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Abstract

This thesis is concerned with the quantum Dirac magnetic monopole and two
classes of its generalisations.

The first of these are certain analogues of the Dirac magnetic monopole on coad-
joint orbits of compact Lie groups, equipped with the normal metric. The original
Dirac magnetic monopole on the unit sphere S? corresponds to the particular case
of the coadjoint orbits of SU(2). The main idea is that the Hilbert space of the
problem, which is the space of L2-sections of a line bundle over the orbit, can be
interpreted algebraically as an induced representation. The spectrum of the cor-
responding Schodinger operator is described explicitly using tools of representation
theory, including the Frobenius reciprocity and Kostant’s branching formula.

In the second part some discrete versions of Dirac magnetic monopoles on S?
are introduced and studied. The corresponding quantum Hamiltonian is a magnetic
Schodinger operator on a regular polyhedral graph. The construction is based on
interpreting the vertices of the graph as points of a discrete homogeneous space
G/H, where G is a binary polyhedral subgroup of SU(2). The edges are constructing
using a specially selected central element from the group algebra, which is used also
in the definition of the magnetic Schrodinger operator together with a character of
H. The spectrum is computed explicitly using representation theory by interpreting

the Hilbert space as an induced representation.

Keywords: magnetic monopole, induced representation, coadjoint orbit, regular graph.
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Chapter 1
Introduction

The Dirac magnetic monopole is one of the most remarkable and one of the first
integrable systems of quantum mechanics. In his pioneering paper [11] Dirac showed
that an isolated magnetic charge ¢ should be quantized: ¢ € Z. The correspond-
ing Schrédinger equation was solved by Tamm [52] while he was visiting Dirac in
Cambridge in 1931. The main theoretical implication of the quantization of mag-
netic charge is should magnetic monopoles exist then this forces the quantization of
electric charge and the quantization of electric charge is unexplained.

Thus the game for experimenters was to try and detect magnetic monopoles,
but this was played without success. Meanwhile, theoreticians moved on and the
theory of magnetic monopoles lay largely dormant. However, a series of papers [57],
[58], [59] by Wu and Yang sparked something of a revival in Dirac’s original idea
by explaining Dirac’s monopole ‘without strings’. The point being that Dirac and
Tamm had described the wavefunction of an electron in the field of a monopole, but
found that it was singular (and hence not-defined) along a half-line — this half-line
is now known as the Dirac string. This is something of a paradox when compared
to the actual physical situation, which is manifestly spherically-symmetric about the
monopole.

The global nature of the wavefunctions was understood only in 1976 by Wu and
Yang [57], who explained that the corresponding eigenfunctions of the Schrédinger
equation (known as monopole harmonics) are sections of the complex line bundle L
over S? whose first Chern class is ¢. In describing them using overlapping coordinate
charts, the eigenfunctions can be defined globally without singularity and recovering
the spherical symmetry of the problem. For this reason, Dirac’s Magnetic Monopole
is a remarkable case study — since it shows that many of the concepts learned in

differential geometry are completely natural.
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It is worth mentioning that different monopoles have been investigated, which
approximate Dirac’s at long range but have a different structure nearby: these are

known as non-abelian monopoles and a survey is given in [9].

We now describe the geometry of Dirac’s monopole in more detail: consider such
a magnetic charge of strength ¢ situated at the origin in R3. The magnetic field it
generates is radially symmetric and given by Coulomb’s law as
r
and it can be represented pictorially as in Figure 1.1, with the field strength being

constant at a constant distance from the monopole.

Figure 1.1: Radially symmetric magnetic field lines due to a monopole in R3.

On the classical level, the Dirac magnetic monopole is also described well in terms
of differential geometry — the classical phase space of an electron orbiting a monopole

at constant distance is given by the symplectic manifold
(T*52,dpAdx+ 57r*(dS)), (1.1)

where dS is the area form on S? and dp A dx is the canonical form on T*S2.
If we consider a sphere S? centred on the monopole then Gauss’ law gives the

magnetic flux through the sphere as
CDz/ B - dS = 4nq.
S2

Alternatively, one could use a magnetic potential A, satisfying B =V x A and use

Stokes” Theorem separately on each hemisphere to give the magnetic flux as
@z/(VxA)-dS: A-dl:j{(AN—AS)-dl:élﬁq,
SQ Sl Sl

where Ay and Ag are the magnetic potentials in the Northern and Southern hemi-

spheres respectively and S* is the equator. That this integral does not vanish leads to
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the fact that the magnetic potentials on each hemisphere are not given by the same

expression and so A is not given by the same expression over the whole of S
There is no contradiction here if one divides the space outisde the monopole into

two overlapping regions U, and U, and defines a vector potential (4,), in U, and

(A,)p in Uy. Using spherical coordinates 7,6, ¢ with the monopole at the origin, we

set
U, : 0§9<g+5, 0<r, 0<¢<2r
U, : g—5<9<7r, 0<r  0<¢<om
with 0 such that 0 < ¢ < 7. The Wu-Yang potential is then

1 —cosb
Ara:Aa:(); Aa:.—
(Ar)a =(4) (Ag)a = 4

1+ cosb

(Ao =(A)a =0, (Ag)a =~
where A,., Ag, A, are the projections of A in the three local orthogonal directions. The
two half-lines of singularity at § = 7 and 8 = 0 are known in the physics literature as
Dirac strings and necessarily arise if one tries to represent A by a single expression.
On the overlap of U, and U,, the difference between the A, and A, is the gradient
of a function

_ 2,
Aa - Ab == sinQ% = V(2q¢) (12)

Dirac considered the interaction of the monopole with an electron of charge e. The

wavefunction ¢(z,t) of the electron must satisfy the Schrodinger equation

1 e oY
—(p—-A)*) = ih—
where p; = —ihd; are the components of p in Cartesian coordinates. Corresponding

to the two potentials A, and A, there are two solutions v, and v, in the different

coordinate charts. The transformation between these solutions is given by

Yo =ty - exp (% >, (1.3)

2iqe
he

sphere. Requiring this function to be single valued gives that

where exp( gf)) is the transition function from Southern to the Northern hemi-

2eq
— € Z,
he

i.e. that magnetic charge is quantized. This result was used by Dirac to infer that the

existence of a single magnetic monopole in the universe would explain why electric

charge is quantized. Whilst, from a logical point of view, the fact that electric charge
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is quantized does not of course imply the existence of a magnetic monopole it is
somehow bewitching because one somehow feels like the theory is correct but with
no facts to back it up.

It is clear from equations (1.2) and (1.3) that the wavefunctions ¢ are sections
of a complex line bundle L — S? and the magnetic potential A is essentially the
connection one-form of that bundle. Pursuing this line of thought, one can compute
the curvature €2 of A to find that the magnetic charge ¢ can be identified with the
first Chern class of the bundle L, which is necessarily integer-valued. Indeed,

ie 0A; 04 ‘ .
2= 52 <8xi B a:w) e

1<J

and so the first Chern number of L is given by

i i ie
=— [ Q=|—)|—— A
“Ton 52 (271’) ( hc) /Szd

e
= Ay —Ag)-dl
2mhe ﬁl ( N S)

2eq
=— € Z.
hc

To make the mathematical considerations clearer, from here onwards all non-essential
physical constants will be set to be 1,i.e. e=1,A=1 and ¢ = 1.

It is remarkable that the different magnetic charges are essentially classified by
homotopy classes of maps 7 (S!) that describe principal U(1)-bundles over S? with
different Chern numbers: bundles of this kind are called Hopf bundles after the
seminal work of Hopf [22] in 1931 — the same year as Dirac’s paper [11]. However,

the relation between the two works was not noticed until much later.

Wu and Yang’s description of the wavefunction of the electron as a section of a line
bundle is highly illuminating from the geometric viewpoint. However, in solving the
corresponding Schrodinger equation and finding the corresponding eigenfunctions, it
is best to describe the Dirac magnetic monopole as an algebraic object, namely an
induced representaion — it is this idea that forms the basis for this thesis.

More precisely: if G and H are two groups, with H a subgroup of GG, then it is
clear that any representation of GG gives a representation of H by restriction. There
is a dual notion of induction, due to Frobenius, which takes a representation p of
H on a vector space W and forms a representation ind%(p) of G. The different
manifestations that this construction takes will be explained at differnt places in
the thesis. For the case of Lie groups, the induced representation of G is given

on the space of sections of a vector bundle over G/H, with the fibre over a point
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being isomorphic to the representation space W. If W is one-dimensional then the
corresponding vector bundle is a line bundle. First, we explain how this construction

gives us the same line bundles that were considered by Wu and Yang.

Chapter Two sets the tone for the whole thesis by explaining how the quantum
problem of the Dirac magnetic monopole on a sphere, as considered by Wu and Yang,
may be interpreted in terms of representation theory. This chapter is based on work
that appeared in [25].

The starting point for the work in this chapter was a calculation by Novikov and
Schmeltzer [43] of the coadjoint orbits of the Euclidean group of motions F(3) =
SO(3) x R3. Denote by e(3) the Lie algebra of E(3): it has basis Iy, s, I3, p1, p2, s,
where [ and p are generators of rotations and translations respectively.

The dual space e(3)* with the coordinates {1, ls,l3, p1,p2, ps} has the canonical

Poisson bracket

{6;,;} = €ijile, {li,p;} = €ijupe, {pi,p;j} =0.

The symplectic leaves of this Poisson bracket are the coadjoint orbits of F(3), which

are the level sets of the Casimir functions
C’1 = (pvp) = R27 02 = (lap) = CYR,
where o € R and R € R". By introducing the variables

«
o; =1l — 5pi

R

the authors identify the coadjoint orbits with 7*S? C T*R3

(p,p) = R*,  (o,p) =0,

where T'S? and T*S? have been identified using the standard Riemannian metric on
the radius R sphere. The authors show that the canonical symplectic form on the
orbits is given by dp A dx + an*(dS), where dS is the area form on S%. Therefore
the coadjoint orbits may be naturally identified with the classical phase space of an
electron orbiting a non-quantized Dirac magnetic monopole given in (1.1).

The prequantization condition of geometric quantization gives us exactly Dirac’s
quantization condition that ¢ = 2ac € Z. We also discover that the quantum version of
the new coordinates o; have a natural interpretation as covariant derivatives acting
on the space of sections of the line bundle over S? with Chern class q. Equally

important is noticing that the space of sections of this line bundle may be identified
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as a representation of SU(2). (The appearance of SU(2) stems from SU(2) being a
double covering of SO(3) C E(3), see Appendix A.1 for details.)

To make this clearer, note that S? can be considered as the base space of the
principal fibre bundle SU(2) — S? with fibre U(1). The induced representation con-
struction then allows us to construct a representation of SU(2) from a representation
of U(1). Geometrically, the representation space will be exactly the space of sections
of a line bundle over S? and it turns out that the magnetic charge ¢ is obtained from
nothing but the character of U(1) given by exp[if] — exp[—igf]. This then gives
another interpretation of the quantization of magnetic charge — for this character to
be well-defined we must have that ¢ € Z.

The tools of representation theory, in particular the Frobenius Reciprocity The-
orem, then allow us to decompose the space of sections of this line bundle into ir-
reducible representations of SU(2). Computing the spectrum of the corresponding
Schrodinger equation (which reproduces the answer given in [52], [57] and [15]) is

essentially a corollary of this.

Chapter Three can be thought of as a broad generalization of Chapter Two. We
started in Chapter Two from the calculation of Novikov and Schmeltzer that the
regular coadjoint orbits of £(3) may be identified with the classical phase space of an
electron orbiting a magnetic monopole at a constant radius. The appearance of the
‘magentic term’ in the symplectic form was unexpected and remarkable and led to a
flurry of work (see the references in [5]) in the investigation of the classical dynamics
of what are now called magnetic cotangent bundles — namely, symplectic manifolds
of the form (T*M, dp A dx + 7*(w)), where 7*(w) is the pullback to T*M of a closed
form on T*M. In particular, this classical system was investigated for the case that
M is a coadjoint orbit O(a) of a compact Lie group G in [4], [5] and [14].

Coadjoint orbits of compact Lie groups are classes of manifolds with a very rich
geometry — on the topological level they are known as generalized flag manifolds —
and are an ideal case study for looking for analogues of the Dirac magnetic monopole
on S?, because their second cohomology group (which classifies line bundles) is non-
trivial. In Chapter Two we look to apply geometric quantization to the classical
system of a free particle on a magnetic cotangent bundle to a coadjoint orbit that
was considered in [4], [5] and [14].

By identifying O(a) = G/G,, where G, is the stabilizer of the point a, we can
describe the analogues of magnetic charge in this situation. In Dirac’s case the
magnetic charge was just a real number ¢q. The situation here is more delicate, if g,

is the Lie algebra of GG, then the analogue of magnetic charge is given by a character
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of g,, i.e. amap f : g, — R such that f([X,Y]) =0.
In Dirac’s situation there was a quantization condition that ¢ € Z. A similar
situation persists here, in that the quantization condition is that f should in fact

give a well-defined character s of the Lie group G, under the rule

Xy (exp(X)) = explif(X)].

For this to be well-defined, it is necessary that f should belong to the lattice L C g,,
whose elements take values in 27Z when applied to any element of exp~!(e). If
G = SU(2), this exactly corresponds to the case considered by Dirac.

Even more of the method from Chapter Two carries over: it turns out that the
analogue of the wavefunction of an electron should again live in the representation
of G that is induced from xf, which will be on the space of sections of a line bundle
over O(a) = G/G,. This space can be decomposed into irreducible representations
of G using the Kostant Branching Formula and the Frobenius Reciprocity Formula
and the spectrum of the corresponding Schrodinger equation can be written in terms
of the Kostant formula.

It is worth mentioning as well that the most natural Schrodinger operator to
consider corresponds exactly to the Bochner Laplacian, which is a second-order self-
adjoint differential operator acting on sections of vector bundles over a Riemannian
manifold, see e.g. [54]. This operator is an extension of the classical Laplace-Beltrami
operator that acts on functions on a Riemannian manifold and is of interest to geome-
ters. Specific calculations of the spectrum may be done for individual coadjoint orbits,
with the spectrum being easiest to compute when the coadjoint orbit is maximally
degenerate. When G = SU(n), such calculations were done to find the spectrum of
the Bochner Laplacian acting in line bundles over complex Grassmannians in [21].
We note that the branching rules calculated there may be obtained in a different way

using results of [44].

Chapter Four is in a slightly different vein to Chapters Two and Three. In Chap-
ters Two and Three we looked at the quantization of some classical phase spaces that
can be identified with that of Dirac monopoles on coadjoint orbits of a compact Lie
group GG. The procedure of geometric quantization identifies from the classical phase
space a Hilbert space and it turns out that this Hilbert space can be identified with
an induced representation of GG. For each character of G, we can induce a represen-
tation of G and this can be associated with a classical phase space that corresponds
to a Dirac magnetic monopole.

The question we address in Chapter Four is, given two finite groups H C G: ‘does
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it still make sense to describe a representation of G induced from a character of H
in terms of a Dirac magnetic monopole?” It turns out that the answer is yes! In
some sense this is an inverse problem to that considered in Chapters Two and Three,
where we arrived at the induced representation as the algebraic answer to a geometric
question — here we start with the algebraic answer and try to discover the geometry.

For finite groups H C G the coset space GG/H is not a manifold in any meaningful
way — it is really just a collection of points, which is in marked contrast to when H
and G are Lie groups. To try and impose some geometry on the coset space we look
to draw a graph whose vertices are the elements of G/H, this is a natural thing to do
because a graph can be thought of as the discrete analogue of a Riemannian manifold.
To draw a graph 'y we act formally on G/H by certain elements K in the centre
of the group algebra of GG, which we call Casimir elements and which are formed by
taking the formal sum of each element in a conjugacy class. Under certain conditions
on the Casimir element (namely that the entries in the character table of G of the
corresponding conjugacy class are real, in which case we call it a real Casimir) the
graph generated is regular, i.e. the local structure of each vertex looks the same as
any other. If we assume that G acts transitively on 'k then the adjacency matrix of
'k is essentially given by the matrix of K acting in the representation of GG induced
from the trivial representation of H.

A magnetic field on a graph is given by associating to each oriented edge [z, ]
an element exp [ia,,| such that exp [iay,| = exp [—iay,|, with a,, € R. The notion
of magnetic fields (and indeed arbitrary gauge fields) on lattices has been around for
some time — physicists have been studying this since the 1950s (see [38] for a review)
and there are two interpretations that can be placed on the lattice. Firstly, the lattice
sites can be viewed as atoms in a crystalline solid, with the edges corresponding to
electron bonds between the atoms. Alternatively, the lattice points can be viewed
as a discretization of space, with the continuous Laplacian being replaced by a finite
difference operator. However, the extension of these ideas to arbitrary graphs seems
to be a relatively new development, with [38] being one of the first and more recently
[10] and [45] contain interesting results. All of the papers cited here use analysis to
derive results about general classes of graphs with magnetic fields. However, we take
the opposite view: we are concerned with graphs of a special type equipped with
special magnetic fields. This can be taken in the same vein as looking at coadjoint
orbits rather than arbitrary manifolds. Indeed, the work in this chapter seems closer
in spirit to that of Manton [39], who explained the differential geometry of discrete

principal fibre bundles, i.e. where the total space is discrete. The objects described in
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this chapter may be thought of as the associated vector bundle analogue of Manton’s
construction. He also gives a definition of the Chern number of such a bundle, which
we take as the description of magnetic charge.

We define a discrete Dirac magnetic monopole on a regular graph by the following
general construction: we act with a real Casimir K of G on a representation of G
that is induced from a non-trivial character of a subgroup H. The matrix of K in the
induced representation can essentially be taken to be a magnetic adjacency matrix
for the graph I'x and the magnetic field on the graph has many properties that the
magnetic field due to a monopole has. Namely, consider for a moment the magnetic
flux through a part of the surface of the sphere centred on a magnetic monopole — we
see immediately that the flux contained is proportional to the area of the part of the
surface of the sphere. In the discrete case, we have that the magnetic flux through
each two cycles that are related by an element g € G is constant. The spectrum of the
corresponding magnetic Laplacian can be obtained using the tools of representation
theory.

We demonstrate this construction by trying to find magnetic monopoles on the
graphs of the Platonic solids. This can be thought of as a discrete version of Dirac’s
monopole, since Platonic solids can be thought of as discrete approximations of S
We do this by taking G C SO(3) to be the orientation preserving symmetry group
of the solid in R?® and H to be the stabilizer of a vertex. This is non-trivial, since a
priori there is no way of knowing if a Casimir element of G will generate the desired
graph. It turns out that this is possible for the tetrahedron, the octahedron, the cube
and the icosahedron, i.e. it is not possible for the dodecahedral graph.

By embedding the polyhedron in R3, we see that we should expect to find as many
different magnetic charges as there are faces of the polyhedron, which we denote by
n. This is because, since the total flux is an integer we should have that the flux

" root of unity.

through each face is the argument of an n'

For technical reasons, instead of the symmetry group G of the polyhedron we
consider G* the binary symmetry group of the polyhedron, which is a double cover of
G. There are various reasons why G* should be thought of as more fundamental than
G, but here we use G* instead of G because otherwise we miss half of the magnetic
charges — namely those with odd number. This is analagous to the situation in
quantum mechanics where instead of looking at the representation theory of SO(3),

one instead studies the representation theory of SU(2) — leading to the notion of

half-integer spin.



Chapter 2

Geometric quantization of the

Dirac magnetic monopole

The considerations made in this chapter lay the foundation for the rest of the thesis.
In addition to explaining the geometry of Dirac’s magnetic monopole with wave-
functions being sections of a complex line bundle L — S?, Wu and Yang explicitly
solved the Schrodinger equation and computed the spectrum of the corresponding

wavefunctions to be
1
A= {l(l +1) + |q] (l + 5)] ,0=0,1,2,... with degeneracy 20+ |q| +1. (2.1)

A different derivation of this result in terms of integrable systems was given by Fer-
apontov and Veselov [15], who extended the classical factorisation method going back
to Darboux and Schrodinger [51] to curved surfaces. This provides an explicit descrip-
tion of the monopole harmonics, facillitated by recursive application of the lowering
operators to the ground states: under the isomorphism S? = CP! = C U oo, the
ground states for positive ¢ are given by polynomials of degree < q.

The starting point of the work in this chapter was the calculation by Novikov and
Schmelzer [43] of the canonical symplectic structure on the coadjoint orbits of the
Euclidean group E(3) of motions of E*, which showed the relation with the classical
Dirac monopole. A similar calculation for Poincare and Galilean groups was done by
Reiman [48], who also seems to have the idea of geometric quantization in mind, but
did not pursue it.

The variables introduced by Novikov and Schmelzer have a natural quantum ver-
sion as covariant derivatives acting on the space of sections I'(L) of the corresponding

line bundle L. With this interpretation, the modification of the angular momentum

in the presence of the Dirac magnetic monopole by Fierz [16] appears naturally.

16
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Here a simple derivation of the spectrum of the Dirac monopole on a unit sphere
is using geometric quantization is presented. It should be mentioned that geometric
quantization of the Dirac magnetic monopole and related problems were already
discussed in [41, 53], but the approach taken here is perhaps simpler and clearer.

For magnetic charge ¢, the space I'(L) is the representation space of the represen-
tation of SU(2) induced from the character of U(1) C SU(2) given by z — 279,z €
U(1). This space can be decomposed into irreducible representations of SU(2) us-
ing the classical Frobenius Reciprocity Theorem [17] and the formula for the Dirac

monopole spectrum (2.1) is a simple corollary of this.

2.1 Coadjoint orbits of the Euclidean group F(3)

Let e(3) be the Lie algebra of the Euclidean group E(3) of motions of E®. Tt has
the basis [y, s, 3, p1, p2, p3, where p and [ are generators of translations and rotations
(momentum and angular momentum) respectively.

The dual space e(3)* with the coordinates {l,ls,l3, p1, 2, ps} has the canonical

Poisson bracket

{l;,;} = €jile, {li,p;} = €ijupr, {pi-pj} =0.

The regular symplectic leaves of this Poisson bracket are the coadjoint orbits of E(3),

which are the level sets of the Casimir functions
Cy = (p,p) = R?, Cy = (I,p) = aR.

Following Novikov and Schmelzer [43], introduce the variables

0]
R 2.9
o 7P (2.2)

to identify the coadjoint orbits with 7*S? C T*R?

(p,p) = R*,  (o,p) =0,

where 7'S? and T*S? have been identified using the standard Riemannian metric on
the radius R sphere.
The new coordinates {01, 09, 03, p1, P2, p3} have Poisson brackets
o

{Ui,Uj} = €ijk (Uk - E}%) ) {Uiapj} = €ijkPk; {piapj} = 0. (2-3)
Novikov and Schmelzer computed the canonical symplectic form on the coadjoint
orbits and showed that it is given by
o

w=dpA d:zc—l—R2

7*(dS) (2.4)
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where dp A dz is the standard symplectic form on 7%S? and dS is the area form on
S? (see also [48]). As was pointed out in [43], the second term corresponds to the
magnetic field of the (non-quantized) Dirac monopole:

Q@
The value of the magnetic flux through a sphere around the monopole is defined by

1

T 50 Js

and is called the charge of the Dirac monopole. Dirac’s quantization condition [11] is

1 1 «Q
—— | B=— | Z4dS=2a€e7Z
g 21 52 27 /gz R2 ac

Comparing this with (2.4), we see that this is identical to the geometric quantization
condition [26], (i.e. that the symplectic form should give 27 times an integer when

integrated over any 2-cycle) which here yields

1 1 «Q
— = — —dS € Z.
27 [52] v 27 52 R2

2.2 Line bundles over S*

It is convenient to use the scaled variables
v =pi/R, =25 +a5+a5=1 (2.5)

to work with the unit sphere S2.
The quantum version of the Poisson brackets (2.3) are the following commutation

relations (we are using the units in which Planck’s constant i = 1)
(0%, 61 = Q€him(Om — Am), [0k, T1] = t€pimTm, [Tr, 2] = 0. (2.6)

We are going to show now that the algebra generated by these elements has a
natural representation on the space of sections of a certain line bundle over S2.
Recall that a connection on a vector bundle E over a manifold M™ associates to
every vector field X on M" the operator of covariant derivative V x acting on sections
of E. The corresponding curvature tensor R is defined for each pair of vector fields
X,Y as
R(X,Y)=VxVy —VyVx — V[Xy],

where [X, Y] is the standard Lie bracket of vector fields (see e.g. [30]).



CHAPTER 2. QUANTIZATION OF DIRAC’S MAGNETIC MONOPOLE 19

Consider a complex line bundle over S? with a U(1)-connection having the cur-
vature form

R =B = iadS,

which is motivated by geometric quantization. Since the first Chern class of the

bundle must be an integer we have that
1 1
qQ=— R=— adS =2a € Z,
2w J g2 2m J g2
which is precisely Dirac’s quantization condition.
Let

X1 = 230y — 2205, Xo = 2105 — 1301, X3 = 201 — 110

be the vector fields generating rotations of S? C R? and let V x; be the corresponding

covariant derivatives. We claim that

@j =1V X
and the operators #; of multiplication by z; satisfy the commutation relations (2.6).

Indeed, by definition of the curvature form, we have
R(Xl,Xg) == VxleQ — ngle — V[Xl,Xz] == iozxg

since
xry T2 X3

adS(X, Xo)=a| 0 a3 —xo | =axs(2} +25+13) = axs.
—r3 0 x
This implies
Vx,, Vx,] = Vx, +iaxs

since [ X1, Xo] = X3. Consequently, we have
Vi, Vil = ieim(Vin — @)

for all k,1,m = 1,2, 3; with the rest of the relations (2.6) being obvious.
Alternatively, we can look for the quantization of Novikov-Schmelzer variables as
covariant derivatives:
0; =1iVyx;.
Then the same calculation shows that the curvature form of the corresponding con-
nection must be 1a dS.

Finally, returning to the original variables we have the operators

~ ~

lj = Vj + le.f%j, (27)
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which coincides with the famous modification of the angular momentum in the pres-
ence of the Dirac magnetic monopole [16]. This provides us with one more explanation

of this well-known, but a bit mysterious ! physical notion.

2.3 Induced representations and Frobenius reci-
procity

Let L, be the complex line bundle over S? with first Chern class . We are interested
in the space I'(L,) of L*sections of L,. Viewing S? as SU(2)/U(1) (with U(1) as the
diagonal subgroup) we have a natural interpretation of I'(L,) as a representation of
SU(2). This is unsurprising since Wu and Yang showed that the Lie algebra so3 acts
naturally in this space, just as it does on functions in L?(S5?).

What is perhaps more surprising is that ths space can be described directly in
terms of representation theory, where it is known as an induced representation (see
e.g. [17]). One can use the classical Frobenius Reciprocity Formula from this theory
to decompose I'(L,) into irreducible representations of SU(2).

We recall the details of the construction of induced representations for Lie groups
first, before demonstrating exactly how it works for the case at hand of U(1) C
SU(2). Induced representations were first described by Frobenius who was looking at
representations of finite groups. The construction is perhaps easier to understand for
Lie groups, where the result may be interpreted in terms of differential geometry. For
more details, one can see [1], [7], [17], [23] and [26] amongst others. The construction
for finite groups is described in Chapter 4.

Given a group G and a subgroup H there are two natural functors between the
category of representations of each. Given a representation V of G, it is clear that

one can get a representation of H by restricting the action of G on V to H
Vg = resg (V).

The functor going in the other direction can be described in terms of differential
geometry. If G is a Lie group, H a closed subgroup and o : H — Aut(W) a uni-
tary representation of H then the representation of G' induced from (o, W) can be
explained geometrically as acting on the space of L2-sections of the associated vector
bundle to the principal fibre bundle H — G — G/H and the representation (o, W)

of H. This construction can be explained as follows.

!Sidney Coleman, in his famous lectures on Dirac monopoles [9], wrote about this modification
of angular momentum: “The second term looks very strange indeed; in Rabi’s immortal words about
something else altogether, “Who ordered that ?””
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We define a vector bundle Ey := G xy W with fibre W over the homogeneous
space G/ H, whose L*-sections are W-valued L? functions on G satisfying the following

equivariance condition with respect to the H-action
L*(G,W,0) :={¢: G— W |¢(gh) = o(h"")¢(g) for almost every g € G}.

It is traditional [29] to abuse notation and work with the subspace of continuous
elements of L?(G, W, o) — this is legitimate, since it can be shown [46] that this is a
dense subspace. If this is done then one does not have to worry about the condition
‘for almost every g’

The bundle Ey itself is formed by taking the quotient of the trivial bundle G x

W — G with respect to the equivalence relation for the action of H
Ew =G x W/ ~, where (gh,w) ~ (g,0(h)w).

The projection on Eyy is induced from the natural projection on the trivial vector
bundle G x W — G

m: By — G/H, (g, w) — (gH).

The bundle Eyy is more special than a typical associated vector bundle and is known in
the literature as a homogeneous vector bundle. This means that, unlike the associated
vector bundle construction in general, there is a transitive action of G on the base
space.

The induced representation can be defined using this bundle as being on the space

of L?-sections of the bundle.

Definition. Given a unitary representation (o, W) of H C G, the representation of
G induced from (o, W) is on the space L*(G,V, o) with G acting on an element 1 by

g-¥(x) = (g~ x).

This representation is unitary and is called the representation of G induced from the

representation (o, W) of H and is written ind% (W).

Notice that if W = C then Ey is a line bundle over G/H and A := p is a character
of H — in this case we refer to the line bundle by the weight as L,. Furthermore, if
the representation o is trivial then the line bundle is trivial Ey = G/H x C and the

induced representation space ind% (W) is just the space of functions L*(G/H).



CHAPTER 2. QUANTIZATION OF DIRAC’S MAGNETIC MONOPOLE 22

Remark. In general the bundle L) is not trivial and the degree of twisting is de-
scribed by the character A. For compact Lie groups there is the famous Borel-Weil-
Bott theorem [6], which is a culminating result in the representation theory of com-
pact Lie groups — giving as it does a uniform geometric construction of all irreducible
representations of all compact connected Lie groups. Loosely, it describes irreducible
representations of G in terms of sheaf cohomology groups H'(G/H, O(Ly)). Fori =0
the result is due to Borel and Weil, with Bott providing the generalization for the
higher cohomology groups when 7 > 0.

The Borel-Weil part of the Theorem is essentially just a reformulation of E.
Cartan’s theory of highest weights. Let G be a compact Lie group and 7" its maximal
torus. The homogeneous space G/T is a complex manifold (the full flag manifold).
Given a weight A of T'; we can induce a representation of G on I'(L,), where L, is a

line bundle over G/T constructed as above.

Theorem 2.3.1 (Borel-Weil Theorem) The space Iy (L_y) of holomorphic sections
of L_y is non-zero exactly when X\ is a dominant weight for an irreducible represen-
tation Vy of G. If this is the case then Uyo(L_y) = V) as representations of G.

Remark. For more details see [7] and [17]; with the full statement of the Borel-
Weil-Bott Theorem being included in [26] and proved in [6]. The Borel-Weil-Bott
Theorem allows the heavy machinery of Algebraic Geometry to be employed to solve
problems in Representation Theory. For instance: the Riemann-Roch Theorem can
be applied to compute the dimension of the corresponding irreducible representation
of G, which gives exactly Weyl’s dimension formula from representation theory; a
more refined analysis using the Atiyah-Bott fixed point formula [1] can be used to
deduce Weyl’s character formula for the character of V), see also [7]. The Borel-Weil-
Bott theorem was rederived algebraically using Lie algebra cohomology by Kostant
[33].

For compact Lie groups, the induced representation is infinite-dimensional and is
not, in general, irreducible. It can be decomposed into irreducible representations
of G using the Frobenius reciprocity formula [17], which if W is a representation of
H and V of G gives the following relation between the Hermitian scalar product of

characters
(V,indf (W)),, = (resd (V) , W),

More formally, this can be stated as the following theorem, see [17] for details.
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Theorem 2.3.2 (Frobenius reciprocity theorem) If (p, V') is a representation of G

and (o, W) is a representation of H then there is an isomorphism of vector spaces
Home(V,ind%(V)) = Homp (resZ (V) , W).

Remark. Frobenius reciprocity can be interpreted formally as the statement that
ind : Reps(H) — Reps(G) and res : Reps(G) — Reps(H) are adjoint functors.
Loosely speaking, this formula says that the number of times that each irrep V' of G

appears in ind$ (W) is equal to the number of times that W appears in resf (V).

The point is that Frobenius reciprocity permits the decomposition of the spaces of L?-
sections of vector bundles over homogeneous spaces into irreducible representations
of G. In the specific case that (o, W) is a one-dimensional representation, then Ey,
is a line bundle over G/H and the space of sections can be decomposed according by
calculating certain branching rules.

We now demonstrate this explicitly for the case at hand with U(1) € SU(2). First
recall that all finite-dimensional irreducible representations of SU(2) are labelled by
a highest weight k € Z>y. The corresponding spaces Vj, have dimension k£ + 1 and
weights

—k,—k+2,...,k—2,k. (2.8)

Since SU(2) acts on C? we can take as the spaces V}, homogeneous polynomials in
two variables of degree k, i.e. Vi, = Sym®(C?). It is clear that taking U(1) to be the
diagonal subgroup of SU(2) gives the weights as claimed in equation (2.8).

Recall also that all finite-dimensional irreducible representations W, of U(1) have

dimension 1 and are given by

e e’ g e

Using W_, to induce a representation of SU(2), we have that indgl(]l(f) (W_,) can

be described geometrically as the space of L-sections of the line bundle L, over S*

with the first Chern class ¢
. SU2
[(Ly) = indp ¥ (W) .

This can be seen using the Borel-Weil Theorem 2.3.1, since for ¢ > 0 we have

that I'ye(L,) = V,; consequently
dim(Tpo(Ly)) = dim(V,) = ¢ + 1,
whilst using the Index Theorem gives that

dim(rhol(Lq)) = Cl(Lq) +
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The induced representation is not irreducible: to decompose it we will use the Frobe-

nius reciprocity formula, which in our concrete case reads

= <Wq, resg((}()z) (Vk)>

with the brackets denoting the multiplicity of the first representation entering into

(Vi indgy Y (W) (2.9)

SU(2) Uy
the second one (see e.g. [17]).

Since the restriction of Vj to U(1) is the sum of the weight spaces

Ul
reSS(U()2)<Vk) = @ W,
JESk

where Sy, = {—k,—k +2,...,k — 2,k} we see that each Vj, which (after restriction)
contains W, will appear once in the decomposition of I'(L,). Clearly this can only
happen if k > |¢| and k—|q| is even. Therefore I'(L,) decomposes into SU(2)-modules

according to the following rule

—

. 15U(2)
lndU(l) (Wq) = F(Lq) = @lEZZO%H_Iq" (210)

where the hat over the direct sum indicates that an infinite number of terms may be

taken.

2.4 Calculation of the monopole’s spectrum

The Hamiltonian of the Dirac monopole can be written in terms of Novikov—Schmelzer
operators as
H =26

or, equivalently, in terms of magnetic angular momentum [ as

e

H=P-a*=1—
“ 4

Since the components of ,, satisfy the standard commutation relations

~

[Zk, lm] = iekmniny

the operator {2 is a Casimir operator for SU(2) and acts on Vj, as a scalar. If v € V},
and s = k/2 then [2 acts as

A 1
PPv=s(s+1)v = Zk(k + 2)v, (2.11)

see e.g. [17]. The space Vi |q has dimension 21 + |¢| + 1, and for ¢ € Vi, the

operator H acts as

= (-1 = |

: @+ la @i+ lal+2) - 3] v = e +1al (143)] v

4
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Thus for a Dirac monopole of charge ¢ the spectrum is
1
[l(l + 1)+ |q| (l + 5)} .| € Z>o with degeneracy 2+ |q| + 1

agreeing exactly with (2.1). This result was also derived in [15], where the cor-
responding eigenfunctions were computed using Darboux-Schrodinger factorisation
method applied to curved surfaces. For non-negative ¢, the ground eigenstates were
identified with the space of polynomials of degree < ¢ in one complex variable on
CUoo = S2. In our picture this ground eigenspace corresponds to the subspace of
holomorphic sections of L,, which by the Borel-Weil Theorem 2.3.1 can be identified
with the corresponding irreducible SU(2)-module V.



Chapter 3

Magnetic monopoles on coadjoint

orbits

This chapter may be thought of as a continuation of the previous one. There the Dirac
magnetic monopole was considered from the point of view of geometric quantization.
The starting point there was the observation in [43] that the regular coadjoint orbits
of the Euclidean group F(3) = SO(3) x R? coincide with the phase spaces of classical
Dirac magnetic monopoles. Geometrically, the phase space of (an electron moving on
a sphere surrounding) a Dirac magnetic monopole of charge ¢ € R is the symplectic

manifold

(T*S? dp A dx + éw*(dS)),
where 7*(dS) is the pullback of the area form on S? to the manifold 7*5?% under the
natural projection 7 : T*S? — S2.

This is an example of a magnetic cotangent bundle: a symplectic manifold
(T*M,dp A dx + 7*(w)),

whose symplectic form has been twisted away from the canonical form dp A dx by
the addition of 7*(w), where w is a closed 2-form on M and 7*(w) is its pullback to
T*M.

For 5%, the prequantization condition of geometric quantization (requiring the
symplectic form to be integral) then gives exactly Dirac’s quantization condition for
magnetic charge: namely that ¢ € Z, since the prequantization condtion is that

1 q
— [ Lgs=qez.
or Je 27 71

On choosing the vertical polarization on 75?2, the quantum Hilbert space is given by

the space L?(L,) of square-integrable sections of L, — S?, the complex line bundle

26
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over S? with Chern class ¢. The crucial point is that this Hilbert space can be related
to an induced representation as follows. The sphere S? is a coadjoint orbit for SU(2),
being given by S? & SU(2)/U(1), where U(1) is a maximal torus in SU(2).
If W, denotes the weight of U(1) given by e — €’ (for ¢ € Z), then there is the
isomorphism
L*(Ly) = indgy (7 (W_,).

This induced representation can be decomposed into irreducible representations of
SU(2) explicitly using the Frobenius reciprocity formula.

The classical observables can be explicitly quantized and so the quantum Hamil-
tonian can be computed — it is given by the Casimir operator for SU(2) minus a
constant ¢?. Thus, the spectrum of (an electron orbiting) a Dirac magnetic monopole
is calculated explicitly and the answer agrees with the straightforward calculations
in [57] and [15].

In this chapter this construction is carried over mutatis mutandis for magnetic
cotangent bundles to coadjoint orbits of compact, connected and semisimple Lie
groups — which will be called ‘Dirac magnetic monopoles on coadjoint orbits’.

It is well-known that coadjoint orbits of Lie groups are symplectic manifolds, pos-
sessing the canonical Kostant—Kirillov symplectic form wgg. This observation is the
starting point for ‘The Orbit Method’ [26], which aims to connect the representation
theory of the Lie group to the geometry of its coadjoint orbits.

This is not the end of the story as far as the symplectic geometry of coadjoint
orbits is concerned. Suppose that O(a) = G/G, is a coadjoint orbit of G, with G,
being the stabilizer of the point a € g*.

If g, is the Lie algebra of G, then any f € (Z(g,))* (i.e. f belongs to the dual of
the centre of g,) can be used to define a G-invariant closed 2-form (a ‘pre-symplectic
form’) wy on O,. The condition f € (Z(g,))* is equivalent to saying that f is a
character of g,, i.e. f € Hom(g,, R).

One may then study the magnetic cotangent bundle (7*O(a), dp A dx + 7*(wy)).
By describing a natural (although not well-known) group structure on TG = G X 4449,
the tangent bundle to G, it is shown that this is actually symplectomorphic to the
coadjoint orbit O(f,a) C (g X g)* equipped with the Kostant—Kirillov form. This
can be thought of as an extension of the observation in [43] that the coadjoint orbits
of F(3) are symplectomorphic to the phase space of Dirac magnetic monopoles.

Taking inspiration from the previous chapter, geometric quantization is then used
to quantize the phase space (I"O(a),dp A dx + 7" (wy)) = O(f,a) C (g Xaa 9)*

The analogue of Dirac’s quantization condition for magnetic charge is given by the



CHAPTER 3. MAGNETIC MONOPOLES ON COADJOINT ORBITS 28

integrality condition of geometric quantization, which is satisfied iff f exponentiates
to give a character y; € Hom(G,,U(1)). This connects to representation theory,
because the Hilbert space 'H suggested by geometric quantization is exactly indga(x 7)
— the representation of G induced from the character y.

This induced representation is not irreducible and it can be decomposed into
irreducible representations of G according to Frobenius reciprocity, which requires
computing how each irreducible representation decomposes when restricted to G,.

Because G, contains a subgroup of GG that is a maximal torus 7', the answer to
this branching problem is given by Kostant’s branching formula (see e.g. [29]) —
which seems to have been purpose-built for this occasion.

Lastly, the action of the quantum Hamiltonian (which is the quantization of the

free particle Hamiltonian H = $¢"p;p; on T*O(a))

H=indg, (x;) = {f:G—C,feL*G)|f(gh) = x;(h")f(9),g € G.h € Gu}

is computed. This is shown to be the same as the action of the Bochner Laplacian
and is given by

Hy=Q0—(f, 1),

where (¢ is the second order Casimir element of G and this is acting on H.
In conjunction with Kostant’s branching formula this gives the spectrum of a

‘Dirac magnetic monopole on a coadjoint orbit.’

3.1 Magnetic geodesic flow

The topic for this chapter will be the geometric quantization of the magnetic geodesic
flow on a coadjoint orbit with respect to the normal metric. The magnetic geodesic
flow describes the motion of a free particle on a manifold in the presence of a magnetic
field and may be described as a distortion of the usual geodesic flow.

On a Riemannian manifold (M™, g;;) one may study the geodesic flow. In this
subsection this system will be described — together with the ‘magnetic geodesic flow’.
If {«':9i=1,...,n} are local coordinates on M and p; = g;;@’ are local momenta
then local coordinates on T*M are given by {x’,p;,;i = 1,...,n} and the canonical
symplectic form is defined globally by dp A de = Y, dp; Adz'. This defines a
Poisson bracket on C'*°(M), which for fi, fo € C°°(M) is given in local coordinates

by
(oo} = Z (8f1 dfs  Of an). (3.1)
=1

ox' Op; B Op; Oz



CHAPTER 3. MAGNETIC MONOPOLES ON COADJOINT ORBITS 29

The Hamiltonian function

1,
H = 59"pip;
describes the kinetic energy of a particle of unit mass on M. Hamilton’s equations
are then ,
dz* OH dp; 0H
nd =

at op, O dt T on
which hold iff of
Yy H
dt {f7 } )
where f € C°°(M); this system is called the geodesic flow on (M, g).

Definition. A magnetic cotangent bundle is a symplectic manifold of the form
(T*M,dp A dx + 7*(w))

where w is a closed 2-form on M being represented in local coordinates by w =
Fij(x)dx' A da? and describing a magnetic field on M and 7*(w) denotes its pullback
to T*M.

The Hamiltonian function H = $¢"p;p; now represents the kinetic energy of a
particle of unit mass and electrical charge moving on M with the magnetic field w.
This changes the Poisson bracket from (3.1) to

_ —~ (0f10fs Of10fs . 1 0h0)
{fl’fQ}w - ZZI (axza_pz - 3_]%(%") +i;1 Ej<m>3_pz8_p]

Consequently Hamilton’s equations change to

dx* OH dp; OH < OH
= and = Fii(x)—.

dt  Op; dt  Ox i

j=1

Of particular interest is the case when M is a coadjoint orbit of a compact, con-
nected and simply-connected Lie group G — the geometry of which will be described
in the next section. The classical dynamics in this case studied in [4], [5] and [14],
with the result being that the classical system is integrable under certain conditions
on the magnetic form — namely that it is a scalar multiple of the Kostant—Kirillov

form on the orbit (see the next section for the definition of this form).

3.2 Coadjoint orbits

In this section the geometry of coadjoint orbits of compact Lie groups is reviewed and
also some topological information is derived. A class of G-invariant closed 2-forms

on the orbit is defined, which may be taken as magnetic fields on the orbits.
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To aid digestion, it is perhaps worth giving some examples of coadjoint orbits of
compact Lie groups. Topologically they are known as generalized flag manifolds and
have very nice properties, which derive from the fact that the stabilizer of a point
contains a subgroup that is a maximal torus. A first non-obvious result is that they
are complex manifolds, something that is necessary for the Borel-Weil-Bott Theorem
(stated for generalized flag manifolds) to even be plausible.

The generic case is when this stabilizer is as small as possible, i.e. when G, = T'.
In this case, the coadjoint orbit is topologically a flag manifold, i.e. the quotient of
G by its Borel subgroup B. This is a class that contains the standard flag manifold,
which is given by

Fo={FhCF C...CF,, CC"}

which is easily seen that F,, = SL(n,C)/B. It is a remarkable fact that coadjoint
orbits of compact Lie groups are hyperkédhler manifolds — this result was proved for
generic orbits in [36] and for non-generic orbits in [35].

At the other end of the spectrum, the most degenerate coadjoint orbits are given
when the stabilizing subgroup is as large as possible — topologically, these spaces are
Grassmannians and projective spaces. For example, the Grassmannian of k-planes
in C" is a coadjoint orbit of SU(n) with G, = S(U(k) x U(n — k)) — in particular,

k=1 and k =n — 1 correspond to complex projective space CP" !,

3.2.1 Geometry of coadjoint orbits

A matrix Lie group G acts on itself by conjugation, given g € G define C,; by
Cy:G— G, Cy:hw ghg'.

The identity e is a fixed point of this map and so one may look at the derived map
of tangent spaces (Cy). := Ad, : g — g, which is called the adjoint map of G on g.
Given a curve h(s) = exp(sY’) through e in G, by differentiating one sees that the

adjoint map is nothing but conjugation

gexp(sY)g~t =gYg .
s=0

d
Adg(Y) = %

This map is a representation of G, since Ad, - Ad, = Ad,y. One can again look at
the derived version of this map: if g = exp(¢X) then the adjoint map of g on itself is
defined by

d
adx(Y) := pr

exp(tX)Y exp(—tX) = [X,Y].

t=0
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One can define dual maps of G' and g (written Ad* and ad* ) on g*, which is the dual
of the Lie algebra g. If the pairing between f € g* and X € g is written (f, X) then
the coadjoint action of G on g* is defined by

<Ad;(f),X> = (f, Ady—1 X)
and the coadjoint action of g on g* is defined by

(ady (f), X) := = (f,ady X) = (f,[X,Y]).

Given a in g*, the coadjoint orbit O(a) is defined by
O(a) :={z € g" |z = Ad}(a),g € G} = Ad(a).

Define G, to be the stabilizer of the point a, i.e. G, = {g € G : Adi(a) = a}, clearly
if = Ad}(a) then G, = g(G,)g~". Thus, the stabilizers of each point of O(a) are
conjugate and so we may identify O(a) with the homogeneous space O(a) = G/G,.

In this chapter we are considering simple Lie groups G that are compact, con-
nected and simply-connected. A simple compact group has a positive-definite and

Ad-invariant inner product defined on its Lie algebra g, which is given by
(X,)Y) = —tr(XY),

for X,Y € g. Up to a constant this coincides with the Cartan—Killing form (or
sometimes it is just called the Killing form) on g, which is defined by

(X,Y)og == —tr(ady oady : g — g).

This is a symmetric billinear form taking values in g, which is non-degenerate if and
only if g is semisimple. For semisimple g this permits the identification of g and g*.
It also allows the identification of coadjoint orbits of G with the adjoint orbits in a
natural way. Thus, for the class of groups we are considering here we could just as
well look at adjoint orbits instead of coadjoint orbits — this is indeed the approach
taken in [4], [5] and [14], where a related classical system is considered.

If G is a compact Lie group then, since any element in g can be diagonalized by

conjugating within the group G, we have the following lemma.

Lemma 3.2.1 The stabilizer G, C G of a point a € g* contains as a subgroup a

mazimal torus T of G.

Proof. Any element of g* can be brought into diagonal form by the coadjoint action,
i.e. for any a € g* there is a g € G such that Adj(a) € t*, where t is the Lie algebra

of T'. Such an element is clearly fixed by all elements of 7', proving the lemma. [J
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Remark. Thus whilst coadjoint orbits of a compact Lie group are homogeneous
spaces, they are homogeneous spaces of a special type — where the stabilizing sub-
group contains a maximal torus. This excludes many homogeneous spaces where the
spectral problem for the Laplace-Beltrami operator has been traditionally studied,
e.g. any sphere is a homogeneous space since S™ = SO(n + 1)/SO(n), but only for
n = 2 can this also be realized as a coadjoint orbit. A good survey of the spectral

problem for homogeneous spaces is given in [29].

We move now to describe some of the geometry of coadjoint orbits: a first question
might be to ask how tangent vectors to coadjoint orbits can be described. Suppose
g(t) = exp(t€) is a curve in G, then Adj, (z) is a curve in O(a), passing through z
at t = 0. Differentiating gives

% . <Ad;(t)x,n> = % . <x,Adg(_t)77> = (z,[n,&]) = <ad2(:c),a>.
Therefore, as might be expected, the tangent space at a point of O(a) is generated

by the infinitessimal version of the coadjoint action of G

T,0(a) = {f €g" | f = adi(z) for { € g} = ady(x).

One sees from the above discussion that tangent vectors to coadjoint orbits are nat-
urally coadjoint vectors (i.e. they live in g*). By using the identificiation ((g)*)* = g
one also sees that cotangent vectors are naturally adjoint vectors (i.e. they live in g).

As remarked above, one could also study adjoint orbits, which for the class of
groups we are considering are isomorphic to coadjoint orbits. For general Lie groups
though, it turns out that coadjoint orbits have defined on them a natural symplectic
form — immediately exalting them above adjoint orbits. This symplectic form is
‘inherited functorially and so the coadjoint orbit is the correct object’, as explained
in the highly readable [7]. This is not just a technicality however: for nilpotent Lie
groups, which are the class of Lie groups where the orbit method of Kirillov works
best (see Kirillov’s monograph [26]) if one investigates the adjoint orbits one sees that

they need not even be even-dimensional.

Definition. Each coadjoint orbit O(a) of a Lie group G possesses a canonical, G-
invariant, symplectic form wg c; whose value on two tangent vectors §, = ad; (a) and

Na = ady(a) at a is given by

Wik (&ar M) = <a> [5777]> :

This symplectic form is known generally as the Kostant—Kirillov form. The proof that
it gives a well-defined, G-invariant, symplectic form can be found in many places, for
example: [23], [26] and [56].



CHAPTER 3. MAGNETIC MONOPOLES ON COADJOINT ORBITS 33

There is a natural metric on the coadjoint orbit O(a), called the normal metric.

Definition. The projection map pr : g — g/g. = g2 is used to define the normal

metric by the formula

(Eay ) = (pr(&), pr(n))ck-

Notice that the normal metric is well-defined: a tangent vector &, defines a £ € g
up to an element in g,, but the projection renders all such elements null. Namely,
if £ =&+ ¢ where ¢ € g, then pr(f) = pr(&) and so the value of (§,,n,) does not
depend on this freedom.

If £ € g generates a tangent vector adZ(x) at x then the cotangent vector that is
generated by & is exactly pe = prg. (§).

We show how this works specifically for the case when O(a) = CP", which is a
coadjoint orbit of SU(n + 1). If we take as the point a an element in su’_, of the
form a = diag(nx, —x, ..., —z) then we see that the stabilizing subgroup G, is given
by S(U(1) x U(n)) as follows

G, =2 S(U(1) xU(n)) = {((E) 3) e SU(n+1);e€ U(l),AEU(n),}

with the corresponding Lie algebra being given by

a su ; 1a 14 t [/ .
g n+1

The Cartan—Killing form ( , ) for XY € su,; is given by the well-known formula
(see [17])
(X,Y) =2(n+ Dtr(XY).

The tangent space at a may be identified with g/g, as

m = EZ Gﬁun+1;§1a"'7£nec =C"

&n

Thus the normal metric applied to &, € m gives

€n) =2+ )Y e
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3.2.2 Topology of coadjoint orbits

In this section some topological information pertaining to coadjoint orbits is deduced
from topological information of G and G,.

Firstly some of the homotopy groups of O(a) are computed by means of the
identification of the orbit O(a) through a with the homogeneous space O(a) = G/G,.
Therefore G is the total space for a principal fibre bundle over O(a) with fibre G,
which gives the fibration

G, — G — Ofa). (3.2)

Associated to the fibration (3.2) is a long exact sequence of homotopy groups

= (Gy) — m(G) — T (O(a)) = T-1(Ga) — ..
.= ma(G,) — m(G) — m(O(a)) — m(Gy) ...
.= (G) = m(0(a)) = m(Ga) — m(G) — m(O(a)) — 1, (3.3)

the details of which may be found in [12].
The information obtained from the long exact sequence (3.3) is summarized in a

series of simple lemmas, given without proof.
Lemma 3.2.2 If G is connected, i.e. mo(G) =1, then O(a) is connected.

Lemma 3.2.3 If G is connected and simply-connected, i.e. m(G) = 1, then we have

m(0(a)) = 7o(Gy) — in particular, O(a) is simply-connected iff G, is connected.

If G is connected and simply-connected, then one can also show that m(G) = 0

(see [26] for details): this fact spawns the following lemma.
Lemma 3.2.4 [f G is connected and simply-connected, then mo(O(a)) = m(G,).

Remark. In particular, this gives that m(G,) is commutative, since my (M) is com-
mutative for any manifold M. Indeed, it is a general fact that the fundamental group

of a Lie group is commutative — this derives from the group operation.

Whilst the homotopy groups of a principal fibre bundle may be computed in a
reasonably straightforward way, in principle it is difficult to extract information about
the homology of a fibre bundle. For instance, one could study the spectral sequence
associated to the fibre bundle (see e.g. [13]).

However, in low degrees the homology groups of a manifold M are related to its

homotopy groups in a relatively simple way. In the first degree we have that the
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first homology group is isomorphic to the abelianization of the fundamental group
H{(M,Z) = m(M)/ [m1 (M), 71 (M)] — indeed, this may be taken as a definition [12].
In the second degree we have that Hy(M,7Z) = mo(M) if m (M) = 0 (this is the
Hurewitz isomorphism, see e.g. [13]).

Combining the above paragraph (which relates homotopy groups in low-degree

with homology groups) with Lemmas 3.2.2, 3.2.3 and 3.2.4 gives the following Lemma.

Lemma 3.2.5 For G connected and simply-connected, then
HQ(G, Z) - O,

H2(O(G),Z) = Hl(Ga, Z) = Wl(Ga),

H,(G,7Z) = H(O(a),Z) = 0.
De Rham cohomology can be defined as dual to homology in the following sense:
H*(M,R) := Hom(H(M,Z),R).
Definition. Define the integral cohomology group as

H*(M,7Z) := {w c H*(M,R)

/wEZ for anyAEHk(M,Z)}. (3.4)
A

One can show that this definition is equivalent to the definition of integer cohomology

using using the simplicial or Cech theories [26].

Proposition 3.2.6 If G is connected and simply-connected then
H*(G,R) =0,

H%(O(a),R) = HY(G,,R) 2 Hom(m (G,), R)

and
HY(G,R) = H' (O(a),R) = 0.

This extends to integral cohomology, i.e. we have that

H*(O(a),Z) = H(G,, 7).
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3.2.3 Characters and cohomology

We begin this section with the definitions of characters of Lie groups and Lie algebras,

before explaining the connection we seek to understand.

Definition. A character of a compact Lie group H is a homomorphism from H into

U(1). The character group H is the abelian group of all characters of H
H :=Hom(H,U(1)),
with multiplication given by
(U - W) (h) = U(h)- V' (h), for U,¥' € H and h € H.
Since ¥ is a homomorphism into an abelian group we have that
U(h-h)=W(h) - U(W)=V(R) - U(h) = V(AL ") = ¥(h),
i.e. W is invariant under conjugation, explaining why W is called a character.

Definition. A character of a Lie algebra b is a Lie algebra homomorphism from b
into u; = iR. The character algebra H is the abelian group of all characters of b

b := Hom(h, iR),
with addition given by

(W + ) (Y) = (YY) +¢/(Y), for 9/ €h and Y € b.

Since v is a Lie algebra homomorphism into the abelian group ‘R we have that
DY Y]) = [(V), o (Y)] = (V) (Y') = 0(Y)(Y) = 0. (3.5)

In this section we look to make a connection between characters of a Lie group and
its first de Rham cohomology. The purpose of this is to see whether we can describe
the integer cohomology classes H'(Gy,Z) and so (by Proposition 3.2.6) H*(O(a),Z)
in terms of characters of G,. In other words, we know that given a character of G,
we can induce a representation of G on the space of L2-sections of a line bundle over
O(a) and that the Chern class of this bundle is an element of H?*(O(a),Z) — the
question is, can every element of H?(O(a),Z) be described in this way?

The motivation behind this question lies in the case considered in Chapter 2, when

the answer is easily seen to be yes. Specifically, we had that

U = {N:i0 — i, A € R} 2R and i(?)%{n:ewﬂeme,neZ}%’Z
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and that
HI(U(I) R) = id& AeR =R and Hl(U(l) Z)§{£d0 nEZ}’EZ.
’ o’ ’ o2

Moreover, inducing a representation of SU(2) from the character —n gives a line
bundle over S? with Chern class n.

We suppose that the Lie group H is compact and connected and we investigate
its first-degree cohomology and characters of it and its Lie algebra. We make the

following observation, that must be well-known to experts.
Lemma 3.2.7 FElements ofa correspond to elements of H'(H,R) and vice-versa.

Proof. The Lie algebra h of H may be viewed as both T, H and also the space of left-
invariant vector fields on H. Thus, the dual space h* may be viewed as both T)'H
and the space of left-invariant 1-forms on H. A left-invariant 1-form w is defined
by its value on T,H — if X &€ T, H then the value of w applied to X is given by
left-translating X back to T.H and then computing its value there, i.e. w(X) :=
W((Lp-1)+X). The algebra of left-invariant forms on H is thus isomorphic to the
exterior algebra A[h*| in a natural way. The cohomology groups of Lie groups were
investigated by Weyl [55] who showed that a k-form w is closed if and only if it is

bi-invariant, i.e. invariant under both left and right translation, i.e. if
whX k™. hXh ™) = w(Xy, ., Xg).
This is most easily demonstrated for 1-forms, where a form w is closed if and only if
whXh™) = w(X). (3.6)
This can be seen by computing the action of dw on two tangent vectors X and Y,
dw(X,Y)=X wV)-Y wX)—-wlX,Y]) = —w(X,Y]),

since w(Y') and w(X) are left-invariant functions, i.e. constants on H. Thus, dw is
closed iff w([X,Y]) = 0, which can be seen by differentiating (3.6). However, this
is exactly the condition that characterises characters of . Algebraically, an element
w € h* corresponds to a closed 1-form on H if it is an element of the dual of the

centralizer of h, i.e. w € (Z(h))*, since

W([X,Y]) =0 & adi(w)(Y) = 0.
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Remark. Weyl’s investigation into the cohomology groups of Lie groups is by no
means the end of the story. Hopf looked at them and showed that the group operation
induces on H*(H,R) the structure of what is now called a Hopf algebra. This allows
the deduction of many non-trivial facts about the cohomology groups of Lie groups

(or more generally H-spaces) — see, e.g., [13] for details.

Lemma 3.2.8 The character group H can be tdentified with the lattice L C 6 that
18 defined by
feLe f(Z)e2riZ, if Z<cexp '(e).

Proof. Given ¥ € H we can differentiate U to get a character ¢ of the Lie algebra,

whose action on X € § is given by the rule

b(x) = 4

= U(exp(tX)).

t=0

To show that this is indeed a character of h, consider (3.2.3) for ¢ = exp(sX) and
h = exp(tY'), differentiating with respect to ¢ gives

d

il U(exp(tY)) = ¥(gYg ™) = (V)

t=0

B d
U(gexp(tY)g™') = pm

and now differentiating with respect to s at s = 0 gives
P(X.Y]) =0

agreeing with equation (3.5). This map is an injective homomorphism of H into L.
First we show that ¢ € L, i.e. that ¥(Z) € 2miZ for Z € exp~'(e). Since V¥ is a
homomorphism we must have that ¥(e) = 1, this implies that for Z € exp~!(e)

V(exp(Z)) = exp(2min), for n € Z = V(exp(tZ)) = exp(2mint).

Now differentiating at t = 0 gives that )(Z) = 2min. That this is a homomorphism
U - U — o) 4+ 9 follows from the product rule, and that it is injective is clear.
Conversely, suppose that @ € h: one can try and form a character of H by

exponentiation

Y(exp(X)) := exp(¥(X)).
This map is only well-defined if ¢» € L, since we must have that W(e) = 1. If this
is the case then this does indeed give a character of H, with the mapping being an

injective homomorphism, with ¢ 4+ ¢ +— W - W/, O

We see that characters of H form a lattice in characters of h. Similarly, we know
that integer cohomology classes of H form a lattice in real cohomology classes of H.

Lemma 3.2.7 says that characters of § correspond to real cohomology classes.



CHAPTER 3. MAGNETIC MONOPOLES ON COADJOINT ORBITS 39

Proposition 3.2.9 The character group H can be identified with H(H,7Z).

Proof. Given w € H'(H,R), one can try and form a character of H by setting

. (0) = oxp (2 | ” o).

Clearly this defines an element of U(1). For it to be a character it is necessary that
we have W, (hh') = W, (h)V,(h'), i.e. that

(2 /j” ) —ep (ori ) e (2 /j’ ) 6

Rewriting the left hand side of (3.7) gives

hh/ h hh/! h hh'
exp 27Ti/ w | =exp |27 / w +/ w = exp <2m'/ w) - exp 2m'/ w
e e h e h

and this equals the right hand side of (3.7) since w is left-invariant. For ¥, to be
well-defined, we must have that W, (e) = 1, thus it is necessary that f:w € 7Z. Since
all 1-cycles are homologous to such a loop through e we have that this happens only
if w € H'(H,Z). Thus we have an injective group homomorphism from H'(H,Z)
into fAI, with w +w' +— U, - U,,.

Conversely, given U € H , we will show that there exists a corresponding form
wy € H'(H,Z), with the mapping ¥ — wy being an injective group homomorphism.
Now, we know that W differentiates to give ¢ € L (see Lemma 3.2.8). This defines
an element wy, € H'(H,R), by .

—1
Wy = %dj
It will be shown that wy, € H'(H,Z), i.e. that $w, € Z. This follows immediately,
once we realise that any 1-cycle in H is homologous to the image under exp of the
straight line tZ, with ¢ € [0,1] and Z € exp~'(e). Call this image v(t) = exp(tZ).
Now, since wy, is a left-invariant form, its value on a tangent vector at the point
h € H is given by translating the tangent vector back to e and computing its value

there. Integrating w, over 7 gives

A g = /t:0w¢<2>dt —wZ) ez

by virtue of Lemma 3.2.8. Again, this is an injective group homomorphism from i
into H'(H,Z), with ¥ - U’ — wy + wy. 0
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In Proposition 3.2.6 we gave an isomorphism of the cohomology groups H*(G,, R)
and H?*(O(a),R), whilst from Lemma 3.2.7 we know that H'(G,,R) & g,.

We now put these two isomorphisms together by defining a class of invariant
closed 2-forms on O(a) using an element of g,. We will also show that the forms
defined are integer cohomology classes if and only if the character used to describe

them lives in the lattice L.

Definition. For z € O(a) let &, n, denote the vectors at x generated by £ and n € g,
ie. & = adi(x) and 0, = ad(x). If y = Adj(x), then given f, € (Z(g.))* = go
(where Z(g.) is the centre of the lie algebra of the stabilizer of ) set f, = Ad;(f.) €
(Z(gy))*. Now define a 2-form o; on 7,0(a) by

01 (&er12) = (fas €5 1)) - (3.8)

Remark. The space (Z(g,))* is never empty, since a always belongs to it. When
we denote an element f of this space without a subscript it is understood that this

means f = f,.
Proposition 3.2.10 The 2-form oy is invariant and closed.

Proof. The form oy will be shown to be well-defined, closed and invariant.

It is clear that o is skew-symmetric. To show that it is well-defined, recall that a
tangent vector only specifies an element of g up to the addition of an element in g,.
Namely, the vector fields &,,n, generated by & and 7 are only defined up to elements
of the centralizer of z, i.e. for A € g, consider £ = £ + X. Then € and & generate the

same tangent vector at x since

€ = adg(x) = adg, \(x) = ade(z) + ady(z) = adg(x) = &,

since A € g,. To show that o is well-defined, it needs to be shown that this does not

affect the value of the form, i.e.

o1, (eyn) = 07, (Eu).

This is indeed true, since by specification f, must belong to the centre of the central-

izer of z and so

01 (&) = (o lE]) = (6 + A7)

{ )

= (fa, [€;0]) + (far [N )
= (fa, (&) + {ad}(f2), )
= (fo, (&) = 0.(&asm),
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since A\ € g, and f, € (Z(g.))* and so ad{(f.) = 0. It is well-defined in the second
argument since oy is skew-symmetric, hence o is well-defined.
By construction, oy, is invariant since f, is given by f, = Ad}(f.) if y = Ad; ().
It remains to check that oy, is closed, i.e. that doy, = 0 — this is due to the
Jacobi identity. Namely, given £, 7, ( € g there are associated vector fields at = given

by & = adi(x) etc. The action of doy, on &, 1., (, is given by

dafm (€x777557 CCU) :O gl‘ ' Ufz (771‘7 CSL‘)_ O O-fz([gxanm]a Cz)a

where the symbol O means sum over all cyclic permuations of the arguments. The

first three terms are given by

& 01, (0,¢) = (adg(fo), [n,¢]) = — (fa, 1€, 0. C]]) -

Taking the sum over all cyclic permutations means that the Jacobi identity kills this
group of three terms. The second three terms vanish for exactly the same reason,

O-fz([fx?nx]v Cm) = <f$7 [57 [777 C]]) .

Therefore, evaluated on any three vector fields the form doy, vanishes — hence it is
closed. U

Remark. In general oy does not define a symplectic form, since there is no guarantee
that it is non-degenerate. Indeed, 0 € (Z(g))* defines a form o, that is degenerate
everywhere. Therefore o; defines what is sometimes called a pre-symplectic form,
i.e. a closed 2-form. However, if f = ea for € # 0 then it is clear that o is indeed a
symplectic form, being given by ewx . (Note that this is not a necessary condition
for an element f to define a symplectic form.) This is the class of forms that were
considered in [4], [5] and [14], where it was shown that the classical dynamics are

integrable.

The upshot is that given a character f € g, we have explicitly constructed a real
2-form wy on O(a) from it — the form w; may be explicitly described in terms of the
geometry of the principal fibre bundle p : G G O(a).

Write © for the Maurer-Cartan form on G, which is a g-valued left-invariant 1-
form on G such that ©(e)(X) = X. In matrix notation, the explicit formula for © is
given by

O(g)(X)=g "' X for X €T,G

and it is sometimes denoted by g~'dg to highlight its left-invariance.
Now define the 1-form 6; = — (f, ©) on G.
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Proposition 3.2.11 The form wy on O(a) is such that p*(wy) = db;.

Proof. This result appears in [26]. Write X,Y for left-invariant vector fields on G
and X, Y for the corresponding vector fields on O(a). Then, by definition:

dop(X,Y) =X -0;(Y) =Y - 0(X) = 0;([X.Y))
= —05([X,Y]),
since Qf(f( ) and Hf(?) are left-invariant functions on G (i.e. constants) and so the
Lie derivative of them vanishes. This can be rewritten as
—0;([X,Y]) = =0;([X.Y]) = (/. [X,Y]) = p" () (X, V).
O

Remark. This description of wy can be used to give another proof of the fact it
is closed. Since p : G — O(a) is a submersion, the map p. : TG — T, O(a) is

surjective. Therefore the map p* is injective, hence
p*(dwy) = dp*(wy) = d*0; = 0.

Proposition 3.2.12 The form w; on O(a) defines an integer cohomology class if and
only if 2wif € L, in which case f defines a character of G, and so H*(O(a),Z) = é\a

Proof. We need to show that if 2mif € L then the integral of w; over a 2-cycle lies
in Z. This extends the argument from Proposition 3.2.9 Given Z € exp~!(e), denote
by v the loop in G, that is the image of the segment [0, Z] under exp. Since G is
simply-connected by assumption, v is the boundary of a 2-dimensional surface S in

G, which projects to give a 2-cycle p(S) on O(a). Therefore, we have that

/p(s)waAdeZLef=<f>Z>

and this lies in 7Z if and only if 27¢f defines a character of GG,, by Lemma 3.2.8. The
correspondence of [y] and p(9) is precisely the isomorphism 7 (G,) = m(O(a)) given
in Lemma 3.2.4. O

3.2.4 Magnetic cotangent bundles to coadjoint orbits

As described at the start of this chapter, the classical phase space that we are quan-
tizing is a magnetic cotangent bundle to a coadjoint orbit. Here we explain some

properties of this object as well as giving an analogue of the result of Novikov and
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Schmeltzer [43] by embedding them as coadjoint orbits themselves. Although tech-
nically unnecessary, this result is somehow pleasing because it takes us back to the
starting point for the work of the previous chapter. Most of the results in this section

are based on corresponding results in [5] for adjoint orbits.

Definition. A magnetic cotangent bundle to a coadjoint orbit is a symplectic mani-
fold of the form
(T"O(a),dp N dx + m*wy), (3.9)

where wy is defined in (3.8).

This object was essentially considered in [4], [5] and [14], and most of the results
in this section were essentially given there, although perhaps phrased differently.

If O(a) is a coadjoint orbit of a compact Lie group G then a magnetic cotangent
bundles to O(a) can be obtained by symplectic reduction from 7*G, as explained in
[5] and also [49].

First note that the action of G x G on G

(91.92) - (9) = (91995 ")

extends to a Hamiltonian action on 7*G by

(91,92) - (9. F) = (91995 ', Ad;, (F)).

The tangent space to T*G at the point (g, F') is given by g @ g*, so an element of it
can be described as v = (g, F; X, F'), where X € g and F, F’ € g*. The canonical

1-form 6 on T*G can be described in terms of its action on v as
O(v) = (F, X).
Therefore the moment maps associated with the left and right actions are given by
(9, F) = Adg(F) i (g, F) — F.

Now consider the right action of G, C G on T*G. The moment map ¥ : TG — g

for this action is given by
U(g, F) = prg;(F),
where pr denotes the orthogonal projection with respect to the Cartan—Killing form.

Symplectic reduction is accomplished by taking the quotient of the fibre of the

moment map

U (f) = {(g, F) | pros(F) = f}
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with respect to the G, action. It is well-known (see [5]) that the reduced phase space
U~1(0)/G, is symplectomorphic to the cotangent bundle (T*(G/G,),dp A dz). This
can be seen by noting that ¥=1(0) = G x (g/g.)* consists of those covectors that
are killed on the orbits of the G,-action on G and checking that the restriction of
the canonical 1-form on T*G to p~'(0) coincides with the pullback to ~(0) of the
canonical 1-form on 7%(G/G,).

If we consider the symplectic reduction over non-trivial points then we can also
describe magnetic cotangent bundles. Suppose f € g defines a magnetic form wy
on O(a) as in (3.8). In that case the reduced phase space ¥~!(f)/G, is again dif-
feomorphic to T*(G/G,), since ¥"(f) = G x (g/g.)* and f is invariant under G,,.
However, the symplectic form on the reduced space is given by dp A dx + 7*(wy). A
proof of this result is given in [5], and is essentially accomplished by showing that
the 1-form on G, transgresses to give the 2-form w; on G/G,.

Going back to the left action of G on T*G, we have that this commutes with the
right action of G, and leaves W~!(f) invariant. Representing a point in the reduced
space by (g, F') we have that the moment map for the left action of G on T*(G/G,),
with respect to the symplectic form dp A dz 4+ 7*(wy) is given by

Dp(g, F) = Ad(F + f).

Magnetic cotangent bundles to coadjoint orbits can also be realised directly as
coadjoint orbits themselves of a group S whose dimension is twice that of G. This
procedure was essentially explained in [5] (and see also the references therein). This
extends the construction given in [43], where the phase space of the classical Dirac
monopole on S? was given as a coadjoint orbit of F(3). Here we show that S has
a natural interpretation as the tangent bundle of G when considered as a Lie group
in its own right. Although this is not essential for the scheme of geometric quanti-
zation it is satisfying to have such a natural interpretation for the result of Novikov
and Schmeltzer, which was the starting point for the investigation conducted in the
previous chapter.

As is well-known, the tangent bundle to a Lie group G is, as a manifold, a trivial
vector bundle TG = G x g over G. Simply choosing a basis of left-invariant vector
fields at e and translating around G gives the required identification.

Similarly, one can also consider T'G to be a Lie group — it is the direct product
of a Lie group and a vector space. The ‘obvious’ group structure on T'G, namely
the direct product structure (g1, X1) - (g2, X2) = (9192, X1 + X3), can be obtained by
first translating the tangent vectors g1 X, € T, G and g2 X, € T,,G back to e, adding
them there and then translating to g;gs.
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However there is a more natural group structure on 7'G is given as follows: if
1(t) = g1 +tg: X1 + O(t?) and 1(t) = go + tgoXo + O(t?) represent (gi, X;) and
(g2, X2) in T'G then their product is defined to be

(91, X1) - (92, Xo) = (9192>Ad92—1X1 + Xo),
since naively multiplying v, and ~, gives
N(t) - 72(t) = 9192 + H{g1 X192 + 9192 X5) + O(t?)
= g1g2 + tgng(Adgngl + Xz) + O(tQ)

Identifying (G, 0) with G and (e, g) with g, gives the tangent bundle T'G the structure
of the semidirect product S :=TG = G X 24 g.
If the group elements of S are denoted by (g, X) and the Lie algebra elements

of s denoted by (u,v), then one may calculate various important operations on S,

[ [

s 2 gxgands* = (gxg)*. These are summarized below, the first few without
proof. A similar object was considered in [5] and one can see that for more details,

also a more general set of results are given in [49].
Lemma 3.2.13 The Lie group structure on S is given by:
(91, X1) - (92, X2) = (9192, Ady1 Xy + X3) (3.10)
and so the inverse element to (g, X) € S is given by
(9, X)7 = (97", —Ady(X)). (3.11)
Lemma 3.2.14 The adjoint action of S on s is given by
Ad(gan(1,0) = (Ady(u), Ady([e,u] +0)) (3.12)
Lemma 3.2.15 The Lie algebra structure on s is given by
[(u1,01), (u2, v2)] = ([ua, ua], [ur, va] — [z, 11]) .- (3.13)
Lemma 3.2.16 The coadjoint action of (g,z) € S on (f,a) € * is given by
Adiy ([ a) = (Ad;(f + ad}(a)), Ad;(a)) . (3.14)

Proof. The proof is by direct calculation, recall that the coadjoint action of (g, x) € S
on (f,a) € s* is defined by means of the pairing with any (u,v) € s as

(Adfy o (f. @), (10,0)) = ((f,0), AL ()
= ((f,a), Ad(g-1 g (@) (u,0)) -
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This calculation is somewhat easier to read if notation is abused and the pairing is

split on each factor. Then, using (3.11) and (3.12), the above can be rewritten as

((f,a), Adg-1,—aa, () (u,0)) = (f, Adg-1(w)) + (a, Ady-1 ([~ Ady (), u] + v))
= <Ad2(f),u> + (a, — [z, Ady-1(u)]) + <Ad;(a),v>
= <Ad;(f),u> + <Ad; (ad(a)) ,u> + <Ad;(a), v>
= (Ad} (f + adx(a)), u) + (Ad}(a),v)

and so the coadjoint action is indeed given by (3.14). O

One may also ask for the coadjoint action of s on s*.

Lemma 3.2.17 The coadjoint action of (u,v) € s on (f,a) € s* is given by
adiy (f,a) = (ady(f) + ad;(a), ad;(a)) . (3.15)

Proof. Again, the proof is by direct calculation. For (s,t) € s, the coadjoint action

of (u,v) € s on (f,a) € s* is defined by

where the right hand side has been rewritten using (3.12). O

One might then ask, what is the stabilizer of (f,a) under the coadjoint action.

Lemma 3.2.18 The stabilizer of (f,a) in S under the coadjoint action is given by

S(ta) = Ga X ga and the stabilizer of (f,a) in s under the coadjoint action is given

by 5(f,a) = Ga X Ga-

Proof. The proof is simple. For the first statement, (3.14) shows that if Adf, ,\(f,a) =
(f,a) then g € G, and = € g,. For the second statement, (3.15) shows that if
ad@,m( f,a) = 0 then both u and v € g,. These two answers agree in the sense that

$(f,qa) is the Lie algebra of Sy ). O

Lemma 3.2.19 Forge G, £ € g and a € g*, the following ‘commutativity relation’
between ad* and Ad* holds:

ad’yy, ¢ Ady(a) = Adjadg(a). (3.16)
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Proof. Again, the proof is by direct calculation using the definitions of Ad* and ad*,
for any n € g we have that

<ad’;‘dg(£)Ad;(a), n> = — (Ady(a), ad g, ) (1))

— (a, Adg-1(ad aa,()(n)))
— (0, adg(Ady-1 ()
= (ad{(a), Ady-(n))
= (Adjadg(a),n) .

i

Corollary 3.2.20 Suppose that § € g, then Ady(§) € gaas)- Likewise, if £ € o
then Ad,(§) € gjdg(a).

The Cartan—Killing form allows us to embed T'O(a) in g* @ g* by
TO(a) = {(x,v) €g' @y |r=Ad)(a),v € gj*}
and similarly 7*O(a) can be embedded in g* & g by
T*0(a) = {(z,p) € ¢" @ g |z = Ad}(a),p € g}

Now, G acts naturally on 7*O(a) by

9 (2,p) = (Ady(x), Ady(p)) (3.17)

since Corollary 3.2.20 says that if p € g then Ady(p) € g4, (@)
This can be extended to an action of TG on T*O(a) by adding in the action of g

(9,X) : (w,p) = (Ady (), Ady(p + pra1[X])). (3.18)

This genuinely gives an action of T'G, since acting with (g1, X7) on (go, X2) - (z,p)

gives

(91, X1) - (92, X2) - (2,9)] = (Ady, 0, (2), Adgyg, (p+ prog [Xa]) + Ady, (prgs [X1]))
= (Ad} ,(2). Adyyg, (p+ pros [Xo] + pris [AdL) (X))

9192

where 1" = Ad; (r) and the commutativity relation (3.16) has been used. This is the
same as acting on (z,p) with (g1, X1) - (g2, X2) = (9192, Ad -1 (X1) + X3). The results
in this section have been leading up to the following, which is essentially the same as

a result from [5].
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Theorem 3.2.21 Given a € g*, let f € g* be such that adi%(f) = 0 for X € g,,
i.e. f belongs to the centre of the centralizer of a. The coadjoint orbit O(f,a) of
the point (f,a) € s*, equipped with the Kostant-Kirillov canonical symplectic form is
symplectomorphic to the magnetic cotangent bundle (T*O(a), dp A dz + 7 (wy)).

Proof. First note that the two manifolds have the same dimension, as demonstrated
by Lemma 3.2.18.
Recall from (3.14) that O(f, a) may be parametrized as

O(f,a) = (Ad}(f. + adi(a)), Ad}(a)) C (g % )"

and that by identifying 7*O(a) with T’O(a) using the normal metric, 7*O(a) can be
parametrized as

T*O(a) = {(2,p) : « = Adj(a),p € gt }.

Since f, € gq and adf(a) € g, it is clear that O(f,a) is a one-point orbit over
T*O(a), with the mapping between the two given by

61 (Ad(f + adi(a)), Ad:(a)) — (Ad;(a), adj;dg(@Ad;(a)) .

This map is well-defined because of Corollary 3.2.20.
The second part of the proof is showing that the symplectic forms coincide. The
Kostant—Kirillov form on O(f,a) at (f,a) is defined by

)’ [(ulavl)’ (u27v2)]>
), ([ur, wal, [ur, va] — [ua, v1]))

= ([, [u1, uz]) + (a, [u1, va] — [ug, v1]),

oxk((u1,v1), (uz, v2)) = (

IS

S

where second equality is given by using (3.13). But this is exactly the symplectic
form dp Adz+7*(wys) on T*O(a) and so we are done. The inverse of ¢ is actually the
moment map for the action of T'G' on T*O(a) with respect to the form dpAdz+7*(wy)
on T*O(a), i.e. ¢~' : T*O(a) — s*. This can be seen by noting that the moment
map for the action of G on (1T*O(a),dp A dx + 7*(wy)) (3.17) is given by

®:T"O(a) — ¢* Qy(x,p) = ady(x) + fa,
since the Hamiltonian function associated to the element £ € g is given by

Hy(€) = (adg(x),p) + (2, ) (3.19)

and the Hamiltonian vector field of £ at (x,p) is
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Adding in the action of g given in (3.18), we find that the moment map is given by
O :T"0O(a) — s Of(z,p) = (ad;(x) + fo, ),
which is exactly ¢ . U

Remark. It is worth remarking that this is a very special orbit of T'G: if f is not
fixed by all X € g,, then the coadjoint orbit through (f,a) will be a fibre bundle
over T*O(a) with fibre the G, orbit of f (see e.g. [49]). The case considered here is a
‘one-point’ orbit over T*O(a), exactly as considered by Novikov and Schmelzer [43]

and described in Chapter Two.

Going back to the description of the classical mechanics given at the start of
the Chapter we can describe the Hamiltonian function for the geodesic flow. The
Hamiltonian function for the classical geodesic flow on O(a) with respect to the

normal metric is given by

Hy, = % (Do, Dg) = %<ad;(3:), ad;(a:)> ,

whilst the Hamiltonian function for the magnetic geodesic flow with magnetic term

wy is given by

1 1
By, &p) = 5 (ady(@), ady(x)) + (ad; (@), f2) + 5 (fe: fo)
= & {ady(w), ady(x)) + 3 (Fur £) = Ho -+ const

since f, € g; and ad}(z) € g;.

3.3 Geometric quantization

We now look to apply Geometric Quantization to the classical mechanical system of
magnetic geodesic flow on a coadjoint orbit that was described in Section 3.1: this is
an extension of the problem considered in the previous chapter. Recall from Section

3.2.4 that the classical phase space is described by the symplectic manifold
(T*O(a),dp N dx + 7" (wy)).

We use the formalism of Geometric Quantization to a greater extent to achieve this.
We describe the essence of the procedure, before explaining how it works for the case
at hand. The goal is to produce from a classical phase space (i.e. a pre-symplectic

manifold (M,w), where w is a closed 2-form on M) a quantum phase space (i.e. a
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Hilbert space H and an algebra A of operators on it), in such a way that classical
observables (i.e. functions on M) are sent to operators in .4 in a sensible way. (In our
setup we have that (M,w) = (T*O(a), dp Ndx +7*(wy)), as described in the previous
chapter.)

The starting point is a natural geometric idea: to ask that w is the curvature
form of a line bundle L — M. This imposes an integrality condition on w that
is reminiscent of a quantization condition, namely that w/27r € H?*(M,Z). This is
natural from the point of view of physics too: being essentially a rephrasing of the

Bohr—Sommerfeld condition and is known as the prequantization condition.

Definition. A symplectic manifold (M,w) is said to be prequantizable if w/2m lies
in the image of H*(M,Z) C H*(M,R). This means that the integral of w around
any 2-cycle should lie in 27Z.

A first guess at a Hilbert space might be the space L?(L) of L?-sections of this
bundle — however, it turns out that this space is too large. A colloquial explanation
of this is given by taking M = R?*" being the cotangent bundle to R™. The space
L*(L) then consists of functions in both coordinates and momenta, but the equations
of quantum mechanics can be formulated with respect to just coordinates or just
momenta (the Schrédinger formulation or the Heisenberg formulation). The upshot
being that there are twice as many variables as needed: the established procedure to
strip them away is to choose a Lagrangian polarization on M and choose for H those
sections in L?(L) that are constant along the leaves of the polarization.

One then has to quantize the classical observables, i.e. to each element f &
C>(M) (a classical observable), one wants to associate an operator f : H — M. This
is to be done in such a way that Poisson brackets of functions go into commutators

of operators:
{f,g} =h—[f 4] = —ih. (3.21)

The theory is very deep-rooted and has moved in several different directions: good
references are [23], [27], [31] and [56].
We start by explaining the general theory of geometric quantization, before ap-

plying it to the case of magnetic cotangent bundles to coadjoint orbits.

3.3.1 Broad scheme of geometric quantization

In giving an outline of geometric quantization, we follow here mainly [56]. It is

necessary to begin with a few definitions.
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Definition. A Hermitian structure on a vector bundle E > M is a Hermitian inner
product (-, -) on each fibre V,. The inner product should be smooth, in the sense that

the function v — (v,v) is smooth for v € V.

Definition. If £ — M has a connection V then the Hermitian structure is compatible
with the connection V if for all smooth sections s, s’ € T'(E) and smooth vector fields
X e X(M):

ixd(s,s') = (Vxs,s')+ (s, Vxs).

Definition. Two vector bundles (E, ) and (E',7") over M are equivalent if there is
a morphism ¢ : E — E’ respecting any structures on the bundles. For a Hermitian

line bundle with connection, this requires that

mogle) =m(e),  B(Vxs)=Vx(e(s),  (¢(s)d(s)) = (s,5).

Definition. Given a connection V on ¥ — M, its curvature is the 2-form B defined
by
B(X, Y)S = i(VXVY — VYVX — V[X,y})s,

for any two smooth vector fields X,Y and a smooth section s.

Lemma 3.3.1 The set (group) of equivalence classes of topological (i.e. with no ad-

ditional structures imposed) smooth line bundles over M is isomorphic to H*(M,Z).

Proof. The sheaf of smooth functions on M is denoted by e and the sheaf of non-
vanishing smooth functions on M is denoted €*. An equivalence class of smooth line
bundles is defined by an element of the Cech cohomology group H'(M,e*) and it
turns out that H'(M,e*) = H?*(M,Z). The isomorphism is given by sending a line
bundle to its Chern class, which is the connecting homomorphism in the long exact

sequence in sheaf cohomology corresponding to the exponential sheaf sequence
057 —eXe —1.

In particular, since € is a fine sheaf, all of the higher sheaf cohomology groups H*(M, ¢)
vanish for ¢ > 1. See any of [18], [26], [31] or [56] (amongst others) for details. O

The first fundamental result of geometric quantization is the following, see [56] for

more details.

Proposition 3.3.2 Given a manifold M and a closed 2-form w, there exists a Her-
mitian line bundle L — M and a connection V on L with curvature w iff w/2m is an

integral 2-form, i.e. iff (M,w) is prequantizable.
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Proof. Suppose that w is an integral 2-form. Then, there exists a contractible open
cover {U;} of M and a collection of ‘symplectic potentials’ 6; € Q!(U;), i.e. forms
such that df; = w. There also exist functions wu;, € C*(U; N Uy) such that

du]'kzej—ek if U]ﬂUk#(D

and

1
%(ujk—i—ukl—l—ulj)ez iijﬂUkﬂUl%(Z).

Now, setting c;; = exp(iu;x), we have that on non-empty intersections

de.
Sk — i(9; — o)
Cjk

and

CjkCkiClj = €XP [27rz(ujk + up + ulj)] =1

This means that the ¢’s are the transition functions of a line bundle . — M with
curvature w. Since the potentials are real and the transition functions are of unit
modulus there exists a compatible Hermitian structure.

Conversely, suppose that we are given a line bundle L with connection V and
curvature w — it will be shown that w € H?(M,Z). Let cj; be the transition
functions of L relative to some open cover. On each non-empty triple intersection,

set

1
L v log(cjx) + log(cxr) + log(ciy)] -

Since the ¢’s are smooth functions satisfying the cocycle condition, we have that z;
is an integer, and hence a constant: moreover, the 2’s cocycles. Note that there is an
ambiguity in the definition of the logarithms since log is only defined up to an integer.
However, the cohomology class [z] of z does not depend on the choice of branches
— it is called the Chern class of L. Therefore, 27z is a representative cocycle in the
class of H*(M,R) determined by w. O

Proposition 3.3.3 [56] The inequivalent choices of L and V are parametrized by
HYM,U1)). If M is simply-connected then H*(M,U(1)) = 0 and so any connection

on a line bundle is uniquely determined by its curvature and vice-versa.

Proof. Again, the proof of this proposition is taken from [56].
In the above construction of L and V from w there is a freedom of choice, since
sending u;x — ujr + y;r, where the y’s are real constants satisfying

1
Yjik = —Yr; and %(yy‘k + Y + yi5)
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on non-empty intersections. This sends L +— L ® F, where F' is the Hermitian line
bundle with transition functions ¢j; = exp(iy;x). Since t;; is constant, F' has a
connection with curvature 0 and so L ® F' has the same curvature as L.

Conversely, if (L, V) and (L', V') are Hermitian line bundles both having curvature
w then F = L' ® L is a Hermitian line bundle with flat connection labelled by
elements of H'(M,U(1)).

If 7 (M) = 0 then H'(M,U(1)) = 0 and so there is a unique up to equivalence

Hermitian line bundle L with connection V and curvature w. O

3.3.2 Magnetic cotangent bundles

Some of the first steps in the geometric quantization of magnetic cotangent bundles
over an arbitrary manifold M are outlined in this subsection. This will be specialized
later on to the specific case when M is a coadjoint orbit — but in the first part the

reasoning applies to a general magnetic cotangent bundle.

Lemma 3.3.4 A magnetic cotangent bundle (T*M,dpNdx+7*(w)) is prequantizable
(i.e. the form dp A dx + 7*(w) is integral on T*M ) iff (M,w) is prequantizable.

Proof. Given any [a] € Hy(T*M,Z), we have that [a] ~ [§] € Hy(M,Z) and that

AJ@mdm+ﬁw»=A;u

Therefore dp A dz + 7*(w) is an integral 2-form iff w is an integral 2-form. O

Therefore, if w is an integral 2-form then Proposition 3.3.2 guarantees that there is
a Hermitian line bundle L' — T*M with a connection over T*M whose curvature is
dp A dx + 7 (w).

The next step is to choose a polarization on T*M. There is one very natural
polarization, namely the one given by the vertical vectors. This means that only
those sections that are constant along the fibres of T*M are picked out.

Using the standard local coordinates (2, p;) on T*M about x and choosing as a
distribution £, = { 2|
If M is simply-connected then taking the vertical polarization on (T*M, dp A

} defines a Lagrangian polarization since Q|p, = 0.

dx + m*w) means that instead of looking at sections of (the unique up to equivalence)
Hermitian line bundle with connection L' — T*O(a), whose curvature is dpAdz+71*w;
we should instead look at sections of the (again, unique up to equivalence) Hermitian
line bundle with connection L — M whose curvature is w.

For the case at hand, we summarise this reasoning in a Theorem.
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Theorem 3.3.5 Suppose that the magnetic cotangent bundle (T*O(a),dp N dx +
m*(wy)) is prequantizable: the Hilbert space H that is associated to it by geometric

quantization is
H = L*(Ly),

where Ly is the line bundle over O(a) with curvature wy.

We also want to quantize the classical observables, which are functions on O(a),
in such a way that (3.21) holds. There is a very natural way to do this, using the
formalism of symplectic geometry. Recall that there is a Hamiltonian action of G on
(T*O(a),dp N dx + 7 (wy)) that was described in (3.17). This means that to each
€ € g there is a Hamiltonian function H¢(x,p) and a Hamiltonian vector field £, and
these satisfy

{He, Hy} = Hie -

Therefore, if we associate to the Hamiltonian function H¢ the operator
He = —ig,

we have that
[He, Hy] = —iHg,

as desired — we will return to this in Section 3.4.

3.3.3 Homogeneous line bundles

The purpose of this section is to show that the quantum Hilbert space described in
Theorem 3.3.5 may indeed be identified with the representation of G induced from
the character s of G,.

Recall from Section 2.3 the construction of the induced representation of a Lie
group G from a representation of a subgroup H. If the representation y of H is
1-dimensional, then the representation of G is on the space of L2-sections of a line
bundle L, — X, where X := G/H. In this section a connection will be defined
on the line bundle and the curvature form of it will be computed and shown to be
exactly given by the differential of the representation of H. In light of Theorem 3.3.5,
this enables the identification of the quantum Hilbert space suggested by geometric
quantization with an induced representation.

We first define a connection on the principal H-bundle G 2 X. Recall that
this is an h-valued 1-form # with the property that the horizontal distribution D =
ker(f) C TG is H-invariant and transversal to the orbits of the H-action. At each
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point g € G the connection 6 defines a splitting of the tangent space: T,G = h @ p
where p = h* is the orthogonal complement to  with respect to the Cartan-Killing
form. This means that each u € T;G can be decomposed into horizontal and vertical
parts u = uy, + u, where u, € gp and u,, = 0(u) € gb.

The curvature © of the connection @ is the h-valued 2-form that is equal to df on

the horizontal distribution
@(uh,vh) = d@(uh,vh) = —0([Uh,’l)h]).

Recall from Section 2.3 that sections of the line bundle L, — X satisfy the

following equivariance condition with respect to the action of H
D(Ly) ={¢: G — C|(gh) = x(h")(g) : g € G,h € HY (3.22)
and that L, is formed by taking the quotient of G' x C by the action of H
L, :=GxC/~ where (gh,z)~ (g,x(h)z).

The curvature of the line bundle L, — X (which is a 2-form on X) may be
computed in terms of © (which is an h-valued 2-form on X). In order that this may

be done, a connection needs to be defined on L, .

Definition. Let u € X(X) be a vector field on X and s € I'(L,) be a section of L,.

Then define the covariant derivative of s with respect to u at x by the formula
Vus(x) == Ly, s(x),

where £, s(x) is the Lie derivative of the section s in the direction uy at x.

Lemma 3.3.6 This does indeed define a connection on L,.

Proof. For v € X(X), f € C*(X) and s € I'(L,,), three things must be shown:
1. the mapping V,, : I'(L,) — I'(L,), given by s +— V,s is linear,

2. that it satisfies the Leibniz rule
Vo(fs) = (Lof)s+ [Vus

3. and that
Vs = fVys.
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All of these can be shown using properties of the Lie derivative, indeed the first is
clear since the Lie derivative is linear. For the second, consider the homotopy identity

for the Lie derivative of a differential form w with respect to a vector field X
EXW = z'de + d(i)ﬁx)),

where iyw is the interior product of X with w. If w = s is a O-form (i.e. a section),

then this takes the simpler form
Lxs =ixds=ds(X).
Then one sees that

‘th(fs) = ivhd(f8> =ly), (df)s + fivhdS
=L, (f)s + fVys,

as required. The last property is true, since for any form w
Lixw= fLxw+df Nixw,
which if w = s is a O-form simplifies to
Ly, s = fLy,s= fV,s.
O

Definition. The curvature of this connection V is a linear operator on I'(L, ) defined
by
R(u,v)s := [V, V] s = V5,

where u,v € X(X).
Proposition 3.3.7 The curvature of this connection on L, is given by
R(u,v)s = dx(O(up,vp)),

where dx s the representation of h obtained by differentiating x

dx(Y) = @, x(exp(tY'))

forY €.
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Proof. First note that this makes sense: © is an fh-valued 2-form on X and so
applying dx(X) € h* to © gives a 2-form on X. Define the vector field w := [uy,, vp,] —
[u,v], on G. Then

R(u,v)s = Lys,

since

R(u,v)s : = [V, Vy] 5 = Vi
= E[Uh,vh}s - E[um]hs
= L(upon)-lual)s = Lu(s)-

Now the vector field w on G is vertical; this means that applying the connection

1-form # to w will give an element Y of b

([un,vn)) (since [u,v], € ker 6)

Recall that any section s of L, is a function on G satisfying the following equivariance

condition with respect to the action of H

s(gh) = x(h™")s(g).

By letting h = exp(tY’) one sees that the infinitesimal version of this condition is that
d
R(u,v)s = Lys(g) = -1 x(exp(~tY))s(g)
t=0
= —dx(Y)s
= dx(©(un, vn)),

as required. O

As a corollary of this result and Theorem 3.3.5, we see that if the magnetic cotangent
bundle (7*O(a), dp A dx + 7 (wy)) is prequantizable (which means that the form wy
is integral and so by Proposition 3.2.9 can be used to define a character x; of G,),
then the Hilbert space suggested by geometric quantization (i.e. the space of L*-
sections of the line bundle over O(a) with curvature wy) can be identified with the

representation space of the representation of G' induced from the character x s of G,.
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3.3.4 Branching rules

The Frobenius reciprocity theorem (Theorem 2.3.2) says that to calculate how the
induced representation of W, splits up as irreducible representations Vy of G, one
only needs to calculate whether V) |y contains W, — and with what multiplicity.

It turns out that when H C G are compact Lie groups and H contains a maximal
torus 7T, the problem was solved by Kostant — this section is expository and sum-
marizes the discussion given in [29]. It employs a simple argument due to Cartier [§]
to find a formula for the restriction of a representation of G to H to calculate the
branching multiplicities — Kostant originally proved the multiplicity formula using

arguments rooted in Lie algebra cohomology.

The generic case — Kostant’s multiplicity formula

The generic case is that the stabilizing subgroup G, is conjugate to the maximal
torus T'. Thus, to work out the branching rules in this case, one needs to know how
irreducible representations of GG split when restricted to the maximal torus.

A fundamental result in the representation theory of compact Lie groups is Weyl’s
character formula, which gives the character of an irreducible representation as the
ratio of two alternating trigonometric polynomials. The material in this section is
standard and can be found in several textbooks on representation theory, e.g. [17],
[19] or [29].

For a compact Lie group G with maximal torus 7T, the irreducible representations
V) of GG are classified by a highest weight A\. The Weyl group of G is defined to be
the group Wg = Ng(T)/T, where Ng(T) = {g € G: gTg~' = T} is the normalizer
of T in GG. The Weyl group, which turns out to be finite, acts on the weights of T" as
a permutation group. We also define the Weyl vector pg to be half the sum of the
positive roots of G¢ = G ® C, or more precisely its Lie algebra gc: pg = % ZaeRE a.

Weyl’s character formula gives the character of the representation with highest

weight V), as
ZO‘GWG (_1)U€U(>\+PG)

dewc (_1)060(pc) '

Since representations are determined by their character, this is the best possible result

x(Va) =

— a (seemingly) simple expression for the character of an irreducible representation
in terms of its highest weight.

Recall that all irreps of 7' = U(1)™ are given by weights u : T — U(1), with
p = (my,...,my,) € Z". Specifically, for U(n), if T > t = diag(e’1,...,e") then
§(t) = eilmbrtetmndn)
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One might ask how V) breaks up when restricted to 7. The answer is given by
Kostant’s multiplicity formula, which can be obtained by rewriting Weyl’s character
formula as an infinite sum over weight spaces. The first step is to utilise Weyl’s

denominator formula (see [17])

1 epr

where R¢ is the set of roots of G. Expanding each term in the denominator on the

right as a geometric series gives
o=
HQERG (

where the (infinite) sum on the right is over all positive weights and the function

iG_ oy =erC ZP(V)Q_V, (3.23)

P(v) is the Kostant partition function, which is defined as the number of distinct
ways to write v as a sum of positive roots.

Substituting this into Weyl’s formula yields:

() = 3 (~1)7er O ST p(y)erre

ceWqg

— Z(—l)”e"(’\+pc)_”_pc73(u). (3.24)

Theorem 3.3.8 (Kostant Multiplicity Formula) [32] The multiplicity of the weight

i n the irreducible representation Vy with highest weight \ is given by

n(Va) = D (=1)7P(o(A + pa) — i1 = pa)-

o

where p = oA+ pg) — v — pe in (3.24) and P(v) is Kostant’s partition function.

The point is that we have obtained a formula for the multiplicity of a weight i in the
irreducible representation V), but at the cost of summing over the Weyl group. In
principle though this gives an explicit answer to the branching problem for a magnetic
cotangent bundle over a generic coadjoint orbit, where the stabilizer of a point is a
maximal torus.

Whilst we have a formal answer to the branching problem that can be written
on one line, the downside is that this formula is extremely difficult to evaluate —
some asymptotic properties of Kostant’s formula are given in [20], see also [26] for a
discussion.

It is interesting to note the opinion of Gelfand on Kostant’s formula, as related

by Kostant himself, who ends his recollections of .M. Gelfand in [34] by “citing a
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mathematically philosophical statement of Gelfand” that he thinks deserves consid-
erable attention. “It also opens a little window, presenting us with a view of the way
Gelfand’s mind sometimes works.” He says:

“One of my first papers gave a formula for the multiplicity of a weight in finite-
dimensional (Cartan—Weyl) representation theory. A key ingredient of the formula
was the introduction of a partition function on the positive part of the root lattice.
The partition function was very easy to define combinatorially, but giving an expres-
sion at a particular lattice point was altogether a different matter. Gelfand was very
interested in this partition function and mentioned it on many occasions. He finally
convinced himself that no algebraic formula existed that would give its values every-
where. He dealt with this realization as follows. One day he said to me that in any
good mathematical theory there should be at least one “transcendental” element and
this transcendental element should account for many of the subtleties of the theory.
In the Cartan-Weyl theory, he said that my partition function was the transcendental

element.”

Non-generic cases — Kostant’s branching formula

The situation in the non-generic case is the following: O(a) = G/H, withT C H C G.
When H 2 T, its irreducible representations are no longer one-dimensional, as they
are for T — however, a similar argument can be employed.

Denote the irreps of H and G by W, and V) respectively. V) breaks up into a

finite sum of irreducibles on restriction to H, which may be written as a formal sum
Valg =Y nu(Va) W,
I

where each p is a dominant weight for H. Since H is a compact Lie group, Weyl’s

character formula can be used to find that

ZTeWH (_1)TeT(u+pH)
ZTewH (—1)7er(on)

The trace of an element depends only on its conjugacy class in T, therefore

X(Wu) =

x(Va) = x(Valn) = Z”u (Va)x

Applying the two Weyl formulas for G and H gives

ZGGWG (—1)° (A pa) Z n(V3) TeWH (_1)7‘6T(M+PH).
ZUeWG (—1 Ue" pa) ® ZTewH (—1)T€T(PH)
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Expanding the two denominators, as in (3.23) gives

ZaeWG (_1)0’60'()\+,OG)*PG _ Zn W ZTEWH (—1)7'67'(M+PH)*PH
HaeRg (1—e) g HL?ER}} (1 —e ")

Note that each term in the product in the denominator on the right appears on the

(3.25)

left and so can be cancelled. To this end, a modified Kostant partition function
ﬁg/h(u) is defined to be the number of ways that the weight v can be constructed

using positive roots of g that do not appear in h. Then (3.25) can be rewritten as
Z (—1)% oA tpa)=pa—vp /h Zn“ Vi) Z 1)7e m(utpr)—pH
ceWeq TeEWH

To calculate the multiplicity of the irreducible representation W, in the restricted
representation, compare coefficients of e(u) on the left and the right.

On the right, u = 7(u + py) — py means that 7 = 1. On the left, setting
= oA+ pa) — pc — v gives that:

> (1) Py(o(A+ pe) — pa — pet = n(Vi)e"

ceWqg

The above discussion gives the following theorem, see [19] or [29].

Theorem 3.3.9 (Kostant’s Branching Formula) The multiplicity n,(V\) of an irre-
ducible representation W, of H in the restriction of Vi to H is given by

n,(Vx) = Z (=1)7Pg5(a(A + pc) — pc — 1)

ceWqg

This subsumes the Kostant multiplicity formula (Theorem 3.3.8).

Corollary 3.3.10 Frobenius reciprocity gives that the representation of G induced

from the weight x ¢ is decomposed into irreducible representations of G by

1ndG (xf) @nf Vi) - W,
where this is considered as a virtual sum since most of the coefficients ng(Vy) given
by the Kostant Branching Formula will be zero.

3.4 The magnetic Schrodinger operator

In this section we discuss the quantization of the magnetic geodesic flow on a coad-

joint orbit of a compact Lie group. The most natural definition of the quantum
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Hamiltonian is to replace ordinary derivatives with covariant derivatives in the pres-
ence of a magnetic field. A related geometric approach is to consider the Bochner
Laplacian, which is a self-adjoint second-order differential operator acting on sections
of vector bundles, see [54] for details. We show that in the cases that we are consid-
ering these two approaches give the same result. It is then shown that the spectrum
of the quantum Hamiltonian can be computed in terms of the Kostant branching

formula.

3.4.1 The quantum Hamiltonian

Some of the early work in quantum mechanics proposed that the quantization of
the geodesic flow on a Riemannian manifold (M, g) is given by the Laplace—Beltrami

operator acting on C*°(M) (a discussion on this is in [23], see also [56]), i.e.

j 7 1 0 0

If {Xi,...,X,} is an orthonormal basis of vector fields at the point x
ﬁo¢(£) = Z ﬁ?&)ﬂ’@)v
i=1

where ¢ € C*°(M). It is worth mentioning that there exist other schemes for quan-
tizing the geodesic flow on a manifold, notably the BKS construction (due to Blattner
Kostant and Sternberg) (see [56] and references therein). The resulting operator dif-
fers from the one considered here by the addition of a correction term related to the
scalar curvature of M.

The most intuitive quantization of the magnetic geodesic flow is obtained by

replacing ordinary derivatives by covariant derivatives, so that at the point x
n
Hi(z) =) Viu(),
i=1

where now ¢ € I'°(L,,), i.e. ¢ is a smooth section of the line bundle L, — M with
curvature w. We will describe this in detail for our case.

Let {&} with ¢ = 1,...,m be an orthonormal basis of g, with respect to the
Cartan—Killing form, such that {&;,...,&.} is a basis of g, and {&11,...,&n} is a
basis of gt = T,0(a). Recall that the Cartan—Killing form is defined for &,n € g by

(&,n) == —tr(ade - ad,).

Since g is semisimple, the form ( , ) is non-degenerate and so provides an isomorphism

of g with g* and an induced form on g*, which is again denoted by ( , ).
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Since we are using the normal metric on O(a), then the set {§, 41, ..., &y} provides
an orthonormal basis for 7,0(a).
For (O(a),ds3), the coadjoint orbit through a equipped with the normal metric,

the quantization of the ordinary geodesic flow is given by
Hy = (g, Po) Hy = Q¢ = Z£§
i=1

acting on C*(O(a)) = {f € C=(G) | f(gh) = f(g), for h € G,}.

Definition. The quantum Hamiltonian of the magnetic geodesic flow is given by
Hp=(®;,®5) —  Hy=) Vi
i=1

acting by its self-adjoint extension [46] on

L*(Ly,) > {t € C=(G) |(gh) = xs(h)b(g), for h € G,}.

Remark. This definition of the quantum Hamiltonian is motivated by the quantum
Hamiltonian for an ‘ordinary’ Dirac magnetic monopole, in the following sense. The
generators of s0(3) Iy, ls,l3 generate vector fields X, X5, X3 on S?. The quantum

Hamiltonian used in [57] is essentially given by
H=—(V% + V%, + V%),

where Vx, = X; —14; is the covariant derivative with respect to the vector field X;

and the vector potential A satisfies
VXxA=q.

Given £ € g, generating a vector field X on O(a) the covariant derivative with

respect to Xe, acting on s € I'°(L) at = € O(a) is given by
Vi (5(2)) = Ly, 5(2).
Lemma 3.4.1 The quantum Hamziltonian acts on smooth sections by
Hys = (Qc — Qa,)s

where Qg = 3" L2 and Qq, = Y7 L. are the second order Casimir elements of

G and G, and s € {tp € C(G) |¥(gh) = x;(h")Y(g), for h € G,}.
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Proof. At the point a

Hy = ;Vi = Z;ﬁfnﬁ(si) = Y L& =01,

i=r+1
and this is G-invariant. g
Lemma 3.4.2 The Casimir Qg¢, acts on s(g) by multiplication by (f, f).
Proof. For j =p+1,..., N then X; acts on 5 by
d
(Xj-s)(g) = | s(gexp(tX;))
d
= 01 em(-1,)s0)
=0
== <f7 X]> S(g)
Since Q¢, = SV impp1 X7, then
N
QGaS = Z <f7 Xj>28 = (fa f)S
J=p+1
U

Remark. Alternatively, for £ € g consider the Hamiltonian vector field &(x)

§(x) = adg(x) + (fa, €) -

is a Lie algebra homomorphism, at the point a we have

~—

Since the mapping £ — £(z

m

Q¢ = Z (¢i(a))” =

i=1

(adg,(a) + {fa, &))"

Ms

1

.
Il

Vg + L pry1 (&) <fa;€z> <faa§i> Eprgal(fi) + <fa7£i>2

Il
I Mg

i

=Y Vi+(f.))

1=

3

since (f,, &) vanishes if §; ¢ g, (due to the orthogonal decomposition) and prg. (&) = 0
if & € g,. Putting this together gives

Zvé :QG_ (f7f>7
i=1
as before. We also have that the curvature form is given by

R(&,n) =€(a)n(a) — nla)é(a) — [§,nl(a)
=adgad, (a) — adyadg(a) + (fo, [§,1]) = (fa, [0, €]) — adj (@) = (fa, €, n])

= <fa7 [fﬂ]D :
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The reasoning in this section is summarised in the following theorem.

Theorem 3.4.3 The quantum Hamiltonian acts on smooth sections as

Hfs = (QG - (faf))s
on each irreducible representation of G occuring in the decomposition of indg(xf).

The quantum Hamiltonian that we are considering has a natural quantum interpre-
tation in terms of the Bochner Laplacian, see e.g. [54] for more details.

If E — M is a vector bundle with connection V over a Riemannian manifold
(M, g), with a metric on each fibre then the Bochner Laplacian A on F is a second
order differential operator A : T'(E) — I'(E) defined using the metric structures.

The covariant derivative V is a map V : I'(E) — I'(F ® T*M); using the metric
structures on E the L? adjoint to V may be defined as

V :T(EFEQT'M)—T(F), (V*s,s") = (s, V).
The Bochner Laplacian is then defined by
A:=V'V:T(F) - T(E).

Given a homogeneous space G/H = M and a representation of H on some vector
space V; how does the Bochner Laplacian act on the homogeneous vector bundle
E = G xg V,, whose space of smooth sections is linearly isomorphic to the space

C>=(G,V)He of smooth functions f : G — V satisfying

flgh)=p(h™")f(g) geG, heH.

An element of I'(E) is denoted by s and the corresponding element of C>(G, V)He
is denoted by s.

Lemma 3.4.4 In the basis above, define Qg = Zjvzl & and Qq, = Z;V:pﬂ & to

be the second order Casimir elements of G and H respectively. Then the Bochner

Laplacian acts on sections of the line bundle Ly at a by
AS(a) =V*V5(a) = (2¢ — Qq,) - §(a).

Theorem 3.4.5 Since this is G invariant, we have that the Bochner Laplacian acts

on smooth sections relative to the L? structure as

As = Qe — ([, f))s.
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Hence, the Bochner Laplacian acts on sections of line bundles in the same way that
the quantum Hamiltonian in the presence of magnetic field does.

So we see that a natural question from the physical point of view is essentially
the same as a natural geometric question. This question is still of current interest:
in 2007 there was a paper [21] that attempted to solve the spectral problem for the
Bochner Laplacian acting on sections of line bundles over complex Grassmannians
— we note that this is the same as considering maximally degenerate (non-trivial)
coadjoint orbits for SU(n). We will return to this in Section 3.4.3.

3.4.2 Calculation of the spectrum

We give here a formal answer to the spectral problem for quantization of the magnetic
geodesic flow. We say that it is a formal answer, because it is given in terms of
Kostant’s branching formula. Specific examples will be computed in Section 3.4.3.
Recall that Kostant’s branching formula and the Frobenius reciprocity theorem
(Theorems 3.3.9 and 2.3.2) give the decomposition of the induced representation in
terms. Kostant’s branching formula gives coefficients n,(Vy) for each V) which are
equal to the number of times that the representation V) occurs in the induced rep-
resentation indg(Wu). Since the quantum Hamiltonian acts on each representation
as a scalar (Theorem 3.4.3) then the degeneracy of any particular eigenvalue E,, is

given by the formula

degen(E),) = n,(Vy) - dim V,.

The dimension of an irreducible representation is given by the Weyl dimension for-
mula. This can be obtained from the Weyl character formula by evaluating x,(e)

using an appropriate limit. The answer is

Hae<1>+ ()‘ + Py a)
Hae<b+ (pya)

where p = 3" o+ aand (, ) is the Cartan—Killing form — see e.g. [17] for details.

dim(V,) = (3.26)

The value of the second-order Casimir element Qg = Y " &2 of G acting on an

irreducible representation V), is given by the well-known formula

Qe(Vi) = (p, 1+ 2p) .

where (, ) is the induced Cartan—Killing form on g*. Derivations of this can be found
in e.g. [17], [29] or [19].

Summarizing everything gives the following theorem:
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Theorem 3.4.6 The spectrum of the quantum Hamiltonian ﬁf 15 given by

()\+2p7)\)_(f7f)a

with multiplicity
ng(Vy) - dim Vy,

where X ranges over the highest weights of irreducible representations of the group G,

dim V), is given in (3.26) and ng(Vy) is given in Theorem 3.3.9.

Remark. This should be thought of as a virtual sum, since most of the V)’s the
multiplicity with which they appear in the decomposition of G x g Cy is zero. Also,
notice that whilst the element f = f, is defined relative to some =z € O(a), the
quantum operator H ¢ does not care about which x this is, since if y = Ad;(x) then
fy = Ad;(f.) and so

(fyafy) - (Ad;<fm)7AdZ(fm>> - (fx;fx) - (fa f)

3.4.3 Examples

The answer given in Theorem 3.4.6 is neat and concise. However, it is worthwhile
spending some time to compute some specific examples, so that one can see how
it really works. Calculating specific examples of this construction is a task that is
limited by one’s patience and ingenuity. In general it is a very difficult task, since
we have to calculate n,(V)) for every irrep V) of G. The most difficult examples to
compute are the generic cases, when GG, contains a maximal torus I" — this is because
this is when there are the most relations between the different positive roots of g. It
is clear from looking at Kostant’s Branching formula that the problem gets easier as
the stabilizing subgroup G, gets bigger, since there become fewer relations between
the available roots.

It turns out that specific examples for SU(n) with G, as large as possible have
already been computed by Halima [21] and indeed used to compute the spectrum
of the Bochner Laplacian acting in various line bundles over G/G, — exactly the
problem that we are looking at. This being the case, we can give the spectrum
of the corresponding Schrodinger equation for coadjoint orbits that are topologically
complex Grassmannians. The branching rules computed in [21] can in fact be derived
directly using Kostant’s branching formula. Alternatively, after some calculations
they can be seen to be a consequence of earlier work [44] where some remarkable
examples of multiplicity free branching are given for rectangular partitions for the

classical groups.
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Halima’s work extends earlier work of Kuwabara [37], who calculated the spectrum
of the Bochner Laplacian acting on sections of line bundles over CP™.

First however, we recall some facts about the representation theory of SU(n)
— see [17], [19] or [29] for more information. A weight is a collection of integers

a = (aq,...,q,) that acts on a diagonal matrix g = diag(xy,...,,) as

Qn

a _ _aq
gr— gt =at-.oapm.

Note that because for g € SU(n) we have that det g = 1 and consequently we have
that [, z; = 1. This means that the weight & = (a,...,a,) acts identically to
the weight o/ = (o; — ay, ..., 1 — @y, 0) and so we take «,, = 0.
Every irreducible representation of SU(n) is labelled by a highest weight vector,
which is an integer partition A = (A > ... > \,_1 > 0), with each such partition
giving an irreducible representation of SU(n).

For a partition A = (A\; > ... > \,_1 > 0) we have that the character of the
representation V) is computed using Weyl’s character formula: if g € SU(n) is given
by a diagonal matrix g = diag(xy,...,z,), then the character of g acting in V) is

given by the Schur polynomial in the x; corresponding to A

Ai+n—i }
“fj

Sa(xy, . xy,) = @

n—i{
J

The Weyl dimension formula is obtained by evaluating the character formula on the
identity element in G: the dimension of V) is given by

M= A
dimVy= T[] ﬁ:]'. (3.27)

1<i<j<n

Let € to be the second order Casimir for SU(n). The value of © on V) is given by
Q=[x+ pll* = llll”

where the norm is taken with respect to the Cartan—Killing form and the weight

vector p = (”T_l,"T_‘g,...,_;l) =(n—-1,n-2,...,1,0) = %ZQGRJraiShalfthesum

of the positive roots of sl, = su,, ® C. Explicitly, we have that the value of 2 on V)

is given by the famous formula
Q) = (A +2p,\)

where (, ) is the Cartan—Killing form. For SU(n) we have that this explicitly
evaluates to

n

Q(A) :% Ay (A +2p5) = % (i Aj) (3.28)

=1
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by applying the specific form of the Cartan—Killing form for s[,, to the case at hand.

We consider the case when G = SU(n) and G, = S(U(n — 1) x U(1)), when
we have that O(a) & G/G, =2 CP"!. Weights of G, are given by those weights of
SU(n) of the form p = (q,...,q,0).

Lemma 3.4.7 For q > 0, the only A that branch to p are of the form
No=(q+2,0) 1>0 for n =2 (3.29)

No=(q+2l,q+1,...,q+1,0) [>0 for n > 3. (3.30)

and these have branching multiplicity 1. For g < 0 the partition X\ is of the form
;= (lg| +21,0) [>0 for n =2

A= (gl +24,1,...,1,0) [>0 for k > 3,

again the branching multiplicity is 1.

Proof. This Lemma appeared in [21], but the result must be well-known to specialists
in the area. We give an alternative proof to that given in [21], by making use of
Kostant’s Branching Theorem 3.3.9.

It is apparent that (3.29) is true since this is exactly the result we had in Chapter
Two. In this case Kostant’s Branching Theorem is easy to apply since there are no
relations among the roots. Indeed, it is clear that the roots that make up (g/g,) ® C
are given by L, — L,, for k = 2,...n, with L; — Ly corresponding to the weight
(1,—1,0,...,0) etc. We demostrate how to get (3.30) using Kostant’s branching
formula.

Since A is supposed to be a dominant weight we have that A\ = (A\y > ... >
An-1,0). For p dominant as well, i.e. for ¢ > 0, it is clear that the only summand
in Kostant’s formula that contributes is when the corresponding element of the Weyl
group is the identity, i.e. w = e. The only L, — L,, that gives a dominant weight \
on repeated application to u = (q,...,q,0) is L1 — L,, — indeed we have that

The result for ¢ < 0 can be proved similarly by taking account of the shift by p. U

For ¢ > 0 the Weyl dimension formula gives its dimension as

n—1 .
: l+5—-1\qg+20+n—-1 g+li+7—-1
dim V3, = (H : ) — (H (3.31)

ey 7 —1 s 7 —1
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For ¢ <0 the Weyl dimension formula gives the dimension of V), as

n—1 . n—1 .
: lgf+1+7—1\ ¢/ +20+n—1 l+j—1
dimV,, = (H . 1 H . (3.32)

j=2 j=2

Theorem 3.4.8 IfO(a) = CP" !, (withn > 3) with the weight corresponding to the
magnetic form being given by (q, ..., q,0), we have that the spectrum of the quantum

Hamilitonian is given for ¢ > 0 by

Eﬁ:%(l(l+n—1)+q<l+71)>

with the multiplicity of the I eigenvalue being

n—1 . n—1 .
—1 2 —1 —1
dim<Er>:divaf=(n”f )“Jﬁi‘ (Hl—>

2 j=2

For g < 0 we have that the spectrum is given by

Efz%(l(l+n—1)+|q| (l+nT_1)>

with the multiplicity of the I eigenvalue being

—l+j—1\qg+2l+n—-1 g+l+j5—-1
dim(E;) = dlmV)\—(H j—l) — (H 1 )

7j=2 j=2

Proof. The spectrum is given by applying to (3.28) to the result of Lemma 3.4.7
and subtracting off (u, p), where u = (q,...,¢,0) , which is given by %("n;l)qz. The
multiplicity of each eigenvalue is just given by using the Weyl Dimension Formula
(3.27) for each of the partitions \i". O

Remark. We can relate this to the spectral problem considered in [24], where the
spectrum of the Laplace—Beltrami operator and the Hodge Laplacian acting on dif-
ferential forms of CP" is computed. Our result for ¢ = 0 agrees with the result for
degree 0 forms that is given there. The corresponding calculation for the spectrum
of the Bochner Laplacian acting on sections of line bundles over CP™ was performed
in [37], with the spectrum here differing from there by multiplication by a constant

factor that arises from choosing a metric that is a scalar multiple of their metric.

Similarly we can give the spectrum of the corresponding quantum Hamiltonians
for O(a) = SU(n)/S(U(k) x U(n — k)) = G(k,n). These results are given in [21] —
the calculation of which A branch to give the corresponding weights p (which are of
the form (q,...,q,0,...,0) with k£ ¢’s ) can again be done using Kostant’s branching
formula. Alternatively, the branching calculations can be done in yet another different
way, by using a result in [44] in conjunction with the Schur functor (which is one way

of describing all the irreducible representations of SU(n)).



Chapter 4
Magnetic fields on regular graphs

This chapter provides a discrete analogue of the previous two — we give a general
construction of special magnetic fields on regular graphs using induced representations
for finite groups.

Specifically, given a finite group GG and a subgroup H of it, we draw a graph ['g,
whose vertices are the points of G/H by acting on G/H with a special element K
that lives in the centre of the group ring Z[G]. Under certain conditions on K, the
graph 'k has nice properties and its adjacency matrix can be described algebraically
by computing the matrix of K acting in ind% (1), the representation of G induced
from the trivial representation of H.

A magnetic field is defined on I'x using a non-trivial character p : H — U(1).
Specifically, a magnetic adjacency matrix for the graph 'k is given by acting with K
in the representation ind%(p). This magnetic field on T'x has properties reminiscent
of those of the magnetic field due to a magnetic monopole; namely, the flux through
any two cycles of the graph that are related by an element g € GG is the same.

The corresponding magnetic Schrodinger operator is the magnetic Laplacian on
the graph I'k. The spectrum of the magnetic Laplacian, for the magnetic field given
by our general construction, can be found using the tools of representation theory.

Having given a general construction of a magnetic field on a regular graph, we
then consider what is, in some sense, the inverse problem — namely, given a regular
graph equipped with a transitive action of a group G on its vertices and edges and
a G-invariant magnetic field can we describe this by our construction? Specifically,
we look at the graphs of the Platonic solids and ask whether we can realise magnetic
fields on them by our construction. We attempt to do this by taking G C SO(3)
to be the symmetry group of the polyhedron and H to be the stabilizer of a vertex.

The answer is: sometimes — the biggest omission being a complete failure for the

71
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dodecahedron. Since the Platonic solids can be thought of as discete approximations
to S2, it is illuminating to view invariant magnetic fields on graphs of the Platonic

solids as discrete approximations of Dirac’s original construction.

4.1 Magnetic fields on graphs

Since the 1950’s physicists have been interested in defining gauge field theories on a
lattice. There are two main interpretations that are placed upon the lattice. One can
imagine that the lattice points are the locations of atoms in a solid, with the edges
of the graph being drawn in the obvious way and corresponding to electron bonds
between the atoms. This is known as the tight-bonding model or the Hickel model
— see [38] and references therein. Alternatively, the vertices of the lattice may be
thought of as a discretization of space, with the continuous Laplacian being replaced
by a finite difference operator. This has proved to be quite fertile ground and the
theory of gauge fields on a lattice has grown healthily.

Graph theory has been an active area of study in Mathematics for some time, a
good reference for the algebraic side is [3]. However, it seems to be a relatively recent
development for mathematicians to look at gauge fields — and in particular magnetic
fields — on an abstract graph (as opposed to a lattice). Also, it has to be said that
most results obtained by looking at magnetic fields on a graph come from the point
of view of analysis — looking for results about the most general graphs. The point of
view taken here is diametrically opposed to this, here we study very special graphs
giving an exact solution to the eigenvalue problem for graphs with a high degree of
symmetry.

This section briefly summarises the relevant definitions, before giving a summary
of some notable works in this direction.

A graph A = (V, E) is a collection of vertices V' joined by a set of edges F. An
unoriented edge is denoted between z and y is denoted by {z,y} € E and [z, y] and
ly, x] are its two orientations. In this chapter graphs are assumed to be finite — this
is not necessary in general, but requires more analysis than is needed here.

The most basic object that one can associate to a graph A is its adjacency matrix
T. The adjacency matrix records which vertices are connected by edges: for example,

for the triangular graph K3, which is shown in Figure 4.1 the adjacency matrix is

Ty, = (4.1)

— = O
_ O
O = =
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Figure 4.1: The graph of K3, the complete graph with three vertices.

acting on the free vector space generated by the vertices 1,2 and 3.

In general, the adjacency matrix 7" is defined as follows: if z and y are two vertices
of a graph A then T}, is equal to the number of edges joining x to y. The graph is
undirected if T}, = T,, for all  and y. The xy™ entry of the n'" power of the
adjacency matrix gives the number of paths of length n between x and y.

One may also associate to a graph its Laplacian matrix, which records which
vertices are linked by an edge and also records how many edges are attached to each
vertex (the valency or degree of the vertex): the Laplacian matrix for the triangular

graph is given by
L= 1 -2 1 . (4.2)

In general, if  and y are two different vertices of a graph A then L, is equal to the
number of edges joining x to y and —L,, is equal to the number of edges attached
to x. Again, the graph is undirected if L,, = L,,. One sees that 7" may be obtained
from L by forgetting the diagonal terms.

Attaching the name ‘Laplacian’ to this operator was not done tritely — as can be
seen when one considers functions on A. The space of complex valued functions on
A is denoted by

cV)y={f:V —-C}.

At the point z, the Laplacian acts on functions by the rule

ya
where the summation is over all vertices y that are at the other end of an edge
attached to x, taken with multiplicity. The Laplacian on a graph may be thought
of as playing the role of the Laplace-Beltrami operator on a manifold. An easy
demonstration of this is afforded by taking the discrete limit of the Laplacian on R,
which gives (essentially) the Laplacian on Z2.

More than this though, as is well-known in Riemannian geometry a lot of geomet-

ric information is contained in the eigenvalues of the Laplace-Beltrami operator (see
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e.g. [2] for a review). A similar situation exists in the realm of graphs: the eigenval-
ues of the Laplacian of a graph encode certain geometric information from the graph.
For example: the multiplicity of 0 is equal to the number of connected components of
the graph, and the smallest non-zero eigenvalue of L gives the algebraic connectivity
of A.

Definition. [45] A graph A is said to be d-regular if the number of neighbours of

each vertex is d and there are no multiple edges or self-connections allowed.

In general, the eigenvalues of 7" and L are essentially different. However, for
d-regular graphs, the Laplacian can be obtained from the adjacency matrix by sub-
tracting d times the identity matrix. Therefore the eigenvalues of T" and of L only
differ by a shift by a constant d. The graphs considered in this chapter will be

(essentially) d-regular.

Definition. [10] A magnetic potential A on a graph A with no multiple edges or
cycles is given by associating to each edge [z,y] an element explicy,] € U(1) such

that agy = —ay, € R.

This has the effect of replacing the off diagonal elements of the adjacency matrix
and the Laplacian matrix by the corresponding elements of U(1), i.e. the elements
of the adjacency matrix change by T, — T, - explia,,| and the elements of the
Laplacian matrix change by L, +— L,,-exp[ia,,|. For example, for a general magnetic

field on the triangular graph the adjacency matrix (4.1) changes to

0 exp [iara]  exp [ics]
Ty= | exp[—ias) 0 exp [icras]
exp [—iays] exp [—icas] 0

and the Laplacian matrix (4.2) changes to

-2 exp [iaa]  exp [ias]
—La=| exp|[—ia] —2 exp licgs] |
exp [—ions] exp [—icws] -2
for some a;; € R. One sees that the condition o,, = —a,, guarantees that the

operators Ty and L4 are Hermitian (and consequently have real eigenvalues).
The combinatorial magnetic Laplacian acting on functions may be introduced
formally as follows. The space of functions C'(V') on A may be made into a Hilbert

space [?(V) by defining the Hermitian inner product (f, g),. = >,y f(2)g(x).
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It is convenient to introduce the Hermitian form ¢ by

Qalf) = D |f(@) = explic, f(y)]]” (4.3)

{z,y}eFE
where each edge is only taken once and the choice of orientation turns out not to
matter. The combinatorial magnetic Laplacian L, is then defined formally by the

relation
(La(f), ) = Qa(f),

or more explicitly by

La(f) =) [f(x) — explia,f(v)], (4.4)
y~a
where y ~ x means the summation is taken over all vertices y that are joined to x
by an edge. Obviously, if ay, = 0 for all edges {z,y} then the magnetic Laplacian
reduces to the ordinary Laplacian on A.

Again, for d-regular graphs, the eigenvalues of L4 and T4 differ only by a shift by
d. In this chapter every graph considered will be essentially d-regular.

A natural first question to ask is what effect the introduction of a magnetic field
A has on the eigenvalues of the operators T" and L.

One of the first works in this direction is [38], which blends mathematics with
physics and is very readable. It takes the point of view that the Hamiltonian of a single
electron on the graph is given by T4. Denote the eigenvalues of this operator by A;.
(One could also take the operator L4, but for various reasons the authors prefer T'4.)
They then move to answer the question of what happens to the eigenvalues if there
are more than one free electrons on A, and in particular, which choices of 8 minimise
the ground state of this system. The answer is quite surprising, in that if there is only
one electron then the introduction of a magnetic field raises the energy of the system
— this result is known as the diamagnetic inequality. However, if the number of
electrons approaches the number of vertices of the lattice the magnetic field actually
lowers the ground state energy. They also give an alternative proof of Kasteleyn’s
Theorem, which is one of the main tools for counting ‘dimer configurations’ on a
graph. (A dimer configuration on a graph is a subset {ey,...,e,} of E such that each
vertex is the end point of exactly one of the e;’s. )

More mathematically-minded is the paper [10], which considers an extension of
the magnetic Laplacian defined above for locally finite connected graphs. They define
the more general magnetic Schrodinger operator on a weighted graph by the data of

a magnetic field A, and some weights w, € R on the vertices and ¢, € R* on the
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edges to be the operator
1 .
Hoca(f)(z) = — > cay [f (@) = explic, ] f(y))-
T yag
Taking w, = 1 and ¢, = 1 gives the combinatorial magnetic Laplacian defined in

(4.4). This operator is Hermitian symmetric on the Hilbert space

zeV

(V)= {f eC(V)| Y wilf@) < 00}
with Hermitian inner product
(fo9)e = D _wif(x)g(x).
zeV
Defining the norm |B| of the magnetic field A to be the smallest eigenvalue of H,, . 4,
they prove that under certain growth conditions on ¢ and |B| the operator H, . 4 is
essentially self-adjoint. This extends previous results of the authors.

An interesting recent paper [45] establishes a trace formula for certain discrete
Laplacians on d-regular graphs that depends upon a continuous parameter. (The
graphs considered in this chapter will all be d-regular.) For a special value of the
parameter this gives exactly the magnetic Laplacian. The trace formula is then used
in a following paper to show a connection between the spectral properties of d-regular
graphs and random matrices.

Perhaps the most interesting, and relevant to the problem considered here is the
highly illuminating paper [39] of Manton. This is along different lines to all of the
other works referenced here because it is written from the point of view of Differential
Geometry and not Analysis. He starts by recalling that the most efficient and natural
way to describe topologically non-trivial gauge fields in the continuous case is to
use the language of connections on a principal fibre bundle. He then notes that in
standard gauge theory on a lattice, the total space of the bundles considered is not
usually discrete, but a Lie group bundle over a finite set of points and is topologically
trivial. With this in mind he looks to develop the notion of a connection on a discrete
fibre bundle (one whose total space is discrete).

He considers two examples in particular, which are discretizations of the Hopf
fibrations S® 5 S? and S7 5 S4. The total space for the first bundle is a set of
24 points in R* 2 C? (which may be identified with the binary tetrahedral group).
The gauge group is the group Z, and it acts on the total space, with the base space
being the 6 points that may be identified with the vertices of an octahedron. For the
second bundle he uses the 240 roots of Ejy as the total space, with gauge group the non-

abelian subgroup of SU(2) with order 24 (again, the binary tetrahedral group). The
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base space is then 10 points and can be thought of as the vertices of a ‘5-dimensional
octahedron’. He supposes that points in the total spaces of these bundles then come
equipped with a notion of neighbouring points. (This is not unreasonable, if one
considers a standard metric in the ambient space.) This can be used to draw an
edge between neighbouring points in the bundle and explain how to use the notion
of holonomy to conduct parallel transport on the bundle and measure the curvature
of the bundle. Having done this he then defines a notion of the first Chern number
of the bundle, which will be used later in this chapter.

His ideas were taken slightly further in [42], where the author defines a discrete
Yang—Mills action and shows that the connection on the octahedral bundle described
by Manton is a minimal connection for this action. He also resolves a certain troubling
asymmetry in Manton’s bundle by using the binary octahedral group O* as the total
space for the bundle and identifying the vertices of the octahedron with O*/Z;. By
definition the group O* is the preimage of the symmetry group of the octahedron
under the double-covering of SO(3) by SU(2). To distinguish symmetry groups G

from their binary versions G*, the binary versions are affixed with a .

4.2 Dirac monopoles on homogeneous graphs

This section describes in detail the construction, outlined at the start of the chapter,
of what may reasonably be called Dirac magnetic monopoles on homogeneous graphs.
Firstly, some basic lemmas concerning magnetic fields on graphs are given — these
are mostly known results and can be found in [10] and [38]. Next, it is explained
how to construct certain d-regular graphs using the representation theoretic notion
of an induced representation. Finally, it is explained how to define a Dirac magnetic

monopole on a homogeneous graph using this language.

4.2.1 Magnetic fields on graphs

Recall from the Section 4.1 that a magnetic field is defined on a graph A by specifying
a magnetic potential A, which associates to each edge [x,y| an element exp[ia,,| €
U(1) with a,y = —ay, € R.

As might be expected, there is a notion of a gauge transformation, which renders

some potentials equivalent.

Definition. A gauge transformation U is given by a sequence of complex numbers
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explio,], where o, € R. Tt acts on a function f € I*(V') by

(Uf)(x) = explioa] f(z),

on the quadratic form @4 defined in (4.3) by Qa(f) — Qa(Uf) and on the magnetic
Laplacian Ly by La — Ly«(a), where U*(A),y = oy + 0y — 0.

For finite graphs a gauge transformation just acts on a magnetic Laplacian by
Ly U LU,

where U = exp[io,]dy,.
It is clear that a gauge transformation leaves the spectrum of L4 unchanged.

It is convenient to introduce the formalism of homology to describe magnetic fields
on graphs. Define the space of 1-chains Cj(A) on the graph A to be the Z-module
generated by oriented edges subject to the relation [z,y] = —[y,z]. A boundary

operator can be defined by
0:Ci(A) — C(V) I([z,y]) = 6y — 0,

where d,(z) =1 and d,(y) = 0 for y # .
The space of 1-cycles Z;(A) is defined as the kernel of the boundary operator.

Definition. Let v = [zg, x1]+[x1, 22| +. . .+ [Tn_1, o] be a cycle on A. The holonomy
map is defined by ®4 : Z;(A) — R/27Z by

q)A<7) = Qlgoay + ... Qg 120 (mod 27T)

Physically this may be interpreted as the magnetic flux through the cycle, as can be

seen by writing

Da(y) = arg (H exp[mxyo

=0
and applying Stokes’ theorem.

Lemma 4.2.1 A gauge transformation leaves the flux through each cycle unchanged.

Proof. If U is a gauge transformation of A and v = [zg, x1] + [z1, za] +. . . + [Ty—1, 70

is a cycle of A then writing out the total flux through ~ for U*(A) and A gives

(I)U*(A) (’Y) = Olggay + 01— 09+ Agizq +oy—01+ ...+ Qg 120 + 09— 0pn_1

= Qgozy T Qgyzy + 4o+ 0y 10y = ©A(7)'
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Definition. Let F' be the set of faces of a planar graph. The Chern number of the
magnetic field (in the sense of [39]) is defined to be
A) = 1 D(f). 4.

) = 52 () (15)
Remark. This definition approximates the definition of the first Chern number in
the case of smooth bundles. However, we have lost something: for the graphs con-
sidered here this quantity is not very well-defined. This is because for planar graphs
there is no natural way to orient the graph, since the mirror image of the graph
is still the graph and so anti-clockwise and clockwise orientations are indistinguish-
able. However, provided for each graph we are consistent in the orientation used this

definition can be used for comparison.

One might wonder what influence the fluxes have on the spectrum of the adjacency

matrix — an answer is provided by the following Lemma from [38].

Lemma 4.2.2 Let T and T’ be two magnetic adjacency matrices of a finite graph A,
with the property that |T,,| = |T,,| and also such that the fluz through each face is
equal, i.e. if v € Z1(A) then ®r(vy) = $pi(y). Then there exists a gauge transforma-
tion U such that T' = UTU and so T and T’ are isospectral.

Proof. It is sufficient to prove that if ®r(y) = 0 for every ~ then T is gauge-
equivalent to 0. Fix a point g € V. For any x € V that is linked to zy by a
path ., consider the function describing the phase acquired in moving from z to
T ¢p = arg H7 T. This turns out not to depend on ~,, for if 7/, is any other path
from zy to z then v — +' is a cycle on A and the flux through every cycle is 0 by
assumption. For any y that is linked to = by an edge, consider a path ~, from z, to

y. Then since v, + [z, y] — v, is a cycle, it must hold that
L= HT Ty - HT = expli(ds — ¢y)| Ty
Y Yy

and so T, = expli(¢y, — ¢,)] — therefore T' is gauge equivalent to 0. O

A similar Lemma is proved in [10], when the graph is not assumed to be finite.
One might also ask to what extent the fluxes determine the phases. For the case

of finite planar graphs this question was answered in [38] as follows.

Lemma 4.2.3 If a graph A is planar (i.e. it can be embedded in R* without self-
intersections) then the flux through each face of the graph determines the potential A
up to a gauge transformation. More specifically, let the graph have faces Fi, ..., Fy
and let ®q,...,P; be any numbers in [0,2w). Then there is a function 6(x,y) :
E(A) — [0,27) such that if v is a cycle then ®(y) = > o,

interior faces of v ~J°
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Proof. For each face F} inside v pick an interior point z; = (zjl, ZJQ) € R? and consider
the one-form (22 y ( D
Z5 — T+ (x— z;
A= Y et Y

J 2 2 2
(T
all faces Fj of A ( + Yy )

Now, for each edge [z, y] define 6(z,y) = [ A. Then the flux through any cycle 7 is
given by f,y A and by Stokes” Theorem this equals the ®(~y) defined above. g

When the graph is no longer assumed to be finite and planar, a Lemma similar in
character is given in [10], where it is proved that the map A — ® 4 is surjective onto
Hom(Z,(A),R/27Z).

Another interesting question is what influence the magnetic field A has on the
lowest eigenvalue of L,. A partial answer to this question is easily answered using

the quadratic form @4, as shown in [10].

Lemma 4.2.4 Let Ly be a magnetic Laplacian on A. Then 0 is an eigenvalue of L4

if and only if ®4(y) = 0 for every cycle ~.

Proof. In one direction this is clear, if ®4() = 0 for every cycle v then A is gauge
equivalent to 0 by Lemma 4.2.2 and so L4 reduces to the combinatorial Laplacian of
I'. The multiplicity of zero as an eigenvalue of the combinatorial Laplacian is equal
to the number of connected components of A, with eigenfunctions given by constants.
In the other direction, suppose that f # 0 and that L f = 0. Then, this implies that
Qa(f) =0, which implies that every term in (4.3) vanishes. This means that for any
edge [z,y], it must hold that f(z) = explicw,]f(y). In particular, this means that if

v = [xo, 1] + [T1, 2] + ... + [2,_1, 7o) is a cycle then

(o) = expl—iause, \|f(zn1) = ... = exp[=i®a(y)]f(20)

and so ®4(y) = 0. O

4.2.2 Induced representations for finite groups

The main idea of this chapter is to use the definition of the induced representation
for finite groups to generate regular graphs with a magnetic field. Recall that if G is
any group and H is any subgroup then one can form from any representation V' of G
a representation of H by just restricting the representation V to H (written resZ (V)
or sometimes V).

Allied to this is the dual notion of induction: if W is a representation of H then

one may form a representation of GG called the representation of G induced from W
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and written ind%(W). Recall from Section 2.3 that if G and H are Lie groups then
the construction of the induced representation may be explained in terms of the space
of sections of a vector bundle with fibre W over G/H; a very readable summary of
this is given in [7].

For finite groups the construction, which was first given by Frobenius, is slightly
harder to grasp owing to the near absence of geometry. The explicit form of the
induced representation will be given in terms of cosets and representatives here and
is based on the account in [17], where more details may be found.

Let H C G and W be a representation of H. For each coset x € G/H, a
representative g, must be chosen — the choice does not matter. For each coset x,
a copy W, is taken of W. For w € W, denote by g,w the corresponding element in
W,. The induced representation indg(W) is then formed by taking the direct sum
of all these copies of W

ind% (W) := @ W,.
xeG/H

Any element v of ind% (W) may be written as v = 3 g,w,. To describe the action
of the group G on this space, one needs to write the action of ¢ € GG on any coset

representative. An element g € G acts by the formula

9 (gows) = gy(h-we) if g-g. =gy h. (4.6)
This does indeed give a representation of GG, for one can show that

/

9 (9 (g2wa)) = (9" 9) - (ga102)

for any other element ¢’ € GG, which follows from the associativity of the group.

The induced representation of GG is not, in general, irreducible. Indeed, it may be
decomposed into irreducible representations of G according to the Frobenius Reci-
procity Theorem 2.3.2, which may be stated in terms of the Hermitian scalar product
of characters as

(V, indg(W)>G = (resg(V), W), .

This formula says that the number of times that a given representation V' of G
appears in the ind% (W) is equal to the number of times that the representation W
of H appears in the restricted representation resZ (V). For finite groups this may be

computed very quickly using the character tables of G and H.

4.2.3 Construction of regular graphs

We give here a method of constructing regular graphs using group-theoretic data.
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Definition. Given a conjugacy class [k| of a group G, we define the Casimir element

K corresponding to [k] by taking the formal sum of each element in [k]

K = k.
kelk]

The elements k € [k] are called the summands of K.

Lemma 4.2.5 The Casimir elements form a basis for the centre of the group ring

Z|G).

Proof. To prove the Lemma it needs to be shown that for any A € G that hiK = Kh
holds, but this is straightforward:

hK =Y hgkg™' =) gkg~'h=Kh,
geG geG
where the second equality is a result of the map g — h~'g, which obviously leaves
the summation invariant. This proves that the Casimir elements are central; to see
that they form a basis see [17]. O

Definition. We define a Casimir element of G to be any element in the centre of
Z[G], which is a linear combination ) m,K;, by analogy with the elements making

up the centre of the universal enveloping algebra of a Lie algebra.

Definition. A real Casimir element is a Casimir that acts as multiplication by a
real scalar on each irreducible representation of G. By Schur’s Lemma, this means

that the characters of the elements of the corresponding conjugacy class are real.

Real Casimir elements may be formed by adding together two Casimirs whose

corresponding conjugacy classes have characters that are complex conjugate.

Lemma 4.2.6 For any real Casimir element K and for any summand k of K, we

have that k= is also a summand of K.

Proof. For any finite group it is true that the character of an element g acting in

any irreducible representation of G is related to that of g—! by

x(g™") = x(g9). (4.7)

This can be seen by noting that for any g there exists a [ € Z such that ¢' =e. If p

is any representation of G then this means that p(g)! = 1 and furthermore that the
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eigenvalues \; of p(g) are of modulus 1. Therefore the eigenvalues of p(g~!) = p(g)~*
are given by 1/A\; = )\; and so (4.7) holds.

Therefore, if all the characters are real then x(¢~!) = x(g). Since conjugacy
classes are distinguished by their characters this means that g and ¢! belong to the

same conjugacy class. U

Definition. Let GG be a finite group, H a subgroup of G and K a real Casimir of G.
Corresponding to the triple (G, H, K) we define a graph 'k (V, E) by the following
procedure. We let the vertices of I' be the left-cosets of H in G, i.e. V = G/H.
If 2,y are two distinct cosets of G/H, we draw an edge from z to y if there exists
a summand k& of K such that k-2 = y. We do not draw loops, i.e. edges starting
and ending at the same point and we do not draw multiple edges between different

points.

Lemma 4.2.7 The graph U'x defined above is undirected, in the sense that if there

18 an edge from x to y then there is also an edge from y to x.

Proof. This follows from specifying that K should be a real Casimir. Suppose that
z,y € G/H are two vertices that are joined by an edge [z,y]. This means that there
exists a summand %k of K such that k- x = y, therefore we have that k! -y = .
By Lemma 4.2.6 we have that k7! is also a summand of K and corresponding to the

edge [z, y] there is also the edge [y, z]. O
Lemma 4.2.8 The graph I' s d-reqular.

Proof. Recall that a graph I' is d-regular if it has no loops or multiple edges and
if each vertex has d-edges joined to it. By construction the graph 'y has no loops
or multiple edges, so proving the claim amounts to showing that if there are d edges
connected to z € G/H then there are d edges connected to any other y € G/H. This
follows from the transitivity of the G action, since there must exist a g such that
g - x = y. Therefore, if the edges [z, x1],..., [z, z4] are generated by ki, ..., kg, then

1

the edges [y, g - z;| are generated by gk;g~' acting on y = g - . O

By analogy with the case of coadjoint orbits, we can say that K defines a discrete

analogue of the normal metric on the space X = G/H.

Definition. We say that K is a good Casimir element if it is real and if G acts

transitively on the edges of the graph I'k.
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We will assume from now on that K is a good Casimir element. This is a strong
condition on K, but it is clear that it is not so strong that it is never satisfied — in
the next section we will be dealing with graphs of regular polyhedra, and in this case
G does act transitively.

On the other hand, it is fairly easy to find cases where G does not act transitively
on I'x. We give as a specific example the case when G = S3 is the symmetric
group on three elements and H = e. There are three real Casimirs for S3: K = e,
L = (123) + (132) and M = (12) + (13) + (23) and these generate the graphs shown
in Figure 4.2. On the left is the graph I'x, which has no edges; in the middle is the
graph I';, = K35 @® Kj3; on the right is the graph I"y; = K3 3. In the latter case one can
check that there is no g € S5 that sends [e, (12)] to [e, (13)].

(12, (129) (12 (123) (12 (123)
ce e (13) e (13) e (13)
@230  * (132 (23) (132) (23) (132)

Figure 4.2: The graphs 'k, 'y, and I'y; for G = S;.

Proposition 4.2.9 If K is a good Casimir element then the adjacency matriz It
for I' is given by

Tr. = 2 (P(K) - eI, (4.8)

K
l
where P(K) denotes the matriz of K acting in ind% (1), with 1 being the trivial

representation of H and ¢ and | being positive integers.

Proof. We want to show that the matrix P(K) has a constant ¢ along the diagonal
and whose non-zero off-diagonal terms are [.

The first part follows from the fact that G acts transitively on G/H. Suppose
that ki,..., k. are such that k; - x = x, then k] = gkig™',... k. = gk.g™' are such
that k} -y =y fory =g - x.

The second part follows from the assumption of the transitivity of the G-action
on the edges of I'. This means that for any edges [z,y] and [2/, /], there exists a
g € G such that g - [z,y] = [2/,y/]. Suppose that the zy" entry of P,, equals [, this

1

means that there exist ki, ..., k; such that k; - x = y. By considering k} =¢g-k;- g~ ",

we see that there are also [ elements mapping 2’ =g-z toy =g -y. O
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Corollary 4.2.10 The Laplacian matrix Ly, for I'k is given by
Ly, =dI =Ty, (4.9)
where d 1s the valency of each vertex in 'y, which is constant by Lemma 4.2.8.

Theorem 4.2.11 The spectrum of I, and Lp, can be computed using representa-

tion theory and are given by the formulae (4.10) and (4.11) below.

Proof. The induced representation ind% (1) can be decomposed into irreducible rep-
resentations of GG using the Frobenius Reciprocity Theorem 2.3.2; which will lead to

a formula of the form
indG (1) =2Vio...aeV,

where V; are irreducible representations of G. Since K is an element of the centre
of the group algebra of G, by Schur’s Lemma it acts as multiplication by a complex-
number ¢; on each irreducible representation V; of G. However, since K is a real

Casimir, the ¢; is in fact real and given by

where n is the number of elements of conjugacy class corresponding to K, d; is the
dimension of V; and y; is the character of an element k acting in V;. Therefore the

eigenvalues of P(K) are given by

Spec(P(K)) =, ..., ¢tm

m

where the notation cfi means that the eigenvalue ¢; appears d; times. By applying

(4.8), we see that the spectrum of the adjacency matrix Tt is given by

1 1
Spec(1Tr,. ) = 7(01 —o)h 7(0m — ¢)dm (4.10)

and by applying (4.9), we see that the spectrum of the Laplacian matrix Lr,. is

Spec(Lr,. ) = (d—l—%—%)dl,...,(d%—%—%ﬂ)dm. (4.11)

g

4.2.4 Construction of regular graphs with magnetic field

We now define a regular graph with magnetic field by replacing the trivial represen-

tation of H with any other character p: H — U(1).
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Definition. Let GG be a finite group, H a subgroup of GG, K a good Casimir element
of G and p a character of H. Suppose that [z,y] is an edge of 'k, recall from
Proposition 4.2.9 that this means that there exist kq,..., k; being summands of K,

such that k; - = y. In terms of coset representatives g, of  and g, of y, this means

We associate to the edge [z, y] the element of U(1) given by

explify,] = L) F oot p() (4.13)

p(ha) + .+ p(h)]

assuming that the condition

plhy)+ ...+ p(h) #0 (4.14)
is satisfied.

Remark. If the condition (4.14) holds for one edge then by the transitivity of the
G-action on the edges it holds for all edges.

Lemma 4.2.12 This construction does indeed define a magnetic field A(p) on Ik,

i.e. we have that explify,] = exp[—if,].

Proof. This follows from the fact that K is a real Casimir. Recall that Lemma 4.2.6
says that if K is a real Casimir then if k is a summand of K, then so is k=1, Rewriting
(4.12), we see that

kitegy=g.-hi!

(]

and so

oo e ) e ) p(h) ()
explifly,] = P+ + e D] o) + oo+ p(0)] = exp[—ifyy]. (4.15)

g

One can check that the choice of coset representatives affects the magnetic adjacency
matrix by conjugation by a diagonal unitary matrix. Thus, the choice of a coset
representative amounts to a choice of gauge.

We have a magnetic analogue of Proposition 4.2.9 and its corollary.

Proposition 4.2.13 If K is a good Casimir then the magnetic adjacency matriz T,
for the magnetic field A(p) on I'k is given by

T, - ]19 (P(K) — qI), (4.16)

where P(K) denotes the matriz of K in ind%(p) and p and q are real constants.
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Proof. We want to show that the matrix P(K') has a constant ¢ along the diagonal
and that all non-zero off-diagonal terms have constant modulus p.

The first part follows from the fact that G acts transitively on G/H. Suppose
that ki, ..., k. are such that k; - # = x, then k| := gkig™',... k! := gk.g~' are such
that k, -y = y for y = g - . On the level of coset representatives, this means that

given g- g, = g, - h and k; - g, = g, - h; we have
K.g, = g,hh;h .
We then have that
P(K) e = p(h1)+...+p(h.) and P(K),, = p(hhih™ ) +...+ p(hhh™) = P(K),,.

The reality of the diagonal elements follows from the fact that if £ -2 = x then
E~lx =,

The second part follows from the assumption of the transitivity of the G-action
on the edges of T'r. This means that for any edges [z,y] and [z, 1], there exists a
g € G such that g - [z,y] = [2/,¥/].

If [x,y] and [2/,y'] are two edges of ', then we know from Proposition 4.2.9 that
there exist [ elements ky, ...,k such that k; - x = y and [ elements ki, ..., k; such

that k! - ' = y/. On the level of coset representatives this means that we have
kige = gyhi and kig, = g,h;
and so we have
Py = p(h1) +...p(hi) and Ppy = p(h) + ... p(hy).

Since G acts transitively on the edges of I'x this means that there exists a ¢ such

that gg, = g»h, and gg, = g, h,. We then see that gk;g™" - g = g, hyhih,; ' and so
Py = p(hyhiht) + . p(hyhihy ') = p(hy) Peyp(hy ).

Therefore we have that |Pyy| = | Py,l. O

Corollary 4.2.14 The magnetic Laplacian matriz L, for I'k is given by

L,=dIl —T, (4.17)

p

where d is the valency of each vertex and T, is the magnetic adjacency matriz for I' i

with the magnetic field A(p).
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Proposition 4.2.15 The magnetic field constructed by this is G-invariant in the
following sense: if v is a cycle on U'xc then any other cycle that is the image under G

of v, i.e. ¥/ = g -y, then the flux through the cycle v and the cycle 7' is the same.

Proof. This follows by iteratively applying the argument from Proposition 4.2.13 to

each edge in a cycle. U

Theorem 4.2.16 The spectrum of the magnetic adjacency matrixz and the magnetic
Laplacian corresponding to the magnetic field A(p) on I'x can be found using tools

from representation theory and are given by formulae (4.18) and (4.19).

Proof. The proof of this result is essentially the same as the proof of Theorem 4.2.11.
The induced representation ind%(p) can be decomposed into irreducible repre-
sentations of G using the Frobenius Reciprocity Theorem 2.3.2, which will lead to a
formula of the form
ind5(p) 2Vi®... 0V,

where V; are irreducible representations of G. Since K is an element of the centre
of the group algebra of GG, by Schur’s Lemma it acts as multiplication by a complex-
number ¢; on each irreducible representation V; of G. However, since K is a real

Casimir, the ¢; is in fact real and given by
n

P = ik7
c diXU

where n is the number of elements of conjugacy class corresponding to K, d; is the
dimension of V; and y; is the character of an element k acting in V;. Therefore the

eigenvalues of P(K) are given by

Spec(P(K)) = ¢, ..., ¢t

m

where the notation cfi means that the eigenvalue ¢; appears d; times. By applying

(4.8), we see that the spectrum of the adjacency matrix 71, is given by

Spec(Tr,. ) = 1(01 ) . 1(cm —q)m (4.18)
p p
and by applying (4.9), we see that the spectrum of the Laplacian matrix Lr, is
Spec(Lr,.) = <d+g—ﬁ)dl,...,(d+g—c—m)dm. (4.19)
p p p p

0
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4.3 Discrete magnetic monopoles on graphs of reg-

ular polyhedra

In the previous section we gave a general construction for regular graphs with a
magnetic field that is invariant under the action of a symmetry group G. In this
section we consider an inverse problem to this, namely we give a definition of a
discrete magnetic monopole on a regular polyhedral graph and ask whether it can be

obtained by the construction.

Definition. We define a discrete magnetic monopole on a polyhedral graph to be
given by a magnetic Laplacian on the graph with the magnetic field being G-invariant

for some G' C SO(3) being a symmetry group of the graph.

The question then is, can discrete magnetic monopoles be described by the con-
struction given in the previous section? We show that in many cases the answer is
yes; the most important omission is the dodecahedral graph.

As the group we consider G* C SU(2) to be a binary polyhedral subgroup —
these are double covers of the corresponding symmetry groups in G C SO(3). The
binary groups are detailed in Appendix A.1, together with their character tables and
Casimir tables. The reason for taking the binary symmetry groups as opposed to the
regular symmetry groups is that if we take only the G C SO(3) we miss half of the
different magnetic charges, picking up only the even Chern numbers. This is entirely
analagous to the situation in quantum mechanics of integer and half-integer spin.

It is worth keeping in mind that the Platonic solids may be thought of as discrete
approximations to S?. With this in mind, it is reasonable to think of magnetic
monopoles on graphs of the Platonic solids as discrete approximations to a magnetic
monopole on a sphere. By pursuing this line of reasoning we can deduce how many
distinct magnetic charges, i.e. distinct Chern numbers (in the sense of (4.5)) of the

magnetic fields, there should be for each graph.

Theorem 4.3.1 The number of distinct Chern numbers for each magnetic monopole

on a Platonic solid is equal to the number of faces of the Platonic solid.

Proof. Let a Platonic solid P with f faces be centred around a Dirac monopole of
charge ¢ € Z in R3. The flux through each face F of the solid is given by
2mq
bp = —.
f
Now consider for a moment the special case when ¢ = 2, which corresponds to the

tangent bundle to the unit-sphere S2?. Consider also a spherical octahedron — i.e.
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one whose edges are geodesics on S?. If we take a tangent vector at a vertex and
parallel transport it along the edges of one of the faces of the octahedron then we find
that when it returns to the starting point it has been rotated by 7/2 = 47 /8, which
is exactly the area of the face. Similarly, for any other P we find that the holonomy
of the tangent vector on being parallel transported about the edges of a face is equal
to the area enclosed by that face, i.e. 47/ f.

For any other ¢, we find that the holonomy on parallel transporting along the
edges of a face F' is given by the flux ®p through that F. However, the holonomy is
only taken mod (27) and so we find that ¢+ f and ¢ give the same holonomy. Thus
there are f different possible Chern numbers for magnetic monopoles on the graph
of the Platonic solid P. O

We can rephrase Theorem 4.3.1 in terms of representation theory, since G* C

SU(2) we can use the description of wavefunctions from Chapter Two.

Theorem 4.3.2 Let P be a Platonic solid, whose binary symmetry group is G* and
with the stabilizer of a vertex given by H*. This means that H* = 7 = (), where
€% =1, for some k. Let K be a real Casimir of G* and suppose that K generates a
graph A. Let v be a cycle in A and let ¢ =0,1,...,2k —1. Denote the flux through ~y
when acting in the representation ind$. (q) by ¢(v). By considering G* C SU(2), we
can also consider the flux through v when K acts in the representation indglé()Q)(Wp),
denote this by ®,(v). The result is that if ¢ = p mod 2k then ®,(y) = @(v).

Proof. If v is a cycle of length n on the graph A that is generated by K acting on
G*/H* then there exist gy, ..., g, such that ¢; : 2;_1 — x;, or equivalently g; - x;_1 =
x; - h;, where h; € H* and a coset x; has been identified with its representative. For
each i we have that h; = £, for some m. Acting in the representation indgi (q), we

have that the flux through ~ is given by

i)

Considering K acting in the representation ind U(Q)(Wp), the flux through ~ is given
by
®,(7) = arg (H (5“")17) :
i=1
which, since £2¥ = 1, clearly only depends on the value of p mod 2k and agrees with
O(y) if ¢ =p mod 2k. O
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We start by investigating the graphs of Platonic solids with the simplest case, that
of the tetrahedron, before moving through the Platonic solids in order of increasing

number of vertices.

4.3.1 Tetrahedron

The binary tetrahedral group 7% is listed in Appendix A.1 and has order 24. The
stabilizer of a vertex in 7' C SO(3) is a cyclic group of order 3 and this lifts to the
binary cyclic group C3, which has order 6 — take for this group the cyclic group H

1447 =141
generated by % ( L 1 )
+1 —1

Lemma 4.3.3 The space of left cosets of H in T* is given by

N e A A R N ~1 0 11—
“l\o 1 )2Vt 1= )2\ 14d o —1—i )7V 0 -1 —1—i —1+i
R A e e e AT (S AR e —i 0 1—i 1+
o 0 —i ) 2\ 1—¢ —1-4)'2\ 1—i —1+44i/) L 0 i —1+i 1+i

1—d 1—i
—1—i 143

( )}
()
()
( >}

DO | =

1
2

1
"2\ 11— 1—i

. 0 =1\ 1/ -1—i =144\ 1 [ -1—i 1+i 0 1\ 1( 14i 1—i
) 10 )72\ 1+i —1+i )72\ =140 =144 )\ =1 0)72\ —1—i 1—i
B 0 i\ 1(-1+i 143 1 =1+i 1—i 0 —i

) i 0)2\ —14i —1—4¢ )2\ —1—4 —1—5 )\ =i o )’

Proof. Direct calculation.

1—1 =1+

1
2\ 140 1+

N[ =

1—7 —1—1

1—i 1+1
Definition. Define J to be the real Casimir formed by taking the sum of the elements
in the conjugacy class of (123) and (132), namely

1({1+7 —14+1 1 1—7 1—1 1 1—4 141 1 14+7 144
J=: . A e . A Bt . T35 . T
2\ 14i 1—34 2 —1—7 1+ 2 —14+7 1+1 2\ =147 1—1i
1
2

1 147 1—1 1(1+7 —1—4 1({1—7 —1—1 1—1 —1+14
+- +- += +
2\ —1—i 1—4 2\ 1—-4¢ 1—4 2\ 1—i 144 147 141
and these are labelled as .J, ..., Jg respectively.

Lemma 4.3.4 The action of the Casimir J on the coset representatives of the tetra-
hedron may be represented graphically as in Figure 4.3. We see that according to the

prescription given in the previous section we generate the tetrahedral graph.

Proof. The action of each of the J;’s is recorded in Table 4.1. The elements of the
table correspond to cosets and elements of each coset, for example, the entry 1,2

refers to the second element of the first coset, as listed in Lemma 4.3.3. U
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Figure 4.3: The graph generated by the action of J acting on the space of left-cosets
that represent the tetrahedron.

T h T I L Js Js J s
12 16 25 2,6 35 3.6 45 46
42 36 35 43 22 13 12 26
22 46 12 36 45 23 32 13
32 26 42 13 12 46 25 33

=W N =

Table 4.1: Table showing where each summand of the Casimir K for O* maps the
representatives of each left-coset of the octahedron.

The irreducible representations of Z§ = Zg = (n) (n = exp[27i/6]) are all char-
acters and are indexed by an integer k£ between 0 and 5 — specifically 1 +— n*. The
character table of T™ is given in Appendix A.1.

We are now in a position to describe monopoles on the tetrahedral graph: denote

by n = explin/3]. Acting in the representation ind% (k), the Casimir J has matrix

nk + n5kz n4k + 775k 774k + ,’75]6 n4k + n5k
nk + an nk + 775k ,)74]'() + 775]9 nk + n2k
nk + 7721@ nk + ?72k 773]4: + 775k 7,’4k + n5k
nk + n?k 77416 + 775k: ,’7k + n2k nSk + n5k

JE =

Y

To get an adjacency matrix for the tetrahedral graph, first we have to subtract n®+n°"
from the diagonal. However, it might seem that this is still not the desired object,
since each non-zero entry of the matrix is not an element of U(1). However, each entry
has the same magnitude, dividing by this magnitude gives a well-defined element of
U(1) that turns out to be a twelfth root of unity. Denote the resulting matrix by A%.
For example, for k& = 1, we have that the magnitude of each non-zero entry is v/3.

Dividing by this and setting 6 = exp[27i/12] gives the matrix

0 6 ¢ 6
6 0 6 6
6 0> 0 6
6 0% 63 0

AL =

Y
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One computes that the flux through each face, when oriented anti-clockwise, as in
Figure 4.3, is given by 7/2 in the representation ind%(l). Similarly, one finds that
it is given by « for k£ = 2,4 and 37 /2 for k = 5. Computing the Chern number gives
1 for k = 1; 2 for k = 2,4; and 3 for £ = 5. There is an anomaly when k = 3, in
that the matrix K? is identically 0, owing to each entry being a sum of 2 = —1 and
0% = 1.

Remark. It is worth remarking that by considering the matrix whose entries are
obtained by raising the corresponding entry of Al to the power [, one obtains an
adjacency matrix, where the flux through each face is give by I7/2 mod 27 for [ =

0,1,2,3,0,1. This thus generates every magnetic charge on the tetrahedral graph.

Having done this, we now move to describe the spectrum of the adjacency matrices

corresponding to these monopoles.

Lemma 4.3.5 The representations of T™ induced from the characters of Z3 decom-

pose into irreducible representations of T* as
. T* ~
indz, (0) =U YV,

indz; (1) = 5@ 9,
indz: (2) =U' @V,
indz; (3) = 5" & 5",
indz; (4) = U" @V,
indz: (5) = S & 5"

Proof. Thisis a direct calculation done by using Frobenius reciprocity in conjunction

with the scalar product of characters. U

Theorem 4.3.6 Denote by A% the matriz obtained by normalising the matriz of K*,
such that every element belongs to U(1) (which is possible for all k # 3). The Chern
numbers of these magnetic fields is given by k. The spectrum of these operators is

given in Table 4.2. The corresponding magnetic Laplacian is formed by A = 31 — A%,

Proof. We have that A = 1J — I, A} = \%Jl — I, A2 =P+ 1, AL = JV+ 1

and A% = \%J ® — I. Comparing this with the Casimir table for the 7% in Appendix

A.1 and the decomposition of the representations ind%(k) into irreducibles given in

Lemma 4.3.5 gives the result. U
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Operator | Chern number | Adjacency Spectrum | Laplacian Spectrum
A 0 -3,13 0,43
A} 1 V32, [ V3] [3— V32,3 + V3]
A2 2 3,13 236
A4 2 3,-13 2.6
45 3 VBRVEE | 8= V3RB+ VP

94

Table 4.2: Chern numbers and spectrum for the operators A

Remark. The spectrum for the operator J? acting on S’ @ S” is —2%, as can be seen
from the Casimir table and Lemma 4.3.13, or by seeing that the matrix J? itself is
equal to —2I. However, one can generate a magnetic field on the graph with a flux
through each face of by taking the matrix A} and raising each matrix entry to the
third power. The spectrum of this matrix is again —\/52, \/32, as must be the case

since its corresponding Chern number is 3 and in view of Lemma 4.2.2.

4.3.2 Octahedron

The binary octahedral group is listed in Appendix A.1 and has order 48. The sta-
bilizer of a vertex for O C SO(3) was a cyclic group of order 4 and so lifts to the
binary cyclic group C}, which has order 8 — take for this group the cyclic group H

1—i 0
0 1+i)
Lemma 4.3.7 The set of vertices of the octahedron may be identified with the space
of cosets O*/H.

ooy Lfr-io =i 0\ 1 [-1=i 0

“\o 1) val o 1+i ) Vo i )TV2 0 —1+i)’ i )’
SO S D O Y U B 0 =i} 1 0 1—i 01\ 1 0 1+
o 1o J've\i1—-i o ‘N—-i 0o ) v2\-1—-i o )\ -10)V2\-14i o )’

generated by \/Li

—1—7 =141 i -1 -1 l —14+i —1—i L i =i
T+i —1+i ) v2\ 1 —1 )2\ 1—i -1-i)’ —i =i
—1+i 1—4 L i 1 1 i

—1—i —1—i ) vV2\ -1 =i )’ i
Proof. This is a direct calculation. O

Remark. Using the binary subgroup, instead of the abstract S; makes it easy to

see the structure of the octahedron. Projecting each matrix to the extended complex
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plane gives that Cosets 1,2,3,4,5,6 can be identified respectively with the points

00,0,1,7,—1, —i, since under the map

( a —I_9> i ( a —5) < expli0] 0 ) _ ( aexplif] —bexp[—if] )
b a b a 0 exp|[—ib)] bexp[if] a@exp[—ib]

the quantity a/b is invariant and gives a well-defined point of C U co. One may then

draw a graph by joining each point to the ‘closest’ four points.

Definition. Denote by K the Casimir is given by taking the sum of every element

in the conjugacy class of (1234) in O*, namely:
o 1 144+ 0 N 1 1 1 N 1 1—i 0 N
V20 1 V2 \ -1 1 V2 0 14
1 1 i 1 1 —i 1 1 -1
V2 \i 1 V2 \ —i 1 V2 1 1
and label these elements as K, ... Kg respectively.

Lemma 4.3.8 The action of the Casimir K acts on the space O*/Z} may be repre-
sented graphically as in Figure 4.4. We see that according to the prescription given

in the previous section we generate the octahedral graph using the Casimir K.

Figure 4.4: The graph generated by the action of K acting on the space of left-cosets
that represent the octahedron.

Proof. The action of the elements K; on the coset representatives, as defined in

Lemma 4.3.7, is given in Table 4.3.

The irreducible representations of Z; = Zs = (¢) ( ( = exp[2mi/8] ) are all
characters and are indexed by an integer k between 0 and 7 — specifically ¢ — ¢*.

The character table of O* is given in Appendix A.1.



CHAPTER 4. MAGNETIC FIELDS ON REGULAR GRAPHS 96

K1 K2 Kg K4 K5 K6
18 12 32 48 56 64
22 28 52 6,6 32 42
42 64 28 32 18 38
52 38 48 28 42 16
66 48 14 58 28 52
36 54 62 16 68 24

@OTH;OJM}—‘N

Table 4.3: Table showing where each summand of the Casimir K for O* maps the
representatives of each left-coset of the octahedron.

We can now describe monopoles on the octahedral graph: denote by ¢ = exp[in/4].

Acting in the representation ind% (k), the Casimir K has matrix

<3k + C5k 0 Ck C3k C5k C3k
0 CSk + C5k Ck Ck; Ck C5k
Kk _ C?k <7k C3k + CSk Ck 0 C3k
gSk C7k 0 gBk + C5k Ck 0
CS C7k 0 C?k CSk + C5k CSk
C5k CSk C5k 0 CSk C?)k + C5k

and so K* — (&3 + €)1, gives exactly the adjacency matrix for the octahedron in
the presence of a magnetic monopole.

Computing the flux through each face, when oriented anti-clockwise as in Figure
4.4, gives exactly km/4 and so the total flux is 8.k7/4 and so the Chern number
(as given in equation (4.5)) for the monopole corresponding to ind%(k‘) is exactly
k. Thus we have discovered the monopoles with all possible Chern numbers for the

octahedral graph. Now look to describe the spectrum of each of these.

Lemma 4.3.9 The representations of O* induced from the characters of Z; decom-

pose into irreducible representations of O* as

ind7; (0) = U V' & W,

ind7; (1) = S & X,
indz, (2) = VeV,
indg: (3) = X @ 9,

indg; (4) =U' & Ve W,
ind7; (5) & X & 5,
indz; (6) =V &V,

ind?; (7) = X & 5.
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Operator | Chern number | Adjacency Spectrum | Laplacian Spectrum
AY 0 4,03, —22 0,43, 6
A 1 2v2]*[-v2]* [4 —2v2,[4 + v2)*
A2 p 93, 93 23,63
A3 3 9y’ V2 42 41 2y2
A} 4 22.03,—4 22,43 8
A3 5 NV 42 41922
AS 6 23, 93 23,63
A 7 22" /2" [4— 2V2)2,[4 + V2]

Table 4.4: Chern numbers and spectrum for the operators A¥,.

Proof. This is a direct calculation done by using the Frobenius Reciprocity Theorem

2.3.2 in conjunction with the scalar product of characters. O

Theorem 4.3.10 We now have a complete description of monopoles on the octahe-
dral graph. Denote by A% = K* —(£38 4591 the adjacency matriz for the octahedral
graph with Chern number k, as above. The spectrum of these operators is given in

Table 4.4. The corresponding magnetic Laplacian is formed by A = 41 — A%

Proof. This result follows from comparing the Casimir table for O* described in
Appendix A.1 and the decomposition of the representations ind% (k) into irreducibles

given in Lemma 4.3.9. U

4.3.3 Cube

The binary octahedral group is the binary symmetry group of the cube, which is
listed in Appendix A.1 and has order 48. The stabilizer in O C SO(3) of a vertex
of the cube was a cyclic group of order 3 and so lifts to the binary cyclic group Z3,

which has order 6. Take as the identity coset the cyclic subgroup H generated by
L T+ =1+
P\ 1+i 1-40 )

Lemma 4.3.11 The space of left cosets of H in O* is given by

- 1o\ 1/ 1+i =144\ 1 [ =145 —1+i -1 0 1 -1—i 1—i 1 1—i 1—i
) 01/)'2\V14+:¢ 1—i J'2\ 14i —-1—i/) V0 —=1)'2\ —1—4¢ —1+4i ) '2\ —1—i 1+
. i 0 1 =140 —=1—¢\ 1{ -1—i —1—34 —i 0\ 1{ 1—i 1+i\ 1{ 1+44i 1+i
’ 0 —i )72\ 1—i —1—i)’2\ 1—i —14+i)°\V 0 i) 2\ =140 14i /) 2\ —=14i 1—i
5 0 =1\ 1/ -1—i =144i\ 1 [ -1—i 1+ 0 1\ 1( 1+4i 1—¢\ 1[1+i —1—4
) 10 )72\ 1+4i —1+i )72\ —14i =144 )\ =1 0)72\ —1—i 1—i/)’2\ 1—-i 1—i
L 0 i\ L[ =1+i 1+4i 1 =1+i 1—i 0 —i\ 1 [/ 1—i —=1—4¢\ 1[1—i =1+
) i 2\ 144 —1—i )72\ —1—i —1—i )\ =i 0 )72\ 1—i 144 )2\ 1+i 1+
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Proof. This is a direct calculation. [l

Lemma 4.3.12 The action of the Casimir K on the space of left cosets may be
represented graphically as in Figure 4.5. We see that according to the prescription

given in the previous section we generate the graph of the cube using the Casimir K.

Figure 4.5: The graph generated by the action of K acting on the space of left-cosets
that represent the cube.

Proof. The action of the elements of K on the coset representatives of the cube from

in Lemma 4.3.11 is given in Table 4.5. U

K, Ko Ks; K, K; Kg
51 56 64 65 85 86
61 76 51 75 52 66
71 86 81 52 72 53
81 66 74 82 65 7.3
21 35 1,1 26 3,6 12
14 22 21 43 13 42
44 45 31 36 23 22
31 12 41 13 46 32

CO 1O Ul W N

Table 4.5: Table showing where each summand of the Casimir K for O* maps the
representatives of each left-coset of the cube.

~Y

The irreducible representations of Z} = Zg = (1) (n = exp[2mi/6]) are all char-
acters and are indexed by an integer k£ between 0 and 5 — specifically n + n*. The

character table of O* is given in Appendix A.1.
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Therefore the matrix of the Casimir K acting in the representation ind?, (k) is

given by K*, where we denote by 1 = exp[27i /6]

0 0 0 0 1+ 775k nSk + ,'74k 0 n4k- + ,'75k
0 0 0 0 1+ nk 14 ok n4k + nSk 0

0 0 0 0 n* + n 0 L+nF 149k

ik 0 0 0 0 0 ,'74k + ,'75k ,'72k + an 1+ nk
L0t 14k gtk ok 0 0 0 0 0
k4P 14t 0 n* + n?* 0 0 0 0
0 nk + an 1+ ,'75k nsk + n4k 0 0 0 0
0 4 0 L+nk 14k 0 0 0 0

It might seem that this is not the desired object, since each non-zero entry of the
matrix is not an element of U(1). However, each entry has the same magnitude and
dividing by this magnitude gives a well-defined element of U(1) that turns out to be
a twelfth root of unity. For example, for k£ = 1, we have that the magnitude of each

non-zero entry is v/3. Dividing by this and setting 6 = exp[27i/12] gives the matrix

0o 0 0 0 0t 9 0 6
0O 0 0 0 6 6 ¢ o
O 0 0 0 6 0 6 6"
Al — o 0 0 0 0 ¢ 6 ¢ 7
6 6 ¢ 0 0 0 0 0
e 6 0 ¢ 0 0 0 0
0 6 0 0 0 0 0 0
¢ 0 6 6 0 0 0 0

One computes that the flux through each face, when oriented anti-clockwise, as in
Figure 4.5, is given by 7/3 in the representation ind%(l). Similarly, one finds that
it is given by kn/3 for k = 1,2,4,5,0. There is an anomaly when k = 3, in that
the matrix K? is identically 0, owing to each entry being a sum of #% = —1 and
0% = 1. Computing the Chern number of each of the monopoles corresponding to the
representations indcz)g (k) (k # 3) we find that the Chern number is exactly k.

It is worth remarking that by considering the matrix whose entries are obtained
by raising the corresponding entry of A}, to the power [, one obtains an adjacency
matrix, where the flux through each face is give by In/3 for [ = 0,1,2,3,4,5. This
thus generates every magnetic charge.

Having done this, we now move to describe the spectrum of the adjacency matrices

corresponding to these monopoles.
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Operator | Chern number | Adjacency spectrum | Laplacian spectrum
AS 0 3,13, —13, -3° 0,23,4%.6
Aje 1 V6?04 [=VE]* | [3—V6]*,34[3 + V]
A2 p 93 ()2, 23 13,32 53
A 4 2302, 23 13, 32,53
A3 5 [V6]2,04[—V6]2 | [3 —v6]%,3%[3 + V6]

Table 4.6: Chern numbers and spectrum for the operators A%

Lemma 4.3.13 The representations of O* induced from the characters of Z; decom-

pose into irreducible representations of O* as
indz; () =UoU VoV,
indz; (1) = S® 5" @ X,
indz, (2) = VoV oW,
ind7: (3) = X & X,
indz, () =VoV oW,

ind7: (5) = S& 5 & X.

Proof. Thisis a direct calculation done by using Frobenius reciprocity in conjunction

with the scalar product of characters. Il

Theorem 4.3.14 Denote by A% the matriz obtained by normalising the matriz of
K*, such that every element belongs to U(1) (which is possible for k # 3). The Chern
numbers of each of these magnetic fields (as defined in equation (4.5)) is given by k.
The corresponding magnetic Laplacian is formed by A = 31 — AX.. The spectrum of

these operators is given in Table 4.0.

Proof. We have that the corresponding adjacency operators are given by A% = %K H

AL = \%Kl, A2 = K? A} = K*and A3, = \%K? Comparing this with the Casimir
table in Appendix A.1 and the decomposition of the representations indgg (k) into

irreducibles given in Lemma 4.3.13 gives the result. U

Remark. The spectrum for the operator K? is identically zero, as can be seen from
the Casimir table and Lemma 4.3.13, or by seeing that the matrix K? itself is iden-
tically zero. However, one can generate a magnetic field on the graph with a flux
through each face of m by taking the matrix AL and raising each matrix entry to the

third power.
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4.3.4 Icosahedron

101

The binary icosahedral group is listed in Appendix A.1 and has order 120. The

stabilizer of a vertex as a subgroup of [ is a cyclic group of order 5 and so this lifts

to the binary cyclic group CZ, which has order 10.

The stabilizing subgroup is H = Z; = Zyo. In the following let ¢ = exp[2mi/5]:

moreover, in order not to overwhelm the reader with data only the first half of the

elements for cosets 3-12 are displayed. The second half are got by multiplying each

element from the first half by —I. To keep the elements readable, the following

6—62

1—¢3

notation is used for the elements in cosets 3—12:
1

(00 ) =l

Lemma 4.3.15 The space of left cosets of H in I* is given by

1—¢€2

63—64

0-2 1-2
3—4 0-3

)

Lot -0 € 0 -t 0 e 0
' 01/)'\Vo =)' \oe )\ o —/) VLo &)
-1 0 e 0 —€ 0 et 0 - 0
0 1) \o e&)' Vo =)' Vo )\ 0o =&
5. 0 1 0 —¢ 0 € 0 —e 0 €
1 0)°\e 0 )\ —o0) Vet 0 )\ =2 0]
0 —1 0 €2 0 —¢é 0 e 0 —é
1 0 ) \=0/) ' \e 0o ) \-e0)'\e& 0
- 4—1 2-3 4-2 0—4 0-2 1-2 0-3 4-3 1-3 0-1
o 2-3 1-4)'\1-01-3/)'\3-40-3)'\2-10-2)"\4—-04-2)""
e 2-4 0—1 2-0 3-2 3-0 4—0 3-1 2-1 4—1 3-4
“M\a-03-1)\3-23-0/)'\o-12-0)'\4-32-4)"\1-21-4)""
- 0-2 3—4 0-3 1-0 1-3 2-3 1—4 0—4 24 1-2
o 1-2 0-3/)'\0-40-2)'\2-34-2)"\1-04-1)"\3-43-1)"""
6 3-0 1-2 3-1 4-3 4—1 0—1 4-2 3-2 0-2 4-0
o 3—-42-0)'\2-12-4)"\4-01-4)'\3-21-3)"\o0o-10-3)""
. 1-3 4-0 1—4 2-1 24 3-4 2-0 1-0 3-0 2-3
o 0—-1 4-2 )\ 4-34-1)'\1-23-1)'\o—-43-0)'\2-32-0)"""
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. 3-2 4-1 0—1 3—1 4-3 3-0 1-2 2-0 0—4 2—4
4-12-3)'\4-20-4)'\o-21-2)"\o0-34-3)'\1-30-1)"""

0. 0—4 1-3 2-3 0-3 1-0 0—2 34 4-2 2.1 4-1
B 2-4 0-1 2-03-2/)"\3-04-0/)"\3-12-1)"\4—-13-4/)"""

o 2-1 3-0 4—0 2-0 3-2 2-4 0—1 1—4 4-3 1-3
o 0-23-4)'\o=31-0/)'\1-32-3)"\1-40-4)"\2-41-2])""

e 4-3 0-2 1-2 4-29 0—4 4-1 2-3 3-1 1-0 3-0
o 3-0 1-2/)'\'3-14-3)'\4a-10-1)"\4-23-2)"\0=-24-0)"""

e 1-0 2—4 3—4 1—4 2-1 1-3 4-0 0-—3 3-2 0-2
’ 1-3 4-0) '\ 1-4 2-1)"\4-23-4)'\2-01-0/)'\3-02-3)""
Proof. This is a straightforward calculation. O

Remark. Using the same projection as for the octahedron gives that the cosets

1,...,12 may be identified with the following points of the extended complex plane

112 3 4

(0.9]

0

H(-1—5)~—1.6

S +et~—-05-—1.5

5

6

7

8

1+ e*~ 1.3 —.095

1+e~1.3+4+0.95

e +e~—-05+1.5

L(-1+V5)~06

9 10 11 12

02—0.6i | =14 5=~ —0.5—0.36i | 7= ~ —0.5+0.36i | a7 ~ 0.2+ 0.6

I ~
Itete ™

Again, one may then draw a graph between each point and the closest five points

in order to obtain the graph of the icosahedron.

Definition. There are four Casimirs made up of elements of order 5 which we label
M, N,—M and —N. Recalling the notation used in the description of the cosets, the

Casimir M is given by the sum of each element in the conjugacy class of (12345),

-3 0 -2 0 0—-2 1-2 0—-3 4—3
M = + + + +
0 —é 0 —é 3—4 0-3 2—-1 0-—2
0—2 2—3 0—3 0—14 0—2 3—14 0—3 1-0
+ + +
2-3 0-3 1—-0 0—2 1-2 0-3 0—4 0-—2
0—2 4—-0 0—3 2—1 0—2 0—1 0—3 3—-2
+ + +
0—1 0-3 4—-3 0—-2 4—-0 0-3 3—2 0—2

namely:
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and the Casimir N is given by the sum of each element in the conjugacy class of

(12354), namely:

-t 0 — 0 1—-0 1-—3 4—-0 4—2

N = + + + +
0 —¢ 0 —¢ 2—4 4-0 3—1 1-0
1—-0 0—2 4—0 3—-1 4—-0 2—-0 1—-0 4—1

+ + +
3—0 4—0 4—2 1-0 0—3 1-0 4—1 4-0
1-0 3—-0 4—-0 1—4 1-0 2—4 4—-0 0-—3

+ + + .
0—2 4—-0 1—4 1-0 1-3 4—0 2-0 1-0

Label the summands as My, ..., Mys and Ny, ..., N5 respectively. The Casimirs —M
and —N are given exactly by —1 x M and —1 x N.

Now we move to describe the action of these elements on the coset representatives

described in Lemma 4.3.15.

Lemma 4.3.16 The action of the Casimir M on I* |75, may be represented graphi-
cally as in Figure 4.6. We see that according to the prescription given in the previous

section we generate the icosahedral graph using the Casimir M.

)

o

- —

Figure 4.6: The graph generated by the action of M acting on the space of left-cosets
that represent the icosahedron.

Proof. The action of the M; on the coset representatives is given in Table 4.7. [

Lemma 4.3.17 The action of the Casimir N on I*/Z3, may be represented graphi-
cally as in Figure 4.7. We see that according to the prescription given in the previous

section we generate the icosahedral graph using the Casimir N.

Proof. The action of the N; on the coset representatives is given in Table 4.8.  [J
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Ml M2 M3 M4 M5 MG M7 M8 M9 MlO Mll M12
1,10 12 33 34 47 48 51 52 66 65 7.9 7,10
2,2 210 89 88 125 124 11,1 11,10 10,6 10,7 93 9,2
76 46 118 104 3,10 103 18 45 19 77 119 3.2
36 56 109 42 108 94 410 93 55 14 37 15
46 66 47 11 99 52 98 84 83 510 1,10 65
56 7.6 16 75 57 17 89 62 124 88 6,10 123
66 36 710 11,3 12 35 67 13 72 129 128 114
96 12,6 59 63 82 64 24 127 29 95 58 8,10
106 86 92 54 210 87 105 29 910 48 49 53
10(11,6 96 26 97 115 25 38 10,10 92 39 102 44
11]12,6 101 125 21 78 11,10 79 33 39 112 22 107
12| 86 11,1 68 1210 69 73 122 74 117 28 85 27

QDOO\]@O“»PCO[\DHi

Table 4.7: Table showing where each summand of the Casimir M for I* maps the
representatives of each left-coset of the icosahedron.

flaval
~

7 ’ N
2

Y,

Figure 4.7: The graph generated by the action of N acting on the space of left-cosets
that represent the icosahedron.

Remark. Note that the Casimirs —M and —N are given by exactly —1 x M and
—1 x N: therefore their action on the coset representatives is given by adding 5 onto
each of the second numbers in each entry of the table and taking the result mod 10.

Therefore —M generates the same graph as M and —N as N.

The irreducible representations of Z = Z;o = (£), where & = exp[27i/10] are all
characters and are indexed by an integer k& between 0 and 9 — specifically & — &F.
The character table of I* is given in Appendix A.1.

In the following, let £ = exp[27i/10]. The Casimir M represented in the represen-
tation indgg (k) is denoted by M* and the Casimir N represented in the representation
indgg(k;) is denoted by N*. The following notation is introduced: the matrix entry
ak + bk means that that entry is €% + €% — with 0k + ak corresponding to 1 + £,

However, if 0 appears on its own then the corresponding entry is 0 of the matrix.
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NI N, N, N; N, N5 Ny N, Ny No N0 N1 N2
118 14 87 810 96 93 109 102 118 115 121 124
2024 28 310 37 71 74 68 65 59 52 45 43
3|56 66 1210 92 23 53 34 95 38 127 25 69
4166 76 63 26 85 44 117 48 65 29 11,10 8.2
5076 36 54 125 58 10,7 28 39 122 10,10 7,3 210
6|36 46 97 68 49 27 910 112 24 33 64 115
7146 56 21 59 102 810 43 28 105 74 87 78
8|11,6 106 47 75 15 11,9 88 72 84 410 1,2 103
9|126 116 1,6 11,3 65 37 129 19 62 98 310 94
10| 86 126 7,0 104 123 1,10 7.7 55 13 89 108 52
11|96 86 11,8 42 114 6,10 14 83 45 67 99 17
121106 96 109 1,1 32 128 510 124 93 18 57 35

Table 4.8: Table showing where each summand of the Casimir N for [* maps the
representatives of each left-coset of the icosahedron.

This notation is necessary to help make the matrix less cumbersome, by crystallising

the important data that it contains. With this in mind, the matrix of the Casimir

M acting in the representation ind, (k) is given by

k+9k
0

7k + 8k

3k + 4k

0k + 9k

5k + 6k

k+2k
0

M*

o o o O

and the

3k 4 Tk

0

0

0

0

0

0
k+ 4k
5k + 8k
2k + 9k
3k + 6k
Ok + Tk

Nk: —

0
k4 9k

0
0
0
0

0
2k + 3k
6k + 8k
4k + 5k
0k + k
6k + Tk

0
3k + Tk
k + 4k
5k + 8k
2k + 9k
3k + 6k
0k + 7k

2k + 3k
0

k+ 9k

5k + 6k

0
6k + 9k
3k + Tk
0
5k + 8k
2k + 5k
0
0
6k + 9k
0
0
k + 4k

6k + Tk
0
4k + 5k
k+ 9k
5k + 6k
0
0
0
Tk + 8k
2k + 3k
0
0

0
2k + 5k
0
3k + Tk
0
5k + 8k
2k + 5k
6k + 9k
0
0
k4 4k
0

4k + 5k
0
0
4k + 5k
k+ 9k
5k + 6k
0
Tk + 8k
2k + 3k
0
0
0

0
k+ 8k
2k + 5k

0
3k + Tk

0
5k + 8k

0

0
k + 4k

0
6k + 9k

8k + 9k
0
0
0
4k + 5k
k4 9k
5k + 6k
2k + 3k
0
0
0
Tk + 8k

0
4k + Tk
5k + 8k
2k + 5k

0
3k + Tk

0

0
k+ 4k

0
6k + 9k

0

0 0

0 Tk + 8k
5k + 6k 0

0 0

0 2k + 3k
4k + 5k Tk + 8k
k4 9k 0

0 k+9k

0 5k + 6k

0 0
7k + 8k 0

2k + 3k 4k + 5k

0 6k + 9k
0k + 3k 0

0 0
5k +8k k+4k
2k + 5k 0

0 0
3k + Tk 6k + 9k
k+4k 3k+ Tk

0 0
6k + 9k 5k + 8k

0 2k + 5k

0 0

0 0
k+ 2k 5k + 6k

0 2k + 3k
2k 3k Tk + 8k
Tk + 8k 0

0 0

0 0
4k + 5k 0
k+9k 4k + 5k
5k 4+ 6k k+ 9k

0 5k + 6k

0 0

2k +5k k4 8k

0 0
k4 4k 0

0 0

0 6k + 9k
6k + 9k 0

0 k+ 4k

0 2k + 5k
3k + Tk 0

0 3k + Tk
5k + 8k 0
2k + bk 5k + 8k

0 0
0k + 9k 3k + 4k
Tk + 8k 0

0 0

0 0

0 2k + 3k
2k + 3k Tk + 8k

0 5k + 6k

0 0
4k + 5k 0
k+9k 4k + 5k
5k 4+ 6k  k+ 9k

matrix of the Casimir N acting in the representation indgg(k;) is given by

4k + 7k Ok + 3k

0 0

0 6k + 9k
6k + 9k 0

0 k+ 4k
k+ 4k 0

0 0
5k + 8k 0
2k + 5k 5k + 8k

0 2k + 5k
3k + Tk 0

0 3k + Tk

It might appear as though these matrices are not of the right form, i.e. having entries

that do not belong to U(1).

Firstly, notice that for each k£ one may subtract off a
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constant multiple of the identity matrix to leave a matrix with no non-zero diagonal
elements. Having done this, notice that for each fixed k each entry of one of the
matrices has the same magnitude. (This can be seen by noticing that each entry
is the sum of two tenth roots of unity and, whilst these may change, the distance
between them does not, i.e. one may be obtained from the other by multiplying
by £ a fixed number of times.) One can therefore divide by this magnitude and we
are left with each non-zero element being of the form 7! = exp[2l/7i/20], for some
[=0,1,...,19.

For example, consider k = 1. Each element on the diagonal of matrix N! is equal
to & + &7, Subtracting this leaves us with a matrix where each non-zero entry is
equal to /2 + 2 cos (3?“) times a twentieth root of unity. Dividing by this magnitude,

gives the matrix

0 0O 0 0 0 0 7% 77 719 711 43
0 0 7% 77 79 7 23 0 0 0
0o 7° 0o 77 713 0o 7° T15
0 713 0o 0 77 M £ 0 50
o - 7% 0 0 0 77 0 0 7% 0 7P
AL — o 7 7 8 0 0 0 0 7% 0 7 0
o 717 0 7 M 0 o0 ™ 0 7 0
™ 0 0 ™ 0 0 7 0 30
™Moo 7 0 0 7 0 0 0o 77 7
r 0 0 0 7 0 B 0 0 0 77
0 0 7 0 7 M0 0 0
0 S 0 7 0 0 0 7 M 0 0

Computing the flux through each face leads to the answer 27/20, which gives that
the total flux is 27 and so the Chern number (as defined in equation (4.5)) is 1.
Similarly, one can compute the flux through each face in the representations indgé (1),
where 2,3,4,6,7,8,9,0. This leads to the Chern numbers 2, 3,4,16,17,18,19,0. If
[ = 5 then the matrix M?® degnerates to —2I and it is not possible to draw a graph
from this matrix.

One could also consider the Casimir —M in each representation, which is obtained
by multiplying the matrix M* by —I. This has the effect of multiplying every entry
by £ = —1 and so the corresponding 7’s are multiplied by 7'°. Since each face is a
triangle, this has the effect of changing the flux through each face by the addition of
7 (when considered mod 27). This means that in the representations indgg(l) for

1=1,2,3,4,6,7,8,9,0 the corresponding Chern numbers are 11,12,13,14,6,7,8,9,0.
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Again there is no way to make sense of [ = 5.

This method produces natural magnetic potentials on the icosahedral graph for
all charges between 0 and 19 except 5 and 15. The spectrum of these graphs may
be read off from the decomposition of the induced representations and the Casimir
table for I*.

However, it is worth remarking that one can generate all 20 magnetic charges by
raising each element inside the matrix A}, to the power I, where [ = 0,1,...,19.
Because this is a peculiar operation, it is worth reinforcing that this is emphatically
different from considering the matrix M in the representation indgg(l). It is also

different from considering the matrix M multiplied by itself [ times.

Lemma 4.3.18 The representations of I* induced from the characters of Z% decom-

pose into irreducible representations of I* as
indz () =USY oW Z,
indz.(1) = Se Ve X,
indz,(2) =Y oW oV,
indz.(3) = Vo Xas,
indz.(4) =WeV'aeZ,
ind: (5) = X ® X,
indz.(6) =W o V' ® Z,
indz. (1) =VeaXos
indz(8) =Y aWaV/,
indz(9) = Sa Ve X.

Proof. Thisis a direct calculation done by using Frobenius reciprocity in conjunction

with the scalar product of characters. O

Theorem 4.3.19 The adjacency operators T' that correspond to distinct magnetic
fields for the icosahedron are listed in Tables 4.9 and 4.10. The spectrum is obtained
by shifting the given spectrum and scalmg it by the constants a = /1 (5 + \/_)

B=1/2B+V5),v=4/3(5-V5),0=4/3-VE),A=31+V5) and p =
L=1+5).

The corresponding magnetic Laplacian is formed by A =5 —T.

The Chern numbers and spectrum are given in the adjacent columns.
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Operator | Chern number Spectrum
A, 0 5.5, —V5, —1°
Al + A 1 [2(1 + V/5)]%,[-3]%,[-2]°
BAY + 2 [2(1+V/5)]%,[0]%,[3]*
YA — p 3 [—3]%,[—2]%,12(1 — V5]
0AY — A 4 [01°,[3]%,[2(1 — V5)]?
SAS, — ) 16 [0°,[3]4,12(1 — v/5))?
YAy — p 17 [—3]%,[—2]%,12(1 — V5]
BAY + 1 18 [2(1 + v/5))3,[0]°,[3]*
Ay, + A 19 2(1 +v/5)]%,[-3]%,[-2]°
i 10 545 /515
—aAl, — )\ 11 [—2(1 4 v/5)]2,[3]%,[2]°
—BAY —p 12 [—2(1 + V/5))%,[0)°,[=3]*
—y A%+ p 13 [3]4,12]°,[—2(1 — V/5]?
—6A%, + A 14 [0]°,[=3]%,[—2(1 — V/53)]?
—0AG, + A 6 [0]°,[—3]%,[-2(1 — v5)]?
—y Ay +p 7 [3]4,[2]%,[—2(1 — V/5]?
—BAY — 8 [—2(1 +v/5)]%,[0]°,[-3]*
—aA, — ) 9 [—2(1 4 v/5)]2,[3]%,[2]°

Table 4.9: Chern numbers and spectrum for the operators M and —M

Operator | Chern number Spectrum
A% 0 55, -5, —1°
YAy — 3 [—3]%,[—2]5,[2(1 — V5]
§A3 — A 16 [0]°,[3]%,[2(1 — V/5)]?
A 4+ A 19 [2(1 +v/5)]%,[-3]%,[-2]°
BAN + 2 [2(1 + V5))3,[0]°,[3]*
BAR + p 18 [2(1 4 v/5)1,[0)°,[3]*
QAL+ A 1 [2(1 +/5)]%,[-3]%,[-2]°
OAR — A 4 [01°,[3]4,[2(1 — V/5))?
VAN — p 17 [—3]%,[—2]%,12(1 — V5]
s 10 545 —\/5 15
—y AN+ p 13 [3]4,[2]%,[—2(1 — V/5]?
—0A% + A 6 [0]°,[—3]%,[—2(1 — v5)]?
—aA3 — A 9 [—2(1 +/5)]2,[3]%,[2]°
—BAN — p 12 —2(1+ V/5)]%,[0]°,[-3]*
—BAY — p 8 —2(1+ v5)],[0]%,[-3]*
—a Al — A 11 [—2(1 4 v/5)]2,[3]%,[2]°
—6 A% + A 14 [0]°,[=3]%,[-2(1 — V/5)]?
—YAY +p 7 [3]4,[2]%,[—2(1 — V/5]?

Table 4.10: Chern numbers and spectrum for the operators N and —N
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4.3.5 Dodecahedron

It is curious that the construction given in the previous section does not work for the

dodecahedral graph, shown in Figure 4.8.

Figure 4.8: The dodecahedral graph.

Theorem 4.3.20 The dodecahedral graph cannot be constructed using the method

described in the previous section.

Proof. A priori, we know that the spectrum of adjacency matrix for the dodecahedral
graph is given by —\/53, —24.0%,1°, \/53, 3!, see e.g. [50]. The stabilizer of a vertex
of the dodechadron in SO(3) is a cyclic group of order 3, therefore in SU(2) it is a
cyclic group H of order 6. Computing the decomposition of ind}; (1) into irreducible

representations of I* we find that
ind;(1)=2FD)z2UsVeVeWaeYaoZ (4.20)

as can be easily checked using the Frobenius Reciprocity Theorem 2.3.2.

The crucial point being that the representation V' (which has dimension 4) oc-
curs twice and so if there were an element in the centre of the group algebra of As;
that generated the dodecahedral graph then it would act on V' as multiplication by
a constant and so one of the eigenvalues of the dodecahedral graph would have mul-
tiplicity 8. However, the eigenvalues -2 and 0 each have multiplicity 4, whilst they
must both come from a copy of V' — as can be seen by relating the multiplicities of
each eigenvalue to each representation occuring in the decomposition (4.20).

This observation points to the fact that there is no element in Z(C[A5]) that
generates the dodecahedral graph. The fact that there was a corresponding element
for each of the other Platonic solids can perhaps be viewed as a coincidence relating
to the lack of complexity of the solid and its symmetry group. Moreover, if there is
an element that generates the dodecahedral graph it will not be invariant under the
action of As. O



Chapter 5
Conclusion

Let us summarise here the main results of the thesis.

In Chapter 2 we considered the geometric quantization of the classical phase space
of an electron orbiting a Dirac magnetic monopole at fixed distance. This phase space
was identified as a coadjoint orbit of the Euclidean group F(3) 2 SO(3) x R? in [43]
and we show that some of the considerations that they make are natural on the
quantum level. The main insight is that the space that geometric quantization iden-
tifies as the ‘Quantum Hilbert Space’ may be considered as an induced representation
of SO(3), or its universal cover SU(2). The solution of the corresponding spectral

problem is essentially a corollary of this fact.

In Chapter Three we looked at a broad class of examples that are generalizations of
the case considered by Dirac, namely the classical phase space is given by a ‘Magnetic
Cotangent Bundle’ (T*M,dp A dq + 7*(w)), where the ‘magnetic term’ 7*(w) is the
pullback of a closed 2-form on M to T*M. Examples with a particularly rich geometry
were considered in [4], [5] and [14] with M being a coadjoint orbit of a compact Lie
group G equipped with the normal metric. We study the geometric quantization
of the magnetic geodesic flow on such spaces: the ‘quantum Hilbert space’ may be
identified with an induced representation of G and the quantum Hamiltonian turns
out to be the Bochner Laplacian. However, a direct description of the spectrum of
the corresponding Schrodinger equation is only possible in general in terms of the

Kostant Branching Formula, which is highly non-trivial to compute.

Lastly, in Chapter 4 we consider a discretization of Chapters 2 and 3, namely we
address the question of whether if the group G is allowed to be finite, representations

of G that are induced from a character of a subgroup H can still be interpreted in
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terms of magnetic monopoles. In trying to make sense of this question we give a
construction of magnetic monopoles on regular graphs, which shares many of the
characteristics of monopoles considered in the continuous case. The spectral problem
is essentially trivial to solve and this is demonstrated specifically for graphs of the

Platonic solids, where in most cases the construction works effectively.
There are several further directions in which it would be interesting to travel.

As is well-known, the story of electromagnetism may be phrased geometrically in
terms of connections on U(1)-bundles. Physicists are also interested in gauge groups
other than U(1) and it would be desirable to try and describe analogues of monopoles

for these groups for both coadjoint orbits and graphs.

On the level of graphs there are lots of questions that need addressing. Initially,
it would be nice to have interesting examples of Dirac magnetic monopoles on graphs
that are not just approximations of S?, as the Platonic polyhedra are. It would
also be satisfying to ‘complete the set’ and be able to see magnetic monopoles on the
dodecahedral graph; however, if possible, this is likely to require a more sophisticated
analysis. On a more general level, it is clear that in the construction given we can
consider G and H to be discrete groups and not just finite. If H is a cofinite subgroup
of G then the construction carries over without issue, but if H does not have finite
index in G then there are an infinite number of vertices on the corresponding graph:
we would have to use techniques of analysis to make sensible statements. First
examples of such graphs that it would be interesting to investigate is for the square
and hexagonal lattices on R?: then the constant flux through each face would make

this problem a discrete analogue of the Landau problem on the plane.

In Chapter Four we gave a construction of a graph I' together with a magnetic
field from the data of a group G, a subgroup H and a good Casimir element K. It is
intriguing to consider this as a discrete analogue of a coadjoint orbit with a magnetic
form and the normal metric, with the orbit being given by the space X = G/H, the
magnetic field being given by a character of H and the normal metric being given by
K. One could consider the general inverse problem, given a graph I' and a magnetic
field together with a transitive action of a group GG on the vertices and edges of T,
that preserves the flux through each cycle, can this be realised by our construction?
It is tempting to think of this in terms of a discrete analogue of the theorem that

realises homogeneous symplectic G-manifolds as coadjoint orbits of G.
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Appendix

A.1 Binary symmetry groups

The purpose of this section is to compute the Character Tables and Casimir Tables
of the binary subgroups of SU(2,C). These are the preimages of the finite subgroups
of SO(3,R) under the well-known double covering.

The orientation-preserving symmetry group 7' of the tetrahedron is given ab-
stractly as the alternating group A4, this can be seen by noting that any of the four
vertices of the tetrahedron may be rotated into any other. The character table for

Ay is given in Table A.1 and is taken from [17].

12 11 4 4 3
T=A, |1 (123) (132) (12)(34)
U1l 1 1 1
Ull w w? 1
U1 w? w 1
Vi3 0 0 -1

Table A.1: The character table of Ay, where w = expl[i%].

The orientation preserving symmetry group O of the octahedron, or equivalently
the cube, can be abstractly identified with the symmetric group S;. This can be seen
by noting that there are four long diagonals on the cube and these may be permuted
freely amongst themselves. The character table for Sy is given in Table A.2.

The orientation-preserving symmetry group I of the icosahedron, or equivalently
the dodecahedron, can be abstractly identified with the alternating group As. This
can be seen by noting that there are five inscribed tetrahedra that can be switched
freely by any even permutation. The character table of As is given in Table A.3.

The double covering is most easily explained as follows. The Lie group SU(2)
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241 6 8 6 3
O0=5, |1 (12) (123) (1234) (12)(34)
Uil 1 1 1 1
Ulro-a1 1 -1 1
Vi3 1 0 -1 -1
Vi3 -1 0 1 -1
w2 0 -1 0 2

Table A.2: The character table of Sy.

601 20 15 12 12
1= A; |1 (123) (12)(34) (12345) (21345)
Uit 1 1 1 1
v9ia 1 0 -1 -1
W5 -1 1 0 0
Y3 0 -1 1+2f I—Qf
713 0 -1 1—25 1+25

Table A.3: The character table of As.

is given by {A € GL(2,C) |ATA = I, det(A) = 1} and its Lie algebra is given by
sup; = {X € gl(2,C) | X1+ X =0, tr(X)=1}.
The adjoint action lets SU(2) act on suy by conjugation. The Lie algebra is a

three-dimensional real vector space and any element is of the form

iy
¥ x yt+iz |
—y+i1z -z

One can define a Euclidean inner-product by | X|? = — det(X) = 22 + y? + 2z2. There-
fore, su, is also acted on by SO(3) and so there is a surjective group homomorphism
7 :SU(2) — SO(3) with kernel {41}, which is exactly the centre of SU(2).

The binary subgroups G* of SU(2) are those finite subgroups of SU(2) that are
the preimage of a finite subgroup G of SO(3) under 7. This might sound like some-
thing of a triviality, but in fact the binary symmetry groups can be viewed as more
fundamental than the ordinary symmetry groups. This is down to the famous McKay
correspondence [40], in which the binary symmetry groups can be used to ‘derive’ the
simple Lie algebras — this has led to deep work in algebraic geometry, see [47] for a
survey. (Note that the only finite subgroups of SU(2) that are not the preimage of a
G C SO(3) are the cyclic subgroups of odd order. )

Before deducing the character tables of the binary groups some remarks about the
conjugacy classes of the binary groups are needed. If C' C G* is a conjugacy class,
then it is clear that 7(C') C G is also a conjugacy class. Moreover, the preimage of a

conjugacy class C' C (G is a union of conjugacy classes in G*: specifically, if C' is made
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up of elements of order 2 then 7=1(C') is a single conjugacy class and if C' is made up
of elements of order greater than 2 then 7—!(C) is the union of two conjugacy classes.

In Chapter 1 of his masterpiece [28] Klein explicitly explains how a rotation X €
SO(3) lifts to two elements of SU(2). Specifically, if X is a rotation by an angle 6

about a vector (z,y, z) then
t+iw  v+aw
T (X) = )
—v+w t—u

where t = cos(0/2) or cos(6/2+) and (u, v, w) = sin(0/2)(—z, —y, —z) or (u,v,w) =
sin(0/2 + 7)(—2, -y, —x)
The binary cyclic group C7 is the cyclic group of order 2n given by

C*:{(eXp[ikﬂ/n] 0 ) kzOl...Qn—l}
" 0 exp|—ikm/n] ’ Y

The binary dihedral group D} is the group with 4n elements given by

D — { ( explikm/n] 0 ) ( 0 iexp|—ikm/n] ) }
" 0 exp|[—ikr/n] |’ iexplikm/n] 0 ’

where again, £ =0,1,...,2n — 1.

The binary tetrahedral group 7™ is the group of 24 elements given by

T*:{<z"f 0 ) (0 —(—i)k> 1( FEL i) i) )
0 =it JINE 0 )T ()M ()M EL D) )

1 ( —(=0)* (1 +1) — (=) (EL ) ) with & =0,1,2 3}

2 (1 +14) PF(=1+7)

The binary octahedral group O* is the group of 48 elements containing 7™ as

a subgroup and obtained by extending 7™ by multiplying each element of 7™ by

. 147 0
V01—
The binary icosahedral group is the group of 120 elements of the following form,
I +e3 () 0 Fe +1 (€t — )3t (€2 — 3)e2ntdv
0 +e )7\ £ 0 V5 (€2 — )3t (¢ — )2t ’
11 [ (¢ — @)t (eh — ¢)ent 01934
E (€2 — )Mt (e — )ty p V=1, 1,2, 9

As an example of how to compute the character tables, the character table of T™

will be derived here. Firstly, the character table of T = S* is extended to include
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the extra conjugacy classes of the binary group, leading to Table A.4. If a conjugacy
class in T’ lifts to two separate classes in 7™, which are demarcated by a — sign for the
one that only exists in 7. Obviously, acting on representations of T', both conjugacy

classes have the same character. This leads to Table A 4.

1 1 12 8 8 6 6

I 1 (123) —(123) (132) —(132) (12)(34)
U |1 1 1 1 1 1 1
U1 1 w w w? w? 1
urf1r 1 w? w? w w 1
Vi3 3 0 0 0 0 —1

Table A.4: Character table of S* = T, extended to include the binary classes.

However, the lifting to SU(2) has furnished the group with a new representation
— namely the restriction S of the standard representation of SU(2) on C? to the
binary group. One easily computes the characters of the conjugacy classes on S to
be as in Table A.5.

1 1 12 8 8 6 6
I —I (123) —(123) (132) —(132) (12)(34)
S22 -1 1 1 1 0

Table A.5: Characters of T* acting on S.

The remaining irreducible representations are given by S’ = S ® U’ and S” =
S ® U". This gives the full character table of T* to be as in Table A.6.

1 1 4 4 4 4 6
T 1 -1 (123) —(123) (132) —(132) (12)(34)
U |1 1 1 1 1 1 1
ul1r 1 w w w? w? 1
url1r 1 w? w? w w 1
S |12 -2 -1 1 -1 1 0
S22 -2 @ —w w —w? w? 0
STl2 -2 —w? w? D, w 0
Vi3 3 0 0 0 0 —1

Table A.6: Character table of the binary tetrahedral group.

The character tables of the other binary groups may be constructed similarly,
by considering the tensor product of S with existing irreducible representations and
decomposing this product into irreducibles.

Using these character tables, we can now compute the Casimir tables for these
groups. The Casimir table for T is given in Table A.9; for O* in Table A.10; and for
I* in Table A.11.
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1 1 12 8 8 6 6 6
O || T —I (12) (123) —(123) (1234) —(1234) (12)(34)
Ullt 1 1 1 1 1 1 1
vl o1 1 1 1 -1 1
VI3 3 1 0 0 -1 -1 -1
Vi3 3 -1 0 0 1 1 -1
w2 2 0 -1 -1 0 0 2
S22 -2 0 -1 1 V2 -2 0
S 12 -2 0 -1 1 —V/2 V2 0
X4 -4 0 1 -1 0 0 0

Table A.7: Character table of the binary octahedral group.

I 1T 20 20 30 12 12 12 12
1 —1 (123) -(123) (12)(34) (12345) —(12345) (12354) —(12354)
Uit 11 1 1 1 1 1 I
V4 4 1 1 0 -1 -1 1 -1
wis 5 1 1 0 0 0 0
Y |3 3 0 0 -1 L=t =k it L=t
Z |3 3 0 0 -1 Y5 s s L
Sl2 -2 -1 1 0 e L5
sl2 2 -1 1 0 Y5 s LYs L
viif4 4 1 4 0 1 1 1 -1
X6 6 0 0 0 -1 1 1 1

Table A.8: Character table of the binary icosahedral group.

1 1 4 4 4 4 6
T | 1 -1 (123) —(123) (132) —(132) (12)(34)
1 U |1 1 1 1 1 1 1
1 U |1 1 4w dw 4w? 4w? 6
1 U1 1 4w? 4w? 4w 4w 6
2 S 1 -1 -2 2 -2 2 0
2 S1 -1 —2w 2w —2w?  2w? 0
2 971 -1 —2uw? 2w? —2w 2w 0
3 V|1 1 0 0 0 0 —2

Table A.9: Casimir table of the binary tetrahedral group.
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1 1 12 8 8 6 6 6
O | I —I (12) (123) —(123) (1234) —(1234) (12)(34)

1 U |1 1 12 8 8 6 6 6

1 U |1 1 -12 8 8 -6 -6 6

3 V|1 1 4 0 0 -2 -2 -2

3 Vi1 1 -4 0 0 2 2 -2

2 W1 1 0 -4 -4 0 0 6

2 S|1 -1 0 -4 4 3vV2  —=3V2 0

2 S 1 -1 0 -4 4 -3v2 32 0

4 X |1 -1 0 2 -2 0 0 0

Table A.10: Casimir table of the binary octahedral group.
I 1 20 20 30 12 12 12 12
|| T -1 (123) -(123) (12)(34) (12345)  —(12345)  (12354)  —(12354)

1 U1 1 20 20 30 12 12 12 12
4 Vi1 1 5 5 0 -3 -3 -3 -3
5 W1 1 4 -4 6 0 0 0 0
37|11 0 0 2100 2(1+v5) 21++v5)  2(1—+5)  2(1—+5)
3 Z|1 1 0 0 210 2(1—-v5)  20—+v5) 200++v5)  2(1++5)
2 S|1 -1 -10 10 0 214++5) —2(1++v5) 21 —+5) 2(—1++/5)
2 5|1 -1 -10 10 0 21 —=v5) 2(=1++v5) 2(1++5) —2(1+5)
4 V|1 -1 5 -5 0 3 -3 3 -3
6 X |1 -1 0 0 0 -2 2 -2 2

Table A.11: Casimir table of the binary icosahedral group.
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