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Abstract: The Interacting Boson Model is one of the most famous group-theoretical nuclear models,

which established the use of the U(6) symmetry in nuclei, built upon the s, d bosons, which derive

by nucleon pairs. In this article, it is suggested that the symmetric pairs of the valence harmonic

oscillator quanta can be used approximately as the s and d bosons of a new U(6) Boson Model,

applicable in medium mass and heavy nuclei. The main consequence of this interpretation is that the

number of bosons is the number of the pairs of the valence harmonic oscillator quanta, which occur

from the occupation of the Shell Model orbitals by nucleons.
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1. Introduction

Elliott was the first to introduce a group-theoretical nuclear model in 1958, when
he published the Shell Model SU(3) symmetry (or nowadays called the Elliott SU(3)
symmetry) [1–4]. This happened 3 years earlier than the first use of symmetries in high
energies physics in 1961 [5]. With his work, Elliott explained how the nucleons in a valence
shell, which consists of orbitals with a common number of harmonic oscillator quanta,
generate the rotational spectrum. Thus, he bridged the microscopic picture given by
the nuclear Shell Model of Mayer, Haxel, Jensen and Suess [6,7] with the collective, and
especially, with the rotational nuclear properties. Elliott, along with Harvey and Wilsdon,
had applied the Shell Model SU(3) symmetry in the s, d nuclear shell among the harmonic
oscillator magic numbers 8–20. This work begun in 1958 [1] and lasted till 1968 [4].

Afterwards, in 1975, the idea that the nuclear spectrum can be produced using spheri-
cal tensors of degree 0 and 2 (the s, d bosons) was proposed by Arima and Iachello [8]. This
gave rise to the Interacting Boson Model (IBM) [9–12], which supposes that the valence
nuclear shell can be described by the U(6) symmetry. The U(6) symmetry accommodates
three limiting symmetries: the SU(3) symmetry for rotational nuclei, the U(5) symmetry
for vibrational nuclei and the O(6) for the γ- unstable. The connection of the Collective
Model of Bohr, Mottelson [13] and Rainwater [14] with the IBM has also been studied in
Refs. [15–19].

Another U(6) Boson Model is introduced in this article, which is much more similar to
the Elliott SU(3) symmetry. To this purpose, we have to revisit the articles of Rosensteel and
Rowe, where they introduced the so-called Symplectic Model in 1979 [20–22]. In this model,
an Sp(3,R) symmetry is assumed for nuclei, which encloses the Elliott SU(3) symmetry.
A very interesting truncation of the Symplectic Model is the U(3) Boson Model [23–28],
introduced by the same authors, where they elaborate S and D operators, which are
approximately boson operators for medium mass and heavy nuclei.

In this article, we use similar s, d operators as those of the U(3) Boson Model to
introduce a U(6) Boson Model which (a) shall be applicable in medium mass and heavy
nuclei, (b) shall have the same SU(3) irreducible representation (irreps) as those of the
Elliott or the proxy-SU(3) (approximate-SU(3)) symmetry [29–31] and (c) its wave functions
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will be the coherent states of Ginocchio and Kirson [16,17] with the correct values of the
deformation variables of the Bohr–Mottelson Model (β, γ).

In this U(6) Boson Model, the s, d bosons are the symmetric pairs of the valence
harmonic oscillator quanta, in contradiction with the IBM and the Otsuka–Arima–Iachello
(OAI) mapping [32,33], where the s, d bosons come from the valence nucleon pairs. Yet the
algebraic mathematical structure of this U(6) Boson Model is identical with that of the IBM,
in the sense that both models have a U(6) group, which is accompanied by three limits:
the SU(3), the O(6) and the U(5) limit; the only difference among the two models is the
physical interpretation of the s, d bosons and the way to produce the irreps. Specifically, the
irreps of the SU(3) limit of this U(6) Boson Model are identical to those of the Elliott SU(3)
symmetry [1] for valence shells among the 3D harmonic oscillator magic numbers.

The main difference in the derivation of the s, d bosons in this U(6) Boson Model with
the one used in the IBM is that here we mapped a pair of bosons (the harmonic oscillator
quanta) into a new approximate boson (the s, d), while in the IBM, a pair of fermions (the
nucleons) was mapped into an approximate boson. Therefore, in this U(6) Boson Model,
we did not perform a “boson mapping”, in the sense that we did not map a pair of fermions
into a boson. Consequently, in this procedure, no “spurious states” [34] emerge due to a
boson mapping.

2. The Nuclear Shell Model

The Nuclear Shell Model [6,7] is the state-of-the-art theoretical model which describes
the microscopic structure of atomic nuclei. The first assumption of the model is that the
protons and neutrons move inside a mean field potential, which may be represented by the
three-dimensional isotropic harmonic oscillator (3D-HO). Harvey, in Section 4.2 of Ref. [35],
explains in simple words that any effective nucleon–nucleon interaction can be expanded
into terms, out of which the leading term is the harmonic oscillator potential. The second
assumption of the Nuclear Shell Model is the existence of a spin–orbit interaction [6,7],
which leads to the prediction of the so-called nuclear magic proton or neutron numbers 2, 8,
20, 28, 50, 82 and 126, above which large single-particle energy gaps appear. This prediction
was the major success of the Shell Model.

The Hamiltonian of a single particle with mass m, momentum px, py, pz and position
x, y, z in a 3D-HO potential with frequency ω, in the Cartesian coordinate system, reads

h0 =
1

2m
(p2

x + p2
y + p2

z) +
1

2
mω2(x2 + y2 + z2) (1)

The eigenstates of the above Hamiltonian can be expressed either in the Cartesian
coordinate system (x, y, z) as |nz, nx, ny〉, or in the spherical coordinate system (r, θ, φ)
as |n, l, ml〉 [31]. The labels nz, nx, ny represent the harmonic oscillator quanta in each
Cartesian axis, obtaining values 0, 1, 2, . . . , while the n = 0, 1, 2, . . . represents the radial
quantum number and the l, ml stand for the orbital angular momentum and its projection,
respectively. Notice that the bold figure kets |n, l, ml〉 are used to distinguish the spherical
eigenstates from the Cartesian ones |nz, nx, ny〉 in this article. The total number of the
harmonic oscillator quanta for each eigenstate is [36]

N = nz + nx + ny = 2n + l. (2)

A unitary transformation among the |nz, nx, ny〉 and the |n, l, ml〉 eigenstates is pre-
sented in Ref. [31]. Specifically, one may use Equation (5) of Ref. [31] to transform the eigen-
states of the 3D-HO Hamiltonian from the Cartesian to the spherical basis and vice versa.
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For instance, for the p shell with N = 1 number of quanta, the following transformations
can be deduced from the conjugate of Equation (5) of Ref. [31]:

|n, l, ml〉 → |nz, nx, ny〉 :

|0, 1,−1〉 = |0, 1, 0〉 − i |0, 0, 1〉√
2

, (3)

|0, 1, 0〉 = |1, 0, 0〉 , (4)

|0, 1, 1〉 = −|0, 1, 0〉+ i |0, 0, 1〉√
2

, (5)

where i stands for the imaginary unit.
The operators, which annihilate or create a harmonic oscillator quantum in each

Cartesian direction, are the [37]:

ak =

√

mω

2h̄
k +

i√
2mωh̄

pk, a†
k =

√

mω

2h̄
k − i√

2mωh̄
pk, (6)

with k = x, y, z. The operators of Equation (6) satisfy the boson commutation relations [37]:

[ak, a†
k′ ] = δkk′ , [a†

k , a†
k′ ] = [ak, ak′ ] = 0 (7)

with k, k′ = x, y, z. The action of the annihilation and creation operators of Equation (6) on
the Cartesian eigenstates of the 1D-HO is [36]

a†
k |nk〉 =

√

nk + 1 |nk + 1〉 , ak |nk〉 =
√

nk |nk − 1〉 (8)

for nk = 0, 1, 2, . . . and k = x, y, z.
Inspired from the spherical harmonics Yl=1

m (Appendix A.1 of [38]):

Y1
−1 ∝

x − iy√
2

, Y1
0 ∝ z, Y1

1 ∝ − x + iy√
2

, (9)

we may define a slightly different tensor operator ηm and its conjugate ξm = η†
m with

components m = −1, 0, 1 as (see Equation (3.17) of Ref. [39])

η−1 =
a†

x − ia†
y√

2
, ξ−1 =

ax + iay√
2

, (10)

η0 = a†
z , ξ0 = az, (11)

η1 = −
a†

x + ia†
y√

2
, ξ1 = − ax − iay√

2
. (12)

Alternatively,

a†
x =

η−1 − η1√
2

, a†
y = i

η−1 + η1√
2

, a†
z = η0. (13)

In order to keep up with the commutation relations of the spherical tensors of degree
1, we also define (Equation (3.19) of Ref. [39])

ξ̃m = (−1)mξ−m. (14)
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If we express the angular momentum operators in terms of the a†
k , ak, we obtain [37]

Lx = ypz − pyz = i(aya†
z − aza†

y), (15)

Ly = zpx − pzx = i(aza†
x − axa†

z), (16)

Lz = xpy − pxy = i(axa†
y − aya†

x). (17)

The ladder operators of the angular momentum are

L+ = Lx + iLy = axa†
z − aza†

x + i(aya†
z − aza†

y), (18)

L− = Lx − iLy = aza†
x − axa†

z − i(aza†
y − aya†

z). (19)

The ηm, ξ̃m operators satisfy the commutation relations with the angular momentum
operator (Equation (3.21) of Ref. [39]):

[L0, ηm] = mηm, (20)

[L±, ηm] = ∓ 1√
2

√

2 − m(m ± 1)ηm±1, (21)

[L0, ξ̃m] = mξ̃m, (22)

[L±, ξ̃m] = ∓ 1√
2

√

2 − m(m ± 1)ξ̃m±1. (23)

Therefore, the ηm, ξ̃m are spherical tensor operators of degree l = 1.
The physical meaning of the ηm is revealed, when acting on the vacuum eigenstate of

the Hamiltonian h0, namely on the |nz, nx, ny〉= |0, 0, 0〉 orbital:

η−1 |0, 0, 0〉 = |0, 1, 0〉 − i |0, 0, 1〉√
2

, (24)

η0 |0, 0, 0〉 = |1, 0, 0〉 , (25)

η1 |0, 0, 0〉 = −|0, 1, 0〉+ i |0, 0, 1〉√
2

, (26)

where Equations (10)–(12) and (8) were used. Interestingly the right-hand sides of
Equations (24)–(26) are equal to the spherical eigenstates |n, l, ml〉 of Equations (3)–(5),
respectively. Therefore, the operators ηm create a harmonic oscillator quantum with angular
momentum l = 1 and projection of the angular momentum ml = m = ±1, 0, when acting
on the vacuum state.

Since the quanta are bosons, the ηm operators must obey the boson commutators.
Indeed, with the definitions (10)–(12) and the commutators of Equation (7), one may
prove that

[ξm, ηm′ ] = δmm′ , [ηm, ηm′ ] = [ξm, ξm′ ] = 0. (27)

The spin–orbit interaction l · s has to be added in the nuclear Hamiltonian:

h = h0 + υls h̄ωl · s, (28)

where s is the spin of the particle, and υls is the strength parameter of the spin–orbit
interaction (see Table I of [40,41]). The spin–orbit interaction leads to the derivation of the
total angular momentum:

j = l + s. (29)
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Thus, the spinor |s, ms〉 with s = 1
2 and ms = ± 1

2 must also be considered. Conse-
quently, the single-particle states may be written as

|n, l, ml〉 |s, ms〉 = |n, l, ml, ms〉, (30)

|nz, nx, ny〉 |s, ms〉 = |nz, nx, ny, ms〉 , (31)

having in mind that a unitary transformation among the two bases of Equations (30) and
(31) exists [31].

The coupling of the spatial part of the wave function |n, l, ml〉 with the spinor leads to
the Shell Model states:

|n, l, j, mj〉 = ∑
ml ,ms

(lmlsms|jmj)|n, l, ml, ms〉, (32)

with mj being the projection of the total angular momentum and (lmlsms|jmj) being the
Clebsch–Gordan coefficients [42]. The |n, l, j, mj〉 denote the usual Shell Model orbitals,
if one adds 1 unit in the radial quantum number n and represents the angular momentum
l = 0, 1, 2, . . . by the small Latin characters s, p, d, etc. For instance, the orbital |n, l, j, mj〉=
|0, 1, 3

2 , 1
2 〉 is labeled 1p

j=3/2
mj=1/2.

The spherical states |n, l, j, mj〉 can be transformed to the Cartesian states |nz, nx, ny, ms〉,
as in Ref. [31]:

|n, l, j, mj〉 =
∑

nz+nx+ny=2n+l

〈nz, nx, ny, ms|n, l, j, mj〉 |nz, nx, ny, ms〉 (33)

Consequently, one may consider the |nz, nx, ny, ms〉 states as an alternative Shell Model
basis, expressed in the Cartesian coordinate system. The necessity for this Cartesian basis is
demonstrated by Elliott and Harvey in Refs. [3,35].

3. The Shell Model SU(3) Symmetry

A very instructive illustration of the algebraic chains, which lead from the valence
Shell Model space to the Shell Model SU(3) symmetry lies in the Figure 7.1 of Ref. [43]. We
discuss the algebraic chains and their physical meaning in this article for completeness.

The 3D-HO Hamiltonian of Equation (1) has eigenstates, which constitute the harmonic
oscillator shells. The eigenstates of the h0 of the harmonic oscillator shell with N =0, 1, 2, 3,
4, 5, 6 quanta lie among the proton or neutron magic numbers 0–2, 2–8, 8–20, 20–40, 40–70,
70–112 and 112–168, respectively.

Such harmonic oscillator shells, which consist of orbitals with common number of
quanta N , posses the

U(4Ω) = U(Ω)× U(4) (34)

symmetry [1,2], where Ω = (N+1)(N+2)
2 is the number of the spatial harmonic oscillator

eigenstates (for instance the |nz, nx, ny〉 or the |n, l, ml〉), and 4 stands for the four possible

projections of spin and isospin ms = ± 1
2 , mt = ± 1

2 a nucleon may adopt. As an example,
the shell with N = 0 lies among the magic numbers 0–2, contains 1 orbital |0, 0, 0〉, accom-
modates up to 2 protons and 2 neutrons and possesses a U(4) = U(1)× U(4) symmetry.
This U(4Ω) algebra has totally antisymmetric irreps. The U(4) symmetry of the isospin
leads to the Wigner SU(4) symmetry [44].

In order to make the concept of the Shell Model SU(3) symmetry clear, we work out an
example from basic Quantum Mechanics throughout the text. In our example, we suppose
that a nucleus has 2 valence protons in the s, d nuclear shell, which lies among the proton
magic numbers 8–20. This valence shell consists of orbitals with N = 2 number of quanta.
Thus, the 2 protons shall occupy the Cartesian orbital |nz, nx, ny, ms, mt〉 = |2, 0, 0,± 1

2 ,+ 1
2 〉,
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according to the highest weight irrep (see Refs. [2,30,45–47] for the explanation). In this
article, mt = + 1

2 for protons, while mt = − 1
2 for neutrons. The wave function of the

2 protons has to be totally antisymmetric Slater determinant [48], according to the Pauli
Principle [49,50]. If the state:

φms ,mt(i1) = |nz, nx, ny, ms, mt〉i1
=

φ(i1) |ms, mt〉i1
(35)

represents the orbital of the ith
1 nucleon, with the spin–isospin part being

|s, ms〉i1
|t, mt〉i1

= |ms, mt〉i1
= |±,±〉i1

(36)

while the spatial part is

φ(i1) = |nz, nx, ny〉i1
, (37)

then the wave function of the two particles is the Slater determinant:

Φ =
1√
2!

∣

∣

∣

∣

φ++(1) φ−+(1)
φ++(2) φ−+(2)

∣

∣

∣

∣

. (38)

The φms ,mt are the states of the 4Ω space, with Ω = 6 for the s, d nuclear shell.
The irreps of the U(4Ω) symmetry show the ways one may place the Aval objects (valence
protons and neutrons) in the 4Ω states.

Then, the U(4) symmetry is decomposed into the nuclear spin (S) and the nuclear
isospin (T) symmetries:

U(Ω)× U(4) → U(Ω)× [SUS(2)× SUT(2)] (39)

Emphasis has to be given to the fact that the spatial part of the wave function, which
is represented by the U(Ω) algebra, is treated separately by the spin and the isospin part,
which are represented by the SUS(2) and the SUT(2) algebras, respectively.

To make this statement clear, we go on with our example. If the LS coupling scheme is
to be followed, i.e.,

L = ∑
i

li, S = ∑
i

si, J = L + S (40)

(with li, si being the angular momentum and the spin, respectively, of the ith particle),
then the Slater determinant of Equation (38) can be decomposed into a spatial part and a
spin–isospin part:

Φ = (φ(1)φ(2))
(

1√
2!
(|++〉1 |−+〉2 − |++〉2 |−+〉1)

)

. (41)

Obviously, the spatial part of the wave function is

Φspace = φ(1)φ(2) (42)

and it is totally symmetric in the transposition of the two particles, while the spin–isospin
part is

Φspin−isospin =
1√
2!
(|++〉1 |−+〉2 − |++〉2 |−+〉1) (43)
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and it is totally antisymmetric in the transposition of the particles. The overall product of
the wave functions

Φ = Φspace · Φspin−isospin (44)

is thus antisymmetric, as it should be according to the Pauli Principle. The spatial part of
the wave function possesses the U(Ω) symmetry, while the spin–isospin the U(4).

This is the very essence of the LS coupling scheme: that the spatial part of the nuclear
wave function generates the nuclear angular momentum L, the spinor part generates the
nuclear spin S and that one may treat these two parts separately, as long as the product of the
two of them respects the Pauli Principle for the multifermion system. The antisymmetry of
the overall multinucleon wave function is guaranteed if the Young diagram of spin–isospin
part (U(4)) is the conjugate of the Young diagram of the spatial part (U(Ω)). The interested
reader can find more details about this conjugation in Section 7.1.2 of Ref. [43] of Draayer’s
chapter or in Chapter 29 of Talmi’s book [51]. This separation of the spatial wave function
from the spin–isospin part is achieved in the LS coupling scheme and leads to the Shell
Model SU(3) symmetry.

A significant spin–orbit splitting of the single-nucleon energies may cause the rise
of the spin–orbit-like shells, among proton or neutron numbers 6–14, 14–28, 28–50, 50–82,
82–126 and 126–182 [7]. These shells consist of some harmonic oscillator eigenstates
with N quanta and some others with N + 1 quanta (see Table 7 of Ref. [31]), and so the
U(4Ω) = U(Ω)× U(4) symmetry no longer has a straightforward application.

One of the possible ways [52,53] to overpass this problem is the use of the proxy-SU(3)
symmetry [29,54,55]. In this type of approximate symmetry, one may apply a unitary
transformation in the intruder orbitals with N + 1 quanta [31], so as to transform them to
their de Shalit–Goldhaber counterparts [56]. This unitary transformation [57] reduces the
total number of quanta of the intruder orbitals by 1 unit (N + 1 → N ), and it is similar in
spirit with the unitary transformation introduced in the pseudo-SU(3) symmetry [58–60].

The advantages of the proxy-SU(3) symmetry are the following:

(a) The relation of the intruder orbitals to their proxies is based on the experimental
observations of de Shalit and Goldhaber [56] and of Cakirli, Blaum and Casten [61];

(b) The unitary transformation used in the proxy-SU(3) symmetry leaves the normal
parity orbitals (those with N quanta) intact and affects only the intruder orbitals
(those with N + 1 quanta);

(c) The proxy transformation affects only the z-axis of the intruder orbitals, and so the
the number of quanta in the x, y plane is conserved. This means that the projection of
the total and the orbital single-particle angular momenta, which are good quantum
numbers in the deformed nuclei [62,63], are not affected by the transformation. We
have zero error in the prediction of the band label K and minimum error in the cutoff
of the nuclear angular momentum (Lmax) for each band [31].

Furthermore, the irreps of the proxy-SU(3) symmetry gave parameter-free predictions
for the prolate–oblate transition [30] and for the islands of inversion and shape coexis-
tence [45,64], while within a single parameter, they gave promising early stage results for
the binding and the two-neutron separation energies [65].

As a result, in a harmonic oscillator shell, one may use the U(4Ω) = U(Ω) × U(4)
symmetry in a straightforward way, as in Refs. [1–4], while in a spin–orbit-like shell, the
U(4Ω) = U(Ω) × U(4) can be approximately applied within the proxy-SU(3)
scheme [30,31,66]. The gain is that in any of the two types of shells, the spatial U(Ω)
symmetry exists and is decomposed as [1,2]

U(Ω) ⊃ U(3) ⊃ SU(3) ⊃ SO(3) ⊃ SO(2), (45)



Symmetry 2023, 15, 455 8 of 23

Clearly, the Shell Model SU(3) symmetry derives from the spatial U(Ω) symmetry.
The labels of each of the above symmetries are [38]

[ f ] = [ f1, f2, ..., fΩ] : for the U(Ω),

[ f1, f2, f3] : for the U(3),

(λ, µ) : for the SU(3),

L : for the SO(3),

M : for the SO(2), (46)

where M is the projection of the nuclear orbital angular momentum.
In our example (the one of the two protons in the s, d shell), the irrep of the U(Ω = 6) is

[2, 0, 0, 0, 0, 0]; since the two protons occupy the same |nz, nx, ny〉 orbital, the irrep of the U(3)
is [4, 0, 0], since in the highest weight irrep f1 = ∑i niz, f2 = ∑i nix and f3 = ∑i niy [2,46],
and (λ, µ) = (4, 0), since λ = f1 − f2 and µ = f2 − f3. The subscript i is for every valence
nucleon. Therefore, the spatial part of the Shell Model SU(3) wave function is labeled as

Φspatial([ f ](λ, µ)). (47)

The spin–isospin part, which is the conjugate of the spatial, is labeled by the nuclear
spin S, the nuclear isospin T = ∑i ti and their projections MS, MT :

Φspin−isospin(T, MT , S, MS) (48)

In our example, S = 0, MS = 0, T = 1 and MT = 1. Thus, the overall nuclear wave
function is labeled by the [3]:

Φ(TS[ f ](λ, µ)MT MS). (49)

Despite the fact that the overall Shell Model SU(3) wave function is labeled by both
the spatial and the spin–isospin irreps, one has to remember that the U(3) and SU(3) lie
solely in the spatial part of the state, and this is the privilege of the LS coupling scheme.

The Shell Model U(3) algebra is generated by the nine Cartesian generators of the
form [3,35]:

Gk,k′ = a†
k ak′ , with k, k′ = x, y, z. (50)

The three components of the angular momentum Lz, L±, the five components of the
quadrupole operator Qm, m = ±2,±1, 0 and the number (of quanta) operator can be ex-
pressed as linear combinations of the generators of Equation (50), and their commutators close
the U(3) algebra [1,2].

Taking advantage of the equivalence of the ηm, ξm with the a†
k , ak operators, which

derives from the Equations (10)–(12), one may construct the spatial U(3) algebra of a valence
shell from the spherical quanta states. In this scenario, the quanta are created by spherical
tensors of degree l = 1, and thus they may be arranged according to the three components
m = ±1, 0, instead of being arranged according to the three Cartesian directions of the
Elliott–Harvey point of view [3,35]. The U(3) algebra of the spherical quanta is generated
by the nine operators of the form:

Am,m′ = ηmξm′ , with m, m′ = ±1, 0. (51)

Using the boson commutators, (27) along with the identity

[AB, CD] = A[B, C]D + C[A, D]B

+[A, C]BD + CA[B, D], (52)
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one may calculate all the commutators of the type [Am,m′ ,Am′′ ,m′′′ ] with m, m′, m′′, m′′′ =
±1, 0 and produce the Multiplication Table (see Table 1). Since the set of generators of an
algebra is not unique, one may consider the Gk,k′ of the expression (50) and the Am,m′ of
(51) as two generator sets of the Shell Model U(3) algebra.

Table 1. Multiplication table of the U(3) algebra, which is generated by the operators Am,m′ . For in-

stance, [A1,0,A1,1]= −A1,0.

Am,m′ A1,1 A1,0 A1,−1 A0,1 A0,0 A0,−1 A−1,1 A−1,0 A−1,−1

A1,1 0 A1,0 A1,−1 −A0,1 0 0 −A−1,1 0 0
A1,0 −A1,0 0 0 A1,1−A0,0 A1,0 A1,−1 −A−1,0 0 0
A1,−1 −A1,−1 0 0 −A0,−1 0 0 A1,1−A−1,−1 A1,0 A1,−1

A0,1 A0,1 A0,0−A1,1 A0,−1 0 −A0,1 0 0 −A−1,1 0
A0,0 0 −A1,0 0 A0,1 0 A0,−1 0 −A−1,0 0
A0,−1 0 −A1,−1 0 0 −A0,−1 0 A0,1 A0,0−A−1,−1 A0,−1

A−1,1 A−1,1 A−1,0
A−1,−1

−A1,1
0 0 −A0,1 0 0 −A−1,1

A−1,0 0 0 −A1,0 A−1,1 A−1,0 A−1,−1−A0,0 0 0 −A−1,0

A−1,−1 0 0 −A1,−1 0 0 −A0,−1 A−1,1 A−1,0 0

4. The Shell Model SU(3) States

When one is working in the level of the U(Ω) symmetry, the irreps [ f1, f2, . . . , fΩ]
represent with how many and with which ways the “objects” can be placed in the Ω

“states”. In this level, the “objects” are the indistinguishable valence nucleons, and the
“states” are the spatial orbitals |nz, nx, ny〉. Draayer, Leschber, Park and Lopez in Ref. [67]
accomplished the U(Ω) ⊃ U(3) decomposition. This is a pure mathematical procedure,
but what is the physical meaning of this decomposition?

The fact is that when one is working on the level of the U(3) symmetry, the irreps
[ f1, f2, f3] represent in how many many ways one may place the “objects” in a three-
dimensional space. Now, the three dimensions are the Hermite polynomials |nz = 1〉,
|nx = 1〉 and |ny = 1〉, which are eigenstates of the harmonic oscillator, while the “objects”
are the indistinguishable harmonic oscillator quanta, which derive from the placement of
the nucleons in the |nz, nx, ny〉 states. For instance, the Shell Model U(3) irrep [ f1, f2, f3] =
[2, 1, 0] is about two quanta, which have occupied the state |nz = 1〉 and about one quantum
in the state |nx = 1〉. Therefore, the objects of the U(3) wave functions are not the nucleons
anymore but the quanta. Thus, the many nucleon wave functions of the U(Ω) symmetry
are being decomposed to the many quanta wave functions of the U(3) symmetry. This is the
very meaning of the decomposition Draayer et al. accomplished in Ref. [67]. The U(3) irreps
[ f1, f2. f3] show with how many and with which ways one may transpose the harmonic
oscillator quanta in the three Cartesian axes. Each transposition of the harmonic oscillator
quanta is equivalent with a spatial rotation [68].

The third article of the Shell Model SU(3) symmetry was written by Elliott and Harvey.
Harvey wrote another article (see Ref. [35]) where he explained the details of the model.
We now focus on Equation (3.15) of Section 3.3 of Harvey’s article in Ref. [35]. There, he
presented that the U(3) wave function is made of states:

|pqr〉i1,...,ip+q+r
= a†

i1za†
i2z...a†

ipza†
ip+1x...a†

ip+qx

a†
ip+q+1y...a†

ip+q+ry |0〉 . (53)

The dagger operators are those introduced in Equation (6). The labels i1, . . . , ip+q+r

take the values 1, 2, 3, . . . , Aval , where Aval is the valence number of nucleons. It is possible
that a particle number may appear more than once, or not at all; so, it is possible that
i1 = i2 = 1. The a†

i1z |0〉 represents a quantum on the z-axis from the ith
1 particle. Clearly,

in the state of Equation (53), there are p quanta on the z-axis, q quanta in the x-axis and
r quanta in the y-axis. So, the numbers 1, 2, . . . , p, p + 1, . . . , p + q, p + q + 1, . . . , p + q + r
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enumerate the quanta, which are the “objects” of the U(3) symmetry. Indeed, the quanta
are being enumerated, and this is necessary for the construction the particle-number Young
tableau of the U(3) states, which is discussed afterwards. The vacuum |0〉 is the state of
no quanta:

|0〉 = [ f1 = 0, f2 = 0, f3 = 0]. (54)

The many-quanta U(3) wave function of Equation (53) can be represented by a Young
tableau. Each box in a Young tableau is an “object”, which in the case of the Shell Model
U(3) symmetry is a harmonic oscillator quantum in one Cartesian axis. A general quantum-
number (left) and particle-number (right) Young tableau [38] of the Shell Model U(3)
symmetry looks like:

z z . . . . . . z

x . . . . . . x

y . . . y

1 2 3 . . . . . .
. . . . . . . . . . . .
. . . . . . . . . (55)

The labels z, x, y on the left signify a quantum in the z, x, y Cartesian axis, respectively.
The numbers on the right enumerate the quanta, take values 1, 2, . . . , p, p + 1, . . . , p + q, p +
q + 1, . . . , p + q + r using Harvey’s notation (Equation (3.15) of Ref. [35]) and can be placed
in the boxes so as to increase from left to the right and from up to down [38]. The position
of the numbers indicates the permutation symmetry of the quanta. The permutation of the
quanta is discussed extensively in Ref. [46].

It is common practice that, in a U(3) Young tableau, a column with three boxes is
erased. The equivalent SU(3) Young tableaux is

z z . . . . . . z

x . . . . . . x

1 2 3 4 . . .
. . . . . . . . . . . . (56)

In general, two boxes in a row of a Young tableau

z z 1 2 (57)

represent a symmetric pair of quanta, while two boxes in a column

z

x

1
2 (58)

correspond to an antisymmetric pair of quanta. At this point, recall that, since the quanta
are bosons, they can form symmetric and antisymmetric pairs, in contradiction with the
fermions, which can form only antisymmetric pairs. From the above, it becomes clear
that the Shell Model U(3) symmetry has to do with harmonic oscillator quanta, which are
bosons and are coupled into symmetric or into antisymmetric pairs.

The Shell Model SU(3) labels for the highest weight irrep are [2,46]

λ = f1 − f2 = ∑
i

niz − ∑
i

nix, (59)

µ = f2 − f3 = ∑
i

nix − ∑
i

niy. (60)

A general irrep (λ, µ) with µ 6= 0 represents an SU(3) state of mixed symmetry, i.e., it
is not totally symmetric [46].

Now, we may return to our example, the one of the two protons in the s, d shell.
The quantum-number and particle-number Young tableaux of this example are

z z z z 1 2 3 4 . (61)
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This state has a U(3) irrep [ f1, f2, f3] = [4, 0, 0], or an SU(3) irrep (λ, µ) = (4, 0) [2].
The question now is if we can construct the above state by symmetric pairs of quanta.

Two symmetric pairs of quanta in the z-axis are represented by the Young tableaux:

z z 1 2 , z z 3 4 . (62)

Each of the two Young tableaux have a U(3) irrep [ f1, f2, f3] = [2, 0, 0], or SU(3) irrep
(λ, µ) = (2, 0) [2]. The above two Young tableaux can be coupled (outer product) into a
new Young tableau. The rules for the coupling are described in Refs. [68,69] and can be
accomplished by the online code of Ref. [70], or even by the code of Ref. [71], which has far
more reaching capabilities than this task. The results of this outer product are

z z 1 2 ⊗ z z 3 4 =

z z z z 1 2 3 4 ⊕

z z

x x

1 2
3 4 ⊕

z z z

x

1 2 3
4 . (63)

The first quantum-number and particle-number Young tableau in the r.h.s. of the
above equation is the fully symmetric state of the four quanta, while the remaining two
occurrences correspond to spatial rotations (Figure 3 of Ref. [68]). Consequently, the
fully symmetric state of (61) may result from the symmetric coupling of two pairs of
symmetric quanta.

5. The U(3) Boson Model

The Symplectic Model [20–22] uses the Sp(3,R) algebra. This algebra is spanned by
the 21 generators of the type:

B†
kk′ = B†

k′k =
1

2

A−1

∑
i=1

a†
ika†

ik′ , (64)

Bkk′ = Bk′k =
1

2

A−1

∑
i=1

aikaik′ , (65)

Ckk′ =
1

2

A−1

∑
i=1

(a†
ikaik′ + aik′ a

†
ik), (66)

where A is the mass number and the i enumerates the nucleons (protons or neutrons).
Consider that the eigenvalue of the Ckk′ operator is labeled as Nkk′ . The commutators
among the generators of the Symplectic Model are given by Equations (2.2) of Ref. [27] (just
be aware of the factor 1

2 in the definitions). Of special interest is the commutator:

[Bkk′ ,B†
k′′k′′′ ] =

1

4
(Ck′′′k′δkk′′ + Ck′′′kδk′′k′ + Ck′′k′δkk′′′ + Ck′′k′δk′k′′′). (67)

The spherical tensors of zero degree were to be used in the U(3) Boson Model [23]:

B†
0 =

√

2

3
(B†

xx + B†
yy + B†

zz), B0 = (B†
0)

†, (68)

C0 = Cxx + Cyy + Czz. (69)
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The commutator among them is

[B0,B†
0 ] =

2

3
C0. (70)

The eigenvalue of C0 is

N0 =
A−1

∑
i=1

(nix + niy + niz +
3

2
) (71)

Rosensteel and Rowe defined the following operators [23]:

S† =

√

3

2N0
B†

0 , S =

√

3

2N0
B0, (72)

whose commutator is

[S ,S†] =
C0

N0
= I +

C0 − N0 I

N0
, (73)

where I is the identity operator. For medium mass or heavy nuclei, the number of quanta
N0 is indeed a large number N0 ≫ 1, and so

[S ,S†] ≈ I (74)

Similarly, the spherical tensors of degree 2 were introduced [23]:

D†
M =

√

3

2N0
B2†

M , DM =

√

3

2N0
B2

M, (75)

where the B2†
M and the B2

M are given by Equations (22) and (23) of Ref. [28] (just be aware of

the factor 1
2 in the definitions). The commutator among them for medium mass and heavy

nuclei, where N0 ≫ 1, is

[DM,D†
M] ≈ I. (76)

As a result, one may consider that the above S and D operators are approximately
bosons. Certain combinations of them form the generators of the U(3) boson algebra of the
U(3) Boson Model.

6. A U(6) Boson Model

Now, we may revise the procedure used for the introduction of the U(3) Boson Model
to create a U(6) Boson Model, which is appropriate to describe the collective features of the
valence nucleons. At this point, we have to be aware that the operators of Equation (64)
cause particle excitations to two shells above. However, here, we intend to introduce a U(6)
Boson Model to describe a nucleus with nucleons below the Fermi level, without particle
excitations to two shells above. To this purpose, suppose that a pair of protons or neutrons
occupies the Shell Model orbital |nz, nx, ny, ms〉 of the valence shell. In this case, the
numbers ∑i niz, ∑i nix, ∑i niy are always even numbers, because two particles occupy the
same orbital. The nucleon pair consists of the ith nucleon ( where i is an odd number 1, 3, 5,
etc.) and by the i′th nucleon (with i′ being the next even number i′ = i + 1= 2, 4, 6, etc.).

We may define the operators:

B†
kk′ =

1

2

A−1

∑
i=1,3,5,...

(a†
ika†

i′k′ + a†
ik′ a

†
i′k), with i′ = i + 1 and k, k′ = x, y, z. (77)
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The B†
kk′ creates a symmetric pair of quanta in the (k, k′) axes deriving from the pair of

the (ith, i′th) nucleons. The Bkk′ is simply its conjugate Bkk′ = (B†
kk′)

†.

Since B†
kk′ = B†

k′k, there exist six types of such operators in the Cartesian form:

B†
xx B†

xy B†
xz B†

yy B†
yz B†

zz.

Proof. We shall prove that these operators satisfy the same commutation relation as the
Equation (67). Consequently, we can mimic the derivation of boson operators in the U(3)
Boson Model to derive similar, yet different, s, d boson operators. These new operators,
when acting on the vacuum, will form symmetric pairs of quanta, which derive from the pairs of
the nucleons of the valence shell, while on the contrary, the relevant operators of the Symplectic
Model and the U(3) Boson Model excite a nucleon from the valence shell to two shells
above (this is called a 2h̄ω particle excitation).

The boson commutator of Equation (7) for different particles (i, i′) becomes

[aik′ , a†
i′k] = δii′δkk′ . (78)

If i = i′:

aik′ a
†
ik′ = δkk′ + a†

ik′ aik′ . (79)

Using the above, the generator of the Elliott U(3) symmetry (see Equation (66)) can be
written as

Ckk′ =
A

∑
i=1

(

a†
ikaik′ +

δkk′

2

)

⇒

A

∑
i=1

(

a†
ikaik′

)

= Ckk′ −
A

∑
i=1

(

δkk′

2

)

⇒

A

∑
i=1

(

a†
ikaik′

)

= Ckk′ −
A

2
δkk′ . (80)

where the summation is for every particle.
The commutator is

[Bkk′ , B†
k′′k′′′ ] =

1

4

A

∑
i=1,3,5,...

(

[ai′k′ aik, a†
ik′′ a

†
i′k′′′ ] + [ai′k′ aik, a†

ik′′′ a
†
i′k′′ ] + [ai′kaik′ , a†

ik′′ a
†
i′k′′′ ] + [ai′kaik′ , a†

ik′′′ a
†
i′k′′ ]

)

. (81)

We calculate each of the four commutators from the above relation with the help of
the identity (52) and through Equations (78) and (79):

[ai′k′ aik, a†
ik′′ a

†
i′k′′′ ] = a†

i′k′′′ ai′k′δkk′′ + a†
ik′′ aikδk′k′′′ + δk′k′′′δkk′′ , (82)

[ai′k′ aik, a†
ik′′′ a

†
i′k′′ ] = a†

i′k′′ ai′k′δkk′′′ + a†
ik′′′ aikδk′k′′ + δk′k′′δkk′′′ , (83)

[ai′kaik′ , a†
ik′′ a

†
i′k′′′ ] = a†

i′k′′′ ai′kδk′k′′ + a†
ik′′ aik′δkk′′′ + δkk′′′δk′k′′ , (84)

[ai′kaik′ , a†
ik′′′ a

†
i′k′′ ] = a†

i′k′′ ai′kδk′k′′′ + a†
ik′′′ aik′δkk′′ + δkk′′δk′k′′′ . (85)
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If we substitute these four equations into (81), we obtain

[Bkk′ , B†
k′′k′′′ ] =

1

4

A−1

∑
i=1,3,5,...

[(a†
i′k′′′ ai′k′ + a†

ik′′′ aik′)δkk′′ + (a†
ik′′ aik + a†

i′k′′ ai′k)δk′k′′′

+(a†
i′k′′ ai′k′ + a†

ik′′ aik′)δkk′′′ + (a†
ik′′′ aik + a†

i′k′′′ ai′k)δk′k′′ ]

+
A−1

∑
i=1,3,5,...

(δk′k′′′δkk′′ + δk′k′′δkk′′′ + δkk′′′δk′k′′ + δkk′′δk′k′′′) =

1

4

A

∑
i=1

(a†
ik′′′ aik′δkk′′ + a†

ik′′ aikδk′k′′′ + a†
ik′′ aik′δkk′′′ + a†

ik′′′ aikδk′k′′)

+
A

2
(δk′k′′′δkk′′ + δk′k′′δkk′′′ + δkk′′′δk′k′′ + δkk′′δk′k′′′). (86)

If we make use of Equation (80), the above commutator becomes

[Bkk′ , B†
k′′k′′′ ] =

1

4
(Ck′′k′δkk′′ + Ck′′kδk′k′′′ + Ck′′k′δkk′′′ + Ck′′′kδk′k′′). (87)

This result is identical with the commutator of Equation (67).

Consequently, we can use these B†
kk′ operators to define boson operators for medium

mass and heavy nuclei, where N0 ≫ 1, just like Rowe and Rosensteel carried out in the
U(3) Boson Model.

Boson Operators in the Spherical Form

In the following, we give the expressions of the spherical tensor operators of degree
zero and two in this scheme. The interesting thing which has occurred is that anything
which is constructed by the Cartesian operators aik, a†

i′k in the Shell Model SU(3) symmetry
can be equally constructed by the spherical operators ξ̃im = (−1)mξim, ηim.

Since the ηim are spherical tensors of degree 1, one may couple a pair of them to create
a spherical tensor of degree:

(a) L = 0;
(b) L = 1;
(c) L = 2.

We may define the spherical operator BL†
M , which creates a symmetric pair of quanta

with angular momentum L and projection M deriving from the i, i′ = i + 1 particles:

BL†
M =

A−1

∑
i=1,3,5,...

∑
m,m′

(1m1m′|LM)ηimηi′m′ , (88)

where (1m1m′|LM) is a Clebsch–Gordan coefficient. The tilde operators, in order to ensure
that the B̃L

M are spherical tensors, follow the relation:

B̃L
M = (−1)L−M

(

BL†
−M

)†
. (89)

Explicitly, through the calculation of the Clebsch–Gordan coefficients of Equation (88),
the new creation operators for a pair of spherical quanta result to the expressions:

B0†
0 =

A−1

∑
i=1,3,5,...

1√
3
(ηi1ηi′−1 + ηi−1ηi′1 − ηi0ηi′0), (90)
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B2†
−2 =

A−1

∑
i=1,3,5,...

ηi−1ηi′−1, (91)

B2†
−1 =

A−1

∑
i=1,3,5,...

1√
2
(ηi−1ηi′0 + ηi0ηi′−1) (92)

B2†
0 =

A−1

∑
i=1,3,5,...

1√
6
(ηi1ηi′−1 + ηi−1ηi′1) +

√

2

3
ηi0ηi′0, (93)

B2†
1 =

A−1

∑
i=1,3,5,...

1√
2
(ηi1ηi′0 + ηi0ηi′1), (94)

B2†
2 =

A−1

∑
i=1,3,5,...

ηi1ηi′1, (95)

while, following the identity (AB)† = B† A† and Equation (89), we obtain the tilde annihi-
lation operators.

The same operators can be written in terms of the Cartesian operators using the
correspondence of the Equations (10)–(12):

B0†
0 =

A−1

∑
i=1,3,5,...

− 1√
3

(

a†
ixa†

i′x + a†
iya†

i′y + a†
iza†

i′z

)

, (96)

B2†
−2 =

A−1

∑
i=1,3,5,...

1

2

(

a†
ixa†

i′x − a†
iya†

i′y − i
(

a†
ixa†

i′y + a†
iya†

i′x
)

)

, (97)

B2†
−1 =

A−1

∑
i=1,3,5,...

1

2

(

a†
ixa†

i′z + a†
iza†

i′x − i
(

a†
iya†

i′z + a†
iza†

i′y
)

)

, (98)

B2†
0 =

A−1

∑
i=1,3,5,...

− 1√
6

(

a†
ixa†

i′x + a†
iya†

i′y

)

+

√

2

3
a†

iza†
i′z, (99)

B2†
1 =

A−1

∑
i=1,3,5,...

−1

2

(

a†
ixa†

i′z + a†
iza†

i′x + i
(

a†
iya†

i′z + a†
iza†

i′y
)

)

, (100)

B2†
2 =

A−1

∑
i=1,3,5,...

1

2

(

a†
ixa†

i′x − a†
iya†

i′y + i
(

a†
ixa†

i′y + a†
iya†

i′x
)

)

. (101)

In other words, if we use the definition (77):

B0†
0 = − 1√

3

(

B†
xx + B†

yy + B†
zz

)

, (102)
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B2†
−2 =

1

2

(

B†
xx − B†

yy − 2iB†
xy

)

, (103)

B2†
−1 = B†

xz − iB†
yz, (104)

B2†
0 = − 1√

6

(

B†
xx + B†

yy

)

+

√

2

3
B†

zz, (105)

B2†
1 = −B†

xz − iB†
yz (106)

B2†
2 =

1

2

(

B†
xx − B†

yy

)

+ iB†
xy. (107)

If we compare these equations with the Equations (22a–22d) of Ref. [28], we observe that

B0†
0 = −

√
2B†

0 , B2†
M =

√
2B2†

M . (108)

In accordance with the definitions (72) and (75), the new boson operators are

s† = −
√

3

4N0
B0†

0 , d†
M =

√

3

4N0
B2†

M . (109)

In the large N0 limit, these operators satisfy the boson commutation relations approxi-
mately, since the commutator of Equation (87) is identical with the commutator (67).

For brevity, we label the bosons as bL†
M :

b0†
0 = s†, b2†

M = d†
M. (110)

The commutators among them in the large N0 limit are (see Equations (4.4a), (4.4b) of
Ref. [27])

[bL†
M , bL′†

M ] = [bL
M, bL′

M′ ] = 0, (111)

[bL
M, bL′†

M′ ] = δLL′δMM′ . (112)

Therefore ,we can use these boson operators to construct a U(6) algebra with genera-
tors of the type:

bL†
M bL′

M′ (113)

where L, L′ = 0, 2.The algebraic structure of this model is identical with that of the Inter-
acting Boson Model (IBM) of Arima and Iachello [8], in the sense that both models have a
U(6) algebra and three limiting symmetries (the O(6), the U(5) and the SU(3) limits). So
this U(6) Boson Model has an SU(3) subalgebra, just like there is an SU(3) limit for the
IBM. The main difference with the IBM is that the bosons of this U(6) Boson Model come
from symmetric pairs of harmonic oscillator quanta, which derive from pairs of nucleons
in the same Shell Model orbital.

The number operator in our case is the number of the pairs of quanta:

Nb = ∑
L,M

bL†
M bL

M =
∑

A
i=1(niz + nix + niy)

2
. (114)
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Let the round ket |NbL
M
) represent the state with a certain number NbL

M
of symmetric

pairs of quanta with angular momentum L and projection M, deriving from pairs of
nucleons in the same orbit for medium mass or heavy nuclei with N0 ≫ 1. If the eigenvalue
of s†s is Ns and of d†

MdM is NdM
, then:

Nb = Ns + ∑
M

NdM
. (115)

7. The Coherent States

The coherent states were introduced by Ginocchio and Kirson in Refs. [16,17] in order
to link the IBM with the Collective Model of Bohr and Mottelson [72]. The authors defined
the boson creation operator as [16]:

Q†(β, γ) =

1
√

1 + β2

(

s† + β cos γd†
0 +

1√
2

β sin γ(d†
2 + d†

−2)

)

, (116)

where β is the quadrupole deformation variable, while γ is an angle, which shows the kind
of deformation (prolate, oblate and spherical). Accordingly, the coherent state is defined
as [17]

|Nb; β, γ〉 = 1√
Nb!

[Q†(β, γ)]Nb |0). (117)

In the SU(3) limit of the IBM, the deformation is equal to β =
√

2, while the angle γ

may adopt any value (see Chapter 13 of Ref. [73]) and N is the number of bosons, which
approaches the infinity in the coherent states of the SU(3) limit of the IBM. Luckily, in
this U(6) Boson Model, the number of quanta and of the pairs of quanta is Nb ≫ 1, since
N0 ≫ 1 for medium mass and heavy nuclei.

The corresponding shape for selected values of the γ is presented in the book by
Greiner and Maruhn (see Figure 6.4 of Ref. [74]). Specifically:

γ = 0◦, prolate with x = y,

γ = 60◦, oblate with x = z,

γ = 120◦, prolate with y = z,

γ = 180◦, oblate with x = y,

γ = 240◦, prolate with x = z,

γ = 300◦, oblate with y = z.

We use the findings of Ginocchio and Kirson to exhibit that the wave functions of the
SU(3) limit of this U(6) Boson Model are coherent states with the correct values of β, γ.

8. The SU(3) States

In the following, some basic examples are demonstrated. The SU(3) states consist
of symmetric pairs of quanta in the same Cartesian axis [45]. Due to this property, we
demonstrate the wave functions of a pair of quanta in the z-, in the x- and in the y-axis.

8.1. Two Quanta in the z-Axis

Suppose a state with two quanta in the z-axis. The many-quanta SU(3) wave function
of this irrep is represented by the Young tableaux:

z z 1 2 . (118)
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The quanta 1, 2 are symmetric upon their interchange, so the spatial wave function is

Φzz = a†
iza†

i′z|0). (119)

With the use of the operators of Equation (13), the above wave function is written as

Φzz = ηi0ηi′0|0). (120)

The operators ηi0, ηi′0 can be written in terms of the B0†
0 , B2†

0 operators of Equations (90),
(93) as

ηi0ηi′0 = − 1√
3

B0†
0 +

√

2

3
B2†

0 . (121)

So, Equation (120) is equal to

Φzz =
1√
3

(

−B0†
0 +

√
2B2†

0

)

|0). (122)

Now, if we substitute Equation (109) and renormalize the wave function, we obtain

Φzz =
1√
3

(

s† +
√

2d†
0

)

|0). (123)

In the Elliott wave functions, the band label K is equal to the projection of the angular
momentum M. Practically, this means that the Cartesian wave function of Equation (119)
projects into a wave function with good angular momentum L, so as a nuclear state with
L = 0, K = 0 (the s boson) is included into the Cartesian wave function with probability 1

3
and an L = 2, K = 0 (the d0 boson) nuclear state lies within the Cartesian wave function
with probability 2

3 . This procedure is called L-projection and was introduced by J. P. Elliott
in 1958 in Ref. [2]. The matrix elements of the projection operator were calculated in 1968
by J. D. Vergados in Ref. [75].

The L-projection of the spatial many-quanta Cartesian wave function using the tradi-
tional method of Elliott, Harvey and Vergados [2,3,75] is now presented briefly. The matrix
elements of the projection operator within the same K nuclear band are

A(K, L, K) = 〈Φ|P|Φ〉 = |a(K, L)|2. (124)

The coefficients a(K, L) are given in Table 2A of Ref. [75]. The SU(3) irrep of our
example is the (λ, µ)= (2, 0), and so:

a(K = 0, L = 0) =
1√
3

, (125)

a(K = 0, L = 2) =

√

2

3
. (126)

So, with the use of the symmetric pairs of quanta (the s, d bosons) and with the use
of the Elliott, Harvey and Vergados method, we obtained the same projection coefficients
for the Φzz state. This successful result indicates that the method we used for the con-
struction of the spatial Shell Model SU(3) state gave consistent results with the relevant
bibliography [75].

To further test the interpretation of the s, d bosons as symmetric pairs of quanta,
we compare the Φzz state with the coherent states of Ginocchio and Kirson [16]. The
Equation (123) can be written as

Φzz =
1

√

1 + β2

(

s† + β cos γd†
0 +

1√
2

β sin γ
(

d†
2 + d†

−2

)

)

|0) (127)
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with β =
√

2 and γ = 0◦. Thus, it is identical with the coherent state of Equation (117).
Therefore, the Φzz state represents a coherent state of the SU(3) limit of the U(6) Boson
Model (since β =

√
2) with prolate shape (since γ = 0◦).

Consequently, the method we used for the construction of the Φzz state out of the
symmetric pairs of quanta not only gave the correct projection coefficients in comparison
with those of Vergados but also proved that the intrinsic Elliott state with (λ, µ) = (2, 0)
is a coherent state with the correct value of the deformation variable for the SU(3) limit
(β =

√
2) and the correct value of the angle γ = 0◦.

8.2. Two Quanta in the x-Axis

Using the same method, we can construct the state of a symmetric pair of quanta in
the x-axis:

Φxx = a†
ixa†

i′x|0). (128)

This state results to be

Φxx =
1√
3

(

− B0†
0 −

√
2

2
B2†

0 +

√
3

2

(

B2†
−2 + B2†

2

)

)

|0). (129)

If we substitute one more into the Equation (109) and renormalize the wave function,
we obtain that

Φxx =
1√
3

(

s† −
√

2

2
d†

0 +

√
3

2

(

d†
−2 + d†

2

)

)

|0). (130)

In the Elliott L-projected wave functions ψ(KLM) [2], two opposite K states are equal:
ψ(KLM) = ψ(−KLM). Thus, the d†

−2|0), d†
2|0) refer to the same nuclear state. All these

mean that the wave function (130) reflects to two nuclear bands with (K, L) = (0, 0), (0, 2)
and (K, L) = (2, 2). In Equation (130) the state with K = 0, L = 0 appears with probability
1/3, the K = 0, L = 2 with probability 1/6 and the K = 2, L = 2 with probability
1/4 + 1/4 = 1/2. The quanta in the x, y plane are responsible for the µ quantum number
(see Equation (15) of Ref. [2]). For two quanta in the x-axis, we obtain that µ = 2 and that
K = 0, 2 (see Equation (22) of Ref. [2]). So, Equation (130) correctly predicts the existence of
two bands with K = 0, 2.

Furthermore, Equation (130) can be written as

Φxx =
1

√

1 + β2

(

s† + β cos γd†
0 +

1√
2

β sin γ
(

d†
2 + d†

−2

)

)

|0) (131)

with β =
√

2 and γ = 120◦. In comparison with Equation (117), the Φxx represents a
coherent state with prolate shape. So, it represents a prolate shape with equal lengths in
the z, y axes, as expected.

8.3. Two Quanta in the y-Axis

If the SU(3) wave function has two quanta in the y Cartesian axis, the wave function is

Φyy = a†
iya†

i′y|0), (132)

which becomes

Φyy =
1√
3

(

s† −
√

2

2
d†

0 −
√

3

2

(

d†
−2 + d†

2

)

)

|0). (133)

Equation (133) represents once more a coherent state of the SU(3) limit, as defined in
Equation (117), with N = 1, β =

√
2, γ = 240◦. Therefore, it represents a prolate shape

with equal lengths in the z, x axes.
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8.4. The General U(3) Wave Function

We may generalize now and write down an arbitrary U(3) wave function, which
consists of symmetric pairs of quanta derived by nucleons in the same orbit of a medium
mass or heavy nucleus:

Φspace =
(

a†
ya†

y

)

Ny
2
(

a†
xa†

x

)

Nx
2
(

a†
z a†

z

)

Nz
2 |0), (134)

Just like in the IBM, the number of bosons is doubled to give the ground state band
SU(3) irreps; similarly, in this scheme, the general SU(3) irrep is

(λ, µ) =

(

2

(

Nz

2
− Nx

2

)

, 2

(

Nx

2
− Ny

2

))

, (135)

where we used that Nk = ∑i nik, that Nk
2 is the number of bosons, i.e., symmetric pairs

of quanta in the same Cartesian axis in this U(6) Boson Model, and that Nz ≥ Nx ≥ Ny.
The conclusion is that in this U(6) Boson Model, the SU(3) irreps are identical to those of
the Elliott SU(3) symmetry:

(λ, µ) = (Nz − Nx, Nx − Ny). (136)

So, the irreps of the SU(3) limit of this U(6) Boson Model can be found through the proxy-
SU(3) symmetry [29] for the spin–orbit-like shells among magic numbers 28, 50, 82, . . . of
medium mass and heavy nuclei.

Note that, in this procedure, we mapped a pair of bosons (the quanta) into an approxi-
mate boson (the s, d operators). We did not map a pair of fermions (the nucleons) into a
boson, as was performed in the OAI mapping of the IBM. Therefore, we did not perform a
boson mapping, and so no spurius states emerged in our case.

9. Conclusions

A U(6) Boson Model was introduced, which treats as s, d bosons the symmetric pairs
of quanta of the valence protons (neutrons) of the same Shell Model orbital. This model
is valid in medium mass and heavy nuclei. The introduction of the s, d operators was
based on the commutation relations of the U(3) Boson Model. The algebraic structure of
this model is identical with that of the Interacting Boson Model, and so it possesses an
SU(3) limit, which has the same SU(3) irreps as those of the Elliott Model. Since the Elliott
SU(3) symmetry is broken in medium mass and heavy nuclei, due to the strong spin–orbit
interaction, the proxy-SU(3) symmetry [29–31] can be used to identify the SU(3) irreps of
the SU(3) limit of this U(6) Boson Model.

Funding: This research was funded by “The national science foundation of China”, grant number

12175097.

Acknowledgments: I would like to express my appreciation to Feng Pan for his valuable support in

the development and publication of this research work.

Data Availability Statement: Not applicable.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Elliott, J.P. Collective motion in the nuclear shell model. I. Classification schemes for states of mixed configurations. Proc. R. Soc.

London. Ser. Math. Phys. Sci. 1958, 245, 128–145. [CrossRef]

2. Elliott, J.P. Collective motion in the nuclear shell model II. The introduction of intrinsic wave-functions. Proc. R. Soc. London. Ser.

Math. Phys. Sci. 1958, 245, 562–581. [CrossRef]

3. Elliott, J.P.; Harvey, M. Collective motion in the nuclear shell model III. The calculation of spectra. Proc. R. Soc. London. Ser. Math.

Phys. Sci. 1963, 272, 557–577. [CrossRef]

http://doi.org/10.1098/rspa.1958.0072
http://dx.doi.org/10.1098/rspa.1958.0101
http://dx.doi.org/10.1098/rspa.1963.0071


Symmetry 2023, 15, 455 21 of 23

4. Elliott, J.P.; Wilsdon, C.E. Collective motion in the nuclear shell model IV. Odd-mass nuclei in the sd shell. Proc. R. Soc. London.

Ser. Math. Phys. Sci. 1968, 302, 509–528. [CrossRef]

5. Ne’eman, Y. Derivation of strong interactions from a gauge invariance. Nucl. Phys. 1961, 26, 222–229. [CrossRef]

6. Mayer, M.G. On Closed Shells in Nuclei. Phys. Rev. 1948, 74, 235–239. [CrossRef]

7. Haxel, O.; Jensen, J.H.D.; Suess, H.E. On the “Magic Numbers” in Nuclear Structure. Phys. Rev. 1949, 75, 1766. [CrossRef]

8. Arima, A.; Iachello, F. Collective Nuclear States as Representations of a SU(6) Group. Phys. Rev. Lett. 1975, 35, 1069–1072.

[CrossRef]

9. Arima, A.; Iachello, F.; Interacting boson model of collective states I. The vibrational limit. Ann. Phys. 1976, 99, 253–317.

[CrossRef]

10. Arima, A.; Iachello, F. Interacting boson model of collective nuclear states II. The rotational limit. Ann. Phys. 1978, 111, 201–238.

[CrossRef]

11. Scholten, O.; Iachello, F.; Arima, A. Interacting boson model of collective nuclear states III. The transition from SU(5) to SU(3).

Ann. Phys. 1978, 115, 325–366. [CrossRef]

12. Arima, A.; Iachello, F. Interacting boson model of collective nuclear states IV. The O(6) limit. Ann. Phys. 1979, 123, 468–492.

[CrossRef]

13. Bohr, A. The coupling of nuclear surface oscillations to the motion of individual nucleons. Dan. Matt. Fys. Medd. 1952, 26.

14. Rainwater, J. Nuclear Energy Level Argument for a Spheroidal Nuclear Model. Phys. Rev. 1950, 79, 432–434. [CrossRef]

15. Dieperink, A.E.L.; Scholten, O.; Iachello, F. Classical Limit of the Interacting-Boson Model. Phys. Rev. Lett. 1980, 44, 1747–1750.

[CrossRef]

16. Ginocchio, J.N.; Kirson, M.W. Relationship between the Bohr Collective Hamiltonian and the Interacting-Boson Model. Phys. Rev.

Lett. 1980, 44, 1744–1747. [CrossRef]

17. Ginocchio, J.N.; Kirson, M.W. An intrinsic state for the interacting boson model and its relationship to the Bohr-Mottelson model.

Nucl. Phys. A 1980, 350, 31–60. [CrossRef]

18. Bohr, A.; Mottelson, B.R. Features of Nuclear Deformations Produced by the Alignment of Individual Particles or Pairs. Phys. Scr.

1980, 22, 468–474. [CrossRef]

19. Elliott, J.P.; Evans, J.A.; Park, P. A soluble γ-unstable hamiltonian. Phys. Lett. B 1986, 169, 309–312. [CrossRef]

20. Rosensteel, G.; Rowe, D. On the algebraic formulation of collective models I. Mass Quadrupole Collective Model. Ann. Phys.

1979, 123, 36–60. [CrossRef]

21. Rosensteel, G.; Rowe, D. On the algebraic formulation of collective models II. Collective and Intrinsic Submanifolds. Ann. Phys.

1980, 126, 198–233. [CrossRef]

22. Rosensteel, G.; Rowe, D. On the algebraic formulation of collective models III. The symplectic shell model of collective motion.

Ann. Phys. 1980, 126, 343–370. [CrossRef]

23. Rosensteel, G.; Rowe, D u(3)-Boson Model of Nuclear Collective Motion. Phys. Rev. Lett. 1981, 47, 223. [CrossRef]

24. Rosensteel, G.; Rowe, D. An analytic formula for u(3) boson matrix elements. J. Math. Phys. 1983, 24, 2461. [CrossRef]

25. Rowe, D.; Rosensteel, G. Rotational bands in the u(3)-boson model. Phys. Rev. C 1982, 25, 3236. [CrossRef]

26. Rowe, D.; Rosensteel, G. Rotational bands in the u(3)-boson model. Suppl. Prog. Theor. Phys. 1983, 74, 306. [CrossRef]

27. Castanos, O.; Draayer, J.P. Contracted Symplectic Model with ds-Shell applications. Nucl. Phys. A 1989, 491, 349–372. [CrossRef]

28. Rowe, D.; Coy, A.E.M.; Caprio, M.A. The many-nucleon theory of nuclear collective structure and its macroscopic limits: An

algebraic perspective. Phys. Scr. 2016, 91, 049601. [CrossRef]

29. Bonatsos, D.; Assimakis, I.E.; Minkov, N.; Martinou, A.; Cakirli, R.B.; Casten, R.F.; Blaum, K. Proxy-SU(3) symmetry in heavy

deformed nuclei. Phys. Rev. C 2017, 95, 064325. [CrossRef]

30. Bonatsos, D.; Assimakis, I.E.; Minkov, N.; Martinou, A.; Sarantopoulou, S.; Cakirli, R.B.; Casten, R.F.; Blaum, K. Analytic

predictions for nuclear shapes, prolate dominance, and the prolate-oblate shape transition in the proxy-SU(3) model. Phys. Rev. C

2017, 95, 064326. [CrossRef]

31. Martinou, A.; Bonatsos, D.; Minkov, N.; Assimakis, I.E.; Peroulis, S.K.; Sarantopoulou, S.; Cseh, J. Proxy SU(3) symmetry in the

Shell Model basis. Eur. Phys. J. A 2020, 56, 239. [CrossRef]

32. Otsuka, T.; Arima, A.; Iachello, F. Shell Model description of interacting bosons. Phys. Lett. B 1978, 76, 139. [CrossRef]

33. Otsuka, T.; Arima, A.; Iachello, F. Nuclear Shell Model and interacting bosons. Nucl. Phys. A 1978, 309, 1. [CrossRef]

34. Elliott, J.P.; Evans, J.A. A direct mapping from shell model SU(3) to boson SU(3). J. Phys. Nucl. Part. Phys. 1999, 25, 2071–2085.

[CrossRef]

35. Harvey, M. The Nuclear SU(3) Model; Advances in Nuclear Physics; Plenum Press: New York, NY, USA, 1968; Volume 1.

36. Cohen-Tannoudji, C.; Diu, B.; Laloe, F. Quantum Mechanics, 1st ed.; Wiley: Hoboken, NJ, USA, 1991; Volume 1, Chapter BVII .

37. Lipkin, H.J. Lie Groups for Pedestrians; Dover: New York, NY, USA, 2002.

38. Lipas, P. O. Algebraic Approaches to Nuclear Structure: Interacting Boson and Fermion Models; Contemporary Concepts in Physics,

Chapter Group Theory of the IBM and Algebraic Models in General; Harwood Academic Publishers: London, UK, 1993; Volume 6,

p. 47.

39. Escher, J. Electron Scattering Studies in the Framework of the Symplectic Shell Model. Ph.D. Thesis, Louisiana State University

and Agricultural & Mechanical College, Baton Rouge, LA, USA, 1997.

http://dx.doi.org/10.1098/rspa.1968.0033
http://dx.doi.org/10.1016/0029-5582(61)90134-1
http://dx.doi.org/10.1103/physrev.74.235
http://dx.doi.org/10.1103/PhysRev.75.1766.2
http://dx.doi.org/10.1103/physrevlett.35.1069
http://dx.doi.org/10.1016/0003-4916(76)90097-x
http://dx.doi.org/10.1016/0003-4916(78)90228-2
http://dx.doi.org/10.1016/0003-4916(78)90159-8
http://dx.doi.org/10.1016/0003-4916(79)90347-6
http://dx.doi.org/10.1103/physrev.79.432
http://dx.doi.org/10.1103/PhysRevLett.44.1747
http://dx.doi.org/10.1103/PhysRevLett.44.1744
http://dx.doi.org/10.1016/0375-9474(80)90387-5
http://dx.doi.org/10.1088/0031-8949/22/5/008
http://dx.doi.org/10.1016/0370-2693(86)90362-x
http://dx.doi.org/10.1016/0003-4916(79)90264-1
http://dx.doi.org/10.1016/0003-4916(80)90380-2
http://dx.doi.org/10.1016/0003-4916(80)90180-3
http://dx.doi.org/10.1103/PhysRevLett.47.223
http://dx.doi.org/10.1063/1.525609
http://dx.doi.org/10.1103/PhysRev C.25.3236
http://dx.doi.org/10.1143/PTPS.74.306
http://dx.doi.org/10.1016/0375-9474(89)90572-1
http://dx.doi.org/10.1088/0031-8949/91/3/033003
http://dx.doi.org/10.1103/physrevc.95.064325
http://dx.doi.org/10.1103/PhysRevC.95.064326
http://dx.doi.org/10.1140/epja/s10050-020-00239-0
http://dx.doi.org/10.1016/ 0370-2693(78)90260-5
http://dx.doi.org/10.1016/0375-9474(78)90532-8
http://dx.doi.org/10.1088/0954-3899/25/10/307


Symmetry 2023, 15, 455 22 of 23

40. Bengtsson, T.; Ragnarsson, I. Rotational bands and particle-hole excitations at very high spin. Nucl. Phys. A 1985, 436, 14–82.

[CrossRef]

41. Nilsson, S.G.; Ragnarsson, I. Shapes and Shells in Nuclear Structure; Cambridge University Press: Cambridge, UK, 1995.

42. Edmonds, A.R. Angular Momentum in Quantum Mechanics; CERN: Meyrin, Switzerland, 1955. [CrossRef]

43. Draayer, J.P. Algebraic Approaches to Nuclear Structure: Interacting Boson and Fermion Models; Contemporary Concepts in Physics,

Chapter Fermion Models; Harwood Academic Publishers: London, UK, 1993; Volume 6, p. 423.

44. Wigner, E. On the Consequences of the Symmetry of the Nuclear Hamiltonian on the Spectroscopy of Nuclei. Phys. Rev. 1937,

51, 106–119. [CrossRef]

45. Martinou, A.; Bonatsos, D.; Mertzimekis, T.J.; Karakatsanis, K.E.; Assimakis, I.E.; Peroulis, S.K.; Sarantopoulou, S.; Minkov, N.

The islands of shape coexistence within the Elliott and the proxy-SU(3) Models. Eur. Phys. J. A 2021, 57, 84. [CrossRef]

46. Martinou, A.; Bonatsos, D.; Karakatsanis, K.E.; Sarantopoulou, S.; Assimakis, I.E.; Peroulis, S.K.; Minkov, N. Why nuclear forces

favor the highest weight irreducible representations of the fermionic SU(3) symmetry. Eur. Phys. J. A 2021, 57, 83. [CrossRef]

47. Bonatsos, D.; Martinou, A.; Sarantopoulou, S.; Assimakis, I.E.; Peroulis, S.K.; Minkov, N. Parameter-free predictions for the

collective deformation variables β and γ within the pseudo-SU(3) scheme. Eur. Phys. J. Spec. Top. 2020, 229, 2367–2387. [CrossRef]

48. Slater, J.C. The Theory of Complex Spectra. Phys. Rev. 1929, 34, 1293–1322. [CrossRef]

49. Pauli, W. Exclusion Principle and Quantum Mechanics. In Writings on Physics and Philosophy; Chapter Exclusion Principle and

Quantum Mechanics; Springer: Berlin/Heidelberg, Germany, 1994; pp. 165–181.

50. Fermi, E.; Orear, J.; Rosenfeld, A.H.; Schluter, R.A. Nuclear Physics: A Course Given by Enrico Fermi at the University of Chicago. Notes

Compiled by Jay Orear; University of Chicago Press: Chicago, IL, USA, 1950.

51. Talmi, I. Simple Models of Complex Nuclei; In Contemporary Concepts in Physics, Harwood Academic Publishers: London,

UK, 1993; Volume 7. [CrossRef]

52. Cseh, J. Some new chapters of the long history of SU(3). Eur. Phys. J. Web Conf. 2018, 194, 05001. [CrossRef]

53. Kota, V.K.B. SU(3) Symmetry in Atomic Nuclei; Springer: Singapore, 2020. [CrossRef]

54. Cakirli, R.B.; Casten, R.F. Direct Empirical Correlation between Proton-Neutron Interaction Strengths and the Growth of

Collectivity in Nuclei. Phys. Rev. Lett. 2006, 96, 132501. [CrossRef] [PubMed]

55. Bonatsos, D.; Karampagia, S.; Cakirli, R.B.; Casten, R.F.; Blaum, K.; Susam, L.A. Emergent collectivity in nuclei and enhanced

proton-neutron interactions. Phys. Rev. C 2013, 88, 054309. [CrossRef]

56. de Shalit, A.; Goldhaber, M. Mixed Configurations in Nuclei. Phys. Rev. 1953, 92, 1211–1218. [CrossRef]

57. Bonatsos, D.; Martinou, A.; Assimakis, I.E.; Peroulis, S.K.; Sarantopoulou, S.; Minkov, N. Connecting the proxy-SU(3) symmetry

to the shell model. Eur. Phys. J. Web Conf. 2021, 252, 02004. [CrossRef]

58. Castaños, O.; Moshinsky, M.; Quesne, C. Group Theory and Special Symmetries in Nuclear Physics; World Scientific: Singapore, 1992.

[CrossRef]

59. Draayer, J.P.; Weeks, K. Towards a shell model description of the low-energy structure of deformed nuclei I. Even-even systems.

Ann. Phys. 1984, 156, 41–67. [CrossRef]

60. Castaños, O.; Draayer, J.P.; Leschber, Y. Towards a shell-model description of the low-energy structure of deformed nuclei II.

Electromagnetic properties of collective M1 bands. Ann. Phys. 1987, 180, 290–329. [CrossRef]

61. Cakirli, R.B.; Blaum, K.; Casten, R.F. Indication of amini-valenceWigner-like energy in heavy nuclei. Phys. Rev. C 2010, 82, 061304.

[CrossRef]

62. Bonatsos, D.; Hassanabadi„ H.S.H. Shell model structure of proxy-SU(3) pairs of orbitals. Eur. Phys. J. Plus 2020, 135, 710.

[CrossRef]

63. Sobhani, H.; Hassanabadi, H.; Bonatsos, D. Resolution of the spin paradox in the Nilsson model. Eur. Phys. J. Plus 2021, 136, 398 .

[CrossRef]

64. Martinou, A. A mechanism for shape coexistence. Eur. Phys. J. Web Conf. 2021, 252, 02005. [CrossRef]

65. Martinou, A.; Sarantopoulou, S.; Bonatsos, K.E.K.D. Highest weight irreducible representations favored by nuclear forces within

SU(3)-symmetric fermionic systems. Eur. Phys. J. Web Conf. 2021, 252, 02006. [CrossRef]

66. Bonatsos, D. Prolate over oblate dominance in deformed nuclei as a consequence of the SU(3) symmetry and the Pauli principle.

Eur. Phys. J. A 2017, 53, 148. [CrossRef]

67. Draayer, J.P.; Leschber, Y.; Park, S.; Lopez, R. Representations of U(3) in U(N). Comput. Phys. Commun. 1989, 56, 279–290.

[CrossRef]

68. Troltenier, D.; Blokhin, A.; Draayer, J.P.; Rompf, D.; Hirsch, J.G. Algebraic fermion models and nuclear structure physics. Aip

Conf. 1996, 365, 244. [CrossRef]

69. Coleman, S. The Clebsch-Gordan Series for SU(3). J. Mat. Phys. 1964, 5, 1343–1344. [CrossRef]

70. Alex, A.; Kalus, M.; Huckleberry, A.; von Delft, J. A numerical algorithm for the explicit calculation of SU(N) and SL(N,C)

Clebsch–Gordan coefficients. J. Math. Phys. 2011, 52, 023507. [CrossRef]

71. Dytrych, T.; Langr, D.; Draayer, J.P.; Launey, K.D.; Gazda, D. SU3lib: A C++ library for accurate computation of Wigner and Racah

coefficients of SU(3). Comput. Phys. Commun. 2021, 269, 108137. [CrossRef]

72. Bohr, A.; Mottelson, B.R. Nuclear Structure; World Scientific Publishing Company: Singapore, 1998; Volume II. [CrossRef]

73. Bonatsos, D. Interacting Boson Models of Nuclear Structure; Clarendon: Oxford, UK, 1988.

http://dx.doi.org/10.1016/0375-9474(85)90541-X
http://dx.doi.org/10.5170/CERN-1955-026
http://dx.doi.org/10.1103/physrev.51.106
http://dx.doi.org/10.1140/epja/s10050-021-00396-w
http://dx.doi.org/10.1140/epja/s10050-021-00395-x
http://dx.doi.org/10.1140/epjst/e2020-000034-3
http://dx.doi.org/10.1103/physrev.34.1293
http://dx.doi.org/10.1201/9780203739716
http://dx.doi.org/10.1051/epjconf/201819405001
http://dx.doi.org/10.1007/978-981-15-3603-8
http://dx.doi.org/10.1103/PhysRevLett.96.132501
http://www.ncbi.nlm.nih.gov/pubmed/16711983
http://dx.doi.org/10.1103/physrevc.88.054309
http://dx.doi.org/10.1103/physrev.92. 1211
http://dx.doi.org/10.1051/epjconf/202125202004
http://dx.doi.org/10.1142/1468
http://dx.doi.org/10.1016/0003-4916(84)90210-0
http://dx.doi.org/10.1016/0003-4916(87)90047-9
http://dx.doi.org/10.1103/PhysRevC.82.061304
http://dx.doi.org/10.1140/epjp/s13360-020-00749-2
http://dx.doi.org/10.1140/epjp/s13360-021-01300-7
http://dx.doi.org/10.1051/epjconf/ 202125202005
http://dx.doi.org/10.1051/epjconf/202125202006
http://dx.doi.org/10.1140/epja/i2017-12346-x
http://dx.doi.org/10.1016/0010-4655(89)90024-6
http://dx.doi.org/10.1063/1.50225
http://dx.doi.org/10.1063/1.1704245
http://dx.doi.org/10.1063/1.3521562
http://dx.doi.org/10.1016/j.cpc.2021.108137
http://dx.doi.org/10.11 42/3530


Symmetry 2023, 15, 455 23 of 23

74. Greiner, W.; Maruhn, J.A. Nuclear Models; Springer: Berlin/Heidelberg, Germany, 1996.

75. Vergados, J.D. SU(3) ⊃ R(3) Wigner coefficients in the 2s-1d shell. Nucl. Phys. A 1968, 111, 681–754. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/0375-9474(68)90249-2

	Introduction
	The Nuclear Shell Model
	The Shell Model SU(3) Symmetry
	The Shell Model SU(3) States
	The U(3) Boson Model
	A U(6) Boson Model
	The Coherent States
	The SU(3) States
	Two Quanta in the z-Axis 
	Two Quanta in the x-Axis 
	Two Quanta in the y-Axis 
	The General U(3) Wave Function

	Conclusions
	References

