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Fig. 1. Schematic of HADAR: (a) Layout of the HADAR experiment; (b) detailed design of a water-lens telescopel!l.
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Fig. 2. Comparisons of the sensitivity of HADAR with other
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Table 1.  Comparison of the performance of HADAR and other IACT/EAS experiments. For each experiment, the name,

spatial coverage, field of view, energy threshold, angular resolution, point-source ssensitivity and reference are given.

Experiment Hemisphere/(N, S) FOV /st Energy threshold ~ Angular resolution/(°) Sensitivity/Crab  Ref.
Fermi-LAT 2FHL space 2.7 10 GeV—2 TeV 0.1°(30 GeV) 3%—4% [24]
LHAASO-WCDA N 1.5 100 GeV—30 TeV 0.4°(2 TeV) <10% [29]

HAWC N 15 100 sGeV—10 sTeV ~0.5° 5%—10% [9]
H.E.S.S. S 0.006 30 GeV—100 TeV 0.08° 0.4%—2.0% 7
MAGIC N 0.003 50 GeV—10 TeV -0.1° ~0.7% [25]

CTA N, S 0.0048—0.015 20 GeV—300 TeV 0.07°(1 TeV) 0.2%—0.4% [4]
HADAR N 0.84 10 GeV—10 TeV 0.4°(100 GeV) 1.3%—24%  [22]
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7 X AL TE — A ECT I AR AL BT

Fig. 3. Attenuation e~7 of gamma-rays versus gamma-ray
energy, for sources at z = 0.03, 0.1, 0.25, 0.5 and 1.0. Res-
ults are compared for Wilkinson microwave anisotropy
probe 5-year (WMAPS, solid) and WMAP5 + fixed (dash-
dotted violet) models, as well as the model of Dominguez/*®)
(dash-dotted red). Increasing distance causes absorption
features to increase in magnitude and appear at lower ener-
gies. A plateau can be seen between 1—10 TeV at low red-
shift (7.

3.3 NS EZIE SED BI5ME

T Fermi-LAT Al 5 5 2% U5 (1) BE 15 £ 38 Ak
T HADAR X} X $2J5 i LI GE 7, 75 2K R BE 15
Y RE A 2 B REBE. Xl AMBRE AR (AR i, K
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it A ] Hsf (] B ORI 28] F) 8 33 T REA AN — . (HLS
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SR A 50 HASKEI] . Fermi-LAT 4 W8I0 4% 4 —
PREA JUAE LI ) 724 6 53, 1T TAC'T's S50 W ) 1)
P — R 7E L /INBS B LR B [B] PN O & 2 B )
SF. X A% Fermi-LAT 19 SED #4174, T
Fermi-LAT #YN B AE7E 2 FEIAL, VEAXTLL, 4%
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XU P LA 4 500 E EBL W SCR8 A itk 45 bin(E) = Fy (E/Eg) ™" e F/Far, (4)
AN TR, b T A PR A SED 41 fEF] VHE 445 8B B TR A A 2 (LP with

e REBLAY AT REE, KL E A /) VHE SE50
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TR 5 9 B RS IR e S e e Bl H, F, B5%hew By FWIH—fLiiR, I &6
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Fig. 4. Gamma-ray spectral energy distribution for the sources 3C 66A, 1ES 1218+304, PKS 14244240, and PG 15534113
obtained over a wide energy range by extrapolation. The resulting data show that the spectral models using the intrinsic spectral
function and EBL absorption fit the experimental data well. The Fermi-LAT 4FGL data is represented by blue diamonds in the
low-energy band, while in the VHE band the VERITAS data is depicted by yellow circles for the low state and yellow dots for the
different flaring states. Three different red dashed lines represent different spectral function models, while the solid line represents

the Fermi-LAT preferred function. The y-axis represents the flux, which includes the absorption effect of EBL.
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HADAR M/ 4 1~ AGN RS EL, 3 AREISHON ALAC/AFGL S . R LA 5510 AFGL 4

PR IRXT IR AGN 268 SED 4328 | 2188 A8 IZGEH AL T R RB IS5 (8 . XN TERE I Eo ALMIBUIT TR | 1484 I F

EESTee
Table 2.

Property parameters for four AGN sources, where the spectral model parameters are based on 4LAC or 4FGL.

Columns from left to right are as follows: 4FGL source name, counterpart, type, class, redshift, model, Eo , differential flux

at Eo with the fit model, spectral index I', curvature parameter (.

4FGL Name Counterpart Type Class Redshift ~ Model  Ey/GeV  F, /(TeV-'-cm=2s71) r Ié]
J0222.6+4301 3C 66A BLL ISP 0.444 LP 1.197 1.03 x 10—° 1.89 0.04
J1221.3+3010 1ES 1218+304 BLL EHSP 0.184 PL 4.501 1.83 x 1077 1.71 —
J1427.042348  PKS 1424+240 BLL HSP 0.604 LP 1.205 7.03 x 10-¢ 1.71 0.06
J1555.7+1111 PG 15534113 BLL HSP 0.360 LP 1.802 3.84 x 10-¢ 1.54 0.07

FEARTA] 1 P B3 pR R 5 BB R ] Fermi-
LAT MRS HUE B, ek A EBL Wi,
EBL #&%1% ] Dominguez #5574 381 F S o Wz 1A
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I, RSB 25 BN R VHE RTS8 A4, AT LI
AR IR AR 5 IS sl 2. Bk
JEB AR —A VHE T 4 A [ BE 1% £ 5 e
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Fig. 5. Expected energy spectrum for extragalactic sources.
The blue solid line represents BL Lacs, the red dashed line
represents FSRQs, the green solid line represents BCUs, the
black dashed line represents Nonblazar AGN, and the black
solid line indicates the sensitivity of HADAR operating for
1 a.

5 HADAR s 5407 6 i 25 4
T

5.1 #EW#F®

HADAR A Jy o 1 P31 SR e B 586, ml A4
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BN 25U . PR, XU S A R, R
IERAAG TR N RAE AR R TH A AR A5 508 (TR
ARJES) AN S 2R A5 540 A SCRAIFE T KT A
(0 4 R X AR AT A T B VAT, % )
ELARA AT LIS F SCHR [22,23,42], 33X HLA R A
TR

1) & # A4 i HADAR X Fermi-LAT I i WL
M), BT HADAR HAE7E NS W00 A Wit 4)
PR CARRI, PR A0 L B 8 A N VR ) A R
555 LI s ] TR A SRk L s ) B SR — 4 1)
ZER QU RIITINgLIN

2) HEST K ER AR Z AT AR BR R, 450 443
HCEATTHE , ] P AR [ — K TA HAS [) 5 {3 £ L 3
JUAR B SRR IE R T TR AR,

3) Hi4E Fermi-LAT JRIARETE (5 B, TTE N
BRI ST B e Hep
FH AR s F B TR RAAY

NCR(ta97¢):nCR/ENCR(E)ACR(e,E)QdESt. (6)

D SR =81 ) 3BT B A
N"/ (t’ 9, ¢)

0 /E N, (E)e "B A (6, E)dESte, (2), (7)

A, Acr(0, B) Tl A (0, E) 53 5 2 X A5 8 B0
0. et R E T SN =5 B A AL TR,

%3
Table 3.

Ner(E) BFHLEERE, N, (E) & Fermi-LAT Y51
RETE, Q2 JEFES A PRI R ST AR KN, e,(92)
B 68%, ncr S IE ALy /5 5 51 5 T 2k BOAT
TR, 0,y el D, /2 50 5 A 2 = A7
B St SR LI A [R] (14) SRAYE Ao [ [] B 8 31330 P R
BN 25 g R 7 e 7(F02) |

R

# 35 H T 3 F Fermi-LAT 4FGL-DR3 Fil
ALAC-DR3 Ji#, HADAR 43 5iE17 1 a fl 5 a T
S0 LI 1) 1 R YT 2R P R 2R A0 B 2 U5 )
i, HADAR iz17 1 a WA 39 4R ZR A4
2RI LA KT 5 A% 0 08 35 P A o Dt 2 4 L0 21
Horp K4y 0 BL Lacs 2588, 39 N A 34 4
A BL Lacs 287, 2 /> FSRQs 2% (CTA 102,
3C 454.3), 3 AR ZIREAIN AGN (4351
B HL R R NGC 1275, M8T7 Fil B2 1447427). AW
I3 L 2 B AR — R R AR A 45 R
Z2 PN AN Bt 28 VAT 0n i 21, Herp 34 4 ko
FRR 10 A A Bkl 2L XU 2 R B AL, 1A
HtERIERLX. FANAH 3 A ARENZEAEIG IR 6 4>
ARIREZEAIAYYR (unassociated sources) FiHH # WL
WE. & 4 FNZE 5 405080 T Bl MIE AT P I8
MR B, PIZER MR A 6 s, T
T ASORHAT A MR UL A — 21 1.

5.2

HADAR FUWEI SN0 Fermi-LAT JAFHS AL H
Types and numbers of Fermi-LAT sources that HADAR is expected to detect.

4FGL-DR3 source classes

Number of sources Number of sources in Expected to be observed Expected to be observed

in 4FGL-DR3 HADAR FOV by HADAR in 1 a by HADAR in 5 a
Young / Millisecond pulsars 292 106 34 52
PWNe, SNR 63 22 10 13
SNR / PWNe 114 26 0 1
Globular cluster 35 5 0 0
Star-forming region 5 2 1 1
e b v : : :
BL Lacs 1458 492 34 66
FSRQs 792 376 2 5
Blazar candidate of uncertain type 1493 88 0 2
Nonblazar AGN (RDG, AGN, 7 36 3 3
SSRQ, CSS, NLSY1, SEY)
Starburst galaxy 8 3 0 0
Normal galaxy 6 3 0 0
Unkown 134 48 3 7
Unassociated 2157 592 6 25
Total 6658 1805 93 180
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HADAR W3 N Fermi-LAT VSN REIE S 4 OWNNE B, 151280\ ALAC-DR3 . KPR 4314

AFGL AP, WXTRIIR, A2, i, SED 233, 2148, IR, 20 i MY RER S % (0, X RIERER: Eo AR
58, TEERC T, ARS8, AROUIN I [a], UL & 25

Table 4.

class, redshift, model, Eq , differential flux at

Property parameters for extragalactic sources in HADAR FOV, where the spectral model parameters are derived
from 4LAC-DR3. Columns from left to right

are as follows: 4FGL source name, counterpart, right ascension, declination,

Ep with the fit model, spectral index I, curvature parameter 3, live time and

significance.
4FGL name Counterpart R.A. Dec. Type Redshift Model Ey/GeV Fy/(TeV-tcm=2s1) I 8 Time/h S/o
J0112.1+2245 S2 0109+22 18.03 22.75 BLL  0.265 LP 0.769 1.46 x 10—° 1.99 0.060 277.8 9.05
J0211.2+1051 MG1J021114+1051 32.81 10.86 BLL  0.200 LP 0.922 7.51 x 10-¢ 2.02 0.042 196.3 6.47
J0222.6+4302 3C 66A 35.67 43.04 BLL  0.444 LP 1.246 8.40 x 10— 1.89 0.046 264.2 17.9
J0319.8+4130 NGC 1275 49.96 41.51 RDG 0.018 LP 0.918 4.36 x 10° 2.05 0.069 2719 54.6
J0521.742112 TXS 0518+211 80.44 21.21 bl 0.108 LP 1.541 4.64 x 10-° 1.86 0.045 271.0 50.2
J0620.7+2643 RX J0620.6+2644 95.18 26.73  bll 0.134 PL 17.415 1.22 x 10~* 1.5 — 290.3 5.1
J0648.7+1516 RX J0648.7+1516 102.19 15.28 bll 0.179 LP 3.248 1.22 x 1077 1.60 0.056 234.3 10.9
J0650.7+2503  1ES 06474250 102.7 25.05 bl 0.203 LP 2.067 8.44 x 1077 1.65 0.041 286.0 32.9
JO738.1+1742  PKS 0735417  114.54 17.71 bl 0.424 LP 1.623 2.25 x 10-6 1.97 0.067 251.3 5.2
J0809.8+5218  1ES 0806+524  122.46 52.31 BLL  0.138 LP 1.342 1.91 x 10— 1.83 0.023 1939 15.1
J0915.9+2933 Ton 0396 138.99 29.55 bl 0.190 LP 1.390 9.28 x 107 1.74 0.081 2947 74
J1015.0+4926 1H 1013+498 153.77 49.43 bl 0.212 LP 1.044 6.00 x 10-¢ 1.75 0.044 220.0 27.9
J1058.6+5627 TXS 10554567 164.67 56.46 BLL  0.143 LP 1.102 2.38 x 10~ 1.86 0.050 1494 6.1
J1104.4+3812 Mkn 421 166.12 38.21 BLL 0.030 PLEC 1.258 1.79 x 10—° 1.74 — 284.9 519.6
J1117.0+2013 RBS 0958 169.27 20.23 bl 0.139 PL 1.964 3.12 x 1077 1.95 — 266.1 5.0
J1120.8+4212 RBS 0970 170.20 42.20 bll 0.124 LP 2.416 2.11 x 1077 1.55 0.046 268.6 23.9
J1150.6+4154 RBS 1040 177.66 41.91 bl 0.320 LP 1.949 4.71 x 1077 1.55 0.135 270.0 7.2
J1217.9+3007 B2 1215430 184.48 30.12 BLL  0.130 LP 1.248 5.77 x 10-¢ 1.87 0.043 295.1 37.7
J1221.3+3010 PG 12184304 185.34 30.17 bl 0.184 LP 2.590 5.27 x 1077 1.65 0.029 2952 374
J1221.5+2814 W Comae 185.38 28.24  bll 0.102 LP 0.781 6.00 x 10-°¢ 2.11 0.024 293.1 5.5
J1230.2+2517 ON 246 187.56 25.30 bl 0.135 LP 0.800 6.66 x 10-6 2.02 0.056 286.7 5.8
J1230.8+1223 M 87 187.71 12.39 rdg 0.004 LP 1.124 1.30 x 10— 2.00 0.036 210.5 5.3
J1417.9+42543 1E 1415.6+42557 214.49 25.72  bll 0.237 LP 8.155 6.13 x 10~ 1.28 0.138 2879 5.1
J1427.0+2348 PKS 14244240 216.76 23.80 BLL  0.604 LP 1.254 5.70 x 10-¢ 1.71 0.057 281.8 21.7
J1428.5+4240 H 1426+428 217.13 42.68 bl 0.129 PL 5.135 2.69 x 10-% 1.65 — 266.1  10.3
J1449.5+2746 B2 1447427 22240 27.77 rdg 0.031 PL 14.614 5.37 x 10~10 146 — 2924 6.8
J1555.7+1111 PG 1553+113  238.93 11.19 BLL  0.360 LP 3.802 1.16 x 106 1.57 0.095 199.5 56.4
J1653.8+3945 Mkn 501 253.47 39.76 BLL  0.033 LP 1.508 3.78 x 10~ 1.75 0.018 279.5 125.1
J1725.0+1152 1H 17204117 261.27 11.87 bl 0.180 LP 2.216 7.55 x 1077 1.76 0.056 205.9 14.5
J1728.3+5013 I Zw 187 262.08 50.23 bl 0.055 PL 2.983 1.82 x 1077 1.79 — 2132 211
J1838.8+4802 GB6J1838+4802 279.71 48.04 bll 0.300 LP 1.631 8.39 x 107 1.78 0.040 231.3 6.7
J1904.1+3627 MG2J190411+3627 286.03 36.45  bll 0.078 PL 5.074 2.01 x 10-8 1.80 — 289.7 5.8
J2116.2+3339 B2 2114433 319.06 33.66 bl 0.350 LP 1.653 1.10 x 1076 1.75 0.095 2944 7.1
J2202.7+4216 BL Lac 330.69 42.28 BLL  0.069 LP 0.871 4.07 x 10-° 2.12 0.059 268.2 274
J2232.6+1143 CTA 102 338.15 11.73 FSRQ 1.037 PLEC 1.082 4.34 x 10-° 227 — 204.5 5.9
J2250.0+3825 B3 2247+381 342.51 38.42 bl 0.119 PL 5.338 2.55 x 10-8 1.74 — 2842 7.9
J2253.9+1609 3C 454.3 343.50 16.15 FSRQ 0.859 PLEC 0.892 1.32 x 10~* 2.38 — 240.7  10.9
J2323.8+4210 1ES 23214419  350.97 42.18 bll 0.059 LP 1.857 5.31 x 107 1.80 0.068 268.7 11.0
J2347.0+5141  1ES 23444514  356.77 51.70  bll 0.044 LP 1.911 7.15 x 1077 1.74 0.039 199.8 29.2
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# 5 HADAR #¥ P Fermi-LAT i IR A9 REIESEOINE &, 1SN AFGL-DR3 F: . & WA B4 43504 :
AFGL R4 B, IEXIRiAA, kg, 2545, SED 4325, SUA R ZIEEA T RE RS 5 (H, M INERER Eo AWt inse, 1%
R, MPRSEL B, A RO A ], ORI &8 2

Table 5.
4FGL-DR3. Columns from left to right are as follows: 4FGL source name, counterpart, right ascension, declination, class,

Property parameters for galactic sources in HADAR FOV, where the spectral model parameters are derived from

model, Ejp , differential flux at Eo with the fit model, spectral index I', curvature parameter (3, live time and significance.

4FGL Name Counterpart R.A. Dec. Type Model Eg /GeV Fy/(TeV-tecm=%s7!) I B Time/h S/o
J0030.44-0451 PSR J00304-0451 7.61 4.86 MSP PLEC 1.360 7.36 x 10-¢ 2.08 — 130.1  40.6
J0102.8+4839 PSR J0102+4839 15.71 48.66 MSP PLEC 1.378 1.42 x 10— 218 — 226.4 6.0
J0106.4+4-4855 PSR J0106+4855 16.61 48.93 PSR PLEC 1.578 1.66 x 10-° 211 — 2242 14.2
J0218.1+4232 PSR J0218+4232 34.53 42,55 MSP PLEC  0.820 1.20 x 10—° 235 — 266.8 6.2
J0220.14+1155 — 35.04 1192 — PL 16.622 3.98 x 10-10 1.57 — 206.2 5.6
J0340.3+4130 PSR J0340+4130 55.10 41.51 MSP PLEC 1.659 1.38 x 10— 2.03 — 2719 246
J0357.84-3204 PSR J0357+3205 59.46 32.08 PSR PLEC 1.104 1.26 x 10° 230 — 295.5 19.3
J0425.6+5522¢  SNR G150.3+04.5 66.42 55.37 SNR LP 7.240 1.19 x 1077 1.64 0.047 161.8 123.6
J0534.5+2201i Crab Nebula 83.63 22.02 PWN LP 10.000 5.50 x 10~7 1.75 0.080 274.7 639.6
J0540.3+2756¢ Sim 147 85.10 2794 SNR LP 1.192 5.50 x 10-°¢ 2.07 0.081 292.7 11.1
J0554.14+3107 PSR J0554+3107 88.55 31.12 PSR PLEC 1.066 4.06 x 10-° 234 — 295.5 5.1
J0605.14+3757 PSR J0605+3757 91.28 37.96 MSP PLEC 1.507 7.88 x 10~ 218 — 285.7 5.3
J0617.2+2234e 1C 443 94.31 22.58 SNR LP 4.551 2.58 x 10-6 2.28 0.123 2771 37.6
J0620.9+2201 — 95.23 22.02 — PL 20.913 6.45 x 10~10 1.61 — 274.7 5.7
J0631.54+1036 PSR J0631+1036 97.88 10.60 PSR PLEC 1.540 2.52 x 10-6 220 — 193.8 11.1
J0631.840645 PSR J0631+0646 97.96 6.76 PSR PLEC  2.258 7.60 x 10-7 222 — 152.9 5.9
J0633.74+0632 PSR J0633+0632 98.44 6.54 PSR PLEC 1.527 8.13 x 10~ 222 — 150.4  26.3
J0633.9+1746 PSR J0633+1746 98.48 17.77 PSR PLEC 1.670 3.19 x 101 210 — 251.7  B75.7
J0650.64+2055 NVSS J065035+4205556 102.66 20.93 unk LP 3.643 442 x 10-8 1.63 0.096 269.6 9.5
J0751.24+1808 PSR J0751+1807 117.80 18.14 MSP PLEC 1.643 9.45 x 107 2.06 — 254.1 13.1
J1312.740050 PSR J131240051 198.19 0.84 MSP PLEC 1.301 2.01 x 10-¢ 2.15  — 76.3 5.7
J1554.24-2008 — 238.55 20.15 — PL 4.619 1.14 x 108 1.82 — 265.6 5.0
J1816.54+4510 PSR J1816+4510 274.15 45.17 MSP PLEC 1.171 1.48 x 10-° 2.14 — 251.6 6.1
J1836.2+5925 PSR J1836+5925 279.06 59.43 PSR PLEC 1.428 6.64 x 10-° 2.07 — 112.6  388.8
J1846.34+0919 PSR J1846+0919 281.60 9.33 PSR PLEC 1.458 3.78 x 10-¢ 219 — 181.0 149
J1854.542050 — 283.64 20.84 — PL 103.233 2.68 x 10~ 1.01 — 269.2 348
J1857.7+0246e HESS J1857+026 284.45 2.77 PWN PL 6.063 2.25 x 1077 213 — 103.1  19.5
J1907.94+0602 PSR J1907+0602 286.98 6.04 PSR PLEC 1.898 1.39 x 10—° 237 — 1444 313
J1910.84-2856 NVSS J191052+4285621 287.72 28.94 unk PL 7.243 6.08 x 10~ 1.80 — 294.1 7.1
J1911.04+0905 W 49B 287.76  9.09  snr LP 4.552 7.74 x 1077 2.28 0.112 178.6 8.5
J1918.04+0331 NVSS J191803+033032 289.51 3.52 unk PL 12.647 2.39 x 10~ 172 — 113.0 6.2
J1923.2+1408e W 51C 290.82 14.14 SNR LP 2.768 5.08 x 10-°¢ 2.21 0.109 2254 259
J1924.34+1628 — 291.10 16.48 — PL 22.893 7.99 x 10-10 1.76  — 243.1 7.7
J1952.9+43252 PSR J1952+3252 298.25 32.88 PSR PLEC 1.618 9.92 x 10-°¢ 229 — 295.1  39.3
J1954.3+4-2836 PSR J1954+2836 298.59 28.60 PSR PLEC 1.519 8.08 x 10-¢ 232 — 293.7 23.1
J1958.7+2846 PSR J1958+2846 299.68 28.77 PSR PLEC 1.356 1.13 x 10—° 235 — 293.9 211
J2017.44-0602 PSR J20174+0603 304.35 6.05 MSP PLEC 1.800 2.20 x 10-¢ 1.98 — 144.6 432
J2017.943625 PSR J2017+3625 304.49 36.43 PSR PLEC 1.467 6.99 x 10-°¢ 253 — 289.8 5.7
J2021.0+4031e gamma Cygni 305.27 40.52 SNR LP 7.758 2.07 x 10~7 1.88 0.060 276.4 95.9

199501-10


http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1

) 32 2 3R Acta Phys. Sin. Vol. 72, No. 19 (2023) 199501

5 (%) HADAR N Fermi-LAT ¥ IR AEIE SEUR IR B, 35S 80N AFGL-DR3 il RPN AR5
S AFGL IRAFR, IEXTRAK, IR, Jrgh, SED 4338, LG HEL, ZIER A T Rt S5 (8, MNTERE R Eo AbMITIMAR
R, TERREL T, ERSH 6, A RO ], S 25 1

Table 5 (continued). Property parameters for galactic sources in HADAR FOV, where the spectral model parameters are
derived from 4FGL-DR3. Columns from left to right are as follows: 4FGL source name, counterpart, right ascension, declina-
tion, class, model, Eq , differential flux at Eo with the fit model, spectral index I, curvature parameter 3, live time and sig-

nificance.

4FGL Name Counterpart R.A. Dec. Type Model Eg/GeV Fy/(TeV-ltcm=%s7l) I 8  Time/h S/o

f

J2021.14+3651 PSR J2021+3651 305.28 36.86 PSR PLEC 1.842 2.62 x 10-° 232 — 288.8 114.0
J2028.34+3331 PSR J2028+3332 307.08 33.53 PSR PLEC 1.467 6.57 x 106 232 — 294.6 17.5
J2028.6+4110e Cygnus X 307.17 41.17 SFR LP 2.036 2.90 x 10~-° 2.04 0.033 273.5 368.3
J2030.04+-3641 PSR J2030+3641 307.51 36.69 PSR PLEC 1.650 3.92 x 106 233 — 289.2 12.6
J2030.944416 PSR J2030+4415 307.73 44.27 PSR PLEC 1.284 6.77 x 106 247  — 257.2 5.4
J2032.24+4127 PSR J2032+4127 308.06 41.46 PSR PLEC 2.918 3.31 x 106 2.26 — 272.2 47.2
J2035.043632 PSR J2034+3632 308.76 36.54 MSP PLEC 2.456 5.99 x 10-7 217 — 289.5 11.3
J2043.34+1711 PSR J2043+1711 310.84 17.19 MSP PLEC 1.222 3.47 x 106 210 — 247.9 20.9
J2055.84-2540 PSR J2055+2539 313.96 25.67 PSR PLEC 1.279 8.39 x 10-6 2.18 — 287.7 26.6
J2111.444606 PSR J2111+4606 317.86 46.10 PSR PLEC 1.305 4.84 x 106 2.26 — 245.4 11.9
J2214.64+3000 PSR J221443000 333.67 30.01 MSP PLEC 1.090 5.97 x 10-6 2.06 — 295.1 28.8
J2301.9+5855¢ CTB 109 345.49 58.92 SNR LP 3.461 1.57 x 1077 1.91 0.054 119.2 6.8
J2302.74+4443 PSR J2302+4442 345.69 44.72 MSP PLEC 2.049 2.04 x 10-6 2.02 — 254.5 55.8
J2304.0+5406e — 346.01 54.11 — LP 14.034 1.58 x 10-8 1.76 0.127 175.6 18.0
J2323.4+45849 Cas A 350.86 58.82  snr LP 2.232 1.38 x 106 1.87 0.076  120.5 20.9
WD N"’Q’g x“‘%%’ A A® '\59% T P F P NS 9‘0&?@{ @SQ
TR Y N P E PSR LF IR ELE

NN

050,08 AV LV AYAD A AN D NO AN (00 N 00D D> D
@t@?@‘?ﬁéﬁ%@“ﬁﬁ N Q°X°o‘:§t%qz@%\‘ﬁg S0 PP S
PG TGS A @AV oSV VNS oo
A A A PN AN
LEEYEE EE TEEE Q%Qi\

O
& Significance <

D 2.0 DA ) B B D
DI PP B

6 FRIEASRFR (J2000 A 45) N HADAR X Fermi-LAT 5 Y WL &2 2 M 508 O P, b R A v R il SN, T THDAR 12 A T P4 95 B
RFNSSRVRIAR CHR I, 1 2k R Y [ —3—15

Fig. 6. Expected significance sky map of HADAR observations with respect to Fermi-LAT sources in the equatorial coordinates
(J2000 epoch). The map is annotated with extragalactic sources above, and with galactic sources, unknown sources, and unassoci-

ated sources below. Significance levels are displayed in the range of —3 to 15.
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Abstract

High altitude detection of astronomical radiation (HADAR) is an innovative array of atmospheric
Cherenkov telescopes that employs pure water as its medium. By utilizing large-aperture hemispherical lenses,
HADAR can capture atmospheric Cherenkov light, enabling the detection of gamma rays and cosmic rays in the
energy range of 10 GeV to 10 TeV. Compared to traditional Imaging Atmospheric Cherenkov telescopes,
HADAR offers distinct advantages such as a low energy threshold, high sensitivity, and a wide field of view.
The telescope mainly consists of a hemispherical lens with a diameter of 5 m acting as a Cherenkov light
collector, a cylindrical metal tank with a 4 m radius and 7 m height, and an imaging system at the bottom of
the tank. The sky region covered by HADAR is much larger than the current generation of Imaging
Atmospheric Cherenkov Telescopes. The field of view of HADAR can reach up to 60 degrees. Its continuous
scanning capability allows for comprehensive observations of gamma-ray sources throughout the entire celestial
sphere, making it an ideal instrument for studying transient and variable sources. In this study, the
observational capabilities of HADAR are thoroughly investigated using the latest 4FGL-DR3 and 4LAC-DR3
gamma-ray source catalogs from Fermi-LAT. For extragalactic sources, the energy spectra in the high energy
range have been extrapolated to the very high energy range, taking into account the absorption effect caused by
extragalactic background light. By comparing the extrapolated results with existing VHE experimental data,
the feasibility of this extrapolation method has been demonstrated. Through simulated analyses of the
significance of these sources, it is anticipated that HADAR will detect a total of 93 gamma-ray sources with a
significance exceeding 5 standard deviations during one year of operation. These sources comprise 45 galactic
sources, 39 extragalactic sources, 3 sources of unknown type, and 6 unassociated sources.

Keywords: HADAR, atmospheric Cherenkov telescope, gamma-ray source, blazar
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