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Abstract The modified gravitational equations to describe a four-dimensional
braneworld in the case with the Lorentz invariant violation in a bulk spacetime
is presented. It contains a trace part of the brane energy-momentum tensor and
the coefficients of all terms describe the Lorentz violation effects from the bulk
spacetime. As an application, we apply this formalism to study cosmology. In
respect to standard effective Friedmann equations on the brane, Lorentz invari-
ance violation in the bulk causes a modification of this equations that can lead to
significant physical consequences. In particular, the effective Friedmann equation
on the brane explicitly depends on the equation of state of the brane matter and the
Lorentz violating parameters. We show that the components of five-dimensional
Weyl curvature are related to the matter on brane even at low energies. We also
find that the constraints on the theory parameters are depend on the equation of
state of the energy components of the brane matter. Finally, the stability of the
model depend on the specific choices of initial conditions and the parameters βi.

Keywords Modified gravity, Lorentz invariant violation

1 Introduction

There has been a growing appreciation of the importance of the violations of
Lorentz invariance recently. The intriguing possibility of the Lorentz violation is
that an unknown physics at high-energy scales could lead to a spontaneous break-
ing of Lorentz invariance by giving an expectation value to certain non Standard
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Model fields that carry Lorentz indices, such as vectors, tensors, and gradients of
scalar fields [1]. A relativistic theory of gravity where gravity is mediated by a ten-
sor, a vector, and a scalar field, thus called TeVeS gravitational theory [2], provides
modified Newtonian dynamics (MOND) and Newtonian limits in the weak field
nonrelativistic limit. TeVeS could also explain the large-scale structure formation
of the Universe without recurring to cold dark matter [3; 4], which is composed of
very massive slowly moving and weakly interacting particles. On the other hand,
the Einstein–Aether theory [5] is a vector-tensor theory, and TeVeS can be written
as a vector-tensor theory which is the extension of the Einstein–Aether theory [6].
In the case of generalized Einstein–Aether theory [7], the effect of a general class
of such theories on the solar system has been considered in Ref. [8]. On small
scales the Einstein-Aether vector field will in general lead to a renormalization
of the local Newton Constant [9]. Moreover, as has been shown by authors in
Ref. [10], the Einstein–Aether theory may lead to significant modifications of the
power spectrum of tensor perturbation. The existence of vector fields in a scalar–
vector–tensor theory of gravity also leads to its applications in modern cosmol-
ogy and it might explain inflationary scenarios [11; 12; 13; 14] and accelerated
expansion of the universe [7; 15]. Based on a dynamical vector field coupled to
the gravitation and scalar fields, we have studied to some extent the cosmological
implications of a scalar–vector–tensor theory of gravity [16; 17; 18]. The models
also allow crossing of phantom divide line [19].

Motivated by string theory and its extension M-theory, the standard model
particles may be confined on a hypersurface, called brane, embedded in a higher
dimensional space, called bulk. Only gravity and other exotic matter such as the
dilaton can propagate in the bulk [20]. The braneworld models have been shown
to be extremely rich in phenomena leading to modifications of General Relativ-
ity (GR) at both low and high energies (for a review see, e.g. [21]). In the con-
text of gravity and cosmology, models proposed by Randall and Sundrum (RS)
[22; 23] have attracted much attention, where four-dimensional gravity can be
recovered at low energy despite the infinite size of the extra dimension. In RS II
model [23], a positive tension brane is embedded in five-dimensional anti-de Sitter
(AdS) spacetime. To study gravity on the brane, it is useful to derive the effective
four-dimensional Einstein equation on the brane firstly developed by Shiromizu,
Maeda, and Sasaki (SMS) [24]. There are two very important results that arise
from the effective four-dimensional Einstein equations on the brane. The first one
is quadratic energy-momentum tensor, πµν , which is relevant in high energy and
the second one is the projected Weyl tensor, Eµν , on the brane which is responsible
for carrying on the brane the contribution of the bulk gravitational field. In the RS
II models, this term supplies an additional matter-like effect to the brane. Thus, its
contribution to the four-dimensional effective theory is of crucial importance as it
is non-negligible already even in low energy limit. Then, the Friedmann equations
on the brane, governing the cosmological evolution of the brane, are non conven-
tional in that the Hubble parameter depends quadratically on the energy density
instead of linearly as in standard cosmology, and one radiation like term, usually
referred to as a dark radiation term in the homogeneous and isotropic background
spacetime. This dark radiation modifies the expansion of the background universe
in the same way as an usual radiation [25; 26; 27; 28].
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Recently, a braneworld scenario with bulk broken Lorentz invariance has been
developed, where a family of static self-tuning braneworld solutions was found
[29; 30]. In a different approach braneworld model, a bulk vector field with a non-
vanishing vacuum expectation value, allowing for the spontaneous breaking of the
Lorentz symmetry. The breaking of Lorentz invariance the loss of this symmetry
is transmitted to the gravitational sector of the model. By assuming that the vac-
uum expectation value of the component of the vector field normal to the brane
vanishes, it found that Lorentz invariance on the brane can be made exact via the
dynamics of the graviton, vector field, and the geometry of the extrinsic curvature
of the surface of the brane. As a consequence of the exact reproduction of Lorentz
symmetry on the brane, a condition for the matching of the observed cosmologi-
cal constant in four dimensions is found [31]. The notion of Lorentz violation in
four dimensions is extended to a five-dimensional braneworld scenario resulting
the time variation in the gravitational coupling and cosmological constant. There
exist also a relation between the maximal velocity in the bulk and the speed of
light on the brane [32; 33]. Various Lorentz violating effects within the context of
the braneworld scenario have also been studied in Refs. [34; 35; 36; 37; 38; 39].

In this paper we address the issue of cosmological evolution on a brane in
a theory of gravity whose action includes, in addition to the familiar Einstein
term, a Lorentz violating vector field contribution. We generalize the gravitational
effects of the vector fields in four dimensions [5; 40] to include five dimensional
braneworld gravity. In particular, we put a vector na in the direction of the extra
dimension such that the existence of the brane defines a preferred direction in the
bulk.

This paper is organized as follows. In Sect. 2, we derive the four-dimensional
effective Einstein equations on the brane in the case with the Lorentz invari-
ant violation in a bulk spacetime. With non-ignoring of the Lorentz violation
effects, this equation is modified by the trace of the brane energy–momentum
tensor. Thus the relation between the projected Weyl tensor and the brane mat-
ter may be understood. In Sect. 3, we study the cosmological implications of
the modified four-dimensional effective Einstein equations on the brane. In gen-
eral, the effective four-dimensional Einstein equations on the brane cannot be
solved without knowing Eµν , because it could have a non-trivial component
of an anisotropic stress [41]. However, it is possible to know some features
of this tensor by using constraint equations on the brane obtained by the four-
dimensional Bianchi identity. In the background spacetime, the four-dimensional
equations are sufficient to show that Eµν induces the radiation fluid on the brane.
We will take this strategy to determine the Friedmann equation on the brane. Inter-
estingly, the Friedmann equation is found to depend on the equation of state of the
matter explicitly, and the Lorentz violation parameters. In Sect. 4, we discuss a
low energy limit of the theory. Remarkable, the parameters of the theory can be
determined by equation of state of the brane matter. We discuss the stability of the
model in Sect. 5. Section 6 is devoted to the conclusions.

2 Modified SMS effective equation on the brane

In this section, we derive the 4-dimensional effective gravitational equations in a
Z2-symmetric braneworld using the geometrical projection approach. For this pur-
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pose, we first write the 5-dimensional field equations in the form of the evolution
equations along the extra dimension and the constraint equations.

The action we consider consists of the vector field na minimally coupled to
gravity:

S =
1

2κ2

∫
d5x

√
−g̃(R−2Λ)+

∫
d5x

√
−g̃Ln +

∫
d4x

√
−g(−σ +Lm).

(1)

Here, R,κ,Λ , and g̃ are the scalar curvature, the gravitational constant in 5-
dimensions, the bulk cosmological constant, and the determinant of 5-dimensional
metric, respectively. Lm and Ln are the Lagrangian density for the matter fields on
the brane and the vector field Lagrangian, respectively. A metric g is the induced
metric on the brane while σ denotes the brane tension. Note that we have assumed
no coupling between the matter fields and the vector field in the action (1). There-
fore, the brane observer does not feel the present of the preferred frame.

We write the coordinate system for the bulk spacetime in the form

ds2 = gabdxadxb = dy2 +gµν(y,x)dxµ dxν , (2)

and we may assume that the position of the brane is y = 0 in this coordinate system
so that the induced metric on the brane is gµν(x) = g̃µν(y = 0,x). We also assume a
Z2-symmetry across the brane and the extrinsic curvature is defined as Kµν =
−gµν ,y/2.

The vector field Lagrangian, Ln, is given by

Ln = −β1∇
anb

∇anb−β2 (∇ana)2−β3∇
anb

∇bna +λ (nana−1), (3)

where βi are constant parameters and λ is a Lagrangian multiplier. In this setup,
we assume that na is a vector field along the extra dimension and the preferred
frame is selected by the constrained vector field na which violates Lorentz sym-
metry. We take na as the dimensionless vector. Hence, each βi has dimension of
(mass)3. In other words, β

1/3
i gives the mass scale of symmetry breakdown in

the bulk. Following the usual braneworld scenarios our spacetime is orthogonal to
the extra dimension. Then one can introduce the normal unit vector na which is
orthogonal to the hypersurfaces at y = const. as na = δ a

y . In particular, there is a
background solution that 5-vector takes on a vacuum expectation value with com-
ponents (0,0,0,0,1), thus allowing for the spontaneous breaking of the Lorentz
symmetry.

Varying the action (1) with respect to the metric, λ , and na, respectively, we
have the field equations

(5)Gab = −Λgab +κ
2(Tab +Tab)+κ

2
δ

µ
a δ

ν
b Sµν δ (y), (4)

gabnanb = 1, (5)

∇aJab = λnb, (6)
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where current tensor Ja
c is given by

Ja
b =−β1∇

anb−β2δ
a
b ∇cnc−β3∇bna, (7)

and Sµν =−σgµν + τµν is the energy momentum tensor on the brane, where τµν

is the energy momentum tensor of the brane matter other than the tension. Tab is
the energy-momentum tensor of the vector field. To be as general as possible, we
also have included a bulk energy-momentum tensor in (4), denoted by Tab.

Using the extrinsic curvature, the components of the left hand side of Einstein
equations (4) are

(5)Gy
y = −1

2
R+

1
2

K2− 1
2

Kαβ Kαβ

= −Λ +κ
2T y

y +κ
2T y

y, (8)
(5)Gy

µ = −Dα Kµ
α +Dµ K = κ

2(T y
µ +T y

µ), (9)

(5)Gµ
ν = Gµ

ν +(Kµ
ν −δ

µ

ν K),y +
1
2

δ
µ

ν (K2 +Kαβ Kαβ )

= −Λδ
µ

ν +κ
2(T µ

ν +T µ
ν)+κ

2Sµ
ν δ (y), (10)

where Gµ
ν is the 4-dimensional Einstein tensor and the covariant derivatives Dµ

is calculated with respect to the four-dimensional metric gµν . The components of
the energy momentum tensor of the vector field are given by

T y
y = β2K2 +(β1 +β3)Kαβ Kαβ , (11)

T y
µ = 0, (12)

T µ
ν = 2(β1 +β3)Kµ

ν K +β2δ
µ

ν K2−δ
µ

ν (β1 +β3)Kαβ Kαβ

−2(β1 +β3)Kµ
ν ,y−2β2δ

µ

ν K,y. (13)

Combining Eqs. (8) with (10) and using (11) and (13), we have

− 1
3

(
Rµ

ν −
1
4

δ
µ

ν R
)

=
1
6

δ
µ

ν Λ +
(1−α0)

12
δ

µ

ν K2

−(1+α1)
3

(
KKµ

ν −
3
4

δ
µ

ν Kαβ Kαβ

)
+

(1+α1)
3

Kµ
ν ,y

−(1−α0)
3

δ
µ

ν K,y−
κ2

3

(
T µ

ν −
1
2

δ
µ

ν T y
y

)
, (14)

where we have defined

α0 = 2κ
2
β2, α1 = 2κ

2(β1 +β3). (15)

The trace of equation (14) yields

(3−4α0−α1)K,y = 2Λ − (α0 +α1)K2 +3(1+α1)Kαβ Kαβ

−κ2

3
(
T µ

µ −2T y
y
)
. (16)
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Substituting Eqs. (14) and (16) into the following components of the Weyl tensor

Cyµyν = −1
3

(
Rµν −

1
4

gµν R
)

+
1
3

(
KKµν −

1
4

gµν K2
)

+
1
3

(
Kµ

α Kαν +
3
4

gµν Kαβ Kαβ

)
+

2
3

(
Kµν ,y−

1
4

gµν K,y

)
, (17)

we have

3(1+α1)
(3+α1)

Cyµyν =
1
2

Λgµν −
3α0 +(2+α0)α1

4(3+α1)
gµν K2

−(1+α1)α1

(3+α1)
KKµν +

(1+α1)(3+2α1)
(3+α1)

Kµ
λ Kλν

+
3(1+α1)(4+α1)

4(3+α1)
gµν Kαβ Kαβ +(1+α1)Kµν ,y

−(1−α0)gµν K,y+
κ2

2
gµνT y

y−
κ2

3

(
Tµν +

1
2

gµνT α
α

)
.

(18)

Here, we have defined that the term T α
α is the trace defined with respect to

the four-dimensional metric g, and not the full trace defined with respect to g̃.
Equation (10) can be expressed as

Gµν = −Λgµν +(1+α1)KKµν −
(1−α0)

2
gµν K2

−2(1+α1)Kµ
α Kαν −

(1+α1)
2

gµν Kαβ Kαβ

−(1+α1)Kµν ,y +(1−α0)gµν K,y +κ
2Tµν . (19)

Using Eq. (18), Eq. (19) is expressed as

Gµν = −1
2

Λgµν −
3(1+α1)
(3+α1)

Eµν −
3(1+α1)
(3+α1)

(Kµ
α Kαν −KKµν)

− 6+4α1− (3+α1)α0

4(3+α1)
gµν K2 +

(1+α1)(6+α1)
4(3+α1)

gµν Kαβ Kαβ

+
κ2

2
gµνT y

y +
2κ2

3

(
Tµν −

1
4

gµνT α
α

)
, (20)

where the projected Weyl tensor is Eµν = Cyµyν |y=0. Note that the coefficient of
the four-dimensional Einstein tensor (20) is modified by factor (3 + α1). Here,
we take α1 6= −3. The case α1 = −3 provides a relation between the extrinsic
curvature and the projected Weyl tensor. To eliminate the extrinsic curvature, we
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use the junction conditions. It can be obtained by collecting together the terms
in field equations which contain a δ -function. From Eqs. (10) and (13), we then
obtain

[
Kµ

ν −δ
µ

ν K
]
|y=0 =

κ2

2(1+α1)
(
Sµ

ν +α2δ
µ

ν S
)
, (21)

where

α2 =
α0 +α1

3−4α0−α1
. (22)

For convenient we will take α1 6= −3 and α1 6= −1 in order to avoid unreal sin-
gularities in Eqs. (20) and (21). Substituting (21) into (20), we finally obtain the
modified effective SMS equation on the brane as

Gµν = −Λbgµν +8πG
(

τµν +
α1

12
gµν τ

)
+κ

4
πµν − Ẽµν +Fµν , (23)

where we have defined the quantities

Λb =
1
2

Λ +
κ4

4(3−4α0−α1)
σ

2, (24)

8πG =
3κ4

2(3+α1)(3−4α0−α1)
σ , (25)
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πµν =
3

4(3+α1)(1+α1)

[
(1−2α0−α1)
(3−4α0−α1)

ττµν − τµ
α

ταν

+
(6+α1)

12
gµν ταβ τ

αβ − 2(3−α1)− (9+α1)α0

12(3−4α0−α1)
gµν τ

2
]
, (26)

Ẽµν =
3(1+α1)
(3+α1)

Eµν , (27)

and the bulk energy-momentum tensor projected on the brane is given by

Fµν =
[

κ2

2
gµνT y

y +
2κ2

3

(
Tµν −

1
4

gµνT α
α

)]
y=0

. (28)

There are four features in the effective Einstein equations (23). The first one is
the presence of the bulk energy-momentum tensor. This term allows exotic mat-
ter such as the dilaton can propagate in the bulk. The second departure from
the standard four-dimensional Einstein equation arises from the presence of the
Weyl tensor which is undetermined on the brane. The third is a quadratic in the
brane energy-momentum tensor. The last one is a linear in addition to the brane
energy-momentum tensor. It is our main result. This trace part of the brane energy-
momentum tensor is measured by local observers at the brane and vanishes when
α1 = 2κ2(β1 +β3) = 0.

Equation (9) and the junction conditions (21) imply

Dµ τ
µ

ν +α2Dν τ− (1+4α2)Dν σ =−2(1+α1)T y
ν . (29)

This equation tell us that the energy momentum tensor τµν is not conserved on
the brane. Taking the divergence of the four-dimensional effective equations and
using four-dimensional Bianchi identity, we obtain the constraint equations for
Eµν as

Dµ Ẽµ
ν = −DνΛb +8πG

(
Dµ τ

µ
ν +

α1

12
Dν τ

)
+κ

4Dµ π
µ

ν

+
κ2

2
DνT y

y +
2κ2

3

(
DµTµν −

1
4

DνT α
α

)
. (30)

Equations (29) and (30) indicate a time variation of the brane tension, the cosmo-
logical constant, and the gravitational constant in general.

In the following section, we study analytically the cosmological consequences
of Eqs. (23), (29) and (30). Here, for simplicity, we consider constant σ , because
there are no theoretical observational arguments for the evolution of σ in time.
For cosmology on the brane, we suppose here that we can ignore the bulk mat-
ter, Fµν = 0. The bulk matter is important to get a well-behaved geometry in the
bulk. We also assume that the bulk cosmological constant is truly constant. Then,
Eqs. (29) and (30) become

Dµ τ
µ

ν =−α2Dν τ, (31)

Dµ Ẽµ
ν =−8πG

(
α2−

α1

12

)
Dν τ +κ

4Dµ π
µ

ν . (32)
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Note that the projected Weyl tensor is affected by the energy-momentum tensor
on the brane even at low energies. Thus, the model is quite different from the
conventional braneworld even at low energies.

3 Braneworld cosmology

The projected Weyl tensor in the modified Einstein equation (23) is a priori unde-
termined. This comes from the five-dimensional nature of the theory and the fact
that the system of equations is not closed on the brane. This tensor mediates some
information from the bulk to the brane. In this section, we will try to solve Ein-
stein equation to study the cosmology braneworld from Eq. (23), by assuming that
there is no cosmological constant on the brane and the constant vacuum energy.
Although these assumptions are usual in braneworld scenario, we will show, which
is the main result of present paper, the effective Friedmann equations is modified
by the effect of Lorentz violation, and the components of the projected Weyl ten-
sor are related to the matter on the brane. We then discuss the method to obtain the
components of the projected Weyl tensor from the brane data. For cosmological
applications, we consider a metric of the form

ds2 =−dt2 +a2(t)δi jdxidx j, (33)

where xi are the three ordinary spatial coordinates and a is the scale factor. The
Hubble parameter H on the brane, describing the cosmological dynamics of the
Universe, is defined as H = ȧ/a. For simplicity, we ignore the bulk matter for the
cosmology on the brane. Hereafter, we will consider only the matter on the brane.
For further discussions on the gravitational field equations in the braneworld
model with Lorentz violation and their cosmological applications see [32; 33].
We restrict the energy-momentum tensor on the brane of the form

τµν = (ρ,Pa2
δi j), (34)

where ρ is the energy density and P the pressure. We will assume that the equation
of state relating ρ and P has the form P = ωρ , where ω is constant. Similarly, the
projected Weyl tensor is of the form

Eµν = (ρd ,Pda2
δi j). (35)

The traceless property of Eµν implies: −ρd + 3Pd = 0. We will be interested
in the relation between the components of the projected Weyl tensor and the
brane energy-momentum tensor. The components of the quadratic in the energy-
momentum tensor (26) are given by

π00 =
1+3α3

4(3+α1)(1+α1)2 ρ
2, (36)

πi j =
1+2ω−3α4

4(3+α1)(1+α1)2 ρ
2a2

δi j, (37)
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where

α3 =
1

12(3−4α0−α1)
{[7−9(2+ω)ω−3(1+ω)2(2−α1)α1]α0

−[17−3ω(8+3ω)+2(1−12ω−3ω
2 +(1+3ω

2)α2
1 )]α1},

(38)
α4 =

1
12(3−4α0−α1)

{[−1−2ω +15ω
2 +3(1+ω)2(6+α1)α1]α0

−[15+32ω−15ω
2− (1+3ω

2)α2
1 −2(1+9ω

2)α1]α1}.

Substituting metric (33) and tensors (34), (35) and (36), (37) in the effective Ein-
stein equations (23), one finds

3H2 = 8πG
[

1+
(1−3ω)α1

12

]
ρ+

κ4(1+3α3)
4(1+α1)2(3+α1)

ρ
2−3(1+α1)

(3+α1)
ρd , (39)

−2Ḣ−3H2 = 8πG
[

ω−(1−3ω)α1)
12

]
ρ+

κ4(1+2ω−3α4)
4(1+α1)2(3+α1)

ρ
2− (1+α1)

(3+α1)
ρd. (40)

Obviously, these equations are quite different from the usual braneworld equa-
tions due to the effect of bulk Lorentz violation. From Eq. (31) and the constraint
equation for the projected Weyl tensor (32), we have

[1+(1−ω)α2]ρ̇ +3Hρ(1+ω) = 0, (41)

and

ρ̇d +4Hρd =
8πG(1+ω)(1−3ω)(3+α1)(3−4α0−α1)

3(1+α1)3

×
[

α2−
(1+α1)2α1

12(1−ωα1− (1+ω)α0)

]
Hρ

− κ4(1+ω)α5

4(1+α1)3(1+(1−3ω)α2)
Hρ

2, (42)

where

α5 =
(1+α1)

2(3−4α0−α1)
{12(1+ω)2

α
2
0 α1 +[9(1+3ω

2)

+(1+3ω
2)α2

1 −2(1+12ω−9ω
2)α1]α1

+[3(1−3ω
2)−2(7+30ω−9ω

2)α1 +(7+6ω +15ω
2)α2

1 ]α0}. (43)

For ω 6=−1, Eq. (41) is solved to yield

ρ = a
− 3(1+ω)

1+(1−ω)α2 . (44)



Modified gravitational equations 11

Here, we have absorbed a constant factor into the scale factor by rescaling it.
Equation (42) can be integrated. We find

ρd = −3C
a4 +

8πG(1+ω)(3+α1)(3−4α0−α1)2

9(1+α1)4

×
{

[1+(1−3ω)α2]α2−
α1(1+α1)2

4(3−4α0−α1)

}
a
− 3(1+ω)

1+(1−ω)α2

− κ4(1+ω)α5

8(1+α1)3[2(1−3ω)α2− (1+3ω)]
a
− 6(1+ω)

1+(1−ω)α2 , (45)

where C is a constant of integration. This effect of the bulk acts as radiation fluid,
hence it is called as dark radiation. Substituting Eq. (45) into Eq. (39), we obtain
the effective Friedmann equation

H2 =
8πGe f f

3
ρ +Aρ

2 +
C̄
a4 , (46)

where

Ge f f =
{

1− [1−ωα1−(1+ω)α0][(2+3ω−(2+α1)α1)α1+3(1+ω)α0]
3(1+α1)3

}
G, (47)

A =
κ4

12(3+α1)(1+α1)2

[
1+3α3−

3(1+ω)α5

2[(1+3ω)−2(1−3ω)α2]

]
, (48)

C̄ =
3(1+α1)
(3+α1)

C. (49)

Note that the effective Newton constant depends on the Lorentz violating param-
eters and the equations of state. It is different from the conventional braneworld
cosmology in five-dimensional case even at low energy. If the effects of Lorentz
violations are ignored, βi = 0, we have Ge f f = G,A = κ4/36 and C̄ = C. In the
alternative theory of gravity including Brans–Dicke theory, the effective Newton
constant need not be constant in time. Observational bounds on Ġ/G then con-
strain the theory. In our case, we have the relation (47), hence the Newton constant
is always constant.

If the effective cosmological constant is included, the Friedmann equation (46)
becomes

H2 =
1
3

Λb +
8πGe f f

3
ρ +Aρ

2 +
C̄
a4 , (50)

where the relation between the vacuum energy and the effective cosmological con-
stant on a brane is given by Eq. (24). It is different from the usual four-dimensional
theory. In the RS braneworld, the vacuum energy in the brane is not directly related
to the cosmological constant on the brane in the effective Einstein equation as in
Eq. (24). In the RS braneworld, there should be a cancellation between the four-
dimensional and five-dimensional contribution of the vacuum energy in order to
have a vanishing cosmological constant on the brane. This requires a fine-tuning
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for the parameters in the action. In the present model the RS type relation is given
by

σ =
6

κ2l

(
1− 4

3
α0−

1
3

α1

)1/2

, (51)

and

8πG =
3κ2

l(3+α1)(1+α1)1/2 . (52)

Here, the bulk cosmological constant is defined as Λ = −6/κ2l2, where l is the
scale of the bulk curvature radius.

4 Low energy constraint on βi

For a well-defined theory, the constraints on the theory parameters βi are given by
[14] (see also [9]):

1. Subluminal propagation of spin-0 field: (β1 +β2 +β3)/β1 ≤ 1,
2. Positivity of Hamiltonian: β1 > 0,
3. Non-tachyonic propagation of spin-0 field: (β1 +β2 +β3)/β1 ≥ 0,
4. Subluminal propagation of spin-2 field: β1 +β3 ≤ 0.

All these conditions together imply (β1 +β2 +β3)≥ 0 and β2 ≥ 0.
At low energies, we can neglect the quadratic term of the Friedmann equation

(46). Then we have

H2 =
8πGe f f

3
ρ +

C̄
a4 . (53)

Here, we have assumed 3A/8πGe f f � 1. Therefore, one can set A ≈ 0 without
loss of generality. Solving Eq. (48) one finds

α1 =
1−α0(1+ω)

ω
, or α1 =

2(1+3ω)−3α0(1+ω)2

1+3ω2 , (54)

where α0 and α1 is given by Eq. (15). In other word, the effect of Lorentz violation
in the bulk is dependent on the equation of state of the energy components of the
Universe. Remarkable, the first solution (54) yields Ge f f = G. In this case, using
the above constraints we find

1. For ω <−1,

α0 >
1+3ω

1+ω
, α1 <−3, (55)

and

1 < α0 <
1+3ω

1+ω
, −3 < α1 <−1. (56)
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2. For −1 < ω < 0,

1 < α0 ≤
1

1+ω
, −1 < α1 ≤ 0. (57)

3. For ω > 0,

1
1+ω

≤ α0 < 1, −1 < α1 ≤ 0. (58)

The above constraints give the correction in the coefficient of the dark radiation.
The second solution (54) gives the constraints:

1. For ω <−1,

α0 >
5+6ω +9ω2

3(1+ω)2 , α1 <−3, (59)

and

1 < α0 <
5+6ω +9ω2

3(1+ω)2 , −3 < α1 <−1. (60)

2. For −1 < ω ≤−1/3,

α0 >
5+6ω +9ω2

3(1+ω)2 , α1 <−3, (61)

and

1 < α0 <
5+6ω +9ω2

3(1+ω)2 , −3 < α1 <−1. (62)

3. For ω ≥−1/3,

2(1+3ω)
3(1+ω)2 ≤ α0 < 1, −1 < α1 ≤ 0. (63)

These constraints give the corrections both in the effective Newton constant and
the dark radiation.

5 Flat spacetime stability analysis

In this section we discuss a flat spacetime stability analysis. The classical stability
of fixed-norm spacelike Lorentz violating vector field model has been studied in
Ref. [42]. In this case, the Lagrangian of the vector field is as follows

Ln = −β1∂
anb

∂anb−β2 (∂ana)2−β3∂
anb

∂bna +λ (nana−1), (64)
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where the equation of motion for the vector field is given by

λna +β1∂b∂
bna +(β2 +β3)∂

a
(

∂bnb
)

= 0. (65)

We consider small perturbations about the background, na = Aa + εa. To the first
order in perturbations we have the following equations for the non-trivial vector
field perturbations:

β1∂b∂
b
ε

0 +(β2 +β3)∂
0
(

∂bnb
)

= 0, (66)

β1∂b∂
b
ε

i +(β2 +β3)∂
i
(

∂bnb
)

= 0, (67)

where i ∈ {1,2,3}.
Using the Fourier transform the components of εa, and in terms of Fourier

modes,

ε
0(ω,k) = k5θ1(ω,k), ε

i(ω,k) = kiθ2(ω,k)+ εi jk jθ3(ω,k), (68)

we have[
β1

(
k2
⊥+ k2

5
)
− (β1 +β2 +β3)ω2]k5θ1 +(β2 +β3)ωk2

⊥θ2 = 0, (69)

(β2 +β3)ωk5θ1−
[
β1

(
k2

5−ω
2)+(β1 +β2 +β3)k2

⊥
]

θ2 = 0, (70)

β1k2
⊥

(
k2
⊥+ k2

5−ω
2)

θ3 = 0, (71)

where k2
⊥ = ∑

3
i=1 kiki.

For the case β1 + β2 + β3 6= 0, the scalar mode θ1 = (k2
⊥/ωk5)θ2 propagates

with the dispersion relation

ω
2 = k2

⊥+ k2
5. (72)

while the scalar mode θ1 = (ω/k5)θ2 propagates with the dispersion relation

ω
2 = k2

⊥+ k2
5

(
β1

β1 +β2 +β3

)
. (73)

We see that the stability of the modes give the following conditions of βi:

β1 > 0, β1 +β2 +β3 ≥ 0. (74)

Himmetoglu et al. [43] have studied perturbation in the model for arbitrary βi
coefficients. The authors have found that the ghost is absent for β1 +β2 +β3 6= 0.

For the case β1 +β2 +β3 = 0, Eq. (69) becomes a constraint equation and the
kinetic terms for the vector field take the form of a field strength tensor squared.
The standard kinetic term corresponds to β1 =−β3 = 1/2,β2 = 0.

The stability of the model also depends on whether the Hamiltonian density is
positive over the full phase space. We use the Hamiltonian constraint analysis as
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same as the fixed-norm timelike Lorentz violating vector field model [44]. From
the Lagrangian (64), we can calculate the conjugate momenta:

Π
0 = −2(β1 +β2 +β3)(∂0n0)+2β2(∂µ nµ), (75)

Π
µ = 2β1(∂0nµ)+2β3(∂µ n0), (76)

Π
(λ ) = 0, (77)

where µ ∈ (1,2,3,5). Then we use the conjugate momenta to construct the
Hamiltonian density

H = −
(

β 2
1 −β 2

3
β1

)
(∂µ n0)2 +

1
4β1

(Π µ)2− β3

β1
Π

µ
∂µ n0 +β1(∂µ nν)2

+β2(∂µ nµ)(∂ν nν)+β3(∂µ nν)(∂ν nµ)− 1
β1 +β2 +β3

(Π 0)2

+
β2

β1 +β2 +β3
Π

0(∂µ nµ)− β 2
2

β1 +β2 +β3
(∂µ nµ)2

−λ
(
−n2

0 +n2
µ −1

)
, (78)

Four constraints are identified as

φ1 = Π
(λ ), (79)

φ2 = −
(
−n2

0 +n2
µ −1

)
, (80)

φ3 =
1

β1 +β2 +β3

[
−1

2
Π

0 +β2(∂µ nµ)
]

n0 +
1
β1

[
1
2

Π
µ −β3(∂µ n0)

]
nµ , (81)

φ4 = λ (n0)2−λ

(
β1 +β2 +β3

β1

)
(nµ)2−

[
β2β3

β1
+

(β1 +β2 +β3)β 2
3

β 2
1

]
(∂µ n0)2

−
(

β 2
2

β1 +β2 +β3
− β2β3

β1

)
(∂µ nµ)2 +(β1 +β2 +β3)nµ ∂ν ∂ν nµ

−
[

β 2
2

β1
− (β1 +β2 +β3)(β2 +β3)

β1

]
nµ ∂µ ∂ν nν −

(
β 2

1 −β 2
3

β1

)
n0∂µ ∂µ n0

+
(

β2

2β1

)
nµ ∂µ Π

0−
(

β3

2β1

)
n0∂µ Π

µ−
(

β2

2β1
−(β1 +β2 +β3)β3

β 2
1

)
Π

µ
∂µ n0
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+
(

β2

β1 +β2 +β3
− β3

2β1

)
Π

0
∂µ nµ +

1
4(β1 +β2 +β3)

(Π 0)2

+
β1 +β2 +β3

4β 2
1

(Π µ)2. (82)

The constraint φ1 is primary, while φ2,φ3, and φ4 are secondary. All of our
constraints are second class. According to Dirac’s counting argument there are
6− 0− 4/2 = 4 independent degrees of freedom in this model. In the spacelike
case, the constraint φ2 allows for a solution nµ , effectively constraining away the
spatial field component. A similar investigation, φ3 allows a solution of Eq. (81)
with respect to Π µ . Finally, φ3 can be used to determine the Lagrange multiplier,
λ .

Applying the boundary condition and φ2 ≈ 0, the Hamiltonian density (78) can
be written as

H = HΠ +Hn, (83)

where

HΠ =− 1
β1 +β2 +β3

[
−1

2
Π

0 +β2(∂µ nµ)
]2

+
1
β1

[
1
2

Π
µ−β3(∂µ n0)

]2

, (84)

and

Hn = β1
[
(∂µ nν)2− (∂µ n0)2]+(β2 +β3)(∂µ nµ)2. (85)

Let us first consider the Hamiltonian depends only on the fields nµ (85) which can
used to examine the positivity of the Hamiltonian density. Applying the condition
(74), the first term is nonnegative, while the second term is nonnegative if and only
if

0 <
β1

β1 +β2 +β3
≤ 1, (86)

then Hn becomes positive. Next let us consider the Hamiltonian includes depen-
dence on the momenta (84). Using the condition (74) the first term is nonpositive,
while the second term is nonnegative. Note that Eq. (84) is related to the con-
straint (81), then the two terms in Eq. (84) are not independent. If we choose an
initial condition such that− 1

2 Π 0 +β2(∂µ nµ) = 1
2 Π µ −β3(∂µ n0) = 0, we have the

constraint φ3 ≈ 0, then H ≥ 0. However, for β1/(β1 + β2 + β3) > 1,Hn can be
made arbitrarily negative, and solutions with H < 0 can therefore exist. Thus the
stability of the model depend heavily on specific choices of initial conditions and
the parameters βi.

6 Conclusions

In the present paper, we have considered a five-dimensional braneworld model
with bulk Lorentz invariance violation, and derived the effective four-dimensional
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Einstein equations on the brane. The main result of this paper is the existence
of the trace part of the brane energy-momentum tensor in the modified Einstein
equations on the brane, which is a modification of the SMS effective equation [24].
Thus, the divergence of the projected Weyl tensor is modified. Therefore, due to
Lorentz violating effect, we have obtained an expression for the projected Weyl
tensor as a function of the source on the brane. It becomes clear that the bulk effect
can be determined by matter localized on the brane even at low energies. As an
application, we have used the modified SMS effective equation to determine the
Friedmann equation on the brane. We have showed the effective Newton constant
that relates geometry to the matter density in Friedmann equation is dependent on
the equation of state of the energy component of the Universe, and the Lorentz
violating parameters. Note that if the brane was isotropic and homogeneous, the
matter part would have the additional property, Dµ πµν = 0. However, due to effect
of Lorentz violation in the bulk, the effect of matter still appears in Eq. (32). Thus,
the brane matter will deform the bulk geometry. In other word, the back-reaction
of this to the brane will modify the effective Friedmann equation even at low ener-
gies. It is interesting to understand the low energy description of this braneworld
model. The low energy perturbation scheme proposed in [11] is a major achieve-
ment as it allows for the derivation of the effective theory on the brane and for
the full comprehension of the Weyl tensor contribution to the effective theory. We
leave this issue for future studies.

Finally, we also find that the effect of Lorentz violation in the bulk is dependent
on the equation of state of the energy components of the brane matter. This model
also provides a convenient framework within which one may study dark energy.
Using the Hamiltonian constraint analysis, the stability of the model depend heav-
ily on specific choices of initial conditions and the parameters βi. Different aspects
of Lorentz invariance violation in models with large extra dimensions were consid-
ered in
Ref. [45]. In these model Lorentz invariance was broken spontaneously on the
brane due to the presence of a symmetry-breaking potential and it has been shown
that the model implies the absence of ghosts and/or tachyons to higher orders in
classical perturbation theory.
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