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Abstract In this paper we examine the relativistic Einstein
rings assuming a nonminimal coupling between gravitation
and electromagnetism in a Reissner–Norström background.
Starting from a general action of a nonminimal coupled
electrodynamics we show that an unstable effective photon
sphere may be obtained in the regime of eikonal approxi-
mation. Restricting ourselves to the unstable photon sphere
domain we examine the expected angular positions of the first
and second relativistic Einstein rings. To compare our results
with previous studies in the literature we model the lens as a
Galactic supermassive black hole. For fixed coupling param-
eters we show that such angular positions decrease as the
charge parameter increases. The angular separation between
the first and second rings is also evaluated. We show that such
separation increases as the charge parameter increases. These
patterns are not followed by nearly extremal configurations.
In this case we show that there is an overlap domain so that
the angular position and the corresponding coupling param-
eter do not allow one to differ extremal cases from comple-
mentary configurations which satisfy the cosmic censorship
hypothesis.

1 Introduction

Since the advent of black hole classical solutions [1–5] the
behaviour of photon dynamics in a high energy regime has
been exhaustively studied. In this context, the deflection of
light rays – due to strong gravitational field – with impact
factor of the order of the black hole photon sphere may fur-
nish attractive configurations in which high energy physics
can be put to the test. In this case, the position of the source
with respect to the optical axis plays a significant role by
defining the lensing configuration. In the minimal coupling
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case several studies addressed the lensing at large deflection
angles [6–11]. In this scenario, photons may reach a region
sufficiently close to the unstable photon sphere so that they
may go around the lens a number of times. For the case in
which the source, lens and observer are aligned, an infinite
number of relativistic Einstein rings may be formed due to
the bending of light rays larger than 2π . In the misaligned
case on the other hand, an infinite sequence of relativistic
images is produced on both sides of the optical axis.

Extending the above mentioned systems, the lensing at
large deflection angles has also been examined [12] in the
context of a nonminimal coupling between gravitation and
the electrogmanetic field. From a theoretical ground there
are several reasons behind the assumption of such nonmin-
imal coupling. Among them we can mention the obtention
of asymptotically flat black hole solutions with a positive
ADM mass [13], the effect of vacuum polarization on mag-
netic fields around a static black hole [14] and exact cos-
mological solutions which describe isotropization processes
[15]. For a complete review on general couplings between the
electromagnetic field and gravitation see [16] and references
therein. In this paper we intend to extend the results obtained
in [12] considering the case in which the lens is described
by a Galactic supermassive black hole with a nonvanishing
charge parameter.

Although it is believed that charged black holes are rather
unlikely to be observed in nature once they tend to attract
opposite charges from their neighbourhood to neutralize
themselves, a number of works have been developed in order
to better understand proper mechanisms of charged black
hole neutralization (see e.g. [17–20] and references therein).
From an astrophysical point of view it has been argued that
binary black holes may admit electric charge. In fact, accord-
ing to Zhang’s mechanism [21] a rotating charged black hole
may develop a magnetosphere which should allow a non-

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-025-13851-5&domain=pdf
http://orcid.org/0000-0003-0706-4595
mailto:rodrigo.maier@uerj.br


  101 Page 2 of 7 Eur. Phys. J. C           (2025) 85:101 

vanishing charge parameter for a large period of time. The
overall effect of such mechanism could provide a signature
of an electromagnetic signal in gravitational wave events of
binary black hole merger. Further analyses have given sup-
port to electric charges in black holes considering electro-
magnetic counterparts of black hole mergers [22–26]. In the
context of this paper we aim to examine the simplest config-
uration in which a nonrotating black hole with nonvanishing
charge parameter changes the angular position of relativistic
Einstein rings considering a nonminimal coupling between
gravitation and the electromagnetic field.

We organize the paper as follows. In the next section
we obtain an effective metric from a Reissner–Nordstöm
background nonminimal coupled to electrodynamics in the
regime of eikonal approximation. In Sect. 3 effective photon
spheres are obtained. In Sect. 4 we obtain the angular posi-
tion of the first and second Einstein relativistic rings mod-
eling our lens by a Galactic supermassive black hole with a
charge parameter. In Sect. 5 we leave our final remarks.

2 Effective geometry from nonminimal coupling

We start by considering an action of a general nonminimal
coupled electrodynamics

Sγ =
∫ √−gFμνF

μνd4x

+
∫ √−g

(
γ1RFμνF

μν + γ2RμνF
μ
βF

νβ

+γ3Rμνβσ F
μνFβσ

)
d4x, (1)

where Rμνβσ is the Riemann tensor – Rμν and R are the Ricci
tensor and the Ricci scalar, respectively – γi (i = 1, 2, 3) are
coupling coefficients and Fμν = Aν,μ − Aμ,ν is the Faraday
tensor with Aμ as the potential 4-vector.

Variations of Sγ with respect Aμ yields the following
equations of motion

∇μF
μν + ∇μ

[
γ1RF

μν + γ2

2
(Rμ

βF
βν − Rν

βF
βμ)

+γ3R
μν

βσ F
βσ

]
= 0, (2)

where ∇α denotes the covariant derivative. Finally, from
Bianchi identities we obtain the auxiliary conditions

∇αFμν + ∇μFνα + ∇νFαμ = 0. (3)

In the following we aim to examine the photon dynamics
which emerge from (2)–(3) in a high energy domain engen-
dered from a black hole background. In this context, the
propagation of small perturbations of the electromagnetic
field around such background can be studied by means of
the eikonal approximation in which the test electromagnetic

field is given by

Fμν = fμνe
iθ . (4)

In the above, θ stands for a very rapidly varying phase com-
pared to the amplitude fμν when one takes into account scales
much higher than the Compton wavelength of the electron.
Defining kμ = θ,μ, Eq. (2) furnishes

kμ(1 + γ1R) f μν + γ2

2
kμ(Rμ

β f βν − Rν
β f βμ)

+γ3kμR
μν

βσ f βσ = 0. (5)

On the other hand, from (3) we obtain

kα fμν + kμ fνα + kν fαμ = 0, (6)

so that

k2 fμν + kα(kν f
α
μ − kμ f α

ν) = 0, (7)

where k2 ≡ kαkα .
Substituting (5) in the above, we end up with

k2 fμν + kα

1 + γ1R

{
γ2

2

[(
kνRμβ − kμRνβ) f βα

+Rα
β(kμ f β

ν − kν f
β
μ

)]

+γ3(kμR
α
νβσ − kνR

α
μβσ ) f βσ

}
= 0. (8)

Using standard coordinates xα = (t, r, θ, φ) the Reissner–
Nordström line element can be written in the base of 1-forms
as

ds2 = ηABΘ AΘB, (9)

where

Θ A = eAαdx
α, (10)

and

eAα → diag
(
f (r),

1

f (r)
, r, r sin θ

)
, (11)

with

f (r) ≡
√

1 − 2M

r
+ Q2

r2 . (12)

It is then easy to show that the Riemann tensor reads

Rα
βγ δ = h1(r){δα

γ gβδ − δα
δ gβγ

+3[h2(r)V
α
βVγ δ − h3(r)W

α
βWγ δ]}, (13)

where

V AB = √−gtt grr (eAt e
B
r − eAr e

B
t ), (14)

W AB =
√
gθθgφφ(eAθe

B
φ − eAφe

B
θ ), (15)
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and

h1(r) = M

r3 − Q2

r4 , (16)

h2(r) = 1 + Q2

3(Q2 − Mr)
, (17)

h3(r) = 1 − Q2

3(Q2 − Mr)
. (18)

The substitution of (13) in (8) – and further contraction with
Vμν – furnishes a modified light cone [12,27] dictated by

(1 − Σ)(kt k
t + kr k

2) + kθk
θ + kφk

φ = 0. (19)

In this case, photons are expected to follow an effective geom-
etry [28] whose line element reads

ds̃2 = g̃μνdx
μdxν

=
(

1 − 1

x
+ q2

x2

)
(1 − Σ)dT 2

−
(

1 − 1

x
+ q2

x2

)−1
(1 − Σ)dx2

−x2(dθ2 + sin2 θdφ2), (20)

where

T = t

2M
, x = r

2M
, q = Q

2M
, (21)

Γ2 = γ2

(2M)2 , Γ3 = γ3

(2M)2 , (22)

and

Σ ≡ 3xΓ3 − q2(Γ2 + 8Γ3)

x4 + Γ3(x − 2q2)
. (23)

3 Effective photon spheres

To proceed we now investigate the motion of photons sub-
jected to the effective geometry (20). The equations of motion
are

d2xμ

dσ 2 + Γ̃
μ
αβ

dxα

dσ

dxβ

dσ
= 0, (24)

where we regard Γ̃
μ
αβ as the Christoffel connection built with

the effective geometry g̃μν and σ is a proper affine parameter.
To simplify our analysis we restrict ourselves orbits with
initial conditions θ0 = π/2 and dθ/dσ |0 = 0. In this case it
can be shown that the dynamics is restricted in the equatorial
plane and one can obtain two constants of motion,

E =
(

1 − 1

x
+ q2

x2

)
(1 − Σ)

(dT
dσ

)
, L = x2

(dφ

dσ

)
, (25)

connected to the energy and angular momentum, respec-
tively.

Substituting the above results in the first integral

g̃μν

dxμ

dσ

dxν

dσ
= 0, (26)

we obtain

(1 − Σ)2
( dx

dσ

)2 +Uef f (x) = E2, (27)

where

Uef f (x) =
L2

(
1 − 1

x + q2

x2

)
(1 − Σ)

x2 . (28)

The maximum of the effective potential Uef f defines the
photon sphere. For Σ = 0 we obtain

xRN = 3 + √
9 − 32q2

4
(29)

denoting the Reissner–Nordström unstable photon sphere for
nonextremal configurations as one should expect. It is worth
to mention that an interesting feature of extremal black holes
is the existence of the stable spherical motion of light rays
(see [29–32]).

Defining

xh = 1 + √
1 − 4q2

2
(30)

as the Reissner–Nordström event horizon, it can be easily
shown from (28) that

Uef f (xh) = 0. (31)

Furthermore, once

lim
x→+∞Uef f (x) = 0 (32)

and dUef f /dx � −2L2/x3 < 0 for large x one may notice
that Uef f has at least one unstable photon sphere analogous
to that of the Reissner–Nordström spacetime. In fact, for a
negligible charge and small coupling parameters Γ2 and Γ3

this is the sole formed photon sphere. To see this behaviour,
let us consider an expansion of Uef f up to first order in the
coupling parameters. That is,

Uef f (x) �
( L

x3

)2(
1 − 1

x
+ q2

x2

)

×[x4 − 3xΓ3 + q2(Γ2 + 8Γ3)]. (33)

Assuming a sufficiently small charge and coupling parame-
ters, namely q, Γ2 and Γ3 � 1, it can be shown that

dUef f

dx
� −L2

[2x6 − 3x5 + 4q2x4 − 3Γ3x2(5x − 6)

x9

]
.

(34)
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Fig. 1 Γ3 as a function of xp for different charge parameters in the
domain x > xh . The solid black, gray and blue curves are connected to
q = 0, q = 0.3 and q = 0.4, respectively. The black dashed curve on
the other hand is connected to a nearly extremal configuration in which
q � 0.5. In this case one may notice a degenerate behaviour. That
is, for Γ3 � −0.85, an unstable photon sphere located at xp � 0.84
(the black dot above) can be obtained for different charge parameters,
namely q � 0.5 and q = 0.4

In this approximation it is then easy to show that the
effective potential has one global maximum connected to
the effective unstable photon sphere located at

x̃ p = xRN + δ (35)

where

δ = 3xRN (5xRN − 6)Γ3

x3
RN (4xRN − 3) + 18(5xRN − 7)Γ3

. (36)

A degenerate behaviour may be notice considering the
case of nearly extremal configurations and smaller coupling
parameters. In fact, fixing Γ2 = 0 for instance, the equation

dUef f

dx

∣∣∣
xp

= 0 (37)

furnishes the coupling parameter Γ3 as a function of the pho-
ton sphere position xp and the charge parameter q. In Fig. 1
we show the behaviour of Γ3 as a function of xp according
to (37) for different charge parameters. The black, gray and
blue curves – configurations far from the extremal case – fur-
nish different domains in which an unstable photon sphere
is formed as one should expect. However, as one moves
towards nearly extremal configurations – as the black dashed
curve with q � 0.5 in Fig. 1 – an overlap domain in may be
detected. That is, fixing a coupling parameterΓ3, for instance,
the same photon sphere can be obtained for different charge
parameters. We illustrate an example of this case by the black
dot in Fig. 1.

4 Relativistic Einstein rings

We now examine the strong gravitational lensing connected
to the effective geometry (20). To this end we assume that
photons reach a region sufficiently close to the outer unstable
photon sphere so that they may go around the lens an num-
ber of times. Considering that the source, lens and observer
are aligned, an infinite number of relativistic Einstein rings
are formed due to the bending of light rays larger than 2π .
In order to provide a model to sketch the source, lens and
observer configuration we are going to adhere to the lens
equation proposed by Virbhadra and Ellis [8]. In this context
we shall assume that both observer and source are located in
asymptotically flat regions sufficiently far from the lens. The
line connecting the observer, the lens and the source defines
the optical axis. Denoting β and θ as the angle of the source
and its image with respect to the optic axis, and α as the
Einstein deflection angle, the lens equations reads

tan β = tan θ − σ (38)

where

σ = DLS

DS
[tan θ + tan(α − θ)]. (39)

In the above DLS is the lens-source distance and DS is the
distance of the source from the observer. In this context the
impact factor J can be written as [8,12]

J = DL sin θ. (40)

On the other hand, according to standard calculations the
Einstein deflection angle in our case is given by

α = 2
∫ ∞

xc
Υ (x)dx − π, (41)

where

Υ (x) =
√

1 − Σ(x)

x

√
x2

x2
c

(
1 − 1

xc
+ q2

x2
c

)
1−Σ(xc)
1−Σ(x) −

(
1 − 1

x + q2

x2

) ,

and the impact factor reads

J = 2Mxc√(
1 − 1

xc
+ q2

x2
c

)
(1 − Σ(xc))

. (42)

In the above xc is the closest distance of approach. For the
aligned case β = 0 so that the lens equation reduces to

tan θ = DLS

DS
[tan θ + tan(α − θ)]. (43)

To compare our results with those obtained in the litera-
ture [8,12] we shall model the lens as a Galactic supermassive
black hole with a nonvanishing charge. To this end we shall
fix the parameters
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Fig. 2 The angular positions of the first (top panel) and second (bottom
panel) relativistic Einstein rings as a function of Γ3 for several charge
parameters. The solid black, gray and blue curves are connected to
q = 0.0, q = 0.3 and q = 0.4, respectively. Here we see that the
angular position decreases as the charge parameter increases. The black
dashed curve is connected to the nearly extremal configuration in which
q � 0.5. The black solid dots are examples of points of the domain of
overlap of nearly extremal configurations and the complementary ones

Fig. 3 The separation parameter δθ as a function of Γ3 for several
charge parameters. The solid black, gray and blue curves are connected
to q = 0.0, q = 0.3 and q = 0.4, respectively. Here we see that the
separation parameter increases as the black hole charge increases. The
black dashed curve is connected to the nearly extremal configuration
in which q � 0.5. Again, the black solid dots are examples of points
of the domain of overlap of nearly extremal configurations and the
complementary ones

DL = 8.5Kpc, M = 2.8 × 106M	, DS = 2DLS (44)

where M	 is the Solar mass. Moreover, in order to simplify
our analysis from now on we shall fix Γ2 = 0. In fact, accord-
ing to (23) one may notice that the coupling parameter Γ2

plays a role of an additive constant – together with Γ3 – con-
nected to the black hole charge. Bearing this feature in mind
we expect that the following results should hold, from a qual-
itative point of view, for a nonvanishing Γ2 and in a similar
domain of Γ3.

Following the standard route shown in [8,12] we are then
in a position to evaluate the angular position of the first and
second relativistic Einstein rings. In Fig. 2 we show the angu-
lar positions of the first (top panel) and second (bottom panel)
relativistic Einstein rings considering several charge parame-
ters as a function of Γ3. Here we see that the angular positions
decrease as the charge parameter increases.

Defining

θ1 = θ − 2π and θ2 = θ − 4π (45)

as the angular position of the first and second relativistic Ein-
stein ring respectively, we introduce the separation parameter
as

δθ = θ1 − θ2. (46)

In Fig. 3 we show that the separation parameter increases as
the charge parameter increases.

Based on the numerical simulations of Figs. 2 and 3 we
see that the above mentioned patterns cannot be extended up
to nearly extremal configurations. In fact, according to our
numerical examples one may notice that there is a domain
of overlap between nearly extremal configurations and the
complementary ones which respect the cosmic censorship
hypothesis. Examples of such overlaps are illustrated in
Figs. 2 and 3 by the solid black dots. In this case the angular
position together with its corresponding coupling parameter
do not allow one to differ nearly extremal cases from config-
urations far from those.

5 Final remarks

In this paper we have examined strong lensing configura-
tions assuming a nonminimal coupling between gravitation
and electromagnetism in a Reissner–Norström background.
From an eikonal approximation we show that photons follow
an effective geometry which allows the formation of an effec-
tive unstable photon sphere. In order to simplify our analy-
sis we restrict ourselves to the case in which photons reach
a sufficiently close distance from the outer unstable photon
sphere so that relativistic Einstein rings can be observed once
the source, lens and the observer are aligned. To compare
our results to those in the literature we model the lens as a
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Galactic supermassive black hole with a nonvanishing elec-
tric charge. For fixed coupling parameters we show that the
angular positions of the first and second Einstein relativistic
rings decrease as the charge parameter increases. On the con-
trary, for fixed coupling parameters the separations between
the first and second Einstein rings increase as the charge
parameter increases. We show that these patterns cannot be
extended up to nearly extremal configurations. In this case
we show that there is an overlap domain in which the angular
position together with its corresponding coupling parameter
do not fix the black hole charge.

From an observational point of view it is worth to remark
that the highest resolution telescope available today [33] has
a resolution of the order of 19μas. Taking into account our
results shown in Sect. 4 we notice that the actual angular
positions of the first and second relativistic Einstein rings in
Fig. 2 may put a better constrain on the coupling parameter Γ3

rather than their separations in Fig. 3. An additional difficulty
to fix such constrain should be a proper method to infer the
overall black hole charge. Nevertheless, the inceptive results
presented here show that it may be feasible in the future to
put better limits on the coupling parameters. Of course the
theoretical estimates presented in this paper may improve if
different/more general configurations are considered. In this
context, different ratios DLS/DS and/or misaligned configu-
rations could provide a better screening for the allowed values
for the coupling parameters.

Finally, the analysis presented in our paper should be
extended to more general cases such as Kerr black holes.
Configurations in which the lens is modeled by a boosted
black hole [34] could also furnish a more realistic system to
be faced to observations. We shall examine these subjects in
our further research.
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