
Construction of the Emergent Yang-Mills
Theory

University of the Witwatersrand
Author: Shaun de Carvalho, Student number: 542425

Supervisor: Professor Robert de Mello Koch

2017 - 2020

Thesis submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg,
in fulfilment of the requirements for the degree of Doctor of Philosophy.

Johannesburg, 2020

1



Declaration

I declare that this Thesis is my own, unaided work. Chapters 3 and 4 are my original work.
They are based on the following papers that I published:

1. S. de Carvalho, R. de Mello Koch and A. L. Mahu, “Anomalous dimensions from boson
lattice models,” Phys. Rev. D 97, 126004 (2018) [arXiv:1801.02822]

2. S. de Carvalho, R. de Mello Koch and M. Kim, “Central Charges for the Double Coset,”
[arXiv:2001.10181].

This thesis is being submitted for the Degree of Doctor of Philosophy at the University of the
Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination
at any other University.

(Signature of candidate)

14th day of April 2020 in Johannesburg.

1



Abstract

In this thesis, we focus on the construction of the emergent Yang-Mills theory that is expected
to arise at low energy on the world volume of a giant graviton. Our basic approach is to study
the operators in N = 4 super Yang-Mills theory dual to excited giant graviton states. The
system we work with consists of giant gravitons and open strings connecting between them.
They are described in the language of both restricted Schur polynomials and Gauss graph
operators, and we study the action of the one loop dilatation operator at large N , including the
leading and first subleading terms, in the SU(3) sector. The construction of these operators
and computations with them requires sophisticated methods from group representation theory,
as well as basic ideas from quantum field theory. Consequently the thesis begins with a careful
review of exactly the background that is required. We will consider operators that are a small
deformation of a 1

2
-BPS multi-giant graviton state. Our first novel result proves that the

subleading matrix elements of the dilatation operator can be interpreted in terms of bosons
hopping on a lattice. In this way, we are able to diagonalize the dilatation operator at subleading
order. The description and computations are technically challenging, which motivated us to
pursue a symmetry based approach to the problem. The second novel result achieved in this
thesis, enables us to decompose the state space of excited gaint graviton branes (the Gauss
graph operators) into irreducible representations of the su(2|2) global symmetry. As explained
by Beisert, this algebra admits central extensions. We argue that in our non-planar setting
the global symmetry again is centrally extended, with the charges naturally describing gauge
transformations of the emergent gauge theory. Gauge invariance forces these charges to vanish
so that we end up with the physically expected result: the full global su(2|2) symmetry is not
centrally extended.
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1 Introduction

The proof of the AdS/CFT correspondence remains an open problem in theoretical high energy
physics. The AdS/CFT correspondence states that there exists a duality between conformal
field theory (CFT) and quantum gravity defined on an asymptotically anti-de Sitter (AdS)
spacetime (which is developed in terms of string theory) [1, 2, 3, 4]. The correspondence is
also referred to as the gauge/gravity correspondence or the holographic duality. The duality
implies a one-to-one correspondence between the states in the Hilbert space of the CFT and
the states in the Hilbert space of the quantum gravity. In addition, the state-operator corre-
spondence of the CFT implies that there is a local operator in the CFT for each state in the
string theory. Membranes and their excitations, given by open strings, are states that appear
in the Hilbert space of quantum gravity described as a string theory. This thesis will study, in
particular, the duality between N = 4 SYM theory and type IIB string theory on AdS5 × S5.
Our goal in this thesis is to shed new light on the AdS/CFT correspondence by studying the
CFT realization of excited membrane states. This is a problem of some complexity since even
the large N description requires that we sum non-planar contributions. Concretely we aim to
construct the emergent Yang-Mills theory that arises at low energy as the brane world volume
theory. The states we concentrate on are giant graviton states and we will initially describe
these states in terms of restricted Schur polynomials. This provides an orthogonal basis for the
state space. We will then develop a description in terms of Gauss graph operators, which have
the advantage that these are operators with a good scaling dimension that continue to provide
an orthogonal basis. In the case we are studying, the large N and planar limits are not the
same and consequently the well-known large N methods are not useful so that new methods
need to be utilised. We will make use of group representation theory which will provides the
new methods we need. They will allow us to sum the complete set of Feynman diagrams both
in the free theory and at one loop.

1
2
-BPS giant gravitons in AdS5 × S5 are D3-branes with a spherical worldvolume, embed-

ded into either the S5 compact space or into AdS5 ,the latter being known as the dual giant
graviton. A D-brane is a non-perturbative object. It has a tension T ∼ 1

gs
, where gs is the

string coupling, which implies that it is very heavy at weak string coupling. This is why it is
interesting to study them in CFT. Giant gravitons are stable due to the fact that they cou-
ple to the background RR five form flux and carry a non-zero angular momentum, leading to
a Lorentz-type force which causes them to puff out and expand. This Lorentz force exactly
cancels the force due to their tension which tries to collapse them. When accelerating a giant
graviton it grows and the faster you move it, the bigger it gets. There is a limit on how big
a giant graviton can get. This limit arises because the giant graviton cannot expand to a size
that is bigger than the space (S5) it lives in. This cut off on the size of the giant translates
into a cut off on the angular momentum of the giant. When giant graviton states are excited,
they can be described in terms of open strings which end on the brane.

There are a number of questions we might ask. A D-brane is a membrane with the addition
of open strings: can we see these elements in the CFT description? We should be able to
construct the state space of these excited membranes and do quantum mechanics in the result-
ing Hilbert space. We might also ask if we can explore the interactions of these open string
excitations. It is the lowest modes of these open strings that should give rise to an emergent
gauge theory. Understanding the dynamics of this emergent gauge theory seems to be a nice
warm up before tackling the problem of understanding how the higher dimensional spacetime
and gravitational interactions emerge from the CFT. Answering these questions will lead to im-
portant insights into the AdS/CFT correspondence. Further, by studying this problem in the
CFT, we gain novel insights into a non-perturbative problem from the perspective of the dual
string theory. These are questions, amongst others, that we consider and attempt to answer in
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this thesis.
When studying the planar limit of the gauge theory we consider a spin chain description.

Each field within the operator is identified with a lattice site and the species of field with a spin
state. The spin chain was developed to describe CFT operators dual to closed strings, but it
is also useful for open strings. Our focus will be on the description of open strings. The spin
chain description of the CFT operators is an effective approach to the planar limit of the super
Yang-Mills (SYM) theory since it allows the application of powerful integrability techniques.
This description maps each CFT operator to a state of a spin chain and it maps the dilatation
operator to the Hamiltonian of the spin chain. The dynamics of the spin chain is naturally
described in terms of excitations known as magnons. Each magnon will transform as some
SU(2|2)× SU(2|2) representation. Consequently it will be crucial for this work to understand
the fundamentals of the SU(2|2) group.

Using the Gauss graph technology we will study the interaction between magnons. We find
that the problem can be mapped into bosons hopping on a lattice. The energy of the boson
states sets the anomalous dimension of the corresponding CFT operator. This is developed in
detail in Section 3.

In the paper [5], Beisert studies irreducible representations of SU(2|2) in which the magnon
of the spin chain transform. In Beisert’s description, the operator

J∑
ni=0

Tr(Zn1Y Zn2XZn3Y · · · )ein1φ1+in2φ2+in3φ3+···,

whereX, Y are distinct impurities, corresponds to a spin chain with impurities that have definite
momenta. In the Gauss graph basis description, one of the main questions we want to answer
is: how do we understand the irreducible representation in which the magnons transform? One
of our goals is to organize the state space of the excited brane system into representations of
su(2|2). This is the subject of Section 4.

This thesis is organised as follows: in Section 2 we review the necessary background knowl-
edge that focuses on the large N , non-planar limits of CFT along with methods used for
studying matrix models. The majority of the methods and tools are presented in the language
of group theory and representation theory of finite groups. The section also covers the action of
the dilatation operator in the SU(3) sector, making use of the displaced corners approximation
to simplify the result in the large N limit and then finally ends with a description of the Gauss
graph basis. There is a pedagogical subsection that demonstrates on how one can compute an
exact result in the restricted Schur polynomial basis for a particular selection of Young diagram
labels. Section 3 covers the paper [6] which is my original work with de Mello Koch and Mahu.
The section covers the diagonalisation of the dilatation operator at one loop including sublead-
ing terms. The diagonalisation is achieved by a novel mapping which replaces the problem of
diagonalising the dilatation operator with a system of bosons hopping on a lattice. The giant
gravitons define the sites of this lattice and the open strings stretching between distinct giant
gravitons define the hopping terms of the Hamiltonian. Section 4 covers the paper [7] which
is also my original work with de Mello Koch and Kim. The section explains how the excited
brane state space is organized into representations of su(2|2). Finally, in Section 5 we review
what was achieved in this thesis and draw some conclusions.
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2 Background

This chapter reviews the necessary background knowledge required to comprehend and follow
the discussions and results presented in this thesis. Topics that are covered are matrix models,
ribbon diagrams, factorisation, representation theory, Schur (and restricted Schur) polynomials,
the one loop dilatation operator (including an exact one loop dilatation operator computation),
the displaced corners approximation and Gauss graphs.

2.1 Matrix Models

The combinatorics of the matrix valued fields of a non-Abelian gauge theory plays an important
role in understanding the holography of these theories. Fortunately, these combinatorics can be
developed in the setting of matrix models, obtained by reducing non-Abelian gauge theories to
zero dimensions. In this subsection we use matrix models to develop the relevant combinatorial
results.

Gaussian integrals are good toy models for the path integral. In the same way, matrix
models are good models for QCD (gauge theory). When studying a hermitian matrix, i.e.
M = M †, Mij = M∗

ji, where i, j = 1, ... , N , it should be noted that:

• The diagonal elements are in total N real numbers.

• The off-diagonal elements are complex, but elements below the diagonal are complex
conjugates (c.c.) of elements above the diagonal.

• The number of elements above the diagonal is equal to (N2 − N)/2, so that there are
N2 −N off-diagonal real numbers.

In conclusion, there are N2 real numbers in total: real diagonal + real off diagonal = N +N2−
N = N2. The model is defined as follows: any expectation value is given by evaluating the
integral

〈. . . 〉 =

∫
[dM ]e−

ω
2
TrM2

. . .

where Mii is real and Mij = M r
ij + iM i

ij if i > j and Mij = M∗
ij if i < j. Thus the measure for

the integral is ∫
[dM ] · · · = N

N∏
i=1

∫ ∞
−∞

dMii

N∏
k,l=1 k>l

∫ ∞
−∞

dM r
kl

∫ ∞
−∞

dM i
kl . . .

Note that this is N2 real integrals. N sets the normalisation of the measure. We choose N so
that

∫
[dM ]e−

ω
2
TrM2

= 〈1〉 = 1.
For general N :

N
∫ ∞
−∞

dM11e
−ω

2
M2

11· · ·
∫ ∞
−∞

dMNNe
−ω

2
M2
NN

∫ ∞
−∞

dM i
N1e

−ωM i2

N1

∫ ∞
−∞

dM r
N1e

−ωMr2

N1 . . .

· · ·
∫ ∞
−∞

dM i
N(N−1)e

−ωM i2

N(N−1)

∫ ∞
−∞

dM r
N(N−1)e

−ωMr2

N(N−1) = 1

⇒ N

(√
2π

ω

)N (√
π

ω

)N2−N

= 1

⇒ N =
( ω

2π

)N/2 (ω
π

)(N2−N)/2

=

(√
ω

π

)N2

1

2
N
2

.
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We will study correlators of the form

〈MijMkl〉 =

∫
[dM ]e−

ω
2
TrM2

MijMkl.

Towards this end, consider

Z[J ] =

∫
[dM ]e−

ω
2
TrM2+Tr JM ,

where Tr (JM) = JijMji (repeated indices are summed). Correlators are given by taking
derivatives of Z[J ] with respect to the J ’s. Indeed, noting that

• ∂Mij

∂Mkl
= δikδjl

• d
dMij

Tr (JM) = d
dMij

JklMlk = Jklδilδjk = Jji

• d
dJij

eTr (JM) = eTr (JM) d
dJij

JklMlk = eTr (JM)δkiδljMlk = eTr (JM)Mji

• d
dJij

d
dJkl

e−
ω
2
Tr (M2)+Tr (JM)|J=0 = e−

ω
2
Tr (M2) d

dJij

d
dJkl

eTr (JM)|J=0 = e−
ω
2
Tr (M2)MjiMlk,

we easily find

〈MijMkl〉 =
d

dJji

d

dJlk
Z[J ]|J=0.

This can be generalised to

〈MijMkl . . .Mrs〉 =
d

dJji

d

dJlk
. . .

d

dJsr
Z[J ]|J=0.

To solve for Z[J ], we need to compute a Gaussian integral which amounts to completing the
square. Note that ω

2
Tr (M2)− Tr (JM) = ω

2
Tr ([M − J

ω
]2)− 1

2ω
Tr (J2). Thus

Z[J ] =

∫
[dM ]e−

ω
2
Tr ([M− J

ω
]2)+ 1

2ω
Tr (J2).

Changing the integration variables: M = M ′ + J
ω
⇒ dM = dM ′ because J is independent of

M . Then

Z[J ] =

∫
[dM ′]e−

ω
2
Tr (M ′2)+ 1

2ω
Tr (J2)

= e
1
2ω

Tr (J2)

∫
[dM ]e−

ω
2
Tr (M2)

= e
1
2ω

Tr (J2),

since
∫

[dM ]e−
ω
2
Tr (M2) = 1. Now

d

dJij
Tr (J2) =

d

dJij
JklJlk = δikδljJlk + Jklδilδjk = Jji + Jji = 2Jji.

9



Thus,

〈MijMkl〉 =
d

dJji

d

dJlk
e

1
2ω

Tr (J2)|J=0

=
d

dJji

[
1

2ω
e

1
2ω

Tr (J2) d

dJlk
Tr (J2)

]
|J=0

=
d

dJji

[
Jkl
ω
e

1
2ω

Tr (J2)

]
|J=0

=

[
δjkδil
ω

+
Jkl
ω

Jij
ω

]
e

1
2ω

Tr (J2)|J=0

=
1

ω
δjkδil.

This is the mathematical expression of the propagator in the matrix model.

2.1.1 Ribbon diagrams

The propagator 〈MijMkl〉 = 1
ω
δjkδil can be expressed as a diagram:

where the indices of each matrix are placed in pairs, in order, on a line. Lines are used to
connect the indices of the two matrices in accordance with the indices paired by the Kronecker
deltas, i.e. “i” connects to “l” according to the Kronecker delta δil and “j” connects to “k”
according to the Kronecker delta δjk. Thus an image of a “ribbon” is formed.

The Feynman rules for interpreting ribbon diagrams are as follows:

• Every ribbon comes with a 1
ω

.

• Every ribbon edge comes with a Kronecker delta.

For example, 〈MijMklMqrMst〉 is represented as the diagrams below:

10



The value of the diagrams (using the Feynman rules) are:

〈MijMklMqrMst〉 =
1

ω2
δilδjkδqtδrs +

1

ω2
δirδjqδktδls +

1

ω2
δitδjsδkrδlq.

The matrix model is a zero dimensional model. Thus, we can’t really sensibly define a local
(gauge) symmetry. We simply declare that global U(N) rotations of the hermitian matrix M
are a gauge symmetry. In this case, the physical observables are traces of M , since these are
the quantities that are gauge invariant.

2.1.2 Improving notation for gauge invariant states

We now simplify our notation. There is no reference to indices in the improved notation. We
will connect points that are labelled by the same index since they are summed to give the
traces of powers of Mij i.e. there are no free indices. The idea for the diagram corresponding
to 〈MijMji〉 is illustrated in the diagram below:

11



In what follows we will make use of the following correlators

• 〈Tr(M2)〉 = 1
ω
N2

• 〈Tr(M4)〉 = 1
ω2 (2N3 +N)

• 〈Tr(M2) Tr(M2)〉 = 1
ω2 (N4 + 2N2)

• 〈Tr(M2) Tr(M4)〉 = 1
ω3 (2N5 + 9N3 + 4N)

• 〈Tr(M4) Tr(M4)〉 = 1
ω4 (4N6 + 40N4 + 61N2).

These results were all obtained by drawing ribbon graphs. For example, for 〈Tr(M4)〉 we sum
the following three diagrams

Gerard ’t Hooft [8] was the first to suggest that it is useful to consider the limit N → ∞. In
this limit, the results quoted above can be simplified as follows

• 〈Tr(M2)〉 = 1
ω
N2

• 〈Tr(M4)〉 = 2
ω2N

3

• 〈Tr(M2) Tr(M2)〉 = 〈Tr(M2)〉〈Tr(M2)〉 = 1
ω2N

4

• 〈Tr(M2) Tr(M4)〉 = 〈Tr(M2)〉〈Tr(M4)〉 = 2
ω3N

5

• 〈Tr(M4) Tr(M4)〉 = 〈Tr(M4)〉〈Tr(M4)〉 = 4
ω4N

6.
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Thus, we learn that

The expectation value of products is equal to the product of expectation values in the N → ∞
limit.

This is a property of the large N theory and it is called factorisation. Although we have
only illustrated this in a few examples, the result holds in complete generality.

2.1.3 Factorisation

Our goal now is to understand the physical interpretation and implications of factorisation.
Consider a system that can be in a number of different states; these states are labelled with
index i. The probability for the system to be in a state i is µi. Note that

∑
i µi = 1, µi ≥ 0 ∀i.

There is a set of observables OI and the value of OI in state i is OI(i). The expectation value
of observables is 〈OI〉 =

∑
i µiOI(i). Factorisation is the statement that

〈OI1OI2 . . . OIn〉 = 〈OI1〉〈OI2〉 . . . 〈OIn〉

⇒
∑
i

µiOI1(i)OI2(i) . . . OIn(i) =
∑
i1

µi1OI1(i1)
∑
i2

µi2OI2(i2) · · ·
∑
in

µinOIn(in)

where we can consider any O’s and n can be anything. Interpreted as a system of equations for
the probabilities µi, the equations are highly over determined. Fortunately there is a solution
and it sets µi = 1 for i = i∗ and µi = 0 for i 6= i∗. Then both sides of the equation are equal to
OI1(i

∗)OI2(i
∗) . . . OIn(i∗). The system occupies a definite state, so that the sum over states in

the path integral reduces to a single term. Only in the classical limit is the system in a definite
state, so that this is a classical limit!

This conclusion holds for any theory of matrix fields so that the large N limit of N = 4
SYM theory is equivalent to some classical theory. Maldacena has conjectured that this classi-
cal theory is IIB string theory on AdS5 × S5, and that 1/N2 is equal to ~string theory. There is
now growing evidence for Maldacena’s conjecture.

2.1.4 Interacting theory

The expectation value for the interacting theory is given by

〈. . . 〉int = N
∫

[dM ]e−
ω
2
Tr (M2)−gTr (M4) . . .

The following steps allow us to compute expectation values of traces in the interacting theory:

1. Couple in a source, eTr (JM):

Z[J ] = N
∫

[dM ]e−
ω
2
Tr (M2)−gTr (M4)+Tr (JM)

with

〈Mji〉 =
d

dJij
Z[J ]|J=0

,

or more generally

〈MijMkl . . .Mmn〉 =
d

dJji

d

dJlk
. . .

d

dJnm
Z[J ]|J=0

.
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2. Expand the exponential, change M ’s into d
dJ

’s and pull them out of the integral:

Z[J ] =
∞∑
q=0

(−g)q

q!

(
d

dJba

d

dJcb

d

dJdc

d

dJad

)q
N
∫

[dM ]e−
ω
2
Tr (M2)+Tr (JM).

3. Perform the Gaussian integral by completing the square:

Z[J ] =
∞∑
q=0

(−g)q

q!

(
d

dJba

d

dJcb

d

dJdc

d

dJad

)q
e

1
2ω

Tr (J2).

Since this theory comes with a term that has “−gTr (M4)”, a new diagram is added with a
new rule:

This is a vertex and since M is raised to the power of 4 in the trace, the vertex has 4 legs.
Every vertex comes with a “−g”.

2.1.5 Double scaling limit

Taking the limits g → 0 and N →∞ such that λ = gN is fixed and small 1, we see that

〈Tr (M2)〉 = (C
(0)
0 + C

(0)
1 λ+ C

(0)
2 λ2 + · · · )N2 + (C

(1)
0 + C

(1)
1 λ+ C

(1)
2 λ2 + · · · )+

+ (C
(2)
0 + C

(2)
1 λ+ C

(2)
2 λ2 + · · · ) 1

N2
+ · · ·

= N2

(
(C

(0)
0 + C

(0)
1 λ+ C

(0)
2 λ2 + · · · ) + (C

(1)
0 + C

(1)
1 λ+ C

(1)
2 λ2 + · · · ) 1

N2
+

+ (C
(2)
0 + C

(2)
1 λ+ C

(2)
2 λ2 + · · · ) 1

N4

)
+ · · · .

Also,

〈Tr (M4)〉 = (C
(0)
0 + C

(0)
1 λ+ C

(0)
2 λ2 + · · · )N3 + (C

(1)
0 + C

(1)
1 λ+ C

(1)
2 λ2 + · · · )N+

+ (C
(2)
0 + C

(2)
1 λ+ C

(2)
2 λ2 + · · · ) 1

N

= N3

(
(C

(0)
0 + C

(0)
1 λ+ C

(0)
2 λ2 + · · · ) + (C

(1)
0 + C

(1)
1 λ+ C

(1)
2 λ2 + · · · ) 1

N2
+

+ (C
(2)
0 + C

(2)
1 λ+ C

(2)
2 λ2 + · · · ) 1

N4

)

This expansion is called the ’t Hooft expansion [8].

1The coupling g is called g2YM when you consider Yang-Mills theory.
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There are two small numbers, 1
N2 (which is ~ for string theory) and λ (which is ~ for QFT). λ in

this case is for matrix models. Recall that ~ measures how difficult it is to simultaneously mea-
sure x and p. The variable “λ” is related to the string tension in string theory. It is a source of
uncertainty and it is a new fundamental constant. These numbers are a hint that you are doing
string theory since in string theory we are faced with a new uncertainty principle which is con-
nected with the string’s tension. The new uncertainty arises because the string is an extended
object and hence is not able to probe position with the same resolution that a point particle can.

Note that factorisation does indeed hold true for the interacting theory, for example:

〈Tr(M2) Tr(M2)〉int = 〈Tr(M2)〉int〈Tr(M2)〉int
(

1 +O

(
1

N2

))
.

As concluded before, from factorisation, a classical limit is achieved in the large N limit. Noting
that 1

N2 → 0 as N → ∞, we identify 1
N2 ≡ ~large N theory. It will be argued that the large N

theory is string theory.

2.1.6 The Genus Expansion

Recall that

〈. . . 〉int =

∫
[dM ]e−

ω
2
Tr (M2)−gTr (M4) . . . .

Now, let M =
√
NM ′, so that ω

2
Tr (M2) = Nω

2
Tr (M ′2) and gTr (M4) = gN2 Tr (M ′4) =

NλTr (M ′4). Thus,

Z[0] =

∫
[dM ]e−

ω
2
Tr (M2)−gTr (M4) =

∫
[dM ′]e−

Nω
2

Tr (M ′2)−λN Tr (M ′4)

=

∫
[dM ′]e−

Nω
2

Tr (M ′2)
∞∑
n=0

1

n!
(−λN Tr (M ′4))n.

Before, we had 〈MijMkl〉 =
δilδjk
ω

and for every M vertex we have a “−g”. Now, we have

〈M ′
ijM

′
kl〉 =

δilδjk
Nω

and for every M ′ vertex we have a “−λN”. Consider

Z[0] =

∫
[dM ′]e−

Nω
2

Tr (M ′2)

(
1 + (−λN) Tr (M ′4) +

(−λN)2

2
(Tr (M ′4))2 + . . .

)
=

The number of closed loops in the ribbon graph is the number of “faces” in the triangulation.
The number of ribbons in the ribbon graph is the number of “edges” in the triangulation that
the sheets are joined on. The number of “vertices” in the ribbon graph is the number of vertices
in the triangulation. The Feynman diagrams we get from the interacting theory triangulate a

15



surface. Looking at the first diagram, the value of it is
(

1
Nω

)2
(−λN)(N)3. Now, the diagram

has 2 edges, 1 vertex, and 3 faces, which we observe corresponds to the powers of 2, 1, and 3

that are of the terms
(

1
Nω

)2
, (−λN)1, and (N)3 respectively. In general, the Feynman diagrams

will have the value (
1

Nω

)E
(−λN)V (N)F ,

where E, V , and F correspond to the number of edges, vertices, and faces a diagram has
respectively. The N dependence of a graph with E edges, F faces, and V vertices is NF−E+V .
The number χ ≡ F − E + V is called the Euler characteristic and it is a topological invariant
which means that all spaces of the same topology share the same number. For example, modify
a triangulation by stretching it such that we create a new face:

After the stretch, we get F ′ = F + 1, E ′ = E + 3, and V ′ = V + 2, and then

F ′ − E ′ + V ′ = F + 1− (E + 3) + V + 2 = F − E + V,

which is a concrete demonstration that this quantity is a topological invariant. If we squash
the triangulation to get rid of an edge, we find

After the squash, we get F ′′ = F , E ′′ = E − 1, and V ′′ = V − 1, and then

F ′ − E ′ + V ′ = F − (E − 1) + (V − 1) = F − E + V,

which is also a topological invariant.

A torus is obtained by modifying a sphere by adding a handle:
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For us to add a handle to a sphere, we need to cut 2 holes:

This gives us F ′ = F − 2, E ′ = E, and V ′ = V . Next, add the handle:

This gives us F ′′ = F − 2, E ′′ = E − 4, and V ′′ = V − 4. Thus,

F − E + V → F ′′ − E ′′ + V ′′ = F − E + V − 2.

This tells you that you will always subtract 2 from χ each time you add a handle, just as you
do to create a torus from a sphere.

Adding a handle to a torus produces a pretzel:
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Note the following:

• χsphere = Fsphere − Esphere + Vsphere = 4− 6 + 4 = 2

• χtorus = χsphere − 2 = 0

• χpretzel = χtorus − 2 = −2.

The value of χ for the surface determines theN dependence of the diagram. Planar diagrams are
diagrams you can draw on a plane/sphere; for diagrams that you cannot draw on a plane/sphere
we refer to them as non-planar diagrams. Thus, our sum over ribbon graphs becomes a sum
over surfaces as illustrated in the figure below.

Our path integral can be reinterpreted as a sum over surfaces. For particles we sum over world
lines. For strings we sum over world sheets which is a sum over surfaces. This strongly suggests
that the large N limit of a matrix model should be formulated as a string theory.

2.1.7 Complex matrices

Suppose we construct a complex matrix Z using two N × N Hermitian matrices M1 and M2

such that Z = 1√
2
(M1 + iM2) and Z† = 1√

2
(M1 − iM2). The correlators for this matrix model

are defined by

〈. . . 〉 =

∫
[dZ dZ†]e−ωTr (ZZ†) · · · =

∫
[dM1 dM2]e

−ω
2
Tr (M2

1 )−
ω
2
Tr (M2

2 ) . . . .

We can evaluate the following 3 basic correlators:

• 〈ZijZkl〉 = 0

• 〈Z†ijZ
†
kl〉 = 0

• 〈ZijZ†kl〉 = 1
ω
δilδjk.

Now, computing correlators of traces of Z, where Wick’s theorem instructs us to group fields
in pairs (indicated using round brackets in the following equation), we see that

〈Tr (Z2) Tr (Z†
2

)〉 = 〈(ZijZji)(Z†klZ
†
lk)〉+ 〈(ZijZ†kl)(ZjiZ

†
lk)〉+ 〈(ZjiZ†kl)(ZijZ

†
lk)〉

= 〈(ZijZ†kl)(ZjiZ
†
lk)〉+ 〈(ZjiZ†kl)(ZijZ

†
lk)〉,

which produces 2 diagrams. Similarly, 〈Tr (Z3) Tr (Z†
3
)〉 will produce 6 graphs. It can be de-

duced that 〈Tr (Zn) Tr (Z†
n
)〉 will produce n! diagrams. The first two correlators are illustrated

with diagrams below:
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which are equal to 2N2

ω2 and 3N3

ω3 + 3N
ω3 respectively. In the large N limit:

〈Tr (Z2) Tr (Z†
2

)〉 =
2N2

ω2

〈Tr (Z3) Tr (Z†
3

)〉 =
3N3

ω3

(
1 +O

(
1

N2

))
.

The general form of the correlator for traces of complex matrices is

〈Tr (ZJ) Tr (Z†
J

)〉 =
JNJ

ωJ

(
1 +O

(
1

N2

))
.

As mentioned before, planar diagrams are diagrams you can draw on a plane/sphere. Only the
planar diagrams contribute in the large N limit since Nχsphere = N2 dominates in the large N
limit. Introducing an operator OJ such that

OJ =

√
ωJ Tr (ZJ)√
JNJ

,

we find the correlator of this operator is

〈OJO†K〉 = δJK .

We now wish to evaluate a correlator of the form 〈O2O2O†4〉:

〈O2O2O†4〉 = 〈 ω√
2N

Tr (Z2)
ω√
2N

Tr (Z2)
ω2

2N2
Tr (Z†

4

)〉

=
ω4

4N4
〈Tr (Z2) Tr (Z2) Tr (Z†

4

)〉
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= A

[
16N3

ω3
+ non-planar

]
= A

[
2× 2× 4N3

ω3
+ non-planar

]
,

where A ≡ ω4

4N4 . The general form of the example above is

〈Tr (ZJ1) Tr (ZJ2) Tr (Z†
J1+J2 )〉 =

J1J2(J1 + J2)N
J1+J2−1

ωJ1+J2

and

〈OJ1OJ2O
†
K〉 = δK,J1+J2

√
ωJ1+J2+K

√
J1J2K

√
NJ1+J2+K

〈Tr (ZJ1) Tr (ZJ2) Tr (Z†
K

)〉

= δK,J1+J2
ωJ1+J2√

J1J2(J1 + J2)

NJ1+J2−1

NJ1+J2

J1J2(J1 + J2)

ωJ1+J2

= δK,J1+J2

√
J1J2(J1 + J2)

N
,

where we have used the identity f(x)δx,a = f(a)δx,a. Note that we only sum the planar diagram
contribution since it is the only contribution that survives in the large N limit. To illustrate
this result, we have two small loops that have J1 and J2 legs respectively, and they connect to
a bigger loop that has J1 + J2 legs:
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The J1 and J2 diagrams can have their legs shifted around the J1 + J2 diagram producing
J1 and J2 diagrams respectively. But the J1 + J2 diagram can also shift its legs resulting in
J1 + J2 diagrams. Therefore, in total, J1J2(J1 + J2) diagrams are produced. This diagram can
be analogously thought of as 2 strings with lengths J1, J2 joining to produce a third string of
length J1 + J2.

2.1.8 Comparisons

In this section we will compare the results from the matrix model to those of N = 4 SYM
theory. To go from the matrix model results to the N = 4 SYM results, we need to append
spacetime dependence which is easily determined by dimensional analysis. This section will
provide concrete examples which nicely illustrate this.

Matrix Model:

Recall that for the matrix model, the correlator is

〈ZijZ†kl〉 =
δilδjk
ω

and the operator we use is

OJ =

√
ωJ Tr (ZJ)√
JNJ

,

with the correlators

〈OJO†K〉 = δJK

and

〈OJ1OJ2O
†
K〉 = δK,J1+J2

√
J1J2(J1 + J2)

N
.

N = 4 SYM:

In this theory, the action is

S =

∫
d4x Tr (∂µZ∂

µZ†) + . . .

where Z = φ1 + iφ2, and φ1 and φ2 are hermitian matrices. Thus, the correlator in this theory
is

〈Zij(x1)Z†kl(x2)〉 =
δilδjk
|x1 − x2|2

.

The gauge invariant operators for this theory include

OJ(x1) =
Tr (ZJ(x1))√

JNJ
,

which have the following two point function

〈OJ(x1)OK(x2)〉 =
δJK

|x1 − x2|2J

and three point function

〈OJ1(x1)OJ2(x1)O
†
K(x2)〉 = δK,J1+J2

√
J1J2(J1 + J2)

N

1

|x1 − x2|2(J1+J2)
.
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2.1.9 Link between string theory and gauge theory

According to the AdS/CFT correspondence, for IIB strings on AdS5×S5, energy and momen-
tum on S5 is mapped into the dimension ∆/scaling dimension and R-charge in N = 4 SYM
respectively. The scaling dimension of any local operator A is equal to the negative power of
the dimension of length at the free field fixed point. To be explicit, ∆A = B ⇒ [A] = L−B.

Here are some more simple examples:

• [Z] = L−1 ⇒ ∆Z = 1

• [Z2] = L−2 ⇒ ∆Z2 = 2

Thus the scaling dimension for the operator OJ is

∆OJ = J,

since

[OJ ] = [Tr (ZJ)] = [ZJ ] = L−J .

The scaling dimension of operator OJ is in fact the energy of the dual string state as mentioned
in the beginning of this subsection 2.1.9, i.e. energy in string theory ↔ ∆ in N = 4 SYM.

A 5-sphere, S5, defined by (x1)
2 + (x2)

2 + (x3)
2 + (x4)

2 + (x5)
2 + (x6)

2 = R2 has an SO(6)
symmetry. For the QFT, there are the 6 fields φ1, . . . , φ6 that also enjoy an SO(6) symmetry
which is the R-symmetry. Remember that the angular momentum operator is L = −i ∂

∂φ
and

e−iθLZ = e−iθ#Z, where Z = φ1 + iφ2 and # is equal to the SO(6) charge that Z carries. eiθLZ
is nothing but a finite rotation by angle θ, generated by L. This is simple to compute. We
rotate Z such that

φ1 → φ′1 = cos (θ)φ1 + sin (θ)φ2

and

φ2 → φ′2 = − sin (θ)φ1 + cos (θ)φ2,

so that

φ′1 + iφ′2 = cos (θ)φ1 + sin (θ)φ2 − i sin (θ)φ1 + i cos (θ)φ2

= e−iθφ1 + ie−iθφ2

= e−iθ(φ1 + iφ2)

= e−iθZ.

Therefore, we deduce that # for Z is 1. We have thus deduced that the R-charge of OJ is

ROJ = −J,

which is in fact the momentum of the string as stated before, i.e. momentum in string theory
↔ R-charge in N = 4 SYM. Now, we can deduce the mass of OJ :

m2
OJ = E2

OJ − p
2
OJ

= ∆2
OJ −R

2
OJ

= J2 − (−J)2

= 0.

Therefore, OJ corresponds to a massless graviton moving on a 5-sphere.
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2.1.10 Fock space in supergravity

Recall that the mode expansion of a field in a Lorentz invariant QFT with relativistic normal-
isation is given as

φ(x) =

∫
d3k

(2π)32ωk
(e−ik·xα(k) + eik·xα†(k)),

where α(k) = (2π)
3
2

√
2ω~ka~k and α†(k) = (2π)

3
2

√
2ω~ka

†
~k
. For the non-relativistic case, we

had 〈~k′|~k〉 = δ(~k − ~k′), a†~k|0〉 = |~k〉, and a†~k1
a†~k2
|0〉 = |~k1, ~k2〉 for continuous momenta, and

〈n|m〉 = δnm, a†n|0〉 = |n〉, and a†na
†
m|0〉 = |n,m〉 for the field in a box.

Now, |J〉 = state of graviton with energy J and momentum −J . We also have 〈J |K〉 = δJK
and 〈J1, J2|J1 + J2〉 = 0 (since a one particle state is orthogonal to a two particle state in the
free theory). When energies become very large, then there is an interaction between the particle
states. This is due to gravity, and the “charge” responsible for generating the gravitational field
is the mass. We know how mass and energies are related by Einstein’s formula E = mc2. In
this case we will see that 〈J1, J2|J1 +J2〉 begins to differ from zero. Computing 〈J1, J2|J1 +J2〉,
we have [9]

〈J1, J2|J1 + J2〉 = δK,J1+J2

√
J1J2(J1 + J2)

N
,

which is obtained by summing only the planar contribution (i.e. this result is not exact). This

overlap suggests operators are orthogonal as long as J � N
2
3 . Considering the case when

J1, J2 = O(1), the correlator is

〈J1, J2|J1 + J2〉 = δK,J1+J2

√
J1J2(J1 + J2)

N
→ δK,J1+J2

#

N
→ 0, as N →∞.

However, when J1, J2 = O(N), then the correlator reads

〈J1, J2|J1 + J2〉 = δK,J1+J2

√
J1J2(J1 + J2)

N
→ δK,J1+J2

√
N2

N

(
#
√
N
)

= #
√
NδK,J1+J2 6= 0.

Thus, the identification of each trace with a particle has broken down. In the matrix model,
we have

〈OJO†J〉 = JNJ + J5NJ−2 + . . .

Note that if J ∼ N
1
2 , then the NJ−2 term is as big as the NJ term. As a result one cannot

neglect the non-planar diagrams; we must sum everything. This informs us that as we change
J , the object we are studying changes. To illustrate what was just stated, the table below
summarises the relationship between J (which is a label of QFT) and the object (which lives
in string theory):

J object
O(1) graviton

O(
√
N) string

O(N) giant graviton
O(N2) new spacetime geometry

To explain this further in detail, the table below explains what each order means in connection
to J and the dual string theory object:
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N graviton (O(1)) string (O(
√
N)) giant graviton (O(N)) new gµν (O(N2))

10 Tr (Z3) Tr (Z3Y ) Tr (Z4) + . . . Tr (Z4) + . . .
100 Tr (Z3) Tr (Z9Y ) Tr (Z40) + . . . Tr (Z400) + . . .
1000 Tr (Z3) Tr (Z27Y ) Tr (Z400) + . . . Tr (Z40 000) + . . .

The fields Z and Y are independent complex fields and are discussed in detail in subsections 2.3
and 2.4 ; we do not need any further details about the fields at this point in this subsection. For
a graviton, large N correlators are obtained by summing planar diagrams only. For a string we
also sum planar diagrams as long as J2

N
� 1. For a giant graviton, every diagram contributes;

there will be N ! diagrams and we take N →∞. For new spacetime geometry, including black
holes we again need to sum all of the diagrams.

2.1.11 Conclusion

When constructing the matrix model, we construct Gaussian integrals that help us to evaluate
correlators. This led us to specific properties of correlators which compelled us to think of
making use of diagrams when computing correlators; we called these diagrams ribbon diagrams.
These diagrams came with their own set of Feynman rules and we deduced that traces of powers
of our matrices are the physical observables with interesting correlators.

When we take the limit N → ∞, we notice that only the leading term of the correlators
survive and that the expectation value of products is equal to the product of expectation values.
This result first obtained by [10], is called factorisation. We linked this to the conjecture that
the large N limit of N = 4 SYM theory, is given by the classical limit of IIB string theory on
AdS5 × S5, and we argued that 1/N2 is equal to ~string theory.

We considered the interacting theory. The interaction term “−gTr (M4)” required a new
rule: the vertex ribbon diagram that has 4 legs corresponding to M to the power of 4. From
there we take the double scaling limit g → 0 and N →∞ such that λ = gN is fixed and small.
This double scaling limit is known as the ’t Hooft limit. The new constant λ along with 1/N2

are both related to ~ (QFT and string theory respectively) and they indicate that studying the
large N expansion in the matrix model is equivalent to doing string theory.

We rescaled variables such that ribbon graphs have a N dependence of NF−E+V where
χ = F − E + V is the Euler characteristic. It is a topological invariant. We have concluded
that the ribbon diagrams of the interacting theory triangulate a surface.

Following that, we investigated complex matrices and the correlators associated with com-
plex matrices. We noted that Tr (Zn) Tr (Z†

n
) will produce n! diagrams, but in the large

N limit, we will only get contributions from planar diagrams. Thus 〈Tr (ZJ) Tr (Z†
J
)〉 =

JNJ

ωJ

(
1 +O

(
1
N2

))
. We introduced the operatorOJ which normalises Tr (ZJ) such that 〈OJOK〉 =

δJK . Through further investigation, we also found that 〈OJ1OJ2O
†
K〉 = δK,J1+J2

√
J1J2(J1+J2)

N
,

where J1, J2, and J1 + J2 can be thought of as lengths of 3 strings. Comparing this result from
the matrix model toN = 4 SYM, we see that inN = 4 SYM theory, 〈OJ1(x1)OJ2(x1)O

†
K(x2)〉 =

δK,J1+J2

√
J1J2(J1+J2)

N
1

|x1−x2|2(J1+J2)
. It has the additional term of 1

|x1−x2|2(J1+J2)
compared to the

result of the matrix model correlator. From there, we deduced that the scaling dimension of OJ
is ∆OJ = J and the R-charge of OJ is ROJ = J , which relates to the energy and momentum in
the string theory respectively. Thus we determine the mass of OJ to be m2

OJ = E2
OJ − p

2
OJ = 0,

which shows that OJ is a massless graviton moving on a 5-sphere.
In the Fock space in supergravity, when the energy is very high, there will be interactions

between particle states. The correlator we study becomes 〈OJO†J〉 = JNJ +J5NJ−2 + . . . , and

if J ∼ N
1
2 , then the NJ−2 term is as big as the NJ term, so one cannot neglect the non-planar

diagrams. It further shows us that changing J changes the interpretation of the object you
study (in string theory). Taken together, this is compelling evidence that matrix models are in
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fact string theories.

2.2 Young diagrams

For operators of dimension ∆ = N we know that the planar limit is not accurate. The large
N limit of these operators is described by an emergent Yang-Mills theory [11]. We would like
to study this theory. With the use of group representation theory, we will be able to sum all
ribbon graphs and not just planar contributions. Young diagrams play a central role in this
discussion.

A Young diagram is an array of n boxes aligned on the left in rows and each consecutive
row will have the same or less boxes as the row above it. Young diagrams label all of the
possible irreducible inequivalent representations (known as irreps) of the symmetric group Sn.
When we list the number of boxes in each row of Young diagram R, it gives a partition of n,
so we can write “R is a partition of n”, which is denoted as R ` n. Each representation is a
set of matrices acting on a vector space. We can label a basis for this vector space using the
Young-Yamanouchi symbols. For us to get a Young-Yamanouchi symbol, we fill in the boxes
with the integers 1, 2, 3, . . . , n in the order of which box we could remove such that what is left
is still a valid Young diagram. For example, suppose we have the irrep labelled by which
has the following Young-Yamanouchi symbols:

4 3 2
1

4 3 1
2

4 2 1
3

.

There is a formula to determine the dimensions of a symmetric group irrep given the Young
diagram. This formula includes the notion of a hook length, which is a number that is given to
each box in the Young diagram. The hook length of a box b in Young diagram R is the number
of boxes that are in the same row to the right of b plus the number of boxes in the same column
below b plus one. Inside the column containing box b, draw a line from below the bottom of
R to b and then continue that line to the right until you exit R. The hook length is equal to
the number of boxes this line (the “hook”) passes through. The diagram below illustrates an

example of a hook associated to the first box in the first row of the Young diagram that

has a hook length of 5:

.

As an example, the Young diagram with the hooks lengths filled in is given as

hook lengths =
5 3 1
3 1
1

.

Now, the dimension of an irrep labelled by Young diagram R is equal to n! divided by the
product of hook lengths, and it is written as

dR =
n!∏

x∈R hook(x)
≡ n!

hooksR
,

where R ` n. The Young diagram labels an irrep of S6 with dimension

d =
6!

5 · 3 · 1 · 3 · 1 · 1
= 16.
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Thus, there are 16 valid Young-Yamanouchi symbols that can be drawn. We now introduce
the concept of the content of a box in a Young diagram. A box x in row i and column j of R
has content j − i. Here is an example of Young diagram with the content filled in

A Young-Yamanouchi pattern has, each box in the Young diagram labelled by an integer i
that is unique, with 1 ≤ i ≤ n. The content of the box labelled i is ci. Let |R(k,k+1)〉 denote
the Young-Yamanouchi symbol that is obtained from |R〉, some Young-Yamanouchi symbol of
Young diagram R, by swapping the labels of boxes k and k + 1. The matrix elements of the
adjacent transpositions are now specified by

ΓR((k, k + 1))|R〉 =
1

ck − ck+1

|R〉+

√
1− 1

(ck − ck+1)2
|R(k,k+1)〉.

For example

Γ ((1 2))|
4 3
2
1
〉 = −|

4 3
2
1
〉

Γ ((1 2))|
4 2
3
1
〉 = −1

3
|

4 2
3
1
〉+

√
8

3
|

4 1
3
2
〉

Γ ((1 2))|
4 1
3
2
〉 =

1

3
|

4 1
3
2
〉+

√
8

3
|

4 2
3
1
〉.

By choosing

|
4 3
2
1
〉 =

1
0
0

 |
4 2
3
1
〉 =

0
1
0

 |
4 1
3
2
〉 =

0
0
1

 ,
we find the following matrix representation for the permutation (1 2)

Γ ((1 2)) =

−1 0 0

0 −1
3

√
8
3

0
√
8
3

1
3

 .
In conclusion, Young diagrams label irreps, they provide us with a formula for the dimensions
of irreps, they can be used to label the elements of a basis and they give us the matrices defining
the irreps.

2.3 Single Matrix Z

In applying group representation theory to matrix models we make frequent use of projection
operators. In this subsection we introduce some of the projection operators that are needed.
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2.3.1 Projection operators

Suppose we have a vector ~v with two components ~v = (vx, vy). The diagram below illustrates
this arbitrary vector

Introduce the operators P̂x and P̂y such that

P̂x~v = (vx, 0) , P̂y~v = (0, vy).

The diagram below makes this more clear:

P̂x and P̂y are projection operators that project an arbitrary vector ~v to its x-component and

y-component respectively in the plane. Note that P̂x · P̂x|v〉 = P̂ 2
x |v〉 = P̂x|v〉, which implies

P̂ 2
x = P̂x,

and similarly P̂ 2
y = P̂y. Also,

P̂x · P̂y = P̂y · P̂x = 0.

This result is simple to interpret: P̂x · P̂y says you first project onto the y-axis and then you

project onto the x-axis which vanishes. A similar argument is made for P̂y · P̂x. Finally, note
that

P̂x|v〉+ P̂y|v〉 = |v〉
⇒ P̂x + P̂y = 1.
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This is obvious upon noting that P̂x~v = (vx, 0) and P̂y~v = (0, vy). These properties of projection
operators, that are obvious in our simple example, hold in general. These projection operators,
in general, act in the space V ⊗nN - we discuss this space in a few pages that are to follow.
We can define projection operators that project onto definite irreducible representations of the
symmetric group. The projector that projects onto irrep R is

(P̂R)IJ =
dR
n!

∑
σ∈Sn

χR(σ)(σ)IJ ,

where dR is the dimension of irrep R, σ is a permutation, Sn is the symmetric group permuting
n elements, χR(σ) is the character of σ in irrep R, I and J denote i1i2 . . . in and j1i2 . . . jn
respectively, and (σ)IJ = δi1jσ(1) . . . δ

in
jσ(n)

.

We now consider the cases n = 2 with R = and R = :

• n = 2 (thus S2 = {1, (1 2)}) and R =

(P̂ )i1i2j1j2
vj1wj2 =

1

2

[
χ (1)(1)i1i2j1j2

+ χ ((1 2))((1 2))i1i2j1j2

]
vj1wj2

=
1

2

[
δi1j1δ

i2
j2

+ δi1j2δ
i2
j1

]
vj1wj2

=
1

2

[
vi1wi2 + wi1vi2

]
,

which is the symmetric part of the tensor product of two vectors. Thus P̂ projects to
the symmetric part of the tensor product of two vectors. Also, note that

(P̂ )i1i2j1j2
(P̂ )j1j2k1k2

=
1

4

[
δi1j1δ

i2
j2

+ δi1j2δ
i2
j1

] [
δj1k1δ

j2
k2

+ δj1k2δ
j2
k1

]
=

1

4

[
δi1k1δ

i2
k2

+ δi1k2δ
i2
k1

+ δi1k2δ
i2
k1

+ δi1k1δ
i2
k2

]
=

1

2

[
δi1k1δ

i2
k2

+ δi1k2δ
i2
k1

]
= (P̂ )i1i2k1k2

,

which is the property P̂ 2 = P̂ , with the correct placing of indices.

• n = 2 and R =

(P̂ )i1i2j1j2
vj1wj2 =

1

2

[
χ (1)(1)i1i2j1j2

+ χ ((1 2))((1 2))i1i2j1j2

]
vj1wj2

=
1

2

[
δi1j1δ

i2
j2
− δi1j2δ

i2
j1

]
vj1wj2

=
1

2

[
vi1wi2 − wi1vi2

]
,

which is the antisymmetric part of the tensor product of two vectors. Thus P̂ projects
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to the antisymmetric part of the tensor product of two vectors. Also, note that

(P̂ )i1i2j1j2
(P̂ )j1j2k1k2

=
1

4

[
δi1j1δ

i2
j2
− δi1j2δ

i2
j1

] [
δj1k1δ

j2
k2
− δj1k2δ

j2
k1

]
=

1

4

[
δi1k1δ

i2
k2
− δi1k2δ

i2
k1
− δi1k2δ

i2
k1

+ δi1k1δ
i2
k2

]
=

1

2

[
δi1k1δ

i2
k2
− δi1k2δ

i2
k1

]
= (P̂ )i1i2k1k2

,

which, once again, is the property P̂ 2 = P̂ .

We also observe that these operators are complete:

(P̂ + P̂ )IJ = 1
I
J .

Recall that the general form of the projection operator is given by (P̂R)IJ = dR
n!

∑
σ∈Sn χR(σ)(σ)IJ .

We will compute the product of two projection operators:

P̂RP̂S =
dR
n!

dS
n!

∑
σ1∈Sn

∑
σ2∈Sn

χR(σ1)χS(σ2)σ1σ2,

where everything on the right hand side of the equation is a number except for σ1σ2 which is
a matrix, with the property (if we consider the left action):

(σ1)
I
J(σ2)

J
K = (σ2 · σ1)IK .

We change variables from σ2 to ψ = σ2 · σ1. Therefore the product becomes

P̂RP̂S =
dR
n!

dS
n!

∑
σ1∈Sn

∑
ψ∈Sn

χR(σ1)χS(ψ · σ−11 )ψ.

Multiplying both sides to the right by σ−11 results in ψ ·σ−11 = σ2 ·σ1σ−11 = σ2 ·1 = σ2. The term
χR(σ1)χS(ψ · σ−11 ) suggests we use the Fundamental Orthogonality relation. Thus, we obtain

P̂RP̂S =
dR
n!

dS
n!

∑
ψ∈Sn

(∑
σ1∈Sn

(ΓR(σ1))iiΓS(ψ)jkΓS(σ−11 )kj

)
ψ

= δRS
dS
n!

∑
ψ∈Sn

χS(ψ)ψ

= δRSP̂S.

Therefore, the general result of multiplying two projection operators, of irrep R and S respec-
tively, is given as

P̂RP̂S = δRSP̂R,

where R ` n.
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Let VN denote the N dimensional vector space. This space has a basis given by the N ba-
sis vectors

|e1〉 =


1
0
0
...
0

 |e2〉 =


0
1
0
...
0

 . . . |eN〉 =


0
0
0
...
1

 ,

where each vector has N components. This is a complex vector space so that the general vector
in this case can be expressed as

|v〉 =
N∑
i=1

ci|ei〉

with ci are some complex numbers. The dual vector space is given by row vectors, with basis 〈ei|.
To get the dual to |v〉, we transpose columns into rows and complex conjugate the expansion
coefficients

〈v| =
N∑
i=1

c∗i 〈ei|.

The inner product is given by

〈v|v〉 =
N∑
i=1

|ci|2.

The group of N × N unitary matrices, U(N), has the obvious action on this space, acting by
matrix multiplication on vectors

|v〉 → U |v〉, 〈v| → 〈v|U †.

The inner product under the action of U(N)

〈v|v〉 → 〈v|U †U |v〉 = 〈v|v〉

is invariant. The tensor product of n copies of VN vector spaces can be written as

VN ⊗ VN ⊗ · · · ⊗ VN ≡ V ⊗nN ,

where V ⊗nN is an Nn dimensional space. V ⊗nN inherits a natural action of the unitary group
from the action on VN :

(U⊗n)|v(1)〉 ⊗ |v(2)〉 ⊗ · · · ⊗ |v(n)〉 =

= (U ⊗ U ⊗ · · · ⊗ U)|v(1)〉 ⊗ |v(2)〉 ⊗ · · · ⊗ |v(n)〉
= U |v(1)〉 ⊗ U |v(2)〉 ⊗ · · · ⊗ U |v(n)〉.

U acts in the same way (by matrix multiplication) on every vector in the tensor product. One
can view U⊗n as an Nn dimensional matrix. We now define an action of the symmetric group
Sn on V ⊗nN . The symmetric group acts by interchanging the order of the vectors in the tensor
product, without shuffling the components of any given vector

(σ)|v(1)〉 ⊗ |v(2)〉 ⊗ · · · ⊗ |v(n)〉 = |v(σ(1))〉 ⊗ |v(σ(2))〉 ⊗ · · · ⊗ |v(σ(n))〉.
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An important observation is the fact that the actions of the symmetric group Sn and the unitary
group U(N) on V ⊗nN commute:

U⊗n · σ · (|v(1)〉 ⊗ |v(2)〉 ⊗ · · · ⊗ |v(n)〉) = U⊗n · (|v(σ(1))〉 ⊗ |v(σ(2))〉 ⊗ · · · ⊗ |v(σ(n))〉)
= U |v(σ(1))〉 ⊗ U |v(σ(2))〉 ⊗ · · · ⊗ U |v(σ(n))〉
= σ · (U |v(1)〉 ⊗ U |v(2)〉 ⊗ · · · ⊗ U |v(n)〉)
= σ · U⊗n · (|v(1)〉 ⊗ |v(2)〉 ⊗ · · · ⊗ |v(n)〉).

The fact that there are commuting actions of U(N) and Sn implies deep relations between the
representation theory and these two groups. This connection is called Schur-Weyl duality.

The Gelfand-Tsetlin pattern labelling chooses basis states that are simultaneous eigenstates
of the Cartan subalgebra of U(N), and further, explicit formulas are known for the matrix
elements of the generators of the group with respect to these basis states. The key characteristic
of the Gelfand-Tsetlin basis is that states are labelled by the irrep they belong to, for each group
in the chain of subgroups

U(N) ⊃ U(N − 1) ⊃ U(N − 2) ⊃ · · · ⊃ U(3) ⊃ U(2) ⊃ U(1).

We will now describe how the Gelfand-Tsetlin patterns are constructed. An inequivalent
irreducible representation for GL(N,C) is uniquely given by specifying the sequence of N
integers

m = (m1N ,m2N , . . . ,mNN) (1)

satisfying mkN ≥ mk+1,N for 1 ≤ k ≤ N − 1. Notice that this sequence can be identified
with the row lengths of a Young diagram R that has no more than N rows - this is the Young
diagram labelling the GL(N,C) irreducible representation.2 We call the sequence (1) the weight
of the irreducible representation. The restriction of this irrep onto the subgroup GL(N − 1,C)
is reducible. It decomposes into a direct sum of GL(N − 1,C) irreps with highest weights

m′ = (m1,N−1,m2,N−1, . . . ,mN−1,N−1),

for which the “betweenness” conditions

mkN ≥ mk,N−1 ≥ mk+1,N for 1 ≤ k ≤ N − 1

hold. This specifies the branching rule for how a GL(N,C) irrep decomposes when we restrict
to the GL(N − 1,C) subgroup. We can repeat this procedure until we get to GL(1,C) which
has one-dimensional carrier spaces. The Gelfand-Tsetlin labelling assembles this sequence of
representations of the subgroups into a Gelfand-Tsetlin pattern. There is a unique pattern for
each state in the basis of the carrier space of the original GL(N,C) irrep. The pattern can be
written as a triangular arrangement of integers, denoted M , with the structure

M =


m1N m2N . . . mN−1,N mNN

m1,N−1 m2,N−1 . . . mN−1,N−1
. . . . . . . . .
m12 m22

m11


The top row contains the weight that specifies the irrep of the state and the entries of lower rows
are subject to the betweenness condition. The lower rows give the sequence of irreps our state

2U(N) is a subgroup of GL(N). Each irrep of GL(N) restricts to a unique irrep of U(N) so that the irreps
of GL(N) are also labelled by Young diagrams.
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belongs to as we pass through successive restrictions from GL(N,C) to GL(N − 1,C) to . . .
to GL(1,C). For each possible pattern we have a distinct vector. The vectors labelled by two
distinct patterns are orthogonal and the dimension of the irrep is given by the total number
of distinct Gelfand-Tsetlin patterns that can be constructed. As we have already described
above, everything we have said about GL(N,C) applies, without any change, to U(N). This
orthogonal basis of U(N) is called the Gelfand-Tsetlin basis.

The representations of U(N) are labelled by Young diagrams with no more than N rows.
We will denote the dimension of a U(N) irrep by DimR. Consider n = 3, corresponding to the
vector space V ⊗3N . The table below displays the values of R, dR, and DimR:

R dR DimR

1 N(N+1)(N+2)
6

2 N(N+1)(N−1)
3

1 N(N−1)(N−2)
6

Summing up the products of dR and DimR with their respective representations R, we see that∑
R

dRDimR =
N(N + 1)(N + 2)

6
+

2N(N + 1)(N − 1)

3
+
N(N − 1)(N − 2)

6

= N3

(
1

6
+

2

3
+

1

6

)
+N2

(
3

6
− 3

6

)
+N

(
2

6
− 2

3
+

2

6

)
= N3,

which is an insightful result since the dimension of V ⊗3N is N3. In fact,
∑

R dRDimR is equal to
the total number of states in the vector space V ⊗nN in general. This shows each state is labelled
by a unique Young-Yamanouchi pattern and a unique Gelfand-Tsetlin pattern.

2.3.2 Equivalence relation and equivalence classes

∼ is an equivalence relation if it obeys the following three conditions:

• a ∼ a (reflectivity)

• a ∼ b then b ∼ a (symmetry)

• a ∼ b and b ∼ c, then it implies that a ∼ c (transitivity).

Now, we say g is conjugate to h, written as g ∼ h with g,h ∈ G, if g = σhσ−1 for some σ ∈ G.
We now make and prove the statement that “conjugate to” is an equivalence relation.

Proof:

• Reflexivity is satisfied with the condition g = 1g1−1

• Symmetry is satisfied when g = σhσ−1 implies h = σ−1gσ = σ−1g(σ−1)−1

• Transitivity is satisfied when we let g = σ1hσ
−1
1 and h = σ2jσ

−1
2 which implies g =

σ1(σ2jσ
−1
2 )σ−11 = σ1σ2j(σ1σ2)

−1 �
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This equivalence relation partitions the group into conjugacy classes (this is the name of these
equivalence classes). Consider the characters of g and h, denoted as χR(g) = Tr(ΓR(g)) and
χR(h) = Tr(ΓR(h)) respectively, with g ∼ h. Then

χR(h) = Tr(ΓR(h)) = Tr(ΓR(σ)ΓR(g)ΓR(σ−1))

= Tr(ΓR(σ−1)ΓR(σ)ΓR(g))

= Tr(ΓR(1)ΓR(g))

= Tr(ΓR(g))

= χR(g),

where in the second line the cyclicity of the trace is used, and in the third line the property
ΓR(a) ·ΓR(b) = ΓR(a · b) for a,b ∈ G and the fact that σ−1σ = 1 for σ ∈ G was used. The result
(χR(g) = χR(h)) tells us that all elements in a conjugacy class have the same character.

Consider R ` n, which means P̂R acts on V ⊗nN . We wish to evaluate the product of P̂R and
ψ (where ψ ∈ Sn). For the representation of Sn on V ⊗n recall that (σ1)

I
J(σ2)

J
K = (σ2 · σ1)IK .

The multiplication is given as

(P̂R)IJ(ψ)JK =
dR
n!

∑
σ∈Sn

χR(σ)(σ)IJ(ψ)JK .

By changing the summation variable from σ to τ , where

(σ)IJ(ψ)JK = (ψ)IJ(τ)JK

⇒ (σ)IL = (ψ)IJ(τ)JK(ψ−1)KL

= (ψ−1τψ)IL,

where the right action of the group was used. Then

(P̂R)IJ(ψ)JK =
dR
n!

∑
τ∈Sn

χR(ψ−1τψ)(ψ)IQ(τ)QL (ψ−1)LJ (ψ)JK

=
dR
n!

∑
τ∈Sn

χR(ψ−1τψ)(ψ)IQ(τ)QK

= (ψ)IQ(P̂R)QK .

From this result, we conclude that P̂Rψ = ψP̂R, so P̂R and ψ commute with each other, i.e
[P̂R, ψ] = 0.

It should be noted that conjugacy classes of the symmetric group correspond to the cycle
structure. For example, the S5 group has the following cycle structures

1. (1)(2)(3)(4)(5)

2. (1 2)(3)(4)(5)

3. (1 2 3)(4)(5)

4. (1 2)(3 4)(5)

5. (1 2 3)(4 5)

6. (1 2 3 4)(5)

7. (1 2 3 4 5)
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and they correspond to the following Young diagrams

1.

2.

3.

4.

5.

6.

7.

From this correspondence, we conclude that Young diagrams also label conjugacy classes!

2.3.3 Schur Polynomials

We will now introduce the Schur polynomial [12],[13] which is given as

χR(Z) =
1

n!

∑
σ∈Sn

χR(σ)(σ)IJ(Z)JI ,

where Z is a N × N complex matrix. Consider for example R = and n = 3. In this
case

χ (Z) =
1

3!
(χ (1)Zi1

ii
Zi2
i2
Zi3
i3

+ χ ((1 2))Zi1
i2
Zi2
i1
Zi3
i3

+ χ ((1 3))Zi1
i3
Zi2
i2
Zi3
i1

+χ ((2 3))Zi1
i1
Zi2
i3
Zi3
i2

+ χ ((1 2 3))Zi1
i2
Zi2
i3
Zi3
i1

+ χ ((1 3 2))Zi1
i3
Zi2
i1
Zi3
i2

)

=
1

6
(Zi1

ii
Zi2
i2
Zi3
i3

+ Zi1
i2
Zi2
i1
Zi3
i3

+ Zi1
i3
Zi2
i2
Zi3
i1

+ Zi1
i1
Zi2
i3
Zi3
i2

+ Zi1
i2
Zi2
i3
Zi3
i1

+ Zi1
i3
Zi2
i1
Zi3
i2

)

=
1

6
( Tr(Z)3 + 3 Tr(Z2) Tr(Z) + 2 Tr(Z3)).

The relation (for n = 3) between the class, the permutation σ and the trace Tr(σZ⊗3) is given
below

Class σ Tr(σZ⊗3)
13

1 Tr(Z)3

2 1 (1 2), (1 3), (2 3) Tr(Z) Tr(Z2)
3 (1 2 3), (1 3 2) Tr(Z3)

We thus conclude from this that conjugacy classes of the symmetric group correspond to trace
(physical) operators. Recall that taking a trace produces a gauge invariant operator. We can
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rewrite the Schur Polynomial as [12],[13]

χR(Z) =
1

dR

[
dR
n!

∑
σ∈Sn

χR(σ)(σ)IJ(Z)JI

]
=

1

dR
Tr(P̂RZ

⊗n).

We now wish to evaluate the 2-point function of the Schur polynomial. The correlator is given
by [12],[13]

〈χR(Z)χ†S(Z)〉 =
1

dRdS
(P̂R)IJ(P̂S)KL 〈(Z⊗n)JI (Z†

⊗n
)LK〉,

where (Z⊗n)IJ = Zi1
j1
. . . Zin

jn
and

〈(Z⊗n)JI (Z†
⊗n

)LK〉 =
∑
σ∈Sn

(σ−1)JK(σ)LI ,

and the summation in this case is over all ribbons graphs which is n! diagrams labelled by
elements σ ∈ Sn. To illustrate this statement, let’s take n = 2 for example. In this case

〈Zj1
i1
Zj2
i2
Z†

l1

k1
Z†

l2

k2
〉 = (1)JK(1)LI + ((1 2))JK((1 2))LI

= δj1k1δ
j2
k2
δl1i1δ

l2
i2

+ δj1k2δ
j2
k1
δl1i2δ

l2
i1
,

which is indeed the result illustrated in the pairing below to form ribbon diagrams:

Therefore, the 2-point correlator of the Schur polynomials is [12],[13]

〈χR(Z)χ†S(Z)〉 =
1

dRdS

∑
σ∈Sn

(P̂R)IJ(P̂S)KL (σ−1)JK(σ)LI

=
1

dRdS

∑
σ∈Sn

Tr
(
P̂Rσ

−1P̂Sσ
)

=
1

dRdS

∑
σ∈Sn

Tr
(
P̂RP̂S

)
, ∵ [P̂S, σ] = 0 & σ−1 · σ = 1

=
n!

dRdS
Tr
(
P̂RP̂S

)
=
n!δRS
dRdS

Tr
(
P̂R

)
, ∵ P̂RP̂S = δRSP̂R

=
n!δRS
dRdS

dRDimR, ∵ Tr (P̂R) = dRDimR

=
n!δRS
dR

DimR

= δRS
n!(
n!

hooksR

) fR
hooksR

= δRSfR,
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where dR = n!
hooksR

and DimR = fR
hooksR

, where fR denotes the product of the weights of boxes
in the Young diagram R.

2.4 Two matrices Z and Y

Now, we will consider not just a single matrix Z but two matrices Z and Y , and we use the
following results:

〈ZijZ†kl〉 = δilδjk, 〈YijY †kl〉 = δilδjk, 〈YijZkl〉 = 0, 〈YijZ†kl〉 = 0.

Extremal correlation functions are correlation functions of operators constructed from a single
matrix Z. Extremal correlation functions do not receive quantum corrections. In general, the
Z,Y correlators do receive quantum corrections. Suppose we have two Z’s and two Y ’s. The
observables we can construct are

Tr(Z2Y 2), Tr(ZY ZY ), Tr(Z2Y ) Tr(Y ), Tr(Y 2Z) Tr(Z), Tr(Z2) Tr(Y 2), Tr(ZY )2,

Tr(Z2) Tr(Y )2, Tr(Y 2) Tr(Z)2, Tr(ZY ) Tr(Z) Tr(Y ) & Tr(Z)2 Tr(Y )2,

whereas if we have four Z’s the observables we find are

Tr(Z4), Tr(Z3) Tr(Z), Tr(Z2) Tr(Z2), Tr(Z2) Tr(Z)2 & Tr(Z)4.

Thus, we conclude there will be more observables for two matrices than there would be for
a single matrix. This is because Z and Y do not commute, i.e. ZY 6= Y Z, in general. For
operators constructed from nZ’s and mY ’s, we will work in V ⊗n+mN . The tensor product of
these matrices is

(Z⊗nY ⊗m)IJ ≡ Zi1
j1
. . . Zin

jn
Y
in+1

jn+1
. . . Y

in+m
jn+m

.

The Bose symmetry associated to these matrices is given by

(σ−1)IJ(Z⊗nY ⊗m)JK(σ)KL = (Z⊗nY ⊗m)IL, σ ∈ Sn × Sm.

In the general case, the observables are

Tr(ρZ⊗nY ⊗m) = Tr(ρσ−1Z⊗nY ⊗mσ) , ρ ∈ Sn+m
= Tr(σρσ−1Z⊗nY ⊗m)

= (σ−1ρσ)IJ(Z⊗nY ⊗m)JI ,

which demonstrates that ρ and σ−1ρσ correspond to the same physical observable for any
σ ∈ Sn × Sm. We say that ρ and τ are restricted conjugate if and only if

ρ = σ−1τσ

for some σ ∈ Sn × Sm. We will now prove the statement that “restricted conjugate” is an
equivalence relation:
Proof:

• Reflexivity: ρ = 1
−1ρ1 , 1 ∈ Sn × Sm.

• Symmetry: ρ = σ−1τσ ⇒ τ = σρσ−1 = (σ−1)−1ρσ−1 , σ−1 ∈ Sn × Sm.

• Transitivity: ρ = σ−11 τσ1 and τ = σ−12 βσ2, then

ρ = σ−11 τσ1 = σ−11 σ−12 βσ2σ1 = (σ2σ1)
−1βσ2σ1,

with σ2 · σ1 ∈ Sn × Sm. �

Therefore restricted conjugate is an equivalence relation and thus we have a notion of restricted
conjugacy classes. It is a highly non-trivial fact that the number of restricted conjugacy classes
is equal to the number of independent gauge invariant operators that can be defined [14].
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2.4.1 Intertwining map

An intertwining map is a generalised projection operator in V ⊗n+m. It has many of the prop-
erties of a projector (PAPB = δABPÃ with A possibly standing for a collection of indices), but
does not in general square to itself. They are important in the study of (restricted) Schur
polynomials.

Recall for the one matrix observables, we had

χR(Z) =
1

n!

∑
σ∈Sn

χR(σ)(σ)IJ(Z)JI =
1

n!

∑
σ∈Sn

χR Tr(σZ⊗n) = Tr(P̂RZ
⊗n),

where P̂R = 1
n!

∑
σ∈Sn χR(σ)σ and σ is defined using the previously introduced action on V ⊗n+m.

Also recall that for the one matrix problem, the correlators are

〈(Z⊗n)IJ(Z†
⊗n

)KL 〉 =
∑
σ∈Sn

(σ−1)IL(σ)KJ

and

〈χR(Z)χ†S(Z)〉 =
n!

dRdS
Tr(P̂RP̂S).

To obtain this last result, we used the defining properties of the projection operator P̂R. In-
troducing well chosen projection operators has produced an enormous simplification in the
computation of correlation functions.

We now wish to introduce a “projection operator” for the case of two matrices. We have
used quotes because we will not introduce a projection operator, but rather we will make use
of an intertwining map. We denote this operator as PR,(r,s)αβ where R ` n + m and labels
irreps of Sn+m. In addition, r ` n, s ` m and (r, s) labels irreps of Sn × Sm. (r, s) is an irrep
obtained by restricting irrep R of Sn+m to its subgroup Sn × Sm. After restriction, (r, s) may

appear more than once. The labels α,β resolve the different copies. Consider R = for

which dim = 6!
45

= 16. Now remove m (which we chose to be equal to 3) boxes such that

you are still left with a valid Young diagram. If boxes that are removed share sides, we must
not disconnect them. Boxes that don’t share sides must not be connected. After removing the
m = 3 boxes, what remains must be a valid Young diagram. There are three possibilities, that
we write as (r ` 3, removed boxes) as follows

( , ), ( , ), ( , ).

The three disconnected boxes can be arranged into irreps of S3 as follows

⊗ ⊗ = ⊗ ( ⊕ )

= ⊕ 2 ⊕ .

Thus, upon restricting to S3 × S3 ⊂ S6 we find that R returns the following irreps

( , )⊕ ( , )⊕ ( , )⊕ ( , )⊕ ( , )⊕ ( , ).

We can easily check that the sum of the dimensions of these S3×S3 irreps matches the dimension
of our original S6 irrep as follows

dim(
,

) + dim(
,

) + dim(
,

) + dim(
,

) + dim(
,

) + dim(
,

)
= ((2× 1) + (2× 2) + (2× 2) + (2× 1)) + (1× 2) + (1× 2)

= 2 + 4 + 4 + 2 + 2 + 2

= 16,
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Note that there are two copies of
(

,
)
. The Littlewood-Richardson number counts this

multiplicity. In our case g = 2. The Littlewood-Richardson number grst is an integer.

It counts how many times t appears in the tensor product r ⊗ s, with r, s and t understood
as U(N) irreps. We need to introduce one more concept: χR,(r,s)αβ(σ). This is the restricted
character and it is given by

χR,(r,s)αβ(σ) =
drds∑
i=1

〈R, (r, s)α; i|ΓR(σ)|R, (r, s)β; i〉,

where σ ∈ Sn+m, i labels states, R, (r, s)α and R, (r, s)β denote representations of Sn × Sm.
PR,(r,s)αβ is now given by

PR,(r,s)αβ ≡
1

n!m!

∑
σ∈Sn+m

χR,(r,s)αβ(σ)σ,

where σ is defined using the familiar action on V ⊗n+m. PR,(r,s)αβ is called an intertwining map
and it maps you from the α to the β copy of (r, s). For 2 matrices Z and Y , the 2-point function
is given as

〈(Z⊗nY ⊗m)IJ(Z†
⊗n
Y †
⊗m

)KL 〉 =
∑

σ∈Sn×Sm

(σ)IL(σ−1)KJ .

To illustrate this statement, take n = 2 and m = 2 for example. A simple application of Wick’s
theorem confirms

〈Zi1
j1
Zi2
j2
Y i3
j3
Y i4
j4
Z†

k1

l1
Z†

k2

l2
Y †

k3

l3
Y †

k4

l4
〉 = (1)IL(1)KJ + ((1 2))IL((1 2))KJ

+ ((3 4))IL((3 4))KJ + ((1 2)(3 4))IL((1 2)(3 4))KJ

= δi1l1 δ
i2
l2
δi3l3 δ

i4
l4
δj1k1δ

j2
k2
δj3k3δ

j4
k4

+ δi1l2 δ
i2
l1
δi3l3 δ

i4
l4
δj1k2δ

j2
k1
δj3k3δ

j4
k4

+ δi1l1 δ
i2
l2
δi3l4 δ

i4
l3
δj1k1δ

j2
k2
δj3k4δ

j4
k3

+ δi1l2 δ
i2
l1
δi3l4 δ

i4
l3
δj1k2δ

j2
k1
δj3k4δ

j4
k3
,

which is indeed the result obtained using ribbon diagrams:

The restricted Schur polynomial for 2 matrices Z and Y is given as [14],[15]

χR,(r,s)αβ(Z, Y ) ≡ Tr(PR,(r,s)αβZ
⊗nY ⊗m),
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and the 2-point function is given as [14],[15]

〈χR,(r,s)αβ(Z, Y )χT,(t,u)γδ(Z
†, Y †)〉 = 〈Tr(PR,(r,s)αβZ

⊗nY ⊗m) Tr(PT,(t,u)γδZ
†⊗nY †

⊗m
)〉

= (PR,(r,s)αβ)IJ(PT,(t,u)γδ)
K
L 〈(Z⊗nY ⊗m)JI (Z†

⊗n
Y †
⊗m

)LK〉

=
∑

σ∈Sn×Sm

(PR,(r,s)αβ)IJ(PT,(t,u)γδ)
K
L (σ)JK(σ−1)LI

=
∑

σ∈Sn×Sm

Tr(PR,(r,s)αβ σPT,(t,u)γδ σ
−1)

= n!m! Tr(PR,(r,s)αβPT,(t,u)γδ).

We should note that the intertwining map PR,(r,s)αβ has properties that are similar to the
properties of a projection operator. These properties are [14],[15]:

• PR,(r,s)αβ · PT,(t,u)γδ = δRT δrtδsuδβγ#PR,(r,s)αδ

• PR,(r,s)αα · PR,(r,s)αα = #PR,(r,s)αα

• [PR,(r,s)αβ, σ] = 0, σ ∈ Sn × Sm

• Γ(r,s)α(σ)PR,(r,s)αβ = PR,(r,s)αβΓ(r,s)β(σ), σ ∈ Sn × Sm.

Using these properties together with the value of the trace of PR,(r,s)αβ we learn that [14],[15]

〈χR,(r,s)αβ(Z, Y )χ†T,(t,u)γδ(Z, Y )〉 = δRT δrtδsuδαδδβγ
fR hooksR

hooksr hookss
.

2.5 Action of the One Loop Dilatation Operator in the SU(3) sector

2.5.1 Restricted Schur Polynomials

The goal of this subsection is to compute the anomalous dimensions for a class of operators in
the SU(3) sector in N = 4 SYM theory. To achieve this we will compute the matrix elements
of the one loop dilatation operator by acting on the restricted Schur polynomial basis in the
large N limit.

There are 6 hermitian adjoint scalars φi that transform as a vector of SO(6). From these
fields we introduce the 3 complex Higgs fields

X = φ1 + iφ2 Y = φ3 + iφ4 Z = φ5 + iφ6.

The operators we work with are built from p X fields, m Y fields and n Z fields. We are
interested in the case p,m, n scale as N in the large N limit, holding p + m � n and p

m
∼ 1.

The 1
2
-BPS sector of this theory corresponds to taking p = m = 0 with n 6= 0. We construct

the restricted Schur polynomial from these 3 gauge invariant, complex scalars as

χR,(r,s,t)~µ~ν =
1

n!m!p!

∑
σ∈Sn+m+p

Tr(r,s,t)~µ~ν
(
ΓR(σ)

)
X i1
iσ(1)
· · ·X ip

iσ(p)
Y
ip+1

iσ(p+1)
· · ·Y ip+m

iσ(p+m)
×

×Zip+m+1

iσ(p+m+1)
· · ·Zip+m+n

iσ(p+m+n)
.

Here (r, s, t) labels an irrep of Sn × Sm × Sp and ~µ, ~ν are again multiplicity labels.
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2.5.2 Constructing the Intertwining Map

We can rewrite the restricted trace as follows

Tr(t,u,v)~µ~ν(· · · ) = TrT (P(t,u,v)~µ~ν · · · ). (2)

The intertwining map P(t,u,v)~µ~ν has an important role to play in what is to follow and we wish to
emphasise this importance by going through the steps on how one constructs it. T ` p+m+n
labels a Young diagram with p+m+n boxes, t ` n labels a Young diagram with n boxes, u ` m
labels a Young diagram with m boxes, v ` p labels a Young diagram with p boxes, ~µ and ~ν are
multiplicity labels that label the copies of (u, v) obtained upon restricting to Sn × Sm × Sp.

The intertwining map is a matrix; it has both a row label and a column label. Below are
the steps required to build the intertwining map:

1. Start from Young diagram T . Remove p boxes in any desired order such that

(i) every time a box is removed there is a valid Young diagram left as a result and

(ii) we remove pi boxes from row i.

Collect the pi into a vector ~p. The boxes that are removed are labelled; the first box
removed is labelled box 1, the second box removed is labelled box 2, and so on. By
performing this procedure in this fashion we end up with a partly labelled Young diagram
T .

2. Now remove m boxes in any desired order such that

(i) every time a box is removed there is a valid Young diagram left as a result and

(ii) we remove mi boxes from row i.

Collect the mi into a vector ~m. Once again, as above, the boxes that are removed are
labelled; the first box removed is labelled box p + 1, the second box removed is labelled
box p+ 2, and so on. We end up again with a partly labelled Young diagram T .

3. Collect the vectors with first p boxes into an irrep v of Sp; label the multiplicities of this
irrep with ν1.

4. For each state in a given Sp irrep specified by both v and ν, one has all possible labellings
of the next m boxes. Collect these into vectors in an irrep u of Sm; label the multiplicities
of this irrep with ν2.

What we gain as a result of this exercise is a set of vectors labelled with two irreps v ` p,
u ` m each with a multiplicity label ν1 and ν2, and two state labels, a and b, one for each
state |(v, ν1)a; (u, ν2)b〉. The unlabelled boxes define vectors that belong to a unique irrep t of
Sn. To make this part explicitly clear, we can write our state as |(v, ν1)a; (u, ν2)b; (t)c〉. As a
consequence of this, the intertwining map can be written as

P(t,u,v)~µ~ν =
∑
a,b,c

|(v, µ1), a; (u, µ2), b; (t), c〉〈(v, ν1), a; (u, ν2), b; (t), c|.

Since the Sn, Sm and Sp actions commute, our state can be written as

|(v, ν1), a; (u, ν2), b; (t), c〉 = |(v, ν1), a〉 ⊗ |(u, ν2), b〉 ⊗ |(t), c〉,
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where ⊗ is the usual tensor product on a vector space. Following from this, the intertwining
operators can be written as a tensor product

P(t,u,v)~µ~ν =
∑
a

|(v, µ1)a〉〈(v, ν1)a| ⊗
∑
b

|(u, µ2)b〉〈(u, ν2)b| ⊗
∑
c

|(t)c〉〈(t)c|

≡ pvµ1ν1 ⊗ puµ2ν2 ⊗ 1t,

where 1t is a genuine projector.
The two point function of the restricted Schur polynomials is [15]

〈χR,(r,s,t)~µ~νχ†T,(w,x,y)~β~α〉 =
fR hooksR

hooksr hookss hookst
δRT δrwδsxδtyδ~µ~βδ~ν~α. (3)

Operators normalised to have a unit two point function ÔR,(r,s,t)~µ~ν are related to the restricted
Schur polynomials χR,(r,s,t)~µ~ν as

ÔR,(r,s,t)~µ~ν =

√
hooksr hookss hookst

fR hooksR
χR,(r,s,t)~µ~ν . (4)

2.6 Dilatation Operator

The complete one loop dilatation operator has been given in [16]. For our purposes, it is much
simpler to start with the one loop dilatation operator in the SO(6) sector which was computed
in [17]. Using this starting point, we act on an operator constructed using the three complex
matrices X, Y and Z. The result is

D = −g2YM Tr

(
[Y, Z]

[
d

dY
,
d

dZ

]
+ [X,Z]

[
d

dX
,
d

dZ

]
+ [Y,X]

[
d

dY
,
d

dX

])
= −g2YM Tr

(
D(1) +D(2) +D(3)

)
,

where

D(1) ≡ [Y, Z]

[
d

dY
,
d

dZ

]
,

D(2) ≡ [X,Z]

[
d

dX
,
d

dZ

]
,

D(3) ≡ [Y,X]

[
d

dY
,
d

dX

]
.

The definition for the trace is determined by U(N) invariance. Spelling out the indices we have

Tr

(
[Y,X]

[
d

dY
,
d

dX

])
= (Y i

l X
l
j −X i

lY
l
j )

(
d

dY k
j

d

dX i
k

− d

dXk
j

d

dY i
k

)
.

2.7 Action of D on Restricted Schur Polynomials

We will first consider the subleading term which mixes the Y and X fields (the action of D(3)).
This corrects the leading terms (mixing of the X and Z fields and the Y and Z fields). The
steps we follow are:

1. Evaluate the derivatives, which generate some Kronecker delta functions.
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2. Permute indices to place the delta functions into the first slot.

3. Convert to a sum over Sn+m+p−1 using the Kronecker deltas. This is done with the help
of the reduction rule (derived in [18] by making use of the Jucys-Murphy elements).

4. Express the trace Tr(σX⊗pY ⊗mZ⊗n) in terms of a linear combination of restricted Schur
polynomials.

5. Sum over Sn+m+p−1 using the fundamental orthogonality relation.

6. Consider the large N limit (make use of the displaced corners approximation).

7. Rewrite the result in terms of normalised restricted Schur operators.

These steps have been explicitly listed to guide the reader through the rather technical discus-
sion that follows. It may be useful to refer back to this list as the discussion proceeds.

2.7.1 Derivatives

First, let’s consider the explicit action of the derivatives. Only the final results will be given
whereas the explicit calculations can be found in Appendix A. The first pair evaluates to

d

dY k
j

d

dX i
k

(
X i1
iσ(1)
· · ·X ip

iσ(p)
Y
ip+1

iσ(p+1)
· · ·Y ip+m

iσ(p+m)
Z
ip+m+1

iσ(p+m+1)
· · ·Zip+m+n

iσ(p+m+n)

)
=

(
δ
ip+1

iσ(1)
δi1i δ

j
iσ(p+1)

X i2
iσ(2)
· · ·X ip

iσ(p)
Y
ip+2

iσ(p+2)
· · ·Y ip+m

iσ(p+m)
+ · · ·+X i1

iσ(1)
· · ·X ip−1

iσ(p−1)
×

× Y ip+1

iσ(p+1)
· · ·Y ip+m−1

iσ(p+m−1)
δjiσ(p+m)

δ
ip+m
iσ(p)

δ
ip
i

)
Z
ip+m+1

iσ(p+m+1)
· · ·Zip+m+n

iσ(p+m+n)
.

Then

[Y,X]ij
d

dY k
j

d

dX i
k

(
X i1
iσ(1)
· · ·X ip

iσ(p)
Y
ip+1

iσ(p+1)
· · ·Y ip+m

iσ(p+m)
Z
ip+m+1

iσ(p+m+1)
· · ·Zip+m+n

iσ(p+m+n)

)
=

(
[Y,X]i1iσ(p+1)

δ
ip+1

iσ(1)
X i2
iσ(2)
· · ·X ip

iσ(p)
Y
ip+2

iσ(p+2)
· · ·Y ip+m

iσ(p+m)
+ · · ·+ [Y,X]

ip
iσ(p+m)

X i1
iσ(1)
· · ·X ip−1

iσ(p−1)
×

× Y ip+1

iσ(p+1)
· · ·Y ip+m−1

iσ(p+m−1)
δ
ip+m
iσ(p)

)
Z
ip+m+1

iσ(p+m+1)
· · ·Zip+m+n

iσ(p+m+n)
.

The second pair evaluates to

− d

dXk
j

d

dY i
k

(
X i1
iσ(1)
· · ·X ip

iσ(p)
Y
ip+1

iσ(p+1)
· · ·Y ip+m

iσ(p+m)
Z
ip+m+1

iσ(p+m+1)
· · ·Zip+m+n

iσ(p+m+n)

)
= −

(
δjiσ(1)δ

i1
iσ(p+1)

δ
ip+1

i X i2
iσ(2)
· · ·X ip

iσ(p)
Y
ip+2

iσ(p+2)
· · ·Y ip+m

iσ(p+m)
+ · · ·+X i1

iσ(1)
· · ·X ip−1

iσ(p−1)
×

× Y ip+1

iσ(p+1)
· · ·Y ip+m−1

iσ(p+m−1)
δ
ip
iσ(p+m)

δ
ip+m
i δjiσ(p)

)
Z
ip+m+1

iσ(p+m+1)
· · ·Zip+m+n

iσ(p+m+n)
.

Then

− [Y,X]ij
d

dXk
j

d

dY i
k

(
X i1
iσ(1)
· · ·X ip

iσ(p)
Y
ip+1

iσ(p+1)
· · ·Y ip+m

iσ(p+m)
Z
ip+m+1

iσ(p+m+1)
· · ·Zip+m+n

iσ(p+m+n)

)
= −

(
[Y,X]

ip+1

iσ(1)
δi1iσ(p+1)

X i2
iσ(2)
· · ·X ip

iσ(p)
Y
ip+2

iσ(p+2)
· · ·Y ip+m

iσ(p+m)
+ · · ·+ [Y,X]

ip+m
iσ(p)

X i1
iσ(1)
· · ·X ip−1

iσ(p−1)
×

× Y ip+1

iσ(p+1)
· · ·Y ip+m−1

iσ(p+m−1)
δ
ip
iσ(p+m)

)
Z
ip+m+1

iσ(p+m+1)
· · ·Zip+m+n

iσ(p+m+n)
.
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2.7.2 Permutations

One of the terms appearing above is [Y,X]i1iσ(p+1)
δ
ip+1

iσ(1)
X i2
iσ(2)
· · ·X ip

iσ(p)
. This mixes slots 1 and

p+ 1. We’d like to rewrite this so that slots are not being mixed. To do this, make a change of
variables σ → τ(1, p+1), τ ∈ Sn+m+p, where the permutation to the right of τ acts on subscript
indices. This change of variables yields

[Y,X]i1iσ(p+1)
δ
ip+1

iσ(1)
→ [Y,X]i1iτ(1)δ

ip+1

iτ(p+1)
.

Repeating this process for all of the terms appearing we can extract out a Kronecker delta
function in the first slot of each term.

To illustrate this, consider the term that has its delta function in the second slot. We make
a change of variables such that σ → (p+ 2, p+ 1)τ(p+ 2, p+ 1) which results in

[Y,X]
ip+2

iσ(1)
δi1iσ(p+2)

Y
ip+1

iσ(p+1)
→ [Y,X]

ip+1

iτ(1)
δi1iτ(p+1)

Y
ip+2

iτ(p+2)
.

We then perform the second change τ → ψ(1, p+ 1), ψ ∈ Sn+m+p, to get

[Y,X]
ip+1

iτ(1)
δi1iτ(p+1)

Y
ip+2

iτ(p+2)
→ [Y,X]

ip+1

iψ(p+1)
δi1iψ(1)

Y
ip+2

iψ(p+2)
.

Since the first and second terms agree they can be added together. Performing the necessary
shifts for all remaining terms and summing, we find an overall contribution of pm due to p X
terms and m Y terms. Thus we find[(

[Y,X]i1iσ(p+1)
δ
ip+1

iσ(1)
X i2
iσ(2)
· · ·X ip

iσ(p)
Y
ip+2

iσ(p+2)
· · ·Y ip+m

iσ(p+m)
+ · · ·+ [Y,X]

ip
iσ(p+m)

X i1
iσ(1)
· · ·X ip−1

iσ(p−1)
×

× Y ip+1

iσ(p+1)
· · ·Y ip+m−1

iσ(p+m−1)
δ
ip+m
iσ(p)

)]
Z
ip+m+1

iσ(p+m+1)
· · ·Zip+m+n

iσ(p+m+n)

= pm[Y,X]i1iσ(1)δ
ip+1

iσ(p+1)

[
X i2
iσ(2)
· · ·X ip

iσ(p)
Y
ip+2

iσ(p+2)
· · ·Y ip+m

iσ(p+m)
Z
ip+m+1

iσ(p+m+1)
· · ·Zip+m+n

iσ(p+m+n)

]
.

Very similar manipulations give

−

[(
[Y,X]

ip+1

iσ(1)
δi1iσ(p+1)

X i2
iσ(2)
· · ·X ip

iσ(p)
Y
ip+2

iσ(p+2)
· · ·Y ip+m

iσ(p+m)
+ · · ·+ [Y,X]

ip+m
iσ(p)

X i1
iσ(1)
· · ·X ip−1

iσ(p−1)
×

× Y ip+1

iσ(p+1)
· · ·Y ip+m−1

iσ(p+m−1)
δ
ip
iσ(p+m)

)]
Z
ip+m+1

iσ(p+m+1)
· · ·Zip+m+n

iσ(p+m+n)

= −pm[Y,X]
ip+1

iσ(p+1)
δi1iσ(1)

[
X i2
iσ(2)
· · ·X ip

iσ(p)
Y
ip+2

iσ(p+2)
· · ·Y ip+m

iσ(p+m)
Z
ip+m+1

iσ(p+m+1)
· · ·Zip+m+n

iσ(p+m+n)

]
.

Keep in mind that all changes made to the permutation also change the argument of the
restricted character.

43



Applying these results to evaluate the action of D(3), we obtain

D(3)

 1

n!m!p!

∑
σ∈Sn+m+p

Tr(r,s,t)~µ~ν(Γ
R(σ))X i1

iσ(1)
· · ·X ip

iσ(p)
Y
ip+1

iσ(p+1)
· · ·Y ip+m

iσ(p+m)
Z
ip+m+1

iσ(p+m+1)
· · ·Zip+m+n

iσ(p+m+n)


= [Y,X]ij

(
d

dY k
j

d

dX i
k

− d

dXk
j

d

dY i
k

)
1

n!m!p!

∑
σ∈Sn+m+p

Tr(r,s,t)~µ~ν(Γ
R(σ))X i1

iσ(1)
· · ·X ip

iσ(p)
Y
ip+1

iσ(p+1)
· · ·Y ip+m

iσ(p+m)
×

×Zip+m+1

iσ(p+m+1)
· · ·Zip+m+n

iσ(p+m+n)

=
mp

n!m!p!

∑
σ∈Sn+m+p

Tr(r,s,t)~µ~ν(Γ
R(σ))

(
δ
ip+1

iσ(1)
[Y,X]i1iσ(p+1)

− δi1iσ(p+1)
[Y,X]

ip+1

iσ(1)

)
×

×X i2
iσ(2)
· · ·X ip

iσ(p)
Y
ip+2

iσ(p+2)
· · ·Y ip+m

iσ(p+m)
Z
ip+m+1

iσ(p+m+1)
· · ·Zip+m+n

iσ(p+m+n)

=
mp

n!m!p!

∑
σ∈Sn+m+p

Tr(r,s,t)~µ~ν
(
ΓR([(1, p+ 1), σ])

)
δi1iσ(1)X

i2
iσ(2)
· · ·X ip

iσ(p)
×

×[Y,X]
ip+1

iσ(p+1)
Y
ip+2

iσ(p+2)
· · ·Y ip+m

iσ(p+m)
Z
ip+m+1

iσ(p+m+1)
· · ·Zip+m+n

iσ(p+m+n)
.

2.7.3 Reduction rule

We will now discuss the reduction rule in detail. Introduce the notation ρi = (1, i)σ and rewrite
the above sum as a sum over the subgroup Sn+m+p−1 and its cosets. The Sn+m+p−1 ⊂ Sn+m+p

subgroup is obtained by retaining the elements that hold 1 fixed, i.e. σ(1) = 1. The coset
decomposition is

Sn+m+p = 1Sn+m+p−1 ⊕ (1 2)Sn+m+p−1 ⊕ (1 3)Sn+m+p−1 ⊕ · · · ⊕ (1, p+m+ n)Sn+m+p−1.

To make the discussion clear, consider the example of the symmetric group S3:

S3 = {1, (1 2), (1 3), (1 2 3), (1 3 2)},

which can be written as

S3 = 1S2 ⊕ (1 2)S2 ⊕ (1 3)S2,

where we have chosen the subgroup

S2 = {1, (2 3)}.
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After using the coset decomposition, our result becomes

mp

n!m!p!

∑
σ∈Sn+m+p

Tr(r,s,t)~µ~ν
(
ΓR([(1, p+ 1), σ])

)
δi1iσ(1)X

i2
iσ(2)
· · ·X ip

iσ(p)
×

×[Y,X]
ip+1

iσ(p+1)
Y
ip+2

iσ(p+2)
· · ·Y ip+m

iσ(p+m)
Z
ip+m+1

iσ(p+m+1)
· · ·Zip+m+n

iσ(p+m+n)

=
mp

p!m!n!

∑
ψ∈Sn+m+p−1

[
Tr(r,s,t)~µ~ν

(
ΓR([(1, p+ 1), (1 2)ψ])

)
+ Tr(r,s,t)~µ~ν

(
ΓR([(1, p+ 1), (1 3)ψ])

)
+ · · ·+

+ Tr(r,s,t)~µ~ν
(
ΓR([(1, p+ 1), (1, p+m+ n)ψ])

) ]
δi1iψ(1)

X i2
iψ(2)
· · ·X ip

iψ(p)
[Y,X]

ip+1

iψ(p+1)
Y
ip+2

iψ(p+2)
· · ·Y ip+m

iψ(p+m)
×

×Zip+m+1

iψ(p+m+1)
· · ·Zip+m+n

iψ(p+m+n)

=
mp

n!m!p!

∑
ψ∈Sn+m+p−1

n+m+p∑
i=1

Tr(r,s,t)~µ~ν
(
ΓR([(1, p+ 1), ρi])

)
δi1iρi(1)

X i2
iρi(2)
· · ·X ip

iρi(p)
×

×[Y,X]
ip+1

iρi(p+1)
Y
ip+2

iρi(p+2)
· · ·Y ip+m

iρi(p+m)
Z
ip+m+1

iρi(p+m+1)
· · ·Zip+m+n

iρi(p+m+n)

=
mp

n!m!p!

∑
ψ∈Sn+m+p−1

Tr(r,s,t)~µ~ν

(
ΓR
(
[(1, p+ 1),

{
N +

n+m+p∑
i=2

(i, 1)
}
ψ]
))
X i2
iρi(2)
· · ·X ip

iρi(p)
×

×[Y,X]
ip+1

iρi(p+1)
Y
ip+2

iρi(p+2)
· · ·Y ip+m

iρi(p+m)
Z
ip+m+1

iρi(p+m+1)
· · ·Zip+m+n

iρi(p+m+n)
,

where

n+m+p∑
i=1

ρi =

n+m+p∑
i=1

(1, i)ψ =

[
(1, 1) +

n+m+p∑
i=2

(1, i)

]
ψ =

[
N +

n+m+p∑
i=2

(1, i)

]
ψ.

Note that

N +

p+m+n∑
i=2

(1, i) = N + Cp+m+n
2 − Cp+m+n−1

2 ,

where Cp+m+n
2 (Cp+m+n−1

2 ) is the quadratic Casimir for the symmetric group Sp+m+n (Sp+m+n−1).
The difference between the two Casimirs is called the Jucys-Murphy element. Acting with
Cp+m+n

2 on the state |R, a〉 results in

Cp+m+n
2 |R, a〉 =

(∑
i=1

ri(ri − 1)

2
−
∑
j=1

cj(cj − 1)

2

)
|R, a〉,

where ri is the length of row i and cj is the length of column j of Young diagram R. a in |R, a〉
labels all the different Young-Yamanouchi states you can obtain from R. For example consider

the action of the Casimir Cp+m+n
2 on the Young diagram

∣∣∣ , a〉:

Cp+m+n
2

∣∣∣ , a〉 =

(
2(2− 1)

2
+

1(1− 1)

2
− 2(2− 1)

2
− 1(1− 1)

2

) ∣∣∣ , a〉

= 0
∣∣∣ , a〉.

In what follows, we make use of the branching rule

R =
⊕
R′

R′,
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where R′ is any Young diagram subduced from Young diagram R by removing a single box
from R. A simple example of this is provided by the Young diagram :

= ⊕ ,

where the first (second) Young diagram on the right hand side is obtained by removing a single
box in the second (first) row of the Young diagram on the left hand side. Using this branching
rule we find

ΓR
(
N + Cp+m+n

2 − Cp+m+n−1
2

)
=
(
N + ΓR

(
Cp+m+n

2

))
IdR×dR − ΓR

(
Cp+m+n−1

2

)
IdR′×dR′

=
⊕
R′

(N + λR)IdR′×dR′ −
⊕
R′

λR′IdR′×dR′

=
⊕
R′

(N + λR − λR′)IdR′×dR′ ,

where IdR×dR (IdR′×dR′ ) is the identity matrix of irrep R (R′) with dimension dR×dR (dR′×dR′),
λR (λ′R) is the eigenvalue of Cp+m+n

2 in irrep R (Cp+m+n−1
2 in irrep R′), and ΓR(N ·σ) = N ·ΓR(σ).

It is simple to verify that

cRR′ ≡ N + λR − λR′ = N +

[∑
i=1

ri(ri − 1)

2
−
∑
j=1

cj(cj − 1)

2

]
−

[∑
i′=1

ri′(ri′ − 1)

2
−
∑
j′=1

cj′(cj′ − 1)

2

]
,

where cRR′ is the factor of the box removed from R to obtain R′ and λR− λR′ is the content of
this box. Thus we can write the action of D(3) on the restricted Schur polynomial basis as

D(3)χR,(r,s,t)~µ~ν =
mp

n!m!p!

∑
R′

∑
φ∈Sn+m+p−1

cRR′ Tr(r,s,t)~µ~ν
(
ΓR([(1, p+ 1), φ])

)
X i2
iφ(2)
· · ·X ip

iφ(p)
×

×[Y,X]
ip+1

iφ(p+1)
Y
ip+2

iφ(p+2)
· · ·Y ip+m

iφ(p+m)
Z
ip+m+1

iφ(p+m+1)
· · ·Zip+m+n

iφ(p+m+n)
.

2.7.4 Expressing Tr(σX⊗pY ⊗mZ⊗n) as a linear combination of restricted Schur poly-
nomials

The product which appears in the expression above can be rewritten as

X i2
iφ(2)
· · ·X ip

iφ(p)
(Y X)

ip+1

iφ(p+1)
Y
ip+2

iφ(p+2)
· · ·Y ip+m

iφ(p+m)
Z
ip+m+1

iφ(p+m+1)
· · ·Zip+m+n

iφ(p+m+n)
= Tr(1⊗Xp−1 ⊗ (Y X)⊗ Y m−1 ⊗ Z⊗n),

where the identity sits in the first slot. We can further obtain

X i2
iφ(2)
· · ·X ip

iφ(p)
Y
ip+1

iφ(1)
X i1
iφ(p+1)

Y
ip+2

iφ(p+2)
· · ·Y ip+m

iφ(p+m)
Z
ip+m+1

iφ(p+m+1)
· · ·Zip+m+n

iφ(p+m+n)
, where φ(1) = 1

= (1, p+ 1)X i1
iφ(1)
· · ·X ip

iφ(p)
Y
ip+1

iφ(p+1)
· · ·Y ip+m

iφ(p+m)
Z
ip+m+1

iφ(p+m+1)
· · ·Zip+m+n

iφ(p+m+n)

= Tr
(
φ(1, p+ 1)X⊗pY ⊗mZ⊗n

)
,

where in the first to second line a permutation shift φ→ φ(1, p+ 1) was performed. The trace
is over the space V ⊗n+m+p−1. The action of D(3) is now

D(3)χR,(r,s,t)~µ~ν =
mp

n!m!p!

∑
R′

∑
φ∈Sn+m+p−1

cRR′ Tr(r,s,t)~µ~ν
(
ΓR([(1, p+ 1), φ])

)
Tr
(
φ(1, p+ 1)X⊗pY ⊗mZ⊗n

)
.

By performing the Fourier transform [14]

Tr(σX⊗pY ⊗mZ⊗n) =
∑

T,(t,u,v)~µ~ν

dTn!m!p!

dtdudv(m+ n+ p)!
Tr(t,u,v)~µ~ν

(
ΓT (σ−1)

)
χT,(t,u,v)~ν~µ(X, Y, Z),
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we can rewrite the above expression as

D(3)χR,(r,s,t)~µ~ν =
∑

T,(t,u,v)~µ~ν

∑
R′

∑
φ∈Sn+m+p−1

dTmp cRR′

dtdudv(m+ n+ p)!
Tr(r,s,t)~µ~ν

(
[ΓR(1, p+ 1),ΓR

′
(φ)]

)
×

×Tr(t,u,v)~µ~ν

(
[ΓT (1, p+ 1),ΓT

′
(φ−1)]

)
χT,(t,u,v)~ν~µ(X, Y, Z).

(5)

This expresses the action of D(3) on a restricted Schur polynomial as a linear combination of
restricted Schur polynomials.

2.7.5 Fundamental Orthogonality Relation and sum over Sn+m+p−1

We will use the fundamental orthogonality relation∑
φ∈Sn+m+p−1

[ΓR
′
(φ)]ij[Γ

T ′(φ−1)]ab =
(n+m+ p− 1)!

dR′
δR′T ′ [IR′T ′ ]ib[IT ′R′ ]aj, (6)

where IR′T ′ (IT ′R′) is the intertwiner that maps from the Young diagram R′ (T ′), subduced
from Young diagram R (T ), to Young diagram T ′ (R′), subduced from Young diagram T (R)
to perform the sum over φ in (5). The intertwiners obey

ΓR
′
(σ)IR′T ′ = IR′T ′Γ

T ′(σ),

where σ ∈ Sn+m+p−1. By making use of (2) we can rewrite our result as

D(3)χR,(r,s,t)~µ~ν =
∑

T,(t,u,v)~µ~ν

∑
R′

∑
φ∈Sn+m+p−1

dTmp cRR′

dtdudv(m+ n+ p)!
Tr
(
PR,(r,s,t)~µ~ν [Γ

R(1, p+ 1),ΓR
′
(φ)]

)
×

×Tr
(
PT,(t,u,v)~µ~ν [Γ

T (1, p+ 1),ΓT
′
(φ−1)]

)
χT,(t,u,v)~ν~µ(X, Y, Z),
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which comprises of 4 terms. Let us for the time being only focus on the first term, i.e.∑
T,(t,u,v)~µ~ν

∑
R′

∑
φ∈Sn+m+p−1

dTmp cRR′

dtdudv(m+ n+ p)!
Tr
(
PR,(r,s,t)~µ~νΓ

R(1, p+ 1)ΓR
′
(φ)
)
×

×Tr
(
PT,(t,u,v)~µ~νΓ

T (1, p+ 1)ΓT
′
(φ−1)

)
χT,(t,u,v)~ν~µ(X, Y, Z)

=
∑

T,(t,u,v)~µ~ν

∑
R′

∑
φ∈Sn+m+p−1

dTmp cRR′

dtdudv(m+ n+ p)!

(
PR,(r,s,t)~µ~ν

)a
b

(
ΓR(1, p+ 1)

)b
c

(
ΓR
′
(φ)
)c
a
×

×
(
PT,(t,u,v)~µ~ν

)i
j

(
ΓT (1, p+ 1)

)j
k

(
ΓT
′
(φ−1)

)k
i
χT,(t,u,v)~ν~µ(X, Y, Z)

=
∑

T,(t,u,v)~µ~ν

∑
R′

 ∑
φ∈Sn+m+p−1

(
ΓR
′
(φ)
)c
a

(
ΓT
′
(φ−1)

)k
i

 dTmp cRR′

dtdudv(m+ n+ p)!

(
PR,(r,s,t)~µ~ν

)a
b

(
ΓR(1, p+ 1)

)b
c
×

×
(
PT,(t,u,v)~µ~ν

)i
j

(
ΓT (1, p+ 1)

)j
k
χT,(t,u,v)~ν~µ(X, Y, Z)

=
∑

T,(t,u,v)~µ~ν

∑
R′

(n+m+ p− 1)!

dR′
δR′T ′

dTmp cRR′

dtdudv(m+ n+ p)!

(
PR,(r,s,t)~µ~ν

)a
b

(
ΓR(1, p+ 1)

)b
c
[IR′T ′ ]

c
i[IT ′R′ ]a

k×

×
(
PT,(t,u,v)~µ~ν

)i
j

(
ΓT (1, p+ 1)

)j
k
χT,(t,u,v)~ν~µ(X, Y, Z)

=
∑

T,(t,u,v)~µ~ν

∑
R′

(n+m+ p− 1)!

(m+ n+ p)!

dTmp cRR′

dR′dtdudv
δR′T ′ [IT ′R′ ]ka

(
PR,(r,s,t)~µ~ν

)
ab

(
ΓR(1, p+ 1)

)
bc

[IR′T ′ ]ci×

×
(
PT,(t,u,v)~µ~ν

)
ij

(
ΓT (1, p+ 1)

)
jk
χT,(t,u,v)~ν~µ(X, Y, Z)

=
∑

T,(t,u,v)~µ~ν

∑
R′

(n+m+ p− 1)!

(m+ n+ p)!

dTmp cRR′

dR′dtdudv
δR′T ′ Tr

(
IT ′R′PR,(r,s,t)~µ~νΓ

R(1, p+ 1)IR′T ′×

×PT,(t,u,v)~µ~νΓT (1, p+ 1)

)
χT,(t,u,v)~ν~µ(X, Y, Z),

where in the third to fourth line, the fundamental orthogonality relation (6) was used. Per-
forming a similar procedure for the rest of the terms and summing, our result becomes

D(3)χR,(r,s,t)~µ~ν =
∑

T,(t,u,v)~µ~ν

∑
R′

(n+m+ p− 1)!

(m+ n+ p)!

dTmp cRR′

dR′dtdudv
δR′T ′×

×Tr

(
IT ′R′ [PR,(r,s,t)~µ~ν ,Γ

R(1, p+ 1)]IR′T ′ [PT,(t,u,v)~µ~ν ,Γ
T (1, p+ 1)]

)
χT,(t,u,v)~ν~µ(X, Y, Z).

2.8 Exact One-Loop Dilatation Operator

This subsection is a pedagogical section to aid the reader to understand how one can determine
the matrix elements discussed throughout this thesis. This subsection discusses the action of
the exact one loop dilatation operator in the SU(2) sector, which corresponds to the mixing of
Y and Z fields. We illustrate the argument with examples. Our primary goal is to illustrate
all the details of the mathematics developed so far in a concrete example. We will return to
points 6 and 7 of the list at the start of subsection 2.7 once we have discussed this example.

The action of the one loop dilatation operator on the restricted Schur polynomial is given
as

DχR,(r,s)(Z, Y ) =
∑
T,(t,u)

MR,(r,s);T,(t,u)χT,(t,u)(Z, Y ), (7)
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where

MR,(r,s);T,(t,u) = −g2YM

∑
R′

cRR′dT (nm)

dR′dtdu(n+m)
Tr(IR′T ′ [ΓT ((n, n+ 2)), PT,(t,u)]IT ′R′ [ΓR((n, n+ 2)), PR,(r,s)]).

We are focusing on Young diagrams that have at most two columns.
There are two main pieces to calculate: the upfront factor to the left of the trace and

the trace itself. Calculating these pieces and combining them together determines the matrix
element, MR,(r,s);T,(t,u), for a selected R, (r, s) (which we can think of as the row label) and
T, (t, u) (which we can think of as the column label).

There are no multiplicity labels in (7) since for Young diagrams with only two columns, each
irrep (r, s) arises only once. To obtain the spectrum of anomalous dimensions, we consider the
action of the dilatation operator on normalized operators. The two point function for restricted
Schur polynomials is

〈χR,(r,s)(Z, Y )χ†T,(t,u)(Z, Y )〉 = δR,(r,s);T,(t,u)
fR hooksR

hooksr hookss
.

Therefore we can write

χR,(r,s)(Z, Y ) =

√
fR hooksR

hooksr hookss
OR,(r,s)(Z, Y ),

where OR,(r,s)(Z, Y ) is a normalised operator. The restricted Schur expression and the two-
point function expression before it are written without multiplicity labels. We can now write
(7) as

DχR,(r,s)(Z, Y ) =
∑
T,(t,u)

MR,(r,s);T,(t,u)χT,(t,u)(Z, Y )

⇒ D

√
fR hooksR

hooksr hookss
OR,(r,s)(Z, Y ) =

∑
T,(t,u)

MR,(r,s);T,(t,u)

√
fT hooksT

hookst hooksu
OT,(t,u)(Z, Y )

⇒ DOR,(r,s)(Z, Y ) =
∑
T,(t,u)

MR,(r,s);T,(t,u)

√
hooksr hookss
fR hooksR

√
fT hooksT

hookst hooksu
OT,(t,u)(Z, Y )

=
∑
T,(t,u)

MR,(r,s);T,(t,u)

√
fT hooksT hooksr hookss
fR hooksR hookst hooksu

OT,(t,u)(Z, Y )

≡
∑
T,(t,u)

NR,(r,s);T,(t,u)OT,(t,u)(Z, Y ), (8)

where

NR,(r,s);T,(t,u) ≡MR,(r,s);T,(t,u)

√
fT hooksT hooksr hookss
fR hooksR hookst hooksu

= −g2YM

∑
R′

cRR′dT (nm)

dR′dtdu(n+m)

√
fT hooksT hooksr hookss
fR hooksR hookst hooksu

×

× Tr(IR′T ′ [ΓT ((n, n+ 2)), PT,(t,u)]IT ′R′ [ΓR((n, n+ 2)), PR,(r,s)]).

Diagonalising the matrix NR,(r,s);T,(t,u) above gives the spectrum of anomalous dimensions.
We will now discuss the projection operators, intertwiners and the partially-labelled Young
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diagram states used to build them. Suppose we have the example R, (r, s) = , ( , ): the

projection operator corresponding to these labels is

PR,(r,s) = |
2
1

〉〈
2
1

|,

which we denote by Pa(b0, b1). We can label the corresponding normalised operator as Oa(b0, b1).
The variable b0 is the number of rows in Young diagram r of length 2 and b1 is the number of

rows in Young diagram r of length 1. We can also have, for example, T, (t, u) = , ( , ):

the projection operator corresponding to these labels is

PT,(t,u) = | 2
1
〉〈 2

1
|,

which we denote by Pb(b0, b1). We can label the corresponding normalised operator as Ob(b0, b1).
The computation involves terms of the form

DOa(b0, b1) = · · ·+ #Ob(b0 − 1, b1 + 2) + . . . ,

since

r = and t = ,

hence there is the following relationship between the labels for r and t

(b0, b1) = (b̃0 + 1, b̃1 − 2) or (b̃0, b̃1) = (b0 − 1, b1 + 2).

For the example we are working with r → (b0, b1) = (4, 2) and t→ (b̃0, b̃1) = (b0 − 1, b1 + 2) =
(3, 4).

Notice that if R 6= T we must have R′ = T ′, for the intertwiners to be non-vanishing. To
obtain R′ from R we remove a box from column 1 and to obtain T ′ from T we remove a box
from column 2. The corresponding intertwiners are

IR′T ′ = |

1

〉〈
1
| and IT ′R′ = |

1
〉〈

1

|.

When labelling the remaining boxes one must ensure consistency of the bra and ket labels. In
other words, if a ket-state has box 2 labelled in the first column then its partnered bra-state
must also have box 2 labelled in the first column. This consistency with the labelling is done
for all boxes that are labelled. An illustration of this is

|
1

〉〈
1
| = |

6 5
4 3
2
1

〉〈 6 5
4 3
2 1
|+ |

6 5
4 2
3
1

〉〈 6 5
4 2
3 1
|+ |

6 4
5 3
2
1

〉〈 6 4
5 3
2 1
|+ |

6 4
5 2
3
1

〉〈 6 4
5 2
3 1
|+ |

6 3
5 2
4
1

〉〈 6 3
5 2
4 1
|,
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and we can check that the number of terms are correct by computing the dimension of the Young
diagram part of the partially-labelled Young diagram that does not have its boxes labelled, i.e.

d =
5!

1 · 3 · 1 · 4 · 2
=

120

24
= 5.

The trace sums over the space defined by Young diagram R → (r, s). In other words, Young
diagrams r and s build Young diagram R; recall r ` n, s ` 2 and R ` n+ 2. We must consider
the space spanned by the labelled boxes, s, and the space spanned by the unlabelled boxes, r.
In order to have orthonormal states and thus have inner products of paired states yield a result
of 1, we write

TrR→(r,s)

(
IR′T ′ [ΓT ((1 3)), PT,(t,u)]IT ′R′ [ΓR((1 3)), PR,(r,s)]

)
=

= dr′ Tr
(
IR′T ′ [ΓT ((1 3)), PT,(t,u)]IT ′R′ [ΓR((1 3)), PR,(r,s)]

)
. (9)

The reason the dimension factor above which is the dimension of Young diagram r′ = 3

2
1

, is

because we will label at most 3 boxes in Young diagram R. This is enough to evaluate the
permutation (1 3). Two boxes removed from R yields r and one box removed after that yields
r′. One could ask why r′ takes the form it does and not any other form: the answer is because
the inner products that appear in computations arising later in this section force the from for

r′ given above. There is also the possibility of an inner product of paired states with t′ = 2
1

3

coming up, but it is easy to see that dr′ = dt′ ; we will stick to the label dr′ since it is naturally
connected to Young diagram R.

Since the trace contains 2 commutators, it has 4 terms in total. We can compute these 4
terms separately and then sum at the end. The first term is

Tr
(
IR′T ′ΓT ((1 3))PT,(t,u)IT ′R′ΓR((1 3))PR,(r,s)

)
=

= Tr(|

1

〉〈
1
|(1 3)| 2

1
〉〈 2

1
|

1
〉〈

1

|(1 3)|
2
1

〉〈
2
1

|)

= 〈
1
|(1 3)| 2

1
〉〈 2

1
|

1
〉〈

1

|(1 3)|
2
1

〉〈
2
1

|

1

〉

= 〈 3
1

2

|(1 3)| 2
1

3

〉〈 2
1

3

| 2
1

3

〉〈 2

3
1

|(1 3)| 3

2
1

〉〈 3

2
1

| 3

2
1

〉

= 〈 3
1

2

|(1 3)| 2
1

3

〉〈 2

3
1

|(1 3)| 3

2
1

〉.

In the second last line, the states have certain boxes colour-labelled to ensure the inner products
do not vanish and that the bra-states that act on the ket-states after action by permutation
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(1 3) are the correct paired state for the respective ket-state. The action of the representation
matrix ΓR((1 3)) or ΓT ((1 3)) (written in the short form “(1 3)”) on the ket-states shown above
is

(1 3)| 2
1

3

〉 = (1 2)(2 3)(1 2)| 2
1

3

〉

= (1 2)(2 3)
[
− | 2

1

3

〉
]

= −(1 2)
[ 1

b1 + 2
| 2

1

3

〉+

√
(b1 + 1)(b1 + 3)

b1 + 2
| 3

1

2

〉
]

= − 1

b1 + 2

[
(1 2)| 2

1

3

〉
]
−
√

(b1 + 1)(b1 + 3)

b1 + 2

[
(1 2)| 3

1

2

〉
]

= − 1

b1 + 2

[
− | 2

1

3

〉
]
−
√

(b1 + 1)(b1 + 3)

b1 + 2

[ 1

b1 + 1
| 3

1

2

〉+

√
b1(b1 + 2)

b1 + 1
| 3

2

1

〉
]

=
1

b1 + 2
| 2

1

3

〉 − 1

b1 + 2

√
b1 + 3

b1 + 1
| 3

1

2

〉+

√
b1(b1 + 3)

(b1 + 1)(b1 + 2)
| 3

2

1

〉,

therefore

〈 3
1

2

|(1 3)| 2
1

3

〉 = − 1

b1 + 2

√
b1 + 3

b1 + 1
.
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We also have

(1 3)| 3

2
1

〉 = (1 2)(2 3)(1 2)| 3

2
1

〉

= (1 2)(2 3)
[
− | 3

2
1

〉
]

= −(1 2)
[
− 1

b1 + 2
| 3

2
1

〉+

√
(b1 + 1)(b1 + 3)

b1 + 2
| 2

3
1

〉
]

=
1

b1 + 2

[
(1 2)| 3

2
1

〉
]
−
√

(b1 + 1)(b1 + 3)

b1 + 2

[
(1 2)| 2

3
1

〉
]

=
1

b1 + 2

[
− | 3

2
1

〉
]
−
√

(b1 + 1)(b1 + 3)

b1 + 2

[
− 1

b1 + 3
| 2

3
1

〉+

√
(b1 + 2)(b1 + 4)

b1 + 3
| 1

3
2

〉
]

= − 1

b1 + 2
| 3

2
1

〉+
1

b1 + 2

√
b1 + 1

b1 + 3
| 2

3
1

〉 −

√
(b1 + 1)(b1 + 4)

(b1 + 2)(b1 + 3)
| 1

3
2

〉,

so that

〈 2

3
1

|(1 3)| 3

2
1

〉 =
1

b1 + 2

√
b1 + 1

b1 + 3
.

Finally, we have

Tr
(
IR′T ′ΓT ((1 3))PT,(t,u)IT ′R′ΓR((1 3))PR,(r,s)

)
= 〈 3

1

2

|(1 3)| 2
1

3

〉〈 2

3
1

|(1 3)| 3

2
1

〉

=

(
− 1

b1 + 2

√
b1 + 3

b1 + 1

)(
1

b1 + 2

√
b1 + 1

b1 + 3

)
= − 1

(b1 + 2)2
.
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For the second term we have

− Tr
(
IR′T ′PT,(t,u)ΓT ((1 3))IT ′R′ΓR((1 3))PR,(r,s)

)
=

= −Tr(|

1

〉〈
1
| 2

1
〉〈 2

1
|(1 3)|

1
〉〈

1

|(1 3)|
2
1

〉〈
2
1

|)

= −〈
1
| 2

1
〉〈 2

1
|(1 3)|

1
〉〈

1

|(1 3)|
2
1

〉〈
2
1

|

1

〉

= −〈 2
1
| 2

1
〉〈 2

1
|(1 3)|

1
〉〈

1

|(1 3)|
2
1

〉〈
2
1

|
2

1

〉

= 0.

The second term vanishes because when we chose to ensure one of the inner products does not
vanish, the other will vanish as a result; this is forced by consistency of the labelling of boxes.
Note that it does not matter which inner product you choose to label initially (to ensure it does
not vanish), the other inner product will always vanish. For the third term we have

− Tr
(
IR′T ′ΓT ((1 3))PT,(t,u)IT ′R′PR,(r,s)ΓR((1 3))

)
=

= −Tr(|

1

〉〈
1
|(1 3)| 2

1
〉〈 2

1
|

1
〉〈

1

|
2
1

〉〈
2
1

|(1 3))

= −〈
1
|(1 3)| 2

1
〉〈 2

1
| 2

1
〉〈 2

1

|
2
1

〉〈
2
1

|(1 3)|

1

〉

= 0.

The third term vanishes by the same reasoning. Lastly, we have the fourth term given as

Tr
(
IR′T ′PT,(t,u)ΓT ((1 3))IT ′R′PR,(r,s)ΓR((1 3))

)
=

= Tr(|

1

〉〈
1
| 2

1
〉〈 2

1
|(1 3)|

1
〉〈

1

|
2
1

〉〈
2
1

|(1 3))

= 〈
1
| 2

1
〉〈 2

1
|(1 3)|

1
〉〈

1

|
2
1

〉〈
2
1

|(1 3)|

1

〉

= 〈 2
1

3

| 2
1

3

〉〈 2
1

3

|(1 3)| 3
1

2

〉〈 3

2
1

| 3

2
1

〉〈 3

2
1

|(1 3)| 2

3
1

〉

= 〈 2
1

3

|(1 3)| 3
1

2

〉〈 3

2
1

|(1 3)| 2

3
1

〉.
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The action of the representation matrix ΓR((1 3)) or ΓT ((1 3)) on the ket-states shown above
is

(1 3)| 3
1

2

〉 = (1 2)(2 3)(1 2)| 3
1

2

〉

= (1 2)(2 3)
( 1

b1 + 1
| 3

1

2

〉+

√
b1(b1 + 2)

b1 + 1
| 3

2

1

〉
)

=
1

b1 + 1
(1 2)

(
(2 3)| 3

1

2

〉
)

+

√
b1(b1 + 2)

b1 + 1
(1 2)

(
(2 3)| 3

2

1

〉
)

=
1

b1 + 1
(1 2)

(
− 1

b1 + 2
| 3

1

2

〉+

√
(b1 + 1)(b1 + 3)

b1 + 2
| 2

1

3

〉
)

+

√
b1(b1 + 2)

b1 + 1
(1 2)

(
− | 3

2

1

〉
)

= − 1

(b1 + 1)(b1 + 2)

(
(1 2)| 3

1

2

〉
)

+
1

b1 + 2

√
b1 + 3

b1 + 1

(
(1 2)| 2

1

3

〉
)
−
√
b1(b1 + 2)

b1 + 1

(
(1 2)| 3

2

1

〉
)

= − 1

(b1 + 1)(b1 + 2)

(
− 1

b1 + 1
| 3

1

2

〉+

√
b1(b1 + 2)

b1 + 1
| 3

2

1

〉
)

+
1

b1 + 2

√
b1 + 3

b1 + 1

(
− | 2

1

3

〉
)
−

−
√
b1(b1 + 2)

b1 + 1

(
− 1

b1 + 1
| 3

2

1

〉+

√
b1(b1 + 2)

b1 + 1
| 3

1

2

〉
)

=
1

(b1 + 1)2(b1 + 2)
| 3

1

2

〉 − 1

(b1 + 1)2

√
b1

b1 + 2
| 3

2

1

〉 − 1

b1 + 2

√
b1 + 3

b1 + 1
| 2

1

3

〉−

+

√
b1(b1 + 2)

(b1 + 1)2
| 3

2

1

〉+
b1(b1 + 2)

(b1 + 1)2
| 3

1

2

〉,

so that

〈 2
1

3

|(1 3)| 3
1

2

〉 = − 1

b1 + 2

√
b1 + 3

b1 + 1
.
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We also have

(1 3)| 2

3
1

〉 = (1 2)(2 3)(1 2)| 2

3
1

〉

= (1 2)(2 3)
(
− 1

b1 + 3
| 2

3
1

〉+

√
(b1 + 2)(b1 + 4)

b1 + 3
| 1

3
2

〉
)

= − 1

b1 + 3
(1 2)

(
(2 3)| 2

3
1

〉
)

+

√
(b1 + 2)(b1 + 4)

b1 + 3
(1 2)

(
(2 3)| 1

3
2

〉
)

= − 1

b1 + 3
(1 2)

( 1

b1 + 2
| 2

3
1

〉+

√
(b1 + 1)(b1 + 3)

b1 + 2
| 3

2
1

〉
)

+

√
(b1 + 2)(b1 + 4)

b1 + 3
(1 2)

(
− | 1

3
2

〉
)

= − 1

(b1 + 2)(b1 + 3)

(
(1 2)| 2

3
1

〉
)
− 1

b1 + 2

√
b1 + 1

b1 + 3

(
(1 2)| 3

2
1

〉
)
−
√

(b1 + 2)(b1 + 4)

b1 + 3

(
(1 2)| 1

3
2

〉
)

= − 1

(b1 + 2)(b1 + 3)

(
− 1

b1 + 3
| 2

3
1

〉+

√
(b1 + 2)(b1 + 4)

b1 + 3
| 1

3
2

〉
)
− 1

b1 + 2

√
b1 + 1

b1 + 3

(
− | 3

2
1

〉
)
−

−
√

(b1 + 2)(b1 + 4)

b1 + 3

( 1

b1 + 3
| 1

3
2

〉+

√
(b1 + 2)(b1 + 4)

b1 + 3
| 2

3
1

〉
)

=
1

(b1 + 2)(b1 + 3)2
| 2

3
1

〉 − 1

(b1 + 3)2

√
b1 + 4

b1 + 2
| 1

3
2

〉+
1

b1 + 2

√
b1 + 1

b1 + 3
| 3

2
1

〉−

−
√

(b1 + 2)(b1 + 4)

(b1 + 3)2
| 1

3
2

〉 − (b1 + 2)(b1 + 4)

(b1 + 3)2
| 2

3
1

〉,

which implies

〈 3

2
1

|(1 3)| 2

3
1

〉 =
1

b1 + 2

√
b1 + 1

b1 + 3
.
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Finally, we have

Tr
(
IR′T ′PT,(t,u)IT ′R′ΓT ((1 3))PR,(r,s)ΓR((1 3))

)
= 〈 2

1

3

|(1 3)| 3
1

2

〉〈 3

2
1

|(1 3)| 2

3
1

〉

=

(
− 1

b1 + 2

√
b1 + 3

b1 + 1

)(
1

b1 + 2

√
b1 + 1

b1 + 3

)
= − 1

(b1 + 2)2
.

Adding these results together, we obtain

Tr
(
IR′T ′ [ΓT ((1 3)), PT,(t,u)]IT ′R′ [ΓR((1 3)), PR,(r,s)]

)
=

= 1st term + 2nd term + 3rd term + 4th term

= − 1

(b1 + 2)2
− 0− 0− 1

(b1 + 2)2

= − 2

(b1 + 2)2
.

The dimension dr′ appearing in (9) is given by

dr′ =
(n− 1)!

hooksr′
=

(n− 1)![
(b0−1)!((b0−1)+(b1+1)+1)!

(b1+1)+1

] =
(n− 1)![

(b0−1)!(b0+b1+1)!
b1+2

] =
(n− 1)!(b1 + 2)

(b0 − 1)!(b0 + b1 + 1)!
.

Thus we can write

dr′ Tr
(
IR′T ′ [ΓT ((1 3)), PT,(t,u)]IT ′R′ [ΓR((1 3)), PR,(r,s)]

)
= − 2dr′

(b1 + 2)2
= − 2

(b1 + 2)2

[
(n− 1)!(b1 + 2)

(b0 − 1)!(b0 + b1 + 1)!

]
.

At this point we consider the upfront factor

−g2YM

∑
R′

cRR′dT (nm)

dR′dtdu(n+m)

√
fT hooksT hooksr hookss
fR hooksR hookst hooksu

→ −g2YM

cRR′dT (nm)

dR′dtdu(n+m)

√
fT hooksT hooksr hookss
fR hooksR hookst hooksu

,

since there is only one way to remove a single box from R to obtain R′ in the example we

are considering. We first consider the expression
√

fT hooksT hooksr hookss
fR hooksR hookst hooksu

. For the case R = ,

T = , r = , t = and s = u = , the factors are

fR = N2(N + 1)(N − 1)2(N − 2)2(N − 3)(N − 4)(N − 5)(N − 6)(N − 7)

fT = N2(N + 1)(N − 1)2(N − 2)2(N − 3)2(N − 4)(N − 5)(N − 6)

⇒ fT
fR

=
N2(N + 1)(N − 1)2(N − 2)2(N − 3)2(N − 4)(N − 5)(N − 6)

N2(N + 1)(N − 1)2(N − 2)2(N − 3)(N − 4)(N − 5)(N − 6)(N − 7)
=
N − 3

N − 7
,

which can be written in terms of b0, b1 as

fT
fR

=
N − b0 + 1

N − b0 − b1 − 1
.
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The hook lengths of the Young diagrams studied are

hook lengths of r =

7 4
6 3
5 2
4 1
2
1

, hook lengths of t =

8 3
7 2
6 1
4
3
2
1

, hook lengths of R =

9 4
8 3
7 2
6 1
4
3
2
1

,

hook lengths of T =

8 5
7 4
6 3
5 2
4 1
2
1

, hook lengths of s = hook lengths of u = 2
1

and, thus, the hooks (the product of hook lengths) for these Young diagrams are computed, in
terms of b0 and b1, to be

hooksr =
b0!(b0 + b1 + 1)!

b1 + 1
, hookst =

(b0 − 1)!((b0 − 1) + (b1 + 2) + 1)!

(b1 + 2) + 1
=

(b0 − 1)!(b0 + b1 + 2)!

b1 + 3
,

hookss = hooksu = 2⇒ hookss
hooksu

= 1, hooksR =
b0!(b0 + (b1 + 2) + 1)!

(b1 + 2) + 1
=
b0!(b0 + b1 + 3)!

b1 + 3
,

hooksT =
(b0 + 1)!((b0 + 1) + b1 + 1)!

b1 + 1
=

(b0 + 1)!(b0 + b1 + 2)!

b1 + 1
.

From this we find

hooksT hooksr
hooksR hookst

=

(b0+1)!(b0+b1+2)!
b1+1

× b0!(b0+b1+1)!
b1+1

b0!(b0+b1+3)!
b1+3

× (b0−1)!(b0+b1+2)!
b1+3

=
(b1 + 3)2

(b1 + 1)2
(b0 + 1)!(b0 + b1 + 1)!

(b0 + b1 + 3)!(b0 − 1)!

=
(b1 + 3)2

(b1 + 1)2
(b0 + 1)b0(b0 − 1)!(b0 + b1 + 1)!

(b0 + b1 + 3)(b0 + b1 + 2)(b0 + b1 + 1)!(b0 − 1)!

=
(b1 + 3)2

(b1 + 1)2
b0(b0 + 1)

(b0 + b1 + 2)(b0 + b1 + 3)
,

∴

√
fT hooksT hooksr hookss
fR hooksR hookst hooksu

=
b1 + 3

b1 + 1

√
N − b0 + 1

N − b0 − b1 − 1

√
b0(b0 + 1)

(b0 + b1 + 2)(b0 + b1 + 3)
.

We will now evaluate
cRR′
dR′

. Recall that for R′ =

∗

, we have that

cRR′ = N − b0 − b1 − 1

and

dR′ =
(n+m− 1)!

hooksR′

=
(n+ 1)!(

b0!(b0+(b1+1)+1)!
(b1+1)+1

)
=

(n+ 1)!(
b0!(b0+b1+2)!

b1+2

)
=

(n+ 1)!(b1 + 2)

b0!(b0 + b1 + 2)!
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Thus,

cRR′

dR′
=
N − b0 − b1 − 1(

(n+1)!(b1+2)
b0!(b0+b1+2)!

) = (N − b0 − b1 − 1)
b0!(b0 + b1 + 2)!

(n+ 1)!(b1 + 2)
.

For the remaining dimensions participating in our expression, we have

dT =
(n+m)!

hooksT
=

(n+ 2)!(
(b0+1)!((b0+1)+b1+1)!

b1+1

) =
(n+ 2)!(

(b0+1)!(b0+b1+2)!
b1+1

) =
(n+ 2)!(b1 + 1)

(b0 + 1)!(b0 + b1 + 2)!
,

dt =
n!

hookst
=

n!(
(b0−1)!((b0−1)+(b1+2)+1)!

(b1+2)+1

) =
n!(

(b0−1)!(b0+b1+2)!
b1+3

) =
n!(b1 + 3)

(b0 − 1)!(b0 + b1 + 2)!
,

du =
m!

hooksu
=

2!

2!
= 1.

Thus,

dTnm

dtdu(n+m)
=

2n

n+ 2

dT
dt

=
2n

n+ 2

(n+ 2)!(b1 + 1)

(b0 + 1)!(b0 + b1 + 2)!

(b0 − 1)!(b0 + b1 + 2)!

n!(b1 + 3)

=
2n

n+ 2

(n+ 2)(n+ 1)n!(b+ 1)(b0 − 1)!(b0 + b1 + 2)!

(b0 + 1)b0(b0 − 1)!(b0 + b1 + 2)!n!(b1 + 3)

=
2n(n+ 1)(b1 + 1)

b0(b0 + 1)(b1 + 3)
.

Using these results, the upfront factor is computed to be

− g2YM

cRR′dT (nm)

dR′dtdu(n+m)

√
fT hooksT hooksr hookss
fR hooksR hookst hooksu

=

=− g2YM(N − b0 − b1 − 1)
b0!(b0 + b1 + 2)!

(n+ 1)!(b1 + 2)

2n(n+ 1)(b1 + 1)

b0(b0 + 1)(b1 + 3)

b1 + 3

b1 + 1

√
N − b0 + 1

N − b0 − b1 − 1
×

×

√
b0(b0 + 1)

(b0 + b1 + 2)(b0 + b1 + 3)

=− 2g2YM

√
(N − b0 − b1 − 1)(N − b0 + 1)

√
b0(b0 + b1 + 2)

(b0 + 1)(b0 + b1 + 3)

(b0 − 1)!(b0 + b1 + 1)!

(n− 1)!(b1 + 2)
.

Finally, combining the upfront factor and the final trace result, we obtain

Na;b = −g2YM

cRR′dT (nm)

dR′dtdu(n+m)

√
fT hooksT hooksr hookss
fR hooksR hookst hooksu

dr′ Tr
(
IR′T ′ [ΓT ((1 3)), PT,(t,u)]IT ′R′ [ΓR((1 3)), PR,(r,s)]

)
= −2g2YM

√
(N − b0 − b1 − 1)(N − b0 + 1)

√
b0(b0 + b1 + 2)

(b0 + 1)(b0 + b1 + 3)

(b0 − 1)!(b0 + b1 + 1)!

(n− 1)!(b1 + 2)
×

×
(
− 2

(b1 + 2)2

[
(n− 1)!(b1 + 2)

(b0 − 1)!(b0 + b1 + 1)!

])
= 4g2YM

√
(N − b0 − b1 − 1)(N − b0 + 1)

(b1 + 2)2

√
b0(b0 + b1 + 2)

(b0 + 1)(b0 + b1 + 3)
. (10)
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Since b0 = O(N) and assuming nothing about b1, in the large N limit we learn

4g2YM

√
(N − b0 − b1 − 1)(N − b0 + 1)

(b1 + 2)2

√
b0(b0 + b1 + 2)

(b0 + 1)(b0 + b1 + 3)
→ 4g2YM

√
(N − b0 − b1 − 1)(N − b0 + 1)

(b1 + 2)2
.

It should be clear that (10) is only a single term in the computation of (8) since a single example
of the labels T, (t, u) was considered.

2.9 Displaced Corners and Gauss Graphs

This subsection continues from the end of subsection 2.7 with focus now on the large N limit,
the displaced corners approximation, Gauss operators and Gauss graphs.

2.9.1 Large N limit

Everything up until now has been exact. We now consider the large N limit. Suppose we have
a Young diagram R with q rows of O(1) (remember that there are p X fields, m Y fields and
n Z fields) and of O(N) columns. The sum of the number of fields p + m + n is O(N) where
m = ηN and p = ξN with η, ξ � 1. The length of row i is denoted by lRi and the difference
between two distinct row lengths, i.e. lRi− lRj , for i 6= j, is O(N). The action of representation
ΓR(i, i+ 1) on a Young-Yamanouchi state |Y Y 〉 is given as

ΓR(i, i+ 1)|Y Y 〉 =
1

ci − cj
|Y Y 〉+

√
1− 1

(ci − cj)2
|Y Y(i,i+1)〉,

where i 6= j, ci is the content of box i and |Y Y(i,i+1)〉 is the Young-Yamanouchi state obtained
after acting on Young-Yamanouchi state |Y Y 〉 with permutation (i, i + 1). Consider the two
cases:

1. For boxes that sit directly next to each other: ci − cj = 1 always, which implies that the
Young-Yamanouchi state |Y Y 〉 will survive.

2. For boxes that are a row apart: ci − cj = N → ∞ in the large N limit, which implies
that the Young-Yamanouchi state |Y Y(i,i+1)〉 will survive.

This large N limit approximation is known as the displaced corners approximation.
If a box in the ith row of Young diagram R is removed to get Young diagram R′ and if a box

in the kth row of Young diagram T is removed we then get Young diagram T ′, and R′ = T ′,
then our intertwiners are

IR′T ′ = E
(1)
ik IT ′R′ = E

(1)
ki ,

where the superscript label (1) signifies E acts on a state in the first slot only. E
(1)
ik is a matrix

of zeroes everywhere except for the matrix element in row i and column k which is equal to 1,
i.e.

E
(1)
ik a

(1)
k = a

(1)
i ,

E
(1)
ik A

(1)
ka = A

(1)
ia ,

where a
(1)
k is a vector living in slot 1 and A

(1)
ka is a matrix acting on slot 1. To illustrate the

action of E on a vector state explicitly, consider the following example: denote the states

|1〉 ≡
[
1
0

]
, |2〉 ≡

[
0
1

]
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then

E
(1)
12 |2〉 =

[
0 1
0 0

] [
0
1

]
=

[
1
0

]
= |1〉.

Bear in mind that a short hand notation is used above; a more explicit notation is as follows

E
(1)
12 ⊗ 1

(2)(|2〉 ⊗ |1〉) = |1〉 ⊗ |1〉

or

E
(1)
12 ⊗ 1

(2)(|1〉 ⊗ |2〉) = 0,

since E
(1)
12 |1〉 = 0. From these two examples it is clear that Eij ≡ |i〉〈j|. Consider the tensor

product of states |1〉 ⊗ |2〉 ⊗ |3〉 whose positions in the tensor product are permuted by the
permutation (1 2)

(1 2)|1〉 ⊗ |2〉 ⊗ |3〉 = |2〉 ⊗ |1〉 ⊗ |3〉.

We will now argue that

Tr(E
(1)
ab E

(2)
ba ) = (1 2).

To check this claim act on a tensor product of states |1〉 ⊗ |2〉 ⊗ |3〉:

Tr(E
(1)
ab E

(2)
ba )|1〉 ⊗ |2〉 ⊗ |3〉 =

∑
a

∑
b

δa2δb1|a〉 ⊗ |b〉 ⊗ |3〉

= |2〉 ⊗ |1〉 ⊗ |3〉.

The delta functions naturally appear by the usual action of E
(i)
ab

E
(1)
ab |1〉 =

{
|a〉 if |1〉 = |b〉
0 if |1〉 6= |b〉

and

E
(2)
ba |2〉 =

{
|b〉 if |2〉 = |a〉
0 if |2〉 6= |a〉

We also have

E
(i)
abE

(i)
cd = δbcE

(i)
ad ,

where both E’s on the left hand side act on the ith slot. Returning to the trace term, considering
the first term again, we see that

Tr

(
IT ′R′PR,(r,s,t)~µ~νΓ

R(1, p+ 1)IR′T ′PT,(t,u,v)~µ~νΓ
T (1, p+ 1)

)
= Tr

(
ΓT (1, p+ 1)IT ′R′PR,(r,s,t)~µ~νΓ

R(1, p+ 1)IR′T ′PT,(t,u,v)~µ~ν

)
due to the cyclicity of the trace. Consider the trace of the first two objects in the expression
above. We find

Tr
(
ΓT (1, p+ 1)IT ′R′

)
= E

(1)
ab E

(p+1)
ba E

(1)
ki

= δbkE
(1)
ai E

(p+1)
ba

= E
(1)
ai E

(p+1)
ka
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and similarly

Tr
(
ΓR(1, p+ 1)IR′T ′

)
= E

(1)
cd E

(p+1)
dc E

(1)
ik

= δdiE
(1)
ck E

(p+1)
dc

= E
(1)
ck E

(p+1)
ic .

Thus the trace over the first term becomes

Tr

(
ΓT (1, p+ 1)IT ′R′PR,(r,s,t)~µ~νΓ

R(1, p+ 1)IR′T ′PT,(t,u,v)~µ~ν

)
= Tr

(
E

(1)
ai E

(p+1)
ka PR,(r,s,t)~µ~νE

(1)
ck E

(p+1)
ic PT,(t,u,v)~µ~ν

)
,

where we note that

E
(1)
ai E

(p+1)
ka = (E

(1)
ai ⊗ 1

p−1)⊗ (E
(p+1)
ka ⊗ 1

m−1)⊗ 1
n

and

E
(1)
ck E

(p+1)
ic = (E

(1)
ck ⊗ 1

p−1)⊗ (E
(p+1)
ic ⊗ 1

m−1)⊗ 1
n.

We use

PR,(t,s,r)~α~β = P
(~p,~m)
tα1β1:sα2β2

⊗ 1r

for the form of the projector (intertwining operator). The trace then evaluates to

Tr

(
E

(1)
ai E

(p+1)
ka PR,(r,s,t)~µ~νE

(1)
ck E

(p+1)
ic PT,(t,u,v)~µ~ν

)
= Tr

(
E

(1)
ai E

(p+1)
ka · P (~p,~m)

tα1β1:sα2β2
⊗ 1r · E(1)

ck E
(p+1)
ic · P (~p′, ~m′)

wµ1ν1:vµ2ν2
⊗ 1u

)
.

Using the following identity

Tr(A⊗B · C ⊗D) = Tr(A · C ⊗B ·D) = Tr(A · C) Tr(B ·D),

we can write

Tr

(
E

(1)
ai E

(p+1)
ka · P (~p,~m)

tα1β1:sα2β2
⊗ 1r · E(1)

ck E
(p+1)
ic · P (~p′, ~m′)

wµ1ν1:vµ2ν2
⊗ 1u

)
= Tr

(
E

(1)
ai E

(p+1)
ka P

(~p,~m)
tα1β1:sα2β2

E
(1)
ck E

(p+1)
ic P (~p′, ~m′)

wµ1ν1:vµ2ν2

)
Tr(1r1u),

where Tr(1r1u) = drδru. This result is obtained with the use of the displaced corners approxi-
mation.

2.9.2 Rewrite in terms of normalised operators

Recall from subsection 2.5.1 that the two point function of the restricted Schur polynomials is
given in (3). To obtain normalised operators rescale the restricted Schur polynomials so that

〈Ô†T,(w,v,u)~µ~νÔR,(t,s,r)~α~β〉 = δRT δruδsvδtwδ~α~µδ~β~ν .
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The factor that multiplies the trace is given by

cRR′dTpmδR′T ′δru
dR′dudvdw(p+m+ n)

√
fT hooksT hooksr hookss hookst
fR hooksR hooksu hooksv hooksw

dr

=
cRR′dTpmδR′T ′δru
dR′dvdw(p+m+ n)

√
fT hooksT hooksr hookss hookst
fR hooksR hooksu hooksv hooksw

,

where

δrudu = δrudr

was used to simplify the result. We make use of the following result

cRR′

√
fT
fR

= cRR′

√
cTT ′

cRR′
=
√
cRR′cTT ′ .

Another result, that is valid in the large N limit, is

hooksR
hooksR′

= lRi ,

where lRi is the number of boxes in row i of Young diagram R. Then√
hooksT
hooksR

=

√
hooksT
hooksT ′

hooksT ′

hooksR′

hooksR′

hooksR
=

√
lTk · 1 ·

1

lRi
=

√
lTk
lRi
.

Finally, recall that

dT =
(p+m+ n)!

hooksT
and dT ′ =

(p+m+ n− 1)!

hooksT ′
.

Plugging these results into the factor we are considering, we obtain

cRR′dTpmδR′T ′δru
dR′dvdw(p+m+ n)

√
fT hooksT hooksr hookss hookst
fR hooksR hooksu hooksv hooksw

=
√
cRR′cTT ′

dTpm

dR′dvdw(p+m+ n)
δR′T ′δru

√
hookss hookst
hooksv hooksw

√
hooksT
hooksR

=
√
cRR′cTT ′

√
lTk
lRi

hooksT ′

hooksT

pm

dvdw

√
hookss hookst
hooksv hooksw

δR′T ′δru.

Lastly, we make the substitutions

hookss =
m!

ds
hookst =

p!

dt

hooksv =
p!

dv
hooksw =

m!

dw

to obtain √
hookss hookst
hooksv hooksw

=

√√√√ m!
ds

p!
dt

p!
dv

m!
dw

=

√
dvdw
dsdt

.
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Thus, we have

√
cRR′cTT ′

√
lTk
lRi

hooksT ′

hooksT

pm

dvdw

√
hookss hookst
hooksv hooksw

δR′T ′δru = δR′T ′δru

√
cRR′cTT ′

lRilTk

pm√
dsdtdvdw

.

To complete our result, we write the action of D(3) on the normalised operator as

D(3)ÔR,(t,s,r)~α~β(Z, Y,X) =
∑

T,(w,v,u)

M3
R,(t,s,r)~α~β;T,(w,v,u)~µ~ν

ÔT,(w,v,u)~µ~ν ,

where

M3
R,(t,s,r)~α~β;T,(w,v,u)~µ~ν

=
∑
R′

δR′iT ′kδru
pm√

dsdtdvdw

√
cRR′cTT ′

lRilTk
×

×

[
Tr
(
E

(1)
ki P

(~p,~m)
tα1β1;sα2β2

E
(p+1)
ik P (~p′, ~m′)

wµ1ν1;vµ2ν2

)
− Tr

(
E

(1)
ci E

(p+1)
kc P

(~p,~m)
tα1β1;sα2β2

E
(1)
ak E

(p+1)
ia P (~p′, ~m′)

wµ1ν1;vµ2ν2

)
−

−Tr
(
E

(1)
kc E

(p+1)
ci P

(~p,~m)
tα1β1;sα2β2

E
(1)
ia E

(p+1)
ak P (~p′, ~m′)

wµ1ν1;vµ2ν2

)
+ Tr

(
E

(p+1)
ki P

(~p,~m)
tα1β1;sα2β2

E
(1)
ik P

(~p′, ~m′)
wµ1ν1;vµ2ν2

)]
.

(11)

The matrix elements connected to the mixing of Y and Z (M1
R,(t,s,r)~α~β;T,(w,v,u)~µ~ν

) and X and Z

(M2
R,(t,s,r)~α~β;T,(w,v,u)~µ~ν

) are evaluated in the same way and the results are

M1
R,(t,s,r)~α~β;T,(w,v,u)~µ~ν

=
∑
R′

δR′iT ′kδriuk
m√

dsdtdvdw

√
lriluk
lRilTk

cRR′cTT ′×

×

[
Tr
(
P

(~p,~m)
tα1β1;sα2β2

E
(p+1)
ii P (~p′, ~m′)

wµ1ν1;vµ2ν2

)
δik − Tr

(
E

(p+1)
kk P

(~p,~m)
tα1β1;sα2β2

E
(p+1)
ii P (~p′, ~m′)

wµ1ν1;vµ2ν2

)
−

−Tr
(
E

(p+1)
ii P

(~p,~m)
tα1β1;sα2β2

E
(p+1)
kk P (~p′, ~m′)

wµ1ν1;vµ2ν2

)
+ Tr

(
E

(p+1)
ii P

(~p,~m)
tα1β1;sα2β2

P (~p′, ~m′)
wµ1ν1;vµ2ν2

)
δik

]
and

M2
R,(t,s,r)~α~β;T,(w,v,u)~µ~ν

=
∑
R′

δR′iT ′kδriuk
p√

dsdtdvdw

√
lriluk
lRilTk

cRR′cTT ′×

×

[
Tr
(
P

(~p,~m)
tα1β1;sα2β2

E
(1)
ii P

(~p′, ~m′)
wµ1ν1;vµ2ν2

)
δik − Tr

(
E

(1)
kk P

(~p,~m)
tα1β1;sα2β2

E
(1)
ii P

(~p′, ~m′)
wµ1ν1;vµ2ν2

)
−

−Tr
(
E

(1)
ii P

(~p,~m)
tα1β1;sα2β2

E
(1)
kk P

(~p′, ~m′)
wµ1ν1;vµ2ν2

)
+ Tr

(
E

(1)
kk P

(~p,~m)
tα1β1;sα2β2

P (~p′, ~m′)
wµ1ν1;vµ2ν2

)
δik

]
.

2.10 Gauss Graph Basis

In this subsection we wish to rewrite the action of the dilatation operator that mixes the X and
Y fields in the basis of Gauss operators. The Gauss operators OR,r(σ) diagonalise the action of
the dilatation operator in the s ` m, t ` p and multiplicity labels. For simplicity we focus on
p = 0 for now. Consider σ ∈ H\Sm/H. σ represents an equivalence class for the equivalence
relation

σ̃ ∼ σ if σ̃ ≡ ψστ,
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where τ, ψ ∈ S~m = H. Here we have in mind a restricted Schur polynomial χR,(r,s)αβ(Z, Y ). As
usual we remove boxes from R to obtain r. The vector ~m = (m1,m2, . . . ) records how many
boxes were removed from each row of R to obtain r. The group S~m is defined to be a product
of symmetric groups as follows

S~m = Sm1 × Sm2 × · · · × Smp
i.e. R has p rows. Consider the vector state

|~v, ~m〉 = |v⊗m1
1 ⊗ v⊗m2

2 ⊗ · · · v⊗mpp 〉.

This is a tensor product of m vectors. vi is zero everywhere except the ith component which is
1, i.e.

(vi)a = δia, a = 1, . . . , p.

Notice that this non-zero entry matches the row from which the corresponding box was removed.
We define an action of Sm on this state as follows

σ|v, ~m〉 ≡ |vσ〉.

The action of σ on the vector space is

σ|vi1 ⊗ · · · ⊗ vip〉 = |viσ(1) ⊗ · · · ⊗ viσ(p)〉

We want to implement the symmetry under S~m. Towards this end, define

|vσ〉 =
1

|H|
∑
γ∈H

|vσγ〉. (12)

This description of |vσ〉 provides vectors that are not all independent. If we set γ to be an
element of the subgroup H, under the action of γ the state is unchanged

|vσ〉 = |vσγ〉.

We will make use of the vector

|vs,i,j〉 =
∑
σ∈Sm

Γij(σ)|vσ〉. (13)

Substituting (12) into (13) yields

|vs,i,j〉 =
∑
σ∈Sm

Γij(σ)|vσ〉

=
∑
σ∈Sm

Γij(σ)
1

|H|
∑
γ∈H

|vσγ〉

=
1

|H|
∑
σ∈Sm

∑
γ∈H

Γij(σ)|vσγ〉.

Relabelling σγ → ψ ⇒ σ → ψγ−1 yields

|vs,i,j〉 =
1

|H|
∑
σ∈Sm

∑
γ∈H

Γij(σ)|vσγ〉

=
1

|H|
∑
ψ∈Sm

∑
γ∈H

Γij(ψγ
−1)|vψ〉

=
1

|H|
∑
ψ∈Sm

∑
γ∈H

Γik(ψ)Γkj(γ
−1)|vψ〉.
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We can write

1

|H|
∑
γ∈H

Γskj(γ
−1) =

∑
µ

Bs→1H
kµ Bs→1H

jµ , (14)

where the left hand side is the projector onto the trivial representation of H, γ = γ−1 when
summing over all γ, and Bs→1H

kµ and Bs→1H
jµ are branching coefficients that take the irrep s to

1H , the trivial of subgroup H. Plugging this into our previous result gives

|vs,i,j〉 =
1

|H|
∑
ψ∈Sm

∑
γ∈H

Γik(ψ)Γkj(γ
−1)|vψ〉

=
∑
ψ∈Sm

∑
µ

Γik(ψ)Bs→1H
kµ Bs→1H

jµ |vψ〉

=
∑
µ

Bs→1H
kµ

[∑
ψ∈Sm

Γ
(s)
ik (ψ)|vψ〉

]
Bs→1H
jµ .

We introduce the Fourier transformation

|~m, s, µ; i〉 ≡
∑
k

Bs→1H
kµ

∑
ψ∈Sm

Γ
(s)
ik (ψ)|vψ〉

whose inverse is

|vs,i,j〉 =
∑
µ

Bs→1H
jµ |~m, s, µ; i〉.

Since we wish to work with normalised operators we will need to make use of the following
equations ∑

s`m

ds
m!

Γ
(s)
ij (σ)Γ

(s)
ij (τ) = δ(στ−1), (15)

Oτ =
1

|H|2
∑

γ1,γ2∈H

Oγ1τγ2 , (16)

Os
ij =

∑
σ∈Sm

Γ
(s)
ij (σ)Oσ. (17)

With the use of (15) and (17) we see that∑
s`m

ds
m!

Γ
(s)
ij (τ)Os

ij =
∑
σ∈Sm

∑
s`m

ds
m!

Γ
(s)
ij (τ)Γ

(s)
ij (σ)Oσ

=
∑
σ∈Sm

δ(στ−1)Oσ

= Oτ . (18)
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Substituting (18) into the right hand side of (16), and then using (14) yields

Oτ =
1

|H|2
∑
s`m

∑
γ1,γ2∈H

ds
m!

Γ
(s)
ij (γ1τγ2)O

s
ij

=
1

|H|2
∑
s`m

∑
γ1,γ2∈H

ds
m!

Γ
(s)
ik (γ1)Γ

(s)
kl (τ)Γ

(s)
lj (γ2)O

s
ij

=
∑
µ1,µ2

∑
s`m

ds
m!

Γ
(s)
kl (τ)Bs→1H

iµ1
Bs→1H
kµ1

Bs→1H
lµ2

Bs→1H
jµ2

Os
ij

=
∑
µ1,µ2

∑
s`m

√
ds
m!

Γ
(s)
kl (τ)Bs→1H

kµ1
Bs→1H
lµ2

(√
ds
m!
Bs→1H
iµ1

Bs→1H
jµ2

Os
ij

)

=
∑
µ1,µ2

∑
s`m

√
ds
m!

Γ
(s)
kl (τ)Bs→1H

kµ1
Bs→1H
lµ2

Os
µ1µ2

,

where
∑

µ1,µ2

∑
s`m

√
ds
m!

Γ
(s)
kl (τ)Bs→1H

kµ1
Bs→1H
lµ2

is connected to the double coset. We now define

Cs
µ1µ2

(τ) ≡ |H|
∑
s`p

√
ds
m!

Γ
(s)
kl (τ)Bs→1H

kµ1
Bs→1H
lµ2

such that

Cs
µ1µ2

(τ)Cs
µ1µ2

(σ) = |H|2
∑
s`p

ds
m!

Γ
(s)
kl (τ)Γ

(s)
ab (σ)Bs→1H

kµ1
Bs→1H
lµ2

Bs→1H
aµ1

Bs→1H
bµ2

=
∑
s`p

∑
γ1,γ2∈H

ds
m!

Γ
(s)
kl (τ)Γ

(s)
ab (σ)Γ

(s)
ka (γ1)Γ

(s)
lb (γ2)

=
∑
s`p

∑
γ1,γ2∈H

ds
m!

Γ
(s)
kb (τγ2)Γ

(s)
kb (γ1σ)

=
∑

γ1,γ2∈H

δ(γ1σγ
−1
2 τ−1),

where γ1σγ
−1
2 ∈ H\Sm/H. Thus

OR,r(σ) =
|H|√
m!

∑
j,k

∑
s`m

∑
µ1,µ2

√
dsΓ

(s)
jk (σ)Bs→1H

jµ1
Bs→1H
kµ2

OR,(s,r)µ1µ2 ,

whereOR,r(σ) is the new basis, OR,(s,r)µ1µ2 is the old basis and |H|√
m!

∑
j,k

∑
s`m

∑
µ1,µ2

√
dsΓ

(s)
jk (σ)Bs→1H

jµ1
Bs→1H
kµ2

is the map from the old basis to the new basis. This description is for the SU(2) sector, i.e.
the sector where two fields mix. When we extend to the SU(3) sector (mixing of X, Y and Z)
the paper [19] is useful. Consider the tensor product

|t, α1, x; s, α2, y; r, z〉 = |t, α1, x; s, α2, y〉 ⊗ |r, z〉,

where t ` p (s ` m and r ` n), α1 (α2) is the multiplicity of the the irreps of t (s), and x (y and
z) labels the state of the respective vector. We are only interested in the vector |t, α1, x; s, α2, y〉
relevant for mixing the X and Y fields - it is the subleading piece. This leads us to introduce
another intertwining map, expressed as

PT,(t,u,v)~µ~ν =
∑
a

|(v, µ1), a〉〈(v, ν1), a| ⊗
∑
b

|(u, µ2), b〉〈(u, ν2), b| ⊗
∑
c

|(t), c〉〈(t), c|

≡ P (~p)
vµ1ν1

⊗ P (~m)
uµ2ν2

⊗ 1t
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and

P (~p)
vµ1ν1

= |~p, v, µ1; a〉〈~p, v, ν1; a|, P (~m)
uµ2ν2

= |~m, u, µ2; b〉〈~m, u, ν2; b|.

Note the definition of the vectors

|~p, t, α1; a〉 =
∑
ψx∈Sp

Γ(t)
ax1

(ψx)B
t→1Hp
x1α1 ψx|~v, ~p〉,

|~m, s, α2; b〉 =
∑
ψy∈Sm

Γ
(s)
bx2

(ψy)B
s→1Hm
x2α2

ψy|~v, ~m〉.

The tensor product between these two vectors can be written as

|~p, t, α1; a〉 ⊗ |~m, s, α2; b〉 =
∑
ψx∈Sp

∑
ψy∈Sm

(
Γ(t)
ax1

(ψx) ·B
t→1Hp
x1α1 · ψx|~v, ~p〉 ⊗ Γ

(s)
bx2

(ψy) ·Bs→1Hm
x2α2

· ψy|~v, ~m〉
)
.

Using the identity

A ·B ⊗ C ·D = A⊗ C ·B ⊗D

the tensor product can be written as

|~p, t, α1; a〉 ⊗ |~m, s, α2; b〉 =
∑
ψx∈Sp

∑
ψy∈Sm

(
Γ(t)
ax1

(ψx)⊗ Γ
(s)
bx2

(ψy) ·B
t→1Hp
x1α1 ⊗Bs→1Hm

x2α2
· ψx ⊗ ψy|~v, ~p〉 ⊗ |~v, ~m〉

)
.

By making the following definitions

ψ ≡ ψx ⊗ ψy,
Γ
(t,s)
ab;x1x2

(ψ) ≡ Γ(t)
ax1

(ψx)⊗ Γ
(s)
bx2

(ψy),

B
(t,s)→1Hp×Hm
x1x2;α1α2 ≡ B

t→1Hp
x1α1 ⊗Bs→1Hm

x2α2
,

ψ|~v, ~p, ~m〉 ≡ ψx ⊗ ψy|~v, ~p〉 ⊗ |~v, ~m〉.

we can simplify the tensor product to

|~p, t, α1; a〉 ⊗ |~m, s, α2; b〉 =
∑

ψ∈Sp×Sm

(
Γ
(t,s)
ab;x1x2

(ψ) ·B(t,s)→1Hp×Hm
x1x2;α1α2 · ψ|~v, ~p, ~m〉

)
. (19)

Similarly, the bra vector tensor product is given as

〈~p, t, β1; a| ⊗ 〈~m, s, β2; b| =
∑

φ∈Sp×Sm

dtds
p!m!|Hp ×Hm|

(
〈~v, ~p, ~m|φ−1Γ(t,s)

ab;y1y2
(φ) ·B(t,s)→1Hp×Hm

y1y2;β1β2

)
.

(20)

Note that (19) and (20) are Fourier transform pairs with the corresponding delta function of
the form ∑

t`p,s`m

dtds
p!m!

Γ
(t,s)
ab;x1x2

(σ)Γ
(t,s)
ab;x1x2

(τ) = δ(στ−1). (21)

To make the connection to the Fourier transform more explicit, we now make a small digression
to develop a pedagogical example. Consider a simpler example of a Fourier transform pair and
the corresponding delta function to illustrate the statement made above. Consider the functions

f̃(k) =

∫
dx eikxf(x) and f(x) = N

∫
dk e−ikxf̃(k),
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where f̃(k) is the function in momentum space, f(x) is the function in position space and N
is a normalisation to be determined. Plugging in the form of f(x) into the form of f̃(k), one
can see that

f̃(k) =

∫
dx eikxf(x) = N

∫
dp

(∫
dx ei(k−p)x

)
f̃(p)

= N
∫
dp 2πδ(k − p)f̃(p)

= 2πN f̃(k),

which is only true if N = 1
2π

. From the third to fourth line, the integral representation of the
delta function ∫

dx ei(k−p)x = 2πδ(k − p)

was used. In our case, the normalisation in (20) was determined with the use of (19) and (21).
We can now express our intertwining map as

P
(~p,~m)
tα1β1;sα2β2

= |~p, t, α1; a〉 ⊗ |~m, s, α2; b〉〈~p, t, β1; a| ⊗ 〈~m, s, β2; b|

=
∑

ψ,φ∈Sp×Sm

dtds
p!m!|Hp ×Hm|

(
ψ|~v, ~p, ~m〉〈~v, ~p, ~m|φ−1

)
Γ
(t,s)
ab;x1x2

(ψ)Γ
(t,s)
ab;y1y2

(φ)×

×B(t,s)→1Hp×Hm
x1x2;α1α2 B

(t,s)→1Hp×Hm
y1y2;β1β2

,

where P
(~p,~m)
tα1β1;sα2β2

and ψ|~v, ~p, ~m〉〈~v, ~p, ~m|φ−1 are the Fourier transform pair and

Γ
(t,s)
ab;x1x2

(ψ)Γ
(t,s)
ab;y1y2

(φ)B
(t,s)→1Hp×Hm
x1x2;α1α2 B

(t,s)→1Hp×Hm
y1y2;β1β2

acts as “eikx”. This operator has appeared in the action of the dilatation operator on the
restricted Schur, i.e.

Tr(A · P (~p,~m)
tα1β1;sα2β2

·B · P (~p′, ~m′)
wµ1ν1;vµ2ν2

),

where A,B ∼ E(1), E(2) respectively. We can now define the normalised states

|OR,r(σx)〉 =
|Hp|√
p!

∑
i,j

∑
t`p

∑
α1,β1

√
dtΓ

(t)
ij (σx)B

t→1Hp
iα1

B
t→1Hp
jβ1

|OR,(t,s,r)α1β1〉,

|OR,r(σy)〉 =
|Hm|√
m!

∑
k,l

∑
s`m

∑
α2,β2

√
dsΓ

(s)
kl (σy)B

s→1Hm
kα2

B
s→1Hm
lβ2

|OR,(t,s,r)α2β2〉,

and define the tensor product of them as

|OR,r(σ)〉 ≡ |OR,r(σx)〉 ⊗ |OR,r(σy)〉

=
|Hp ×Hm|√

p!m!

∑
i,j,k,l

∑
t`p,s`m

∑
α1,α2,β1,β2

√
dtdsΓ

(t,s)
ij;kl(σ)B

(t,s)→1Hp×Hm
ik;α1α2

B
(t,s)→1Hp×Hm
jl;β1β2

|OR,((t,s),r)~α~β〉.

Similarly,

〈O†T,u(τ
−1)| = |Hp′ ×Hm′ |√

p′!m′!

∑
a,b,c,d

∑
w`p′,v`m′

∑
µ1,µ2,ν1,ν2

√
dwdvΓ

(w,v)
ac;bd (τ−1)B

(w,v)→1Hp′×Hm′
ac;µ1µ2 B

(w,v)→1Hp′×Hm′

bd;ν1ν2
×

× 〈O†T,((w,v),u)~µ~ν |.

69



Finally, we state the matrix element of the dilatation operator acting on the normalised state
to be

M
(3) (σ1;σ2)
T,u;R,r ≡ 〈O†T,u(σ

−1
2 )|D(3)|OR,r(σ1)〉

=
|Hp ×Hm||Hp′ ×Hm′ |√

p!m!p′!m′!

∑
i,j,k,l,a,b,c,d

∑
t`p,s`m

∑
w`p′,v`m′

∑
~α,~β,~µ,~ν

√
dtdsdwdv×

× Γ
(t,s)
ij;kl(σ1)B

(t,s)→1Hp×Hm
ik;α1α2

B
(t,s)→1Hp×Hm
jl;β1β2

Γ
(w,v)
ac;bd (σ−12 )B

(w,v)→1Hp′×Hm′
ac;µ1µ2 B

(w,v)→1Hp′×Hm′

bd;ν1ν2
×

× 〈O†T,((w,v),u)~µ~ν |D
(3)|OR,((t,s),r)~α~β〉, (22)

where

〈O†T,((w,v),u)~µ~ν |D
(3)|OR,((t,s),r)~α~β〉 =

∑
T,((w,v),u)

M
(3)

R((t,s),r)~α~β:T ((w,v),u)~µ~ν
δRT δ(t,s)δ(w,v)δruδ~α~µδ~β~ν ,

with M
(3)

R((t,s),r)~α~β:T ((w,v),u)~µ~ν
described in (11). We wish to explicitly compute the first term in

(22). This term is given as

M
(3,1st) (σ1;σ2)
T,u;R,r =

|Hp ×Hm||Hp′ ×Hm′|
(p− 1)!(m− 1)!

∑
R′

δR′iT ′kδru

√
cRR′cTT ′

lRilTk

∑
i,j,k,l,a,b,c,d

∑
t`p,s`m

∑
w`p′,v`m′

∑
~α,~β,~µ,~ν

×

× Γ
(w,v)
ac;bd (σ−12 )B

(w,v)→1Hp′×Hm′
ac;µ1µ2 B

(w,v)→1Hp′×Hm′

bd;ν1ν2
Γ
(t,s)
ik;jl(σ1)B

(t,s)→1Hp×Hm
ik;α1α2

B
(t,s)→1Hp×Hm
jl;β1β2

×

× Tr
(
E

(1)
ki P

(~p,~m)
tα1β1;sα2β2

E
(p+1)
ik P (~p′, ~m′)

wµ1ν1;vµ2ν2

)
=
∑
R′

δR′iT ′kδru

(p− 1)!(m− 1)!

√
cRR′cTT ′

lRilTk

∑
i,j,k,l,a,b,c,d

∑
t`p,s`m

∑
w`p′,v`m′

∑
~α,~β,~µ,~ν

dtdsdwdv
p!m!p′!m′!

×

× Γ
(w,v)
ac;bd (σ−12 )B

(w,v)→1Hp′×Hm′
ac;µ1µ2 B

(w,v)→1Hp′×Hm′

bd;ν1ν2
Γ
(t,s)
ik;jl(σ1)B

(t,s)→1Hp×Hm
ik;α1α2

B
(t,s)→1Hp×Hm
jl;β1β2

×

× Tr

(
E

(1)
ki

∑
φ1,ψ1∈Sp×Sm

ψ1|v, ~p, ~m〉〈v, ~p, ~m|φ−11 Γ(t,s)
rm;x1x2

(ψ1)Γ
(t,s)
rm;y1y2

(φ1)×

×B(t,s)→1Hp×Hm
x1x2;α1α2 B

(t,s)→1Hp×Hm
y1y2;β1β2

E
(p+1)
ik

∑
φ2,ψ2∈Sp×Sm

ψ2|v, ~p′, ~m′〉〈v, ~p′, ~m′|φ−12 ×

× Γ(w,v)
np;x3x4

(ψ2)Γ
(w,v)
np;y3y4

(φ2)B
(w,v)→1Hp′×Hm′
x3x4;µ1µ2 B

(w,v)→1Hp′×Hm′
y3y4;ν1ν2

)
.

We will use the identity

1

|Hp ×Hm|
∑

γ1∈Hp×Hm

Γ
(t,s)
ai;bj(γ1) =

∑
µ,ν

B
(t,s)→1Hp×Hm
ai;µν B

(t,s)→1Hp×Hm
bj;µν .
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Pairing multiple branching coefficients and summing over their multiplicities, we can write our
result (with the use of the formula above) as

M
(3,1st) (σ1;σ2)
T,u;R,r =

1

|Hp ×Hm|2|Hp′ ×Hm′ |2
∑
R′

δR′iT ′kδru

(p− 1)!(m− 1)!

√
cRR′cTT ′

lRilTk

∑
i,j,k,l,a,b,c,d

∑
t`p,s`m

∑
w`p′,v`m′

×

× dtdsdwdv
p!m!p′!m′!

Γ
(w,v)
ac;bd (σ−12 )Γ

(t,s)
ik;jl(σ1)

∑
φ1,ψ1∈Sp×Sm

∑
φ2,ψ2∈Sp×Sm

∑
γ1,γ2,γ3,γ4

×

× Tr

(
E

(1)
ki ψ1|v, ~p, ~m〉〈v, ~p, ~m|φ−11 Γ(t,s)

rm;x1x2
(ψ1)Γ

(t,s)
rm;y1y2

(φ1)Γ
(t,s)
ik;x1x2

(γ1)Γ
(t,s)
jl;y1y2

(γ2)×

× E(p+1)
ik ψ2|v, ~p′, ~m′〉〈v, ~p′, ~m′|φ−12 Γ(w,v)

np;x3x4
(ψ2)Γ

(w,v)
np;y3y4

(φ2)Γ
(w,v)
ac;x3x4

(γ3)Γ
(w,v)
bd;y3y4

(γ4)

)
,

where γ1, γ2 ∈ Hp ×Hm and γ3, γ4 ∈ Hp′ ×Hm′ . Note the identity

Γ
(w,v)
ac;bd (σ−12 )Γ(w,v)

np;x3x4
(ψ2)Γ

(w,v)
ac;x3x4

(γ3) = Γ
(w,v)
ac;bd (σ−12 )Γ(w,v)

np;ac(ψ2γ
−1
3 ) = Γ

(w,v)
np;bd(ψ2γ

−1
3 σ−12 ) = Γ

(w,v)
np;bd(ψ2γ3σ

−1
2 ),

where
∑

γ3
f(γ3) =

∑
γ3
f(γ−13 ). Using the above manipulation our result becomes

M
(3,1st) (σ1;σ2)
T,u;R,r =

1

|Hp ×Hm|2|Hp′ ×Hm′ |2
∑
R′

δR′iT ′kδru

(p− 1)!(m− 1)!

√
cRR′cTT ′

lRilTk

∑
i,j,k,l,a,b,c,d

∑
t`p,s`m

∑
w`p′,v`m′

×

× dtdsdwdv
p!m!p′!m′!

∑
φ1,ψ1∈Sp×Sm

∑
φ2,ψ2∈Sp×Sm

∑
γ1,γ2,γ3,γ4

Tr

(
E

(1)
ki ψ1|v, ~p, ~m〉〈v, ~p, ~m|φ−11 ×

× Γ
(t,s)
rm;jl(ψ1γ2σ1)Γ

(t,s)
rm;jl(φ1γ1)E

(p+1)
ik ψ2|v, ~p′, ~m′〉〈v, ~p′, ~m′|φ−12 Γ

(w,v)
np;bd(ψ2γ3σ

−1
2 )Γ

(w,v)
np;bd(φ2γ4)

)
.

Using (21) we can write

M
(3,1st) (σ1;σ2)
T,u;R,r =

1

|Hp ×Hm|2|Hp′ ×Hm′ |2
∑
R′

δR′iT ′kδru

(p− 1)!(m− 1)!

√
cRR′cTT ′

lRilTk
×

×
∑

φ1,ψ1∈Sp×Sm

∑
φ2,ψ2∈Sp×Sm

∑
γ1,γ2,γ3,γ4

Tr

(
E

(1)
ki ψ1|v, ~p, ~m〉〈v, ~p, ~m|φ−11 ×

× δ(ψ1γ2σ1γ
−1
1 φ−11 )E

(p+1)
ik ψ2|v, ~p′, ~m′〉〈v, ~p′, ~m′|φ−12 δ(ψ2γ3σ

−1
2 γ−14 φ−12 )

)
.

Since

δ(σ1σ
−1
2 ) 6= 0 for σ1σ

−1
2 = 1⇒ σ1 = σ2,

then

δ(ψ1γ2σ1γ
−1
1 φ−11 ) 6= 0 for ψ1γ2σ1γ

−1
1 φ−11 = 1⇒ φ−11 = γ1σ

−1
1 γ−12 ψ−11 ,

δ(ψ2γ3σ
−1
2 γ−14 φ−12 ) 6= 0 for ψ2γ3σ

−1
2 γ−14 φ−12 = 1⇒ φ−12 = γ4σ2γ

−1
3 ψ−12 .
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Thus, our result becomes

M
(3,1st) (σ1;σ2)
T,u;R,r =

1

|Hp ×Hm|2|Hp′ ×Hm′|2
∑
R′

δR′iT ′kδru

(p− 1)!(m− 1)!

√
cRR′cTT ′

lRilTk
×

×
∑

ψ1∈Sp×Sm

∑
ψ2∈Sp×Sm

∑
γ1,γ2,γ3,γ4

Tr

(
E

(1)
ki ψ1|v, ~p, ~m〉〈v, ~p, ~m|×

× γ1σ−11 γ−12 ψ−11 E
(p+1)
ik ψ2|v, ~p′, ~m′〉〈v, ~p′, ~m′|γ4σ2γ−13 ψ−12

)
.

Our result can be rewritten as

M
(3,1st) (σ1;σ2)
T,u;R,r =

1

|Hp ×Hm||Hp′ ×Hm′ |
∑
R′

δR′iT ′kδru

(p− 1)!(m− 1)!

√
cRR′cTT ′

lRilTk
×

×
∑

ψ1∈Sp×Sm

∑
ψ2∈Sp×Sm

∑
γ2,γ3

Tr

(
〈v, ~p′, ~m′|σ2γ−13 ψ−12 E

(1)
ki ψ1|v, ~p, ~m〉×

× 〈v, ~p, ~m|σ−11 γ−12 ψ−11 E
(p+1)
ik ψ2|v, ~p′, ~m′〉

)

=
1

|Hp ×Hm||Hp′ ×Hm′ |
∑
R′

δR′iT ′kδru

(p− 1)!(m− 1)!

√
cRR′cTT ′

lRilTk
×

×
∑

ψ1∈Sp×Sm

∑
ψ2∈Sp×Sm

∑
γ2,γ3

Tr

(
〈v, ~p′, ~m′|γ−13 γ3σ2γ

−1
3 ψ−12 E

(1)
ki ψ1|v, ~p, ~m〉×

× 〈v, ~p, ~m|γ−12 γ2σ
−1
1 γ−12 ψ−11 E

(p+1)
ik ψ2|v, ~p′, ~m′〉

)
,

where 1 = γ−13 γ3 was inserted to the left of σ2 and 1 = γ−12 γ2 was inserted to the left of σ−11 .
This is done so that we have the conjugacy

γ3σ2γ
−1
3 → σ̃2 ∈ H\Sm/H,

γ2σ1γ
−1
2 → σ̃1 ∈ H\Sm/H.

This helps to simplify our result to obtain

M
(3,1st) (σ1;σ2)
T,u;R,r =

1

|Hp ×Hm||Hp′ ×Hm′|
∑
R′

δR′iT ′kδru

(p− 1)!(m− 1)!

√
cRR′cTT ′

lRilTk
×

×
∑

ψ1∈Sp×Sm

∑
ψ2∈Sp×Sm

∑
γ2,γ3

Tr

(
〈v, ~p′, ~m′|γ−13 σ̃2ψ

−1
2 E

(1)
ki ψ1|v, ~p, ~m〉×

× 〈v, ~p, ~m|γ−12 σ̃−11 ψ−11 E
(p+1)
ik ψ2|v, ~p′, ~m′〉

)
.
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To complete the simplification of our result we use the fact that
∑

γ3
f(γ−13 ) =

∑
γ3
f(γ3) (and

a similar formula for γ−12 ) and the fact that we can relabel σ̃1 ↔ σ1 (and σ̃2 ↔ σ2) to obtain

M
(3,1st) (σ1;σ2)
T,u;R,r =

∑
R′

δR′iT ′kδru

(p− 1)!(m− 1)!

√
cRR′cTT ′

lRilTk

∑
ψ1∈Sp×Sm

∑
ψ2∈Sp×Sm

×

× Tr

(
〈v, ~p′, ~m′|σ2ψ−12 E

(1)
ki ψ1|v, ~p, ~m〉〈v, ~p, ~m|σ−11 ψ−11 E

(p+1)
ik ψ2|v, ~p′, ~m′〉

)
.

Performing similar steps for the remaining terms and summing, we can write the explicit form
for the matrix element of the dilatation operator acting on the normalised state as

M
(3) (σ1;σ2)
T,u;R,r =

∑
R′

δR′iT ′kδru

(p− 1)!(m− 1)!

√
cRR′cTT ′

lRilTk

∑
ψ1∈Sp×Sm

∑
ψ2∈Sp×Sm

×

× Tr

(
〈v, ~p′, ~m′|σ2ψ−12 E

(1)
ki ψ1|v, ~p, ~m〉〈v, ~p, ~m|σ−11 ψ−11 E

(p+1)
ik ψ2|v, ~p′, ~m′〉−

− 〈v, ~p′, ~m′|σ2ψ−12 E
(1)
kc E

(p+1)
ci ψ1|v, ~p, ~m〉〈v, ~p, ~m|σ−11 ψ−11 E

(1)
ia E

(p+1)
ak ψ2|v, ~p′, ~m′〉−

− 〈v, ~p′, ~m′|σ2ψ−12 E
(1)
ci E

(p+1)
kc ψ1|v, ~p, ~m〉〈v, ~p, ~m|σ−11 ψ−11 E

(1)
ak E

(p+1)
ia ψ2|v, ~p′, ~m′〉+

+ 〈v, ~p′, ~m′|σ2ψ−12 E
(p+1)
ki ψ1|v, ~p, ~m〉〈v, ~p, ~m|σ−11 ψ−11 E

(1)
ik ψ2|v, ~p′, ~m′〉

)
.

One can compute the matrix element above explicitly for given examples.
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3 Anomalous dimensions from boson lattice models

This chapter is based on [6] and it is my original work with de Mello Koch and Mahu.

3.1 Introduction

Motivated by the AdS/CFT correspondence[2, 20, 21], there has been dramatic progress in
computing the planar spectrum of anomalous dimensions in N = 4 super Yang-Mills theory.
The planar spectrum is now known, in principle, to all orders in the ’t Hooft coupling [22].
This has been possible thanks to the discovery of integrability[17, 23] in the planar limit of
the theory. This spectrum of anomalous dimensions reproduces classical string energies on the
AdS5×S5 spacetime, in the dual string theory[24].

As mentioned in subsection 2.1, much less is known about N = 4 super Yang-Mills theory
outside the planar limit. There are many distinct large N but non-planar limits of the theory
that could be considered and these correspond to a variety of fascinating physical problems. For
example, the problem of considering new spacetime geometries (including black hole solutions)
corresponds to considering operators with a bare dimension of order N2[25], while giant graviton
branes[26, 27, 28] are dual to operators with a bare dimension of order N . The planar limit
does not correctly capture the dynamics of these operators[29, 30].

Although much less is known about these large N but non-planar limits, some progress
has been made. Approaches based on group representation theory provide a powerful tool,
essentially because they allow us to map the problem of the dynamics of the non-planar limit
- summing the ribbon graphs contributing to correlation functions - into a purely algebraic
problem in group theory. Typically, it can be phrased as the construction of a collection of
projection operators and their properties. Once the algebraic problem is properly formulated,
systematic approaches to it can be developed. As an example of this approach, bases of local
gauge invariant operators have been given[12, 15, 31, 32, 33, 34, 35, 36]. These bases provide
a good starting point from which the anomalous dimensions can be studied. This is basically
because they diagonalize the free field two point function and, at weak coupling, operator
mixing is highly constrained[37, 38, 39, 40, 41]. The resulting operators have a complicated
multi-trace structure, quite different to the single trace structure relevant for the planar limit
and its mapping to an integrable spin chain. The spectrum of anomalous dimensions has been
computed for operators that are small deformations of 1

2
-BPS operators. Problems with two

distinct characters have been solved: It is possible to simply treat all fields in the operator
on the same footing, construct the basis and then diagonalize [42, 43, 44, 45] or alternatively,
one can build operators that realize a spacetime geometry or a giant graviton brane and use
words constructed from the fields of the CFT to describe string excitations[37, 46, 47]. In the
approach that treats all fields on the same footing, one simply defines the operators of the
basis and considers the diagonalization of the dilatation operator with no physical input from
the dual gravity description. When considering states dual to systems of giant gravitons, the
Gauss Law of the dual giant world volume gauge theory emerges, so that in this approach we
see open string and membranes are present in the CFT Hilbert space. When using words to
describe string excitations, computations in the CFT reproduce the classical values of energies
computed in string theory[46, 47], the worldsheet S-matrix[5] and has lead to the discovery
of integrable subsectors for string excitations of certain LLM backgrounds[47]. Clearly, this is
a rich problem with hidden simplicity, so that further study of these limits are bound to be
fruitful. The existence of this hidden simplicity is not unexpected: conventional lore of the
large N limit identifies 1/N as the gravitational interaction, so that the N →∞ limit, in which
this interaction is turned off, should be a simple limit.

One next step that can be contemplated, is to go beyond small perturbations of the 1
2
-BPS
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sector. This problem is our main motivation in this study, and we will take a small step in this
direction. We will study operators constructed from three complex adjoint scalars X, Y , Z of
N = 4 super Yang-Mills theory, reviewed above.

Operators that are a small perturbation of a 1
2
-BPS operator are constructed using mainly Z

fields. For these operators, interactions between the X, Y fields are subdominant to interactions
between X,Z and between Y, Z fields and can hence be neglected. As we move further from the
original 1

2
-BPS operator, more and more X, Y fields are added. At some point the interactions

between the X, Y fields can no longer be neglected. Dealing with these interactions is the
focus of our study. We will argue that this is a well defined problem, that can be solved, often
explicitly. This is accomplished by phrasing the new X, Y interactions as a lattice model, for
essentially free bosons. Thus, we finally land up with a simple problem that is familiar and can
be solved. This is the basic achievement of [6].

Our results show a fascinating structure that deserves to be discussed. The mapping to the
lattice model associates a harmonic oscillator to both the X field and to the Y field. Earlier
results [44] treating the leading term, performed the diagonalization by associating a harmonic
oscillator to the Z field, so that in the end we seem to be seeing an equality in the description
of the three scalar fields. An even-handed treatment of all three fields is a big step towards
being able to treat operators constructed with equal numbers of X, Y and Z fields. This would
most certainly go beyond the 1

2
-BPS sector, the main motivation for our study.

In the next subsection we review the action of the one loop dilatation operator D2. The
action of D2 in the SU(3) sector, in the restricted Schur polynomial basis, has been evaluated
previously[19] and we simply quote and use the result. We then move to the Gauss graph basis
of [45], in which the terms in D2 arising from Z, Y or Z,X interactions are diagonal. Again,
this is a known result and we simply use it. The Gauss graph basis has a natural interpretation
in terms of giant graviton branes and their open string excitations. We will often use this
language of branes and strings. We then come to the central term of interest: the term in D2

arising from X, Y interactions. Denote this term by DXY
2 . We will carefully evaluate this term,

arriving at a rather simple formula, which is the starting point for subsection 3.3. The explicit
expression for DXY

2 can easily be identified with a lattice model for a collection of bosons.
The giant gravitons define the sites of this lattice, and the open string excitations determine
the lattice Hamiltonian. Subsection 3.4 diagonalizes the dilatation operator for a number of
giants plus open string configurations, arriving at detailed and explicit expressions both for the
anomalous dimensions and for the operators of a definite scaling dimension. Our conclusions
and some discussion are given in subsection 3.5.

3.2 Action of the One Loop Dilatation Operator

We combine the 6 hermitian adjoint scalars of N = 4 super Yang-Mills theory into three
complex combinations, denoted X, Y, Z. The operators we consider are constructed using n
Zs, m Y s and p Xs. Operators that are dual to giant graviton branes are constructed using
n + m + p ∼ N fields. We will focus on operators that are small deformations of 1

2
-BPS

operators, achieved by choosing n � m + p. We will fix m
p
∼ 1 as N → ∞ and treat m

n
as a

small parameter. The collection of operators constructed using X, Y, Z fields are often referred
to as the SU(3) sector. This is not strictly speaking correct since these operators do mix with
operators containing fermions. At one loop however, this is a closed sector.

Our starting point is the action of the one loop dilatation operator of the SU(3) sector

D2 = DY Z
2 +DXZ

2 +DXY
2 , (23)

where

DAB
2 ≡ g2YM Tr ([A,B][∂A, ∂B]) (24)
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on the restricted Schur polynomial basis. This has been evaluated in [19]. Further, the terms
DY Z

2 and DXZ
2 have been diagonalized. The operators of a definite scaling dimension OR,r(σ),

called Gauss graph operators[43, 45], are labelled by a pair of Young diagrams R ` n+m+p and
r ` n as well as a permutation σ ∈ Sm×Sp. Although these labels arise when diagonalizing DY Z

2

and DXZ
2 in the CFT, they have a natural interpretation in the dual gravitational description

in terms of giant graviton branes plus open string excitations. A Young diagram R that has q
rows corresponds to a system of q dual giant gravitons or giant gravitons in the AdS5 space..
The Y and X fields describe the open string excitations of these giants, so that there are m+ p
open strings in total. We can describe the state of the system using a graph, with nodes of the
graph representing the branes (and hence rows of R) and directed edges of the graph describing
the open string excitations (represented by X and Y fields in the CFT). Each directed edge
ends on any two (not necessarily distinct) of the q branes. The only configurations that appear
when DY Z

2 and DXZ
2 are diagonalized have the same number of strings starting or terminating

on any given giant, for the X and Y strings separately[19, 45]. Thus the Gauss Law of the
brane world volume theory implied by the fact that the giant graviton has a compact world
volume[11] emerges rather naturally in the CFT description. Since every terminating edge
endpoint can be associated to a unique emanating endpoint, we can give a nice description
of how the open strings are connected to the giants by specifying how the terminating and
emanating endpoints are associated. The permutation σ ∈ Sm × Sp describes how the m Y ’s
and the p X’s are draped between the q giant gravitons by describing this association[19, 45].
The explicit form of the Gauss graph operators is[19, 45]

O ~m,~p
R,r (σ) =

|HX ×HY |√
p!m!

∑
j,k

∑
s`m

∑
t`p

∑
~µ1,~µ2

√
dsdtΓ

(s,t)
jk (σ)

×B(s,t)→1HX×HY
j~µ1

B
(s,t)→1HX×HY
k~µ2

OR,(t,s,r)~µ1~µ2 . (25)

Each box in R is associated with one of the complex fields. r is a label for the Z fields. The
graph σ encodes important information. The number of Y (or X) strings terminating on the
ith node which equals the number of Y (or X) strings emanating from the ith node is denoted
by mi (or pi). mi (or pi) also counts the number of boxes in the ith row of R that correspond
to Y (or X) fields. We will often assemble mi and pi into the vectors ~m and ~p. The number of
Y (or X) strings stretching between nodes i and k is denoted mik (or pik), while the number
of strings stretching from node i to node k is denoted mi→k (or pi→k). A Young diagram with
k boxes a ` k labels an irreducible representation of Sk with dimension da. The branching

coefficients B
(s,t)→1HX×HY
j~µ1

resolve the operator that projects from (s, t), with s ` m, t ` p, an
irreducible representation of Sm × Sp, to the trivial (identity) representation of the product
group HY ×HX with HY = Sm1 × Sm2 × · · ·Smq and HX = Sp1 × Sp2 × · · ·Spq , i.e.

1

|HX ×HY |
∑

γ∈HX×HY

Γ
(s,t)
ik (γ) =

∑
~µ

B
(s,t)→1HX×HY
i~µ B

(s,t)→1HX×HY
k~µ . (26)

Γ
(s,t)
jk (σ) is a matrix (with row and column indices jk) representing σ ∈ Sm × Sp in irreducible

representation (s, t) - these matrices are reviewed in subsection 2.9. The operators OR,(t,s,r)~µ1~µ2

are normalized versions of the restricted Schur polynomials [15]

χR,(t,s,r)~µ1~µ2(Z, Y,X) =
1

n!m!p!

∑
σ∈Sn+m+p

χR,(t,s,r)~µ1~µ2(σ) Tr(σZ⊗nY ⊗mX⊗p),

(27)

which themselves provide a basis for the gauge invariant operators of the theory. The restricted
characters χR,(t,s,r)~µ1~µ2(σ) are defined by tracing the matrix representing group element σ in
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representation R over the subspace giving an irreducible representation (t, s, r) of the Sn×Sm×
Sp subgroup. There is more than one choice for this subspace and the multiplicity labels ~µ1~µ2

resolve this ambiguity, for the row and column index of the trace. The operators OR,(t,s,r)~µ1~µ2

given by

OR,(t,s,r)~µ1~µ2 =

√
hooksrhooksshookst

hooksRfR
χR,(t,s,r)~µ1~µ2 (28)

have unit two point function. hooksr stands for the product of hook lengths of Young diagram
r and fR stands for the product of the factors of Young diagram R - as defined in subsection
2.2. The action of the dilatation operator on the Gauss graph operators is [19, 43, 45]

DY Z
2 O ~m,~p

R,r (σ) = −g2YM
∑
i<j

mij(σ)∆ijO
~m,~p
R,r (σ),

DXZ
2 O ~m,~p

R,r (σ) = −g2YM
∑
i<j

pij(σ)∆ijO
~m,~p
R,r (σ), (29)

where ∆ij = ∆−ij + ∆0
ij + ∆+

ij[44]. We will now spell out the action of the operators ∆+
ij, ∆0

ij

and ∆−ij. Denote the row lengths of r by lri . The Young diagram r+ij is obtained by deleting a
box from row j and adding it to row i. The Young diagram r−ij is obtained by deleting a box
from row i and adding it to row j. In terms of these Young diagrams we have

∆0
ijO

~m,~p
R,r (σ) = −(2N + lri + lrj)O

~m,~p
R,r (σ), (30)

∆+
ijO

~m,~p
R,r (σ) =

√
(N + lri)(N + lrj)O

~m,~p

R+
ij ,r

+
ij

(σ), (31)

∆−ijO
~m,~p
R,r (σ) =

√
(N + lri)(N + lrj)O

~m,~p

R−ij ,r
−
ij

(σ). (32)

Notice that DY Z
2 and DXZ

2 in (29) are not yet diagonal: they still mix operators with different
R, r labels. This last diagonalization however, is rather simple: it maps into diagonalizing a
collection of decoupled oscillators as demonstrated in [44]. We will call these Z oscillators, since
they are associated to the r label which organizes the Z fields. It is clear that DXY

2 does not
act on the r label so that in the end, the contribution from DXY

2 simply shifts the ground state
eigenvalue of the Z oscillators.

We will now focus on the term DXY
2 . Recall that our operators are built with many more Z

fields, than X or Y fields (n� p+m). Since this term contains no derivatives with respect to
Z it is subleading (of order m

n
) when compared to DY Z

2 and DXZ
2 . Diagonalizing this operator

is the main goal of this chapter, so it is useful to sketch the derivation of the matrix elements
of DXY

2 in the Gauss graph basis. We will simply quote existing results that we need, giving
complete details only for the final stages of the evaluation, which are novel. The reader will find
useful background material in [19]. The action of this term on the restricted Schur polynomial
basis was computed in [19]. The result is

DXY
2 OR,(t,s,r)~µ~ν =

∑
R′

∑
T,(y,x,w)~α~β

C TrR⊕T
([
P1,Γ

R(1, p+ 1)
]
IR′T ′

[
P2,Γ

T (1, p+ 1)
]
IT ′,R′

)
OT,(y,x,w)~β~α,

where

C = −g2YMcRR′
dTmp

dxdydw(n+m+ p)dR′

√
fThooksThooksrhooksshookst
fRhooksRhookswhooksxhooksy

,
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P1 = PR,(t,s,r)~µ~ν , P2 = PT,(y,x,w)~α~β. (33)

ΓS(σ) is the matrix representing σ ∈ Sn+m+p in irreducible representation S ` n+m+p. Young
diagram R′ is obtained from Young diagram R by dropping a single box, with cRR′ denoting
the factor of this box. IT ′R′ , IR′T ′ , P1 and P2 are intertwining maps. IT ′R′ maps from the
carrier space of R′ to the carrier space of T ′. It is only non-vanishing if T ′ and R′ are equal
as Young diagrams implying that operators labelled by R and T can only mix if they differ by
the placement of a single box. The operators P1 and P2 are the intertwining maps used in the
construction of the restricted Schur polynomials. These expressions and definitions are reviewed
earlier in this thesis - we quote them to remind the reader of their meaning and significance.
It is challenging to evaluate the above expression explicitly, basically because it is difficult to
construct P1 and P2. However, the above expression has not yet employed the simplifications
of large N . To do this, following [43] we will use the displaced corners approximation. This
approximation assumes that the difference of the number of boxes in any two rows of R is of
order N , as described in subsection 2.9. In this situation the action of the Sm × Sp subgroup
simplifies so much that the relevant restricted characters can be computed and a complete
explicit characterization of the multiplicity labels on the restricted Schur polynomials is possible.
The corrections to the displaced corners approximation are suppressed by the inverse of the
difference in length of rows of R. After applying the approximation we obtain[19]

DXY
2 OR,(t,s,r)~µ~ν =

∑
T,(w,v,u)~α~β

M̃R,(t,s,r)~µ~ν T,(w,v,u)~α~βOT,(w,v,u)~α~β, (34)

where

M̃R,(t,s,r)~µ~ν T,(w,v,u)~α~β = −g2YM
∑
R′

δR′iT ′kδru
pm√

dsdtdwdv

√
cRR′cTT ′

lRilTk
×

Tr
[
E

(1)
ki P

(~p,~m)
tα1β1;sα2β2

E
(p+1)
ik P (~p′, ~m′)

wµ1ν1;vµ2ν2
− E(1)

ci E
(p+1)
kc P

(~p,~m)
tα1β1;sα2β2

E
(1)
ak E

(p+1)
ia P (~p′, ~m′)

wµ1ν1;vµ2ν2

−E(1)
kc E

(p+1)
ci P

(~p,~m)
tα1β1;sα2β2

E
(1)
ia E

(p+1)
ak P (~p′, ~m′)

wµ1ν1;vµ2ν2
+ E

(p+1)
ki P

(~p,~m)
tα1β1;sα2β2

E
(1)
ik P

(~p′, ~m′)
wµ1ν1;vµ2ν2

]
.

(35)

The trace in this expression is over the tensor product V ⊗n+mq where Vq is the fundamental
representation of U(q). The intertwining maps used to define the restricted Schur polynomials
(P1 and P2 above) factor into an action on the boxes associated to the Z fields, an action on
the boxes associated to the Y fields and an action on the boxes associated to the X fields. The
intertwining maps3 P

(~p,~m)
tα1β1;sα2β2

and P
(~p′, ~m′)
wµ1ν1;vµ2ν2 are the actions of the intertwining maps on the

X and Y fields only. This happens because the trace over the Z field indices, which is simple as
the dilatation operator DXY

2 does not act on the Z fields, has been performed. Young diagram
R′i is obtained from R by dropping a single box from row i and T ′k from T by dropping a single
box from row k.

The result (35) gives the DXY
2 term in the dilatation operator, as a matrix that must be

diagonalized. As we will see, all three terms in D2 are simultaneously diagonalizable at large
N so that it is convenient to employ the Gauss graph basis which already diagonalizes both
DZY

2 and DZX
2 . The problem of diagonalizing DXY

2 then amounts to a diagonalization on
degenerate subspaces of DZY

2 and DZX
2 . Thus, the original diagonalization of an enormous

matrix is replaced by diagonalizing a number of smaller matrices - a significant simplification.
Applying the results of [19], we find that, after the change in basis

DXY
2 Ô ~m,~p

R,r (σ1) = M ~m,~p
R,r,σ1 T,t,σ2

Ô ~m,~p
T,t (σ2), (36)

3A very explicit algorithm for the construction of these maps has been given in [43].
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where

M ~m,~p
R,r,σ1 T,t,σ2

= −g2YM
1√

|O ~m,~p
R,r (σ1)|2|O ~m,~p

T,t (σ2)|2
×

∑
R′

δR′iT ′kδru

(p− 1)!(m− 1)!

√
cRR′cTT ′

lRilTk

∑
ψ1∈S~p×S~m

∑
ψ2∈S~p′×S~m′[

〈~p′, ~m′|σ2ψ−12 E
(1)
ki ψ1|~p, ~m〉〈~p, ~m|σ−11 ψ−11 E

(p+1)
ik ψ2|~p′, ~m′〉

−〈~p′, ~m′|σ2ψ−12 E
(1)
ci E

(p+1)
kc ψ1|~p, ~m〉〈~p, ~m|σ−11 ψ−11 E

(1)
ak E

(p+1)
ia ψ2|~p′, ~m′〉

−〈~p′, ~m′|σ2ψ−12 E
(1)
kc E

(p+1)
ci ψ1|~p, ~m〉〈~p, ~m|σ−11 ψ−11 E

(1)
ia E

(p+1)
ak ψ2|~p′, ~m′〉

+〈~p′, ~m′|σ2ψ−12 E
(p+1)
ki ψ1|~p, ~m〉〈~p, ~m|σ−11 ψ−11 E

(1)
ik ψ2|~p′, ~m′〉

]
. (37)

Here the Gauss graph operators Ô ~m,~p
R,r (σ1) are normalized to have a unit two point function.

They are related to the operators introduced in (25) as follows

O ~m,~p
R,r (σ) =

√√√√ q∏
i=1

mii(σ)!pii(σ)!
∏
k,l,k 6=l

mk→l(σ)!pk→l(σ)! Ô ~m,~p
R,r (σ). (38)

Introduce the vectors (v(i))a = δia which form a basis for Vq. The vector |~p, ~m〉 is defined as
follows

|~p, ~m〉 = |~p〉 ⊗ |~m〉, (39)

where

|~p〉 = (v(1))⊗p1 ⊗ · · · ⊗ (v(q))⊗pq ,
|~m〉 = (v(1))⊗m1 ⊗ · · · ⊗ (v(q))⊗mq . (40)

We will now explain how the sums over ψ1 and ψ2 in (37) can be evaluated. This discussion
is novel and is one of the new contributions in [6]. Consider the term

T1 =
∑

ψ1∈S~p×S~m

∑
ψ2∈S~p′×S~m′

〈~p′, ~m′|σ2ψ−12 E
(1)
ki ψ1|~p, ~m〉〈~p, ~m|σ−11 ψ−11 E

(p+1)
ik ψ2|~p′, ~m′〉.

The dependence on the permutations σ1, σ2 can be simplified with the following change of
variables: replace ψ2 with ψ̃2 where

ψ̃2 = ψ2σ
−1
2 ⇒ ψ̃−12 = σ2ψ

−1
2 . (41)

After relabelling ψ̃2 → ψ2 and taking the transpose of the first factor which is a real number,
we find

T1 =
∑

ψ1∈S~p×S~m

∑
ψ2∈S~p′×S~m′

〈~p, ~m|ψ−11 E
(1)
ik ψ2|~p′, ~m′〉〈~p, ~m|σ−11 ψ−11 E

(p+1)
ik ψ2σ2|~p′, ~m′〉.

If i 6= k, the matrix element 〈~p, ~m|ψ−11 E
(1)
ik ψ2|~p′, ~m′〉 is only non-vanishing if ~p 6= ~p′ and ~m = ~m′,

while the matrix element 〈~p, ~m|σ−11 ψ−11 E
(p+1)
ik ψ2σ2|~p′, ~m′〉 is only non-vanishing if ~p = ~p′ and

~m 6= ~m′. Thus, T1 vanishes for i 6= k. Indicate this explicitly as follows

T1 = δik
∑

ψ1,ψ2∈S~p×S~m

〈~p, ~m|ψ−11 E
(1)
ii ψ2|~p, ~m〉〈~p, ~m|σ−11 ψ−11 E

(p+1)
ii ψ2σ2|~p, ~m〉.
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To simplify this expression further, note that E
(1)
ii |~p, ~m〉 is only non-zero if vector v(i) occupies

slot one in the vector |~p〉. In this case E
(1)
ii |~p, ~m〉 = |~p, ~m〉. Since ψ1 and ψ2 shuffle the vectors

in |~p, ~m〉 into all possible locations, E
(1)
ii will in the end count how many times the vector

v(i) appears in |~p, ~m〉. This is given by pi introduced above. A similar argument applies to
E(p+1)|~p, ~m〉. Thus, we obtain

T1 = δik
pi
p

mi

m

∑
ψ1,ψ2∈S~p×S~m

〈~p, ~m|ψ−11 ψ2|~p, ~m〉〈~p, ~m|σ−11 ψ−11 ψ2σ2|~p, ~m〉

= δik
pi
p

mi

m

∑
ψ1,ψ2∈S~p×S~m

∑
h1,h2∈HX×HY

δ(ψ−11 ψ2h1)δ(σ
−1
1 ψ−11 ψ2σ2h2).

Now, perform the following change of summation variables ψ1 → ψ̃1 with

ψ1 = ψ2ψ̃1. (42)

The summand is now independent of ψ2 so that after summing over ψ2 and relabelling ψ̃1 → ψ1

we find

T1 = δik(p− 1)!(m− 1)!pimi

∑
ψ1∈S~p×S~m

∑
h1,h2∈HX×HY

δ(ψ1h1)δ(σ
−1
1 ψ1σ2h2).

Summing over ψ1 now gives

T1 = δik(p− 1)!(m− 1)!pimi

∑
h1,h2∈HX×HY

δ(σ−11 h−11 σ2h2). (43)

We also need to consider the term

T4 =
∑

ψ1∈S~p×S~m

∑
ψ2∈S~p′×S~m′

〈~p′, ~m′|σ2ψ−12 E
(p+1)
ki ψ1|~p, ~m〉〈~p, ~m|σ−11 ψ−11 E

(1)
ik ψ2|~p′, ~m′〉

=
∑

ψ1∈S~p×S~m

∑
ψ2∈S~p′×S~m′

〈~p, ~m|σ−11 ψ−11 E
(1)
ik ψ2|~p′, ~m′〉〈~p, ~m|ψ−11 E

(p+1)
ik ψ2σ

−1
2 |~p′, ~m′〉.

Changing variables ψ−11 → σ−11 ψ−11 shows that T4 = T1 and hence

T1 + T4 = 2δik(p− 1)!(m− 1)!pimi

∑
h1,h2∈HX×HY

δ(σ−11 h−11 σ2h2). (44)

The next sum we consider is

T2 =
∑

ψ1∈S~p×S~m

∑
ψ2∈S~p′×S~m′

〈~p′, ~m′|σ2ψ−12 E
(1)
ci E

(p+1)
kc ψ1|~p, ~m〉〈~p, ~m|σ−11 ψ−11 E

(1)
ak E

(p+1)
ia ψ2|~p′, ~m′〉.

Changing variables ψ−12 → ψ̃−12 with

ψ̃−12 = σ2ψ
−1
2 ⇒ ψ̃2 = ψ2σ

−1
2 , (45)

the sum becomes

T2 =
∑

ψ1∈S~p×S~m

∑
ψ2∈S~p′×S~m′

〈~p′, ~m′|ψ−12 E
(1)
ci E

(p+1)
kc ψ1|~p, ~m〉

×〈~p, ~m|σ−11 ψ−11 E
(1)
ak E

(p+1)
ia ψ2σ2|~p′, ~m′〉
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=
∑

ψ1∈S~p×S~m

∑
ψ2∈S~p′×S~m′

〈~p′, ~m′|ψ−12 ψ1E
ψ−1
1 (1)

ci E
ψ−1
1 (p+1)

kc |~p, ~m〉

×〈~p, ~m|σ−11 E
ψ−1
1 (1)

ak E
ψ−1
1 (p+1)

ia ψ−11 ψ2σ2|~p′, ~m′〉.

Change variables ψ2 → ρ with ρ = ψ−11 ψ2 and relabel ρ→ ψ2 to find

T2 =
∑

ψ1∈S~p×S~m

∑
ψ2∈S~p′×S~m′

〈~p′, ~m′|ψ−12 E
ψ−1
1 (1)

ci E
ψ−1
1 (p+1)

kc |~p, ~m〉

×〈~p, ~m|σ−11 E
ψ−1
1 (1)

ak E
ψ−1
1 (p+1)

ia ψ2σ2|~p′, ~m′〉.

We will use b̂ to denote the q dimensional vector that has all entries zero except the bth entry
which is 1. For a non-zero contribution the first factor requires

~p− î+ ĉ = ~p′,
~m− ~c+ ~k = ~m′ (46)

and the second factor requires

~m− î+ â = ~m′,
~p− ~a+ ~k = ~p′. (47)

There are two solutions:

Case 1: ĉ = î and â = k̂. In this case ~p = ~p′ and ~m− î+ k̂ = ~m′.
Case 2: ĉ = k̂ and â = î. In this case ~m = ~m′ and ~p− î+ k̂ = ~p′.

For case 1

T2 =
∑

ψ1∈S~p×S~m

∑
ψ2∈S~p′×S~m′

〈~p′, ~m′|ψ−12 E
ψ−1
1 (1)

ii E
ψ−1
1 (p+1)

ki |~p, ~m〉

×〈~p, ~m|σ−11 E
ψ−1
1 (1)

kk E
ψ−1
1 (p+1)

ik ψ2σ2|~p′, ~m′〉.

Consider the sum over ψ1. Due to the factor E
ψ−1
1 (p+1)

ki we get a non-zero contribution from
the slots p+ 1, p+ 2, · · · , p+m (a Y string) if a string starts from node k and ends at node i.
Thus, the sum over ψ1 gives

T2 = (p− 1)!(m− 1)!pi→kmii

∑
ψ2∈S~p×S~m′

〈~p, ~m′|ψ−12 |~p, ~m′〉〈~p, ~m′|σ−11 ψ2σ2|~p, ~m′〉

= (p− 1)!(m− 1)!pi→kmii

∑
ψ2∈S~p×S~m′

∑
h1,h2∈HX×HY

δ(ψ−12 h1)δ(σ
−1
1 ψ2σ2h2)

= (p− 1)!(m− 1)!pi→kmii

∑
h1,h2∈HX×HY

δ(σ−11 h1σ2h2). (48)

For case 2

T2 =
∑

ψ1∈S~p×S~m

∑
ψ2∈S~p′×S~m

〈~p′, ~m|ψ−12 E
ψ−1
1 (1)

ki E
ψ−1
1 (p+1)

kk |~p, ~m〉

×〈~p, ~m|σ−11 E
ψ−1
1 (1)

ik E
ψ−1
1 (p+1)

ii ψ2σ2|~p′, ~m〉.

Consider the sum over ψ1. We get a non-zero contribution for each Y string starting from node
k which ends at node i. After summing over ψ1 we have

T2 = (p− 1)!(m− 1)!piimk→i
∑

ψ2∈S~p′×S~m

〈~p′, ~m|ψ−12 |~p, ~m′〉〈~p′, ~m|σ−11 ψ2σ2|~p′, ~m〉
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= (p− 1)!(m− 1)!piimk→i
∑

ψ2∈S~p′×S~m

∑
h1,h2∈HX×HY

δ(ψ−12 h1)δ(σ
−1
1 ψ2σ2h2)

= (p− 1)!(m− 1)!piimk→i
∑

h1,h2∈HX×HY

δ(σ−11 h1σ2h2). (49)

Armed with these sums, we now obtain a rather explicit expression for the matrix elements
of DXY

2 in the Gauss graph basis

M ~m,~p
R,r,σ1 T,t,σ2

= −g2YM
δru√

|O ~m,~p
R,r (σ1)|2|O ~m,~p

T,t (σ2)|2

∑
R′

δR′iT ′k

√
cRR′cTT ′

lRilTk

× [2δikpimi − pkimii − piimik]
∑

h1,h2∈HX×HY

δ(σ−11 h1σ2h2).

(50)

This is the key result of this subsection and one of the key results of [6]. We will now describe
how the above matrix can be diagonalized.

3.3 Boson Lattice

Our goal in this subsection is to diagonalize (50). This is achieved by interpreting (50) as the
matrix elements of a Hamiltonian for bosons on a lattice. Towards this end, first note that the
matrix elements M ~m,~p

R,r,σ1 T,t,σ2
are only non-zero if we can choose coset representatives such that

σ1 and σ2 describe the same element of Sm × Sp. This implies that the brane-string systems
described by σ1 and σ2 differ only in the number of strings with both ends attached to the same
brane, but not in the number of string stretching between distinct branes. This already implies
that the contribution DXY

2 only mixes eigenstates of DXZ
2 and DY Z

2 that are degenerate and
hence that all three are simultaneously diagonalizable. In this case the matrix element in (50)
simplifies to

M ~m,~p
R,r,σ1 T,t,σ2

= −g2YM

√√√√ |O ~m,~p
R,r (σ1)|2

|O ~m,~p
T,t (σ2)|2

δruδR′iT ′k

√
(N + lRi)(N + lTk)

lRilTk
×

×
[
2δikpi(σ2)mi(σ2)− pkimii(σ2)− pii(σ2)mik

]
. (51)

The number of strings stretching between the branes mik (for Y strings) and pki (for X
strings) are the same for both systems so that

mik(σ1) = mik(σ2) ≡ mik, pik(σ1) = pik(σ2) ≡ pik. (52)

It is the number of closed loops (mii for Y loops and pii for X loops) that can differ between
the operators that mix. Finally, we have introduced the notation

pi(σ) =
∑
k 6=i

pik + pii(σ), mi(σ) =
∑
k 6=i

mik +mii(σ). (53)

From the structure of the operator mixing problem, we would expect that M ~m,~p
R,r,σ1 T,t,σ2

=

M ~m,~p
T,t,σ2 R,r,σ1

. This is indeed the case, as a consequence of the easily checked identity√√√√ |O ~m,~p
R,r (σ1)|2

|O ~m,~p
T,t (σ2)|2

[
2δikpi(σ2)mi(σ2)− pkimii(σ2)− pii(σ2)mik

]
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=

√√√√ |O ~m,~p
T,t (σ2)|2

|O ~m,~p
R,r (σ1)|2

[
2δikpi(σ1)mi(σ1)− pkimii(σ1)− pii(σ1)mik

]
,

(54)

which holds for any i, k.
The lattice model consists of two distinct species of bosons, one for X and one for Y ,

hopping on a lattice, with a site for every brane, or equivalently, a site for every row in the
Young diagram R labelling the Gauss graph operator Ô ~m,~p

R,r (σ). The bosons are described by
the following commuting sets of operators[

ai, a
†
j

]
= δij,

[
a†i , a

†
j

]
= 0 =

[
ai, aj

]
,[

bi, b
†
j

]
= δij,

[
b†i , b

†
j

]
= 0 =

[
bi, bj

]
. (55)

Using these boson oscillators, we have

mii = a†iai, pii = b†ibi, (56)

mi =
∑
k

mik + a†iai, pi =
∑
k

pik + b†ibi. (57)

The vacuum of the Fock space |0〉 obeys

ai|0〉 = 0 = bi|0〉, i = 1, 2, · · · , q. (58)

The Hamiltonian of the lattice model is given by

H =

q∑
i,j=1

√
(N + lRi)(N + lRj)

lRilRj

(
2δij

(∑
l 6=i

pil + b†ibi

)(∑
l 6=i

mil + a†iai

)
−pjia†jai −mjib

†
jbi

)
. (59)

Notice that this Hamiltonian is quadratic in each type of oscillator. It has a nontrivial repulsive
interaction given by the

∑
i a
†
iaib

†
ibi term, which makes it energetically unfavorable for a and

b type particles to sit on the same site. Also, the full Fock space is a tensor product between
the Fock space for the a oscillator and the Fock space for the b oscillator. We will use the
occupation number representation to describe the boson states. To complete the mapping to
the lattice model, we need to explain the correspondence between Gauss graph operators and
states of the boson lattice. This map is given by reading the boson occupation numbers for
each site from the number of open strings with coincident end points with both ends attached
to the node corresponding to that site. In the next mini-subsection we consider an example
which nicely illustrates this map.

Finally, lets make an important observation regarding (59). Although the eigenvalues of this
Hamiltonian are subleading contributions to the anomalous dimension, there is an important
situation in which this correction is highly significant: for BPS states the leading contribution
to the anomalous dimension vanishes and this subleading correction is important. The BPS
operators are labelled by Gauss graphs that have pik = mik = 0 whenever i 6= k, i.e. there are
no strings stretching between branes. In this case, it is clear that (59) vanishes so that the BPS
operators remain BPS when the subleading interactions are included.
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Figure 1: Each Gauss graph label is composed of two graphs, the first for the X strings and
the second for the Y strings. Each graph has 3 nodes (because q = 3). There are no b type
particles because there are no closed X strings. There are 3 a type particles because there are
three closed Y strings. All operators share the same r label.

3.3.1 Example

In this mini-subsection we will consider an example for which R has q = 3 rows and p = m = 3.
In this problem, 10 operators mix. The Gauss graph labels for the operators that mix are
displayed in Figure 1.

For the Gauss graph operators shown, we have the following correspondence with boson
lattice states

|1〉 = a†1a
†
2a
†
3|0〉, |2〉 = a†1

(a†2)
2

√
2!
|0〉,

|3〉 = a†3
(a†2)

2

√
2!
|0〉, |4〉 = a†2

(a†1)
2

√
2!
|0〉,

|5〉 = a†3
(a†1)

2

√
2!
|0〉, |6〉 = a†1

(a†3)
2

√
2!
|0〉,

|7〉 = a†2
(a†3)

2

√
2!
|0〉, |8〉 =

(a†3)
3

√
3!
|0〉,

|9〉 =
(a†2)

3

√
3!
|0〉, |10〉 =

(a†1)
3

√
3!
|0〉. (60)

It is now rather straight forwards to compute matrix elements of the lattice Hamiltonian.
For example

〈1|H|2〉 = −

√
(N + lR3)(N + lR2)

lR2lR3

√
2. (61)

It is instructive to compare this to the answer coming from (50). To move from state 2 to state
1, a string must detach from node 2 and reattach to node 3. Thus, we should plug i = 2 and
k = 1 into (50). The Gauss graph σ1 corresponds to |1〉 while σ2 corresponds to |2〉. In addition
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R′2 = T ′1 and from the Gauss graphs we read off p32 = 1 and m22(σ1) = 1. It is now simple to
see that (50) is in complete agreement with the above matrix element.

Figure 2: An example of a Gauss graph with non-zero a and b occupation numbers.

Finally, the state corresponding to the Gauss graph in Figure 2 is

(a†1)
3

√
3!

(a†3)
3

√
3!
a†5a

†
6b
†
1

(b†2)
2

√
2!

(b†3)
2

√
2!
b†4b
†
5b
†
6|0〉. (62)

3.4 Diagonalization

In this subsection we will consider a class of examples that can be diagonalized explicitly. Our
main motivation is to show that working with the lattice is simple, so the mapping we have
found is useful.

3.4.1 Exact Eigenstates

For these examples take

pki = pik = δk,i+1B, mki = mik = δk,i+1A (63)

with A and B two positive integers. For examples of Gauss graphs that obey this condition,
see Figure 3. There are two cases we will consider: we will fix the number of a particles to
zero and leave the number of b particles arbitrary, or, fix the number of b particles to zero and
leave the number of a particles arbitrary. We will also specialize to labels R that have the

difference between any two row lengths lRi − lRj ∼ N , but
lRi−lRj
lRi

≈ 0. In this case our lattice

Hamiltonian simplifies to

H =
(N + lR1)

lR1

q∑
i=1

(
2
(
B + b†ibi

)(
A+ a†iai

)
−B(a†iai+1 + a†i+1ai)− A(b†ibi+1 + b†i+1bi)

)
. (64)

This Hamiltonian is easily diagonalized by going to Fourier space. Indeed, in terms of the new
oscillators

ãn =
1
√
q

q∑
k=1

ei
2πkn
q ak, b̃n =

1
√
q

q∑
k=1

ei
2πkn
q bk, n = 0, 1, · · · , q − 1, (65)
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Figure 3: An example of a Gauss graph that is easily solvable. The example shown has A = 2
and B = 3.

the Hamiltonian becomes (we have set the number of a particles to zero)

H = A
(N + lR1)

lR1

q−1∑
n=0

(
2− 2 cos

(
2πn

q

))
b̃†nb̃n + 2ABq

(N + lR1)

lR1

. (66)

Eigenstates of the lattice Hamiltonian are given by arbitrary momentum space excitations

q−1∏
n=0

(ã†n)αn√
αn!
|0〉 or

q−1∏
n=0

(b̃†n)βn√
βn!
|0〉, (67)

where the occupation numbers αn, βn are arbitrary. This state can be translated back into the
Gauss graph language to give operators of a definite scaling dimension.

3.4.2 General Properties of Low Energy Eigenstates

In this subsection we will sketch the features of generic low energy states of the lattice Hamil-
tonian. We begin by relaxing the constraint that only one species is hopping. In the end we
will also make comments valid for the general Gauss graph configuration. The Hamiltonian
becomes

H = Ha +Hb +Hab + E0, (68)

Ha =
(N + lR1)

lR1

B

q∑
i=1

(
2a†iai − a

†
iai+1 − a†i+1ai

)
, (69)

Hb =
(N + lR1)

lR1

A

q∑
i=1

(
2b†ibi − b

†
ibi+1 − b†i+1bi

)
, (70)

Hab =
(N + lR1)

lR1

q∑
i=1

2b†ibia
†
iai. (71)

The constant E0 = 2ABq
(N+lR1

)

lR1
is not important for the dynamics but must be included to

obtain the correct anomalous dimensions. To start, consider Ha which is a kinetic term for
the a particles. The first term in the Hamiltonian implies that it costs energy to have an a
particle occupying a site, while the second and third terms tell us this energy can be lowered
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by hopping between sites i and i+ 1. Consequently, to minimize Ha, the a particles will spread
out as much as is possible. This is in perfect accord with the results of the last subsection. The
lowest energy single particle state is the zero momentum state, which occupies each site with
the same probability: the particle spreads out as much as is possible. Very similar reasoning
for Hb implies that the b particles will also spread out as much as is possible. Finally, the term
Hab is a repulsive interaction, telling us that it costs energy to have as and bs occupying the
same site. So there is a competition going on: The terms Ha and Hb want to spread the as and
bs uniformly on the lattice which would certainly distribute as and bs to the same site. The
term Hab wants to ensure that any particular site will have only as or bs but not both. Who
wins?

Consider a thermodynamic like limit where we consider a very large number of both species
of particles, na and nb. In the end, the low energy state will be a “demixed” state with no sites
holding both as and bs. To see this, note that Ha grows like na and Hb like nb. This is much
smaller than the growth of the term Hab which grows like nanb, so the repulsive interaction wins.
This conclusion is nicely borne out by numerical results for the two component Bose-Hubbard
model[48, 49]. The ground state phase diagram of the Hamiltonian of [48], shows four distinct
phases: double super fluid phase, supercounterflow phase, demixed Mott insulator phase and
a demixed superfluid phase. Comparing our Hamiltonian to that of [48], we are always in
the demixed superfluid phase: the a and b particles do not mix, but are free to move in their
respective domains. Thus we have a collection of two species of particles that demix, but are
free on their respective domains. It is in this sense that we have an essentially free system.

For the generic Gauss graph, with any choices for the values of mik and pik, it is clear that
Ha and Hb will still cause the a and b particles to spread out as much as possible. The term
Hab will again dominate when we have large numbers of as and bs so we again expect a demixed
gas. We can translate this structure of the generic state back into the language of the giant
graviton description. Up to now we have considered dual giant gravitons which correspond to
operators labelled by Young diagrams with long rows. Recall that dual giant gravitons wrap
an S3 ⊂AdS5. In this context, lR1 is the momentum of each giant and N + lR1 is the radius
on the LLM plane at which the giant orbits. The Hamiltonian for giant gravitons, which wrap
S3 ⊂S5 is given by

H =
(N − lR1)

lR1

q∑
i=1

(
2
(
B + b†ibi

)(
A+ a†iai

)
−B(a†iai+1 + a†i+1ai)− A(b†ibi+1 + b†i+1bi)

)
. (72)

This is a novel result in [6]. These operators are labelled by Young diagrams with long
columns. The giants orbit on the LLM plane with a radius of N − lR1 . The X and Y fields are
each charged under different U(1)s of the R-symmetry group. The R-symmetry of the CFT
translates into angular momentum of the dual string theory, so that attaching the particles
to a given giant corresponds to giving the giant angular momentum. The lowest energy giant
graviton states are obtained by distributing the momenta carried by the X and Y fields evenly
between the giants with the condition that any particular giant carries only X or Y momenta,
but not both. These conclusions hold for the generic state where there are enough pik and mik

non-zero, allowing the Xs and Y s to hop between any two giants, possibly by a complicated
path. Thus in the end we see that the mapping to the boson lattice model has allowed a rather
detailed understanding of the operator mixing problem.

3.5 Conclusions

In this chapter we have studied the action of the one loop dilatation operator D2 on Gauss
graph operators O ~m,~p

R,r (σ) which belong to the SU(3) sector. The term we have studied, DXY
2 ,
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is diagonal in the r label, mixing operators labelled by distinct graphs. It makes a subleading
contribution as compared to DXZ

2 and DY Z
2 when n � m + p. The two leading terms mix

operators labelled by distinct rs. Diagonalizing the action of DXZ
2 and DY Z

2 on r leads to a
collection of decoupled harmonic oscillators, which we refer to as the Z oscillators, since the r
label is associated with Z. The spectrum of the Z oscillators gives the leading contribution to
the anomalous dimensions. The new contribution that we have studied here can also be mapped
to a collection of oscillators, describing a lattice boson model. This is done by introducing two
sets of oscillators, the X and Y oscillators associated to the X and Y fields. Diagonalizing the
X and Y oscillators breaks degeneracies among different copies of Z oscillators and leads to a
constant addition to their ground state energy. This is then a constant shift of the anomalous
dimension. Although this shift is subleading (it is of order m

n
), it could potentially show that

certain states are not in fact BPS. This was investigated in detail and it turns out that states
that are BPS (their leading order anomalous dimension vanishes) at leading order, remain BPS
when the subleading correction is computed (it too vanishes).

The mapping that we have found to a lattice boson model has achieved an enormous simpli-
fication of the operator mixing problem and we have managed to understand it in some detail.
Indeed, using the lattice boson model, we have argued that the lowest energy giant graviton
states are obtained by distributing the momenta carried by the X and Y fields evenly between
the giants with the condition that any particular giant carries only X or Y momenta, but
not both. Since states with two charges are typically 1

4
-BPS while states with 3 charges are

typically 1
8
-BPS, it may be that the solution is locally trying to maximize SUSY. It would be

interesting to arrive at the same picture, employing the dual string theory description.
Perhaps the most interesting consequence of our results is that they suggest ways in which

one can go beyond the 1
2
-BPS sector. Indeed, all three types of fields considered have been

mapped to oscillators, so perhaps there is a more general description of this sector that treats all
three types of oscillators on the same footing. This would relax the constraint n� p+m which
allows for operators that are far from the 1

2
-BPS limit. Deriving this picture is a fascinating

open problem, since it will require that we go beyond the displaced corners approximation, or
alternatively, that we generalize it.

As a final comment, recall that Mikhailov [50] has constructed an infinite family of 1
8
-BPS

giant graviton branes in AdS5×S5. Quantizing the space of Mikhailov’s solutions leads to N
non-interacting bosons in a harmonic oscillator[51, 52, 53]. It is tempting to speculate that it
is precisely these oscillators that we are uncovering in our study; for evidence in harmony with
this suggestion see [54]. It would be interesting to make this speculation precise.
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4 Central Charges for the Double Coset

This chapter is based on [7] and it is my original work with de Mello Koch and Kim.

4.1 Introduction

There is by now exquisite evidence of the AdS/CFT correspondence [2, 20, 21]. Many of
the precision tests carried out are possible because summing the planar diagrams leads to
an integrable model for anomalous dimensions of single trace operators which are dual to
closed string states [17, 23]. The integrable model describes defects (magnons) which are
excitations of an infinitely long “ferromagnetic ground state”. The ground state preserves half
the supersymmetries. There are finite size corrections when the chain is finite in length.

The magnon excitations scatter with each other. A significant insight is that the S-matrix
of these magnon excitations is completely determined, by symmetry, up to an overall phase
[5, 55]. To simplify the description, consider an infinite spin chain which allows us to study
excitations individually. The full PSU(2, 2|4) symmetry is broken to SU(2|2)× SU(2|2) n R.
Excitations carry the quantum numbers of a central extension of this subalgebra with the central
charge measuring the quasi-momentum of the excitation[5, 55]. The original PSU(2, 2|4) does
not admit a central extension and for a closed string the net central charge vanishes by level
matching constraints.

There are many states in the string theory Hilbert space that are not closed strings. The
theory has D-brane excitations which support open strings. These D-branes are dual to CFT
operators that have a bare dimension of order N , so that their large N dynamics is not captured
by summing planar diagrams [11, 12, 29, 36, 37, 38, 56, 57]. In this setting powerful methods
based on group representation theory are effective tools with which to attack the large N limit
[15, 31, 32, 33, 58]. A relevant result for us is the diagonalization of the one loop dilatation
operator, using a double coset ansatz [43, 44, 45]. This model describes excitations of back-
ground branes, with the background branes described using a Young diagram with long4 rows
(for dual giant gravitons) or columns (for giant gravitons). The interactions of these excitations
have not been explored in much detail yet [6, 19, 59]. The calculations that are required are
technical and quickly become unmanageable. Given the remarkable success in the planar limit,
of a symmetry based approach, it is natural to develop a symmetry analysis applicable in this
setting5. The main goal of this section is to study the su(2|3) sector of the complete theory and
show how the global su(2|2) symmetry is realized in the resulting Hilbert space of giant graviton
branes and their open string excitations. This result is important since experience from the
planar limit suggests that constraints from the global symmetry provide powerful insights with
which to study excitations of the background branes. Further, the details are rather intricate
so that in the end we arrive at a non-trivial extension of the discussion of [5, 55].

The fact that we are considering open strings has some interesting implications, already
explored in [61]. Since this discussion is highly relevant for what follows, we will review the key
ideas. To start, consider open superstrings in flat Minkowski spacetime. The lowest lying string
modes of a string stretching between two D-branes (flat, parallel and separated) fill out a massive
short representation of the unbroken supersymmetry of the D-brane system. The existence
of these representations requires a central charge extension of the unbroken supersymmetry
algebra. The central extension is needed to get a short multiplet. This additional central charge
is an electric charge carried by the string end-points. Closed string states are not charged so
that the central charge is only physical in the open string sector or when we compactify the
closed string theory on a circle. It is measurable in the field theory limit when we spontaneously

4Here long means there are order N boxes in the row/column.
5For an early attempt, using a small fraction of the possible symmetries, see [60] .
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break the non-abelian gauge symmetry on the stack of branes, corresponding to the Coulomb
branch of the Yang-Mills theory living on the world volume of the D-branes.

The key conclusion of [61] is that the central charge of the Coulomb branch is a limit of
the central charge extension of [5, 55]. Our analysis supports this conclusion. Note that [61] is
not using the language of the double coset ansatz, but instead employs a collective coordinate
approach [62, 63, 64] which is well suited to the semi-classical limit. Although the collective
coordinate and double coset ansatz are rather different descriptions, their conclusions are in
good agreement [62].

We begin in subsection 4.2 with a review of the background needed to understand the double
coset ansatz. Our goal is to provide a gentle introduction with enough details to develop the
Hilbert space of states of the excited giant graviton brane system. Concretely we explain the
change of basis from restricted Schur polynomials to Gauss graph operators which are the
eigenoperators of dilatations. Gauss graph operators are labelled with a graph that has a
vertex for each brane in the giant graviton brane system. These vertices are decorated with
directed edges that describe open string excitations. Our description of the complete state
space is novel and in particular we develop the structure of the fermionic states which has
not previously been carried out. We then turn to a discussion of the asymptotic symmetries in
subsection 4.3. By asymptotic we mean the situation in which impurities are well separated and
hence are not interacting. The discussion is necessarily more complicated than the discussion
in [5, 55] because we have a far bigger space of possible impurities. The action of the generators
of the global symmetry algebra is rather complicated in the restricted Schur polynomial basis.
Reorganizing the basis into irreducible representations of the global symmetry appears to be
a formidable problem. Remarkably, we find that the basis provided by Gauss graph operators
achieves this reorganization! Further we find that excitations again carry a charge under the
central extension, echoing what happens in the planar limit. In the (planar) closed string case
the central extension measures the quasi-momentum of the excitations and due to cyclicity
of the trace (which corresponds to level matching in the string description) the total central
extension vanishes. This vanishing of the central extension is necessary, since the algebra on
physical states is not centrally extended. We find an equally compelling description in our
non-planar setting. Giant graviton branes have a compact world volume, so that the Gauss
Law constraint of the brane world volume gauge theory forces the total charge on the world
volume to vanish. This is manifested in the fact that there must be the same number of directed
edges leaving each node as there are edges terminating on each node. This condition - which
is the requirement that the physical state is gauge invariant - ensures that the total central
extension vanishes. Further the action of the central charges on the Gauss graph operators
has a natural interpretation as a gauge transformation. We end with some conclusions and
discussion in subsection 4.4 including speculations on how the global symmetry might be used
to study interactions between excitations. The Appendices collect technical details that are
used to develop the arguments of the section.

4.2 State space

The operators we consider are built from three complex bosonic matrices X, Y, Z and two
complex fermionic matrices ψ1, ψ2. These fields all transform in the adjoint of the U(N) gauge
group. This sector of the theory is a closed subsector and it enjoys an su(2|3) supergroup global
symmetry. We will construct the branes in our giant graviton brane system using only the Z
field. The brane system without excitations is a 1

2
-BPS operator. A linear basis for the brane

system without excitations is provided by the Schur polynomials, which are labelled by a single
Young diagram. Each giant graviton brane corresponds to a long column and each dual giant
graviton to a long row, of the Young diagram label. Excitations are described using X, Y and

90



ψ1, ψ2. Generic excited brane states do not preserve any supersymmetry. A linear basis for the
excited brane system is provided by the restricted Schur polynomials, which have a number
of Young diagram labels, as well as multiplicity labels. The global su(2|3) symmetry of this
subsector is not very useful as it relates operators with different numbers of excitations. For
this reason, following [65], we will restrict our attention to the su(2|2) subgroup which does
preserve the number of excitations. In this subsection we will give a complete description of
the excited giant graviton brane state space that will be organized, in the next subsection, by
the global su(2|2) symmetry.

4.2.1 Restricted Schur Polynomials

The restricted Schur polynomials provide a linear basis6 for the gauge invariant operators of a
generic multi-matrix model. They correctly account for all constraints following from cyclicity
or finite N (trace) relations.

In what follows, we use b(0) to denote the number of Z fields. Consequently, b(0) = O(N).
We also use b(1), b(2), f (1) and f (2) to denote the number of Y,X, ψ1 and ψ2 fields respectively.
The integers b(1), b(2), f (1), f (2) are at most O(

√
N). The total number of fields is denoted

nT = b(1) + b(2) + f (1) + f (2).
A restricted Schur polynomial is constructed by tracing a projection operator with the

multi-linear operator constructed from a tensor product of matrices. The projection operator
projects both the collection of row indices and the collection of column indices, onto a definite
representation of U(N), and therefore, by Schur-Weyl duality, onto a definite representation
of the permutation group which permutes indices of different fields. The projector first places
the complete set of nT indices into a definite representation, labelled by Young diagram R
with nT boxes. It then places each of the b(i) indices, for each species of bosonic field, into a
definite representation labelled by a Young diagram bi, which has b(i) boxes. Finally, it places
the f (i) row indices of each fermion species into the representation fi and the column indices
into the representation fTi , each of which have f (i) boxes. sT is obtained from s by flipping
the Young diagram so that rows and columns are exchanged. The reason why bosonic row and
column indices are placed into the same representation, is so that the trivial representation of
the symmetric group (labelled by a Young diagram with a single row) appears in the tensor
product of row and column indices. The trace projects to this trivial representation which is
necessary since it follows from bosonic statistics. Further, the reason why fermionic row and
column indices are projected as they are, is so that the antisymmetric representation of the
symmetric group (labelled by a Young diagram with a single column) appears in the tensor
product of row and column indices. The trace projects to this antisymmetric representation
which is necessary since it follows from fermionic statistics. For a technical derivation of these
facts see [66, 67]. Thus, R is an irreducible representation of SnT , while the collection of five
Young diagram ({bi}, {fi}) label an irreducible representation of the subgroup Sb(0) × Sb(1) ×
Sb(2)×Sf (1)×Sf (2) ⊂ SnT . The representation ({bi}, {fi}) of the subgroup may appear more than
once upon restricting the representation R of the group. For that reason we need multiplicity
labels. Following the construction presented in [66], we need a label for each of the four Young
diagrams b1, b2, f1, f2. The Young diagram b0 appears without multiplicity. We write these
multiplicity labels as a vector ~µ. To get a non-zero trace, the Young diagram labels for the row
and column labels must match as explained above. Multiplicity labels can differ. Consequently
we can write the restricted Schur polynomials as χR,({bi},{fi})~µr~µc . Rescaling to produce an
operator with unit two point function we obtain OR,({bi},{fi})~µr~µc . In what follows, any operator
denoted with a capital letter O has been rescaled so that it has a unit two point function.

6Here by linear basis we simply mean that any local gauge invariant operator can be expressed as a sum of
restricted Schur polynomials. There is never a need, for example, to square a restricted Schur polynomial.
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A useful approach towards the construction of the restricted Schur polynomial entails start-
ing with R and then peeling off f (i) boxes, which are then reassembled to produce fi with
multiplicity labels, and then peeling b(i) boxes, which are then reassembled to produce bi. After
peeling off f (1) + f (2) + b(1) + b(2) boxes from R we are left with b0. This makes it clear that
b0 appears without multiplicity and that the excitations live at the right most corners of R,
something we will need below. Further, it is clear that every box in the Young diagram R is
associated with a definite species of field.

Any multitrace operator can be written as a linear combination of restricted Schur poly-
nomials. In the free field theory limit, the two point function boils down to computing the
trace of a product of two projection operators. This can be done exactly and one finds that the
restricted Schur polynomials diagonalize the free field two point function. Finally, the finite
N (trace) relations are simply recovered as the statement that the restricted Schur polynomial
vanishes whenever any of the Young diagrams labelling the polynomial has more than N rows.

A key fact that we will need below to understand the state space of the excited brane system,
concerns the number of values a pair of multiplicity labels ~µr, ~µc can take. This is expressed
in terms of the Littlewood-Richardson number g(r1, · · · , rk;R) which is a non-negative integer
counting how many times U(N) representation R appears in the tensor product r1⊗· · ·⊗ rk of
U(N) representations. For the restricted Schur polynomial χR,({bi},{fi})~µr~µc we find that ~µr, ~µc
takes

g(b0, b1, b2, f1, f2;R)g(b0, b1, b2, f
T
1 , f

T
2 ;R) (73)

values [66]. Since the Littlewood-Richardson number also counts the multiplicity of represen-
tations of the symmetric group after restriction [68], this formula is not too surprising.

Our discussion in the subsection above aims to give the reader an understanding of the
labels of the restricted Schur polynomials. This is essentially all we use below. For a detailed
technical derivation of the results reviewed the reader should consult [15, 58, 66].

4.2.2 Double Coset Ansatz

The restricted Schur polynomials do not have a definite scaling dimension. However, they
only mix weakly under the action of the dilatation operator: at order g2LYM it is possible for
two operators to mix if and only if they differ at most by moving L boxes in any of their
Young diagram labels [43, 41]. We want to solve the mixing problem which amounts to finding
linear combinations of restricted Schur polynomials that are eigenoperators of the dilatation
operator, and finding their eigenvalues. There is a limit in which the mixing problem simplifies
dramatically. Recall from the previous subsection that excitations are located at the right
hand corners of the Young diagram R. We expect that the excitations are essentially free
if they are well separated, which leads to the displaced corners approximation [43, 42]. The
displaced corners approximation holds for a specific shape of the Young diagram R. Imagine
that R has order 1 long rows. Starting from the right most box in any row of R and moving
to the right most box in any other row, along the shortest path in the Young diagram R, if
we always need to move through O(N) boxes, then the displaced corners approximation can
be used. In the displaced corners approximation there is major simplification in the action of
the symmetric group: permutations acting on the impurities simply swap the boxes associated
to the excitation. Without the displaced corners approximation, the result of a permutation is
a linear combination of the original state and the state with the impurities swapped [43, 42].
This simplified action has two important consequences:

1. There is a new symmetry: restricted Schur polynomials are invariant (up to a sign - for
fermions) under swapping impurities that belong to a given row. There is an independent
symmetry for the row and column indices.
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2. This symmetry results in a new “conservation law”: restricted Schur polynomials can
only mix if they have the same number and type of excitations in each row. Consequently
the number of each species of excitation in each row is conserved[43].

This conservation law holds only at the leading order at large N . There is a compelling physical
interpretation of the new conservation law: each row in R is identified with a giant graviton
brane. Identifying the excitations as open strings we have recovered the statement that Chan-
Paton factors are conserved at zero string coupling.

The mixing problem can be solved by making maximal use of the extra symmetry present in
the displaced corners approximation. Let H denote the permutation group that swaps indices
of excitations belonging to the same row. Another copy of the same group will swap indices of
excitations belonging to the same column. H is a product of symmetric groups, one for each
excitation species and for each row (or column) of R. The group or permutations acting on the
impurities is given by Sexc = Sb(1) × Sb(2) × Sf (1) × Sf (2) . The extra symmetry implies that we
have an operator for each element in the double coset

H \ Sexc/H. (74)

The elements of this double coset correspond to graphs, with vertices representing branes (one
for each row of R) and directed edges representing oriented strings (one for each excitation field).
We will sometimes draw one graph for each species of excitation to unclutter the description.
The graphs can be described using some numbers. Focus on a single species of excitation
and imagine there are a total of m excitations of this species and that R has p rows. Each
excitation corresponds to an edge. Divide each edge into two halves and label each half. Use
the orientation of the edges to distinguish out going and in going ends and label the out
going ends with numbers {1, · · · ,m} and the in going ends with the same numbers. It is
natural to specify how the halves are joined by a permutation σ ∈ Sm. Let (m1,m2, · · · ,mp)
record the number of excitations in each row of R so that m1 + m2 + · · ·mp = m. By the
Gauss law, the numbers of edges leaving or ending at each vertex are given by the same
ordered sequence of integers (m1,m2, · · · ,mp). Choose the labels of the half-edges such that
the ones emanating from the first vertex are labelled {1, 2, · · · ,m1}, those emanating from
second vertex are labelled {m1 + 1, · · ·m1 + m2} and so on. Likewise the half-edges incident
on the first vertex are labelled {1, 2, · · · ,m1}, those incident on the second vertex are labelled
{m1 + 1, · · ·m1 +m2} etc. The structure of the graph is specified by the permutation σ ∈ Sm
which describes how the m out going half-edges are joined with the m in going half-edges. A
single graph corresponds to many possible permutations because the mi strings emanating from
the i’th vertex are indistinguishable, as are the mi strings terminating on the i’th vertex. Thus
permutations which differ only by swapping end points that connect to the same vertex do not
describe distinct configurations. This symmetry group is nothing but the group H introduced
above which makes it clear why the double coset (74) describes the space of restricted Schur
polynomials in the displaced corners limit.

The most direct and natural use of the double coset which appears above, is through a
Fourier transform. Remarkably, it turns out that the Fourier transform of the restricted Schur
polynomial defines an eigenoperator of the dilatation operator [45]. The transformation from
the restricted Schur polynomials to the Gauss graph operators replaces the Young diagram and
multiplicity labels for each species of excitation with a permutation σ. Consequently, since the
transformation works separately for each species, we can simplify the discussion and focus on
a single species at a time. The transformation for bosonic excitations was worked out in [45]
and is as follows

OR,r(σ) =
∑
s`m

∑
µ1,µ2

C(s)
µ1µ2

(σ)OR,(r,s)µ1µ2 . (75)
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Here our bosonic excitation is organized by Young diagram s with multiplicity labels µ1, µ2

in the restricted Schur basis. After transformation, the state of the excitations is described
by permutation σ. Denote the matrix representing τ ∈ Sm, in the irreducible representation
labelled by Young diagram s, by Γs(τ). The transformation coefficient is given by

C(s)
µ1µ2

(τ) = |H|
√
ds
m!

(Γs(τ))kmB
s→1H
kµ1

Bs→1H
mµ2

, (76)

where we have made use of the branching coefficient defined by∑
µ

Bs→1H
kµ Bs→1H

lµ =
1

|H|
∑
γ∈H

Γs(γ)kl. (77)

The branching coefficients Bs→1H
lµ resolve the multiplicities that arise when we restrict irrep s

of Sm to the identity representation 1H of H for which Γ1H (γ) = 1 ∀γ. The transformation for
fermionic excitations was worked out in [66] and is as follows

OR,r(σ) =
∑
s`m

∑
µ1,µ2

C̃(s)
µ1µ2

(σ)OR,(r,s)µ1µ2 , (78)

where the transformation coefficient is given by

C̃(s)
µ1µ2

(τ) = |H|
√
ds
m!

(
Γs(τ)Ô

)
km
Bs→1H
kµ1

BsT→1m

mµ2
, (79)

where we have made use of the branching coefficient defined by∑
µ

BsT→1m

kµ BsT→1m

lµ =
1

|H|
∑
γ∈H

sgn(γ)Γs
T

(γ)kl. (80)

The branching coefficients BsT→1m

lµ resolve the multiplicities that arise when we restrict irrep
sT of Sm to the representation 1m of H for which Γ1m(γ) = sgn(γ) ∀γ. Here sgn(γ) is the sign
of the permutation σ. The operator Ô appearing in (79) is defined by

Ôjl = S
[1n] s sT

j l, (81)

where S
[1n] s sT

j l is the Clebsch-Gordon coefficient, moving between states in the tensor product

s× sT and the state spanning 1m. To get some feeling for Ô note that it satisfies

Γsij(σ)Ôjp = sgn(σ)ÔikΓ
sT

kp(σ) (82)

and hence Ôjl is a map from sT to s. ÔT Ô maps from sT to sT and it commutes with all

elements of the group. Thus, by Schur’s Lemma, it is proportional to the identity. ÔÔT maps
from s to s and it commutes with all elements of the group. Thus it is also proportional to the
identity. By normalizing correctly we can choose

ÔT Ô = 1sT ÔÔT = 1s. (83)

We will use the transformation formulas (75) and (78) extensively in what follows. See Appendix
E for technical details of how to applying these transformations.

The Gauss graph operators we consider will, in general, have all four species of excitations

participating. The operator is written as Ob(1),b(2),f (1),f (2)

R,b0
(σ). If it is clear from context, we will

suppress the b(1), b(2), f (1), f (2) superscript. The permutation σ ∈ Sexc describes how the half
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edges for all excitations are joined. As mentioned above, these operators have a good scaling
dimension. From the formula (2.1) of [69], or the H2 piece of Table 1 of [65], we have the one
loop dilatation operator

D = − g2YM

(
3∑

i>j=1

Tr
(
[φi, φj]

[
∂φi , ∂φj

])
+

3∑
i=1

2∑
a=1

Tr ([φi, ψa] [∂φi , ∂ψa ])

+ Tr ({ψ1, ψ2} {∂ψ1 , ∂ψ2})

)
, (84)

where φi has i = 1, 2, 3 and stands for Z, Y,X. Since the number of excitations is much smaller
than the number of Z fields, interactions between excitations is subleading and we can work
with the simplified expression

D = −g2YM

(
Tr ([Z, Y ] [∂Z , ∂Y ]) + Tr ([Z,X] [∂Z , ∂X ])

+
2∑

a=1

Tr ([Z, ψa] [∂Z , ∂ψa ])

)
. (85)

The action of the dilatation operator on this Gauss graph operator is given by

DOR,r(σ1) = −g2YM
∑
i<j

nij(σ1)∆ijOR,r(σ1), (86)

where ∆ij acts only on the Young diagrams R, r. The integer nij counts the total number of
directed edges (both directions counted) stretched between nodes i and j. The operator ∆ij

splits into three terms

∆ij = ∆+
ij + ∆0

ij + ∆−ij. (87)

To describe the action of these three pieces, we will need a little more notation. Denote the
row lengths of r by ri. The Young diagram r+ij is obtained by removing a box from row j and
adding it to row i and r−ij is obtained by removing a box from row i and adding it to row j.
See Appendix B for examples of this notation. We now have

∆0
ijOR,(r,s)µ1µ2 = −(2N + ri + rj)OR,(r,s)µ1µ2 , (88)

∆+
ijOR,(r,s)µ1µ2 =

√
(N + ri)(N + rj)OR+

ij ,(r
+
ij ,s)µ1µ2

, (89)

∆−ijOR,(r,s)µ1µ2 =
√

(N + ri)(N + rj)OR−ij ,(r
−
ij ,s)µ1µ2

. (90)

Note that R and r change in exactly the same way so that the number of excitations in each row
is preserved by the dilatation operator. The operators of definite scaling dimension now follow
by diagonalizing the action of ∆ij. This problem was studied in detail in [44, 70], where in a
suitable scaling limit, the problem was reduced to the diagonalization of decoupled oscillators.
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4.2.3 Bosonic State Space

To specify the states of the Y and X excitations, we must specify the permutation that joins the
half edges of these excitations, or equivalently, we need to give the graph that the permutation
describes. For the sake of clarity, we will draw the X and Y edges as separate graphs. The
reader should bear in mind that corresponding nodes are to be identified, since they correspond
to the same row in R. The X and Y impurities populate neighboring boxes in R. There is a
distinct (orthogonal) state for each choice of the pair of Young diagrams R and r and the X
and Y graphs. The rules for drawing a valid graph for a given excitation species are

1. There is a graph for each type of excitation. The nodes in the graph correspond to the
rows in R. Each excitation field appearing in the operator corresponds to a directed edge
in the graph. There is no upper limit on the number of edges.

2. The number of edges emanating from a given node is equal to the number of edges
terminating on the node which is also equal to the number of excitation boxes (of the
given species) in the corresponding row of R.

4.2.4 Fermionic State Space

There is one additional rule that must be applied when drawing the graphs for fermionic
excitations. To motivate the rule, lets consider the simplest case in which we have ψ1 excitations,
but no X, Y or ψ2 excitations. We can simplify the general counting formula appearing in (73)
to

ngraphs = g(b0, f1;R)g(b0, f
T
1 ;R). (91)

If we have a single excitation f1 = fT1 = . In this case, ngraphs = 1 and we simply have a closed
loop on the node corresponding to the row from which a box is removed from R to produce b0.
Now, imagine removing two impurities from a single row. In this case we have f1 = and
fT1 = and we find

g(b0, f1;R) = 1 g(b0, f
T
1 ;R) = 0 (92)

so that ngraphs = 0 - there is no restricted Schur polynomial! If we have two fermionic excitations,
they can’t be removed from the same row. Removing the two excitations from two distinct
rows and again taking f1 = and fT1 = we find

g(b0, f1;R) = 1 g(b0, f
T
1 ;R) = 1. (93)

We could also have taken f1 = and fT1 = , so that there are two Gauss graph operators
that can be defined. A little work (see Appendix E for useful details) shows that the resulting
graphs have two edges, with opposite orientation either (i) stretched between the two nodes or
(ii) forming closed loops on each node. If we remove three excitations, two from a single row
and then the third from a distinct row, we find that there are three possibilities. First, s =

and sT = , or second s = and sT = , or third s = = sT . It is simple to demonstrate

that

g(b0, ;R) = 1 g(b0, ;R) = 0 (94)

so that the first and second possibilities do not lead to any restricted Schur polynomials and
hence no Gauss graph operators. For the third possibility we have

g(b0, ;R) = 1 (95)
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so that we can define a singe Gauss graph operator. In Appendix E we show that the resulting
graph has three edges. There is a closed loop attached to the node corresponding to the row
with two impurities removed, as well as two edges with opposite orientation, stretched between
the two nodes. There is a simple rule that explains which fermion graphs are possible:

There is at most a single oriented edge with given end points and orientation. Thus, we can’t
“put two edges into the same state” as a consequence of Fermi statistics.

If R has p rows its easy to check that the largest Young diagram that contributes is a block
with p columns and p rows. This corresponds to the Gauss graph with every possible fermion
line present. For example, for p = 3 we have

s = ←→ σ = (96)

Notice that there is often a unique Gauss graph σ for each fermionic restricted Schur polynomial,
that is the restricted Schur polynomial and the Gauss graph bases often coincide. This is in
complete harmony with the results given in [67], which demonstrate that in the context of a
single fermionic matrix, the Schur polynomial basis and the trace basis coincide.

4.3 Asymptotic Symmetries

In this subsection we will work out the action of the generators of the su(2|2) global symmetry.
We work in the displaced corners approximation so that impurities located at distinct corners
are well separated and consequently, at large N , they are not interacting. This is the sense in
which we mean “asymptotic” symmetries. A nice conclusion of this analysis is that the Gauss
graph operators very naturally fall into representations of su(2|2). Further, we will demonstrate
that excitations again carry charges under a central extension of the algebra, generalizing what
is known about the planar limit.

4.3.1 Algebra

The bosonic su(2)× su(2) subalgebra is generated by Ra
b and Lαβ. The Ra

b rotate the bosonic
fields Y,X (which are in the (2,0) of the subalgebra) while Lαβ rotate the fermionic fields
ψ1, ψ2 (which are in the (0,2)). We will refer to these two su(2)s as su(2)R and su(2)L. In
terms of raising and lowering operators

R1
2 = R+ R2

1 = R− 2R1
1 = −2R2

2 = R3 (97)

L1
2 = L+ L2

1 = L− 2L1
1 = −2L2

2 = L3 (98)

we have

[R3, R−] = −2R− [R3, R+] = 2R+ [R+, R−] = R3 (99)

and

[L3, L−] = −2L− [L3, L+] = 2L+ [L+, L−] = L3. (100)

The algebra also has supersymmetry generators Qα
a and Saα. These generators obey

[Ra
b, Q

γ
c] = −δacQγ

b +
1

2
δabQ

γ
c [Ra

b, S
c
γ] = δcbS

a
γ −

1

2
δabS

c
γ (101)
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[Lαβ, Q
γ
c] = δγβQ

α
c −

1

2
δαβQ

γ
c [Lαβ, S

c
γ] = −δαγScβ +

1

2
δαβS

c
γ (102)

as well as

{Qα
a, S

b
β} = δαβR

b
a + δbaL

α
β + δbaδ

α
βC, (103)

{Qα
a, Q

β
b} = εαβεabP, {Saα, Sbβ} = εαβε

abK. (104)

Our goal in the subsections that follow is to argue that the state space of the Gauss graph
operators are organized into representations of this algebra, to determine the values of the
central charges P,K and C and finally, to demonstrate that when acting on physical states,
the central charges P and K vanish.

4.3.2 SU(2)R

The general state in an su(2) representation can be labelled with a pair of quantum numbers,
jR,mR. The action of the lowering operator is

R−|jRmR〉 =
√
jR(jR + 1)−mR(mR − 1)|jRmR − 1〉. (105)

To determine the representation that a given Gauss graph corresponds to, we identify

R− = Tr

(
X

d

dY

)
. (106)

We then act with R− on a given Gauss graph operator and compare to (105). This analysis is
presented in detail in Appendix F. Our conclusion is the following

1. Each node of the Gauss graph belongs to a definite SU(2)R representation. If the number

of closed Y loops attached to node k is b
(1)
k and the number of closed X loops is b

(2)
k , then

node k is in the spin jR = b
(1)
k + b

(2)
k representation.

2. The specific state in the representation that node k occupies is determined by mR =
b
(1)
k − b

(2)
k . Note that we are using conventions in which mR jumps in units of two, and jR

and mR are always integer.

3. The action of R− on the kth node replaces a single directed Y edge with a single directed
X edge, with an overall coefficient given by (105).

4. The generators Ra
b do not act on edges that travel between nodes.

From the action defined for R− above we can work out the action of R+ (by hermittian conju-
gation) and the action of R3 (by using the su(2)R algebra).

The complete action of the su(2)R generators follows by summing the result of acting on
each node in the graph. This corresponds to the usual co-product action.

Notice that in moving to the Gauss graph basis, we have in fact organized the state space
into su(2)R multiplets!
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4.3.3 SU(2)L

In this case we identify

L− = Tr

(
ψ2

d

dψ1

)
. (107)

We again find that the su(2) generators (now the Lαβ) do not act on edges that travel between
nodes. Each node is again in a definite state. We find four possibilities

1. A node that has no closed ψ1 loops and no closed ψ2 loops is in the one dimensional
representation with jL = 0.

2. A node with a single closed ψ1 loop is in the representation jL = 1, and in state mL = 1.
L− acting on this node replaces the ψ1 loop with a ψ2 loop and L+ annihilates the node.

3. A node with a single closed ψ2 loop is in the representation jL = 1, and in state mL = −1.
L− annihilates the node while L+ acting on this node replaces the ψ2 loop with a ψ1 loop.

4. A node that has both a closed ψ1 loop and a closed ψ2 loops is in the one dimensional
representation with jL = 0.

As in the previous subsection, the complete action of the su(2)L generators follows by summing
the result of acting on each node in the graph. Further, in moving to the Gauss graph basis,
we have in fact organized the state space into su(2)L multiplets!

4.3.4 Supercharges

When the supercharges act we will again assume that there is an action on each node of the
graph and that the total action is the sum of actions on each node. In what follows it is more
convenient to specify the Gauss graph by stating how many closed loops of each species there
are at each node and how many edges (with orientation) there are stretching between nodes.

The numbers b
(a)
k count the number of closed bosonic edges at node k, while f

(α)
k count the

number of closed fermionic edges at node k. The numbers b
(a)
ij count the number of bosonic

edges moving from node i to node j, while f
(α)
ij count the number of fermionic edges moving

from node i to node j. We will assume the following action for the supercharges, acting on
node i

(Qα
a)iOR,r({· · · , b(c)i , f

(γ)
i , · · · }) = ca(1− f (α)

i )

√
b
(a)
i OR,r({· · · , b(c)i − δca, f

(γ)
i + δγα, · · · })

+cb

2∑
b=1

2∑
β=1

f
(β)
i εαβεab

√
b
(b)
i + 1OR+

i ,r
+
i

({· · · , b(c)i + δcb , f
(γ)
i − δ

γ
β , · · · }), (108)

(Saα)iOR,r({· · · , b(c)i , f
(γ)
i , · · · }) = cd f

(α)
i

√
b
(a)
i + 1OR,r({· · · , b(c)i + δca, f

(γ)
i − δγα, · · · })

+cc

2∑
b=1

2∑
β=1

(1− f (β)
i )εαβε

ab

√
b
(b)
i OR−i ,r

−
i

({· · · , b(c)i − δcb , f
(γ)
i + δγβ , · · · }). (109)

In the argument of OR,r we have only explicitly specified quantum numbers of the state that
change under the action of the supercharge. Notice that both supercharges change the shape
of the Young diagram labels R and r; see Appendix B for an explanation of this notation.
The two labels R and r change in precisely the same way. The coefficients ca, cb, cc and cd are
constants that will be determined by requiring that Qα

a and Saα close the correct algebra. The
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factor of f
(α)
i and (1− f (α)

i ) are there to ensure that we don’t put two fermions into one state

or remove a fermion from a state that doesn’t contain any. The factors of

√
b
(a)
i and

√
b
(a)
i + 1

are there for convenience. With these factors, the coefficients ca, cb, cc and cd are independent
of b

(a)
i . The factors of εab and εαβ are determined by su(2)R × su(2)L covariance.
The above ansatz is strongly motivated by the action of the supercharges worked out in [5].

The key differences are

1. The excitations of [5] are either a single Y or a single X field. Here we can have an

arbitrary number of both. The only effect is that we now need to include the

√
b
(a)
i and√

b
(a)
i + 1 factors.

2. The fermionic states can have any occupancy. This is why we need the f
(α)
i and (1−f (α)

i )
factors.

3. The action of [5] was written down using markers Z±, which insert or remove Zs from
the single trace operator, leading to a dynamic lattice with a time dependent number of
sites. Here we have a truly non-planar generalization of this action: a box is added or
deleted to the Young diagram labels. It appears to be highly non-trivial to describe this
operation in terms of traces.

Our next task is to show that these supercharges close the correct algebra and, in the process,
determine the coefficients ca, cb, cc and cd, as well as the values of the central extensions.

4.3.5 Representation

To begin we require that

{(Qα
a)i, (S

b
β)i} = δαβ (Rb

a)i + δba(L
α
β)i + δbaδ

α
βCi. (110)

This forces

cacd − cbcc = 1 (111)

and the central charge is

Ci =
1

2
(b(1) + b(2) + f (1) + f (2)). (112)

The central extension vanishes

{(Qα
a)i, (Q

β
b)i} = 0, (113)

{(Saα)i, (S
b
β)i} = 0. (114)

This is the correct description of the free theory. In particular, we find that there are no
anomalous dimensions. This is not correct: the Gauss graph operators are not in general BPS
and they will develop non-zero anomalous dimensions. Indeed, looking at the one loop result
(86) it is clear that this is the case. Studying (86) leads to a second puzzle: at least at one loop,

the anomalous dimension depends only on nij = b
(1)
ij + b

(2)
ij + f

(1)
ij + f

(2)
ij . These are quantum

numbers associated to edges that stretch between different nodes. This dependence appears
puzzling because our analysis thus far has demonstrated that the global symmetry generators
leave these edges inert!
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It is not hard to appreciate why the global symmetry generators do not act on these edges.
An edge forming a closed loop at a node is automatically gauge invariant. In contrast to this,
edges going between nodes are constrained by the requirement of gauge invariance to form
closed paths that respect the orientation of each edge. Replacing one edge with another edge
of a different species spoils the Gauss law constraint so that we land up with a state that is
not gauge invariant. Thus, the edges that straddle nodes are not transformed by the global
symmetry generators because there is no gauge invariant state that they could be transformed
into. If, however, we act with a pair of supercharges (for example) we can change the species of
an edge with the first action and restore it with the second. Consequently, the edges straddling
nodes can give rise to the central extensions introduced below

{(Qα
a)i, (Q

β
b)j} = εαβεabPij, {(Saα)i, (S

b
β)j} = εαβε

abKij. (115)

The action of the central extensions on the Gauss graph operators takes the following form

PijOR,r(σ) = α
√
N + rin

+
ijOR+

i ,r
+
i

(σ)− α
√
N + rjn

+
ijOR+

j ,r
+
j

(σ), (116)

KijOR,r(σ) = β
√
N + rin

+
ijOR−i ,r

−
i

(σ)− β
√
N + rjn

+
ijOR−j ,r

−
j

(σ). (117)

These formulas are the natural generalization of the action of the central extension obtained in
[5]. Indeed, the markers Z± are again replaced by an action that adds or removes a box from
the Young diagram. Further, these actions again reveal the nature of the central extension as
a gauge transformation, exactly as was observed in the planar limit. An important consistency
condition is that these central extensions must vanish when acting on physical states. In the
planar limit this follows from cyclicity of the trace. In the non-planar problem we study here
we find that ∑

i,j

Pij = 0 =
∑
i,j

Kij (118)

holds as a consequence of the Gauss Law constraint. The fact that the Gauss graph operators are
gauge invariant physical states implies that they are annihilated by the total central extension.

Using the above central extension we obtain the following formula for the anomalous di-
mension γ

γ =
1

2

√
1 +

∑
ij

PijKij. (119)

This correctly reproduces the one loop anomalous dimension. Indeed, evaluating

PijKijOR,r(σ) = αβn+
ij

[
(N + ri)OR,r(σ) + (N + rj)OR,r(σ)

−
√

(N + ri)(N + rj)
(
OR+

ij ,r
+
ij

(σ) +OR−ij ,r
−
ij

(σ)
) ]
,

(120)

which, after summing over i and j, is nothing but (86).

4.4 Discussion

Our main result is the decomposition of the state space of CFT operators dual to excited giant
graviton branes into irreducible representations of the su(2|2)nR global symmetry. There are
a number of positive features of our results which support their validity:
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1. Our analysis shows that the state space of restricted Schur polynomials is not organized
into irreducible representations of the su(2|2)nR global symmetry. However, after trans-
forming to the Gauss graph operator basis, we do indeed have a transparent su(2|2) nR
structure. Indeed, it is a simple matter to read off the su(2)R× su(2)L quantum numbers
from the graph.

2. We have managed to reproduce the one loop anomalous dimension of the Gauss graph
operator from the su(2|2) nR central charge. This central charge makes a prediction for
the higher loop anomalous dimensions. It would be interesting to check these predictions.

3. Further, excitations are again charged under a central extension of global symmetry. Since
the original global symmetry is not centrally extended, the action of the central extension
must vanish on physical states. In the planar limit the central extension generates gauge
transformations and hence the central extension vanishes when acting on physical states
which are gauge invariant. In our case the central charge is again set to zero by gauge
invariance: the constraint enforced by the Gauss Law ensures that the central extension
vanishes. Further, the central extension again generates gauge transformations.

This is compelling evidence in support of our results.
There are a number of directions in which our study can be extended. One could for

example try to formulate a more complete description of excited gaint graviton states, by
relaxing the restriction to the su(2|3) sector. In this case the global symmetry algebra is
su(2|2) × su(2|2) n R. This has proved to be a very fruitful direction in the planar limit
of the theory. Another fascinating direction would be to use the global symmetry to study
interactions of the excitations. Following [5], a productive way forwards may be to introduce
an S-matrix and to use the global symmetry to constrain its form. The Gauss graph operators
are natural asymptotic states that might be used to define an S-matrix. For example, consider
the following (schematic) state

|in〉 = A A
B B

(121)

which we will treat as an “in state”. Under time evolution by the dilatation operator, the
lengths of the rows can change. When the row lengths are comparable the two impurities can
interact, and possibly even swap the row they belong to or rearrange in even more complicated
ways. The rows lengths will then continue to evolve until the impurities are again well separated,
defining an “out state” of the schematic form

|out〉 = B B
A A

(122)

The map from the in state to the out state

|out〉 = S|in〉 (123)

defines an S-matrix as usual. In the planar case there is a lot one can do with the S-matrix. The
powerful methods of integrability can be applied thanks to the fact that the S-matrix satisfies
a Yang-Baxter equation, which expresses the equality of two particle scattering between three
particles, with the two particle scattering taking place in different orders. Here there is a
natural analogue of this setup: consider a Young diagram R with three rows, and a Gauss
graph operator that has excitations on each row. One can ask if there is equality between
the different orders in which the excitations on the different rows can scatter. Do we obtain
something like the Yang-Baxter equation? Is it possible to generalize something of the powerful
integrability machinery? This is the subject of work in progress.
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5 Conclusion

In this thesis the goal we set out to achieve was the construction of an emergent Yang-Mills
theory, arising from the low energy description of branes and open strings. We have worked
directly in the CFT with operators dual to excited giant graviton branes. This is a highly
nontrivial goal because this new Yang-Mills theory has no connection to the original gauge
symmetry of the CFT. We have answered a number of questions brought forth in this thesis. In
this section we will draw together conclusions that have already be made in the thesis, in order
to develop a final concluding discussion. We will then end with an appraisal of our success and
by outlining directions for further study.

Our first novel result is a mapping from magnon excitations of a giant graviton to a lattice
boson model; “magnons” are excitations in an SU(2|2) representation - this is the algebraic
definition that encompasses both spin chain magnons and our magnons. This mapping achieves
an enormous simplification of the operator mixing problem and we have managed to understand
it in some detail. Indeed, using the lattice boson model, we have argued that the lowest energy
giant graviton states are obtained by distributing the momenta carried by the X and Y fields
evenly between the giants with the condition that any particular giant carries only X or Y
momenta, but not both. Since states with two charges are typically 1

4
-BPS while states with 3

charges are typically 1
8
-BPS, it may be that the solution is locally trying to maximize SUSY. It

would be interesting to arrive at the same picture, employing the dual string theory description.
A physical description along these lines would certainly help to clarify the physical meaning of
our result.

Our second novel result is the decomposition of the state space of CFT operators dual to
excited giant graviton branes into irreducible representations of the su(2|2)nR global symmetry.
There are a number of positive features of our results which support their validity:

1. Our analysis shows that the state space of restricted Schur polynomials is not organized
into irreducible representations of the su(2|2)nR global symmetry. However, after trans-
forming to the Gauss graph operator basis, we do indeed have a transparent su(2|2) nR
structure. Indeed, it is a simple matter to read off the su(2)R× su(2)L quantum numbers
from the graph.

2. We have managed to reproduce the one loop anomalous dimension of the Gauss graph
operator from the su(2|2) nR central charge. This central charge makes a prediction for
the higher loop anomalous dimensions. It would be interesting to check these predictions.

3. Further, excitations are again charged under a central extension of global symmetry. Since
the original global symmetry is not centrally extended, the action of the central extension
must vanish on physical states. In the planar limit the central extension generates gauge
transformations and hence the central extension vanishes when acting on physical states
with are gauge invariant. In our case the central charge is again set to zero by gauge
invariance: the constraint enforced by the Gauss Law ensures that the central extension
vanishes. Further, the central extension again generates gauge transformations.

Given these results it is interesting to ask how much of the dynamics of interactiong magnons
we can understand. Indeed, by using a symmetry based approach Beisert was able to determine
the two magnon S-matrix up to an overall phase. Is the su(2|2) symmetry analysis carried out
in this thesis the first step towards understanding magnon excitations in large N but non-planar
limits of the theory? This is a fascinating avenue for further study.
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A Action of derivatives

This Appendix evaluates the explicit action of the derivatives considered in the subsection 2.7.1.
The first pair evaluates to

d

dY k
j

d

dX i
k

(
X i1
iσ(1)
· · ·X ip

iσ(p)
Y
ip+1

iσ(p+1)
· · ·Y ip+m

iσ(p+m)
Z
ip+m+1

iσ(p+m+1)
· · ·Zip+m+n

iσ(p+m+n)

)
=

[
d

dX i
k

(
X i1
iσ(1)
· · ·X ip

iσ(p)

) d

dY k
j

(
Y
ip+1

iσ(p+1)
· · ·Y ip+m

iσ(p+m)

)]
Z
ip+m+1

iσ(p+m+1)
· · ·Zip+m+n

iσ(p+m+n)

=
(
δkiσ(1)δ

i1
i X

i2
iσ(2)
· · ·X ip

iσ(p)
+X i1

iσ(1)
δkiσ(2)δ

i2
i X

i3
iσ(3)
· · ·X ip

iσ(p)
+ · · ·+X i1

iσ(1)
· · ·X ip−1

iσ(p−1)
δkiσ(p)δ

ip
i

)
×

×
(
δjiσ(p+1)

δ
ip+1

k Y
ip+2

iσ(p+2)
· · ·Y ip+m

iσ(p+m)
+ Y

ip+1

iσ(p+1)
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δ
ip+2

k Y
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+ · · ·+
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The second pair evaluates to
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Z
ip+m+1

iσ(p+m+1)
· · ·Zip+m+n

iσ(p+m+n)

= −
(
δjiσ(1)δ

i1
iσ(p+1)

δ
ip+1

i X i2
iσ(2)
· · ·X ip

iσ(p)
Y
ip+2

iσ(p+2)
· · ·Y ip+m

iσ(p+m)
+ · · ·+X i1

iσ(1)
· · ·X ip−1

iσ(p−1)
×

× Y ip+1

iσ(p+1)
· · ·Y ip+m−1

iσ(p+m−1)
δ
ip
iσ(p+m)

δ
ip+m
i δjiσ(p)

)
Z
ip+m+1

iσ(p+m+1)
· · ·Zip+m+n

iσ(p+m+n)
.

Then

− [Y,X]ij
d

dXk
j

d

dY i
k

(
X i1
iσ(1)
· · ·X ip

iσ(p)
Y
ip+1

iσ(p+1)
· · ·Y ip+m

iσ(p+m)
Z
ip+m+1

iσ(p+m+1)
· · ·Zip+m+n

iσ(p+m+n)

)
= −[Y,X]ij

(
δjiσ(1)δ

i1
iσ(p+1)

δ
ip+1

i X i2
iσ(2)
· · ·X ip

iσ(p)
Y
ip+2

iσ(p+2)
· · ·Y ip+m

iσ(p+m)
+ · · ·+X i1

iσ(1)
· · ·X ip−1

iσ(p−1)
×

× Y ip+1

iσ(p+1)
· · ·Y ip+m−1

iσ(p+m−1)
δ
ip
iσ(p+m)

δ
ip+m
i δjiσ(p)

)
Z
ip+m+1

iσ(p+m+1)
· · ·Zip+m+n

iσ(p+m+n)

= −
(

[Y,X]
ip+1

iσ(1)
δi1iσ(p+1)

X i2
iσ(2)
· · ·X ip

iσ(p)
Y
ip+2

iσ(p+2)
· · ·Y ip+m

iσ(p+m)
+ · · ·+ [Y,X]

ip+m
iσ(p)

X i1
iσ(1)
· · ·X ip−1

iσ(p−1)
×

× Y ip+1

iσ(p+1)
· · ·Y ip+m−1

iσ(p+m−1)
δ
ip
iσ(p+m)

)
Z
ip+m+1

iσ(p+m+1)
· · ·Zip+m+n

iσ(p+m+n)
.

B Young Diagram Notations

The dilatation operator D, central charges C, Pij and Kij as well as the supercharges Qα
a and

Saα, when acting on the Gauss graph operator OR,r(σ), have a non-trivial action on the Young
diagram labels R and r. In this Appendix we will briefly spell out the notation we use, with a
few examples to illustrate the ideas. Consider the Young diagram r given by

r = (124)

The dilatation operator can transport a box from row i to row j. We use the notation r+ij to
describe the Young diagram obtained from r by deleting a box from row j and adding a box
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to row i. As an example, we give

r+12 = (125)

We will also find it convenient to use the notation r−ij to describe the Young diagram obtained
from r by deleting a box from row i and adding a box to row j. As an example of this notation,
consider

r−12 = (126)

Notice that rij, r
+
ij and r−ij all have the same number of boxes. The supercharges change the

number of boxes in the Young diagram. For example, Qα
a can add a box to a given row. We

use r+i to denote the Young diagram obtained from r by adding a single box to row i. For
example

r+2 = (127)

Notice the the number of boxes is not preserved: r+2 has one more box that r. The supercharge
Saα can remove a box from a given row. We use r−i to denote the Young diagram obtained
from r by deleting a single box from row i. As an example of this notation, we quote

r−2 = (128)

Finally, although we have illustrated the notation using Young diagram r, the discussion also
holds for R.

C Restricted Schur Polynomials with 2 rows

A simple setting in which to test the formulas and ideas developed in this study, is to con-
sider Young diagrams R that have two rows. The problem with two rows (or columns) is
particularly simple because upon restricting an irreducible representation of Sn to any sub-
group Sk × Sn−k, irreducible representations of the subgroup appear without multiplicity. In
Appendix D we evaluate the action of su(2) rotations on restricted Schur polynomials with
bosonic excitations only. Since there are no mulitplicities, the relevant restricted Schur polyno-
mials are χR,(b0,b1,b2)(Z, Y,X). There is a Sb(1)×Sb(2) symmetry that is Schur Weyl dual to U(2).
Consequently, the projection operators needed to construct the restricted Schur polynomials
are easily determined in terms of well known SU(2) Clebsch-Gordan coefficients[42]. We use
the quantum numbers j, j3 for the SU(2) used to organize the Y fields and k, k3 for the SU(2)
used to organize the X fields.

Let (bi)k denote the number of boxes in row k of Young diagram bi. The translation of the
restricted Schur polynomial χR,(b0,b1,b2)(Z, Y,X) to SU(2) state labels is as follows

(b2)1 = p
2

+ k (b2)2 = p
2
− k

(b1)1 = m
2

+ j (b1)2 = m
2
− j

R1 = (b0)1 + m+p
2

+ j3 + k3 R2 = (b0)2 + m+p
2
− j3 − k3

(129)
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j3 is equal to the number of Y boxes in the first row of R minus the number of Y boxes in the
second. k3 is defined in the same way, but for the X boxes. The above labels may appear to be
over complete: given b(0), b(1), b(2) as well as b0, k, j, k3+j3 we can reconstruct the Young diagram
labels R, b0, b1 and b2. It seems that we need only the sum k3 + j3 and not the individual values
j3, k3. The point is that, even when R has two rows, when we restrict Sa+b+c to Sa × Sb × Sc
we do need a multiplicity label. Specifying k3 and j3 independently resolves the multiplicity -
its tells us which boxes in R are Y boxes and which are X boxes. The simplest way to see this
is to note that we can first restrict Sb(0)+b(1)+b(2) to Sb(2) × Sb(0)+b(1) without multiplicity, and
then restrict Sb(0)+b(1) to Sb(1)×Sb(0) , again without multiplicity. The first restriction introduces
(k, k3) and the second (j, j3).

D Rotating Restricted Schur Polynomials

In this Appendix we review results that were obtained in [71]. We would like to obtain the
action of the following su(2)R generators

R− = Tr

(
X

d

dY

)
, R+ = Tr

(
Y

d

dX

)
R3 = [R+, R−] = Tr

(
Y

d

dY
−X d

dX

)
. (130)

Once we have evaluated the action of R+, the action of R− follows by hermittian conjugation,
and the action of R3 then follows by using the su(2) algebra. Consequently, we only need
the action of R− = Tr

(
X d

dY

)
. The computation is carried out by allowing R− to act on

the restricted Schur polynomial. The result can then be expressed as a linear combination
of restricted Schur polynomials, since the restricted Schur operators provide a basis. The
coefficients of this linear expansion are given by the trace of a product of projection operators.
In the distant corners approximation, the computation of the traces that need to be computed
is reduced to the evaluation of su(2) Clebsch-Gordan coefficients. The result is [71]

Tr

(
X

d

dY

)
O

(n,m,p)
R,r,j,j3,k,k3

=
j + j3

2j

k + k3 + 1

2k + 1

√(m
2

+ j + 1
) 2j

2j + 1

√(p
2

+ k + 2
)2k + 1

2k + 2
O

(n,m−1,p+1)

R,r,j− 1
2
,j3− 1

2
,k+ 1

2
,k3+

1
2

+
j + j3

2j

k − k3
2k + 1

√(m
2

+ j + 1
) 2j

2j + 1

√(p
2
− k + 1

)2k + 1

2k
O

(n,m−1,p+1)

R,r,j− 1
2
,j3− 1

2
,k− 1

2
,k3+

1
2

+
j − j3 + 1

2j + 2

k + k3 + 1

2k + 1

√(m
2
− j
)2j + 2

2j + 1

√(p
2

+ k + 2
)2k + 1

2k + 2
O

(n,m−1,p+1)

R,r,j+ 1
2
,j3− 1

2
,k+ 1

2
,k3+

1
2

+
j − j3 + 1

2j + 2

k − k3
2k + 1

√(m
2
− j
)2j + 2

2j + 1

√(p
2
− k + 1

)2k + 1

2k
O

(n,m−1,p+1)

R,r,j+ 1
2
,j3− 1

2
,k− 1

2
,k3+

1
2

+
j − j3

2j

k − k3 + 1

2k + 1

√(m
2

+ j + 1
) 2j

2j + 1

√(p
2

+ k + 2
)2k + 1

2k + 2
O

(n,m−1,p+1)

R,r,j− 1
2
,j3+

1
2
,k+ 1

2
,k3− 1

2

+
j − j3

2j

k + k3
2k + 1

√(m
2

+ j + 1
) 2j

2j + 1

√(p
2
− k + 1

)2k + 1

2k
O

(n,m−1,p+1)

R,r,j− 1
2
,j3+

1
2
,k− 1

2
,k3− 1

2

+
j + j3 + 1

2j + 2

k − k3 + 1

2k + 1

√(m
2
− j
)2j + 2

2j + 1

√(p
2

+ k + 2
)2k + 1

2k + 2
O

(n,m−1,p+1)

R,r,j+ 1
2
,j3+

1
2
,k+ 1

2
,k3− 1

2
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+
j + j3 + 1

2j + 2

k + k3
2k + 1

√(m
2
− j
)2j + 2

2j + 1

√(p
2
− k + 1

)2k + 1

2k
O

(n,m−1,p+1)

R,r,j+ 1
2
,j3+

1
2
,k− 1

2
,k3− 1

2

.

(131)

These are not exact expressions - there are corrections of order b(1)

b(0)
and b(2)

b(0)
, which are subleading

at large N . Notice that there is a complicated mixing of the restricted Schur polynomials under
su(2)R. The restricted Schur polynomials are not organized into multiplets of su(2)R.

E Gauss Graph Transformations

In this Appendix we will derive explicit formulas for the transformation from the restricted
Schur polynomial basis to the Gauss graph basis. These transformation formulas are needed to

1. Construct the Hilbert space of the excited giant graviton brane system.

2. Translate the action of su(2) generators from the restricted Schur basis to the Gauss
graph basis.

E.1 Bosonic Operators

As a non-trivial example of how we move from the restricted Schur to the Gauss graph basis,
consider an excitation constructed using 4 bosonic Y fields. Assume that we study a 2 brane
system so that both R and r have two rows. We remove two excitations from each row so that

R = r = (132)

Denoting the excitations removed from row 1 by 1, 2 and the excitations removed from row 2
by 3, 4 we have

H = {1, (12), (34), (12)(34)}. (133)

In the restricted Schur basis, the possible representation that the excitations can be arranged
into are

s ∈
{

, ,
}
. (134)

We choose our permutation so that we are describing a pair of strings stretched between nodes
1 and 2

σ = (13)(24) = (135)

We would like to compute the transformation coefficients, given by

C(s) ((13)(24)) =
|H|√
b(1)!

√
dsΓ

(s) ((13)(24))kmB
s→1H
k Bs→1H

m . (136)

There are no multiplicity labels on the branching coefficient because R has 2 rows. The branch-
ing coefficient is determined by

1

|H|
∑
γ∈H

Γ(s)(γ)km = BkBm. (137)
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For s = the representation is one dimensional, Γ( )(σ) = 1 for any σ and the
branching coefficient B = 1. Consequently

C( ) ((13)(24)) =
4√
24
·
√

1 · 1 =

√
2

3
. (138)

For s = the representation Γ

( )
(σ) is three dimensional. The branching coefficient is

determined to be

B =


1√
3√
2
3

0

 (139)

and consequently

C

( )
((13)(24)) =

4√
24
·
√

3 · Γ
( )
km BkBm = −

√
2. (140)

Finally for s = the representation Γ

( )
(σ) is two dimensional. The branching coefficient

is determined to be

B =

[
0
1

]
(141)

and consequently

C

( )
((13)(24)) =

4√
24
·
√

2 · Γ
( )
km BkBm =

2√
3
. (142)

Thus, we find that

OR,r

( )
=

√
2

3
OR,(r, ) −

√
2O

R,(r, )
+

2√
3
O
R,(r, )

. (143)

We did not explicitly specify that we remove two impurities from the first row and two from
the second row on the right hand side of this equation, but it can be read off of the graph
appearing on the left hand side.

Here are a few more examples of transformations between the restricted Schur and Gauss
graph bases

OR,r

( )
=

√
2

3
OR,(r, ) +

2√
3
O
R,(r, )

, (144)

OR,r

( )
=

√
2

3
OR,(r, ) −

1√
3
O
R,(r, )

, (145)

OR,r

( )
=
√

6OR,(r, ). (146)

The last example above generalizes very nicely: for m loops attached to the first node, we
replace s by a Young diagram that is a single row with m boxes. These expression will be very
useful in Appendix F when we study the action of rotations on Gauss graph operators, using
the known action of rotations on restricted Schur polynomials.
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E.2 Fermionic Operators

The structure of the state space of the fermionic Gauss graphs depends crucially on the prop-
erties of the transformation from restricted Schur polynomials to Gauss graph operators. For
that reason we will work out a few carefully chosen examples in this Appendix.

Imagine that we have an excitation constructed from the ψ1 field. The formula for the
transformation coefficients from the representation s and multiplicity labels µ1, µ2 that organize
the fermionic excitations is given by

C̃(s)
µ1µ2

(τ) = |H|

√
ds
f (1)!

(
Γ(s)(τ)Ô

)
km
Bs→1H
kµ1

BsT→1f
(1)

mµ2
. (147)

Notice that two distinct branching coefficients appear. Before evaluating any examples of the
coefficients C̃

(s)
µ1µ2(τ) we will relate the two branching coefficients that appear. Starting from

the definition of the branching coefficient BsT→1f
(1)

mµ we easily find∑
µ

BsT→1f
(1)

kµ BsT→1f
(1)

mµ =
1

|H|
∑
γ∈H

sgn(γ)Γ(sT )(γ)km

=
1

|H|
∑
γ∈H

sgn(γ)(ÔΓ(s)(γ)Ô)km

=
1

|H|
∑
γ∈H

Γ(s)(γ)km

=
∑
µ

Bs→1H
kµ Bs→1H

mµ , (148)

which proves that the two branching coefficients are in fact equal! Consequently the formula
for the transformation coefficients can be simplified to

C̃(s)
µ1µ2

(τ) = |H|

√
ds
f (1)!

(
Γ(s)(τ)Ô

)
km
Bs→1H
kµ1

Bs→1H
mµ2

. (149)

In what follows we again restrict our attention to examples for which R has two rows. Thus,
we can again drop the multiplicity labels.

To begin, consider an excitation constructed using three ψ1s. For simplicity again consider
a Young diagram R with two rows. Two of the ψ1 impurities live in the first row of R and one
in the second row. The only possible representation that leads to a non-zero restricted Schur
polynomial is s = as has already been explained in subsection 4.2.4. A straight forward
computation shows that

Ô =

[
0 1
−1 0

]
. (150)

The group H = {1, (12)} and the branching coefficient is easily determined to be

B =

[ √
3
2
1
2

]
. (151)

It is now straight forward to verify that

C̃

( )( )
= C̃

( )
(1) = C̃

( )
( (12) ) = 0, (152)
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C̃

( ) ( )
= C̃

( )
( (13) ) = −C̃

( )
( (23) )

= C̃

( )
( (132) ) = −C̃

( )
( (123) ) = 1. (153)

The negative signs which appear above are exactly what we expect. They reflect an odd number
of swaps of fermion fields.

For the second example, consider an excitation constructed using four ψ1s and again consider
a Young diagram R with two rows. Two of the ψ1 impurities live in the first row of R and
two in the second row. The only possible representation that leads to a non-zero restricted
Schur polynomial is s = , which was also explained in subsection 4.2.4. A straight forward
computation shows that we again have

Ô =

[
0 1
−1 0

]
. (154)

The group H = {1, (12), (34), (12)(34)} and the branching coefficient is easily determined to be

B =

[
0
1

]
. (155)

It is now straight forward to verify that

C̃

( )( )
= 0, (156)

C̃

( ) ( )
= 0, (157)

C̃

( )( )
= 1. (158)

F Rotating Gauss graph operators

In this section we will use the action of the su(2)R generators on restricted Schur polynomials
given in Appendix D, and the translation between restricted Schur polynomials and Gauss
graphs worked out in Appendix E, to determine the action of the su(2)R generators on the
Gauss graph operators.

To begin we will work out an example which demonstrates that the su(2)R generators leave
the edges in a Gauss graph, that stretch between distinct nodes, inert. The computation is
most easily phrased using the notation introduced in Appendix C. Consider a two giant system
constructed using b(0) Z fields, 4 Y fields and no X,ψ1 or ψ2 fields. Two Y fields belong to the
first row of R and two to the second row. Our starting point is the formula

OR,r

( )
=

√
2

3
OR,r,2,0,0,0 −

√
2OR,r,1,0,0,0 +

2√
3
OR,r,0,0,0,0. (159)

A simple application of the formula in Appendix D leads to

Tr

(
X

d

dY

)
OR,r,2,0,0,0 = OR,r, 3

2
,− 1

2
, 1
2
, 1
2

+OR,r, 3
2
, 1
2
, 1
2
,− 1

2
, (160)
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Tr

(
X

d

dY

)
OR,r,1,0,0,0 =

√
2

3
OR,r, 1

2
,− 1

2
, 1
2
, 1
2

+
1√
3
OR,r, 3

2
,− 1

2
, 1
2
, 1
2

+

√
2

3
OR,r, 1

2
,− 1

2
, 1
2
, 1
2

+
1√
3
OR,r, 3

2
, 1
2
, 1
2
,− 1

2
, (161)

Tr

(
X

d

dY

)
OR,r,0,0,0,0 = OR,r, 1

2
,− 1

2
, 1
2
, 1
2

+OR,r, 1
2
, 1
2
, 1
2
,− 1

2
. (162)

It is now trivial to verify that

Tr

(
X

d

dY

)
OR,r

( )
= 0. (163)

The second example we consider illustrates the usual co-product action of the su(2)R gener-
ators. We will use black edges to denote Y excitations and grey edges to denote X excitations.
Starting from

OR,r

( )
=

1√
2
OR,r,1,0,0,0 +

1√
2
OR,r,0,0,0,0 (164)

and using

Tr

(
X

d

dY

)
OR,r,1,0,0,0 =

1√
2
OR,r, 1

2
,− 1

2
, 1
2
, 1
2

+
1√
2
OR,r, 1

2
, 1
2
, 1
2
,− 1

2
, (165)

Tr

(
X

d

dY

)
OR,r,0,0,0,0 =

1√
2
OR,r, 1

2
,− 1

2
, 1
2
, 1
2

+
1√
2
OR,r, 1

2
, 1
2
, 1
2
,− 1

2
, (166)

as well as

OR,r

( )
= OR,r, 1

2
,− 1

2
, 1
2
, 1
2
, (167)

OR,r

( )
= OR,r, 1

2
, 1
2
, 1
2
,− 1

2
, (168)

we find

Tr

(
X

d

dY

)
OR,r

( )
= OR,r

( )
+OR,r

( )
.

(169)

This clearly illustrates that the generator acts on each node individually, turning a black (Y )
edge into a grey (X) edge when it acts.

In our final example, we would like to test that the coefficient in (105) comes out correctly.
Assume that the excitation is built from j − 1 Y fields and one X field, which all come from
the first row of R. In this case we have

OR,r

  = OR,r, j−1
2
, j−1

2
, 1
2
, 1
2

(170)
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and

OR,r

  = OR,r, j−2
2
, j−2

2
,1,1. (171)

The equation

Tr

(
X

d

dY

)
OR,r, j−1

2
, j−1

2
, 1
2
, 1
2

=
√

2(j − 1)OR,r, j−2
2
, j−2

2
,1,1 (172)

implies

Tr

(
X

d

dY

)
OR,r

  =
√

2(j − 1)OR,r

  ,

(173)

which beautifully matches the expected result of the action of the lowering operator on state
|j,m〉

R−|j, j − 1〉 =
√

2(j − 1)|j, j − 2〉. (174)

A node with nY closed Y loops and nX closed X loops is in the representation j = nY + nX
and has m = nY − nX .
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