2, ..., n − 2
insgesamt 3(n− 1) Glattheitsbedingungen:

a) Stetigkeit: pi(xi+1) = pi+1(xi+1) (n− 1)
b) einfach stetig differenzierbar: p′i(xi+1) = p′i+1(xi+1) (n− 1)
c) zweifach stetig differenzierbar: p′′i (xi+1) = p′′i+1(xi+1) (n− 1)

(D.8)

Dazu kommen wegen s(xi) = yi, i = 0, 1, 2, ..., n− 1 noch (n + 1) Interpolationsbedingungen:

d) Interpolation: pi(xi) = yi, pn−1(xn) = yn (n + 1) (D.9)

Damit stehen für die Konstruktion eines interpolierenden kubischen Splines mit den (n + 1) Interpolati-
onsbedingungen und den 3(n−1) Glattheitsbedingungen zunächst (4n−2) Gleichungen zur Verfügung.
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Die Festlegung der zwei noch fehlenden Freiheitsgrade erfolgt durch eine der folgenden Randbedingun-
gen:

a) s′′0(x0) = s′′n−1(xn) = 0 natürliche RB,
b) s′0(x0) = y′0, s′n−1(xn) = y′n, eingespannter Rand,
c) s′0(x0) = s′n−1(xn), s′′0(x0) = s′′n−1(xn) periodische RB,
d) s

(3)
0 (x1) = s

(3)
1 (x1), s

(3)
n−2(xn−1) = s

(3)
n−1(xn−1) Not-a-knot-Bedingung.

(D.10)

Neben den gegebenen Funktionswerten yi sollen noch die zweiten Ableitungen y′′i zur Berechnung der
Teilpolynome si(x) verwendet werden. Zuerst definiert man

hi := xi+1 − xi > 0, i = 0, 1, 2, ..., n− 1 (D.11)

die Längen der Teilintervalle [xi, xi+1]. Durch Einsetzen von (D.8) und (D.9) in (D.7) erhält man dann
für die Koeffizienten ai, bi, ci und di für si(x) die Formeln

ai := yi, bi := yi+1−yi

hi
− hi

6 (s′′i+1 + 2s′′i ),

ci := s′′i
2 , di :=

s′′i+1−s′′i
6hi

.
(D.12)

Mit diesen Setzungen liefert die Bedingung der Stetigkeit der ersten Ableitungen (D.8b) an den (n− 1)
inneren Stützstellen xi die (n− 1) gekoppelten linearen Gleichungen

hi−1s
′′
i−1 + 2(hi−1 + hi)s′′i + his

′′
i+1 = gi, i = 1, 2, ..., n− 1, (D.13)

mit

gi := 6
yi+1 − yi

hi
− 6

yi − yi−1

hi−1
. (D.14)

Dies stellt ein lineares Gleichungssystem für die (n−1) Unbekannten s′′1, s
′′
2, ..., s

′′
n−1 dar. Im Fall natür-

licher Randbedingungen s′′0 = s′′n = 0 lassen sich die Gleichungen (D.13) in folgender Form angeben:




2(h0 + h1) h1 0 . . . 0

h1 2(h1 + h2) h2
. . .

...

0 h2
. . . . . . 0

...
. . . . . . . . . hn−2

0 . . . 0 hn−2 2(hn−2 + hn−1)







s′′1
...

s′′n−1


 =




g1
...

gn−1


 (D.15)

Die Koeffizientenmatrix ist symmetrisch, tridiagonal und diagonal dominant. Solche Gleichungssyste-
me haben eine eindeutige Lösung, die beispielsweise mit einem LU-Dekompositionsverfahren durch
Vorwärts- und Rückwärtssubstitution in O(n) Operationen berechnet werden kann.

Es ist wichtig anzumerken, dass diese Zerlegung nur einmal durchgeführt werden muss. Die kubische
Splinefunktion s kann dann mittels (D.7) für jeden Wert von x beliebig oft in O(log n) Operationen
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ausgewertet werden. Routinen zur Berechnung von kubischen Splines finden sich beispielsweise in [24,
Seiten 113-116].

D.2 Bikubische Spline-Interpolation

Die bikubische Spline–Interpolation ist eine häufig verwendete Technik zur Berechnung von kubischen
Splines in zwei Dimensionen. Angenommen, es liegen die Stützwerte zij =: f(xi, yj), i = 0, 1, 2, ..., m,
j = 0, 1, 2, ..., n in Form einer Tabelle vor, dann berechnet man zunächst m eindimensionale Splines
entlang der Zeilen in der Tabelle, gefolgt von einem zusätzlichen eindimensionalen Spline entlang der
neu entstandenen Spalte.

Um den Rechenaufwand zu minimieren, geht man im Regelfall so vor: Man berechnet zunächst die zwei-
ten Ableitungen nur in einer Richtung und speichert die Ergebnisse in Form einer Hilfstabelle ab. Um
einen Funktionswert zu interpolieren, konstruiert man dann m Splines entlang der Zeilen (O(log m)).
Diese dienen als Basis für die Berechnung der zweiten Ableitungen entlang der neuen Spalte (O(n)),
gefolgt von einer O(log n) Operation für die Auswertung.
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