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Z U S A M M E N FA S S U N G

Ein leistungsfähiges Werkzeug zum Studium der starken Wechselwirkung bei kleinen
Energien ist die Untersuchung der Produktion und des Zerfalls von Hyperonen. Daher
konzentriert sich diese Dissertation auf drei Themen der Hyperonenphysik.

Der erste Teil präsentiert einen Track-Finding-Algorithmus für den Forward-Tracker des
zukünftigen PANDA-Experiments unter Verwendung modernster neuronaler Graphen-
netze. Der Nachweis vorwärts gerichteter Teilchen spielt eine bedeutende Rolle bei
der Rekonstruktion und Analyse des Grundzustands sowie angeregter Hyperonen (z.B.
Σ0, Σ(1385), Λ(1405) and Λ(1520)). Als Eingabe für das Netzwerk dient ein Bild des
Forward-Trackers, wobei die Detektortreffer die Knoten und alle möglichen Verbindun-
gen zwischen zwei Treffern in benachbarten Schichten des Detektors die Kanten sind.
Das Netzwerk wurde als binärer Klassifikator trainiert, um zwischen korrekten und
fehlerhaften Kanten zu unterscheiden. Auf Grundlage der Netzwerkausgabe wurde
ein Clustering-Algorithmus implementiert, der die zusammengehörigen Graphenpunkte
durch eine Tiefensuche ermittelt. Die Güte des Netzwerks wurde auf Grundlage von
Qualitätssicherungskriterien bewertet. Diese Krieterien sind die Reinheit, die Effizienz,
und die sog. Geisterrate. Im Durchschnitt wurde eine Reinheit von ≈ 100%, eine Ef-
fizienz von ≈ 90%, sowie eine Geisterrate von weniger als 3% ermittelt. Da das neuronale
Graphennetz darauf abzielte nur eine Projektion der Spur zu rekonstruieren, wurde ein
zweiter Schritt implementiert, der diese Projektion als Startpunkt für die Rekonstruktion
der gesamten Spur nutzt. Darüber hinaus liefert der Algorithmus einen Schätzwert für
den Teilchenimpuls, wobei die berechnete relative Impulsauflösung 6.7% beträgt.

Der zweite Teil der Dissertation beschäftigt sich mit der Untersuchung des Produktions-
mechanismuses des Σ0 Hyperons. Hierzu wird die exklusive Reaktion p+ p → p+K+ +Σ0

bei einer Strahl-Energie von 3.5 GeV gemessen mit dem HADES-Detektor verwendet.
Das Tochterphoton Σ0 → Λγ (BR ≈ 100%) wurde dabei als fehlendes Teilchen be-
handelt, während das Tochterteilchen Λ über den Zerfallsmodus Λ → pπ− (BR ≈
63.9%) nachgewiesen wurde. Dieser Nachweis erfolgte hierbei teilweise über die
zentralen HADES-Detektoren, und teilweise über die Forward-Wall. Ein kinematis-
cher Fit mit den zwei Nebenbedingungen, dass die Masse des Proton-Pion-Systems
der Masse des Λ Baryon, sowie die fehlende Masse aller gemessen Teilchen der Pho-
tonenmasse entsprechen, wurde durchgeführt. Insgesamt konnten 2613 Ereignisse
rekonsturiert werden, davon 58% mittels des zentralen HADES-Detektors und 42% über
die Forward-Wall. Des Weiteren wurde die Dynamik der Reaktion p + p → p +K+ +Σ0
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durch die Untersuchung der Winkelverteilungen im Schwerpunkts-, Gottfried-Jackson-,
und Helizitäts-System studiert. Die verschiedenen Winkelverteilungen wurden mittels
der Inversen der Detektor-Antwort-Matrix korrigiert. Diese Inverse wurde durch die SVD-
Faktorisierungsmethode berechnet. Der Gesamtwirkungsquerschnitt der Σ0 Produktion
wurde durch die Integration der Ausbeute aus den verschiedenen Winkelvertielungen
berechnet und ergibt sich zu σ = 18.74± 1.01(stat) ± 1.71(syst) µb. Die korrigierten CMS-
Winkelvertielungen des Σ0 und des Protons zeigen Anisotropien, wobei das erwatete Ver-
halten des Protons ausgeprägter ist, wenn der Produktionsprozess vom Pionen-Austuasch
dominiert wird. Die Winkelverteilung im K+Σ0 Gottfried-Jackson-System ist tendenziell
asymmetrisch, was duch Nukleonenresonanzen, die in K+Σ0 zerfallen, hervorgerufen
werden könnte. Darüber hinaus sind die Winkelverteilungen im Helizitäts-System nicht
mit isotropen Verteilungen kompatibel. Dies ist ein Hinweis darauf, dass die Σ0 Pro-
duktion zusätzlich zum reinen Phasenraum über resonante Kanäle verläuft. Um die
experimentellen Winkelverteilungen besser beschreiben zu können, wurde eine Partial-
wellenanalyse im Zuge der BG-PWA durchgeführt. Die BG-PWA bestimmt den Beitrag
verschiedener Partialwellen zur pK+Σ0 Produktion. Es wurden mehrere Anpassungen
durchgeführt, wobei die Güte einer solchen Anpassung über den Wert der Log-Likelihood
bestimmt wird. Eine Anpassung basiert hierbei auf einer Sammlung von Partialwellen,
die im initialen Proton-Proton-System beitragen. Solch eine Sammlung nennt man
häufig eine Lösung. Die beste Lösung in diesem Fall berücksichtigt die 2S0, 3P0, 3P1,
3P2, 1D2, sowie 3F2 Partialwellen. Aufgrund der begrenzten Statistik war es jedoch nicht
möglich, die genauen Beiträge der Nukleonen-Resonanzen zu bestimmen. Dennoch sind
Nukeleonen-Resonanzen mit einer Masse nahe 1.710 GeV/c2 (N∗(1710)) und 1.900
(N∗(1900) oder ∆∗(1710)) mit Sicherheit für die Anpassung erforderlich.

Der letzte Teil der Arbeit präsentiert eine Machbarkeitsstudie zur Messung von ra-
diativen Zerfällen angeregter Hyperonen mit dem verbesserten HADES-Aufbau und
dem neuen Vorwärtsdetektor im Rahmen des FAIR-Phase-0-Programms. Auch hier
wurde das Tochterteilchen Λ (Y → Λγ) teilweise im zentralen HADES-Detektor und
teilweise im Vorwärts-Detektor nachgewiesen. Um die hauptsächliche Untergrund-
Reaktion (p + p → p +K+ +Λ +π0) zu unterdrücken, wurden zwei Schnitte auf fehlende
Massen eingeführt. Zum Einen wird verlangt, dass die quadrierte fehlende Masse des
primären Protons und des Kaons im Bereich (1.6 < MM2(ppK+)[GeV2/c4] < 2.6) liegt.
Zweitens muss die quadrierte fehelende Masse aller gemessen Teilchen die Bedingung
(−0.04 < MM2(ppK+Λ)[GeV2/c4] < 0.01)) erfüllen. Als zusätzliche Variable wurde der
Öffnungswinkel OA(Λγ) im Ruhesystem des Hyperons genutzt, dieser muss größer als
165○ sein.

Die Rekonstruktionseffizienz ϵ dieses Kanals wurde für die verschiedenen Schnittkombi-
nationen ermittelt und bewegt sich im Bereich von 0.0250 - 0.0193 %. Zusätzlich werden
die erwartbaren Zählraten für die kommende Strahlzeit im Jahre 2022 abgeschätzt.



A B S T R A C T

A powerful tool to study the strong interaction at low energies is the investigation of
hyperon production and decay. Therefore, this thesis presents work focused on three
topics related to hyperon physics.

The first part presents a track finding algorithm for the future PANDA experiment
forward tracker using the state-of-art graph neural networks. The detection of forward
emitted particles plays a significant role in the reconstruction and analysis of the ground
state and excited hyperons (e.g., Σ0 , Σ(1385), Λ(1405) and Λ(1520)). The network
accepts an image of the forward tracker as an input, where the detector hits are the
graph vertices, and all possible connections between two hits in adjacent layers are the
graph edges. It was trained as a binary classifier to classify the graph edges. Guided by
the network output, a clustering algorithm that traverses the output graph depth-wise
was implemented in order to find the connected components. The performance of the
network were evaluated based on quality assurance measurements, which are the purity,
the efficiency, the ghost rate. On average, the purity was found to be ≈ 100%, the
efficiency ≈ 90% and the ghost ratio less than 3%. As the graph neural network was
aimed to reconstruct only a 2D projection of a track, a second step was implemented that
uses the projection as a seed to reconstruct the full 3D track. In addition, the algorithm
also provides an estimated value for the particle momentum, where the calculated
relative momentum resolution was found to be 6.7%.

The second part of the thesis presents a study of the production mechanism of the
Σ0 hyperon via the exclusive reaction p + p → p +K+ +Σ0 at beam energy 3.5 GeV with
the HADES detector setup. The daughter Lambda hyperon Σ0 → Λγ (BR ≈ 100%) was
reconstructed via the decay mode Λ → pπ− (BR ≈ 63.9%) partly within the main HADES
acceptance and partly within the forward wall acceptance. A kinematic refit was applied
by constraining the secondary proton and the pion to the nominal Λ mass and the
overall missing mass to the photon mass. In total, 2613 events were reconstructed 58%
are within the main HADES acceptance and 42% within the forward wall acceptance.
Furthermore, the dynamics of the reaction p + p → p + K+ + Σ0 were investigated by
studying the angular distributions in the CMS, Gottfried-Jackson and helicity frames.
The different angular distributions has been corrected using the inverse of the detector
response matrix calculated by the SVD factorization method. The total production cross
section of the Σ0 hyperon was obtained by integrating the yield for the different angular
distributions and found to be σ = 18.74± 1.01(stat) ± 1.71(syst) µb. The corrected CMS
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distributions of the Σ0 and the proton show anisotropies, this is more pronounced in
the case of the proton, which is the expected behavior if pion exchange dominates the
Σ0 production process. The angular distribution in the K+Σ0 Gottfried-Jackson frame
tends to be asymmetric, which could be caused by the excitation of nucleon resonances
decaying into the K+Σ0 channel. In addition, the helicity angular distributions are highly
non-isotropic, which is a clear indication that there is a resonant component of the
Σ0 production. In order to provide a better description of the experimental angular
distributions, a partial wave analysis using BG-PWA has been performed. The BG-PWA
determines the contribution of different partial waves to the pK+Σ0 production. Multiple
fits have been performed and the fit quality is determined by a log-likelihood value. The
best solution was obtained by including the initial p+p waves 2S0, 3P0, 3P1, 3P2, 1D2
and 3F2. However, due to the poor statistics, it was not possible to obtain an accurate
determination of the relative contribution of each intermediate nucleon resonance to the
overall final state. Nevertheless, nucleon resonances with mass around 1.710 GeV/c2

(N∗(1710)) and 1.900 GeV/c2 (N∗(1900) or ∆∗(1900)) are certainly required by the fit.

The last part of the thesis presents a feasibility study to investigate excited hyperons
radiative decays using the upgraded HADES setup and the new forward detector as part
of the FAIR Phase-0 physics program. The study focus on the exclusive reconstruction
of the reaction (p + p → p + K+ +Y), where Y is any one of the lower-laying excited
hyperon. Once again, the daughter Λ (Y → Λγ) was reconstructed partly within the
main HADES acceptance and partly within the forward detector acceptance. In order
to suppress the main background (p + p → p + K+ +Λ + π0), two missing mass cuts
have been introduced, (i) the squared missing mass of the primary proton and the
kaon 1.6 < MM2(ppK+)[GeV2/c4] < 2.6 and (ii) the squared missing mass of all charged
particles −0.04 < MM2(ppK+Λ)[GeV2/c4] < 0.01. An additional discriminating variable
was introduced, which is the opening angle OA(γΛ) in the hyperon rest frame that is
required to be greater than 165○.

The overall signal reconstruction efficiency ϵ was calculated and found to be in the
range 0.0250 - 0.0193 % and the expected count rates for the upcoming 2022 proton
beam time is presented.
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I N T R O D U C T I O N

Particle physics tries to answer the ancient question “What is the world made of ?!”.
The ancient Greeks were first to answer this question by describing nature in a systematic
way. The Greek Philosopher Democritus (460 B.C.) proposed a model, which stated that
matter consists of indivisible particles called atoms and a void. He stated that atoms
are indestructible, unchangeable, infinite in number and various in size and shape, and
perfectly solid.

It was only recently that individual atoms were discovered. In 1897, J.J. Thomson
discovered the electron with his famous experiment on cathode rays. Since the atom
as a whole is electrically neutral, Thomson suggested that electrons were suspended
in heavy positively charged paste, like the plums in a pudding. Soon afterwards in
1911, Sir Rutherford proposed a different a model for the atom. Rutherford designed
an experiment, in which a beam of alpha particles, emitted by a radioactive material
are fired into a thin sheet of gold foil. He observed that most of the alpha particles pass
through the sheet completely undeflected, but a few of them scatter at small angles.
Rutherford concluded that the atoms have their positive charge concentrated in a tiny
nucleus (10−5 smaller than the size of the atom) that contains almost all the mass of the
atom, subsequently, the nucleus of the hydrogen was called the proton. The essential
nature of the atomic nucleus was established by James Chadwick in 1932 with the
discovery of the neutron, an electrically neutral twin to the proton. These three particles
accounted for the structure of matter. But with the discovery of anti-particles, muons,
pions, strange particles, neutrinos and a plethora of other particles, a whole new world
was uncovered [68].

1.1 T H E S TA N D A R D M O D E L

There are four known fundamental forces of nature, the gravitational force, the weak
nuclear force, the electromagnetic force, and the strong nuclear force. The elementary
particles interact with each other through one or more of these forces. However, gravity is

1
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too weak to play any significant role in elementary particle interactions. All interactions
are non-contact forces, which means that a force carrier (or a mediator) act between
elementary particles.

During the second half of the 20th century a theory emerged that described all the
elementary particles and their interactions, except gravity, the theory has come to
be called the Standard Model of particle physics (SM). The SM was formulated and
developed by the joint effort of experimental and theoretical physicists, it postulates that
the universe consists of three families of fermions (half integer spin particles) classified
into leptons and quarks . This classification is according to the way the particles interact
with each other. Quarks interact via the electromagnetic, weak and strong forces, while
leptons interact via the electromagnetic and weak forces. For each fermion there exists
an anti-fermion of the same mass and quantum numbers except for an opposite electric
charge. The forces between fermions are mediated by particles known as gauge bosons
(integer spin particles).

Quantum Field Theory QFT is the theoretical framework that describes the interac-
tions between elementary particles, it combines the Lagrangian formalism from the
classical field theory with the quantum mechanics and special relativity. Within the
QFT framework, all the fundamental interactions derive from one general principle, the
requirement of local gauge invariance, where the force between two particles is visualized
as being due to the exchange of field quanta that are called gauge bosons.

1.1.1 Leptons

The group of leptons consist of the three charged leptons: the electron e−, muon µ−

and tau τ− and the electrically neutral leptons: the electron neutrino νe, muon neutrino
νµ, tau neutrino ντ and their corresponding anti-particles. The charged leptons interact
with each other via the electromagnetic and weak force, while neutrinos interact only
via the weak forces.

1.1.2 Quarks

The group of quarks consist of the six different flavorss, three of them carry a fractional
positive charge +1

3 of the elementary charge (e): the up (u), charm (c), and top (t) and
the other three carry a fractional negative charge -2

3 : the down (d), the strange (s) and
the bottom (b) and their corresponding anti-particles. The quarks interact with each
other via the electromagnetic, weak and strong forces.
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Both leptons and quarks are believed to be elementary that is have no internal structure
and they are arranged in three generations in increasing order of mass. Apart from the
mass differences, the physical properties in the three generations are the same in the
sense that they posses the same fundamental interactions.

1.1.3 Gauge Bosons

Electromagnetic Interaction

The Quantum Electrodynamics QED is a QFT that explains the electromagnetic in-
teraction at a fundamental level, where in this case the interaction is mediated by the
exchange of virtual photons (γ). All particles that carry an electric charge feel the elec-
tromagnetic force. For each type of interaction, there is an associated coupling strength
between the gauge boson and the fermion, which is a measure of the probability that the
fermion emits or absorbs a gauge boson. For the electromagnetic force, it is the familiar
fine structure constant:

α = e2

4πϵ0 h̄c
≈ 1

137
,

where e is the electron charge, h̄ is the reduced Plank constant, ϵ0 is the permitivity of
vacuum and c is the speed of light.

Weak Interaction

The weak interaction occurs between all elementary fermions, and it is classified into
charged or neutral interactions depending on whether the particle participating in the
interaction suffers from a change of electric charge or not. The charged weak interaction,
which is responsible for the nuclear β decay, is mediated by the charged weak gauge
bosons W±, while the neutral weak interaction is mediated by the Z boson. Due to the
huge mass of the weak gauge bosons, the weak interaction has a small coupling strength
αw ≈ 10−8 and it has an extremely short effective range (10−16 m) compared to the infinite
range of the electromagnetic force.

In the SM, the electromagnetic and the weak interaction are low-energy manifestation
of the electroweak interaction, which is introduced in the Glashow-Weinberg-Salam theory.
The fermions that interact via the electroweak force carry a weak hypercharge Yw that is



4 I N T R O D U C T I O N

conserved during the interaction, the weak hypercharge is related to the weak isospin T
and the electric charge Q via the Gell-Mann Nishijima formula:

Q = T3 +
1
2

Yw ,

where T3 is the third component of the weak isopsin. The weak isospin of the weak
gauge bosons is T=1, where the charged bosons W± have T3 = ±1 and the Z boson have
T3 = 0.

The Strong Interaction

The strong interaction binds quarks together to form mesons (quark anti-quark pair
e.g. π, µ, ...), Baryons (three quarks bound state, e.g. p, n, ...) and anti-Baryons (three
anti-quark bound state, e.g. p, Λ, ...). Both baryons and mesons are categories of more
general objects named Hadrons, where a hadron is composite particle made of two or
more quarks. As a consequence of the Pauli exclusion principle, quarks are assigned a
color charge, where a quark comes in one of three different colors, red r, green g and blue
b. These colors have nothing to do with actual colors, they are just labels to distinguish
different quarks. The gluons are the mediators of the strong interaction. There are eight
of them predicted by the Quantum Chromodynamics QCD, which is a QFT theory that
describes the strong interaction. QCD is discussed in more detail in the next section.

The Higgs Boson

The final building block of the SM is the Higgs boson, which was discovered in 2012 by
the ATLAS and CMS collaborations independently [2, 38]. In the SM, particles acquire
mass through a process known as spontaneous electroweak symmetry breaking. The idea
is to suppose that the vacuum contains a scalar field known as the Higgs field, which has
a non vanishing Vacuum Expectation Value (VEV) in the ground state. The result is that
the field quanta (the gauge bosons) acquire mass when propagating through the Higgs
field.

The properties of the elementary particles and the force carriers are depicted in Fig. 1,
these properties along with physical observables are derived from the SM Lagrangian,
which has to be invariant under Lorentz transformations, in addition it has to satisfy
some discrete symmetries, which of particular importance in particle physics. These
symmetries are the charge conjugation C, parity P and time reversal T. Because of the
local gauge invariance principle, the SM Lagrangian has to be invariant under local gauge
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symmetries. All of these symmetries are represented as elements of Lie groups. Therefore,
the SM has a symmetry group SU(3)C × SU(2)L ×U(1)Y, where C stands for color, L
means it only acts on the left-handed states and Y stands for hypercharge.

Figure 1: A schematic depiction of the SM fermions and gauge bosons [101].

1.2 Q UA N T U M C H R O M O D Y N A M I C S

The theory of strong interaction is the Quantum Chromodynamics QCD, the under-
lying symmetry associated with the QCD is the invariance under SU(3) local phase
transformation. Since the SU(3) symmetry group has eight generators, there are eight
gauge bosons (the gluons) and because the eight generators do not commute, QCD is a
non-Abelian gauge theory, which gives rise to gluon-gluon self interaction vertices. The
SU(3) is an exact color symmetry, where the “color charge” r, g, and b are the labels of
the orthogonal states in the SU(3) color space. Only particles that carry a non-zero color
charge feel the strong interaction. Therefore, only quarks interact via the strong force.
However, experimentally “free” quarks have never seen directly. This is explained by the
color confinement hypothesis, which states that colored particles are always confined to
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color singlet states and no object with non-zero color charge can propagate as a free
particle. The color confinement hypothesis places strong restrictions on possible hadronic
states, where color singlet hadronic state is either in the form of mesons (qq), baryons
(qqq) or anti-baryons (qqq). The existence of pentaquark states (qqqqq) is in principle
allowed by the color confinment hypothesis. In 2015, the LHCb collaboration announced
the discovery of a new pentaquark particle Pc(4312)+ with statistical significance of 7.3
σ, however, the binding mechanism of the pentaquark is not yet clear if it is a pure
hadronic state (qqqqq) or a hadronic molecule (qq)-(qqq) [3]. In addition, tetraquark
states, which are exotic particles, have been reported by many experiments. In 2003,
the Belle collaboration announced the discovery of the exotic meson X(3872), which
proposed to be a tetraquark state [42]. Since then, many of exotic states have been
uncovered, most recently, the LHCb collaboration reported the discovery of exotic states
with a quark content (ccus) decaying to the J/ψK+ final state [4].

The coupling strength of the strong force αs depends on the energy scale of the
interaction as a result of the vacuum polarization phenomena. In terms of the squared
four-momentum transfer q2, the QCD “running” coupling strength is expressed as [124]:

αs(q2) = αs(µ2)
1+ Bαs(µ2)ln( q2

µ2 )
; B =

11Nc − 2N f

12π
, (1)

where N f is the effective number of quark flavorss, Nc is the number colors defined at
an energy scale µ. In a t-channel annihilation process both q2 and µ2 are negative and
the the coupling strength is often written as α(Q2). Since N f = 6 and Nc = 3, then
B is greater than zero, hence, αs decreases with increasing momentum transfer. This
behavior is known as asymptotic freedom. Fig. 2 presents a summary of experimental
determinations of the QCD running coupling strength at different energy scales. An
average value was obtained at the Z boson mass MZ = 91.2 GeV/c2, αs(MZ) = 0.1181
± 0.0011.

The description of the strong interaction can be put into one of two categories depend-
ing on the energy regime:

1.2.1 High Energy Regime

High energy regime at ∣q∣ > 100 GeV, the coupling strength is sufficiently small αs ≈ 0.1
so that perturbation theory can be applied to predict different experimental observables,
in this case the theory of strong interactions is referred as perturbative QCD (pQCD) and
it provides very accurate predictions. This is the typical scale of modern high-energy
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Figure 2: Summary of determinations of αs as function of the energy scale. The determination is based on
perturbative approaches [121].

collider experiments. In this regime, the quarks are the relevant degrees of freedom, the
combination of quark anti-quark to form a meson results in a colored octet and colorless
singlet, in this case the color wave function of mesons is [124]:

ψ(qq) = 1√
3
(rr + gg + bb) ,

while the combination of three quarks to form a baryon results in a colorless singlet
[124]:

ψ(qqq) = 1√
6
(rgb − rbg + gbr − grb + brg − bgr) .

1.2.2 Low Energy Regime

At small energies ∣q∣ ˜ 1 GeV, the coupling strength is of O(1) and the perturbation
theory is no longer applicable. In this case, the theory of strong interaction is referred as
non-perturbative QCD (non-pQCD) and the understanding at this energy regime is still
very poor. The transition between pQCD and non-pQCD is characterized by a critical
energy scale given by [39]:

Λ2
QCD =

µ2

e1/Bαs(µ)
; B = 1

4π
(11− 2

3
N f ) .
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At this energy scale the QCD coupling constant diverges to infinity, which is defined as
the energy, below which the perturbation theory is inapplicable.

In this energy regime, the wavelength of the exchange particle is large compared to
the radius of the interacting hadron and thus the interaction happens between hadrons
not constituent quarks. Therefore, in the non-pQCD, the degrees of freedom are no
longer quarks and gluons but hadrons themselves. Since the perturbation theory is not
applicable, other methods were developed to describe the strong interaction. The Chiral
Perturbation Theory χPT [97] is one of those methods, where an effective Lagrangian is
constructed using hadrons as the degrees of freedom. Another interesting and powerful
tool is the Lattice QCD [70], which is a gauge theory formulated on a lattice of space-time
points and solved through numerical calculations.

1.3 T H E Q UA R K M O D E L A N D T H E S T R A N G E S E C T O R

During the period (1937-1961), many mesons and baryons were discovered, including
muons (µ), pions (π) and strange particles (e.g., K, Λ, ...), they were referred collectively
as the particle zoo. In 1961, Murray Gell-Mann proposed the Eightfold Way to arrange the
particles of the zoo into geometrical patterns according to their charge and strangeness
quantum numbers [68]. The pseudoscalar mesons (JP = 0−, where J is the total angular
momentum and P is the parity) can be arranged into a hexagonal pattern called the
meson octet (see Fig. 3a), where the particle charge (Q) lie along the diagonal of the
octet and particles of the same strangeness (S) lie along the same row. Baryons, on the
other hand, are arranged into the baryon octet (JP = 1

2
+
) (Fig. 3b), contains the eight

lightest baryons and the baryon decuplet (JP = 3
2
+
) incorporating ten heavier baryons

(Fig. 4). Once again, particles having the same strangeness lie on the same row and the
diagonal elements represent the particle charge [68].

The Eightfold Way led to the discovery of the Ω− baryon [25] in 1964, which was the
last piece that completed the baryon decuplet. The discovery of Ω− proved the success
of the Eightfold Way and eventually led to formulating the quark model [63].

In the quark model, the hadron are composed of quarks, where a baryon is three quark
state (qqq) and a meson is quark-anti-quark state (qq) and all the Eightfold Way multiples
emerge naturally.

Because the strong force Hamiltonian treats all quark flavors equally, the strong force
must possess a flavors symmetry, for example, nothing would change if an up-quark is
replace by a down-quark or vice versa. As a consequence of this up-down flavor symmetry,
the proton (uud) and the neutron (udd) are manifestation of a single entity named the
nucleon. This flavors symmetry can be extended to include the strange quark, however,
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(a) (b)

Figure 3: (a) The meson octet. (b) The baryon octet. Diagonal lines represent the particle charge (Q) and
horizontal lines determine the strangeness (S) [68].

Figure 4: The baryon decuplet [68].

in this case the flavors symmetry is not exact since the strange quark mass (Msrange ≈
96 MeV/c2) is much larger than the up and down quark masses (Mup ≈ 2.2 MeV/c2

and Mdown ≈ 4.7 MeV/c2). The mathematical group that describes the up-down-strange
flavor symmetry is the SU(3) symmetry group.

The total baryon wave function have to account for all possible degrees of freedom.
Therefore, it is composed of several terms, the spatial term, the color term, the spin term
and the flavor term and it can be written as:

ψ(qqq) = ϕ(space)η(color)ϕ(spin)χ( f lavors) .
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The overall wave function ψ(qqq) is required to be antisymmetric, i.e. it must obey
the Pauli exclusion principle since quarks are fermions. For ground state baryons
(L=0), the space wave function is symmetric, since the exchange symmetry is given
by (−1L). Therefore, for the total wave function to be antisymmetric, the combination
ϕ(space)η(color) has to be antisymmetric and the combination ϕ(spin)χ( f lavors) has
to be symmetric under interchange of any two quarks. The flavor wave function of the
ground state baryons is obtained by combining three quarks in SU(3) flavors symmetry:

3⊗ 3⊗ 3 = 10⊕ 8⊕ 8⊕ 1 ,

which gives rise to a symmetric decuplet, two mixed symmetry octets and a totally
antisymmetric singlet state. In the quark model, the ground state baryon masses are
given by [124]:

M = m1 +m2 +m3 + A(< S1 ⋅ S2 >
m1m2

+ < S1 ⋅ S3 >
m1m3

+ < S2 ⋅ S3 >
m2m3

) , (2)

where A is a parameter can be determined experimentally, S1, S2 and S3 are the three
quark spins and m1, m3 and m3 are the constituent quark masses.

1.3.1 Hyperons

A hyperon is a baryon that contains one or more strange-quarks. Hyperons are of
particular interest since the strange quark is heavier than the up/down quarks, where
in this case the SU(3) flavors symmetry is not exact. In most nucleon models, the
strange quark appears as a sea quark, while the lighter up/down quarks appears as both
valance and sea quarks [102]. Therefore, hyperons serves as a tool to investigate several
phenomena. The scale of a hadronic reaction is influenced by the mass of the produced
quarks, the strange quark mass Ms ≈ 96 MeV/c2 is close to the confinement scale
(ΛQCD = 100 - 300 MeV). Therefore, hyperon production provides a straightforward
way to study the confinement domain of QCD. Furthermore, good understanding of
the strangeness production mechanism is crucial for model calculations of heavy-ion
collisions since strangeness enhancement is generally seen to be a signature for the
formation of the quark-gluon plasma [93].

Hyperons decay via the strong, electromagnetic or weak interactions. However, weak
hyperon decays violate parity and as a consequence the hyperon spin is experimentally
accessible, i.e, if the hyperon is produced with some degree of polarization, this will
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manifest in the angular distributions of the daughter particles. Therefore, hyperon weak
decays serve as a tool for testing CP violation.

The quark model was remarkably successful in describing the ground state hyperon
wave functions, however, it was less successful in the case of excited hyperons (Y).
Therefore, various theoretical models have been proposed to better describe the hyperon
wave function. A powerful tool to discriminates between different models is the the
electromagnetic decays of a decuplet hyperon to an to octet hyperon (Y → Λγ, where Y
is an excited hyperon) as different models predict different decay widths. In addition,
the radiative decays provide an important milestone in the hyperon Dalitz decay studies
(Y → Λe+e−) that provide access to the electromagnetic transition form factors, which
are an important tool to study the internal structure of hyperons [108].

1.4 T H E S I S O U T L I N E :

This thesis focusses on the hyperon production and their radiative decays. Chapter
2 briefly describes the HADES and PANDA detector setups. Chapter 3 presents a deep
learning algorithm proposed for the PANDA straw tube forward tracker, the detection of
forward emitted particles is of particular importance for the reconstruction of ground
state and excited hyperons. Chapter 4 presents an analysis of the production mechanism
of the Σ0 hyperon produced in p+p collision using the HADES detector setup. This
analysis is the first step towards measuring the excited hyperon’s radiative decays as
the Σ0 hyperon decays electromagnetically (Σ0 → Λγ) with a branching ratio ≈ 100 %.
In addition, this measurement highlights the importance of the detection of forward
emitted particles for the hyperon reconstruction. Chapter 5 presents a feasibility study
for the radative decay of excited hyperons using the upgraded HADES setup and the new
forward detector, which is based on PANDA straw tubes.
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E X P E R I M E N TA L S E T U P

In this chapter, a brief description of the HADES and the future PANDA detector setups
are presented. This includes a description of the experiment software tools that have
been used in order to perform the Monte-Carlo simulations.

2.1 H A D E S D E T E C T O R S E T U P

The High Acceptance Di-Electron Spectrometer (HADES) is located at the GSI Helmholt-
zzentrum für Schwerionenforschung in Darmstadt [16]. It is a fixed target experiment
designed especially to study in-medium properties of the light vector mesons ρ, ω and
ϕ via their rare di-electron decays e+e−. As its name suggests, the HADES detector has
excellent capabilities for electron reconstruction and identification, but it also provides
good hadron identification capabilities, which has been exploited in strangeness physics
investigations (e.g [11, 12]). The detector setup operates at the SchwerIonen Synchroton
(SIS18) accelerator, which can deliver beams with kinetic energies in the range 1-2 AGeV
for heavy-ions and proton beams up to 4.5 GeV.

Figure 5: Schematic cross sectional view of the
HADES detector setup [16].

13
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Fig. 5 shows a schematic cross sectional view of the HADES setup. The detector is
characterized by six identical sectors which cover almost the full azimuthal range and
cover the polar angular range from θ = 18○ to θ = 85○. For proton-induced reactions, the
relative momentum resolution for charged particle tracks was determined to be ≈ 4 %
[29]. In the following the different sub-systems of the spectrometer are briefly described,
a detailed description of the different HADES sub-systems can be found in [16].

2.1.1 The Target

The HADES target is placed in a magnetic field free region, various targets can be
mounted in the setup depending on the physics experiment. For heavy ion collisions, a
segmented solid state target is used, while the elementary reactions are studied with
either a liquid hydrogen target (LH2) or a polyethylene target (CH4).

2.1.2 START Detector

In order to obtain a start signal for the time of-flight measurement, a dedicated START
detector has placed upstream the target position. For high intensity proton beams, the
START detector is based on mono-crystalline Chemical Vapor Deposition (CVD) diamond
strip counters [96].

2.1.3 The RICH Detector

The Ring Imaging Cherenkov (RICH) detector is the first sub-detector encountered
by the particles after the collision, which encloses the target and covers the full HADES
acceptance. It is a hadron-blind system that designed to detect e+e− pairs with momenta
in the range 0.1 < p [GeV/c] < 1.5. It consists of a volume filled with C4F10 having a
characteristic Lorentz factor for Cherenkov radiation of γthr = 18, which suppresses
Cherenkov light emitted by hadrons in this momentum range. The Cherenkov photons
are reflected by an aluminum coated carbon mirror through a CaF2 window and enter
the photon detector volume filled by CH4, where they hit a CsI photo cathode. The
produced photo-electrons are collected by Multi-Wire Proportional Chambers (MWPC),
which are equipped with individual pad readout. Leptons can be identified by matching
the RICH ring position with a reconstructed track.
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2.1.4 The Magnet

The determination of a charged particle’s momentum requires a magnetic field, since
a charged particle traversing a magnetic field experiences the Lorentz force, which bends
the particle trajectory. For this purpose, an in-homogeneous toroidal magnetic field
(IronLess Superconducting Electromagnet ILSE) is installed between the MDC planes II
and III (discussed below). It consists of six coils surrounding the beam axis and covers
the full azimuthal angles. The created magnetic field intensity is very small around the
target and MDC planes I and IV ensuring straight line tracks in those regions (B ∼ 0.08 T
in MDC I). A large field is only created between the two MDC planes II and III with B =
0.9 T in the center of a sector.

2.1.5 The MDC Detector

The HADES spectrometer is equipped with four planes of Multi-Wire Drift Chambers
(MDC I-IV) in order to reconstruct charged particle trajectories. They are arranged in
six sectors around the beam axis, with two planes are placed before the magnet (MDC I
and MDC II) and two planes after the magnet (MDC III and MDC IV). The planes are
oriented in different stereo angles to optimize the spatial resolution. The chambers are
filled with a helium based counting gas (He:C4H10=60:40), a charged particle ionizes
the gas along its trajectory and the produced electrons drift in the electric field created
by the wires, create particle avalanches when they eventually reach the wires, thereby
producing electric signals.

The charged particle track is reconstructed in two steps: first, the hit positions in MDC
I and II are combined to an inner track segment and the hit positions from MDC III and
IV are combined to an outer track segment. These line track segments are deflected with
respect to each other due to the magnetic field. In the second step, the Runge-Kutta
algorithm combines the information from the inner and outer segments in addition to
the META (explained below) hits as start parameters and the particle equation of motion
inside the magnetic field is solved numerically. The MDC sub-system also provides
information about the energy loss of particles, which is used as a discriminating variable
for the particle identification procedure.

2.1.6 The META System

The Multiplicity Electron Trigger Array (META) system is a combination of sub-
detectors that is used for time-of-flight measurements and the determination of the
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particle multiplicity in each event, which is used as a first-Level Trigger (LVL1), the META
system consists of:

The TOF detector

The TOF is one of the HADES Time Of Flight sub-systems that covers the polar angles
from θ = 44○ to θ = 88○. It is arranged in six sectors, each contains 64 plastic scintillators
rods combined to 8 modules. When a charged particle hits the scintillator module it
induces visible photons that are collected by Photo-Multiplier Tubes (PMTs), which
measure the arrival time as well as the signal height. Therefore, the TOF provides
information about the particle time-of-flight and the energy loss. The TOF intrinsic time
resolution is σ = 150 ps.

The TOFino detector

The TOFino is Time Of Flight detector, which also consists of plastic scintillators, but
with a low granularity of only eight paddles per sector. It covers polar angles from θ =
18○ to θ = 45○. Its time resolution is σ = 400 ps.

In 2009, the TOFino was replaced by a much higher granularity Resistive Plate
Chamber (RPC) detector with much better time resolution of σ = 100 ps [64].

The PreSHOWER detector

The PreSHOWER detector is an electromagnetic shower detector, located directly
behind the TOFino that provides further possibility for lepton identification. Is consists
of alternating layers of gas wire chambers filled with counter gas and lead converter
planes Pb for shower creation. Unlike hadrons, leptons create an electromagnetic shower
due to Bremsstrahlung and pair production in the Pb planes, the signal of the shower is
collected at the cathode of the chambers, which has high granularity that is optimized to
push the double hit probability below 5% in the Au+Au collisions. It is worth to mention
that both hadrons and leptons deliver a signal in the PreSHOWER, however, the signal
amplitude for leptons rises faster from one active layer to the next than for hadrons.
Therefore, by comparing the integrated charge deposited in the wire chambers between
the Pb converters, it is possible to distinguish electromagnetic showers from hadronic
tracks.
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2.1.7 The Forward Wall

The Forward Wall (FW) consists of a scintillating hodoscope placed 7 meters down-
stream of the target and covers the very forward polar angles from θ = 0.33○ to θ = 7○.
It was installed to detect the spectator proton during the d+p beam time at 1.25 GeV
and the event plane reconstruction in Au+Au collisions. It consists of three different
module sizes: 1.5× 1.5 cm (5-rows), 4× 4 cm (2-rows), and 8× 8 cm (3-rows), which are
used to deliver the hit position of an incident particle. The FW measures the arrival time
of particles with a time resolution σ ∼ 700 ps [15].

2.2 H A D E S S O F T WA R E T O O L S

Simulations are an important tool in particle physics. Monte-Carlo Simulations are
needed to compare different theoretical predictions to the experimental data. Event
generators are first used to simulate the particle generation based on physical assump-
tions, then the particle trajectories are propagated through the detector volume, which
simulates the interaction of the particle with the detector material. Hydra is the HADES
simulation and analysis framework [76], it has three main processes:

2.2.1 Event Generator

PLUTO is a Monte Carlo based event generator developed for the HADES experiment
[59]. It can serve as an event generator for elementary reactions like p+p, proton-
nucleus reactions (p+A) or nucleus-nucleus reactions (A+A). In PLUTO, the particle
production is generally calculated according to the available phase space volume, but
can also be modified to match used-provided angular distributions.

2.2.2 HGeant

The particle track information, obtained by PLUTO, is used as an input for the detector
simulation software HGeant that is based on the Geant package [34]. HGeant provides
a realistic description of the HADES setup including scattering processes, secondary
collisions, energy loss and track curvature in the magnetic field.
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2.2.3 DST

The digitization is the last step of the simulation process, where the particle hits
are transformed into realistic signals. The obtained particle track information like
momentum, energy loss etc. are stored in Data Summary Tape (DST) files, the same
process also applies for real data. Starting from the DST files, the data and the simulations
can be analyzed.

2.3 F A C I L I T Y F O R A N T I P R O T O N A N D I O N R E S E A R C H

The Facility for Antiproton and Ion Research (FAIR) is a future international accelerator
complex located on the grounds of GSI at Darmstadt, Germany. It is a research facility
planned to investigate a wide range of physics topics, e.g. the structure of matter. It
offers infrastructure for experiments with high intensity antiproton and ion beams. The
FAIR setup is shown in Fig. 7, it is currently under reconstruction on the grounds of
the existing GSI facility. The GSI linear accelerator and the SIS18 ring are used as pre
accelerators for the SIS100, the main accelerator ring for FAIR, which can accelerate
proton beams to an energy of up to 29 GeV [133].

Antiprotons are produced from the proton beam, the proton beam collides with a
metal target producing the reaction p+ A → p+X, where X stands for any final particles.
When the full facility is in operation, the antiprotons are collected and pre-cooled by the
Collector Ring (CR) and then injected into the High Energy Storage Ring (HESR), the
main ring for storing and accelerating the antiproton beam. The antiproton beam can be
accelerated with momenta in the range 1.5 GeV/c to 15 GeV/c [133].

2.4 T H E PA N D A D E T E C T O R S E T U P

The antiProton ANihilation at DArmstadt (PANDA) experiment is one of the key
facilities at FAIR located in one of the straight sections of the HESR [26]. PANDA is a
fixed target experiment, where antiprotons of beam momenta ranging from 1.5 GeV/c
to 15 GeV/c will collide with a fixed proton target. This interaction enables a diverse
research of hadron physics since particles of all quantum numbers can be produced.

The research topics of the experiment include:

• Hadron Spectroscopy: Investigation of [121] reveals a long list of mesons and
baryons for which many of them the evidence is only fair or even poor. In the



2.4 T H E PA N D A D E T E C T O R S E T U P 19

Figure 6: The future FAIR facility with different accelerators and experiments annotated [53].

charmonium sector, PANDA will be able to perform precise threshold scans due
to the narrow beam momentum spread (∆p

p ≈ 4 ⋅ 10−5) of HESR. Therefore, it will
refine current measurements and establish new ones [26]. In the strangeness
sector, the excitation spectrum is not well understood (e.g., Ξ∗), PANDA will run
with a comprehensive baryon spectroscopy program as the production cross section
for baryon-antibaryon final states is very large.

• Nucleon Structure: Nucleon structure investigation at PANDA can be achieved by
studying Drell-Yan processes (e.g., pp → e+e−, which give access to the time-like
region of the proton form factor. In addition, Dalitz decays of hyperon resonances
(e.g., Λ∗, Σ∗) to a ground-state hyperon and a virtual photon give access to the
electromagnetic transition form-factors, which carry information about the hyperon
structure [30].

• Gluonic Excitation: The QCD allows hadronic states bound together by an excited
gluon, either as gluonic excitations of valence quarks (hybrid mesons and baryons)
or glueballs (states consists solely of gluons). However, none of these states have
yet been seen clearly and unambiguously in experiments. Therefore, PANDA offers
the opportunity to measure these states [26].



20 E X P E R I M E N TA L S E T U P

GEM 
 

FTS  

FTOF 

FRICH Disc 
DIRC 

Target System Solenoid 
Magnet 

Muon 
System 

Dipole 
Magnet 

FRS LMD 

Barrel 
DIRC & TOF 

MVD STT Barrel 
EMC 

FE 
EMC 

FSC 

BE EMC 

Hypernuclear 
Setup not shown 

Beampipe 

Figure 7: The PANDA detector setup [1].

The detector (shown in Fig. 7) has two main components, the Target Spectrometer (TS)
and the Forward Spectrometer (FS). Each component has tracking, particle identification
and calorimetry sub-systems.

The TS covers the central region around the interaction point and instruments nearly
the full 4π solid angle. It is embedded inside a solenoid magnet, providing a homoge-
neous magnetic field up to 2T. The first component traversed by particles in the TS is the
Micro Vertex Detector (MVD) followed by the Straw Tube Tracker (STT) as central track-
ing detectors. For the purpose of a charged particle identification, the DIRC (Detection
Internally Reflected Cherenkov light) and ToF (Time-of-Flight) are planned. The recon-
struction of neutral particles requires installation of the Electromagnetic Calorimeter
(EMC). The Muon System is planned for muon identification. At the Endcap of the barrel
part, Gas Electron Multiplier (GEM) chambers are planned as a tracking detector [26].
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The FS is downstream of the interaction point and is dedicated to measure the forward
boosted particles at small polar angles. It covers polar angles below 10○ horizontally
and 5○ vertically. Particle identification is provided by the Forward ToF (FToF) and the
Forward Ring Imaging CHerenkov (FRICH) systems. The forward detection of neutral
particles is provided by a Shashlyk-type calorimeter. The Luminosity Detector (LMD) is
planned at the very end of the forward spectrometer to measure the interaction rate.
The forward tracking system is the main tracker of the FS.

2.4.1 Forward Tracking System

The Forward Tracking Stations (FTS) is foreseen to measure the momenta of forward
emitted charged particles. It will be implemented inside a dipole magnet with a magnetic
field of a maximum bending power of 2 Tm. The FTS consists of three pairs of tracking
stations shown in Fig. 8, (FTS1, FTS2) placed before the magnet, the second pair (FTS3,
FTS4) is placed inside the magnet gap and the last pair (FTS5, FTS6) after the magnet.

𝑧

𝑥

𝑦

Figure 8: The PANDA Forward Tracking Stations, adapted from [114]. Each station consists of four double
layers of straw tubes, the outer double layer are vertical, while the inner double layers are tilted by
θ = ±5○.

Each tracking station is equipped with four double layers of self-supporting straw
tubes. The outer double layers are vertically aligned and the inner double layers are
tilted with respect to the vertical direction (y) by θ = +5○ and θ = −5○, respectively, a
schematic depiction of the FTS is shown in Fig. 8.
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The straw tubes are identical to the ones used for the STT, the tubes are made out of a
27 µm thick aluminized Mylar cylinder with a 10 mm inner diameter, they are filled with
a gas mixture Ar/CO2 with a mixing ratio of 90/10 and operated at a gas overpressure
of 1 bar, which provides their mechanical stability and maintains the anode wire tension.
The anode at the center of the tube is made of gold-plated tungsten wire with 20 µm
diameter [114].

When a charged particle traverses the active volume of the tube, it ionizes the gas
along its trajectory, the electrons drift towards the node wire and are multiplied by the
avalanche effect and finally reach the wire, where they induce an electronic signal in the
readout. The time it takes for the ionized electrons to travel to the wire is known as the
drift time. Through a calibration procedure of the r(t) curve, the isochrone radius can be
calculated with the knowledge of the drift time, which represent a cylinder around the
wire that contains all possible positions of where the particle might have traversed the
tube and generated a signal of the measured drift time. Fig. 9 shows an illustration of
the isochrone radius as the red dashed circles.

Figure 9: The x − z projection of the FTS straw
tubes. The black dots represent the an-
ode wire position at the center of the
tube, where the electronic signal is in-
duced. The green dots are the correct
hit position and the red circles repre-
sent the isochrones.

2.5 PA N D A S O F T WA R E T O O L S

The PANDA simulation, reconstruction and analysis software framework is called
PandaRoot, it is an object oriented software written in C++ and built on top of FairRoot
[126]. FairRoot is a common framework for multiple FAIR experiments including
PANDA and is built on top of ROOT, CERN’s data analysis framework [22]. The
PandaRoot workflow is shown in Fig. 10, which is modularized in main steps that
are summarized as follows:

• Event Generation: PandaRoot has adopted several event generators including
Pythia, EvtGen, Dual Parton Model DPM, box generator and other generators.
The diversity of event generators enables PandaRoot to simulate different physical
models [19].
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• Detector Simulation: The output of event generators is used as an input for the next
step, where the generated particles are transported through the PANDA detector
implemented with the GEANT4 simulation toolkit [17]. The detector response to
the hits created through the event propagation is then simulated in the digitization
step.

• Track Reconstruction: In the next step the group of hits that belong to the same
Monte-Carlo track are clustered together in a process known as particle tracking,
which is the topic of the next chapter.

• Particle Identification (PID): The particle track reconstruction algorithm delivers a
list of reconstructed tracks along with a set of parameters (e.g. charge, momentum,
etc.). A PID algorithm determines the particle type given the information delivered
by the tracking algorithm.

• Analysis: The final step is to analyze the particles and events. For this step,
PandaRoot offers an analysis framework, the Rho package that provides a flexible
physics analysis environment [72].

Figure 10: The PandaRoot workflow illustrating the main steps of the physics analysis chain [19].
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D E E P L E A R N I N G B A S E D T R A C K R E C O N S T R U C T I O N

In this chapter, a deep learning based track reconstruction algorithm at the PANDA
forward tracker is presented, in particular tracking with the state-of-art graph neural
networks. The charged particles created in the collision of the beam and the target are
recorded by the tracking detectors in the form of an interaction of particles with the
detector material, which is a position measurement and termed hits. The main goal of a
track reconstruction algorithm is to reconstruct the particles’ trajectories by grouping the
recorded detector hits. Therefore, the track reconstruction is a pattern recognition task,
which is a well know problem in the field of machine learning and applied mathematics
that makes use of cluster analysis, results of statistics, combinatorial optimization and
other algorithms [61]. The track reconstruction is one of the most important and time
consuming tasks in the physics analysis chain. A typical track reconstruction algorithm
consists of two main steps, the track finding, which is the assignment of the detector
hits to track candidates and the track fitting, which aims to determine track parameters
and the covariance matrix for each track candidate. Since PANDA is a fixed target
experiment, the reaction products will be boosted in the forward direction. Therefore, a
robust track reconstruction algorithm for the forward angles is of crucial importance for
various physics channels. The detection of forward peaking particles play a significant
role in the reconstruction and analysis of the ground state and excited hyperons (Σ0,
Σ(1385), Λ(1405) and Λ(1520)) as will be presented in chapters 4 and 5, respectively.

The focus of this chapter is on the track finding task in the PANDA FTS and how deep
learning techniques can be incorporated to perform this task. Given a set of detector
hits or position measurements, a track finding algorithm is equivalent to partitioning the
position measurements into disjoint sets, where each set corresponds to a real particle
trajectory.

25
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3.1 I N T R O D U C T I O N

Track reconstruction is a combinatorial problem: the ability to find the correct hits
that originate from the same particle from a given set of possible hit combinations. This
can be more challenging in the presence of detector inefficiencies, which can lead to
noise hits or fake hits. Machine Learning (ML) and Deep Learning (DL) methods proved
to be a competitor to traditional algorithms, especially at high detector occupancy where
traditional algorithms, e.g., Kalman filters [60], scale poorly.

Fundamentally, ML is a sub-field of Artificial Intelligence (AI) that involves building
mathematical models to help understand data [127], i.e, using data to train a ML model
to perform a specific task. ML can be categorized into two main categories: supervised
learning and unsupervised learning.

Supervised learning involves modeling labeled data, i.e., finding the relation between
the measured features of data and some associated labels or target function. This is further
subdivided into classification and regression tasks [127].

Unsupervised learning involves modeling the features of a data-set without reference
to any label [127], one example of unsupervised learning is clustering.

In 2018, a team of tracking experts from CERN set up a tracking ML challenge
TrackML on the Kaggle platform to reach out computer scientists to find new types of
algorithms and approaches to the tracking problem. Different approaches based on ML
techniques were proposed as potential solutions for the TrackML challenge [81]. One of
the proposed solutions, is the use of the DBSCAN clustering algorithm (Density-Based
Spatial Clustering of Applications with Noise) [51]. A clustering algorithm is a category
of unsupervised learning techniques that allows to discover hidden structures in the
data, given the fact that we do not know the correct answer in advance. As its name
implies, DBSCAN assigns cluster labels (in this case a track candidate) based on dense
regions of points (hits). The notion of density is defined as the number of points within
a pre-specified radius ϵ. One of the main advantages of the DBSCAN is that it does not
assume that the clusters have a specific shape and its capability of removing noise points.

The tremendous increase in the computing power and the start of the Big Data era
have increased the popularity of DL algorithms. Unlike traditional ML algorithms (e.g.
DBSCAN), DL algorithms tend to perform better with increased training data size as
shown in Fig. 11. Therefore, various DL based tracking algorithms were proposed. These
algorithms can in general be classified into two categories, image-based approaches and
point-based approaches [54], in the former approach, computer vision techniques like
image segmentation and captioning are utilized and the detector hits are treated as an
image, while in the latter, the hits are treated sequentially, i.e, the data is converted into
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Figure 11: A comparison between the perfor-
mance of traditional ML algorithms
vs DL algorithms with increasing
amounts of data [95].

a list. DL is a sub-field of ML that is concerned with training Artificial Neural Networks
ANNs.

3.1.1 Artificial Neural Networks ANN

The ANN is inspired by how the biological neural system of the human brain works.
ANNs are at the core of DL. They are powerful and capable of approximating any
measurable function to the desired accuracy [75]. Artificial neurons are the building
blocks of the ANNs, they were first introduced in 1943 by Warren McCulloch and Walter
Pitts [89]. In their paper, McCulloch and Pitts proposed an artificial neuron that has one
or more binary inputs and one binary output, it activates its output when more than
a certain number of its inputs are active. They showed that this simple model is able
to perform any logical computation. Afterwords, in 1957 Frank Rosenblatt proposed
the Perceptron [103], a variant of artificial neuron, where the inputs and outputs are
numbers and each input have a corresponding weight. The output of the Perceptron
is calculated as a weighted sum of its inputs and then applies an activation function
(e.g. sigmoid function) to that sum and outputs the result. A schematic diagram of a
Perceptron is illustrated in Fig. 12.

Assume that the inputs are real-valued numbers x1, x2, ..., xn, the Perceptron output is
calculated as follows:

O(x⃗) = σ(w⃗ ⋅ x⃗ + x0) , (3)
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Figure 12: A Perceptron. The weighted sum of the inputs is calculated and then an activation function (a
sigmoid function in this case) is applied. [90]

where x0 is a bias, σ is the activation function and w⃗ are the weights of the Perceptron,
which are real-valued numbers that determines the strength or the contribution of each
input xi to the Perceptron output. Training the Perceptron or in general an ANN involves
finding the appropriate set of weights such that the Perceptron gives the desired output
[90].

The question is still how the Perceptron is trained or how the weights are determined.
Several algorithms are known to solve this learning problem. One simple and common
algorithm is called the delta learning rule [90] and is based on the gradient descent to
search for the possible set of weights wi that best fit the the training data. This rule is
important because it provides the basis for the back propagation, which is the standard
learning algorithm for ANNs with many inter-connected artificial neurons [90].

The delta learning rule begins with random weights, then iteratively apply Eq. 3 to
each training example. The output of the Perceptron is compared to the true output
or the target, this is done by defining a cost function that is a measure of the training
error. The choice of the cost function depends on the problem at hand. A cost function
for a classification problem is different from a regression problem. For the purpose of
explaining the delta learning rule, a simple choice of the cost function can be the sum of
the squared error [90]:

E(w⃗) = ∑(td − od)2 , (4)

where td is the target output for the training example d (xi) and od is the output of the
Perceptron (Eq. 3) for training example d. The sum runs over all the training examples.
The core idea behind the delta learning rule (also the back propagation algorithm) is to
minimize the cost function or calculating the direction of steepest descent along the error
hyper-surface. Mathematically, this can be found by computing the derivative of the cost
function with respect to each component of the vector w⃗ [90]:
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∇E(w⃗) ≡ ( ∂E
∂w1

,
∂E

∂w2
, ...,

∂E
∂wn
) . (5)

The weights are then updated according to delta learning rule:

w⃗ = w⃗ − η∇E(w⃗) , (6)

where η is the learning rate, a positive real number that moderate the degree to which
weights are changed at each step [90].

A group of artificial neurons (or Perceptrons) can be arranged in layers to form a
multilayer feed forward neural network; also called a MultiLayer Perceptron (MLP).
When all the neurons in a layer are connected to every other neuron in the previous
layer, the layer is called a fully connected layer. The first layer of the neural network is
called the input layer and is used to represent the input values. The last layer is called
the output layer and is used to represent the output values, the layers in between the
input and output layer are called hidden layers. If the neural network consists of more
than one hidden layer, it is called a deep neural network. The back propagation is the
standard algorithm used to train a MLP or an ANN, which is a generalization of the delta
learning rule. The idea introduced by David Rumelhart et. al. in 1986 under the name of
generalized delta rule [104].

According to the universal approximation theorem [92], an ANN with non-linear
activation functions and an appropriate set of weights can represent a wide range of
interesting functions.

There are numerous architectures that can be implemented for a variety of problems.
Fortunately, Fjodor van Veen from Asimov institute compiled a wonderful chart for the
different neural network architectures, this chart can be found in [128].

One serious problem arise when training a large ANN is overfitting the training data
(high model variance), which means that the model has so much flexibility such that
it learns the underlying data distribution in addition to the associated random errors
[127]. This results in a poor performance when the model is evaluated on new data.

Overfitting the training data is directly related to the behavior of the validation
curve shown in Fig. 13. If the model capacity/complexity is very low, the model
underfits the training data, which means it has a poor performance on both the training
and the validation (unseen data) data-sets. On the other hand, for very high model
capacity/complexity, the model overfits the training data, which means it describes the
training data very well but fails for any unseen data. Therefore, the model complexity or
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the model parameters have to be tuned such that the validation curve has a maximum
value, which indicates a suitable trade-off between overfitting and underfitting [127].

Figure 13: The validation curve, a relation-
ship between between model capacity,
training score, and validation score
[127].

A powerful technique to regularize the performance of the ANN and to reduce the
overfitting is the Dropout [118]. During the training phase, some number of layer outputs
are randomly ignored or droped out, this has the effect of reducing the capacity of the
neural network during training. Consequently, reducing the chance to overfit the training
data. Dropout can be thought of as making bagging for ensembles of many large neural
networks, which means training and evaluating multiple models. This technique is used
for neural networks developed in this thesis. Fig. 14 shows an ANN with and without
dropout layers [95].

(a) (b)

Figure 14: An ANN (a) without dropout (b) with dropout [95].

3.1.2 Related Work

In [55] Steven Farrel et al. proposed a type of Recurrent Neural Network RNN called
LSTM (Long Short-Term Memory) [73] as a hit predictor model. A track seed (the first
three hits in detector layers) is provided to the LSTM and the network predict the hit
location in the next detector layers. The input to the LSTM is a detector layer in the
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format of pixel array, the LSTM is followed by a fully connected layer that produces the
hit predictions. The model was evaluated on a toy data-set and showed promising results.
In the same reference, a Convolution Neural Network (CNN) [18] has been proposed
to perform a pixel level classification, i.e, the CNN takes the detector image as an input
and the task is to classify each pixel (hit) in the image, in other words, assign pixels to
classes (track candidates).

The BM@N (Baryonic Matter at Nuclotron) Collaboration developed a deep neural
network to improve the tracking efficiency of the GEM microstrip detector [24]. A main
problem in the GEM is the great amount of fake hits that appears along with real hits
because of extra spurious crossings of strips. A two step tracking algorithm has been
investigated, on the first step, track seeds are created by a simple algorithm that has
relatively low efficiency. Hits are combined into track candidates and the algorithm and
filters out tracks by a loose χ2 criterion. The second step uses a deep neural network
to classify which of the found tracks by the first step are real track and which are fake
tracks. In their analysis they combined a 1D convolution layer with a Gated Recurrent
Unit (GRU) (a type of RNN) [41], the main reason behind using a convolution layer is
that it can produce a greater number of new meaningful features for the GRU. The model
evaluated on a test sample with fakes factor with the value of 2 scores 98% tracking
efficiency.

In [50], a first deep learning-based tracking algorithm has been proposed for the
PANDA forward tracker. This algorithm involves two steps: the first step uses a simple
feed forward ANN as a binary classifier to build track segments in three different parts
of the FTS, namely FTS1, FTS2, FTS3, FTS4, and FTS5, FTS6. The ANN takes the
coordinates of hit pairs as input and classifies the pairs as being true or fake pairs. The
output of the ANN can be used to combine multiple hits together into a track segment.
The second step is to match the track segments from the different parts of the FTS to
form a full track candidate based on an LSTM network. First, all possible combinations
of the found track segments are made, then the LSTM is trained to classify true and
fake combinations, i.e., which combination is a true track and which is not. Preliminary
results on a test sample showed that the tracking efficiency was on average ≈ 85%.

3.1.3 Graph Neural Networks

Since the input data to a neural network are detector hits and the aim is to find the
correct connections between those hits (track candidates), the data is best represented
as an image, where the hits are the image pixels. The image can be considered as a
function on the Euclidean space [32]. Convolutional architectures CNNs are the type
of neural networks that are able to work on images and extract their hidden features.
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A CNN is able to exploit the shift invariance and the local connectivity of image data
[130]. However, there is a draw back of using CNNs for particle tracking, that is most
tracking detectors have irregular shape (non-Euclidean data) while images should have
a regular structure, i.e. certain height and width. Recently, there were many studies
to extend DL for non-Euclidean geometric data [32]. A graph is the primary instance
of a non-Euclidean datatype. Formally, a graph G = (V, E) consists of a set of objects
V = {v1, v2, ...} called vertices or nodes and another set E = {e1, e2, ...}, whose elements
are called edges, where each edge ek connects a pair of vertices (vi, vj) [46]. There are
two different types of graphs, a directed graph, in which the graph edges are directed
from one vertex to another and undirected graph, here the graph edges do not have a
direction, an edge connecting the ordered pair (vi, vj) is the same connecting the ordered
pair (vj, vi).

There is an increasing number of applications where data can be represented as a
graph. For example, in social networks, the characteristics of users can be modeled
as signals on the graph vertices [86]. In chemistry, molecules can be represented as
graphs [65], where atoms are the vertices and the chemical bonds are the edges. In track
reconstruction, an image of the detector hits can be represented as a graph, where the
vertices of the graph are the hits [54]. Extending DL techniques to the non-Euclidean
domain is often called Geometric Deep Learning (GDL) [32]. Motivated by CNNs, RNNs
and autoencoders, new generalizations and operations have been developed to handle
non-Euclidean geometric data. A good example is the convolution operation shown
in Fig. 15, a similar operation can be performed on graphs by taking the weighted
average of a vertex neighborhood information. Graph Neural Networks (GNNs) are
powerful class of neural networks that can operate on graphs. There are a variety
of GNN architectures, Convolutional graph neural networks ConvGNNs generalizes the
convolution operation, Recurrent graph neural networks RecGNNs aims to learn node
representations with recurrent neural networks, Graph AutoEncoders GAEs, which are
unsupervised learning frameworks that learn the network embeddings and Message
Passing Neural Networks MPNNs, in which node features can be passed from one node to
another along edges [130, 131].

Different GNN architecture can perform a variety of tasks that can be classified into
three categories: node-level: this includes node classification, node regression and node
clustering, edge-level: this includes edge classification and link prediction and graph-level:
this includes the classification of the whole graph and graph regression [131].
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(a) (b)

Figure 15: (a) Convolution operation on Euclidean datatype (an image), the weighted average of pixel values
of the red vertex along with its neighbors is calculated by applying a filter shown by the light blue
box. (b) Convolution operation on non-Euclidean datatype (a graph), the graph convolutional
operation is to take the average value of the node features of the red vertex along with its neighbors.
Unlike the image, the number of vertex neighbors in a graph can be different [130].

3.2 T R A I N I N G P H A S E

Inspired by the work of Exa.TrkX team [78], a GNN is developed for track finding at
the PANDA FTS. The training data is generated by a particle gun (the box generator),
where particle tracks are distributed uniformly in a parameter space of the user choice.
Particle tracks in the momentum range 0.5 < p[GeV/c] < 15, polar angle range 0 < θ○ < 10
and the full azimuthal range are generated. Fig. 16 shows the number of hits and the
number of tracks per event. On average 4 tracks and ≈ 100 detector hits per event were
generated.

First, the data-set is processed into a format suitable for model training, the generated
data is converted into a pandas dataframe [123]. The hit coordinates are given by the
anode wire position (the center of the tube), since the FTS straw tubes are aligned
vertically (or tilted by ±5○), at this stage of the algorithm only the projection in x − z
plane is used. In other words, the GNN reconstructs the x − z projection of a given track.
Furthermore, only detector hits in vertical layers are used for the GNN training. In
a subsequent step, a separate algorithm was developed to use the skewed layers and
the found x − z projection to reconstruct the 3D track candidate. In addition to the hit
coordinates x and z, the isochrone radius r is also used as an input feature for the GNN
training.

To apply a GNN to this data-set, it was necessary to create a graph for each event. The
graph is constructed by connecting detector hits in adjacent vertical layers, where the
graph nodes (set V) are the detector hits and the connections between hits are the edges
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Figure 16: (a) The number of tracks in one event and (b) the number of FTS hits in one event.

(set E). The primary task of the GNN is to associate detector hits together by classifying
the edges of the graph. An example of the input graph is shown in Fig. 17.
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] Figure 17: An example of an input graph to the
GNN. Colored points represent the de-
tector hits, where each color repre-
sent a different generated track. Black
lines are the graph edges.

The architecture used is similar to that developed by the Exa.TrkX team [78]. The GNN
has two main components that operate locally on the input graph. The first component is
called the Edge Network, which computes weights for every edge of the graph using the
features of the start and end nodes. The second component is called the Node Network
and its task is to computes new node features or to learn node embedding for every node
using the edge weights calculated by the edge network. Both the edge network and node
network are implemented within the PyTorch framework [94] as MLPs with two layers
each and ELU hidden activation and in addition a 50% dropout layer is added to prevent
the model from overfitting. The full GNN model consists of an input transformation MLP
followed by recurrent alternating applications of the edge network and node network.
The model uses two graph iterations followed by a final classification layer with sigmoid
activation that operates on every edge to predict whether it is a true or a fake edge.
Since the siomoid function squashes the input number between 0 and 1, the output of
the GNN can be interpreted as a probability that quantifies the GNN confidence about a
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specific edge. After 10 iteration, the network scored 99.5% classification accuracy on the
training set and a hold-out data-set (a validation data-set) as shown in Fig. 18a. The
GNN is trained on a high performance GPU NVIDIA® Tesla V100 with 16 GB memory for
10 epochs.

The Receiver Operating Characteristic (ROC) graph shown in Fig. 18b is another
performance measurement. The ROC curve is a relationship between the True Positive
Rate TPR (signal efficiency) and the False Positive Rate FPR (1-background efficiency). A
perfect classification model should fall into the top-left corner of the graph with a TPR =
1 and an FPR = 0. The area under the ROC graph (AUC) is 1, indicating that the model
classifies almost all the validation sample instances correctly.
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Figure 18: (a) Classification accuracy as function of the number of iterations for the training data-set and a
hold-out data-set. (b) The ROC curve evaluated on the hold-out data-set, the dashed line is the
performance of the no skill classifier.

By selecting edges with probability greater than a given threshold, it is possible to
remove fake edges, which does not belong to any real track. In order to optimize the
threshold, the edge efficiency and purity were defined as follows:

efficiency = number of true edges that pass the threshold cut
total number of true edges

purity = number of true edges that pass the threshold cut
all edges that pass the threshold cut

(7)

Fig. 19a shows the GNN output for true and fake edges . Fig. 19b shows the edge
efficiency and purity for different thresholds. The edge purity increases by increasing the
threshold, but this comes at the cost of small efficiency. The intersection point between
both curves corresponds to efficiency and purity ≈ 96%.
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Figure 19: (a) The GNN output for true and fake edges. (b) The edge efficiency and purity as function of the
GNN output.

Fig. 20a shows an example of the output graph (corresponding to the input graph
shown in Fig. 17). The intensity of the connections reflects the GNN output value (black
lines are those with the GNN output = 1, white lines corresponding to the GNN output
= 0, and gray are those edges with the GNN output between 0 and 1). As can be seen
from the GNN strengthen the true edges and weakens the fake ones. Fig. 20b shows the
same graph after requiring the GNN output to be greater than 0.5, where it can be seen
that only the true edges are kept.
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Figure 20: (a) The output graph corresponding to the input graph shown in Fig. 17). Colored points
represent the detector hits, where each color represent a different generated track. The lines are the
connections between the hits or the graph edges where the line intensity reflects the GNN output.
(b) The same graph after requiring the GNN output to be > 0.5.
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3.3 P R E D I C T I O N P H A S E

As described in the previous section, the GNN was implemented in PyTorch and the
training was done in a python environment. Since the track finding algorithm comes at
an early stage of the physics analysis chain (see Fig. 10), the developed algorithm has
to be integrated within the experiment framework (the PandaRoot), which is written in
C++.

PyTorch is a dynamic library that has an eager execution with tape based represen-
tation, which allows users to build dynamic computational graphs and makes PyTorch
appealing for research purposes. It comes with a Just In Time (JIT) tracing engine that
turns a trained PyTorch model into a TorchScript one. TorchScript is a way to create
serializable and optimizable model from the PyTorch code, a TorchScript model can be
saved from a PyTorch process and loaded in an environment where there is no python
dependency (e.g. C++). It does this by passing an example PyTorch tensor through the
trained model and returning a ScriptModule that contains the TorchScript representation
of the original code.

By utilizing the PyTorch tracing engine, it was possible to load and integrate the
trained GNN model within the PandaRoot framework.

Guided by the GNN outputs, the Depth First Search (DFS) algorithm has been imple-
mented to reconstruct track candidates by connecting the hits, or in other words find the
sub-graphs or search for the connected components in the GNN output graph. The DFS
algorithm explores the output graph nodes depth-wise. It starts by marking all the graph
nodes as not visited, the algorithm steps are summarized as follows:

1. Start the search at random node usually called the root node and mark it as visited.

2. Find the adjacent node, mark it as visited, then if the edge probability connecting
the two nodes is greater than a pre-defined threshold, append the nodes to a list.

3. Repeat steps 1 and 2 until all the nodes are marked as visited.

The Test Sample

As the focus of the thesis is on the hyperon physics, the performance of the GNN
tracking algorithm has been evaluated on a benchmark reaction that has been generated
by the EvtGen event generator [106]:
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pp → ΛΛ → (pπ−)(pπ+) .

In addition a set of background events has been generated by the DPM generator,
which is used to describe the inelastic and elastic hadronic processes as well as Coulomb
elastic scattering processes.

Algorithm Performance

The quality of the developed track reconstruction algorithm is determined by a set of
Quality Assurance (QA) measurements that are listed below:

• The track purity: The purity specifies which fraction of hits in a reconstructed track
come from the correct particle. The correct particle is defined as the Monte-Carlo
(MC) generated particle, which has the majority of hits in the reconstructed track. A
high purity track has a large fraction of hits originating from the correctly matched
MC particle; a low purity track have hits from different MC tracks. The hit purity is
defined as:

purity = ncorrect

nall
,

where ncorrect being the number of hits of the corrected MC particle and nall the
total number of hits in the reconstructed track. A common assumption in PANDA
is that a track with purity > 80 % is considered a reconstructed track. The category
of tracks with purity < 80 % is known as ghost/fake tracks.

• MC Coverage: A related quantity to hit purity is the coverage of a MC particle.
This quantity relates the total number of hits of a MC track to the number of hits in
a reconstructed track.

MC coverage =
ncorrect

reconstructed
nMC

here nMC is the number of MC hits of the generated MC track and ncorrect
reconstructed is the

number of found hits belonging to the matched MC track in the reconstructed track.
Ideally, all MC hits should be in exactly one reconstructed track (MC coverage =
100 %).
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• The overall tracking efficiency ϵ: The efficiency of track reconstruction can
be defined as the ratio of the number of reconstructed tracks to the number of
reconstructible tracks.

ϵ = Nreconstructed
Nreconstructible

.

The kind of tracks that are considered reconstructible depends on the sub-detector.
In this study, a track is considered reconstrcutible if it contains at least 12 hits in the
vertical straws that are distributed as 4 hits before, inside and after the magnetic
filed. A good tracking algorithm should have a high efficiency, i.e., to reconstruct
as many as possible of the real particle trajectories. A good tracking algorithm
should reconstruct with high purity, i.e., the tracks should contains hits from only
one particle and having a small contamination from other particles. In this study,
two categories of reconstructed tracks were defined: the partially reconstructed
track and the fully reconstructed track. A fully reconstructed track have all hits
come from a single MC particle, and all hits of the MC true particle are in one
reconstructed track, in other words, a fully reconstructed should have purity =
100 % and MC coverage = 100 %. In a partially reconstructed the majority of hits
come from a single MC particle, but not all MC hits are in one reconstructed track.

Fig. 21a shows the different performance measurement as function of the GNN output.
The purity and MC coverage is constant for different GNN output values at about 100 %,
the partially found percentage is almost constant at about 93 % while the fully found
percentage is on average 89 % expect for tight GNN cuts (> 0.9), where it drops to 85 %.
The ghost ratio is on average 3 % for loose GNN cuts (< 0.2) and drops significantly to less
than 0.5 % for tighter GNN cuts. Fig. 21b shows the same performance measurement as
function of the generated absolute momentum P. Since the tracks are forwarded peaking,
the transverse momentum component Pt =

√
P2

x + P2
y can be neglected when compared to

the longitudinal component Pz, that is P ≈ Pz. The reconstruction efficiency as function
of momentum is on average 90 % except for low momentum tracks P < 0.5GeV/c, where
it drops to 60 % since those tracks are mostly secondary tracks that are not produced
directly in the pp collision.

3.4 A D D I T I O N O F T H E S T E R E O H I T S

The goal of the GNN tracking algorithm is to reconstruct projections of track candidates
in the x − z bending plane, these x − z track projections contain only hits from the vertical
straws. The y − z plane track motion is extracted from the skewed layers since their
local frame is obtained from a rotation of the x − y plane around the z direction by ±5○.
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Figure 21: (a) The QA measurements as function of the GNN output. (b) The QA measurements as function
of the momentum. The blue circles represents the purity, orange stars represents the MC coverage,
the green pentagons are the ghost ratio, the down triangles represents the partially reconstructed
percentage and the fully reconstructed percentage is represented by the up triangles.

Therefore, it is possible to obtain the complete information about the track motion in the
3D by investigating which of the skewed layer hits (stereo hits) are compatible with the
reconstructed x − z track projection. Thus, the x − z projection candidates are used as an
input for such task. The magnetic field effect on the y − z plane is negligible compared to
the x − z bending plane, so a straight line trajectory a good approximation for the track
model. The addition of stereo hits proceeds as follows:

1. Fit the x − z projection.

2. Collect compatible stereo hits.

3. Assign a y measurement to the fitted x − z projection at each skewed layer.

x − z projection fitting

For straw stations outside the magnet, namely FTS1, FTS2, FTS5 and FTS6, the track
is described by a simple linear model in the x − z bending plane:

x(z) = x0 + tx(z − z0) , (8)

where x0 is the x coordinate at a reference position z0. Therefore, for each reconstructed
track, the hits within these planes has been fit by the linear model in Eq. 8. The fit
minimizes the sum of squared perpendicular distances from the hits in the reconstructed
track to the regression line:
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d = ∣x0zi − xi + b∣√
x2

0 + 1
,

where zi and xi are the straw wire position of the hit i, the corresponding isochrones are
treated as errors in the explanatory z and the response x coordinates.

The stations FTS3 and FTS4 are located in the magnetic field
Ð→
B of the dipole magnet,

neglecting the multiple scattering and bremsstrahlung radiation the particle trajectory
in this area can be described by a helix in 3D space. Based on the assumption that the
magnetic field strength is constant within a defined range along the z-axis, the track
motion in the x − z bending plane can be approximated as part of a circle. Therefore, for
each reconstructed track, the hits within these planes has been fit by:

x(z) = k ±
√
∣ρ2 − (z − h)2∣ , (9)

where h and k are the coordinates of the circle center and ρ is the radius of curvature.

As the position of the hit is always generated exactly in the middle of the straw tube
(the anode wire position). The corrected hit positions lie exactly at the points where the
track is tangent to the isochrones. Since the fitted line/circle minimizes the perpendicular
distances between the anode coordinate and the fit line/circle, it provides the correct
hit positions. This is advantageous because in the later course of the process of track
reconstruction, a Kalman filter based track fitting is made. A more accurate position of
the hits used for the fitting improves the quality of the fit. Distributions of the residua
of the corrected hit position and the corresponding MC points are shown in Fig. 22
for stations outside and inside the magnet. The distributions are described by double
Gaussians with weighted average standard deviations σ = 0.0124 cm, σ = 0.0604 cm and
σ = 0.0188 cm for FTS12, FTS34 and FTS56, respectively.

Collect compatible hits in skewed layers

For each x − z projection, the predicted x position at the z position of skewed layers is
evaluated from the fit model. The distance between the skewed layer x measurements
(xskewed) and the predicted x position (xpredicted) allows to identify for each skewed layer
hit a corresponding y measurement. Therefore, all the hits that are compatible with
respect to the x − z projection are collected. The selection of the compatible hits was
done in two steps:

1. Pre selection step.
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Figure 22: The distance between the reconstructed hit position and the actual hit position for (a) FST1, FTS2,
(b) FST3, FTS4 and (c) FST5 and FTS6. The red line is the double Gaussian fit, the weighted
average means and standard deviations are indicated.

2. Selection of skewed layer hits that have similar values of the slopes s = y/z.

The first step was done by cutting on the distance between the measurement xskewed
and the model prediction xpredicted, this distance is shown in Fig. 23 for skewed layer hits
that belong to the x − z track based on the MC information and for skewed layer hits that
does not belong to the x − z track. This distance is required to be smaller than 3.2 cm,
4.6 cm and 6.0 cm for stations FTS12, FTS34 and FTS56, respectively. These cuts remove
72 %, 66 % and 62 % of incompatible skewed layer hits for stations FTS12, FTS34 and
FTS56, respectively.
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Figure 23: The distance between the skewed layer x measurements and the predicted x positions for true
combinations (blue) and false combinations (red), the dashed vertical line indicates the cut value.
The distance shown for stations (a) FTS1, FTS2, (b) FST3, FTS4 and (c) FST5 and FTS6.

In the second step, the Left/Right (L/R) ambiguity of the remaining skewed layer hits
is tested and the y position is calculate as follows:

y =
xpredicted − xskewed

tanθ
,
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where xskewed is x position of the skewed layer hit, xpredicted is the reconstructed x position,
as calculated from the fit model and θ = ±5○ is the angle of inclination of skewed layers.

A sketch showing the usage of the FTS detector geometry and the x − z projection to
extract a y measurement is shown in Fig. 24.

Figure 24: A drawing showing the geometrical interpretation of compatible hits based on the fitted x − z
projections [50].

The slope (s = y/z) of each skewed layer hit is calculated, since magnetic field effect
on the y − z plane is negligible compared to the x − z bending plane, the group of hits
sharing the same value of s defines a potential line candidate to be attached to the x − z
projection. Therefore, the set of compatible hits are grouped by histogramming the
slopes of all skewed layer hits. A linear fit is then applied on the y − z plane to extract
the correct hit positions of the vertical layers. Distributions of the residua in the vertical
direction between the corrected hit position and the corresponding MC points are shown
in Fig. 25 for stations outside and inside the magnet. The distributions are described by
double Gaussians with weighted average standard deviations σ = 0.1640 cm, σ = 0.688
cm and σ = 0.150 cm for FTS12, FTS34 and FTS56, respectively. The resolution in the
vertical resolution is about 11 times worse than the horizontal direction, since the ratio
of the resolutions σy/σx depends on the inclination angle θ of the straws as cotθ, which
is θ = 5○ for the present inclination.
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Figure 25: The distance between the reconstructed hit position and the actual hit position for (a) FST1, FTS2,
(b) FST3, FTS4 and (c) FST5 and FTS6. The red line is the double Gaussian fit, the weighted
average means and standard deviations are indicated.

3.5 M O M E N T U M E S T I M AT I O N

The developed algorithm also provides the information about an approximate value
of the particle momentum. The method used to estimate the momentum is known as
the p-kick method and is based on the idea that the effect of the magnetic field can be
described by an instantaneous kick of the momentum vector in the center of the magnet
[125]. Since the magnetic field is oriented along the y axis, the deflection of charged
particles is in the x − z plane. The momentum change in the magnetic field depends on
the integrated magnetic field along the particle’s trajectory and is given by:

∆p = q ⋅ ∫
s2

s1

Ð→v (s) ×Ð→B (s)dt
ds

ds ,

where s represents the arc length along the particle trajectory. In terms of the track
parameters the ratio q/p is given by:

q
p
= 1

( ∫ Ð→v dt ×Ð→B (s))
x

⎡⎢⎢⎢⎢⎣
( tx√

1+ t2
x + t2

y

)a f ter − (
tx√

1+ t2
x + t2

y

)be f ore

⎤⎥⎥⎥⎥⎦
,

where q is the particle charge, be f ore and a f ter indicates the fitted line segments before
and after the magnetic field, tx and ty are the track slopes in the x − z and y − z planes,
respectively.

Fig. 26a illustrate the p-kick method for an example track. Since the tracks of ingoing
and outgoing tracks are straight, the deflection angle θ is the actual quantity to be
measured, the variance of the deflection angle is proportional to the measurement error:
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σ2(θ) ∝ σ2(x) .

Since the particle momentum is estimated based on the deflection angle, the relative
momentum resolution is given by:

σ(p)
p
= σ(θ)

θ
.

The relative momentum resolution obtained from the kick method integrated for all
momentum values is shown in Fig. 26b. The distribution has been fit by a double
Gaussian distribution with an average standard deviation 0.067.

Once initial track parameters have been obtained by the developed algorithm, a
dedicated track fitting procedure based on Kalman Filter must be done. The Kalman
Filter describes the particle motion inside the dipole magnetic filed, where it takes into
account the enrgy losses and the multiple scattering effects. In PandaRoot, the Kalman
Filter employs the GENFIT package [100].
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Figure 26: (a) The particle momentum is estimated from the kick that the particle receives in the magnetic
field. The dashed red lines are the fit lines before and after the field, while the dashed brown curve
is the circle fit for hits inside the field. The black circles are the isochrones of the vertical layer hits,
the blue and green circles are the isochrones of skewed layer hits. (b) The relative momentum
resolution.
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3.6 S U M M A RY

In this chapter, a track finding algorithm has been introduced for the PANDA forward
tracker. The algorithm is based on the GNN, a type of neural networks that accepts
non-Euclidean data as graphs. The input of the GNN is an image of the FTS, where the
detector hits are the graph vertices and all possible connections between two hits in
adjacent layers are the graph edges. The GNN was trained to classify the graph edges to
true or fake edges, the architecture used is based on the one developed by the Exa.TrkX
collaboration. The network converged quickly and scored 99.5% classification accuracy
after 10 iterations. A clustering algorithm has been implemented to reconstruct track
candidates guided by the output of the GNN. The aim of the clustering algorithm is to
traverse the graph depth-wise in order to find the connected components in the output
graph. The performance of the developed algorithm were evaluated based on defined
QA measurements, which are the purity, the efficiency and the ghost rate. On average,
the purity was found to be ≈ 100 %, the efficiency ≈ 90% and the ghost ratio less than
3%.

The aim of the GNN was to use the hits in the vertical layers to reconstruct projections
of track candidates in the x − z plane of the FTS. The second step of the track finding
algorithm was aimed to use the reconstructed x − z projections as “seeds” to build the
y − z plane track motion by adding the skewed layer hits. The x − z projection has been
fit by a linear model for track segments outside the magnetic field and a circular motion
is assumed inside the magnetic field. In order to obtain a y measurement, the set of
compatible hits in the skewed layer hits were collected by first testing the L/R ambiguity
and then histogramming the slopes assuming the magnetic field effects in the y − z plane
is negligible. In addition, the fitting procedure provide more accurate hit positions. The
vertical position resolution is about 11 times worse than the horizontal resolution since
it depends on the inclination angle. The algorithm also provides an estimate value for
the particle momentum that is calculated by the p-kick method. The relative momentum
resolution was found to be 6.7%.
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Σ 0 P R O D U C T I O N I N P + P C O L L I S I O N S

This chapter presents the reconstruction of Σ0 hyperons created in proton-proton
collisions at a center-of-mass energy of

√
s = 3.18 GeV recorded with the HADES

detector setup. In particular the focus is on the exclusive reconstruction of the reaction
p + p → p + K+ + Σ0. This is the energetically most favorable reaction in which a Σ0

hyperon is produced due to strangeness conservation.

The study of hyperon production in proton-proton collisions at energies of a few GeV
is important for a better understanding of the strong interaction including the strange
quarks. It is also crucial as a baseline for in-depth studies of the heavy ion collisions,
e.g. strangeness enhancement is proposed as a signature for the formation of the Quark
Gluon Plasma (QGP) which is expected to form if the energy density is high enough [83].
It is also discussed as a way to study hot and dense nuclear matter [33]. Therefore the
results of this work can give insight about input parameters (e.g. cross section) for an
improved incorporation of the hyperon dynamics into transport models, which are used
to simulate heavy ion collisions.

In addition, a measurement of the hyperon radiative decay Σ0 → Λγ provides a clean
prob of the hyperon wave function as will be discussed in detail in the next chapter.
Furthermore, a measurement of the Dalitz decay Σ0 → Λγ∗ → Λe+ + e− (BR<1%) can
provide information on the hyperon form factors [6]. Therefore, this measurement can
be considered as a step towards measuring the hyperon electromagnetic form factors.

Although there are numerous experimental results for Λ hyperon production [5,
8, 14, 23, 91], there are few measurements for Σ0 hyperon [5, 6]. Results on p +
p → p + K+ +Λ near threshold show a significant deviation from a pure phase space
distribution, and a proton–hyperon Final-State Interaction (FSI) has to be included to
describe the data [5, 91]. It was found that the hyperon production is dominant by the
excitation and subsequent decay of N∗ resonances in the K+Λ decay mode, in particular
N(1650)S11, N(1710)P11 and N(1720)P13 from which it has to be concluded that the
exchange of non-strange mesons is the leading process in the production mechanism.

47
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In the p + p → p +K+ +Σ0 reaction the proton–hyperon FSI seems to be negligible and
pure phase space distribution describes the data reasonably well. The cross section
ratio σ(pK+Λ)/σ(pK+Σ0) below excess energies of ∼ 20 MeV is about 28 and reduces
drastically to about 2.5 for excess energies higher than 300 MeV [85]. This energy-
dependence of the cross section ratio could be governed primarily by FSI effects in the
p + p → p +K+ +Λ reaction [110].

This chapter is organized as follows: The first section discusses general aspects of
hyperon production in proton-proton reactions. In particular, the One-Boson-Exchange
model is discussed. Furthermore, the center of mass frame, Gottfried-Jackson and helicity
reference frames are presented as the experimental data are studied in these reference
frames. The second section describes the analysis part and the cuts that has been applied
for the event selection. The second section describes the application of the kinematic
refit technique to reduce the background contribution and improve the mass resolution
of the Σ0 hyperon. The last section starts with the extraction of the Σ0 yield the various
steps of the analysis and then presents the angular distributions in the different reference
frames.

4.1 T H E O R E T I C A L B A C K G R O U N D

4.1.1 Phase Space Considerations

The exclusive reaction discussed here corresponds to 2 → 3 inelastic scattering, in
quantum mechanics, the transition from an initial to a final state is calculated from
Fermi’s golden rule. During the transition the four-momentum are conserved and thus
the final state momentum vectors pi cannot vary arbitrarily for a given initial state.
Fermi’s golden rule states that the probability per unit time that a transition will take
place from an initial state to a final state is:

Γi =
2π

h̄
∣M f i∣ ρ(E) , (10)

whereM f i is the matrix element or the reaction amplitude, which contains the dynamics
of the transition and ρ(E) is the density of states available at the energy E that depends
on the kinematics of the process being considered and is known as the phase space density.
In general the matrix element may be unknown; in the simplest case of a constant matrix
element (M f i=1), the momentum distributions of the final state particles are governed
by the phase space factor. In this case the differential distributions and the cross section
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are said to be given by the phase space. If the experimentally measured distributions tend
to deviate from phase space this denotes a dynamical effect, for instance, a resonance.

In order to obtain experimental quantities, the transition rate has to be integrated.
When the integration is done over all possible values of the momentum pi, that is, over
the entire phase space, the total cross section is obtained. If the integration is restricted
to a subset of the phase space, a differential cross-section is obtained.

Consider a general 2→ 3 reaction labeled as a + b → 1+ 2+ 3, the differential reaction
cross section at fixed center of mass energy can then be written as [111]:

dσ

ds1ds2dst1dt2
=
∣M(s, s1, s2, t1, t2) f i∣

2

210π4λ(s, m2
a, m2

b)
√
−∆4

, (11)

where the independent invariants are given by the 4-momentum of the intial and final
state particles

s = (pa + pb)2

s1 = (p1 + p2)2

s2 = (p2 + p3)2

t1 = (pa − p1)2

t2 = (pa − p3)2

The λ(s, m2
a, m2

b) is the Källen function 1, also known as the triangle function and −∆4
is the Gramm determinant of a 4×4 symmetric matrix whose elements are a combination
of s, s1, s2, t1, t2 and the masses of the initial and final particles.

One of the methods to detect dynamical effects in the reaction under consideration is
the Dalitz plot. It is a visual representation of the phase space of a three body system.
The integration of Eq. 11 over t1 and t2 results in the Dalitz plot defined as the physical
region in the s1s2 plane. More generally, the Dalitz plot can be defined as the physical
region in terms of any variables related to s1 and s2 by a linear transformation with a
constant Jacobian [37].

A widely used Dalitz plot is represented as a correlation of the invariant mass squared
of two particles in the final state (e.g. M2

12 against M2
23). The Dalitz plot has the

important property that equal areas in the plot correspond to equal volumes in the three
body phase space. A uniformly distributed Dalitz plot is an indication of the absence of
intermediate resonances or FSI. If, for instance, a resonance occurs between particles 2

1 In three variables, the Källen function is given by λ(x, y, z) = x2 + y2 + z2 − 2xy − 2yz − 2zx
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and 3, there will be an increased density of points in a band at fixed M2
23. The boundary

of the Dalitz plot is fixed by momentum conservation and the total energy available to
the system [35].

4.1.2 Production Mechanisms

Eq. 10 clearly states that the transition rate consists of two parts, the kinematical and
the dynamical part. As mentioned in the previous section any deviation from phase space
behavior could indicate a dynamical effect. In this section we discuss the dynamical
part in the context of the One Boson Exchange model (OBE). This model dates back to
1930s when Yukawa proposed a theoretical model in an attempt to explain the nucleon-
nucleon (NN) interactions. He made the hypothesis that nucleons interact through
the exchange of a boson whose mass is related to the range of the interaction. The
interaction between the boson and the initial nucleons (protons in this case) results in
the production of the final state particles. The t-channel scattering process represented
by the Feynman diagrams are illustrated in Fig. 27. Here Y stands for hyperons (e.g Λ,
Σ0 etc.) and R stands for every kind of nucleon resonances, that can be an isospin 1/2
N∗ state or an isospin 3/2 ∆∗ state. These production mechanisms are understood as
being representatives of a whole class of reaction scenarios rather than of the concrete
processes. Kaon exchange diagram represents a scenario where there is strangeness
exchange, pion exchange diagram, on the other hand, stands for a scenario where no
strangeness exchange occurs. The experimental angular distributions are determined by
the properties of the exchange diagrams and the exchange meson itself. The correlation
between the final and initial state baryon directions is determined by the mass of
exchange meson [88]. The exchange of a heavy meson leads to very central collisions, in
this case the nucleon and the hyperon are produced isotropically in the center of mass
frame. Whereas light meson exchange, is correlated with very peripheral collisions as
the exchange meson transfers small 4-momentum to the final state particles so that they
are preferably emitted in the direction of the initial protons.
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Figure 27: Feynman diagrams representing t-channel scattering in case of (a) kaon exchange, (b) pion
exchange and (c) pion exchange with an intermediate resonance produced, which decays to a
hyperon and a kaon.
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The simplest way to calculate the contributions of the diagrams in Fig. 27 is to use the
Chew-Low formula [40]:

d4σ

d(M2)d(∆2)dΩ
= 1

4π

G2

4π

1
(2p∗E∗)2

∆2 + (mp −m)2
(∆2 + µ2)2 kM

dσ(M)
dΩ

, (12)

where

• k = 1
M [1

4 M4 − 1
2 M2(m2

p + µ2) + 1
4(m2

p − µ2)]
1
2 is a kinematic factor, which can be

identified as the momentum of the exchanged meson in the center of mass system
of the two produced particles at vertex B.

• p∗ and E∗ are the center of mass momentum and energy of the incident proton,
respectively.

• G2

4π is the meson baryon-baryon coupling constant describing vertex A in Fig. 27.

• ∆2 is the 4-momentum squared of the exchange meson to the recoil baryon of mass
m.

• µ and mp are the masses of the exchange meson and the proton, respectively.

• M is the invariant mass of the particles emerging at vertex B.

• dσ(M)
dΩ is the differential cross section of the two particles at vertex B, πp → KY for

pion exchange and Kp → Kp for kaon exchange.

This formula was found to reproduce the experimental angular distributions of final
state baryons in the center of mass frame as can be shown in Fig. 28. This figure shows
the absolute values of the cosine of the final state proton angle measured in the center
of mass frame for (a) p + p → p + K+ +Λ and (b) p + p → p + K+ + Σ0, both angular
distributions peak at ∣cosθ∣ = 1, which suggests that the particles are preferably emitted
along the direction of the incoming protons. This can be easily understood by considering
the denominator in Eq. 12 where the mass of the exchanged meson appears µ2, here the
angular distribution will show anisotropy in the center of mass frame for light meson
exchange. Furthermore the momentum transfer ∆2 also appears in the denominator,
the center of mass angular distributions of the final state baryons are closely related
to the momentum transfer distribution [56]. As a result, a small momentum transfer
produces anisotropic center of mass angular distributions, while a large momentum
transfer produces isotropic distributions, as observed in the angular distributions of
Λ(1405) and Λ(1520) [12].



52 Σ0 P R O D U C T I O N I N P + P C O L L I S I O N S

(a) (b)

Figure 28: Angular distribution of final state protons in the center of mass frame measured at beam momen-
tum 5 GeV/c for (a) p + p → p +K+ +Λ and (b) p + p → p +K+ +Σ0, the solid curve represents
the prediction of the Chew-Low formula [56].

Another important term in Eq. 12 is dσ(M)
dΩ , which represents the differential cross

section of the 2→ 2 reaction at vertex B that is usually an unknown function and might
be characterized by certain angular distributions or the production of intermediate
resonances.

4.1.3 Reference Frames

In this section, a set of reference frames, defined by the properties of the initial and
final states of the collision process, is introduced. Later on, the experimental angular
distributions will be studied in these reference frames.

Center of Mass frame

The center-of-mass system (CMS) is a Lorentzian reference frame, where the beam
and target proton have identical momenta in opposite directions, that is:
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Ð→p target = −Ð→p beam ,

where Ð→p target and Ð→p beam are the momenta of the colliding protons. The CMS angle is
the polar angle of one of three final state particles in the CMS frame as shown in Fig.
29a. The angular distribution in this reference frame must be symmetric with respect to
cosθ = 0 since the proton-proton system is symmetric.

The OBE model relates the production anisotropy to the properties of the exchange
meson. As an example, in the case of pure pion exchange, the primary proton interacts
at vertex A and produces the virtual pion. Since the mass of the pion is relatively small,
there will be a small 4-momentum transfer to the final state nucleon. Consequently, the
deflection of the nucleon will be small, which results in anisotropic angular distributions.
Because of momentum conservation, the sum of the momentum of the kaon-hyperon
KY system produced at vertex B must equal to that of the nucleon N at vertex A, which
means that the KY system is a mirror image of the N. Now consider the case where the
KY system is produced via an intermediate resonance R (see Fig. 27c), the R resonance
decays in its own rest frame back to back into a hyperon and kaon. The available energy
for this decay depends on the mass of the resonance and takes values between zero zero
and the threshold energy of the reaction p + p → p + (R → K +Y), because the hyperon
is heavier than the kaon, it will preserve the direction of flight of the resonance, while
the kaon will be emitted isotropically. In conclusion, in the case of pure pion exchange,
the nucleon and the hyperon CMS angular distributions show an anisotropy, while the
kaon is produced rather isotropically. However the anisotropy is more pronounced for
the nueclon.

In the case of pure kaon exchange, the roles of the nucleon and the hyperon are
exchanged, the hyperon shows the strongest production anisotropy in the CMS frame.
Because the nucleon-kaon system is a mirror image of the hyperon, their CMS angular
distributions are just kinematic reflections of the hyperon.

One has to take the differential cross section dσ(M)
dΩ also into consideration, as it

affects the particles produced at vertex B, which obviously influences their CMS angular
distributions. This quantity is accessible in the Gottfried-Jackson frame.

Gottfried-Jackson frame

The Gottfried-Jackson frame (G-J) was introduced by Gottfried and Jackson in 1964
and defined as the rest frame of two out of the three produced particles [67]. The
G-J angle cosθRF AB

p,B is the polar angle between the final state particle B and the initial
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Figure 29: Definitions of different reference frames (a) center of mass frame, (b) Gottfried-Jackson frame and
(c) the helicity frame.

proton as measured in the rest frame of particles A and B as illustrated in Fig. 29b,
the superscript indicates which rest frame is used (RF stands for Rest Frame) and the
subscript indicates the two particles, between which the angle is measured.

The motivation to study the G-J angular distribution is that it reduces the 2 → 3
reaction into 2→ 2 reaction of the form K(π) + p → N(Y) +K. In addition it connects the
exit and entrance channel and carries information not accessible by means of a Dalitz
plot analysis [5].

Consider the pion exchange reaction π + p → K +Y, which connects the particles
produced at vertex B. Because of time reversal symmetry the inverse reaction K +Y →
p + π should have the same properties, now consider the rest frame of KY which
by definition is the KY G-J frame, the G-J angle cosθRF KY

p,K gives information of the

differential cross section dσ(M)
dΩ at vertex B and the partial waves involved. This is

also true if the particle production does not happen directly, but via an intermediate
resonance. The quantum numbers of the resonance is then reflected in this observable.
The same argumentation should hold for the case of kaon exchange p +K → p +K.

It should be noted, that there is no reason for the G-J angle to show any symmetry with
respect to cosθRF KY

p,K = 0, as the colliding particles (p and π in this case) are not identical.
A peculiarity arises from the fact that the two initial protons are indistinguishable. It is
not known which of those protons contributes to the reaction. Therefore, the angular
distribution is calculated by using the angle to both protons.

Similar to the Dalitz plot, the G-J angle (e.g. cosθRF KY
p,K ) can be calculated as a function

of the reaction invariants [111]:

cosθRF KY
p,K =

2s2(t2 −m2
a −m2

K) + (s2 +m2
a − t1)(s2 +m2

K −m2
Y)

λ2(s2, m2
a, t1)λ2(s2, m2

K, m2
Y)

, (13)
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where the invariants are given by the 4-momentum of the initial and final state particles

s2 = (pK + pY)2

t1 = (pa − pN)2

t2 = (pa − pK)2 .

Here, λ is the Källen function, ma is the mass of the intial proton, mK is the kaon mass
and mY is the hyperon mass.

Helicity frame

The helicity frame is defined in a similar way as the G-J frame, two of three particles
in the final state are used to define the reference frame, but instead of calculating
the angle with respect to the initial proton, the angle to the third produced particle is
used, as shown in Fig. 29c. Therefore the helicity angle interrelates the three particles
of the exit channel. The helicity angular distribution is a special projection of the
Dalitz plot, hence it is a good observable to identify the dynamics behind the particle
production mechanism. A uniformly populated Dalitz plot results in isotropic helicity
angular distributions, whereas dynamical effects distorting the Dalitz plot will result in
anisotropic helicity angular distributions [5].

If the reaction p + p → p + K + Y proceeds via an intermediate resonance, that is
p + p → p + (R → K +Y), the angular distributions cosθ

RF pY
p,K and cosθ

RF pK
K,Y will show

characteristic behaviors, which reflect the mass and width of the resonance R. In contrast
to this, the angular distribution, calculated in the rest frame of the two decay particles
cosθRF KY

p,Y is not influenced by the mass and width of the resonance. Only if the resonance
carries angular momentum L > 0 or if it is polarized will this distribution be different
from isotropic [79]. However, if more than one resonance contributes to the decay into
Y and K interference effects can influence the helicity angular distribution cosθRF KY

p,Y [5].

The helicity angle (e.g. cosθRF KY
p,Y ) can be written as the following function of the

reaction [111]:

cosθRF KY
p,Y =

2s2(m2
p +m2

K − s1) + (s − s2 −m2
p)(s2 +mK −mY)

λ1/2(s, s2, m2
P)λ1/2(s2, m2

K, m2
Y)

. (14)
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4.2 A N A LY S I S P R O C E D U R E

In the following sections we investigate the exclusive reconstruction of the reaction
Σ0 hyperon produced in proton-proton collisions at beam kinetic energy 3.5 GeV and
an intensity of ∼ 107 particles/s [13], the data has been collected by HADES in 2007.
The proton beam was incident on a liquid hydrogen target (LH2) with a density of 0.35
g/cm2, a thickness of 50 mm and a total interaction probability of ∼ 0.7 %. In total
there were 1.14× 109 first-level triggered events, which required at least three hits in the
META system (M3) [8]. The Σ0 hyperon is a member of the JP = 1

2
+

baryon octet and
decays electromagnetically with a branching ratio BR(Σ0 → Λγ) ≈ 100%. The daughter
Λ hyperon has two main decay modes BR(Λ → pπ−) = 63.9 % and BR(Λ → nπ0) =
35.8% [121]. As mentioned in chapter 2, the HADES detector setup is designed only to
reconstruct charged particles, therefore, the only possible channel for this analysis is:

p + p → p +K+ +Σ0 → p +K+ + p +π− +γ . (15)

The neutral photon can be identified as a missing particle via the missing mass
technique, as will be explained below. The reconstruction of this signal is done in two
different ways, in the first case, events with four charged particles identified to be (2p,
1π− and 1 K+) are required to be within the acceptance of the main HADES setup, in the
other case, only three charged particles identified as (1p, 1π− and 1 K+) are required to
be within the acceptance of the main HADES setup and at least one hit in the Forward
Wall hodoscope. In the following these two data sets are referred to as the HADES
data-set and FWall data-set, respectively.

4.2.1 Simulations

Event Generation

In this section we present a description of the simulations of possible contributing
channels to the final spectrum presented later. All channels are simulated by the PLUTO
phase space generator [59] and then propagated through HGeant, which contains a
detailed description of the detector geometry and emulates all the particle interactions
with the detector material. The existing data base for the production cross section for
the different channels at beam energy 3.5 GeV is limited, this cross section is needed in
order to quantify the contribution of each channel. Therefore, the following procedure
was applied to estimate the cross sections for various channels at this beam energy. First
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the cross sections at various beam energies are collected from [57], and then they have
been fit by a phase space distribution according to the following parametrization:

σ(s) = a ⋅ (1− s0

s
)

b
⋅ (s0

s
)

c
,

where s is the center of mass energy (here
√

s = 3.18 GeV), s0 is the threshold energy of
the reaction, a, b and c are the free parameters of the fit. Examples of the fit are shown
in Fig. 30 and a summary of all the determined cross sections is listed in Tab. 1.
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Figure 30: An example of the phase space fit for (a) p + p → p + p + π+ + π− (b) p + p → p + K+ + Σ0.
Determined cross section at beam energy 3.5 GeV and 4.5 GeV are shown.

Channel σ [µb]

1 p + p → p +K+ +Λ 35.26
2 p + p → p +K+ +Σ(1385) 6.0
3 p + p → p +K+ +Λ(1405) 9.2
4 p + p → p + p +π+ +π− 3151.2
5 p + p → p + p +π+ +π− +π0 1304.0
6 p + p → p +K+ +Σ0 20.5
7 p + p → p +K+ +Λ +π0 6.0
8 p + p → p +K+ +Σ0 +π0 14.7
9 p + p → p +K+ +Σ+ +π− 4.3

Table 1: Production cross section of the simulated channels. Cross sections of channels 1, 2 and 3 are taken
from [8], the rest are estimated by a phase space fit.
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Momentum correction

During the event selection the missing mass technique is used for the event selection
method, which require that the mass peaks should be in the correct position; e.g. the Λ
hyperon mass peak should be around 1.116 GeV/c2. If this is not the case, this will lead
to a bias in the event selection. A shift of the mass peak position is a result of incorrect
momentum measurement. The momentum measurement is affected by the energy loss
of the daughter particles in the detector material. This is especially important at low
momenta where this influence cannot be neglected. Therefore, a momentum correction
is applied to all simulated channels. The procedure is summarized as follows, first the
absolute difference between the reconstructed momentum and the generated momentum
is plotted as function of the reconstructed momentum for each particle species (blue
filled circles), then this is fit by a polynomial function as shown in Fig. 31. This fit
function is then used to correct the momentum of the particles. As can be shown from
the figure, the momentum difference after the correction (red open circles) is correctly
centered around zero.
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Figure 31: The absolute difference between the reconstructed momentum and the generated momentum as
a function of the reconstructed momentum for (a) protons p, (b) pions π− and (c) kaons K+.
The momentum correction function is shown by the red curve, the red dots shows the particle
momentum difference after the correction procedure.

Fig. 32 shows the effect of the momentum correction on the missing mass of the
primary proton and the kaon MM(pK+) (see Eq. 23), as shown in the figure the peaks
due to p + p → p +K+ +Λ and p + p → p +K+ +Σ0 are shifted to the correct position after
the momentum correction.

4.2.2 Start Time t0 Reconstruction

During the p + p 2007 beam time the START detector was not in operation, because
interactions of the high intensity proton beam with the START detector and the surround-
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ing material prevented a stable RICH operation. As a consequence there is no common
start time t0 reference for all tracks and the time-of-flight (to f ) of tracks is not directly
accessible [96]. The to f measurement allows to perform the particle identification in
combination with the momentum information provided by the tracking system. The time
of flight system is constituted by the START detector along with the TOF and TOFINO
systems, since the TOF and TOFINO systems do not measure the particle to f , but its
difference in time with respect to the particle which triggered the data acquisition, so
the start time t0 has to be reconstructed in order to perform a proper time of flight
measurement.

The algorithm to reconstruct t0 works on an event by event basis. As mentioned above,
the to f of a particle is given by the difference between the stop time ts as measured by
the TOF or TOFINO minus the start time t0 measured by the START detector:

to f = ts − t0 (16)

So in order to reconstruct the start time t0, at least one particle has to be identified,
because t0 is common for all particles in the event, the to f of the other particles in the
same event can be calculated from the reconstructed t0 and the stop times ts. Starting
from the relativistic momentum definition:

p = mβ√
1− β2

, (17)
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where p is the momentum of the particle, m is it’s mass and β = v
c is it’s reduced velocity.

Since the velocity can be given by β = L/to f
c , where L is the path length of the particle,

thus the theoretical to f can be calculated by reformulating Eq. 17:

to f = L
c
⋅
√

p2 +m2

p
. (18)

Both p and L are given by the tracking algorithm. If we can identify one particle in
the event we can assume its mass and thus calculate its theoretical time of flight. The
start time t0 is then calculated from the difference between the measured stop time ts
and the theoretical time of flight.

Because there is one negative charged particle in the final state being investigated, it
can be assumed to be either an electron e− or a pion π−, depending upon the angular
correlation between inner track segment in the MDC and rings in the RICH detector.

In order to quantify the correlation between the ring position and the track segment
position, the following two quantities are computed:

∆θ = θRICH − θMDC

∆ϕ ⋅ sinθMDC = (ϕRICH − ϕMDC) ⋅ sinθMDC ,
(19)

where θRICH and ϕRICH are the polar and azimuthal angles of a ring in the RICH detector
in the laboratory frame, θMDC and ϕMDC are the angular coordinates of the inner MDC
segment. The multiplication by a factor of sinθMDC is introduced to keep the solid angle
spanned constant [52]. Based on Eqs. 19, the RICH matching quality is defined as:

d =
√
(∆θ)2 + (∆ϕ ⋅ sinθMDC)2 (20)

A ring in the RICH detector is considered matched to MDC track if the RICH matching
quality d is the smallest, in this case the track is identified as an electron e−, otherwise it
is identified as a pion π−. The distribution of the RICH matching quality d is shown in
Fig. 33.

By identifying a particle in the event, we can assume its mass and then the start time
t0 can be calculated as the difference between the stop time ts and the theoretical to f .
If more than one particle is used in the t0 reconstruction, the average t0 is calculated
according to:
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Figure 33: The RICH matching quality for ev-
erything (in black) and for matched
rings (in red).

t0 =
∑i wit0,i

∑i wi
, (21)

where wi is a weight factor that is wi = 2.5 if the ts is measured by the TOF system or wi
= 1 if the ts is measured by the TOFINO system, this is because the TOF resolution is
about 2.5 times better than the TOFINO resolution. The velocity β of positively charged
tracks as a function of momentum before and after t0 reconstruction is shown in Fig.
34. As can be shown after t0 reconstruction the data points are centered around the
theoretical curves.
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Figure 34: The velocity β as a function of momentum (a) before t0 and (b) after t0 reconstruction (under the
condition ∣t0∣ < 1 ns). The green, white and black dashed lines represents the theoretical values for
pions, kaons and protons, respectively.
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4.2.3 Particle Identification PID

Conventional PID method

The next step after reconstructing the time of flight, is the charged particle identifi-
cation (PID). In the reaction we are investigating (Eq. 15) there are three positively
charged particles, one negatively charged particle and one neutral particle. The neutral
particle γ is identified as a missing particle, and as mentioned in the previous section the
π− is identified as any negatively charged track that is geometrically uncorrelated to a
ring in the RICH detector. This means that the problem is reduced to identify protons p
and kaons K+.
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Figure 35: The Energy loss dE/dx as a function
of the momentum for all particle can-
didates. The green, white and black
dashed lines represents the theoretical
Bethe-Bloch values for pions, kaons
and protons, respectively.

Many of the HADES analyses rely on the energy loss as a function of momentum as
a PID method by placing graphical cuts around the theoretical Bethe-Bloch curves as
shown in Fig. 35. However as can be seen from the figure, kaons are not visible, as they
are suppressed in this energy range with respect to protons and pions. Therefore, by this
PID method kaons are heavily contaminated by pions and protons.

Deep Learning Based PID

In order to overcome this problem and obtain a relatively clean sample of kaons, we
rely on DL algorithms, because of their capability to model complex and non-linear data
dependencies. For this purpose a neural network is trained to classify particle tracks
into three classes or categories; protons p, kaons K+ and pions π+. Therefore, this is a
multi-class classification problem, which means that the training data should be labeled,
in other words, the network should be trained with simulated events.
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One problem arises here from the fact that simulations do not model real data perfectly,
this can be due to mis-modelling of some detector effects. As a result, a neural network
trained on simulation might not perform well on real data. This is a well know problem
in DL, if the unseen data has a different distribution, then a domain shift exists [98].
To address this problem a variational auto-encoder is trained in a semi-supervised way
simultaneously on real data and simulations. A Semi-supervised learning [132] falls
between unsupervised and supervised learning that make use of both labeled and
unlabeled data points.

Variational Auto-Encoders VAE

An auto-encoder is a neural network that learns how to efficiently encode input data
into a bottleneck layer (a latent representation) by compressing the input features, then
learns how to reconstruct it back from the compressed encoded representation. A typical
auto-encoder consists of two connected networks, the encoder and the decoder. The
encoder compresses the input into a latent representation, that can be considered as new
features extracted from the input features, and the decoder uses the latent representation
and tries to reconstruct the original input.

A VAE is an auto-encoder with the assumption that the input data has an underlying
probability distribution and then the VAE attempts to find the parameters of the distribu-
tion, from this definition, it follows that the VAE is a generative model. A VAE is intended
to learn a latent space z, given set of training samples x. In particular, the model consists
of a generative model (the encoder) p(x∣z) given a fixed prior p(z), and an inference
model (the decoder) q(z∣x), the VAE is trained by minimizing the Kullback-Leibler (KL)
divergence, which is a measure of the difference between two probability distributions
[47].

A schematic diagram of the VAE model used for the PID is shown in Fig. 37. The model
takes labeled (simulations) and unlabeled (real data) events, it learns the combined
features of both real and simulated events and compress it to the latent space. The
real data takes the upper path, where the decoder tries to reconstruct the input from
the latent space. The simulations takes the lower path, where a classification layer is
stacked on top of the bottleneck layer (the latent space). The network is trained by a
semi-supervised technique, for which the upper path is completely unsupervised and the
lower path is completely supervised [82]. The model implemented is inspired by the M2
model proposed by Kingma et. al. in [82]. The VAE is implemented in PyTorch [94] with
two hidden layers. In addition, a 50% dropout layer is applied in order to prevent the
model from overfitting and to quantify the uncertainty of the network.
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Figure 36: Input features for the VAE for protons (green) and pions (blue) and kaons (red).
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Figure 37: A schematic diagram of the VAE used for the purpose of the PID task.

Training sample

The VAE is trained on the following set of simulated events:

p + p → p + p +π+ +π−

p + p → p +K+ +Λ

p + p → p +K+ +Λ +π0.

(22)

The input features are the momentum p, the polar angle θ, the energy loss dE/dx in
the MDC and TOF systems, the reconstructed to f and the distance to the TOF/TOFINO
hit (META hit) dMETA. These are shown in Fig. 36 for the three classes p, π+ and K+.

In addition a random sample of real events is selected in such way that each beam
time day is equally represented in the sample.

Performance

The performance of the VAE evaluated on a test simulation sample is quantified by
means of the Confusion Matrix CM shown in Fig. 38a. The CM shows the correlation
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between the true labels (y-axis) and the predicted labels (x-axis), ideally the diagonal
elements should be equal to 1, which means 100% correct classification. The off-diagonal
elements quantify the mis-classified labels. As can be shown the network was able to
classify 98% of protons p, 92 % of pions π+ and 76% of kaons K+ correctly.

Another important performance measure is the ROC curve shown in Fig. 38b, where
the area under the ROC curve (AUC) is above 94% for all classes. The selection efficiency
and purity as function of phase space variables evaluated on the hold out data-set is
presented in Appendix A.
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Figure 38: (a) The Confusion matrix. (b) The ROC graph for protons p (green), pions π+ (blue) and kaons
K+. The inset shows values of the area under curve AUC for the three classes.

It is also important to judge the performance of the network when applied to real
events, however it is not possible to calculate the accuracy in this case; since the real
data is unlabeled, so another approach is used. The output of the classification layer
is plotted as function of the particle mass squared (see Eq. 17), where the mass is
calculated from the reconstructed to f and the momentum p. The output layer has
three nodes corresponding to the three classes. Each node outputs a number between
0 and 1, all output numbers sum to 1, so that each number can be interpreted as a
probability of being a specific particle species. As shown in Fig. 39 for each output
node, an accumulation of events is visible around a probability of 1 and around the
correct particle mass and nearly zero probability otherwise. For the case of kaons K+ the
network is less confident and the maximum probability is about 0.9 around the kaon
mass squared ≈ 0.25 GeV2/c4, so the PID can be assigned to each track by selecting on
the network output. Because the network outputs three numbers/probabilities for each
particle track, the maximum probability is chosen to identify tracks, for example if the
proton node has the maximum probability, then the track is identified as a proton. The
masses of the particles are set to their nominal values after the PID.
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Figure 39: The output probability of the network as applied to real data as function of the particle mass
squared for (a) protons p, (b) pions π+ and (c) kaons K+.

4.2.4 The Λ Hyperon Reconstruction

The next step after the PID is the reconstruction of the intermediate Λ hyperon, which
is reconstructed from its decay products, namely the proton p and the pion π−. The Λ is
reconstructed separately in the HADES acceptance (HADES data-set) and the forward
wall acceptance (FWall data-set).

HADES data-set

For the HADES data-set, the Λ is reconstructed from it’s decay products in combination
with a set of topological cuts. The Λ hyperon decays weakly with a mean decay length
cτ = 7.89 cm, considering the energy and momentum conservation during the Λ decay,
the proton should fly almost in the same direction of the Λ since the proton mass is
close to the Λ mass, while the pion π− will be emitted at a larger angle relative to the
direction of the Λ, as shown in Fig. 40.

For each event, the intersection point or the Point of Closest Approach (PCA) between
the proton track and the kaon track was defined as the primary vertex. Because there
is more than one proton in each event, the proton and the kaon pair that have the
smallest Distance of Closest Approach (DCA) is used to construct the primary vertex. To
reduce the contribution from off-target events a two dimensional cut is applied to the
primary vertex position as illustrated by the white dashed line in Fig. 41a. Accepted
events are required to be within −65 < z[mm] < −5. The beam spot was shifted during
the beam time, this shift has been quantified previously to be 3-4 mm [29]. Therefore,
accepted events are required to satisfy r[mm] < 5, which takes the beam spot shift into
consideration.
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Figure 40: The Λ hyperon decay topology. The different topological cuts used in the analysis are indicated.
The red point represents the primary vertex and the light blue point indicates where the Λ decayed.
Figure adapted from [113].
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Figure 41: (a) The primary vertex transverse position as function of the longitudinal position. Accepted events
are within −65 < z[mm] < −5 and r[mm] < 5 as indicated by the white dashed line. (b) The
primary vertex distribution in the x − y plane for events in the target region −65 < z[mm] < −5.

The DCA between the p, and π− tracks is expected to be small if the tracks emerge from
the same vertex. Therefore, dpπ− < 10 mm is demanded in order to reduce combinatorial
background. Following the energy conservation condition, the DCA between the p
track and the primary vertex dp,pvtx is required to be smaller than the DCA between the
π− track and the primary vertex dπ−,pvtx. One last topological cut is introduced, the
DCA between the Λ track and the primary vertex is required to be smaller than 6 mm.
The distributions of the topological variables are shown in Fig. 42, where the cuts are
indicated by the dashed lines. At this stage of the analysis, the proton used in the Λ
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reconstruction is tagged as the secondary proton (in this case phades), while the other
proton in the event is tagged as a primary proton p.
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Figure 42: (a) The DCA between the p, and π− tracks. (b) The DCA between the π− track and the primary
vertex dπ,pvtx as a function of the DCA between the p track and the primary vertex dp,pvtx. (c)
The DCA between the Λ track and the primary vertex.

To further purify the Λ sample, we rely on the kinematics of the exclusive reaction
under study. In particular we use the missing mass squared calculated as follows

MM2 = 1
c4 ⋅ [Ebeam + Etarget −

n
∑
i=1

Ei]
2
− [p⃗beam + p⃗target −

n
∑
i=1

p⃗i]
2
c2 (23)

The missing mass squared distribution of the primary proton and Λ should be in the
range of the square kaon plus photon mass. Fig. 43 shows the missing mass squared
distribution of pΛ, two peak structures are visible, the first one at 0.02 GeV2 is due to
the multi pion production reaction pp → ppπ+π−, where one of the protons and the
π− is identified as a Λ candidate and the π+ is incorrectly identified as a K+, the other
broader peak is due to pp → pK+Λ and pp → pK+Σ0 events, thus events in the range
MM2(pphadesπ

−)[GeV2/c4] > 0.2 are selected.

The invariant mass spectrum of the phades and π− after applying the topological cuts
and the missing mass cut is shown in Fig. 44. A peak around the Λ nominal mass is visible
on top of the background. The signal peak has been fit by a Gaussian distribution and
the background is modeled by a fourth order polynomial. Events are further processed if
they are in the range of µ ± 3σ, the calculated signal to background ratio in this range is
S/B = 1.9.

FWall data-set

In the FWall data-set the hit in the forward wall is assumed to be due to the secondary
proton from the Λ decay (this will be justified in the next chapter). Because the FWall
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Figure 43: The missing mass squared distribu-
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togram is the simulation of pp →
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ulation. The dashed line indicates the
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Figure 44: The invariant mass spectrum of the
phades and π−. The peak was fit by a
Gaussian distribution and the back-
ground was fit by a fourth order poly-
nomial. Events are accepted if they
are in the range of µ±3σ as indicated
by the dashed lines.

is in a magnetic field free region, the proton (in this case pwall) was reconstructed as a
straight line from the primary vertex to the hit point in the FWall, then the proton mass is
assumed and the momentum is calculated from Eq. 17. In this case the topological cuts
are not as effective to suppress the background as there is no track information. So in
order to enhance the Λ sample, events fulfilling the following conditions were selected:

1. −0.02 < MM2(pK+pwallπ
−)[GeV2/c4] < 0.01, for both reactions this missing mass

spectrum should peak at zero, since the photon in the final state has no mass. This
cut is asymmetric to suppress contamination from π0 events, e.g. the reaction pp →
pK+Λπ0 the missing mass squared should have a peak value MM2(pK+pwallπ

−) ≈
0.02 GeV2/c4 (see Fig. 45a).

2. MM2(ppwallπ
−)[GeV2/c4] > 0.2 (see Fig. 45b).
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Figure 45: (a) The missing mass squared distribution of pK+pwallπ
−. (b) The missing mass squared dis-

tribution of ppwallπ
−. The data are shown as black dots, the violet histogram is the simulation

of pp → ppπ+π−, the red one is pp → pK+Λ and the blue one is pp → pK+Σ0 simulation. The
dashed line indicate the cut values. The simulations here are not to scale.

The invariant mass spectrum of the pwall and π− after applying these cuts is shown
in Fig. 46. A peak around the nominal Λ mass is visible on top of background. The
signal peak has been fit by a Gaussian distribution and the background by a fourth order
polynomial. The mass resolution of the HADES Λ signal (Fig. 44) is better than the
signal from the FWall signal, since in the latter case the proton was detected in the FWall,
which has a worse time resolution.

Events are further processed if they are in the range of µ ± 3σ, the calculated signal to
background ratio in this range is S/B = 1.8
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Figure 46: The invariant mass spectrum of the
pwall detected in the FWall and π− de-
tected in HADES. The peak has been
fit by a Gaussian distribution and the
background by a fourth order polyno-
mial. Events are accepted if they are
in the range of µ ± 3σ as indicated by
the dashed line.
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4.3 K I N E M AT I C R E F I T

After selecting a relatively pure sample of events containing a Λ, the next step is to
select those events containing Σ0 hyperons. In order to achieve this and to suppress the
remaining background we use a kinematic refit based on Lagrange multiplier theory
[58].

4.3.1 Theory

Kinematic Refit is a well known tool in the exclusive analysis of particle reactions that
can be used to reduce background and to improve the mass resolution of particles.

The track parameters reconstructed by the tracking algorithm are assumed to be
randomly distributed about the true values. Thus the goal of a kinematic refit is to
estimate the true values of the track parameters to be as close as possible to the measured
values and at the same time fulfill a set of constraints given by the kinematics of the
reaction under study. These constraints can be either fundamental principles as energy
and momentum conservation or a fixed invariant or missing mass of reconstructed
particles, or geometrical correlations such as common vertices and kinematics topology.

In order to quantify the “as close as possible” between the true values and the measured
values, one needs a measure of distance. This can be quantified for instance by the
simple least square method. In this case, suppose that at the observational points x1, x2,
..., xn the experimental values are y1, y2, ..., yn and the corresponding true values η1, η2,
..., ηn are not known. Assume that a theoretical model exists, which predicts the true
value associated with xi:

fi = f (θ1, θ2, ..., θl, xi) ,

where θi is the set of model parameters. The least square principle states that the best
estimate of the model parameters are those for which the χ2 is minimum

χ2 = ∑
i
(yi − fi

σi
)

2
≈ minimum ,

where σi are the uncertainties associated with each measurement xi. This equation can
be written in terms of matrix notation
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χ2 = (y − θ)TV−1(y − θ) , (24)

where the measurements and the model parameters are arranged in column vectors as
follows:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1
y2
⋮

yn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

θ1
θ2
⋮

θn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and the uncertainties are given by an n × n covariance matrix:

V =
⎡⎢⎢⎢⎢⎢⎣

σ2
1 σ2

12 . . . σ2
1n

⋮ σ2
2 . . . ⋮

σ2
n1 . . . . . . σ2

n

⎤⎥⎥⎥⎥⎥⎦
,

where it is a diagonal matrix only if the measurements are independent.

In a simple least square problem, the basic unknowns are the model parameters θi
and the χ2 has to be minimized in order to find the best estimates of θi. But in a typical
kinematic refit problem, the basic unknowns are the true observables themselves ηi, and
the χ2 has to be minimized in order to find the best estimates η̂i of the true observables
ηi, where η̂i are referred as the improved measurements or the fitted parameters, in this
case the χ2 is minimized under some kinematical constraints.

In general, the constraint condition can be on a set of measureable variables ηi and
unmeasureable variables ξi. Assume that there are N measureable variables η1, η2, ...
,ηn and J unmeasureable variables ξ1, ξ2, ... ,ξn that are related by a set of k constraint
equations:

fk = f (η1, η2, ..., ηN, ξ1, ξ2, ..., ξ J) = 0, k = 1, 2, ..., K

then the best estimate of ηi and ξi are those for which:

χ2 = (y − η)TV−1(y − η) ≈ minimum
f (η, ξ) = 0

(25)
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In general, this can be solved by the elimination method, that is eliminating K un-
knowns from the constraint equation, then minimizing the χ2 with respect the remaining
N+J-K variables. However, this approach requires difficult algebraic computations.

Another approach that is used here, is the Lagrange multipliers, which provides a way
to transform the constrained minimization into minimizing a single Lagrange function L.
Eq. 25 can be reformulated by introducing K additional variables that are referred as
Lagrange multipliers λ1, λ2, ..., λK as follows [58]:

χ2 = (y − η)TV−1(y − η) + 2λT f (η, ξ) ≈ minimum (26)

Minimizing Eq. 26 involves finding the derivatives of χ2 with respect to all unknowns
η, ξ, λ and then setting the derivative equal to zero. This procedure is usually done
iteratively, with each iteration producing better approximations for η and ξ.

The procedure of the minimization can be summarized as follows [58]:

1. Suppose that the iteration number ν has been performed and it is necessary to find
a better solution. First introduce the notations

r = f ν + Fν
η (y − ην)

S = Fν
η V(Fν

η )T ,

where Fη is a K ×N Jacobian matrix (Fη = ∂ f
∂η ), i.e. the derivative of the constraint

equations with respect to η.

2. Find the updated unmeasurable variables ξν+1

ξν+1 = ξν − (FT
ξ S−1Fξ)−1FT

ξ S−1r ,

where Fξ is a K × J Jacobian matrix (Fξ = ∂ f
∂ξ ), i.e. the derivative of the constraint

equations with respect to ξ.

3. Find the updated Lagrange multipliers λν+1

λν+1 = S−1(r + Fξ(ξν+1 − ξν)) .

4. Find the updated fitted parameters ην+1

ην+1 = y −VFT
η λν+1 .
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5. Find the updated covariance matrix Vν+1

Vν+1 = Vν −Vν [FT
η S−1Fη − ((FT

η S−1Fξ)(FT
ξ S−1Fξ)−1(FT

η S−1Fξ)T)]Vν .

6. Calculate the new χ2 and compare the results with the previous iteration. A
stopping criteria can be for instance the difference between χ2 for two successive
iterations.

4.3.2 Quality of the kinematic refit

As the kinematic refit crucially depends on the measured variables y and the quality
of the covariance matrix, it is important to have a set of quality criteria, which gives a
measure for the quality of the fit.

Because the kinematic refit is based on the minimization of χ2, the final χ2 distribution
can be used to give a measure of the quality of the fit. If the covariance matrix is correctly
estimated, then the χ2 probability density function will be given by [58]:

f (χ2, ν) = 1
2ν/2Γ(ν/2)

(χ2)ν/2−1e−
1
2 χ2

, (27)

where ν is the number of degrees of freedom of the fit and Γ is the gamma function. Fig.
47 shows the χ2 probability density function for different values of ν. A χ2 distribution,
which roughly follows Eq. 27 indicates that the fit was performed correctly.
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Figure 47: The χ2 probability density function

for different numbers of degrees of
freedom.

At this point, it is convenient to define the p-value or the probability that a χ2 of the
theoretical distribution is greater than or equal to the χ2 value found from the fit:
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P(χ2) = ∫
∞

χ2
f (x, ν)dx . (28)

The P(χ2) distribution is uniformly distributed between 0 and 1, a small χ2 values
corresponds to a large P(χ2) values or a good fit. Events that do not satisfy the constraint
equations tend to have small P(χ2) values towards 0, so selecting events with larger
p-values provides a method to suppress background events.

Another important quality criteria for the kinematic fit is the pull distribution or the
stretch function, which is defined as the difference between the measured y and the fitted
parameters η normalized by the quadratic error difference:

z = y − η√
σ2

y − σ2
η

. (29)

Ideally if the covariance matrix is estimated correctly the pull distribution should be
a Gaussian with a mean value µ around zero and a standard deviation of σ = 1. If the
shape of the pull distribution is shifted with respect to zero, this indicates that there is a
systematic bias in the corresponding measured variable. Similarly, if the width of the pull
distribution is different from σ = 1, this indicates that the covariance matrix is wrongly
estimated.

4.3.3 Kinematic refit applied to p + p → p +K+ +Σ0

Before applying the kinematic refit to the reaction p + p → p + K+ + Σ0, the track
parameters that need to be fit must be defined. Spherical coordinates are used in this
analysis for the track parameterization, which is defined as follows:

y =
⎡⎢⎢⎢⎢⎢⎣

1/p
θ

ϕ

⎤⎥⎥⎥⎥⎥⎦
, (30)

where 1/p is the inverse of the absolute momentum, θ and ϕ are the polar and azimthual
angles of the track, the inverse of the momentum 1/p is used instead of the momentum
since the tracking algorithm of HADES determines the momentum via the curvature
of the track inside the magnetic field. Therefore, 1/p is the measured quantity, that
is Gaussian distributed. Another input needed by the kinematic refit is the covariance
matrix. In some cases, this may be known in advance, e.g. if a kalman filter is used for
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track fitting, however this is not the case here and the covariance matrix needs to be
estimated. The procedure to estimate the covariance matrix is presented in Appendix B.

The next input of kinematic refit are the constraint equations. The invariant mass
of secondary proton from Λ decay (marked as ps) and the pion is constrained to the
nominal mass of the Lambda MΛ = 1.115683 GeV/c2. In addition, the four particles
(ps, π−, p and K+) are constrained to have zero missing mass, since there is a photon in
the final state Mγ = 0 GeV/c2. These constraints can be collectively written as a matrix:

f = ((Eps + Eπ−)2 − (p⃗ps + p⃗π−)2x − (p⃗ps + p⃗π−)2y − (p⃗ps + p⃗π−)2z −M2
Λ

(Et + Eb −∑4
i=1 Ei)2 − (p⃗t + p⃗b −∑

4
i=1 p⃗i)2 −M2

γ
) = 0 (31)

The kinematic refit algorithm explained in section 4.3.1 was implemented with the
help of the PyTorch framework [94]. Only the constraint Eq. 31 are implemented as a
PyTorch tensor and the Jacobian matrix Fη = ∂ f

∂η is calculated by utilizing the PyTorch’s
automatic differentiation engine.
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Figure 48: The χ2 distribution of (a) the HADES data-set and (b) the FWall data-set. The data is shown as
black dots, the red histogram is the pp → pK+Λ simulation, the blue histogram is the pp → pK+Σ0

simulation and the green histogram is the simulation of pp → pK+Λπ0.

The χ2 distributions for the HADES and the FWall data-sets are shown in Fig. 48 and
the corresponding p-value distributions are shown in Fig. 49. The χ2 distributions are
consistent with f (χ2, ν) with ν = 2 shown in Fig. 47. The simulation of pp → pK+Λ
and pp → pK+Σ0 have similar distributions, which is attributed to the very similar
kinematics as both have MM(pK+Λ) = 0. This makes these two reactions hard to
distinguish. In addition, the channel pp → pK+Λπ0 should ideally have zero p-value
since MM(pK+Λ) = Mπ0 , however, due to the limited resolution it has p-values greater
than zero. This is especially evident in the FWall data-set as can be seen from the green
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Figure 49: The p-value P(χ2) of (b) the HADES data-set and (b) the FWall data-set. The data is shown as
black dots, the red histogram is the pp → pK+Λ simulation, the blue histogram is the pp → pK+Σ0

simulation and the green histogram is the simulation of pp → pK+Λπ0.

missing mass spectrum shown in Fig. 45a, where the tail of the distribution towards
MM2(pK+pwallπ

−)=0 is contributing to large p-values.

In order to obtain a good compromise between efficiency and purity, the data selection
was constrained to events with P(χ2) > 0.01. Demanding a larger p-value cut could
improve the signal purity but on the other hand reduces the signal statistics. After this
selection the missing mass of pK+ (the primary proton and the kaon) is investigated,
which is shown in Fig. 50 this should correspond to the hyperon mass. As can be shown
the kinematic refit improves the mass resolution and eliminates a considerable amount
of background events.
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Figure 50: The missing mass distribution of pK+ before and after the kinematic refit for the (a) HADES
data-set and (b) the FWall data-set.
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4.4 R E S U LT S

4.4.1 Signal Extraction

As discussed in the previous section the two reactions pp → pK+Λ and pp → pK+Σ0

are hard to distinguish, this can also be seen from Fig. 50, where the tail of one channel
is under the peak of the other. In addition to pp → pK+Λ there is another contribution
in the high mass region in the case of the FWall data-set that needs to be identified.
Therefore, a method to evaluate the different contributions of the signal and background
channels to the missing mass MM(pK+) spectrum is needed.
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Figure 51: The missing mass distribution of the
primary proton and the kaon for the
sum of the HADES and the FWall
data-sets. Two peaks, corresponding
to pp → pK+Λ and pp → pK+Σ0

are shown by the red and the blue
histograms, respectively. The green
histogram is the simulation of pp →
pK+Λ/Σ0π0. The filled histogram is
the sum of all simulation channels.
The vertical dashed lines indicates the
mass window applied in order to se-
lect Σ0 events.

In order to determine the contributions of the different simulation channels listed in
Tab. 1, a fit of the missing mass spectrum MM(pK+) has been carried out. The fit quality
is quantified by a χ2 minimization:

χ2 =
nbins

∑
i

(ndata −∑ch( f ch × nch
simulation))2

σ2
data + σ2

simulation
, (32)

where the summation runs over the number of bins of the missing mass spectrum, ndata
is the number of data events in each bin, nch

simulation is the number of simulated events
in each bin for each channel and f ch is a scaling factor for each channel. The starting
values of the scaling factors are determined by the estimated cross section and integrated
luminosity of the beam time, that is f ch = σL

N , where N is the number of generated
events.
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The missing mass spectrum MM(pK+) for the combined data-set (HADES and FWall)
after the fit is shown in Fig. 51, the χ2/nd f was found to be 1.07. The signal simulation
is shown by the blue histogram, two main background sources found by the fitting
technique are pK+Λ and pK+Λ/Σ0π0 shown by the red and the green histograms,
respectively. The other simulated channels have small contributions. A mass window of
1.170 < MM(pK+)[GeV/c2] < 1.220 is applied to select Σ0 hyperon yield. In total 2613
Σ0 hyperons are collected, 58% of events are within the HADES acceptance and 42%
within the FWall acceptance. The signal purity calculated from the simulations and found
to be 81%.

The photon from the Σ0 decay Σ0 → Λγ should have an energy Eγ = MΣ0 −MΛ ≈ 77
MeV, this photon is identified as a missing particle according to

pγ = pbeam + ptarget − (pp + pK+ + pΛ) ,

where pγ is the 4-momentum of the photon. The photon energy spectrum is shown in
Fig. 52. This energy spectrum is calculated in the rest frame of the Σ0 hyperon, the width
of the distribution is fully attributed to the finite momentum resolution of the detector.
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Simulation Sum Figure 52: The photon energy spectrum calcu-
lated in the rest frame of the Σ0 hy-
peron. The signal is shown by the
blue histogram, and the two main
background channels shown by the
red and the green histograms.

4.4.2 Angular Distributions

As a first step towards understanding the Σ0 production mechanism the angular
distributions mentioned above are studied within the detector acceptance and efficiency,
as shown in Fig. 53. The first row shows the CMS polar angles of the Σ0 hypeon, the
proton p and the kaon K+ in the CMS. The second row shows the angular distributions in
the three G-J frames. Here, the label pb,t stands for the beam and target proton, relative
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to which the angles are measured. The last row shows the distributions for the three
helicity angles. The signal simulation and the two contributing background channels
are shown by the blue, the red and green histograms, respectively. The structure of
the FWall is clearly visible in the cosθcms

Σ0 > 0.6 forward region shown in Fig. 53a as the
Λ (Σ0 → Λγ) is partly reconstructed in the FWall. This is not the case for cosθcms

p and
cosθcms

K+ as the primary proton and the kaon are detected only in HADES.

In all nine distributions, the pp → pK+Σ0 phase space simulations do not describe the
data well, this is more pronounced in the helicity angular distributions.

However, these experimental distributions are heavily distorted by the acceptance and
the efficiency of the detector setup. The limited acceptance is caused not only by the
uncovered region in the HADES setup (7○ < θ < 15○ and θ > 85○) but also the influence by
the detector material, that might cause particle scattering in the mechanical structures.
Furthermore, in the case of an exclusive measurement, the acceptance drops significantly,
since all final state particle are required to be detected in coincidence.

In addition to the limited acceptance, losses due to sources like the detector response,
the trigger decision, the tracking algorithm and the analysis cut flow need to be taken
into account. All these efficiency losses and limited acceptance distort and modify the
resulting experimental distributions. Therefore, a correction of the data for these effects
is crucial in order to draw physics conclusions.

4.4.3 Acceptance and Efficiency Correction

Comparisons between data and theoretical predictions need to be performed in a
consistent way, either the raw experimental distributions are compared to the theoretical
predictions folded by the detector effects, i.e., the distributions are compared at the
detector level, or the data are first corrected for the detector effects and then compared
to the theoretical predictions, i.e., the distributions are compared at the generator level.
The first approach is inconvenient, because the model needs to be folded by the specific
detector effects, which might be complicated and does not model the detector response
perfectly well. In contrast, the second method is more flexible and straightforward: by
correcting the data for the detector effects, it is possible to compare the results with
predictions from any model. The procedure of correcting the data to the generator level
is often called unfolding for the detector effects, which reflects the fact that the “real” data
is folded (i.e. convoluted) with the detector response. Mathematically any measured
distribution M(x) can be expressed as:

M(x) = ∫
Ω

R(x∣x′)T(x′)dx′ , (33)
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Figure 53: Angular distributions in experimental data and simulation. The first row shows the CMS angular
distributions of the Σ0 hyperon, the proton p and the kaon K+, the second row shows the
distributions for the three G-J angles and the third row shows the distributions for the three helicity
angles.

where T(x′) is the true distribution and R(x∣x′) is a kernel function describing the detec-
tor response (the limited acceptance and efficiency), also called the response function.
The integral is performed over the phase space volume available.

Since there are three particles in the final state in our reaction, there are three 4-vectors
containing a total of 12 components. Three degrees of freedom are fixed by the known
masses of the final state particles, three by momentum conservation and one by energy
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conservation. One observable additionally vanishes due to the azimuthal symmetry ϕ

(i.e. unpolarized beam and target). This means that the production of three particles
in the final state is determined by four independent kinematic variables. Therefore,
a model independent unfolding procedure needs to be performed in four dimensions
simultaneously. This approach, however, is not feasible since it requires a huge number
of simulated events in order to populate each bin in a four dimensional correction
matrix with sufficient statistics in order not to be dominated by statistical fluctuations.
Another approach is to integrate the acceptance over some of the kinematical variables
(e.g. cosθcms-pcms or pt-y), the correction stability is justified if the results are self
consistent when the correction has been determined as a function of different sets of
kinematical observables. Thus, by knowing the kinematical distributions of the initial
simulation (generator level or the PLUTO output) and of the final full-scale simulation
after propagating through GEANT3, DST production and selection cuts (detector level), it
is possible to calculate the response function for an experimental spectrum.

The experimental distributions are usually represented by binned histograms, so Eq.
33 can be written in a matrix form

M = RT , (34)

where R now is the response matrix, and each element is given by [43]

Rij = P(reconstructed in bin i | generated in bin j).

Each matrix element is the conditional probability that an event is reconstructed in bin
i given that it was generated in bin j. Ideally, the response matrix is a diagonal matrix,
the off-diagonal elements represent the migration effects.

The unfolding procedure corresponds to the solution of the matrix Eq. 34 which
connects detector and generator level, i.e. solving for true distribution T given the
inverse response matrix R−1 and the measured distribution M.

The most intuitive way to solve Eq. 34 is the analytical inversion of the response
matrix, that is by multiplying Eq. 34 from the right side by R−1. However, there is no
guarantee that the response matrix has an inverse, without which the inversion method
will not give meaningful solution. Hence, different approaches have been developed,
starting from the simple bin-by-bin corrections, to more sophisticated methods, like the
D’Agostini and the SVD methods. In the following, these methods are presented briefly.
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Bin-by-Bin Correction

The simplest unfolding method is the bin-by-bin correction. This method assumes that
in any bin i the migration from other bins into it equals the migration out of this bin. By
knowing the kinematical distributions at the generator level and at the detector level it
is possible to calculate a correction matrix for the experimental spectra

C =
Mgen

Mreco
,

where Mreco and Mgen are the binned distributions, measured at the detector and
generator level, respectively. Note that the Mreco and Mgen should have the same binning,
then the ratio between the two numbers in a considered bin is the correction factor to be
applied. The calculation of the uncertainties is also straightforward, each bin content
is assumed to follow a poissonian distribution and the associated uncertainty in bin i
is simply Ci

√
Mgen,i. Due to the limited detector acceptance, it can happen that some

bins are empty in the detector level spectrum Mreco, which leads that the corresponding
elements in the inverse response matrix C−1 are mathematically undefined. This makes
the use of this method quite unreliable and is used only as an initial cross check.

D’Agostini Correction

The D’Agostini method [44] is based on a Bayesian approach of the unfolding problem.
The number of events n̂(Ci) produced by a specific cause (a physics process) can be
written as a product of the total number of reconstructed events n̂(Ej), which are the
result of a specific effect Ej and the conditional probability of the cause Ci to produce
the effect Ej:

n̂(Ci) = ∑
i

n̂(Ej)P(Ci∣Ej).

The Bayes’ theorem can then be used to determine the unknown “response matrix”
P(Ci∣Ej)

P(Ci∣Ej) =
P(EjCi)P(Ci)
∑i P(EjCi)P(Ci)

,
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where P(EjCi) is the conditional probability to obtain the effect Ej given the cause Ci
and P(Ci) is the prior distribution or the initial probability of the cause, which can be
obtained from the simulations at generator level.

The D’Agostini method is about determining the P(Ci∣Ej) through an iteration pro-
cedure, i.e., the obtained distribution is used as new input for the prior. A stopping
criteria for the iteration can be quantified by χ2 between two successive iterations. The
uncertainties are also calculated within the formalism of the Bayes’ theorem as explained
more thoroughly in [44].

Singular Value Decomposition Correction

A Singular Value Decomposition (SVD) is a factorization of the response matrix through
orthogonal matrices to isolate its singular values. The singular values contain valuable
information about the properties of the matrix, this can be expressed as:

R = USVT , (35)

where U and V are orthogonal matrices and S is a diagonal matrix with non-negative
elements. The solution of the linear system Eq. 35 looks like:

USVTT = M

SVTT = UT M ,
(36)

where the last equality follows from the orthogonality of U (UTU = I). If the elements
of the vectors VTT and UT M are zi and di, respectively,

sizi = di ⇒ zi =
di
si

ti = Vij
dj

sj
,

(37)

where si are the elements of the matrix S and ti are the elements of T. Then the problem
of inverting a matrix reduces to the problem of finding the singular values of the response
matrix. At this point, two problems arises, the first one, due to errors in M some of di
are poorly known, while the second one is that some singular values si may be too small.
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Both of these occurrences result in an unstable behaviour for the unfolded procedure
[80]. In order to avoid these problems, the SVD method applies a rescaling of Eq. 34
according to the errors in M, and it introduces a regularization term, in order to suppress
possible oscillating solutions for small singular values si [74]. It has been shown that this
method gives reliable results with a proper treatment of uncertainties and correlation
effects [80].

Comparison between different correction methods

In this section, a comparison between the different correction methods discussed
above to the angular distribution of the Σ0 in CMS frame cosθcms

Σ0 is presented. All of
these methods are implemented in the RooUnfold framework [10].

As previously mentioned, the correction procedure is done using two independent
observables, the first one is the CMS angle of the Σ0 hyperon cosθcms

Σ0 and the second is
it’s momentum in the CMS frame pcms

Σ0 . The main input needed is the response matrix,
which is implemented through the class RooUnfoldResponse that has the advantage
of including miss events (e.g. events outside of the detector acceptance). Due to low
statistics for the reconstructed Σ0 events, the phase space is divide into only 32 bins
distributed as 8 cosθcms

Σ0 bins and 4 pcms
Σ0 bins. The response matrix is shown in Fig. 54a,

the x-axis and y-axis represents the detector and generator level respectively, while
the z-axis represents the signal reconstruction efficiency ϵ. Ideally the matrix should
have only diagonal elements with ϵ=1, however, due to the limited detector acceptance,
tracking efficiency, PID, etc, the signal reconstruction efficiency is much smaller than 1.
The off-diagonal elements are events that have been generated in a certain phase space
bin but due to the detector resolution have been reconstructed in a different bin.
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Figure 54: (b) The response matrix of the two kinematical variables cosθcms
Σ0 and pcms

Σ0 and (b) the purity
matrix.
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Figure 55: Comparison between different correction methods. (b) The corrected dN/dcosθ data distribution
and (b) the bias to the Monte Carlo simulation. The black up-triangles, the blue down-triangles
and the red dots are the data points corrected by the Bin-by-Bin, D’Agostini and SVD method,
respectively. The error bars are only statistical uncertainties.

As can be seen from Fig. 51, the tails of pp → pK+Λ and pp → pK+Λπ0 contribute to
the signal region 1.170 < MM(pK+)[GeV/c2] < 1.220, so in order to take this contribution
into account, a purity matrix has been constructed from the simulation. After scaling each
channel with the corresponding scale factor f ch, a two dimensional matrix of cosθcms

Σ0

and pcms
Σ0 is constructed, the bin content in this matrix is defined as follows:

Pbin =
n(pK+Σ0)

n(pK+Λ) + n(pK+Σ0) + n(pK+Λπ0) ,

where n(pK+Σ0), n(pK+Λ) and n(pK+Λπ0) are the number of events of the correspond-
ing channel in the specified bin. The purity matrix is shown in Fig. 54b, the purity of Σ0

events is not constant over the phase space but ranges from 49% to 95%.

After constructing the purity and response matrices, the response matrix is inverted
by one of the aforementioned algorithms, then the true distribution (generator level
distribution) is obtained as follows:

T = R−1MP ,

where R−1 is the inverse response matrix, M is the measured distribution (detector level
distribution) and P is the purity matrix.
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The differential distribution dN/dcosθ is then calculated by integrating over the CMS
momentum pcms

Σ0 , this distribution is shown in Fig. 55a for the different correction
methods. Because the proton-proton system is symmetric in the CMS frame, this distri-
bution must be symmetric around cosθcms

Σ0 = 0. A quantitative measure of the unfolding
procedure can be calculated from a test simulation sample and known as the Monte Carlo
bias, which is defined as the relative difference between the true (the generator level 4π

simulations) and the corrected values in each bin:

MC Bias = true 4π simulations - corrected simulations
true 4π simulations

Ideally this should be constant at 0, since the phase space simulations are flat in all
angular distributions. The error bars shown are only of statistical nature.

In order to quantify the quality of the correction, the Monte Carlo bias of the different
corrections has been fit by a straight line ax + b. A perfect correction must result in a = 0
and b = 0, Tab. 2 lists the fit results for the different correction methods.

Method a b

Bin by Bin 0.295 ± 0.024 -0.198 ± 0.051
D’Agostini 0.274 ± 0.033 -0.128 ± 0.063

SVD 0.103 ± 0.018 -0.040 ± 0.037

Table 2: Parameters of fit to the Monte Carlo bias for the different correction methods.

From the fit parameters listed in Tab. 2 for the different correction methods, it was
concluded that the SVD is the most stable correction method, and it has been used for
correcting all of the distributions presented in this work. However, as will be discussed
later, the result of the correction procedure depends on the simulation model.

4.4.4 Absolute Normalization

The corrected number of Σ0 events emitted into the corresponding phase space region
of cosθcms

Σ0 shown in Fig. 55 can be transformed into a differential cross section by
normalizing to the proton-proton elastic cross section as a reference measurement [13].
The cross section of Σ0 can then be expressed as:

σΣ0[µb] = 1
N f iles

⋅
σelastic

pp

Nelastic
pp

⋅NΣ0 ⋅ fdownscale ⋅ 103 , (38)



4.4 R E S U LT S 89

where σelastic
pp is the known cross section for proton-proton elastic scattering at the

same beam energy, Nelastic
pp is the number of reconstructed proton-proton elastic events

corrected for the acceptance and efficiency, NΣ0 is the number of corrected Σ0 events in
the corresponding phase space bin, N f iles is the number of analyzed files (in this work
N f iles=11856) and fdownscale is a factor that corrects for the LVL1 trigger down-scaling
and has a value of 3 (i.e, only every third event is recorded). The ratio Nelastic

pp /σelastic
pp is

expressed by the Rustamov-Factor [13]:

Rustamov − Factor =
Nelastic

pp

σelastic
pp

= 22271.7 .

The differential cross section of the Σ0 hyperon in the CMS frame is shown in Fig. 56.
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Figure 56: Differential cross section of the Σ0 hy-
peron in the CMS frame. Black points
are the experimental data and the
blue line is the pK+Σ0 phase space
simulation. The green line represent
the Legendre fit, where the reduced χ2

of the fit and the fit parameters are
stated.

A quantitative description of the angular distribution is given by fitting it with the
sum of Legendre polynomials. These coefficients are connected to the partial wave
contributions. Therefore the data points are fitted by a Legendre polynomial expressed
by:

P(cosθ) = A0P0 + A1P1 + A2P2 + A3P3 + A4P4 , (39)

where the Legendre Polynomials are given by



90 Σ0 P R O D U C T I O N I N P + P C O L L I S I O N S

P0 = 1
P1 = cosθ

P2 =
1
2
(3cos2θ − 1)

P3 =
1
2
(5cos3θ − 3cosθ)

P4 =
1
2
(35cos4θ + 30cos2 + 3)

and Ai are the fit parameters or the Legendre coefficients. Since the differential distribu-
tions in the CMS must be symmetric, only even powers are used in the fit. In particular,
the coefficients A0 and A2 are used, the inclusion of A4 has no significant effect in
the fit as it is compatible with zero. The total production cross section is calculated by
integrating the fit function. The integral of a Legendre polynomial is given by:

σ = ∫
1

−1
∑

i
AiPi(cosθ)dcosθ = 2A0 .

In this way the Σ0 total production cross section of reaction is determined to be σ =
(17.92 ± 0.36) µb, where the error quoted is the statistical error. Since the phase space
simulation does not adequately describe the data and it was used for the acceptance and
efficiency corrections, this cross section value is not yet the final result. After tuning the
simulation model, a more accurate value of the cross section will be presented.

4.4.5 Systematic Uncertainties

The statistical uncertainty quoted in the calculated cross section value is not the only
source of error, but also the systematic uncertainties are part of the reported result. A
standard definition of systematic uncertainties is that: “Systematic uncertainties are
all uncertainties that are not directly due to the statistics of the data” [28]. From this
definition, possible sources of systematic uncertainties can be for example, uncertainties
related to theoretical models, incorrect detector calibrations, a bias in the analysis cut
flow to obtain a specific outcome or the normalization to literature cross section.

The systematic uncertainties are usually unknown and have to be estimated, there are
different approaches on how to estimate the systematics, the approach used in this thesis
is the cut variations, that is the different selection cuts are varied and an independent
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Cut Nominal Variation 1 Variation 2

DCA(p, π−) [mm] 10 ± 20% ± 30%
2D d[p,π−],pvtx dp,pvtx < dπ−,pvtx not used -
dΛ,pvtx [mm] 10 ± 20% ± 30%
MM2(pΛ) [GeV2/c4] 0.2 ± 25% ± 50%
Low mass MM2(pK+Λ) [GeV2/c4] -0.02 ± 25% ± 50%
High mass MM2(pK+Λ) [GeV2/c4] 0.01 ± 25% ± 50%
Mp,π− [GeV/c2] 3σ 2σ -

Table 3: The variation of different cuts used to evaluate the systematic uncertainty.

analysis chain is created for every cut combination and the cross section is calculated as
described above. The variation of the different cross sections calculated can then give
an estimate of the size of the systematic uncertainties related to the different selection
criteria. Since the analysis relies on missing mass cuts and the off-vertex cuts of the Λ
selection, these might be a possible source of systematic errors. Each cut is varied in two
steps in either direction, in addition the Λ mass window is varied by 2σ or 3σ around
the mean value. These cut variations are listed in Tab. 3.
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Figure 57: The distribution of the of the deter-
mined cross section for different val-
ues of the selection criteria in the anal-
ysis. The blue filled histogram rep-
resents the accepted values and the
red dashed line represents the median
value.

Fig. 57 shows the distribution of the calculated cross sections obtained from the com-
binations of different cuts. The systematic uncertainty is defined as the 68% confidence
central interval of this distribution represented by the blue histogram, the red dashed line
represents the median value of the accepted cross sections and is equal to (17.6+0.38

−0.34)µb,
where the upper and lower errors are chosen in such a way that 16% of the distribution
is rejected on each side.

Another possible source of the systematic errors is the PID, which is evaluated by
activating the dropout layers of the VAE during the inference time as this is equivalent
to doing a Bayesian approximation [62]. Following this procedure, the estimated size
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of the systematic error related to PID is ≈ 5%. In addition to the PID and selection cuts
systematic errors, the normalization to the elastic proton-proton cross section introduces
7% systematic uncertainty.

4.4.6 Angular Distributions Revisited

In this section, the angular distributions corrected for the acceptance and efficiency
are presented. The correction procedure require the response matrix as an input, which
by itself depends on the simulation that has been used. Therefore the simulation model
has to be tuned in order to describe the different angular distributions.

The deviation from homogeneously populated phase space can arise from either an
anisotropic production of the Σ0 caused by a boson exchange as explained earlier, which
affects mainly the CMS and the G-J distributions, or that the production proceeds via an
intermediate resonance pp → p + (R → Σ0K+), which affects the helicity distributions.
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Figure 58: The proton G-J angle in the pΣ refer-
ence frame. The Black points are the
experimental and the blue line is the
pK+Σ0 phase space simulation. The
reduced χ2 of the Legendre fit and the
fit parameters are stated.

From Fig. 56, it can be seen that the Σ0 production is anisotropic, which can be
quantified by the A2 coefficient. So in order to account for the observed production
anisotropy, the isotropic simulations Σ0 has been folded by the Legendre fit function
F(cosθcms

Σ0 ) which is determined from the data. However, it was found that this does
not reproduce all of the observed CMS and G-J angular distributions. So, in addition
to the F(cosθcms

Σ0 ) weight function, the simulations are folded at the same time by the

fit function obtained from the proton G-J angle F(cosθ
RFpΣ
pb,t,p ) shown in Fig. 58. In this

way, the weighted phase space results in a satisfactory description of the CMS and
the G-J angular distributions. The helicity angular distributions are not affected by
this weighting/folding since they are kinematically uncorrelated with the CMS and G-J
angular distributions.
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One has to note also that the pp → pK+Λ events cannot be completely separated from
the signal and has a minor contribution. Therefore, the kinematics of the Λ has to be
modeled correctly as the purity matrix depends on the Λ kinematics. The Λ production
mechanism has been studied extensively by HADES at the same beam energy [15] and it
was found that the Λ hyperon is produced with a strong anisotropy in the CMS frame. In
order to take this anisotropy into account, Λ like events have been selected by applying a
mass window 1.090 < MM(pK+)[GeV/c2] < 1.150, the acceptance correction procedure
(in this case, correction is done using cosθcms

Λ and pcms
Λ ) and the normalization to the

elastic p+p cross section described before was applied to those events. The obtained
angular distribution of the Λ hyperon in the CMS frame F(cosθcms

Λ ) shown in Fig. 59
is fit by a Legendre polynomial and the fit function is used to weight the phase space
simulations of the pp → pK+Λ reaction.
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Figure 59: Differential cross section of the Λ hy-
peron in the CMS frame. The Black
dots are the experimental data and
the red line is the pK+Λ phase space
simulation. The reduced χ2 of the Leg-
endre fit and the fit parameters are
stated.

CMS Angular Distributions

The angular distributions of the three final state particles in the CMS are shown in
Fig. 60 together with the Legendre polynomial coefficients obtained from the fit. If
the particles would be produced in S-wave only, the distributions would be flat, and
the Legendre coefficients above A0 would be zero. The contribution of higher order
Legendre polynomials causes an anisotropic angular distribution and indicates higher
angular momenta between the particles. Since the p+p system is a symmetric system in
the CMS, so also the angular distributions must be symmetric with respect to cosθ = 0.
The angular distribution of the proton and the Σ0 hyperon shows an anisotropy, where
this is more pronounced in the case of the proton. From the observed anisotropies and
the fit parameters one deduces that there is a non-zero relative angular momentum, L,
in both the (p−K+Σ0) and (Σ0 − pK+) systems. This is in contrast to the kaon, where the
angular distribution is almost isotropic. If we consider the case of pure pion exchange as
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shown in Fig. 27b, the proton is the leading particle in this case, due to the small mass of
the pion, there is a small 4-momentum transfer so that the final state proton is preferably
emitted in the direction of the initial protons, which could explain the anisotropy in this
proton angular distribution. Due to momentum conservation, the Σ0 hyperon and the
kaon distributions are just kinematical reflections of the proton.
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Figure 60: Angular distributions in the CMS frame for (a) the Σ0, (b) the proton p and (c) the kaon K+. The
black line represents the weighted simulations.

G-J Angular Distributions

The angular distributions in the three G-J frames are shown in Fig. 61. A pronounced
anisotropy is observed in the pΣ0 G-J frame, which could be attributed to a relative
angular momentum in the pΣ0 system. This is also observed in the angular distributions
of proton and Σ0 in the CMS as they are related by the kinematics. The angular
distribution in the K+Σ0 G-J frame tends to be asymmetric, which could be caused by
the excitation of nucleon resonances decaying into the K+Σ0 channel. A long list of N∗

or ∆∗ resonances could contribute to the reaction. The angular distribution of a true
two-body resonance reaction is asymmetric only if resonances with opposite parities are
simultaneously excited through interfering amplitudes [5]. Hence, this distribution in
the K+Σ0 G-J frame can be an indication that more than one nucleon resonance with
opposite parity participates in the production process. The angular distribution in the
K+p G-J frame is expected to be basically isotropic if the reaction proceeds in two steps
via an intermediate resonance as the final state protons and kaons do not originate from
the same vertex. However, by inspection of the fit coefficients, one finds that it is difficult
to judge the isotropy of the distribution due to the limited detector acceptance in this
case.
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Figure 61: Angular distributions in the G-J frames (a) G-J angle of the proton in the pΣ frame, (b) G-J angle
of the kaon in the K+Σ frame and (c) G-J angle of the kaon in the K+p frame.

Helicity Angular Distributions

Since the helicity angular distribution is a special projection of the Dalitz plot, it is
a suitable observable to study the possible contributions of intermediate resonances,
decaying into two of the three final state particles. FSI also distort the Dalitz plot and
consequently it’s effects are seen in the helicity angular distribution. The helicity angular
distributions are shown in Fig. 62. The weighted phase space simulation is flat in the
helicity angular distributions since the helicity angle is kinematically uncorrelated with
the CMS angle or the G-J angle. From Fig. 62, one can conclude that all distributions
are far from isotropic, which which is consistent with the reaction pp → pK+Σ0 being
dominated by intermediate resonant production. Therefore, an inclusion of intermediate
resonances is necessary in order to give a better description of the helicity angular
distributions.
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Figure 62: Angular distributions in the helicity frames (a) the helicity angle between p, Σ in the K+Σ frame,
(b) the helicity angle between p, K+ in the pΣ frame and (c) the helicity angle between K+, Σ in
the K+p frame.
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The Incoherent Sum

Inspection of [121] reveals a long list of nucleon resonances, which can be either
isospin 1/2 N∗ or isospin 3/2 ∆∗ resonances. However, only few of those listed in Tab. 4
contribute at this beam energy and have a measured (or seen) branching ratio to the
K+Σ0 final state.

Resonance Mass [GeV/c2] Width [GeV/c2] JP BR (K+Σ0) ϵ [MeV]

N∗(1710) 1.710 0.140 1
2
+

seen 528
N∗(1875) 1.875 0.200 3

2
−

seen 363
N∗(1880) 1.880 0.300 1

2
+

10-24% 358
N∗(1895) 1.895 0.120 1

2
−

6-20% 343
N∗(1900) 1.920 0.200 3

2
+

3-7% 338
∆∗(1900) 1.860 0.250 1

2
−

seen 338
∆∗(1910) 1.900 0.300 1

2
+

4-14% 328
∆∗(1920) 1.920 0.300 3

2
+

2-6% 318

Table 4: A list of N∗ and ∆∗ resonances that might contribute to the pK+Σ0 reaction. The mass, width,
spin-parity quantum numbers and the branching ratios were taken from [121], the last column lists
the excess energy (ϵ) of the reaction pp → p +N∗/∆∗.

Fig. 63 shows Pluto simulations of Σ0 hyperon production pp → p + (N∗/∆∗ → K+Σ0)
in which N∗ resonances with different properties were simulated and the effect of the
kinematics in the K+Σ0 and pΣ0 invariant mass spectra is apparent.
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Figure 63: Pluto simulations of Σ0 resonant production. (a) The K+Σ0 invariant mass and (b) the pΣ0

invariant mass.

In order to quantify the contribution of each resonance, the different resonances and
the phase space have been scaled to match the experimental data by means of a χ2



4.5 PA RT I A L WAV E A N A LY S I S 97

minimization as described in section 4.4.1, the minimization is done in the K+Σ0 and pΣ0

invariant mass spectra simultaneously as they are sensitive to the resonance masses and
widths. It was found that the fit prefers ∆∗(1900), N∗(1880), N∗(1710) and N∗(1895)
with 55%, 4.3%, 6.7% and 3%, respectively, while about 31% is a pure phase space
contribution. The different contributions compared to data are shown in Fig. 64. The
agreement between the experimental data and the incoherent sum is quantified by a
reduced χ2 value. A fit of a pure phase space simulation pp → pK+Σ0 has resulted in
χ2/nd f ≈ 4.1.
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Figure 64: The contributions of phase space and resonance production of Σ0 compared to the experimental
data, the reduced χ2 is stated for both invariant masses. (a) The K+Σ0 invariant mass distribution
and (b) the pΣ0 invariant mass distribution.

The incoherent sum of the phase space and the resonant production is then used for
the acceptance and the efficiency correction. The helicity angular distributions corrected
by the incoherent sum are shown in Fig. 65.

The tuned simulation model correctly reproduces the helicity angles (p, K+) and
(K+, Σ0), as both of these angles are sensitive to the mass and the width of the resonance.
The helicity angle (p, Σ0) calculated in the rest frame of the resonance is not influenced
by it’s mass and width. However, if more than one nucleon resonance contributes,
interference effects can influence this distribution, which might be the case here as the
simulation model is just the incoherent sum of the different contributions and does not
take the interference effects into account.

4.5 PA RT I A L WAV E A N A LY S I S

From the presented results so far, it was concluded that the experimental data can not
be described by phase space simulations, but there must be a resonant component in
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Figure 65: Angular distributions in the helicity frames corrected by the incoherent sum of the phase space
and the resonant production, the weighted phase space is shown by the blue line, the resonant
contribution by the purple line and the sum by the green line. (a) The helicity angle between p, Σ
in the K+Σ frame, (b) the helicity angle between p, K+ in the pΣ frame and (c) the helicity angle
between K+, Σ in the K+p frame.

addition to the phase space. This result was expected as it was already shown in [5]. The
incoherent sum of the phase space and different nucleon resonances provides a better
description of the experimental data. However, a still open question is the interference
between different channels.

A Partial Wave Analysis (PWA) is a technique used in quantum scattering theory, where
the initial state can be considered as a series of spherical waves each of definite angular
momentum l h̄ (partial waves) and the aim of the PWA is to decompose each wave into
its constituent angular momentum components. Each transition is described by a partial
wave amplitude, a PWA aims to determine the partial wave amplitudes.

The framework used in this thesis is the Bonn-Gatchina Partial Wave Analysis (BG-
PWA) [109]. In the BG-PWA the differential cross section of the scattering process (in
this case a + b → 1+ 2+ 3) can be written as [49]:

dσ = (2π)4∣A∣2

4∣k⃗∣√s
dϕ3(P, q1, q2, q3)

P = k1 + k2 ,

where dϕ3 is the phase space element of the three final state particles with the 4-momenta
qi; ∣k⃗∣ is the combined 3-momenta of the two initial state protons; ∣k∣ is the absolute
value of the momentum of the beam proton calculated in the CMS frame;

√
s is the

center of mass energy of the colliding system; A is the total transition amplitude from
the initial to the final state. This total transition amplitude is given by a sum over all
partial waves, which gives rise to interference patterns between different partial waves:
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A = ∑
α

Aα
tr(s)Qin

µ1,...,µj
(S, L, J)A2b(S2, L2, J2)(si)Q

f in
µ1,...,µj(i, S2, L2, J2, S′, L′, J) ,

where S, L and J are the spin, orbital angular momentum and total angular momentum
of the initial state. For each partial wave α, the final state is treated as two-particle
subsystem with quantum numbers S2, L2, J2 indicating the combined spin, orbital
momentum and total angular momentum of the subsystem and the third particle is
treated with respect to this sub-system. The quantum numbers of the total final state
(in this case pK+Σ0) is then described by S′, L′ and J, where S′ is the total spin of the
two-particle subsystem when combined with the third particle and L′ denotes the orbital
momentum between the third particle and the subsystem.

Aα
tr(s) is the transition amplitude from the initial to the final state where the multiindex

α donates all possible combinations of S, L, J, S2, L2, J2, S′, L′ and i associated with
certain waves. Qin

µ1,...,µj(S, L, J) and Q f in
µ1,...,µj(i, S2, L2, J2, S′, L′, J) are the spin-momentum

operators of the initial and final state, respectively. The exact form of the operators can
be found in [21].

The transition amplitude is parametrized by three parameter αi as follows:

Aα
tr(s) = (α1 + α3

√
s)eiα2 .

Because the center of mass energy of this experiment is fixed (
√

s = 3.18GeV) the third
parameter α3, which is responsible for the energy dependence of each partial wave was
set to zero. This means that each partial wave α is described only by the strength α1 and
phase α2 parameters.

A2b(S2, L2, J2)(si) describes the rescattering processes in the final two-particle sub-
system and is parameterized as follows:

Aβ
2b(s) =

α
β
γγ′
√

s

1− 1
2rβ

γγ′q
2α

β
γγ′ + iqα

β
γγ′q

2L2/F(q, rβ
γγ′ , L2)

,

where α
β
γγ′ is parameter that describes the scattering length of the two particles γ and

γ′, rβ
γγ′ describes the effective range of the two particle sub-system and q is the relative

angular momentum between the two particles. The F(q, rβ
γγ′ , L2) is the Blatt-Weisskopf

form factor, which is used for normalization [49] and the multiindex donates all possible
combinations of the two particle sub-system with quantum numbers S2, L2 and J2.
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In case of resonant production; where the two particle sub-system is produced via
an intermediate resonance; the A2b(S2, L2, J2)(si) is parametrized as a relativistic Breit-
Wigner in the following form [21]:

Aβ
2b(s) =

MΓtot

M2 − s − iMΓtot
,

with M and Γtot expressing the pole mass and width of the intermediate resonance. The
angular dependence of the scattering amplitude, that is characteristic for a partial wave
decomposition, is contained in the momentum part of the spin-momentum operators
and is parametrized by Legendre polynomials [20].

4.5.1 Quantum Numbers of the Initial State

In this experiment, the initial state consists of two protons (JP = 1
2
+
). The spins of

the two protons can be combined to form a singlet (S = 0) or a triplet state (S = 1),
respectively. In addition to the spin, a relative orbital angular momentum can appear
between the two protons giving rise to different combinations. The maximum value of
the orbital angular momentum which can contribute to the p+p scattering is L ≈ kR,
where R is the range of the interaction and k corresponds to the incident proton beam
momentum. If the range of the interaction is R ≈ 1/mp, where mp is the proton mass,
then the maximum value of the orbital angular momentum which contributes to the
scattering at beam kinetic energy 3.5 GeV is L = 3, that is only S, P, D and F waves need
to be considered. Since the two protons are indistinguishable fermions the total wave
function of the initial state has to be antisymmetric, which means that the following
relation must hold:

(−1)S+L+1 = −1 .

Tab. 5 lists all possible combinations of the two initial protons, by imposing the anti-
symmetrization condition, the grey shaded states are forbidden. Given the spectroscopic
notation:

2S+1LJ ,

the possible initial states can be written as 1S0, 3P0, 3P1, 3P2, 1D2, 3F2, 3F3 and 3F4.
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JP S = 0 S = 1

S-wave L=0 0+ 1+

P-wave L=1 1− 0−, 1−, 2−

D-wave L=2 2+ 1+, 2+, 3+

F-wave L=3 3− 2−, 3−, 4−

Table 5: Possible combinations of the initial state of two protons with JP = 1
2
+

.

4.5.2 Quantum Numbers of the Final State

The final state is a twofold problem, the non-resonant or direct production p + p →
p+K+ +Σ0 and the resonant production p+ p → p+ (R → K+ +Σ0), where R is a nucleon
resonance.

Non-Resonant Production of pK+Σ0

In the BG-PWA framework the non-resonant production proceed as follows; the proton
p (JP = 1

2
+
) and the hyperon (in this case Σ0 with JP = 1

2
+
) are combined into a two

particle sub-system and then the kaon K+ (JP = 0−) is combined with this sub-system to
produce the three body final state. The quantum numbers of the pΣ0 sub-system are
listed in Tab. 6. If for example the pΣ0 1S0 state is combined with the K+, the result
would be (1S0) 1S, (1P1) 3P, (1D2) 5D and (1F3) 7F for the three body final state, the
number outside the brackets stands for (2S+ 1) of the combined final state and the letter
denotes the angular momentum between the K+ and the pΣ0 state. The JP quantum
number conservation limits the transition to specific states as listed in Tab. 6.

Resonant Production of pK+Σ0

In case of the resonant production, the proton p (JP = 1
2
+
) is combined with the one of

the resonances listed in Tab. 4 (N∗-p or ∆∗-p) to produce the final state pK+Σ0. These
resonances can be grouped into four different categories according the spin parity JP

quantum number: JP = 1
2
+
, JP = 1

2
−
, JP = 3

2
+

and JP = 3
2
−
. The JP quantum number

conservation limits the transition to those specific states listed in Tab. 7. The states listed
are limited only to the F-wave.
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p-p Initial State 2S+1LJ Final State 2S+1LJ (pΣ0) K+

1S0

(3S1) 3P, (3P0) 1S, (3p2) 5D,
(3D1) 3P, (3D3) 7F

3P0

(1S0) 1S, (1P1) 3P, (1D2) 5D,
(3P1) 3P, (3D2) 5D

3P1

(1P1) 3P, (1D2) 5D, (3S1) 3S,
(3S1) 3D, (3P0) 1P, (3P1) 3P,
(3P2) 5P, (3P2) 5F, (3D1) 3S,

(3D1) 3D, (3D2) 5D, (3D2) 7D

3P2

(1S0) 1D, (1P1) 3P, (1P1) 3F,
(1D2) 5S, (1D2) 5D, (3S1) 3D,
(3P1) 3P, (3P2) 5P, (3P2) 5F,

(3D1) 3D, (3D2) 5D, (3D3) 7D

1D2

(1P1) 3D, (1D2) 5P, (1D2) 5F,
(3S1) 3P, (3S1) 3F, (3P0) 1D,
(3P1) 3D, (3P2) 5D, (3D1) 3P,
(3D1) 3F, (3D2) 5P, (3D2) 5F,

(3D3) 7P, (3D3) 7F

3F2

(1S0) 1D, (1P1) 3P, (1P1) 3F,
(1D2) 5S, (1D2) 5D, (3S1) 3D,
(3P1) 3P, (3P2) 5P, (3P2) 5F,

(3D1) 3D, (3D2) 5D, (3D3) 7D

Table 6: Possible combinations of the non-resonant production of pK+Σ0 used in this study. Inside the brackets
is the pΣ0 state, the number outside the brackets stands for (2S + 1) of the combined final state and
the letter denotes the angular momentum between the K+ and the pΣ0 state.

4.5.3 BG-PWA Analysis Method

As an input, the BG-PWA framework needs the reconstructed experimental data
together with a set of reconstructed phase space simulations (at the detector level), both
are provided in a form of a list containing the components of the 4-momentum of the
final state particles; the p, the K+ and the hyperon Σ0. In addition, a list of possible
transition waves that may contribute to the final state has to be provided. The transition
waves used in this analysis are listed in Tab. 6 and 7. In case of the resonant production,
the resonance mass and width were fixed to the PDG values (listed in Tab. 4) to reduce
the number of the fit free parameters. The mass and width of each resonance is provided
to the code in an extra input list.

The strength α1 and the phase α2 of each transition wave are determined by fitting
the partial wave amplitude to the experimental data on an event by event basis (an
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p-p Initial State 2S+1LJ Final State (N∗, ∆∗)-p

1S0

(N∗(1710) − p) 1S, (N∗(1875) − p) 3P, (N∗(1880) − p) 1S,
(N∗(1895) − p) 3P, (N∗(1900) − p) 5D, (∆∗(1900) − p) 3P,

(∆∗(1910) − p) 1S, (∆∗(1920) − p) 5D

3P0

(N∗(1710) − p) 3P, (N∗(1875) − p) 5D, (N∗(1880) − p) 3P,
(N∗(1895) − p) 1S, (N∗(1900) − p) 3P, (∆∗(1900) − p) 1S,

(∆∗(1910) − p) 3P, (∆∗(1920) − p) 3P

3P1

(N∗(1710) − p) 1P, (N∗(1710) − p) 3P, (N∗(1875) − p) 3S,
(N∗(1875) − p) 3D, (N∗(1875) − p) 5D, (N∗(1880) − p) 1P,
(N∗(1880) − p) 3P, (N∗(1895) − p) 3D, (N∗(1900) − p) 3P,

(N∗(1900) − p) 5P, (∆∗(1900) − p) 3D,
(∆∗(1910) − p) 1P, (∆∗(1910) − p) 3P, (∆∗(1920) − p) 3P,

(∆∗(1920) − p) 5P

3P2

(N∗(1710) − p) 3P, (N∗(1710) − p) 3F, (N∗(1875) − p) 5S,
(N∗(1875) − p) 3D, (N∗(1880) − p) 3P, (N∗(1895) − p) 1D,
(N∗(1900) − p) 3P, (N∗(1900) − p) 5P, (∆∗(1900) − p) 1D,
(∆∗(1910) − p) 3P, (∆∗(1910) − p) 3F, (∆∗(1920) − p) 3P,

(∆∗(1920) − p) 5P

1D2

(N∗(1710) − p) 1D, (N∗(1710) − p) 3D, (N∗(1875) − p) 5P,
(N∗(1880) − p) 3D, (N∗(1880) − p) 3D, (N∗(1895) − p) 3P,
(∆∗(1900) − p) 3P, (N∗(1900) − p) 5S, (N∗(1900) − p) 3D,
(N∗(1900) − p) 5D, (∆∗(1910) − p) 1D, (∆∗(1910) − p) 3D,
(∆∗(1920) − p) 5P, (∆∗(1920) − p) 5S, (∆∗(1920) − p) 3D

3F2

(N∗(1710) − p) 3P, (N∗(1710) − p) 3F, (N∗(1875) − p) 5S,
(N∗(1875) − p) 3D, (N∗(1880) − p) 3P, (N∗(1895) − p) 1D,
(N∗(1900) − p) 3P, (N∗(1900) − p) 5P, (∆∗(1900) − p) 1D,
(∆∗(1910) − p) 3P, (∆∗(1910) − p) 3F, (∆∗(1920) − p) 3P,

(∆∗(1920) − p) 5P

Table 7: Possible combinations of the proton and a nucleon resonance (N∗-p or ∆∗-p) to produce the final
state pK+Σ0 out of a certain p-p initial state. Inside the brackets is the resonance-proton combined
state (N∗-p or ∆∗-p), the number outside the brackets stands for (2S + 1) of the total final state and
the letter denotes the angular momentum between the p and the resonance.

unbinned fit). Since the experimental data may contain an amount of background
(mainly p + p → p +K+ +Λ), an additional list of background events has to be provided
with a negative weight to the BG-PWA framework. The fit is based on a log-likelihood
minimization, the fitting procedure is repeated for many iterations until no further
improvement of the log-likelihood value. By comparing the log-likelihood value of many
fits the best fit can be obtained through the largest negative value.
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As an output, the BG-PWA gives the fitted values of the parameters α1 and α2 and
a list of simulated events that have been used as an input but with each event being
assigned with a weighting factor, which gives the contribution of this event to the total
yield. From those events it was possible to present the fit result in a graphical way using
different kinematical observables.

Since the fitting works on an event-by-event basis, it is necessary to determine the
background events and add them to the experimental data list with a negative weight.
It was shown previously that in the signal region 1.170 < MM(pK+)[GeV/c2] < 1.220
there are contribution from pp → pK+Λ and pp → pK+Λπ0 channels (see Fig. 51),
which were estimated to be 14% and 5%, respectively. In this PWA method, only the
pp → pK+Λ channel was considered since it’s contribution is three times larger than
for the pp → pK+Λπ0 channel. The pp → pK+Λ events contributing to the signal were
determined as explained in Appendix C.

p-p Initial State
non-resonant

pK+Σ0 N∗(1710) N∗(1900) ∆∗(1900)
1S0 90.99 26.96 01.11 02.85
3P0 00.00 02.60 00.00 00.43
3P1 01.06 00.00 00.00 00.67
3P2 00.00 00.00 28.17 00.00
1D2 12.89 00.00 00.00 00.00
3F2 00.00 00.00 02.16 00.00

Table 8: Partial wave contributions to the total pK+Σ0 production.

The best PWA solution (log-likelihood value L = -333.65) was obtained by including
p+p initial waves 1S0, 3P0, 3P1, 3P2, 1D2 and 3F2 as shown in Tab. 8. As the waves
interfere with each other the sum of the different waves can exceed 100%. Due to the
limited statistics, a clear statement of the exact contribution of each resonance is not
possible since these contributions varies significantly for different solutions. However,
resonances with mass around 1.710 GeV/c2 (N∗(1710)) and 1.900 GeV/c2 (N∗(1900)
or ∆∗(1900)) are preferred by the fit.

A comparison between the best PWA solution and the experimental data is shown in Fig.
66 and Fig. 67 for different kinematic observables and angular distributions, respectively.
The agreement between the PWA solution and experimental data is quantified by a
reduced χ2 value for each observable calculated as follows:

χ2/nd f = ∑
bins

(nsimu − ndata)2
σ2

simu + σ2
data

/nd f , (40)
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where the summations runs over the number of bins for each histogram, nsimu is the
number of simulated events in each bin, ndata is the number of data events in each
bin and nd f is the number of degrees of freedom. The χ2 average value over all the
distributions shown in Fig. 66 and Fig. 67 is 1.4, which is an acceptable agreement
between the PWA solution and the experimental data.
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Figure 66: A comparison between the experimental data (black points) and the best PWA solution (blue
histogram) given in Tab. 8 for (a) the K+Σ0 invariant mass, (b) the pΣ0 invariant mass and (c)
the K+p invariant mass distributions.

The K+Σ0 and pΣ0 invariant mass spectra are sensitive to the mass and width of the
included resonances, while K+p invariant mass shape is fully attributed to the detector
acceptance, since the K+p can not be the decay product of a nucleon resonance.

As the PWA solution describes the experimental data in a good way, it can be used for
the acceptance and efficiency correction. The simulated phase space events that have
been assigned a PWA weight are filtered through the full simulation and analysis chain,
the obtained spectra for each observable at the detector and generator level are then
used to build the response matrices. The response matrices are inverted by the SVD
technique (discussed in section 4.4.3) and then used for the acceptance and efficiency
correction. The corrected invariant mass distributions are shown in Fig. 68 and the
corrected CMS, G-J and helicity angular distributions are shown in Fig. 69.

Each one of the nine distributions has been fit by a Legendre polynomial (see Eq.
39), the fit quality and parameters are given for each distribution. The Σ0 hyperon and
the p are produced anisotropically in the CMS frame, where the anisotropy is more
pronounced in the case of the protons (A2 = 5.76), indicating that production proceeds
via the pion exchange mechanism. The K+ CMS angular distribution is compatible with
isotropy.

As discussed previously the G-J angle measured in the K+p frame is expected to be
isotropic. However, if the kaon exchange mechanism plays a significant role in the Σ0

production it could affect this G-J angular distribution. Similar effects might potentially
arise from an unknown pentaquark-resonance [5].
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Figure 67: A comparison between the experimental data (black points) and the best PWA solution (blue
histogram) given in Tab. 8. The upper row shows the CMS angular distributions, the middle row
shows the G-J angular distributions and the bottom row shows the helicity angular distributions.

As explained, the helicity angular distributions depend on and reflect the masses and
the widths of the contributing nucleon resonances. The asymmetry of the helcity angular
distribution cosθK+,Σ0

p,Σ0 could be attributed to the interference between the contributing

nucleon resonances. However, a pΣ0 FSI could also result in an asymmetric distribution

with enhanced cross section towards cosθK+,Σ0

p,Σ0 = 1 [5]. This can be also reflected in the

Dalitz plot since the cosθK+,Σ0

p,Σ0 helicity angular distribution is a type of projection of the
whole Dalitz plot. Fig. 70 shows the Dalitz plot constructed from the invariant masses
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Figure 68: Invariant mass spectra corrected with the best PWA solution. (a) The K+Σ0 invariant mass, (b)
the pΣ0 invariant mass and (c) the K+p invariant mass distributions.

M2(pΣ0) and M2(K+Σ0). In the uncorrected Dalitz plot (Fig. 70a), the anisotropies
are primarily the result of the detector acceptance. However, the corrected plot (Fig.
70b) 2 shows strong deviations from a uniform distribution, which is a result of the
contributions from the nucleon resonances and the interference terms.

From the presented results, we can conclude, that the experimental data can be repro-
duced by a incorporating different nucleon resonances and non-resonant components,
the interference effect seems play a major role since the data can not be described by the
simple incoherent sum.

4.5.4 PWA Systematics

Due to the limited pK+Σ0 statistics and the large number of fit parameters, it was not
possible to determine the exact contribution of each resonance, in addition, the solution
is not very sensitive to the input wave composition. Therefore, it was necessary to test
different solutions in order minimize bias to the cross section calculation.

A systematic variation of the input partial waves was performed, and in addition, the
number of the non-resonant and resonant final partial waves was varied, the quality of
the PWA solution was determined by the loglikelihood value of the fit. However, only few
of the tested combinations produced a converging solution. Tab. 9 summarizes the best
five solutions, the agreement between the experimental and the PWA is quantified by a
reduced χ2 averaged over the MK+Σ0, MpΣ0, MpK+ invariant mass distributions and the
angular distributions in the CMS, G-J and helicity frames. The calculated cross section
(section 4.5.5) of different solutions fluctuates within 1.2% that is taken as an addition
uncertainty.

2 The correction is done as explained in section 4.4.3.
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Figure 69: Angular distributions in experimental data corrected by the best PWA solution. The upper row
shows the CMS angular distributions, middle row shows the G-J angular distributions and the
bottom row shows the helicity angular distributions.

4.5.5 Total production cross section

The total production cross section of the Σ0 hyperon can be obtained by integrating
the yield for different differential distributions. Tab. 10 lists the cross section extracted
from the different angular distributions. The cross sections are compatible with each
other within the calculated uncertainties, which is considered as a self consistency check
for the acceptance and efficiency correction procedure.
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Figure 70: The Dalitz plot, the black line marks the kinematic boundary. (a) Before efficiency and acceptance
correction and (b) after the correction.

Solution Initial State
non-resonant
contributions

resonant
contributions L

solution 1

1S0, 1D2
3P0, 3P1
3P2, 3F2 61.77 %

N∗(1710) ≈ 17.40 %
N∗(1900) ≈ 18.51 %
∆∗(1900) ≈ 02.31 % -333.65

solution 2 1S0, 1D2 25.79 %

N∗(1710) ≈ 22.25 %
N∗(1900) ≈ 09.82 %
∆∗(1900) ≈ 42.15 % -184.40

solution 3

1S0, 1D2
3P0, 3P1

3P2 45.06 %

N∗(1710) ≈ 21.40 %
N∗(1895) ≈ 16.17 %
N∗(1900) ≈ 15.88 %
∆∗(1900) ≈ 01.49 % -181.80

solution 4

1S0, 1D2
3P0, 3P1
3P2, 3F2 33.10 %

N∗(1710) ≈ 26.8 %
N∗(1880) ≈ 40.1 % -151.34

solution 5 1S0 16.75 %
N∗(1710) ≈ 78.55 %
∆∗(1900) ≈ 04.62 % -122.71

Table 9: The best five PWA solutions.

A weighted average cross section can be calculated and was found to be:

σ(pK+Σ0)[µb] = 18.74± 1.01(stat) ± 1.71(syst)

The calculated cross section value is included in Fig. 71, which shows a compilation
of the cross section of p + p → Σ0 +K+ + p as function of the excess energy ϵ [12], our
data point corresponds to ϵ = 556MeV, which is depicted by the green square, this is
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Observable σ [µb]

cosθcms
Σ 18.12± 0.65 (stat) +1.64

−1.63 (syst)
cosθcms

p 20.16± 0.84 (stat) +1.83
−1.82 (syst)

cosθcms
K+ 18.88± 0.86 (stat) +1.71

−1.70 (syst)

cosθ
RFpΣ0

pb,t,p 18.46± 0.94 (stat) +1.68
−1.67 (syst)

cosθRFKΣ0

pb,t,K+
18.44± 0.78 (stat) +1.67

−1.67 (syst)

cosθ
RFK+p
pb,t,K+

20.66± 3.00 (stat) +1.87
−1.87 (syst)

cosθRFK+Σ0

p,Σ0 18.74± 0.65 (stat) +1.70
−1.69 (syst)

cosθ
RFpΣ0

p,K+ 18.60± 0.65 (stat) +1.69
−1.68 (syst)

cosθ
RFK+p
K+,Σ0 18.10± 0.63 (stat) +1.64

−1.63 (syst)

Table 10: The extracted total production cross section from the different differential distributions.

compatible with the value obtained by the phase space parameterization presented in
Tab. 1. The p + p → p +K+ +Λ was determined by the HADES collaboration to be [15]:

σ(p +K+ +Λ)[µb] = 35.26± 0.43(stat)+3.55
−2.83(syst) ± 2.67(normalization) − 2.86(background)

Based on the cross sections, the ratio σ(pK+Λ)/σ(pK+Σ0) is 1.73 ± 0.31. The obtained
ratio is in agreement with the high energy limit of 2.2 that is measured experimentally
for ϵ > 700 MeV [5].

Figure 71: Compilation of cross sections from dif-
ferent experiments. The calculated
production cross section of p + p →
p + K+ + Σ0 is shown by the green
square.
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4.6 I N V E S T I G AT I O N O F T H E Y∗ R E S O N A N C E R E G I O N

In this section we investigate the high mass region of MM(pK+). The mass region
where MM(pK+) > 1.2 GeV/c2 is sensitive to the excited state hyperons Y∗, where
Y∗ stands for Σ(1385), Λ(1405) or Λ(1520). These resonances have been studied
extensively by many experiments including HADES [11, 12], however, the focus here
is on the radiative decays of these resonances. The physics motivation to study the
radiative transitions of the low lying excited state hyperons will be presented in the next
chapter in more detail.
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Figure 72: The missing mass of pK+ af-
ter a tighter cut on the missing
mass squared of pΛ (MM2(pΛ) >
0.4GeV2/c4) for the HADES (solid
line) and the FWall datasets (dashed
line).

Since the same final state is discussed here p + p → p +K+ + (Y∗ → Λγ), the signal
selection strategy stays the same except for the missing mass cut MM2(pΛ), where a
tighter cut is used in order to suppress the contributions from the ground states (Λ and
Σ0), that is MM2(pΛ) > 0.4GeV2/c4. The resulting spectrum of MM(pK+) is shown in
Fig. 72 for the HADES and the FWall datasets. From Fig. 72 it can be seen that there is
a peak structure in the FWall dataset around (1.350 - 1.400 GeV/c2) corresponding to
the mass of the Σ(1385) resonance. So in order to determine the contributions of the
different simulation channels to the spectrum shown in Fig. 72 the fitting procedure
explained in section 4.4.1 is utilized again here. However, it is not possible to differentiate
between the different decay modes of the resonance Y∗ using only the missing mass of
pK+. Therefore, the fitting procedure is performed simultaneously on

1. MM(pK+Λ)

2. MM(pK+)

3. MM(pΛ)
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The different missing mass spectra for the combined data-set (HADES and FWall) after
the fit is shown in Fig. 73. It was found from the fit that the peak structure in MM(pK+)
is described mainly by p + p → p +K+ +Λ +π0 in addition to small contributions from
resonant and non-resonant p + p → p +K+ +Σ+ +π− shown by the light blue and cyan
histograms, respectively. In a previous measurement the Σ(1385) yield was determined
from a simultaneous fit of all the simulations to the experimental data in the Λπ0 decay
mode and found to be ≈ 670 events [112]. Since the radiative decay branching ratio
is about 1% [121], the expected number of events in the radiative decay mode of the
Σ(1385) resonance should be 670 × (1/0.87) × 0.01 = 8 events, where BR(Σ(1385) →
Λπ0) = 0.87. However, the Λ(1405) resonance is also contributing in the same region
(around MM(pK+) ≈ 1.4 GeV/c2), so the number of events due to radiative decays

should be larger than 8 depending on the ratio of the cross sections σ(p+p→p+K++Λ(1405))
σ(p+p→p+K++Σ(1385))

and the branching ratio BR(Λ(1405) → Λγ). The case of Λ(1520) is even worse due to
the limited statistics in the high mass region MM(pK+) > 1.5.

To give a quantitative description, we assume that the experimental data are described
only by background events, i.e. all contributing channels shown in Fig. 73 represented
by the filled green histogram expect the radiative decays of excited states. We then rely
on statistical methods to assess the validity of this assumption. The approach developed
here is to define a test statistic or a discrepancy variable that quantifies the agreement
between the data and the hypothesis [27]. Based on the argumentation in reference
[27], the Pearson χ2 statistic:

χ2
p = ∑

i

(mi − λi)2
λi

,

is defined as a discrepancy variable. Here, the summation runs over the number of
bins, mi represents the number of measured events in bin i, and λi are the number of
expected events in the bin according to the hypothesis. The observed χ2

p can take any
value between 0 and ∞. Rather than using χ2

p distribution directly, one uses the p-value
as defined in Eq. 28 as it is constructed as the integral over the probability density
function (in this case pd f (χ2

p, nd f ), where nd f is the numbers of degrees of freedom)
of the test statistic. A small p-value is an indication that a wrong hypothesis is used
for comparison. This is the reason why p-values can be used to discriminate between
different hypotheses.

Since we assume that the data are described only by background events, the hypothesis
is referred to as the null hypothesis H0. The search for radiative decays of excited hyperons
(signal events) aims to reject the null hypothesis. The χ2

p was calculated for each mass
bin of the MM(pK+) separately, and in this case the test statistic probability is referred
to as the local p-value [15]. The local p-value is shown in Fig. 74, as can be seen for the
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Figure 73: The different missing mass spectra after the fit to the simulation, the reduced χ2 value is stated for
each spectrum, (a) MM(pK+Λ), (b) MM(pK+) and (c) MM(pK+Λ).

excited hyperon mass range MM(pK+) > 1.2, the local p-value is almost one, which can
be interpreted as the data is consistent with the null hypothesis H0 or in other words,
there no evidence for radiative decays up to 3σ confidence level assuming that the data
is described by the simulation sum (the green filled histogram).
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Figure 74: Local p-value as function of the
MM(pK+). Large p-value is an indi-
cation that the data is consistent with
the assumed hypothesis, which in this
case the null hypothesis H0. The red
dashed lines indicate the confidence
levels.

4.7 S U M M A RY

The exclusive analysis of the reaction p + p → p +K+ +Σ0 at a beam kinetic energy of
3.5 GeV has been presented. The daughter photon of the Σ0 was identified as a missing
mass and the Λ intermediate hyperon was reconstructed separately within the HADES
acceptance and the FWall acceptance. A kinematic refit was applied by constraining the
secondary proton and the pion equal to the Λ mass and the overall missing mass to the
photon mass, this helped to remove considerable amount of background and improved
the mass resolution of the Σ0. In total, 2613 Σ0 events were reconstructed 58% are
within the HADES acceptance and 42% within the FWall acceptance. Furthermore, the
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dynamics of the reaction p + p → p +K+ +Σ0 were investigated. For this purpose, the
angular distributions in the CMS, G-J and helicity-frames were studied. The phase space
simulations was weighted by the angular distribution of the Σ0 in the CMS and the G-J
angle of the proton in the pΣ0 reference frame in order to match the experimental data.
Afterwards, these simulations was used for the acceptance and efficiency corrections. All
the angular distributions have been corrected using the inverse of the detector response
matrix calculated by the SVD factorization method.

The corrected CMS distributions of the Σ0 and the proton show anisotropies, where
in the case of the proton is more pronounced, which is the expected behavior if pion
exchange dominates the particle production process. In addition, the helicity angular
distributions are far different from isotropy, which indicates that Σ0 production is procced
via resonant production in addition to the pure phase space. The influence of different
N∗ resonances has been tested by means of an incoherent sum of the phase space and
N∗ contributions. It was found that phase space, ∆∗(1900), N∗(1880), N∗(1710) and
N∗(1895) have contributions 31%, 55%, 4.3%, 6.7% and 3%, respectively.

A partial wave analysis using BG-PWA has been performed for the pK+Σ0 final state.
The BG-PWA determines the contribution of different partial waves to the pK+Σ0 pro-
duction. The non-resonant waves were constructed by combining the proton and the
hyperon into a two-particle sub-system pΣ0 and then the kaon was combined to this
sub-system (pΣ0)-K+. The nucleon resonances with a measured branching ratio to the
K+Σ0 have been included as resonant components. Multiple fits have been performed
by and the fit quality is calculated based on the log-likelihood value. The best solution
was obtained by including the initial proton-proton waves 1S0, 3P0, 3P1, 3P2, 1D2 and 3F2
with log-likelihood value -333.65. Due to the limited statistics, it was not possible to
obtain the exact contributions of nucleon resonance. However, resonances with mass
around 1.710 GeV/c2 (N∗(1710)) and 1.900 GeV/c2 (N∗(1900) or ∆∗(1900)) is certainly
required by the fit.

The total production cross section of the Σ0 hyperon was obtained by integrating the
yield for the different angular distributions and found to be σ[µb] = 18.74± 1.01(stat) ±
1.71(syst) and the ratio σ(pK+Λ)/σ(pK+Σ0) found to be 1.73 ± 0.31.

A search for radiative decays of excited hyperons has been performed by calculating
the Pearson χ2 test statistic and the corresponding local p-value for the missing mas
spectrum MM(pK+). It was found that the data supports the null hypothesis H0 up to
3σ. A measurement of the radiative decays provides information about the baryon wave
function. Therefore, this measurement is important to understand the internal structure
of hyperons. The next chapter presents a feasibility study o measure radiative hyperon
decays with the upgraded HADES setup for the upcoming p+p experiment at a beam
kinetic energy of 4.5 GeV.
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F E A S I B I L I T Y S T U D Y F O R R A D I AT I V E D E C A Y S O F
E X C I T E D H Y P E R O N S

This chapter presents a feasibility study for the radiative decay of excited hyperons
produced in p+p collisions at beam energy 4.5 GeV using the upgraded HADES detector
setup. These Electromagnetic decays (EM) provide considerable information on the
underlying structure of hyperons since it offers a clean probe of the initial and final state
wave functions. The quark model predicts the EM properties of the ground state hyperons
(e.g., Σ0 → Λγ) reasonably well; however, it is less successful in understanding the EM
properties of excited states [84, 45]. Several other theoretical approaches have been
proposed to give more accurate predictions of these transitions. Therefore, measuring
EM decays provides a means of discriminating between different theoretical models.

This chapter is organized as follows: The first section gives an overview of the FAIR
Phase-0 physics program and the upgrade of the different subsystems of the HADES
detector setup. In particular, the installation of the new electromagnetic calorimeter and
forward detector. The second section presents the theoretical aspects of the radiative
decays of excited state hyperons. The third section explains the signal and background
simulations and the selection strategy used to reconstruct the signal. The fourth section
describes the application of the kinematic refit technique to reduce the contamination of
background events containing π0. The last section gives the expected count rates of the
upcoming scheduled proton beam time at a kinetic energy 4.5 GeV.

5.1 F A I R P H A S E -0 A N D T H E H A D E S U P G R A D E

5.1.1 FAIR Phase-0 Physics Program

Future HADES operation within the new FAIR facility, will enable measurements with
proton beam energies up to 29 GeV. The proton beam physics program of the FAIR
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Phase-0 covers different aspects of the strong interaction in the non-perturbative regime.
HADES has already studied p+p and p+Nb collisions at 3.5 GeV. Yet, many of the
interesting observations made so far, hadronic decays of hyperons, ω production, and Σ0

production presented in the previous chapter, suffer from poor statistical significance or
call for further multi-differential analyses. In addition, an analysis of the contribution of
nucleon resonances to different final states, including the effect of interference among
broad resonances should be repeated to establish a solid reference. Runs with higher
proton beam energy (4.5 GeV) will enable detailed studies of the excitation function of
multi-strange baryon production, excited hyperons and for the first time measurements
of Dalitz decays, which are complementary to the planned studies of hyperon production
in proton-antiproton collisions with the PANDA setup.

The physics program of the FAIR phase-0 with a proton beam is summarized in the
following [9]:

Hyperon EM decays Y∗ → γΛ and Y∗ → γ∗Λ

Measurements of the EM decays of excited hyperons provide an important insight
into their structure. The baryon structure can be probed by measurements of the
electromagnetic Transition Form Factors (eTFF), which are in general a function of the
four momentum transfer q2 of the virtual photon exchanged between the initial and final
state baryon. The eTFF are often studied in scattering experiments (space-like domain
where q2 < 0), or in Dalitz decays Y∗ → Λ(γ∗ → e+e−) (time-like domain where q2 > 0).
The case where q2 = 0 corresponds to radiative decays or the emission of real photons
Y∗ → γΛ. Results published by HADES for the ∆(1232) baryon [7] indicate a significant
role for an intermediate ρ vector meson, in agreement with the Vector Meson Dominance
(VMD) model [107].

Differential studies of the decay width as a function of q2 and the angular distribution
of the leptons would enable the magnetic and electric transition form factors of the
radiative decays to be measured. Hence, results from HADES on both real and virtual
photon decays will have significant impact on the understanding of the structure of
hyperons in the region of small q2.

Hyperon hadronic decays

Hyperon hadronic decays provides a complementary approach to investigations of
hadron structure with electromagnetic decays. An important question is whether the
Λ(1405) is a conventional three-quark state, it has been suggested to be a resonance
with two poles: one below the KN threshold and the other in the Σπ system or as
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a molecular state [71]. Previous HADES measurement of the Λ(1405) line-shape in
the Σ±π∓ channels observed a dominance of the Σπ pole [12]. Therefore, a high-
precision measurement of the Λ(1405) line-shape could give clear understanding of
the resonance structure. The hadronic decay channel Λ(1520) → Λπ+π− constitutes
an important benchmark for the Dalitz branching fraction measurements, and provides
complementary constraints for VMD tests.

Finally, extensive studies of other excited hyperons decaying into various hadronic
final states give a more complete picture of the hyperon spectrum.

Double strange production

The production of double strange hyperons is of particular importance to understand
the properties of hot and dense nuclear matter. The excess production of Ξs in cold
nuclear matter has several implications for the interpretation of heavy-ion data, since its
origin seems to be present in the elementary channels such as p-p.

The measurement of double Lambda production Λ −Λ addresses the important topic
of baryon-baryon correlations. These correlations constrain the rather poorly known
hyperon-hyperon interaction, which has a key role in Λ −Λ double hypernuclei, neutron
stars core studies and the Ξ− production mechanism [66]. The proposed measurement
will complement upcoming studies of the ΛΛ by the PANDA collaboration [120].

5.1.2 HADES Upgrade

With the start of the FAIR Phase-0 program, most of the detector subsystems will
have reached an age of about 17 years, so in order to prepare for the new experimental
challenges, the HADES setup will upgrade or replace several subsystems. These consist
of the upgraded RICH, MDC, DAQ and the Forward Resistive Plate Chamber (FRPC), as
well as a new START detector, an inner TOF detector, an Electromagnetic Calorimeter
(EMC) and the Forward Detector (FD).

For the start time t0 determination, dedicated and newly developed sensors based on
Low Gain Avalanche Detector (LGAD) [117] technology will be used, it has an excellent
time resolution of 53 ps, measured using a proton beam of kinetic energy 1.92 GeV [9].

The RICH photon detector is replaced by an arrangement of multi-anode photo
multiplier tubes with blue-enhanced high quantum efficiency photo cathodes. The RICH
upgrade increases the mean number of photoelectrons per ring, and thus increases the
dilepton efficiency by a factor 3 [9].
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A new segmented plastic TOF hodoscope called inner TOF will be placed in front of
the first MDC layer of HADES and will cover the 6 MDC sectors, each module includes
three separate plastic scintillator plates with a nominal thickness of 6.4 mm, that are
read out by SiPMs. This will be used as a trigger detector to reduce the trigger rate
originating from background in proton induced reactions [69] .

The Electromagnetic Calorimeter

The addition of an electromagnetic calorimeter (EMC) to HADES will allow to study
new reaction channels involving e.g. the production of neutral mesons, neutral hyperons
(e.g., Σ0 or Σ(1385) resonances) in elementary and heavy-ion reactions via photon
measurements. The new EMC replaces the Pre-Shower detector and is based on lead
glass modules recycled from the OPAL experiment [119]. It is divided into 6 sectors, and
it will cover forward polar angles of 15○ < θ < 45○ and almost the full azimuthal angle.

In addition to photon identification, the installation of the EMC will have the advantage
of improving the electron/pion separation at large momenta. A full GEANT simulation
shows that the single photon efficiency for p+p collision is on average 80% and photon
energy resolution ≈ 6%/

√
E [119]. The EMC layout is shown in Fig. 75. Detailed

information of the installed EMC can be found in [119].

(a) (b)

Figure 75: (a) Front view of the EMC, dimensions measured in millimeters. (b) 3D arrangement of the EMC
modules [119].

The Forward Detector

Chapter 4 pointed out the importance of the detection of forward going particles,
especially for the reconstruction of excited hyperons. To extend the acceptance of the
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HADES Spectrometer towards lower polar angles 0.5○ < θ < 7○, a dedicated Forward
Detector (FD) has been installed with almost the full azimuthal coverage. It consists of
two Straw Tracking Stations (STS1, STS2) developed by the Jülich and Krakow groups
and are based on instrumentation developed for the PANDA forward tracker [115, 116].
In addition, a Forward Resistive Plate Chamber (FRPC) detector has been installed
for time of flight to f measurements. The tracking stations and the FRPC are placed
downstream of the target as shown in Fig. 76. The STS1 and STS2 each consist of
four double-layers. The STS1 double layers are aligned with respect to the vertical
direction by an inclination of 0○, 90○, 90○ and 0○, respectively, while the STS2 double
layers are rotated by 90○, 0○, +45○ and −45○, respectively. This configuration allows for
an unambiguous reconstruction of multi-track events. The straw tubes are operated with
a gas mixture of ArCO2 (90:10) at 2 bar absolute pressure. The operating voltage of
the anode wires is 1800 V. The spatial resolution of individual straw tubes has been
measured to be about σ = 0.13 mm for minimum ionizing protons and the efficiency is
measured to be above 95%. The FRPC detector consists of individually shielded hybrid
(metal glass) strip-like RPC counters, which consist of three aluminum electrodes (2 mm
thick) and two glass electrodes (1 mm thick). The time resolution of the FRPC detector
is expected to be better than 100 ps [9].

The combination of the to f measurement from the FRPC with the reconstructed track
information from the straw tracking stations STS1 and STS2 will enable the momentum
of the particles to be calculated.
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Figure 76: Schematic cross sectional view of the upgrade HADES detector setup including the EMC and the FD
[9].

For the purpose of the feasibility study presented here, the track reconstruction in the
FD is a rather simple algorithm and proceeds in two steps: a low resolution LR mode
and a high resolution HR mode. In the LR mode only the straw anode coordinates are
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used and all hits from the same straw double-layer are grouped into clusters of one or
two hits, then all combinations of clusters from all layers are fit with straight lines where
the wrong combinations are rejected based on the χ2 value. The track is then matched
to a hit in the FRPC. In the HR mode, the to f from the FRPC is used to calculate the
distance of closest approach of the track to the anode wire from the drift time in the
individual straw tubes [9].

The simulations were done assuming a beam intensity of 7.5 × 107 p/s and a beam
kinetic energy of 4.5 GeV. The beam is incident on the 4.6 cm long HADES LH2 target,
corresponding to 0.8% interaction rate, which was used previously for proton beam
experiments in HADES. These conditions correspond to an instantaneous luminosity of
L = 1.5× 1031cm−2s−1. The data trigger requires a multiplicity of at least three charged
particles (M3) to be registered in the inner TOF system [9]. The current HADES DAQ
system can readout a maximum trigger rate of 50 kHz, which is the expected rate of the
running conditions mentioned above.

5.2 P H Y S I C S M O T I VAT I O N S

Measuring the excited as well as ground state baryon masses and studying the various
transitions provides valuable information on the dynamics of non-pQCD. In particular,
the electromagnetic decays provide a clean probe of the baryon wave function. Here the
focus is on the low lying excited state hyperons Σ(1385) (Jp = 3

2
+
), Λ(1405) (Jp = 1

2
−
)

and Λ(1520) (Jp = 3
2
−
). In particular, Λ(1405) is a very interesting state since its wave

function cannot be described by q3 baryonic structure [87] and does not fit into the quark
model. As an alternative, a bound state of nucleon and anti-kaon KN (qq4) has been
proposed. Another interesting behavior is the EM transitions between an octet baryon
and a decuplet baryon (e.g. Σ(1385) → Λγ), which are related to the magnetic transition
form factors. One of the strong motivations to study the Σ(1385) → Λγ transition is to
clarify the role of the meson cloud dressing, which is of fundamental importance, as
explained in [99]. The radiative decay hierarchy of lower lying excited state hyperons is
shown in Fig. 77.

Within the framework of the Isgur-Karl non-relativistic quark model (NRQM) [77], the
low lying excited state hyperons are simple three quark states q3 and the wave functions
can be written as [45]:

∣Σ(1385)⟩ = ∣Σ10, 4SS⟩
∣Λ(1405)⟩ = 0.90 ∣Λ1, 2PM⟩ + 0.43 ∣Λ8, 2PM⟩ − 0.06 ∣Λ8, 4PM⟩
∣Λ(1520)⟩ = 0.91 ∣Λ1, 2PM⟩ + 0.40 ∣Λ8, 2PM⟩ − 0.01 ∣Λ8, 4PM⟩

,
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Figure 77: Radiative decays of the lower lying ex-
cited state hyperons. The transitions
shown by dashed lines are suppressed
or very rare in most models [122].

using the notation ∣XM, 2J+1Lσ⟩, where M is the SU(3) multiplet, J is the total spin, L
is the orbital angular momentum and σ is the SU(6) permutation symmetry. Using
the wave functions defined above, the radiative decay widths and amplitudes can be
calculated by assuming that the photon is radiated through the de-excitation of a single
quark. In the non-relativistic limit the radiative width is given by [48]:

Γ = 2π
m f

mi

k2

(2π)3
4π

2Ji + 1
∑
Miλ

∣AMiλ∣
2

Hint = (
2π

k
)1/2[ −

ej

mj

Ð→p j ⋅ Ð→ϵ ∗λ(
Ð→
k ) + i

ej

mj

Ð→sj ⋅
Ð→
k ×Ð→ϵ ∗λ(

Ð→
k )]e−

Ð→
k ⋅Ð→rj ,

,

where ej is the charge, mj is the mass, sj is the spin and Ð→pj is the momentum of the jth

quark. The Ð→ϵ ∗λ(
Ð→
k ) is the photon polarization vector,

Ð→
k is the photon momentum, λ is

the photon helicity and Mi is the z-component of the angular momentum of the decaying
baryon. Finally AMiλ is the matrix element of the interaction Hamiltonian Hint between
the initial and final states.

However, the simple assumption of the wave function of hyperons within the quark
model does not reproduce the experimental radiative decay widths. Therefore, several
theoretical models have been proposed to understand the hyperon wave functions, which
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includes the NRQM [77, 45, 48], the Relativized Constituent Quark Model (RCQM) [129],
the MIT bag model [48], the algebric model of hadron structure[31] and the calculations
within the framework of the Heavy Baryon chiral Perturbation Theory (HBχPT)[36].
The predictions of the various models can vary significantly making it experimentally
tractable to rule out certain models. Consequently, the radiative transitions provides
a means of differentiating between these models. Tab. 11 summarizes the theoretical
predictions of the proposed models and the experimental values measured by the CLAS
collaboration [122].

Model Σ(1385) → Λγ Λ(1405) → Λγ Λ(1520) → Λγ

NRQM 263 200 156
RCQM 267 118 215
MIT Bag 152 60 46
Algebraic model 221 117 85
HBχPT 290-470 - -
CLAS Experiment 479±120+81

−100 - 176±43+26
−12

Table 11: EM transition Y∗ → Λγ decay widths in keV as predicted by the NRQM [45, 48], the RCQM [129],
the MIT Bag model [48], the algebric model of hadron structure [31], and the (HBχPT) [36]. The
last row shows the experimental values measured by the CLAS collaboration [122].

5.3 S I G N A L R E C O N S T R U C T I O N S T R AT E GY

In this section the signal simulation and the reconstruction strategy used to select
signal events are described. The focus of this thesis is on the exclusive reaction p + p →
p +K+ + (Y∗ → Λγ), which is generated by PLUTO, where Y∗ stands for any lower lying
excited state hyperon Σ(1385), Λ(1405) or Λ(1520). The branching fractions of the
EM transition is obtained from the CLAS experiment, and are 1.4%, 0.05%, 1.1% for
Σ(1385), Λ(1405), and Λ(1520), respectively [122]. The intermediate Λ hyperon is
reconstructed from the decay mode Λ → pπ− (BR ≈ 64%). The topology of the reaction
is shown in Fig. 78.

p
Y
* Λ

π-

γ

p
targetbeam

p

K+
Figure 78: Topology of EM decay for the exclusive

reaction p+ p → p+K+ +(Y∗ → Λγ).
The orange tracks indicate the parti-
cles that are used in the event recon-
struction [9].

The output of PLUTO is analyzed to estimate the percentage of final state particles
within the HADES acceptance and the FD acceptance. Fig. 79 shows the polar angle
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distribution of final state particles at the generator level (PLUTO output). Tab. 12
quantifies the percentage of the acceptance values for both HADES spectrometer and
the FD. On average 62% of the kaons are within the HADES acceptance, while only
7% are within the FD acceptance. Pions have similar values of about 57% within
the HADES acceptance and about 8.5% within the FD acceptance. Primary protons
pprimary have smaller acceptance of about 44% within the HADES acceptance and 11.5%
within the FD acceptance. Of particular interest are the secondary protons psecondary
(Y∗ → γ(Λ → psecondaryπ−)) of which 16.5% of them are within the FD acceptance. This
supports the assumption that any forward emitted particle is a proton, since the other
particles have a relatively smaller acceptance compared to secondary protons.
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final state particles at the generator
level for the reaction p+ p → p+K+ +
(Y∗ → Λγ). The gray shaded area
represents the HADES acceptance and
the pink shaded area shows the FD
acceptance.

About 44% of photons from Y∗ → Λγ are emitted within the EMC acceptance
(15○ < θ < 45○). These numbers are an estimate of the acceptance for a simple phase
space distribution. A previous measurement of the Σ+(1385) at the same beam energy
[11] shows that the resonance is forward peaked and consequently its decay products
Σ+(1385) → Λπ+ are also forward peaked. In this case the importance of the FD will be
more pronounced.

Σ(1385) Λ(1405) Λ(1520)
HADES FD HADES FD HADES FD

π− 57.0% 8.5% 57.0% 8.6% 56.7% 8.5%
psecondary 31.0% 15.6% 30.3% 16.0% 28.0% 18.1%
pprimary 46.0% 11.0% 45.3% 11.2% 39.7% 12.5%
K+ 63.8% 6.9% 63.3% 7.0% 60.5% 7.6%

Table 12: The acceptance of final state particles of signal events as calculated from the PLUTO output.
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In addition to the signal events, a number of background channels could mimic the
signal final state or contaminate the signal. The background channels could be classified
into two main categories, the first category, includes the multi-pion production channels
(e.g. p + p +π+ +π− +π0), where one of the protons p and the π− could introduce a
combinatorial background in the intermediate Λ invariant mass distribution. In addition,
the π0 decays to almost 99% into two photons and could introduce a background in
the single photon spectrum. The second category, includes the associated strangeness
production, for example p +K+ +Λ +π0 is the most dominant background channel since
one of the photons π0 → γγ could have a low laboratory energy and escape detection,
leaving exactly the same signature of the signal events (p + K+ +Λ + γ). The cross
sections for the background channels have been estimated as explained in chapter 4.
The signal cross section is estimated based on previous measurements in the range
2.5 <

√
s[GeV] < 6 by several experiments as explained in [9].

A specific number of events has been simulated for both signal events and background
processes, so in order to get the expected number of events for the future 4.5 GeV proton
beam run; the different processes are scaled to the expected integrated luminosity using
the event weight:

w = σL
Ngenerated

,

where σ is the cross section, Ngenerated is the number of generated events and L is the
integrated luminosity. Assuming 28 days of data taking, L is given by:

L = ∫
t
Ldt = 3, 628, 800 µb−1 ,

where L is the instantaneous luminosity (L = 1.5× 1031 cm−2s−1 = 15 µb−1s−1). Tab. 13
lists the signal and background channels that have been simulated with the corresponding
cross section and the weight factor.

All channels are generated by PLUTO and then propagated through HGeant for detailed
detector simulations including the FD.

The momentum correction procedure explained in the previous chapter is applied
here in order to avoid a systematic shift of the missing mass peaks. In addition, this
correction is crucial for the kinematic refit applied later since an incorrect momentum
could cause unreliable results. Therefore, a momentum correction is applied to all
simulated channels. The difference between the reconstructed momentum and the
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Channel σ [µb] w
p + p → p +K+ +Σ(1385) 56.2 2.85717
p + p → p +K+ +Λ(1405) 32.2 0.05842
p + p → p +K+ +Σ(1385) 70.0 2.79418
p + p → p + p +π+ +π− +π0 1840 133.540
p + p → p + p +π+ +π− +π0 +π0 300 217.728
p + p → p +K+ +Λ 54.4 39.4813
p + p → p +K+ +Σ 23.5 17.0554
p + p → p +K+ +Λ +π0 43.0 31.2077
p + p → p +K+ +Λ +π+ +π− 20.0 14.5152
p + p → p +K+ +Λ +π0 +π0 10.0 7.25760
p + p → p +K+ +Σ0 +π0 20.0 14.5152
p + p → p +K+ +Σ0 +π+ +π− 2.0 1.45152
p + p → p +K+ +K0

S +π+π− 4.0 2.90304
p + p → p +K+ +K0

L 33.0 23.9501
p + p → p +K+ +K0

L +π0 13.0 9.43488

Table 13: Signal and background channels simulated with the corresponding estimated cross section and the
weight factor.

generated momentum is plotted as a function of the reconstructed momentum for each
particle species, then this is fit by a polynomial function, as shown in Fig. 80. The fit
function is then used to correct for the momentum of particles.

All signal and background channels are added together after scaling with the corre-
sponding weight factor w.

5.3.1 Particle Identification PID

The first step in the signal reconstruction is the charged particle identification. The
PID was only done for particles within the HADES acceptance, any forward going track
that hits the FD is assumed to be a proton. The PID was done using a simple feed
forward neural network ANN implemented within the PyTorch framework [94]. The
ANN is used as a multi-class classifier to distinguish among three particle species, namely
p, π+ and K+, the π− is identified as any negative charged track that is geometrically
uncorrelated to a ring in the RICH detector. The network is trained on the following
simulated channels:



126 F E A S I B I L I T Y S T U D Y F O R R A D I AT I V E D E C AY S O F E X C I T E D H Y P E R O N S

0 0.5 1 1.5 2 2.5 3

310×

 [MeV]measuredP

400−

300−

200−

100−

0

100

200

300

400]
-1

 [M
eV

ge
ne

ra
te

d
 -

 P
m

ea
su

re
d

P

p

(a)

0 0.5 1 1.5 2 2.5 3 3.5

310×

 [MeV]measuredP

400−

200−

0

200

400]
-1

 [M
eV

ge
ne

ra
te

d
 -

 P
m

ea
su

re
d

P

fd
p

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

310×

 [MeV]measuredP

100−

50−

0

50

100

150

]
-1

 [M
eV

ge
ne

ra
te

d
 -

 P
m

ea
su

re
d

P

-π

(c)

0 0.5 1 1.5 2 2.5 3

310×

 [MeV]measuredP

400−

300−

200−

100−

0

100

200

300

400]
-1

 [M
eV

ge
ne

ra
te

d
 -

 P
m

ea
su

re
d

P
+K

(d)

Figure 80: The difference between the reconstructed momentum and the generated momentum as a function
of the reconstructed momentum for (a) protons p, (b) protons detected in the FD p f d (c) pions π−

and (d) kaons K+. The momentum correction function is shown by the red curve, the red dots
shows the particle momentum difference after the correction procedure.

p + p → p + p +π− +π+ +π0

p + p → p + p +Λ
p + p → p + p +Λ +π− +π+

The data-set is balanced by introducing a weight factor for each class in the multi-
class cross entropy loss function. The input layer of the ANN consists of seven neurons
corresponding to the number of features, which are the absolute momentum p, the polar
angle θ, the azimuthal angle ϕ, the energy loss in the MDC and TOF subsystems and the
velocity of the particles β. The distributions of the input features are shown in Fig. 81.

The best validation accuracy was obtained by sequentially combining three fully
connected layers. In addition, a 50% dropout to each layer was applied to prevent the
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(d) Energy loss in the MDC system
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Figure 81: Distributions of input features to the neural network used for the PID. The three classes are the
protons (green) and pions (blue) and kaons (red).

model from over-fitting. The network converged quickly and has a classification accuracy
of 98%. The confusion matrix and the ROC curve evaluated on a hold-out data-set are
shown in Fig. 82a and 82b, respectively. As can be seen the classification accuracy for
pions is almost 100%, for protons 99% and 93% for kaons. The selection efficiency and
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purity as a function of the phase space variables evaluated on a hold out data-set is
presented in Appendix A.
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Figure 82: (a) The Confusion matrix. (b) The ROC graph for protons p (green), pions π+ (blue) and kaons
K+. The inset shows values of the area under curve AUC for the three classes.

5.3.2 The Λ Hyperon Reconstruction

The procedure followed in chapter 4 for the Λ reconstruction is also applied here.
Two data-sets have been identified, the HADES data-set where all final state particles
are required to be within the HADES acceptance. The FD data-set, where 1 p, 1 K+ and
1 π− are required to be within the HADES acceptance and in an addition, at least one
track in the FD acceptance.

HADES data-set

For the HADES data-set, the Λ hyperon is reconstructed by combining it’s decay
products, namely the p and the π−. The topology of the Λ decay (see Fig. 40) was used
to define further off-vertex selection.

First off, for each event, the intersection point or the PCA between the primary proton
track pp and the kaon K+ track was defined as the primary vertex. Since there is more
than one proton per event, the DCA between each proton and the kaon tracks d(pp, K+)
is calculated as shown in Fig. 83. The proton and the kaon pair that has the smallest DCA
are used to construct the primary vertex. Furthermore the primary vertex is required to
be located within the target volume −60 < z[mm] < −5 and r[mm] < 5 as indicated by the
dashed lines in Fig. 84. The secondary vertex is defined as the PCA between the proton
and the pion tracks.
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Figure 83: The DCA between the proton and the
kaon tracks for all combinations is
shown in black and the red histogram
shows the distribution of the smallest
DCA value in a given event.
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Figure 84: (a) The primary vertex transverse position as function of the longitudinal position. Accepted events
are within −60 < z[mm] < −5 and r[mm] < 5 as indicated by the white dashed line. (b) The
projection on the z-axis.

After constructing a primary vertex for each event, the following set of topological
cuts are applied to select the Λ hyperon:

• The DCA between the p track and the π− track d(p, π−) is required to be smaller
than 15 mm.

• Following momentum and energy conservation, the DCA of the p track and the
primary vertex d(p, pvtx) is required to be smaller than the DCA between the π−

track and the primary vertex d(π−, pvtx).
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• A pointing vector angle pva is determined by the scalar product of the spatial vector
connecting the primary and the secondary vertex with the Λ mometnum vector.
The pva is required to be smaller than 0.5 rad.
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Figure 85: (a) The DCA distribution between the p, and π− tracks, (b) The DCA distribution between the π−

track and the primary vertex d(π−, pvtx) as a function of the DCA between the p track and the
primary vertex d(p, pvtx) and (c) the pointing angle vector distribution.

The distributions of the topological variables are shown in Fig. 85, where the cuts
are indicated by the dashed lines. The invariant mass spectrum Mp,π− before and after
applying the topological cuts is shown in Fig. 86. An event is further processed if it is in
the range 1.108 < Mp,π−[GeV/c2] < 1.122. The applied cuts improve the S/B ratio from
5.3 to 12.2.
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Figure 86: The invariant mass distribution
Mp,π− before and after the topolog-
ical cuts. The dashed lines indicate
the accepted region.

The FD data-set

Since the FD is installed in a magnetic field-free region, the FD tracks are reconstructed
as straight lines, thus no direct momentum measurement is possible. Instead, for a given
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mass hypothesis the momentum of a track can be calculated from the to f measurement
provided by the FRPC.
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Figure 87: The FRPC to f spectra for different par-
ticle species. The cut value is indicated
by the dashed line.

Since the secondary proton has the largest probability to be detected in the FD
acceptance, therefore, the FD data-set assumes that any track reconstructed in the
FD is due to secondary protons stemming from the Λ decay. In order to reduce the
contamination from other particles, the FRPC to f is required to be greater than 27 ns, as
shown in Fig. 87. This cut suppresses the pion contamination by 84%, kaons by more
than 99%, while keeping about 80% of the proton signal.
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Figure 88: (a) The DCA between the FD proton track and the π− for all channels and (b) for signal events.
The dashed line indicates the cut value.
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To reconstruct the Λ in the FD data-set, the DCA between the FD proton track and
the π− track is calculated (see Fig. 88) and any pair that has DCA > 20 mm is rejected.
Finally, the FD proton track is combined with the π− track and the corresponding
invariant mass spectrum is shown in Fig. 89. An event is further processed if it is in the
range 1.108 < Mp,π−[GeV/c2] < 1.122. The applied cuts improve the S/B ratio from 0.47
to 0.95.
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Figure 89: The invariant mass distribution
MpFD ,π− before (black) and after
(blue) the to f and DCA cuts. The
dashed lines indicate the accepted re-
gion.

5.3.3 Background Suppression

Several background channels could contribute to the final spectrum. In particular,
the main irreducible background is the π0 production through the process p + p →
p +K+ +Λ +π0, when one of the photons π0 → γγ escapes detection leaving the same
observed final state as the signal. So in order to suppress the background, two kinematic
variables were introduced:

• The squared missing mass of the primary proton and the kaon is required to be in
the excited hyperon production range 1.6 < MM2(ppK+)[GeV2/c4] < 2.6. As can
be seen from Fig. 90 this restriction removes the contribution from the ground
state hyperons (Λ and Σ0) almost completely. In general, this cut suppresses the
background by 56% while keeping 93% of the signal.

• The squared missing mass of all final state charged particles should peak at zero
since there is a photon in the final state. Thus, this is required to be in the
range −0.04 < MM2(ppK+Λ)[GeV2/c4] < 0.01. This cut is asymmetric about
MM2(ppK+Λ) = 0 to reduce contamination from the p + p → p + K+ +Λ + π0

background, which is peaked at the square of the π0 mass (M2
π0 = 0.02 GeV2/c4).
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The corresponding spectra is shown in Fig. 91. This cut suppresses the background
by 70% while keeping 84% of the signal.
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Figure 90: The squared missing mass MM2(ppK+) distribution in (a) linear and (b) logarithmic scale. The
black histogram is the sum of the background and the signal simulation, the red histogram is the
background and the blue histogram is the signal simulation. The dashed lines indicate the cut
range.
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Figure 91: The squared missing mass MM2(ppK+Λ) distributions in (a) linear and (b) logarithmic scale.
The black histogram is the sum of the background and the signal simulation, the red histogram is
the background and the blue histogram is the signal simulation. The dashed lines indicate the cut
range.
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5.3.4 Photon Identification

The excited hyperon is reconstructed in the Λγ invariant mass. In this study, photon
candidates are identified as energy clusters in the EMC, where a cluster is defined as a
set of adjacent crystals with an energy deposition above a certain threshold. The position
of the cluster provides information on the photon 4-vector [119].

In order to suppress the contribution from charged particles, the cluster is required to
be spatially uncorrelated with the charged tracks. In addition, the photon candidates
are required to have 0.96 < β < 1.04 as shown in Fig. 92. Since low energy photons can
be selected by these cuts, an energy deposition in the EMC cluster above 0.200 GeV is
required (see Fig. 91b), which is optimized based on the signal significance (defined
as S/

√
S + B) as presented in Fig. 91a. Since S is proportional to the efficiency (ϵ) and

B is proportional to (1− p) ⋅ S (where p is the signal purity). Therefore, optimizing the
significance is equivalent to optimizing ϵ/ϵ(2− p).
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Figure 92: The velocity (β = v/c) spectrum for

all photon candidates (black), pho-
tons with clusters that are geometri-
cally uncorrelated with charged tracks
(blue) and real photons (green). The
red dashed lines indicate the cut
range.

The momentum correction procedure introduced for charged particles is again applied
to the identified photon candidates. The difference between the reconstructed energy
cluster and the generated photon energy is plotted as a function of the reconstructed
energy, then this is fit by a polynomial function, as shown in Fig. 94a. The fit function
is then used to correct for the energy of the photon candidates. This procedure has the
effect of shifting the mass peaks of the resonances into the correct position as seen in the
Λγ invariant mass distribution shown in Fig. 94b.
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Figure 93: (a) The optimization of the photon energy cut and (b) the reconstructed photon energy for all
clusters (black), photons with clusters that are geometrically uncorrelated with charged tracks
(blue) and real photons (green). The dashed line indicates the cut value.
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Figure 94: (a) The difference between the EMC cluster energy and the generated photon energy as a function of
the cluster energy. The energy correction function is shown by the red curve, the red dots shows the
photon energy difference after the correction procedure. (b) The Λγ invariant mass distribution
of the resonances before (black) and after (blue) the energy correction. The vertical dashed lines
indicates the PDG masses of the Σ(1385) (green), Λ(1405) (red) and Λ(1520) (blue).



136 F E A S I B I L I T Y S T U D Y F O R R A D I AT I V E D E C AY S O F E X C I T E D H Y P E R O N S

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
]2 [GeV/cγΛM

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

310×

2
C

o
u
n
ts

 /
 0

.0
1
 G

e
V

/c

Background + Signal

Background

γ Λ →(1385) Σ

γ Λ →(1405) Λ

γ Λ →(1520) Λ

Simulations

Figure 95: The Λγ invariant mass distribution
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5.4 E X C I T E D H Y P E R O N Y∗ Y I E L D

After photon identification and the Λ reconstruction, the excited hyperon is recon-
structed in the Λγ invariant mass distribution and presented in Fig. 95. The background
is mostly from the p + p → p +K+ +Λ +π0 channel as indicated in Tab. 14.

Channel Without OA cut [%] With OA cut [%]

p + p → p + p +π+ +π− +π0 7.25 3.70
p + p → p + p +π+ +π− +π0 +π0 0.31 0.00
p + p → p +K+ +Λ 0.34 0.31
p + p → p +K+ +Σ 0.51 0.20
p + p → p +K+ +Λ +π0 88.4 94.0
p + p → p +K+ +Λ +π+ +π− 0.00 0.00
p + p → p +K+ +Λ +π0 +π0 0.11 0.00
p + p → p +K+ +Σ0 +π0 3.03 1.78
p + p → p +K+ +Σ0 +π+ +π− 0.00 0.00
p + p → p +K+ +K0

S +π+π− 0.00 0.00
p + p → p +K+ +K0

L 0.00 0.00
p + p → p +K+ +K0

L +π0 0.00 0.00

Table 14: Contributions of the different background channels to the invariant mass spectrum MΛγ presented
in Fig. 95.

In order to further suppress the contribution from p + p → p +K+ +Λ +π0 channel, the
opening angle between the photon and the Lambda (OA(γΛ)) is introduced as another
discriminating variable. The OA(γΛ) is calculated in the rest frame of the excited
hyperon defined in this case as the missing particle pY = pbeam + ptarget − (pprimary + pK+),
where pY is the hyperon 4-vector. In the ideal case, they should be emitted back-to-back,
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i.e. OA(γΛ) = 180○, in reality the OA(γΛ) distribution is smeared by the detector
resolution. Thus, the opening angle is required to be greater than 165○ (see Fig. 96a),
which is optimized based on the signal significance. This cut suppresses the background
by 53% compared to only 8% for the signal. The Λγ invariant mass distribution after
the opening angle cut is presented in Fig. 96b.
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Figure 96: (a) The opening angle between the Lambda and the photon OA(Λγ) in the hyperon rest frame
and (b) The Λγ invariant mass distribution after the opening angle cut (OA(Λγ) > 165○).

5.4.1 Kinematic Refit

The kinematic refit technique developed in the previous chapter can also be applied
here to reject the dominant background from pK+Λπ0 events. Since the only difference
between signal events and the main background events pK+Λπ0 is the π0. Therefore,
two event hypothesis can be tested by constraining the missing mass of all charged
particles in the final state, then the quality of the fit quantified by the χ2 value can be
used to discriminate between the hypotheses.

The track is parameterized in this case by five parameters that can be written as a
column vector:

y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1/p
θ

ϕ

ρ

z

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (41)
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where 1/p is the inverse of the absolute value of the momentum, θ is the polar angle,
ϕ is the azimthual angle, ρ is defined as the DCA between the track and the beam axis
(0,0,1) and z is the z-coordinate of the PCA between the track and the beam axis. This is
the default parameterization for the main HADES setup. In the FD acceptance, tracks
are reconstructed as straight lines parameterized as [x y Tx Ty], where x, y are
two points on the line and Tx, Ty indicates the direction of the line. Therefore, this
parameterization is transformed into the one given by Eq. 41.

In the inner MDC, the track is approximated by a straight line, which has the general
form

l = b +md , (42)

where, b is a base vector, d is a direction vector and m is a scalar parameter. In Cartesian
coordinates, the base and direction vectors are given by [105]:

b = ρcos(ϕ +π/2) i⃗ + ρsin(ϕ +π/2) j⃗ + z k⃗

d = sin(θ)cos(ϕ) i⃗ + sin(θ)sin(ϕ) j⃗ + cos(θ) k⃗ .
(43)

Four constraints have been applied:

1. The invariant mass of the secondary proton (ps) and the π− are constrained to
have the nominal Λ mass MΛ = 1.1156 GeV/c2.

2. The secondary proton and the π− are constrained to the same vertex.

3. Similar to the previous constraint, the primary proton (pp) and the kaon tracks to
the same vertex.

4. Finally, all final state charged particles pp, K+, ps and π− are constrained to have a
missing mass equal to either the photon mass Mγ = 0 (the photon hypothesis or
the signal hypothesis) or the pion mass Mπ0 = 0.135 GeV/c2 (the pion hypothesis
or the background hypothesis).

These can be written collectively as:

f =
⎛
⎜⎜⎜⎜
⎝

(Eps + Eπ−)2 − (Pps + Pπ−)2x − (Pps + Pπ−)2y − (Pps + Pπ−)2z −M2
Λ

(dps × dπ−) ⋅ (bps − bπ−)/∣dps × dπ− ∣
(dpp × dK+) ⋅ (bpp − bK+)/∣dpp × dK+ ∣

(Et + Eb −∑4
i=1 Ei)2 − (p⃗t + p⃗b −∑

4n
i=1 p⃗i)2 − (M2

γ, M2
π0)

⎞
⎟⎟⎟⎟
⎠
= 0 . (44)
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The kinematic refit is applied on the combined data-set of the HADES and the FD.
The χ2 distribution for the photon and the pion hypotheses are shown in Fig. 97 and
the corresponding p-values are shown in Fig. 98. The χ2 distribution is consistent with
f (χ2, ν) with four degrees of freedom (ν = 4).
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Figure 97: The χ2 distribution for (a) the photon hypothesis Mγ and (b) the pion hypothesis Mπ0 . The signal
is shown by the blue histogram and the background by the red histogram.
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Figure 98: The p-value for (a) the photon hypothesis and (b) the pion hypothesis. The signal is shown by the
blue histogram and the background by the red histogram.

The correlation between the p-values of both the photon and pion hypotheses were
used as a discriminator variable to select signal events. Since the p-value is limited
between 0 and 1, the logarithm of the p-value is shown in Fig. 99 for signal and
background events. From Fig. 99 it can be seen that most of the signal events have
p-values of the photon hypothesis greater than p-values of the pion hypothesis. Therefore,
events are further processed if P(χ2)γ > P(χ2)π, as marked by the black dashed line.
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Figure 99: The logarithm of the p-value for the photon hypothesis on the x-axis and for the pion hypothesis
on the y-axis for (a) signal events and for (b) background events. The dashed line indicates the cut
value (P(χ2)γ > P(χ2)π).

The MΛγ invariant mass distribution after applying the p-value cut is shown in Fig.
100 with and without the opening angle cut.
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Figure 100: The Λγ invariant mass distribution after applying the χ2 cut (a) without the OA(Λγ) cut and
(b) with the OA(Λγ) cut applied.

Finally, Tab. 15 lists a comparison between the four invariant mass spectra MΛγ

presented in terms of the overall signal reconstruction efficiency (ϵ) and the signal
significance (ss).

Based on the reconstruction efficiencies, the count rates of EM decay for excited
hyperons can be calculated by assuming the following conditions: (i) a liquid hydrogen
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Σ(1385) Λ(1405) Λ(1520)
ϵ [%] ss ϵ [%] ss ϵ [%] ss

No Refit + No OA 0.0246 25.58 0.0249 0.549 0.0226 31.52
No Refit + OA 0.0209 34.84 0.0212 0.800 0.0214 36.56
Refit + No OA 0.0230 28.31 0.0230 0.573 0.0205 24.00

Refit + OA 0.0196 42.41 0.0196 0.861 0.0193 39.98

Table 15: Comparison between the four invariant mass spectra MΛγ in terms of the signal significance (ss)
and the signal reconstruction efficiency (ϵ %).

target LH2 with instantaneous luminosity L = 1.5× 1031cm−2s−1 and (ii) 50% beam duty
cycle. The count rates are listed in Tab. 16.

Σ(1385) Λ(1405) Λ(1520)
No Refit + No OA 125 3 113
No Refit + OA 107 3 107
Refit + No OA 117 3 103
Refit + OA 100 1 96

Table 16: Estimated count rates (events/day) for the EM decay of low lying excited state hyperons for the
future beam time.

The ongoing upgrade of the HADES DAQ will enable operation up to 200 kHz. In this
case, there is a possibility to operate with a higher luminosity for the same beam current
7.5 × 107p/s by replacing the LH2 target with a polyethylene (PE) target. Because of
the increased density of protons in the PE target, the count rates listed in Tab. 16 are
expected to be increased by a factor of 7 [9].

5.5 S U M M A RY

A feasibility study of the EM decay of low lying excited state hyperons (Σ(1358),
Λ(1405) and Λ(1520)) with the upgraded HADES setup and the new FD at the future
run is presented. As different theoretical models expect different EM decay widths, the
measurement of the EM decays provides a means to differentiate between the theoretical
models.

The study was done by investigating the exclusive reaction p + p → p +K + (Y∗ → Λγ).
Two data-sets have been identified, the HADES data-set in which all charged particles are
detected in the HADES spectrometer and the FD data-set in which the daughter proton
from the Λ decay is reconstructed in the FD, the three other particles are reconstructed
in the HADES setup. The PID was done by a feed forward neural network. Since the FD
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operates in a magnetic field free region, there is no direct PID method. Therefore, any
track in the FD is assumed to be a proton. In the HADES data-set, the Λ was reconstructed
based on a set of topological cuts. In the FD data-set, the FD proton track is combined
with the π− detected in HADES to form Λ candidates. Photons have been identified as
clusters in the EMC which have an energy above a given threshold. In order to suppress
background events, two missing mass cuts were introduced, (i) the squared missing
mass of the primary proton and the kaon 1.6 < MM2(ppK+)[GeV2/c4] < 2.6 and (ii) the
squared missing mass of all charged particles −0.04 < MM2(ppK+Λ)[GeV2/c4] < 0.01,
where it is asymmetric to reduce contamination from p+ p → p+K+ +Λ+π0 background
channel.

A kinematic refit was applied by introducing four constraints. The secondary proton
and the pion are constrained to have the same vertex and the nominal Λ mass. In
addition, the primary proton and the kaon are constrained to have the same vertex. In
order to suppress the huge contamination from p+ p → p+K+ +Λ+π0, the missing mass
of all charged particles is constrained to either have the photon mass (signal hypothesis)
or to have the pion mass (background hypothesis). An optimal cut was obtained by
requiring that P(χ2)γ > P(χ2)π.

An additional discriminating variable was introduced, the opening angle OA(γΛ) in
the Y∗ rest frame, which is required to be greater than 165○.

Finally, the overall signal reconstruction efficiency (ϵ) was calculated and found to
be in the range 0.0250− 0.0193 % depending if the kinematic refit and the OA(γΛ) cuts
were applied or not. The count rates for the upcoming 4.5 GeV proton beam time in
2022 was calculated and introduced for the different cut combinations.
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C O N C L U S I O N S A N D O U T L O O K

In this thesis, three topics were investigated:

• Developing a deep-learning based track finding algorithm for the future PANDA
experiment forward tracker.

• Investigation of the production mechanism of the Σ0 hyperon produced in p+p
collisions measured by the HADES setup in April 2007.

• A feasibility study has been done for the reconstruction of the excited hyperon
radiative decays Y∗ → Λγ using the PANDA@HADES detector seutp.

6.1 D E E P L E A R N I N G B A S E D T R A C K R E C O N S T R U C T I O N :

Chapter 3 presented a deep learning-based track finding algorithm that has been
implemented for the PANDA forward tracker system (FTS). The developed algorithm
was based on the state-of-art graph neural networks (GNN), a powerful class of methods
from geometric deep learning, which works on non-Euclidean data. The GNN takes a
graph G = (V, E) as input an image, where the graph is the image of the detector. The
graph vertices (V) are the FTS hits and the edges (E) are all the possible connections
between hits in adjacent layers. The GNN was trained as a binary classifier to classify
graph edges as true or fake edges. The GNN architecture first introduced in [54] was
adapted and developed for the FTS. The GNN outputs a number between 0 and 1 that
can be interpreted as an edge quality, an edge with score close to 0 is considered a
fake edge and an edge with score close to 1 is a true edge. Guided by this output, a
clustering algorithm that traverse the graph depth-wise has been implemented in order
to reconstruct track candidates, this clustering algorithm is known as the Depth First
Search (DFS). The model is implemented in PyTorch, trained in a Python environment
and loaded with the help of the PyTorch tracing engine in a C++ environment.

143
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In order to evaluate the performance of the GNN, a set of quality assurance measure-
ments was defined: the reconstructed track purity, the overall tracking efficiency and the
ghost rate. Averaged over all momentum values and over all particle species, the purity
was found to be ≈ 100%, the efficiency ≈ 90% and the ghost ratio less than 3%.

The developed model reconstructs only x − z track projections since it uses information
from vertical straw layers. Therefore, the model was followed by a second step that uses
the x − z projections as an input to build the y − z track motion by using the information
from the skewed layers. First, track segments outside the dipole magnetic field were fit
by a linear model and segments inside the field were subsequently fit by a circular model.
Then, the set of compatible hits were collected by histogramming the slopes, calculated
for each skewed layer hit assuming the magnetic field component in the y − z plane is
negligible. The developed algorithm provides an estimate for the particle momentum,
which is calculated by the p-kick method.

Now that a prototype of PANDA forward tracker is installed in the HADES detector
setup [9] (the Forward Detector FD), the opportunity now exists to test the performance
of the GNN tracking algorithm on a simplified setup using real data. Therefore, as a
future plan, the GNN tracking algorithm will be integrated with the HADES software
framework (Hydra) and tested in the upcoming proton beam time in 2022.

One weak point of the developed algorithm is the DFS clustering algorithm. In the
future, a more robust algorithm has to be implemented, e.g., the future algorithm should
take the isochrones into account.

The promising results of the GNN suggest to use it for the PANDA central tracker
(MVD+STT), where particle tracks move in helices due to the magnetic field and are
contaminated by secondary tracks, which complicates the problem. Therefore, future
work may explore the application of GNN based tracking algorithm for the central tracker,
which is expected to outperform the currently implemented algorithms.

6.2 Σ0 P R O D U C T I O N I N P- P C O L L I S I O N S :

In chapter 4, the exclusive reconstruction of the reaction p + p → p + K+ + Σ0 at a
beam kinetic energy of 3.5 GeV with the HADES detector setup was presented. The Σ0

hyperon decays electromagnetically with a branching ratio BR(Σ0 → Λγ) ≈ 100 %. The
daughter Λ hyperon was reconstructed with the decay mode Λ → pπ− and the daughter
photon was reconstructed as a missing particle since HADES was not equipped with an
electromagnetic calorimeter at that time.
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The first step in the analysis was to identify the charged final state particles. For
this purpose, a neural network in a form of variational auto-encoder (VAE) has been
trained on real data and simulations simultaneously using a semi-supervised technique.
Evaluated on a hold-out sample, the VAE classified 98% of protons p, 92 % of pions π+

and 76% of kaons K+ correctly.

After identifying final state particles, two data-sets have been identified. The first, is
called the HADES data-set, where the four charged particles (2p, π− and K+) are required
to be within the acceptance of the main HADES setup. In this data-set, the daughter Λ
was reconstructed from its decay products, then off-vertex cuts were defined and applied
to enhance the S/B ratio. Finally, events in the range MM2(pphadesπ

−)[GeV2/c4] > 0.2
were selected.

In the second set, the FWall data-set, only three charged particles (1p, π− and K+) are
required to be within the main HADES acceptance and at least one hit in the forward
wall. Events fulfilling the following kinematical conditions were selected:

• −0.02 < MM2(pK+pwallπ
−)[GeV2/c4] < 0.01

• MM2(ppwallπ
−)[GeV2/c4] > 0.2

A kinematic refit is then applied for the HADES and FWall data-sets separately, which
constrains the secondary proton and the pion to the nominal Λ mass and the overall
missing mass to the photon mass. The Σ0 yield was extracted from the missing mass
MM(pK+) spectrum, where in total 2613 Σ0 events were reconstructed, 58% are within
the HADES acceptance and 42% within the FWall acceptance.

After selecting a relatively clean sample of Σ0 hyperons, the angular distributions in
the CMS, G-J and helicity-frames were investigated. The different distributions were
corrected for the detector acceptance and efficiency using the inverse of the detector
response matrix calculated by the SVD factorization method.

The angular distributions in the CMS of the Σ0 hyperon and the proton show anisotropi-
es, where the anisotropy is more pronounced in the case of the proton. This is a clear
indication that the reaction proceeds dominantly via the pion exchange mechanism.
The G-J angle of the kaon in the K+Σ0 frame tends to be asymmetric, which can be
caused by the excitation of nucleon resonances decaying into the K+Σ0 channel. All
the helicity angular distributions are clearly non-isotropic, which indicates significant
resonant production.

In order to provide a better description of the experimental angular distributions
and to estimate the contributions of nucleon resonances to the Σ0 production, a partial
wave analysis (PWA) has been performed using the BG-PWA framework. The non-
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resonant waves were constructed first by combining the proton and the hyperon into a
two-particle sub-system pΣ0 and then the kaon is combined to produce the three-body
final state (pΣ0) −K+. Nucleon resonances with a measured K+Σ0 branching ratio have
been included as resonant components. The BG-PWA framework performs an unbinned
fit, where the fit quality is determined by a log-likelihood value. However, due to the
low statistics, it was not possible to obtain the quantitative contributions of nucleon
resonance. Nevertheless, resonances N∗(1710), N∗(1900) and ∆∗(1900) are required by
the fit.

Finally, the total production cross section of the Σ0 hyperon was determined to be
σ = 18.74 ± 1.01(stat) ± 1.71(syst) µb by integrating the yield for the different angular
distributions and the ratio σ(pK+Λ)/σ(pK+Σ0) found to be 1.73 ± 0.31, in agreement
with the high energy limit of 2.2.

Recently, the HADES detector setup has been upgraded by an electromagnetic calorime-
ter (EMC) and a FD based on PANDA straw tubes, which offers the opportunity to repeat
the same measurement with an upgraded setup in the upcoming beam time 2022 at
higher beam energy of 4.5 GeV. This upgrade will allow the measurement of the daughter
photon (Σ0 → Λγ), in addition, it will improve the mass resolution of the Λ hyperon in
the FD acceptance and consequently improves the quality of the kinematic refit. Simula-
tions show that the expected count rate at the upcoming beam time of p+ p → p+K+ +Σ0

is ≈ 2500 reconstructed events per day, assuming a cross section of 18.5 µb. The planned
four week beamtime will provide sufficient statistics to extract quantitative contributions
of the different nucleon resonance and a measurement of their K+Σ0 branching ratios,
which will improve our understanding of the Σ0 production mechanism.

In addition, a measurement of the Dalitz decays Σ0 → Λe+e− is planned since it is
complementary to the real photon decays and provides information on the hyperon form
factor [6]. This measurement is a challenge as it requires the identification of an electron
pair with momenta below the spectrometer acceptance threshold (pthreshold ≈ 50 MeV/c)
needed for full track and momentum reconstruction [6].

6.3 F E A S I B I L I T Y S T U D Y F O R R A D I AT I V E D E C AY S O F E X C I T E D H Y P E R O N S

In chapter 5, a feasibility study of the radiative decays of lower lying excited state
hyperons Y∗ (Σ(1385), Λ(1405) and Λ(1520)) with the upgraded HADES setup was
presented. Once again, two data-set have been identified, the HADES data-set in which
all charged particles are detected in the main HADES spectrometer and the FD data-set
in which the daughter proton of Λ → pπ− is reconstructed in the FD, while the other
three particles are reconstructed in the main HADES detector.
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The PID in the main HADES setup was done by a feed forward neural network and the
daughter Λ (Y∗ → Λγ) was reconstructed based on a set of topological cuts, while any
track in the FD is assumed to be a proton since there is no direct PID method. the FD
proton track is combined with the π− detected in HADES to reconstruct the Λ candidates
in the FD acceptance.

The excited hyperon is reconstructed in the Λγ invariant mass distribution, where the
background contribution is mostly from the p + p → p +K+ +Λ +π0 channel. Therefore,
the following missing mass cuts were introduced to suppress background contributions:

• 1.6 < MM2(ppK+)[GeV2/c4] < 2.6.

• −0.04 < MM2(ppK+Λ)[GeV2/c4] < 0.01.

Moreover, a kinematic refit is introduced by constraining the Λ mass and vertex
and the primary proton and the kaon are constrained to emerge from the same vertex.
Furthermore, the missing mass of all charged particles are constrained to either have the
photon mass (a signal hypothesis) or to have the pion mass (a background hypothesis),
then a 2D cut was defined by requiring P(χ2)γ > P(χ2)π. This measurement emphasizes
the role of the FD in the future measurements of the radiative decays of lower-laying
excited state hyperons since it almost doubles the statistics. Finally, the count rates for
the upcoming 4.5 GeV proton beam time in 2022 were presented.

In the future, a measurement of the branching ratios and decay widths of the excited
hyperon radiative decays will be performed with the upgraded HADES setup. Several
theoretical models have been proposed, which predict their decay widths. These pre-
dictions vary significantly making it experimentally tractable to rule out certain models.
Consequently, this measurement is complementary to the CLAS measurement and pro-
vides a means to differentiate between the models [122]. Furthermore, the investigation
of excited hyperon Dalitz decays (Y∗ → Λγ∗) offers the chance to probe the internal
structure of the resonance in the time-like region (q2 > 0). The measurement of the
Dalitz decays provide access to the electromagnetic Transition Form Factors (eTFF) and
in contrast to the ∆(1232) resonance [7], no data are available on the eTFF for strange
baryons. In addition, this measurement will test whether the Vector Dominance Model
(VDM) is valid in the strange sector [30].
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A
P E R F O R M A N C E P L O T S O F T H E P I D M O D E L

A.1 P E R F O R M A N C E O F T H E VA E F O R p(3.5GeV)p → pK+Σ0

The efficiency and the purity of the pions π+, protons p and kaons K+ selected by the
VAE has been evaluated on a separate hold out data-set (see Eq. 22). Assume that a
particle track belongs to class i (could be π+, p or K+), the efficiency and the purity are
defined as follows:

efficiency = the number of particles that belongs to the class i selected by the VAE
the total number of particles that belongs to the class i

purity = the number of particles that belongs to the class i selected by the VAE
the total number of particles

(45)

Both the efficiency and purity have been evaluated as a function of the momentum P
and the polar angle θ. Fig. 101 shows the momentum as function of the polar angle for
the three particle species. Fig. 102 and Fig. 103 shows the efficiency and purity maps
for pions, protons and kaons, respectively.

For pions, the efficiency and purity is almost uniform over the whole phase space
except for momentum values greater than 0.9 GeV/c where pions have a low production
rate. On average the efficiency and purity is 92.6% and 95.5%, respectively.

The average efficiency for protons and kaons is 95.6% and 81%, respectively. As
protons and kaons overlap for momentum values greater than 1 GeV/c, it is difficult to
distinguish between the two particle species. This is can be seen from the purity maps,
where the average purity for protons and kaons is 79.1% and 66.3%, respectively.
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Figure 101: The momentum as a function of the polar angle for the (a) π+, (b) p and (c) K+.
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Figure 102: The efficiency map for the (a) π+, (b) p and (c) K+.
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Figure 103: The purity map for the (a) π+, (b) p and (c) K+.
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A.2 P E R F O R M A N C E O F T H E P I D N N M O D E L F O R p(4.5GeV)p → pK+Y∗

The efficiency and the purity (defined in Eq. 45) of the pions π+, protons p and kaons
K+ selected by the PID NN has been evaluated on a separate hold out data-set. Fig. 104
shows the momentum as a function of the polar angle for the three particle species. Fig.
105 and Fig. 106 shows the efficiency and purity maps for pions, protons and kaons,
respectively.
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Figure 104: The momentum as a function of the polar angle for the (a) π+, (b) p and (c) K+.

The average selection efficiency for pions, protons and kaons is 97.2%, 98.4% and
90%, respectively. The average purity for pions, protons and kaons is 99.8%, 95.3% and
95%, respectively.
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Figure 105: The efficiency map for the (a) π+, (b) p and (c) K+.
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Figure 106: The purity map for the (a) π+, (b) p and (c) K+.
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C O VA R I A N C E M AT R I X E S T I M AT I O N

B.1 C O VA R I A N C E M AT R I X E S T I M AT I O N F O R p + p → p + K+ + Σ0 A N A LY S I S

The errors on the track parameters 1/p, θ and ϕ are not given by the tracking algorithm
and have to be estimated. These errors are estimated from the simulation by investigating
the difference between the reconstructed variable value and the generated value as this
difference is a measure the detector resolution for the particular variable. Figures (107
to 109) show the resolution plots for protons, kaons and pions. All distributions were
fitted by the sum of three Gaussian, the average mean µ and standard deviation σ is
stated for each plot. The variance (σ2) for the different variables are used as an initial
guess for the covariance matrix diagonal elements, where it has been assumed that there
are no correlations between track parameters. Therefore, the off-diagonal elements are
set to zero. After applying the kinematic refit and obtaining the pull distributions (see
figures (110 to 113) ), the elements of the covariance matrix have been tuned in order
to keep the pull as standard normal distributions N(0, 1). The assumption of diagonal
matrix was found to be a good approximation to the covariance matrix.

B.2 C O VA R I A N C E M AT R I X E S T I M AT I O N F O R p + p → p + K+ + Y∗ F E A S I B I L I T Y

S T U D Y:

The estimation of the covariance matrix used for the p + p → p +K+ +Y∗ feasibility
study presented in chapter 5 follows exactly the same method described in the previous
section. First, the resolution plots provided an initial guess of the covariance matrix
elements (see figures (119 to 123) ), then the errors are adjusted to keep the pull
distributions (see figures (110 to 113) ) as standard normal distributions N(0, 1).
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Figure 107: The resolution plots of protons detected in the main HADES detector setup for (a) the absolute
momentum inverse (1/p), (b) polar angle (θ) and (c) azimuthal angle (ϕ). The fit quality
is determined by a reduced χ2 value, the mean and standard deviation are shown for each
distribution.
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Figure 108: The resolution plots of kaons for (a) the absolute momentum inverse (1/p), (b) polar angle (θ)
and (c) azimuthal angle (ϕ).
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Figure 109: The resolution plots of pions for (a) the absolute momentum inverse (1/p), (b) polar angle (θ)
and (c) azimuthal angle (ϕ).
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Figure 110: The pull distributions (see Eq. 29) of protons detected in the main HADES detector setup for (a)
the absolute momentum inverse (1/p), (b) polar angle (θ) and (c) azimuthal angle (ϕ). Each
distribution has been fit by a Gaussian distribution and the fit parameters are stated in the inset.

 / ndf 2χ  199.2 / 73

Constant  0.00035± 0.02829 

Mean      0.01138±0.04914 − 
Sigma     0.009± 1.113 

4− 3− 2− 1− 0 1 2 3 4
P (p)

0

5

10

15

20

25

30

35
3−10×

co
un

ts
 [a

.u
.]

 / ndf 2χ  199.2 / 73

Constant  0.00035± 0.02829 

Mean      0.01138±0.04914 − 
Sigma     0.009± 1.113 

+K

(a)

 / ndf 2χ    117 / 73

Constant  0.00035± 0.02904 

Mean      0.0110± 0.2446 

Sigma     0.008± 1.088 

4− 3− 2− 1− 0 1 2 3 4
)θP (

0

5

10

15

20

25

30

3−10×

co
un

ts
 [a

.u
.]

 / ndf 2χ    117 / 73

Constant  0.00035± 0.02904 

Mean      0.0110± 0.2446 

Sigma     0.008± 1.088 

+K

(b)

 / ndf 2χ    164 / 74

Constant  0.00034± 0.02857 

Mean      0.011129± 0.004355 

Sigma     0.008± 1.096 

4− 3− 2− 1− 0 1 2 3 4
P (p)

0

5

10

15

20

25

30

3−10×

co
un

ts
 [a

.u
.]

 / ndf 2χ    164 / 74

Constant  0.00034± 0.02857 

Mean      0.011129± 0.004355 

Sigma     0.008± 1.096 

+K

(c)

Figure 111: The pull distributions (see Eq. 29) of kaons detected in the main HADES detector setup for (a)
the absolute momentum inverse (1/p), (b) polar angle (θ) and (c) azimuthal angle (ϕ).
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Figure 112: The pull distributions (see Eq. 29) of pions for (a) the absolute momentum inverse (1/p), (b)
polar angle (θ) and (c) azimuthal angle (ϕ).
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Figure 113: The pull distributions (see Eq. 29) of protons reconstructed in the forward wall detector setup for
(a) the absolute momentum inverse (1/p), (b) polar angle (θ) and (c) azimuthal angle (ϕ).
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Figure 114: The resolution plots for the absolute momentum inverse (1/p) (a) of protons detected in the
main HADES detector setup, (b) of protons detected in the FD, (c) kaons and (d) pions. The fit
quality is determined by a reduced χ2 value, the mean and standard deviation is shown for each
distribution.
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Figure 115: The resolution plots for the polar angle (θ) (a) of protons detected in the main HADES detector
setup, (b) of protons detected in the FD, (c) kaons and (d) pions.
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Figure 116: The resolution plots for the azimuthal angle (ϕ) (a) of protons detected in the main HADES
detector setup, (b) of protons detected in the FD, (c) kaons and (d) pions.
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Figure 117: The resolution plots for the DCA between the track and the beam axis (R) (a) of protons detected
in the main HADES detector setup, (b) of protons detected in the FD, (c) kaons and (d) pions.
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Figure 118: The resolution plots for the z-coordinate of the PCA between the track and the beam axis (z)
(a) of protons detected in the main HADES detector setup, (b) of protons detected in the FD, (c)
kaons and (d) pions.
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Figure 119: The pull distributions for the absolute momentum inverse (1/p) (a) of protons detected in the
main HADES detector setup, (b) of protons detected in the FD, (c) kaons and (d) pions. Each
distribution has been fit by a Gaussian distribution and the fit parameters are stated in the inset.
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Figure 120: The pull distributions for the polar angle (θ) (a) of protons detected in the main HADES detector
setup, (b) of protons detected in the FD, (c) kaons and (d) pions.
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Figure 121: The pull distributions for the azimuthal angle (ϕ) (a) of protons detected in the main HADES
detector setup, (b) of protons detected in the FD, (c) kaons and (d) pions.
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Figure 122: The pull distributions for the DCA between the track and the beam axis (R) (a) of protons
detected in the main HADES detector setup, (b) of protons detected in the FD, (c) kaons and (d)
pions.
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Figure 123: The pull distributions for the z-coordinate of the PCA between the track and the beam axis (z)
(a) of protons detected in the main HADES detector setup, (b) of protons detected in the FD, (c)
kaons and (d) pions.
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The main background channel contributing to the signal region is the pp → pK+Λ, it’s
contributions was estimated to be 14%. First a mass window 1.090 < MM(pK+)[GeV/c2] <
1.150 has been applied to select the Λ-like events as shown in Fig. 124. In total 6607 Λ
events were selected.

Because the PWA method works on an event-by-event basis, it is important to identify
whether a particular event belongs to the signal or the background. Therefore, it was
necessary to model the Λ kinematics as accurately as possible. To achieve this, the PWA
method explained in chapter 4 has been applied to the selected Λ events.

The Λ production has been studied extensively by HADES by the PWA technique [15].
The different solutions published in [15] has been tried out and the solution No. 8/1
was found to be the best solution in describing the experimental data (log-likelihood
value L = -1469.8) by including p-p initial waves 1S0, 3P0, 3P1 and 1D2.

p-p Initial State
non-resonant

pK+Λ N∗(1650) N∗(1710) N∗(1720) N∗(1900)
1S0 24.73 27.82 00.26 00.61 00.12
3P0 03.44 01.60 00.06 03.00 06.51
3P1 21.57 14.76 00.09 10.23 05.00
1D2 08.73 13.69 07.20 14.36 23.41

Table 17: Partial wave contributions to the total pK+Λ production.

The transition waves with the different contributions of intermediate states to the
pK+Λ production are listed in Tab. 17. This solution gives a good description of the
experimental data, as shown in Fig. 125 and Fig. 126 for different kinematic observables
and angular distributions, respectively. The agreement between the PWA solution and
experimental the data is quantified by a reduced χ2 value (see Eq. 40) calculated for
each observable (average χ2 ≈ 1.86). The PWA solution has been applied to the 4π phase
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Figure 124: The missing mass distribution of the
primary proton and the kaon for the
sum of the HADES and the FWall
data-sets. The vertical dashed lines
indicates the mass window applied
in order to select Λ events.

space simulations and then these events are filtered through the full simulation and
analysis chain.

After reconstructing the pK+Λ events that have been assigned a PWA weight, the
missing mass MM(pK+) spectrum was investigated and the pK+Λ contribution in the
signal region (1.170 < MM(pK+)[GeV/c2] < 1.220) was determined to be 292 events.
Those events are then added to signal list with a negative weight.
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Figure 125: A comparison between the experimental data (black points) for which 1.090 <
MM(pK+)[GeV/c2] < 1.150 and the PWA solution (red histogram) listed in Tab. 17 for (a) the
K+Λ invariant mass, (b) the pΛ invariant mass and (c) the K+p invariant mass distributions.



PA RT I A L WAV E A N A LY S I S : B A C K G R O U N D E S T I M AT I O N 165

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1
 Λ

cmsθcos 

0

50

100

150

200

250

300

 c
ou

nt
s 

[a
.u

.]

 1.78≈ / ndf 2χ

(a)

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1
 p

cmsθcos 

0

50

100

150

200

250

 c
ou

nt
s 

[a
.u

.]

 1.12≈ / ndf 2χ

(b)

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1
 +K

cmsθcos 

0

50

100

150

200

250

300

 c
ou

nt
s 

[a
.u

.]

 2.95≈ / ndf 2χ

(c)

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1
 , p

b,t
p

ΛRF pθcos 

0

50

100

150

200

250

 c
ou

nt
s 

[a
.u

.]

 1.31≈ / ndf 2χ

(d)

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1
 +, K

b,t
p

Λ+RF Kθcos 

0

20

40

60

80

100

120

140

160

180

200

 c
ou

nt
s 

[a
.u

.]

 1.69≈ / ndf 2χ

(e)

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1
 +, K

b,t
p

p+RF Kθcos 

0

50

100

150

200

250

300

 c
ou

nt
s 

[a
.u

.]

 1.44≈ / ndf 2χ

(f)

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1
 Λp, 

Λ+RF Kθcos 

0

50

100

150

200

250

co
un

ts
 [a

.u
.]

 1.43≈ / ndf 2χ

(g)

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1
 +p, K

ΛRF pθcos 

0

50

100

150

200

250

300

co
un

ts
 [a

.u
.]

 0.92≈ / ndf 2χ

(h)

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1
 Λ, +K

p+RF Kθcos 

0

20

40

60

80

100

120

140

160

180

200

220

240

co
un

ts
 [a

.u
.]

 1.16≈ / ndf 2χ

(i)

Figure 126: A comparison between the experimental data (black points) for which 1.090 <
MM(pK+)[GeV/c2] < 1.150 and the PWA solution (red histogram) listed in Tab. 17. The
upper row shows the CMS angular distributions, the middle row shows the G-J angular distribu-
tions and the bottom row shows the helicity angular distributions.
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