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Abstract. In this paper, we describe a procedure for modelling strong lensing
galaxy clusters with parametric methods, and to rank models quantitatively
using the Bayesian evidence. We use a publicly available Markov chain Monte-
Carlo (MCMC) sampler (‘bayesys’), allowing us to avoid local minima in
the likelihood functions. To illustrate the power of the MCMC technique,
we simulate three clusters of galaxies, each composed of a cluster-scale halo
and a set of perturbing galaxy-scale subhalos. We ray-trace three light beams
through each model to produce a catalogue of multiple images, and then use the
MCMC sampler to recover the model parameters in the three different lensing
configurations. We find that, for typical Hubble Space Telescope (HST)-quality
imaging data, the total mass in the Einstein radius is recovered with∼1–5%
error according to the considered lensing configuration. However, we find that
the mass of the galaxies is strongly degenerated with the cluster mass when
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no multiple images appear in the cluster centre. The mass of the galaxies is
generally recovered with a 20% error, largely due to the poorly constrained cut-
off radius. Finally, we describe how to rank models quantitatively using the
Bayesian evidence. We confirm the ability of strong lensing to constrain the
mass profile in the central region of galaxy clusters in this way. Ultimately,
such a method applied to strong lensing clusters with a very large number of
multiple images may provide unique geometrical constraints on cosmology. The
implementation of the MCMC sampler used in this paper has been done within
the framework of thelenstool software package, which is publicly available7.
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1. Introduction

Strong gravitational lensing is produced when a distant object (such as a galaxy or a quasar) is
serendipitously aligned with a critical foreground mass concentration. Such a phenomenon was
first observed by Walshet al (1979) who discovered a double quasar strongly lensed by a distant
galaxy. In the 1980s, with the advent of CCD imaging and its application to astronomy, giant
gravitational arcs in galaxy cluster cores were discovered by two independent teams (Lynds and
Petrosian 1986; Soucailet al1987). The lensing explanation proposed by Paczynski (1987) was
soon confirmed by Soucailet al (1988), who measured the redshift for the giant arc in Abell 370
as being roughly twice that of the cluster redshift. Together with the multiply-imaged quasars,
giant arcs in galaxy clusters turned strong gravitational lensing from a theoretical curiosity into
a powerful tool to probe the mass distributions of galaxies and galaxy cluster cores. Although

7 http://www.oamp.fr/cosmology/lenstool.
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rare in current surveys, strong lensing events are expected to number as many as a few hundred
thousand over the whole sky (Cabanacet al2007).

In order to fully exploit strong gravitational lensing events, one generally needs high
resolution imaging coupled to deep spectroscopy to measure the redshift of both the lensing
object and the lensed sources. By combiningHubble Space Telescope(HST) images with
ground-based spectroscopy on 8–10 m telescopes, strong lensing analysis has proved to be
very successful at constraining the mass distribution of galaxies (e.g.Koopmanset al 2006;
Muñoz et al 1998) and galaxy cluster cores (e.g.Abdelsalamet al 1998; Halkola et al 2006;
Kneibet al1996; Smithet al2005).

Nowadays, one particularly interesting application of strong lensing is to constrain the
dark matter (DM) distribution in cluster cores and contrast it with predictions of numerical
simulations. For example, we would like to measure accurately the inner slope and the
concentration parameter of the DM density profile, to probe DM properties and its link with the
baryonic component (Sandet al 2007, and references therein). Indeed, numerical simulations
seem to advocate a cuspy DM slope that could be described by an NFW (Navarroet al1997) or
a Sérsic (Merritt et al2005; Sérsicet al1968) profile. Observations are not yet giving definitive
answers relative to the value of the inner slope (Gavazziet al 2003; Sandet al 2004, 2007) or
the concentration (Gavazziet al2003; Kneibet al2003), but progress is being made steadily.

For example, in Abell 1689, after much disagreement over its concentration
(Bardeauet al 2005; Broadhurstet al 2005; Clowe and Schneider 2001; Halkola et al 2006;
King et al 2002), Limousinet al (2007) came to a consensus value ofcvir ∼ 6–8 after careful
and detailed modelling of the previously-analysed data combined with new multiple image
identifications, redshifts and weak lensing source galaxy colours. Comerford and Natarajan
(2007) discuss the issues related to the determination of the concentration parameter with
different techniques, and compare its measurement in a large compilation of galaxy clusters
with the distribution ofcvir in numerical simulations.

Numerical studies have shown that the concentration parameter of the NFW potential
is quite sensitive to complex structures along the line of sight (King and Corless 2007)
or triaxiality of the DM halos (Corless and King 2006). Improved datasets, but also more
advanced techniques are needed to accurately model the mass distribution of gravitational lenses
such as these. This movement towards more complex models has generated two competitive
methodologies for lens modelling.

So-called ‘non-parametric’ methods, where the mass distribution or lens potential is
reconstructed as a map defined on a grid of pixels, have been developed to constrain the
mass distribution of (admittedly well-constrained) galaxy-scale lenses (Abdelsalamet al 1998;
Saha and Williams 1997), initially for the purpose of probing the large diversity of possible
mass models with a view to investigating in particular the modelling degeneracy present in
the measurement of the Hubble constant. Since 1997, non-parametric modelling has been
intensively tested and greatly improved to overcome the lack of constraints very common in
strong lensing (e.g.Diegoet al2005; Kochanek 2006; Koopmans 2005). However, the flexibility
of these methods arising from their very large number of parameters has to be controlled to
avoid overfitting the data. Recent work on regularization techniques of Bradač et al (2005);
Suyu et al (2006) have improved the situation in this regard somewhat. However, physical
understanding often comes from the measurement of quantities such as total mass, profile slope
and so on, which still have to be extracted from the flexible reconstructed maps.
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‘Parametric’, or rather, simply-parameterized models therefore have two advantages: the
assumption of a physical model leads to inferences that are directly related to physical
quantities, while the model fits the data with relatively few free parameters compared to a ‘non-
parametric’ model.

Effectively the regularization of the mass distribution is achieved through the physical
model itself. The predicted surface density maps are smooth (by design), a situation perhaps
valid only for quiet systems where the galaxy dynamics are well understood. The modelling of
merging and perturbed systems is clearly the next challenging step for parametric methods.

Another important issue in both parametric and non-parametric methods is the way the
parameter space is explored. In this paper, we have used the parametric gravitational lensing
packagelenstool to perform the lens modelling. Given a parametrization describing the lens,
this software explores the parameter space around the best-fit region, reproducing the location
of the observed multiple images within the supplied uncertainties. The first versions of the
software (Kneib et al 1993; Smith et al 2005) were based on a downhillχ2 minimization.
However, this technique is very sensitive to local minima in the likelihood distribution; as a
result, the modelling of complex systems would rapidly become too involving and inefficient.

In order to face the current and future observational data, we have thus implemented a new
optimization method based on a Bayesian Markov chain Monte Carlo (MCMC) approach. We
will investigate here the merits of this new method on simulated strong lensing clusters.

In the first part of the paper, we explain how to model a cluster of galaxies, and how
to identify systems of multiple images. Then, we describe the implementation of the MCMC
packagebayesys (Skilling 2004) in the lenstool software. In the second part, we analyse
the performance of the Bayesian MCMC sampler by studying the degeneracies between the
parameters of the peudo-isothermal elliptical mass distribution (PIEMD,Kassiola and Kovner
1993), the pseudo-elliptical NFW (e.gGolseet al 2002; Navarroet al 1997) and the pseudo-
elliptical Sérsic potentials. In the last section, we use the Bayesian evidence to rank the models
that best reproduce systems of multiple images simulated from galaxy clusters with flat inner
mass profiles. Finally, we discuss the limitations of the strong lensing modelling.

Note that thelenstool8 Bayesian MCMC implementation has already been used to model
Abell 1689 (Limousinet al2007), Abell 68 (Richardet al2007), MS 2053 (Verdugoet al2007)
and Abell 2390 (Julloet al2007). All our results are scaled to the flat, low matter density3cdm
cosmology with�M = 0.3 and�3 = 0.7. When necessary, we scale the masses and distances
according to a Hubble constant ofH0 = 70 km s−1 Mpc−1.

2. Definitions and methodology

2.1. Definition

The gravitational lensing transformation is a mapping from the source plane to the image
plane (Schneideret al1992):

β = θ − ∇ϕ(θ), (1)

whereθ andβ are the image and source positions respectively andϕ(θ) is the lens potential
computed at the image position. Depending on the strength of the gradient of the lens potential,

8 This software is publicly available at:http://www.oamp.fr/cosmology/lenstool.
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one can easily see that for a given source positionβ, multiple images (at differentθ ) can solve
the lensing equation. When this is happening it corresponds to the strong lensing regime.

The lens potential is the product of angular diameter distances ratio:DLS/DOS (lens–
source distance over observer–source distance) and the projected Newtonian potentialφ(θ) at
the image position:

ϕ(θ) =
2

c2

DLS

DOS
φ(θ). (2)

Hence, once the distance of the lens and the source are known, solving the lensing
equation for different multiple images, allows to directly constrain the Newtonian potential,
or equivalently the mass distribution of the lens.

2.2. Modelling the different cluster mass components

Observations of clusters of galaxies reveal two components: cluster-scale halos (which includes
both DM and the baryonic intra cluster gas) and galaxy-scale halos (made of stars and DM).
Similarly, N-body simulations of clusters show that the mass distribution of subhalos inside a
cluster halo follows a Schechter function (e.g.Shawet al2006).

Thus, cluster gravitational potential can be decomposed in the following manner:

φtot =

∑
i

φci +
∑

j

φp j , (3)

where we distinguish the cluster-scale smooth and large potentialsφci , and the subhalo
potentialsφp j providing small perturbations (Natarajan and Kneib 1997). In the following,
we consider a subhalo as a clump of matter containing a galaxy: we assume that there
are no dark galaxies in clusters. This decomposition has been successful in reproducing the
observed systems of multiple images and in constraining the size of the subhalos in clusters
(e.g.Natarajanet al2006; Smithet al2005). We now describe in more detail how we model the
cluster-scale halos and galaxy-scale subhalos.

2.2.1. Smooth cluster-scale halos.The smooth cluster-scale halos represent both the DM and
the intra-cluster gas. With enough constraints, each of these two components could in principle
be modelled separately, but in this work they are modelled together as a single mass component.
The number of such halos is not easy to evaluate; generally one starts with a single halo—
except when x-ray observations or the distribution of the galaxies clearly show a multi-modal
distribution—and increases the complexity of the model from there.

In the case of a multi-modal distribution or a clearly bad fit to the data with a single halo,
additional halos can be included to the model until a good fit is reached. In thelenstool
literature to date no more than two cluster-scale halos have been needed to achieve a good
model (e.g. Abell 2218 and Abell 1689), but this may change in the near future with the expected
improvement of the strong lensing data (in particular with more spectroscopic redshifts) or when
properly taking into account external constraints.

Each halo in a model (both the cluster-scale and the galaxy-scale described below) is
parametrized by a position on the sky (xc, yc), a projected ellipticity of the mass distribution (ε6)
(see also appendix B for the pseudo-elliptical developments of the Sérsic potential), a position
angle (PA), and a set of parameters specific to the choice of potential profile used to describe
the halo. In this paper, we consider either the elliptical singular isothermal sphere (SIE), NFW,
PIEMD, or Sérsic profiles, described by either 1, 2, 3, or 3 parameters respectively (see table1
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Table 1. lenstool most used potentials.

SIE
εϕ = ε6/3 (ε6 < 0.4)a

ρ = ρ0/R̃

ρ0 =
σ 2

2πG
PIEMD

εϕ =

1−

√
1− ε2

6

ε6

ρ =
ρ0

(1 +(R̃2/r 2
c ))(1 + R̃2/r 2

cut)

ρ0 =
σ 2

∞

2πGr2
c

(σ0 ' σ∞/1.46)b

NFW
εϕ = ε6/2.27 (εϕ < 0.25)c

ρ =
δcρc

(̃R/rs)(1 + (̃R/rs))2

δc =
200

3

c3

ln(1 +c) − c/(1 +c)
rs =

rvir

c
Sérsic
εϕ = ε6/3.55 (εϕ < 0.25)

ln

(
6

6e

)
= −bn

( R̃

Re

) 1
n

− 1


bn ' 2n −

1

3
+

4

405n
+

46

25515n2

d

aKneibet al (1993).
bGolse (2002).
cGolse and Kneib (2002).
dCiotto and Bertin (1999).

for the analytic description of each potential. See also Limousinet al (2005) for the surface
density definitions of the PIEMD and NFW potentials.

In figure 1, we compare the surface density of the singular isothermal sphere (SIS), the
Sérsic, the NFW and the PIEMD profiles both in the very central and in the very outer regions.
These regions are accessible either to strong or weak lensing. These profiles are the best fit to
the set of plotted multiple images. We clearly note the flat core of the PIEMD profile up to
10 kpc and in contrast the monotonically increasing slope of the NFW and the Sérsic profiles.
The SIS profile slope is constant and hardly follows the other profiles.

Given the data (e.g. strong lensing or dynamics data), the cluster brightest galaxy—also
called the cD galaxy in the following—can either be included in the cluster-scale halo or
modelled separately. However, Smithet al (2005) showed that the centre-of-mass of the cluster-
scale halo can be different from the cD galaxy centre. Therefore, it is generally justified to model
the cD galaxy as an additional subhalo.

2.2.2. Galaxy-scale components.Kneib et al (1996) first demonstrated that the inclusion of
galaxy-scale subhalos was necessary to reproduce the observed systems of multiple images,
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Figure 1. Surface density comparison between the Sérsic (solid line), the NFW
(dashed line), the PIEMD (dotted line) and the SIS profiles (dot-dashed line).
The surface densities correspond to the fit performed in section5 and extended
to very small and large radii. The arrows mark the multiple images positions used
as constraints.

particularly those appearing near cluster galaxies. These galaxy-scale subhalos or perturbers
can be probed in a direct way using weak galaxy–galaxy lensing techniques (Natarajan and
Kneib 1997; Natarajanet al 2002), however in this paper, we will concentrate only on the
strong lensing aspects.

The number of subhalos to include in a model needs to be quantified. To date, a
conservative attitude has been adopted: all the massive cluster member galaxies with cluster-
centric radii out to approximately two times the limits of the strong lensing region are included.
This is generally achieved by selecting galaxies within the cluster red sequence and selecting
them brighter than a given luminosity limit. Moreover, the subhalos shape (ellipticity and
orientation) is usually taken to be the same as its galaxy.

Recently, Wambsgansset al (2005) and King and Corless (2007) have raised the issue
of multiple halos/subhalos along the line of sight that increase the projected surface density
and thus affect the lensing strength. While not large, this effect is a systematic, and so lensing
models must consider the possibility of such gravitational perturbations. In practice, the mass
distribution along the line of sight can be understood from spectroscopic and photometric
measurements in the field of view.

Here, we propose a set of criteria for including perturbing subhalos in a model. The basic
idea is to measure their strong lensing deviation angle and compare it to the spatial resolution
δ of the lensing observations (δ ∼ 0.1′′ for HST). A subhalo is included in the model if it can
increase significantly the deflection angle at its associated galaxy position. For a cluster member
galaxy if its Einstein radiusREinstein> δ/µ (whereµ is the magnification of the cluster-scale
halo at the position of the galaxy) then it is included, otherwise its lensing contribution is not
important and it is disregarded. For galaxies not part of the cluster, ifREinstein> δ/µ and the
associated galaxy is in projection out of the strong lensing region, we include it in the model at
the cluster redshift by rescaling its mass so that the global lensing effect is preserved. Finally, if
the galaxy is in the strong lensing region and its lensing effect is detectable then the associated
subhalo must be included with a proper multi-plane lensing technique (we will not discuss such
a case here as it is beyond the scope of this paper).
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Accounting for all the subhalos in a galaxy cluster as individually optimizable potentials
would lead to an under-constrained problem. Assumptions must be made in order to make the
number of parameters commensurate with the number of constraints. Koopmanset al (2006)
have shown that a strong correlation exists between the light and the mass profiles of elliptical
galaxies in the field. Consequently, in a first approximation, the subhalos position, ellipticity
and orientation are matched to their luminous counterpart.

As we will show in the second part of this paper, apart from a few subhalos perturbing
multiple images close to them, the vast majority of subhalos act merely to increase the total
mass enclosed in the Einstein radius. Strong lensing provides few constraints on the mass profile
parameters of most individual subhalos.

We therefore reduce the number of subhalo parameters by asserting exact scaling relations
between the subhalo masses and their associated galaxy luminosities. Following the work
of Brainerdet al (1996), we model cluster subhalos with PIEMD potentials. The mass profile
parameters in this model are the core radius (rcore), cut-off radius (rcut), and velocity dispersion
(σ0), which we take to scale with the galaxy luminosityL in the following way:

σ0 = σ ?
0

(
L

L?

)1/4

,

rcore= r ?
core

(
L

L?

)1/2

,

rcut = r ?
cut

(
L

L?

)α

.

(4)

The total mass of a subhalo scales then as:

M = (π/G)(σ ?
0 )2r ?

cut(L/L?)1/2+α, (5)

whereL? is the typical luminosity of a galaxy at the cluster redshift, andr ?
cut, r ?

core andσ ?
0 are its

PIEMD parameters. Whenr ?
core vanishes, the potential becomes a singular isothermal potential

truncated at the cut-off radius. This is generally the type of potential used in weak galaxy–
galaxy lensing studies to measure the tidal radius of galaxy-scale subhalos in clusters or in the
field (seeLimousinet al2005, 2006).

In these scaling relations, the velocity dispersion scales with the total luminosity in
agreement with the Tully–Fisher and the Faber–Jackson relations for spiral and elliptical
galaxies respectively. Thercut relation is more hypothetical. Ifα = 0.5, it assumes a constant
mass-to-light ratio independent of the galaxy luminosity. Ifα = 0.8, the mass-to-light ratio
scales withL0.3 similar to the scaling of the fundamental plane (Halkolaet al 2006; Jørgensen
et al1996; Natarajan and Kneib 1997).

2.3. Constraints

2.3.1. Multiple images.In the strong lensing regime, the light coming from a background
galaxy (the source) passes through a high density region and is lensed into multiple images.
The position, shape and flux of each multiple image depend on the properties of the lens and
the redshift of the source. The precise measurement of the source redshift and of the image
properties (such as position, ellipticity and orientation) provides strong constraints on the lens
model.
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In general, image properties can be inferred from their light distributions. Indeed, the first-
order moment provides the image position, and the second-order moment corrected for the
effects of the point-spread-function (PSF) gives the ellipticity and the PA of the image. Note
however, that the ellipticity of a curved arc is somewhat ill-defined, so this information can
only be used if the images are relatively compact. In this paper, we only consider the multiple
image’s position as a constraint, and we discuss the associated likelihood in the next section.

Sometimes, the background galaxy presents several bright regions that can be individually
identified in each multiple image. Matching these bright regions in each image brings even
tighter constraints to the lensing model.

The images flux can also be considered as a constraint. However, the amplification can vary
strongly across highly extended images, and properly computing the amplification to measure
the total flux in each image is usually not straightforward.

Finally, the redshift of the source is a strong constraint on the lens model. A spectroscopic
determination is best, but a photometric redshift (e.g.Ilbert et al 2006) can be sufficient if
accurate enough (e.g.σz < 0.05 introduces a 2% error on theDLS/DOS ratio for a lens and a
source at redshiftszL = 0.2 andzS = 1 respectively) and with no multiple peak in its probability
distribution (no catastrophic redshift).

For well-defined photometric redshifts,lenstool provides a way of introducing accurately
the redshift likelihood as a prior for the model.

Including an uncertain source redshift as a free parameter to be inferred from the data
gives the model more freedom, albeit at some extra computational cost. However, due to the
other available constraints, it may lead to a more accurate redshift for that image system. This
procedure may also raise questions about a photometric or spectroscopic measured redshift if
the model favours a different range of values.

The correct identification of multiple images is probably the most complex task in strong
lensing modelling.

Initially, we consider (as a guide) only generic geometrical lensing configurations—cusp,
fold and saddle (Blandford and Narayan 1986)—for a single cluster-scale halo. Having found
a basic model that satisfies the most obvious or most straightforward multiple image system,
the perturbations due to galaxy-scale subhalos can be taken into account. Generally, subhalos
do not create strong lensing events by themselves, but affect the multiple images produced by
the cluster-scale halo. They can deflect their position or occasionally further divide a multiple
image.

Comparing the colours of multiple images is another straightforward technique. As lensing
is achromatic, multiple images must have similar colours unless the images’ fluxes are strongly
contaminated with or reddened by nearby galaxies.

It is important to realize that the identification process of multiple images is both iterative
and strongly linked to the determination of the mass profile, starting from the most obvious
systems close to the cluster centre and progressively adding perturbations and new systems.
New multiple images can be predicted before they are observationally confirmed.

2.3.2. Other lensing constraints.

Single images. Single images with known redshift lying close to the strong lensing region
(typically whenREinstein< r < 2REinstein) can also be included in the lens model. Indeed, they
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Figure 2. Merging of two multiple images and determination of the distance
between the true critical line (solid line, showing the surface brightness saddle
point) and a predicted critical line (dashed line). The dashed segment represents
the prior that would be set on the critical line location.

can help in constraining the parts of the model where no multiple image system is detected.
Such constraints have been neglected up to now. We propose here an efficient way to include
them in theχ2 determination.

In essence, we add a penalizing term to the likelihood if an observed single image is
predicted to be multiple, and if at least one of the counter-images could effectively be detected
in the observed data image. The penalizing term is a function ofnk, the number of predicted
images above the detection limit (defined to be three times the sky noise flux in the object
detection aperture).

The penalizing term is implemented in the following way:

χ2
single=

nk∑
j =1

[xsingle− x j (θ)]2

σ 2
single

. (6)

Here,xsingle is the position of the observed single image andx j (θ) is the position of a detectable
image predicted by the current model, whose parameters areθ andσsingle is the position error of
the observed single image.

This implementation provides a smooth way of converging to the bestχ2
single. Once

χ2
single= 0 (as it must be if truly single), the single image is no more a constraint. Consequently,

this definition only imposes an upper limit on the enclosed mass at the single image position.
The truly singly-imaged systems do not add to the overall number of degrees of freedom, nor
to the final global chi-squared value. However, they do accelerate the convergence on the best-
fitting parameter region.

This penalizing term must be used with some care; in particular, instances whereχ2
single> 0

have to be flagged and investigated, as they indicate either a failure of the model or that the single
image identification was incorrect. Indeed, this is one way in which new multiple images may
be found.

Location of critical lines. In the case of fold images, the position of the critical line passing in
between the two images can sometimes be observed as a saddle point in the surface brightness
of the images. We can use this information to put a constraint on the lens model by minimizing
the distance between the position where the image isophotes cross and the critical line predicted
by a model, as shown in figure2.

New Journal of Physics 9 (2007) 447 (http://www.njp.org/)

http://www.njp.org/


11

The prior segment for the critical line position can be defined by a centroidO, a PA and a
Gaussian error size on the positionσcl, hence, the correspondingχ2 can be given as:

χ2
cl =

‖ O − D ‖
2

σ 2
cl

, (7)

whereD is the intersection of the predicted critical line and the defined prior segment.
This constraint merely reinforces the weight of the considered system of multiple images

in the model.
By focusing on the crossing isophote, it makes use of more of the imaging information

than just the centroids of the multiple images. As such, it is a low-cost constraint in terms of
computation time and definitely accelerates the convergence on the best-fit region. Of course,
since constraints must be independent observations, this constraint must be observable and not
computed from the image positions.

At the end of the optimization, we check thatχ2
cl < 1. If this is not satisfied, then either the

critical constraint was wrongly identified or the model has not yet fully converged.

Weak shear signal. Outside the strong lensing region, the weak shear signal can be used
to constrain the model on larger angular scales. Considering a catalogue of background
galaxies with PSF-corrected shape measurements, one can minimize the difference between
the ellipticity of each galaxy and the reduced shear predicted by a mock model at the galaxy
location (see, e.g.Marshallet al2002, and references therein). We will discuss the weak lensing
implementation in a forthcoming paper.

2.4. The multiple images’ likelihood

We assume that the noises associated with the measurement of the images position are Gaussian
and uncorrelated from one image to another. The noise covariance matrix for all the considered
systems of multiple images is therefore diagonal. Hence, the usual definition of the likelihood
function applies and becomes, in this case,

L= Pr(D|x(θ)) =

N∏
i =1

1∏
j σi j

√
2π

exp−χ2
i /2, (8)

whereN is the number of sources, andni is the number of multiple images for sourcei . The
contribution to the overallχ2 from multiple images systemi is

χ2
i =

ni∑
j =1

[x j
obs− x j (θ)]2

σ 2
i j

, (9)

wherex j (θ) is the position of imagej predicted by the current model, whose parameters areθ
andσi j is the error on the position of imagej .

The accurate determination ofσi j depends on the image S/N ratio. For extended images,
a pixellated approach is the only accurate method which takes the S/N ratio of each pixel into
account (Dye and Warren 2005; Suyuet al2006). However, this method is very time consuming.
Therefore, in a first approximation, the image position error can be determined by fitting a two-
dimensional (2D) Gaussian profile to the image surface brightness. In this case, the fit error
contains implicitly the S/N ratio of each pixel. However, this assumes that the background
galaxy is compact and its surface brightness profile is smooth so that the brightest point in the
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source plane match the brightest point in the image plane. In this paper, for simplicity, the image
positions are determined by inverting the lens equation for a given source position. Therefore,
the images are point-like. We assign them identicalσi j so that they have the same weight in the
likelihood computation. Of course, this procedure is valid only in simulations where the source
positions are knowna priori and could not be applied to real cases.

A major issue of theχ2 computation is of how to match the predicted and observed images
one by one. Many techniques have been proposed so far to find the roots of the lens equation
(see, e.g.Dominik 1995). Unfortunately, the matching of the predicted to the observed images
one by one becomes problematic when their respective positions do not match closely. This
always happens during the first steps of the optimization. We have found no algorithm that
performs this matching automatically.

In contrast, the algorithm implemented inlenstool is a simplex method (Presset al1986)
of image transport (Schneideret al 1992). By definition, the observed image is coupled to the
predicted image all along the iterative refinement of the predicted position. Theχ2 is therefore
easy to compute. However, in models producing different configurations of multiple images
(e.g. a radial system instead of a tangential system), the method fails and that particular model
is then rejected. This usually happens when the model is not yet well determined, and it can
slow the convergence of the model significantly.

To get around this complexity, we can compute theχ2 in the source plane (by computing
difference of the source position for a given parameter sampleθ) instead of the image plane.
The source planeχ2 is written as

χ2
Si

=

ni∑
j =1

[x j
S(θ) − 〈x j

S(θ)〉]
2

µ−2
j σ 2

i j

, (10)

wherex j
S(θ) is the source position of the observed imagej, 〈x j

S(θ)〉 is the barycentre position
of all theni source positions, andµ j is the magnification for imagej . Written in this way, there
is no need to solve the lensing equation and so calculation of theχ2 is very fast.

The MCMC method we have implemented inlenstool supports both the source and the
image planeχ2 methods. However, with the image plane method many models have to be tested
and eventually rejected before the Bayesian sampler (see below) focuses on the best-fit region.
This unnecessarily increases the computation time. In this paper, we first ‘size up’ the best-fit
region with the source plane method, and then refine the models with the image plane method.

Figure 3 shows that the posterior probability density function (PDF) are similar when
computed with the image plane method alone or with the successive source plane + image plane
method. However, this latter method is about eight times faster than the image method alone.

3. A Bayesian MCMC method

We have implemented the Bayesian MCMC packageBayeSys (Skilling 2004) to perform the
lens model fitting. By model, we mean a multiple-component (and hence multi-scale) mass
distribution as described above, with a set of priors for its parameters.

Theoretically, the Bayesian approach is better suited than regression techniques in
situations where the data by themselves do not sufficiently constrain the model. In this case,
prior knowledge about the parameter PDF helps to reduce the model’s degeneracies. The
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Figure 3. 2D marginalized posterior PDF of a simulated cluster of galaxies.
The left, middle and right columns are respectively obtained by computing the
likelihood with the source plane method, with the image plane method and
successively with the source plane and the image plane methods. In terms of
computation time, the combined method source plane—image plane is about
eight times faster than the image plane method alone.

Bayesian approach is well suited to strong lens modelling, given the few constraints generally
available to optimize a model.

The Bayesian approach provides two levels of inference: parameter space exploration
and model comparison. The first level can be achieved using the unnormalized posterior PDF
(equal to the product of the likelihood and the prior); the second requires the calculation of the
normalization of the posterior, known as the evidence. All these quantities are related by Bayes
theorem,

Pr(θ|D, M) =
Pr(D|θ, M)Pr(θ|M)

Pr(D|M)
, (11)

where Pr(θ|D, M) is the posterior PDF, Pr(D|θ, M) is the likelihood of getting the observed
dataD given the parametersθ of the modelM, Pr(θ|M) is the prior PDF for the parameters,
and Pr(D|M) is the evidence.

The posterior PDF will be the highest for the set of parametersθ which gives the best fit
and is consistent with the prior PDF, regardless of the complexity of the modelM . Meanwhile,
the evidence Pr(D|M) is the probability of getting the dataD given the assumed modelM . It
measures the complexity of modelM , and, when used as in model selection, it acts as Occam’s
razor: ‘All things being equal, the simplest solution tends to be the best one’. Here, the simplest
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solution tends to be the model with the smallest number of parameters and with the prior PDF
the closest to the posterior PDF. In contrast, the commonly-used reducedχ2 analysis is only a
rough approximation to the evidence analysis, although it does provide an absolute estimator of
goodness-of-fit (provided the error estimates on the data are accurate).

In information theory, the evidence combines the likelihood and the informationI , or
negative entropy:

I =

∫
Pr(θ|D, M) log(Pr(θ|D, M)/Pr(θ|M))dθ, (12)

where the sum is performed over the whole parameter space and Pr(θ|D, M) is the posterior
PDF and Pr(θ|M) is the prior PDF.

The negative entropy measures the information we have obtained in computing the
posterior PDF from the input prior PDF. It represents a ‘distance’ between the prior PDF and
the posterior PDF. It can also be understood as the volume of the prior PDF over the posterior
PDF, which can be very large for high signal to noise data. [In this case the task of parameter
space exploration is like searching for a ‘a needle in a haystack’, and the entropy measures the
ratio of the needle’s volume (the posterior PDF) to the haystack’s volume (the prior PDF)].

In general, the information is much bigger than unity because the ‘distance’ between the
prior PDF and the posterior PDF is large. For this reason, we use annealed Markov Chains to
converge progressively from the prior PDF to the posterior PDF.

Technically, we run ten interlinked Markov chains at the same time to prevent any Markov
chain from falling in a local minimum. The MCMC convergence to the posterior PDF is
performed with a variant of the ‘thermodynamic integration’ technique (O Ruanaidh and
Fitzgerald 1996) calledselective annealing.

‘Selective’ stands for the following process. At each step, ten new samples (one per Markov
chain) are drawn randomly from the current posterior PDF (which corresponds to the prior
PDF at the beginning). These samples are weighted according to their likelihood raised to
the power ofδλ (see below) and selected with a variant of the Metropolis–Hasting algorithm
(Hastings 1970; Metropolis et al 1953). Roughly, the samples with the worst likelihood are
deleted and the ones with the best likelihood are duplicated so that we always keep ten
Markov chains running at the same time. Then,bayesys provides eight exploration algorithms
to randomly move the new samples in the parameter space and keep the ten Markov chains
uncorrelated (seeSkilling 2004, for more details). This new set of randomly mixed samples is
appended to the Markov chains and used as a new seed for the next step.

The bayesys production of new samples is fast but the likelihood computation by
lenstool is slow. For each observed image, we must compute the gradient of every potential
and sum them to compute the deviation angle and determine the source position. Therefore, the
optimization process takes longer with more images and/or more potentials. However, if ther ?

cut
or σ ?

0 parameters are fixed, the luminosity-scaled subhalo gradients can be computed just once
(at the first iteration), thus reducing drastically the computation time.

The ‘annealing’ term of the ‘selective annealing’ technique controls the convergence speed.
The slower and smoother the convergence, the more accurate is the evidence and the better
characterized is the posterior. The annealing process is best seen by rewriting Bayes theorem:

Pr(θ|D, M) =
Pr(D|θ, M)λPr(θ|M)

Pr(D|M)
. (13)
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Figure 4. Evidence andχ2 evolution in function of the convergence speed
parameter ‘Rate’.

Here,λ is the cooling factor for the annealing. During a so-called ‘burn-in’ phase, the
likelihood influence is raised progressively fromλ = 0 to 1 by step ofδλ ∼ Rate/(logLmax−

log L̄) where L̄ is the mean likelihood value of the ten samples and Rate is an arbitrary
constant set by the user. At the beginning of the optimization,δλ is small because the likelihood
dispersion of the ten samples is large.

As seen above, the samples are weighted and selected according to their likelihood raised
to the power ofδλ. Thus, whatever the likelihoods are widely separated,δλ decreases and the
convergence automatically slows in proportion to compensate.

In the small-convergence speed limit, the relative information between the beginning and
end of a MCMC step is approximately constant and equal to Rate2 (Skilling 2004).

By decreasing Rate, the user decreases the information rate per MCMC step and thus the
evidence error (see left panel of figure4) but at the price of slower convergence.

The right panel of figure4 shows that, within the error bars, the medianχ2 is stable when
Rate decreases. A lower Rate implies a slower convergence speed. The chains will contain more
samples and hence better explore the parameter space towards the best-fit region. This explains
the slight decrease of the medianχ2 when Rate decreases. Alternatively, the spread ofχ2 is
similar for all Rate values, indicating that the convergence speed does not affect the parameter
space exploration around the medianχ2.

From our experience, we have found that a value between 0.1 and 0.5 gives evidence values
that are accurate enough for our purposes, while returning the posterior PDF in a reasonable
amount of computation time. From figure4, we can see that the uncertainty on the logarithm of
the evidence is approximately 4 units: this corresponds to an odds ratio of 50 to 1, a sufficiently
convincing value. In the rest of this paper, we will use a Rate of 0.1 unless otherwise specified.

3.1. MCMC output

Contrary to maximum likelihood methods (like the downhill method used byKneib
et al 1993), the Bayesian MCMC sampler does not look for the best sample of parameters.
Instead, it samples the posterior PDF, drawing more samples where the posterior PDF is higher.
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The more samples we collect after the burn-in phase, the better the resolution of the
posterior PDF. This is of particular interest given that we use 1D and 2D histograms to represent
the marginalized posterior PDFs Pr(θi |M) and Pr(θi , θ j |M). The number of histogram bins is
limited by the number of samples. To determine the bin sizes, we use the Freedman and Diaconis
rule (Freedman and Diaconis 1981). They have shown that in order to get the best-fit between a
PDF and the corresponding histogram, the bin size should be:

bin size= 2IQR(θi )N−1/3 , (14)

where IQR is the interquartile range of theθi samples andN is the number of samples.
The produced 2D posterior histograms in the rest of this paper show that the parameters

are not independent, and that their PDFs are certainly not Gaussian. Techniques based on the
assumption of Gaussian errors, with correlation matrix measured around the best fit, are not
accurate and likely underestimate some errors. Therefore, uncertainties must be estimated with
care, and eventually asymmetric errors must be adopted in case of large asymmetries observed
in the posterior PDF.

To compress the posterior PDFs and provide a convenient way of comparing them, we use
the median and the standard deviation estimators. It has been shown (Simard 1996) that the
median is the most robust estimator for unimodal asymmetric distributions—which is usually
the kind of distribution we have for our parameters—whereas the mean estimator is valid only
if the distribution is close to Gaussian. The more samples we have, the less we are affected
by outliers.

4. Lens potential parameter degeneracies

In this section, we present and interpret the degeneracies observed in galaxy cluster strong
lensing models. Degeneracies will always appear in strong lensing modelling because the
lensing only constrains the mass inside an Einstein radius. Unfortunately in parametric models,
the parameters involved in the computation of the mass inside the Einstein radius are rarely
orthogonal and strongly degenerate.

In the literature, we have found several papers presenting parameters degeneracies (see,
e.g.Mengeghettiet al 2007; Rzepeckiet al 2007; Zekseret al 2006) for illustrations of the
NFW rs—ρs degeneracy). We are finding similar results, although we are going beyond most of
the previous study by exploring many more parameters.

In this section, we use the same potential to simulate and recover the cluster-scale halo,
respectively a PIEMD, a NFW and a Sérsic potential. Fitting the data by the true model never
happens in practice. However, the presented degeneracies always appear and simple models are
required for a proper understanding.

In section5, we will use different models for the simulation and the recovery in order to
compare the limits of each model given the data.

4.1. Description of the simulation

4.1.1. The mass models.We simulate a cluster of galaxies comprising a cluster-scale halo,
and 78 galaxy-scale subhalos that perturb the lensing signal. The cluster-scale halo is modelled
successively by a PIEMD, a NFW and a Sérsic potential whose input parameters are reported
in table2. The galaxy-scale subhalos are modelled by PIEMD potentials with vanishing core
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Table 2. Input parameters for the 3 simulated cluster-scale components.

PIEMD ε6 = 0.3 rcore= 40 kpc
PA = 127 rcut = 900 kpc

σ0 = 950 km s−1

NFW εϕ = 0.2 r200 = 1800 kpc
PA = 127 c = 6

Sérsic εϕ = 0.2 Re = 1500 kpc
PA = 127 6e = 5× 107 M� kpc−2

n = 2.8

L? galaxy r ?
cut = 18 kpc σ ?

0 = 200 km s−1

radius. The cluster is placed at redshiftz = 0.2. Hereafter, we will refer to each model as the
PIEMD, the NFW and the Sérsic models.

The galaxy-scale subhalo distribution follows the galaxy distribution in the cluster Abell
2390 in a region of 200 kpc around the cluster centre. This is two times larger than the radius
of the outermost images in our simulation. Thus, we account for the shearing effect produced
by outer galaxies. The selected galaxies are part of the cluster red-sequence and therefore are
assumed to be cluster members.

The galaxy-scale subhalosrcut and σ0 are scaled with the scaling relations (4). A
constantM/L ratio is assumed. We consider the scaling parametersr ?

cut = 18 kpc andσ ?
0 =

200 km s−1 as the input values for our simulations. These values correspond to measured values
obtained through galaxy–galaxy lensing in Abell 2390 (Natarajanet al 2006). The apparent
K-band magnitude of anL∗ galaxy at the cluster redshift isM?

= 17.05 (in AB magnitude)
(de Propriset al 1999). The galaxy magnitudes come from observations of Abell 2390 in the
K-band (Julloet al2007), and are used to calculate the true mass parameters in the simulations.

We also include a cD galaxy in the model to produce more systems of multiple images
in the cluster centre. The cD galaxy is described by an individual subhalo modelled by a
PIEMD potential with vanishing core, and shape parameters matching the light distribution.
Its mass profile is characterized byσ0 = 290 km s−1, rcore= 0 andrcut = 38 kpc. The cluster
Einstein radius for az = 10 background source is 30′′. The enclosed mass at this radius is
Meins= 6.7× 1013M�, of which the galaxies’ contribution is about 9%.

4.1.2. Strong lensing constraints.We lens three background sources,A, B andC, at redshifts
zA = 0.6, zB = 1.0 andzC = 4.0, through each simulated cluster. We adjust theB andC source
positions in order to produce the three following configurations of multiple images.

Configuration 1:sourceA is placed on the North-East side of the cluster, but outside of
the multiple image region. It therefore produces a single image. Also on the East side, but inside
the radial caustic, sourceB produces a radial arc system with three images. On the West side,
sourceC lies along the West naked cusp of the caustics and so produces a system with three
tangential images.

Configuration 2:sourcesA andC are in the same places as in configuration 1, but source
B is placed along the East naked cusp and so produces three tangential images. The second
configuration therefore constrains mainly the enclosed mass in the outer part of the cluster
(100< r < 200 kpc).
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Configuration 3:sourcesA and B are at the same place as in configuration 1, but source
C is placed close to the radial caustics and therefore produces a second radial system of three
images on the West side of the cluster. The third configuration then preferentially constrains
the inner part of the mass profile (r < 100 kpc).

The source and image positions in the three configurations are presented in figure5, along
with the critical and caustic curves for sources at redshiftzB = 1.0 andzC = 4.0. Gaussian noise
of FWHM 0.1′′ was added to the image positions to mimic the observational uncertainties. All
the predicted images are used for the parameter recovery unless their lensing magnification is
lower than 1. In practice, such images are never observed (too faint or blended in the cD flux).

Configuration 1 constrains the cluster central and outer regions, configuration 2 only
constrains the outer region and in configuration 3, the four radial images strongly constrain
the cluster central region on both the East and the West sides.

4.2. PIEMD posterior PDF analysis

First, we fit the PIEMD model with a PIEMD potential for the cluster-scale halo. For each of
the three configurations of multiple images, we recover the cluster-scale halo parameters (ε, PA,
rcore, rcut andσ0), as well as the galaxy-scale subhalos scaling parametersσ ?

0 andr ?
cut. For each

parameter, we assume a uniform prior with 50% errors around its input value. In this case, the
computed posterior PDF is merely proportional to the likelihood PDF. The cD galaxy subhalo
parameters are fixed to their input value in order to avoid annoying additional degeneracies
with the cluster-scale halo parameters. We therefore constrain seven free parameters with eight
constraints. Theχ2 is computed in the image plane, although we observed no difference between
the source planeχ2 and the image planeχ2.

The obtained posterior PDF is marginalized (by making a histogram in 2D and ignoring the
samples’ other parameters), and plotted in figure6. The estimated (median) parameters are given
in table3. In every configuration, the input values are recovered well, but strong degeneracies
appear.

Firstly, we note that the posterior PDF is more compact in configuration 3 than in
configuration 1 and 2, in concordance with the number of radial arcs in each configuration. This
is in agreement with the results of Miralda-Escude (1995), who showed that the combination of
radial arcs and their counter image provides a stringent constraint on the profile shape as well
as the enclosed mass.

Secondly, the velocity dispersion tightly correlates with the core radius, and, to a lesser
extent, with the cut-off radius. This is a mathematical degeneracy that appears when the mass
enclosed by the Einstein radius is maintained constant (or in this case, constrained tightly by the
data). Indeed, for a PIEMD potential, the enclosed mass is given by (Limousinet al2005):

Maper(< R) =
πrcutσ

2
0

G

(
1−

√
r 2

cut + R2 −
√

r 2
core+ R2

rcut − rcore

)
. (15)

Thus, for a mass enclosed into a large circle of radiusR ∼ rcut, we deriveσ 2
0 ∝ 1/rcut. At a

smaller radius, assumingrcore� rcut, the 3D density approximatesρ = ρ0/(1 + R2/r 2
core) and

the corresponding enclosed mass becomes

Maper(< R) =
πσ 2

0

G

(√
r 2

core+ R2 − rcore

)
. (16)
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Figure 5. Left panel: image plane for the PIEMD simulated cluster, showing
the image positions of the systemsA, B andC at redshiftszA = 0.6, zB = 1.0
andzC = 4.0 in the configurations 1, 2 and 3. The black circles mark the image
positions. The critical curves of systemsB andC are shown in red. Right panel:
The corresponding source plane. The blue crosses mark the source positions; the
caustic curves are plotted in black. The plotted caustics for systemsB andC are
radial and tangential, tangential and tangential, and radial and radial, respectively
for configurations 1, 2 and 3. North is up and East is left in both panels.
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Figure 6. 2D marginalized posterior PDFs for the parameters of the cluster-scale
halo modelled with a PIEMD potential obtained, from left to right, with multiple
image configurations 1, 2 and 3 respectively. The three contours stand for the
68, 95 and 99% CL. The input values to the simulation are marked by the stars.
The mass of anL? galaxy is the total mass for a circular profile. The plotted
contours in ther ?

cut–σ ?
0 plot are iso-density contours. The cluster massMeins is the

inferred total enclosed mass (i.e. galaxy subhalos and cluster-scale halo) within
the Einstein radius (30′′).
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Table 3. Parameter recovery for a cluster-scale halo modelled by a PIEMD
potential, given three different strong lensing configurations. The errors are given
at 68% CL. TheL? galaxy masses are given for a circular mass component with
identical dynamical parameters.

Input Configuration 1 Configuration 2 Configuration 3

ε 0.3 0.31± 0.04 0.30± 0.06 0.29± 0.02
PA (degree) 127 127.2± 0.9 128.5± 7.5 127.2± 0.8
rcore (kpc) 40 38.8± 4.7 41.7± 9.3 39.8± 1.9
σ0(km s−1) 950 937.3± 43.9 966.4± 59.8 946.5± 16.6
rcut (kpc) 900 907.8± 253.7 894.6± 264.7 936.5± 235.7
r ?

cut (kpc) 18 18.5± 6.5 19.6± 6.5 25.9± 6.3
σ ?

0 (km s−1) 200 196.9± 16.8 199.0± 16.5 180.4± 12.2
ML? (1011 M�) 5.26 5.3± 1.2 5.1± 0.8 5.7± 1.1
Meins (1012 M�) 73.4 73.0± 2.0 74.6± 3.8 73.5± 0.6

For a constant aperture mass, we then obtainσ 2
0 ∝ (

√
r 2

core+ R2 − rcore)
−1, which is also

equivalent toσ 2
0 ∝ (1/R2)(rcore+

√
r 2

core+ R2), an increasing function ofrcore resembling the
observed degeneracy.

Thirdly, in configuration 3, the cluster-scale cut-off radius is slightly better constrained
than in configuration 1 or 2. Since strong lensing cannot probe directly the surface density at the
cut-off radius, this result is just a product of the aperture mass definition15 and the stringent
constraints obtained forrcore andσ0.

Fourthly, we observe changes in the slopes of the ellipticity–PA, the ellipticity–L? mass
and theMeins–L? mass degeneracies between configuration 1, 2 and 3.

This effect is more due to a subtle interaction between the cluster-scale halo and the galaxy-
scale subhalos’ mass distributions during the inference. In particular, in configuration 2, we
suggest that when the ellipticity increases, alignment of the cluster with the giant arcsB andC
is favoured. However, in configuration 1 and 3, this behaviour is not so clear, probably because
of the presence of radial arcs in the central region.

Finally, in every configuration, the scaling relation parametersr ?
cut and σ ?

0 are strongly
degenerate, with the degeneracy closely following the constant mass contours over-plotted with
solid lines. In table3, we note that strong lensing cannot predict theL? cut-off radius to better
than 24% accuracy, norσ ?

0 with better than 6% accuracy.
Although strong degeneracies have been highlighted so far for a cluster-scale halo modelled

by a PIEMD potential, the aperture mass error at the Einstein radius is always smaller than 5%
and even reaches 0.8% in configuration 3 (see table3).

In section5, we show that the same precision can also be achieved when the input and the
fitted models are different.

4.3. NFW posteriors distribution analysis

Now, we fit the NFW model with a NFW potential for the cluster-scale halo. Given the three
configurations of multiple images, we perform the recovery of the cluster-scale halo parameters
(ε, PA, c andrs) as well as the galaxy-scale subhalo scaling parametersσ ?

0 andr ?
cut. Again, we
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assume uniform priors for the parameters, with a width of 50% centred on the input values;
the cD galaxy subhalo parameters are again fixed. We constrain six free parameters with eight
constraints.

The obtained posterior PDF is marginalized and plotted in figure7. The (median) estimated
parameters are given in table4 as well.

Firstly, similarly to the PIEMD case, we note that the degeneracies are more compact in
configuration 3 than in configurations 1 and 2 for which the central region of the cluster is less
constrained.

Secondly, we note a strong degeneracy betweenc and thers. It can be fitted by a power
law rs ∝ cα whereα = −1.7, −1.5 and−1.4 for configurations 1, 2 and 3, respectively. To
confirm the mathematical origin of this degeneracy, we consider the NFW definition of the
aperture mass. By solving numerically forrs givenc at constant aperture mass, we manage to
reproduce the observed degeneracy and measureα = −1.1, in relatively good agreement with
the measured slopes given the uncertainty on the aperture mass.

Thirdly, the ellipticity, the PA, theMeins and theL? mass parameters are degenerate in the
same manner as in the previous section, when the cluster-scale halo was modelled by a PIEMD
potential. This confirms that these degeneracies are independent of the cluster model, and just
depend on the lensed image configuration.

Finally, in table4, we note that theL? cut-off radius error is recovered with nearly the
same accuracy when the cluster-scale halo is modelled by a NFW potential than when modelled
by a PIEMD potential. This suggests that the scaling relation parameters accuracy is model-
independent. Similarly, the uncertainty on the enclosed mass measured at the Einstein radius is
similar to that found when the cluster-scale halo is modelled by a PIEMD potential.

4.4. Sérsic posterior distribution analysis

Finally, we fit the Sérsic model with a Sérsic potential for the cluster-scale halo. We perform the
recovery of the cluster-scale halo parameters (ε, PA, Re, 6e andn), as well as the galaxy-scale
subhalo scaling parametersσ ?

0 andr ?
cut, given the same three configurations of multiple images

as before.
Again, we assume uniform priors for the parameters, with widths of 50% centred on the

input values. The cD galaxy subhalo parameters are fixed. We constrain seven free parameters
with eight constraints.

The obtained posterior PDF is marginalized and plotted in figure8. The estimated
parameters are given in table5.

Firstly, we note that for the same lensing configuration, the parameters of a cluster-scale
halo modelled by a Sérsic potential are more difficult to constrain than those of a PIEMD or a
NFW potential. We understand this to be a result of the effective radiusRe and index parameter
n mainly impacting the outer region of the mass distribution, which is not probed by strong
lensing.

Secondly, the ellipticity, the PA, theMeins and theL? mass parameters are degenerate in the
same manner as in the previous sections, confirming that these degeneracies are dependent on
the lensing configuration alone.

Finally, in table5, we note that theL? cut-off radius is recovered with nearly the same
accuracy as in the case where the cluster-scale halo is modelled with the NFW potential.
We suggest therefore that the scaling parametersr ?

cut andσ ?
0 accuracies cannot be lower than
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Figure 7. 2D marginalized posterior PDF of the parameters of the cluster-scale
halo modelled with an NFW potential, obtained, from left to right, with multiple-
image configurations 1, 2 and 3 respectively. The three contours stand for the 68,
95 and 99% CL . The fiducial values are marked by the stars. The mass of aL?

galaxy is the total mass for a circular profile. The plotted contours in ther ?
cut–

σ ?
0 plot are the iso-density contours. The cluster massMeins is the total enclosed

mass (i.e. galaxy subhalos and cluster-scale halo) in the Einstein radius (30′′).
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Table 4. Parameter recovery results for a cluster-scale halo modelled by a NFW
potential, given three different strong lensing configurations. The errors are given
at 68% CL. TheL? masses are given for a circular mass component with identical
dynamical parameters.

Input Configuration 1 Configuration 2 Configuration 3

ε 0.2 0.21± 0.02 0.18± 0.03 0.21± 0.01
PA (degree) 127 127.4± 1.0 126.6± 4.0 126.6± 0.6
c 6 6.5± 0.9 6.4± 0.8 5.9± 0.3
Scale radius (kpc) 300 269.3± 54.6 367.9± 149.9 284.7± 22.5
r ?

cut (kpc) 18 21.6± 4.8 16.3± 3.9 20.6± 10.1
σ ?

0 (km s−1) 200 191.5± 15.4 205.6± 13.4 169.6± 27.8
ML? (1011M�) 5.26 5.56± 1.7 4.2± 1.1 4.9± 0.9
Meins (1012M�) 67.8 66.9± 1.8 69.5± 2.9 67.4± 0.8

about 20 and 7%, respectively. This result is independent of both the model and the lensing
configuration.

Figure9 sums up the results found in this section concerning the accuracy obtained on
the mass profile in each configuration for each potential. Although the accuracy depends on
the lensing configuration, it is usually better than 5% in the region of multiple images with no
obvious bias. The accuracy is model independent, and is just the noise on the image positions
(0.1 arcsec) translated into the uncertainty on the parameters.

5. Model inference

In this section, we use the Bayesian evidence to rank models. As an example, we consider
the controversial inner slope of the density profile in clusters of galaxies. In Sandet al 2004
have used a sample of six galaxy clusters to show that the slope of the central density profile
was shallower thanr −1 as predicted by CDM simulations. In their modelling they were using
axisymmetric potentials. The same year, Bartelmann and Meneghetti (2004) reconsider these
results and conclude that an NFW profile with ar −1 inner slope could not be ruled out by strong
lensing once effects of asymmetry and shear were taken into account.

In order to illustrate the model inference with the Bayesian evidence, we assume here that
galaxy clusters actually present an inner slope shallower thanr −1. Then, we show that even
when accounting for asymmetry and shear, the Bayesian evidence is still able to rank models
and eventually rule them out.

To do so, as an input model, we use the PIEMD model from section4.2, i.e. the inner slope
is shallower thanr −1. In order to observe the limits of Bayesian inference with the evidence,
we simulate six models in which we change the size of the cluster-scale halo core radius. We
scale the velocity dispersion accordingly so that the enclosed mass at the Einstein radius is
maintained.

The three background galaxies of the previous section are lensed through each model. We
have to slightly move the sources in the source plane so that in every simulation, we always end
up with one tangential system, one radial system and one singly imaged system. For models
with rcore< 30 kpc, we remove the images predicted at the very centre of the galaxy cluster
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Figure 8. 2D marginalized posterior PDF of the parameters of the cluster-
scale halo modelled with an Sérsic potential obtained from left to right with
configurations 1, 2 and 3 of multiple images respectively. The three contours
stand for the 68, 95 and 99% CL. The fiducial values are marked by the stars. The
mass of aL? galaxy is the total mass for a circular profile. The plotted contours
in the r ?

cut–σ ?
0 plot are the iso-mass contours. The cluster massMeins is the total

enclosed mass (i.e. galaxy subhalos and cluster-scale halo) in the Einstein radius
(30′′).
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Table 5. Parameter recovery results for a cluster-scale halo modelled by a
Sérsic potential and recovered in three different strong lensing configurations.
The errors are given at 68% CL. TheL? masses are given for a circular mass
component with identical dynamical parameters.

Input Configuration 1 Configuration 2 Configuration 3

ε 0.2 0.23± 0.03 0.24± 0.04 0.19± 0.01
PA (deg) 127 128.0± 0.8 121.9± 2.3 127.5± 1.0
Re (kpc) 1500 1195.7± 345.5 1630.8± 372.4 1698.5± 319.3
6e (108M�) 0.5 0.5± 0.1 0.5± 0.1 0.5± 0.1
n 2.8 2.9± 0.2 2.6± 0.2 2.8± 0.2
r ?

cut (kpc) 18 21.0± 3.3 16.8± 4.2 25.4± 8.2
σ ?

0 (km s−1) 200 206.6± 15.5 223.6± 20.2 178.0± 29.2
ML? (1011M�) 5.26 6.9± 1.3 5.9± 0.9 6.1± 1.2
Meins (1012M�) 67.9 64.6± 2.0 65.5± 3.4 68.8± 1.3

because their lensing amplification is lower than 1 and in practice they are never observed (either
too faint or blended in the cD galaxy flux). In contrast, for models withrcore> 30 kpc, we keep
all the predicted images because their lensing amplification is always greater than 1. We add a
Gaussian noise of FWHM 0.1′′ to each image position.

Then, we successively fit a SIE, a NFW and a Sérsic potential to the simulated systems of
multiple images and report the computed evidences in table6. As a reference, the last column
reports the evidence computed when we fit the simulated PIEMD models by themselves. We
assume no prior knowledge (in practice, we use uniform distributions and adjust the limits so
that the posterior PDF is not bounded). We also consider the scaling relation parametersr ?

cut and
σ ?

0 as free parameters.
Figure10 shows the aperture mass errors relative to the input PIEMD mass profile for the

SIE, the NFW and the Sérsic potentials.
Firstly, we note that excluding the inner region and whenrcore6 20 kpc, the input mass

profile is well recovered by all the models. Note that in the casercore= 0 kpc, the SIE aperture
mass error is smaller than 10% on the full range of radius. This ascertains the consistency of our
SIE and PIEMD models. Conversely, the SIE aperture mass error increases rapidly in the inner
region as soon as we increase the core radius. In the inner region, the large errors are due to the
intrinsic slope of each model (see figure1).

The evidences reported in table6 correctly summarize these observations. In particular,
the SIE evidence atrcore= 0 kpc is close to the evidences of the other models. According
to Jeffreys (1961), the difference between two models is substantial if 1< 1lnE < 2.5, strong
if 2.5 < 1lnE < 5 and decisive if1lnE > 5. Following this criteria, forrcore6 20 kpc, the
NFW, the Sérsic and the SIE models are equivalent at fitting the data within the evidence
error established in section3. However, when the core radius increases, the SIE model can
be confidently rejected.

Now, excluding the SIE models, we can use the evidences to classify the models into two
categories: (i) whenrcore6 20 kpc, the NFW and the Sérsic models evidences are equivalent
to the reference PIEMD evidence within the evidence error. The evidences cannot confidently
rank models. (ii) whenrcore>20 kpc, the evidences drop significantly and the NFW and Sérsic
models are confidently ruled out. This corresponds to the appearance of bright images inside the
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Figure 9. Relative mass profile recovery in the three configurations for the three
potentials PIEMD (vertically hatched region), NFW (−45◦ hatched region) and
Sérsic (45◦hatched region). The arrows below each plot mark the positions of the
multiple images used as constraints. The error bars are given at 68% CL.

core radius (see figure10) as expected from flat core models. Here, the Sérsic model evidence is
generally better than the NFW model evidence although the Sérsic model contains an additional
free parameter. In thercore= 30 kpc case, the NFW and the Sérsic models evidences are very
low because of the stringent constraints imposed by the distribution of multiple images (a triplet
of tangential images atR = 81 kpc and a set of uniformly distributed images below 40 kpc).

Finally, we conclude that the Bayesian evidence can effectively rank strong lensing models
even when accounting for asymmetry and shear. However, this result strongly depends on the
presence of images in the cluster centre.

As we are submitting this paper, some of us are already usinglenstool and the evidence
inference to study the inner slope of the DM profile with real data. Their results will be published
in a forthcoming paper.
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Table 6. Comparison of the log(Evidence) produced by the fit of the NFW, SIE
and Sérsic potentials to a core radius varying PIEMD potential. The values come
from fits performed with sets of multiple images described in the text and a Rate
equal to 0.1

Core radius (kpc) ENFW ESersic ESIE EPIEMD

0 −27 −25 −28 −20
10 −25 −23 −33 −19
20 −27 −24 −146 −19
30 −198 −204 −1391 −25
40 −81 −70 −2795 −19
50 −86 −73 −3260 −22

6. Conclusion

In this study, we have described how to build a gravitational lensing model of galaxy clusters
and a set of constraints with multiply and singly imaged systems. Then, we have presented a new
Bayesian method for efficiently exploring its parameter space without falling into local maxima
of the likelihood PDF. The Bayesian method also gives an estimate of the errors and includes
prior knowledge. We have illustrated the Bayesian posterior PDF analysis by studying the
degeneracies in the PIEMD, the NFW and the Sérsic potentials in three different configurations
of multiple images. We draw the following conclusions.

1. Strong degeneracies appear in both the PIEMD, the NFW and the Sérsic potentials. The
parameters are clearly dependent and compensate in order to produce a constant enclosed
mass at the images location. The degeneracies are either due to the mathematical definitions
of the potentials (σ0–rcore, σ0–rcut for PIEMD, c–rs for NFW, Re–6e, Re–n and6e–n for
Sérsic) or to the configuration of multiple images (ε–P A, ε–L? galaxy mass andMeins–L?

galaxy mass). The latter degeneracies are easily identified by looking at the degeneracies
between the shape and the dynamical parameters. They are model-independent. In every
case, the enclosed mass in the Einstein radius decreases with the model ellipticity.

2. Radial systems of multiple images combined to tangential arcs provide unique constraints
on the slope of the mass profile. It is therefore important to identify radial (or central)
images in the cluster cores.

3. The PIEMD cut-off radius, the Sérsic effective radius and the NFW scale radius are poorly
constrained by strong lensing only. Hopefully, future parametric methods combining weak
and strong lensing will provide tighter constraints.

4. Galaxy-scale subhalos degenerate with the cluster-scale halo. The best constraints were
obtained in lensing configurations combining radial and tangential multiple images
systems. In this case, we barely manage a 20% accuracy on the cut-off radius of subhalos
scaled with scaling relations. As shown by (Natarajanet al 1998, 2006) weak and strong
lensing combination can improve this result.

We have also illustrated how to rank models with the Bayesian evidence. We fit a NFW,
a Sérsic and a SIE potential to six PIEMD simulated clusters with different core radius. We
have shown that the NFW and the Sérsic potentials can actually fit systems of multiple images
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Figure 10. Aperture mass profile errors relative to the input PIEMD mass profile
for the fitted potentials SIE (vertically hatched region), NFW (−45◦ hatched
region) and Sérsic (45◦ hatched region) as a function of the aperture radius. The
hatched width represents the 3σ error estimated from the posterior PDF. The
arrows mark the positions of the multiple images used as constraints.

produced by clusters with core radiusprovided no images lie inside the core radius. For
large core radius, central images appear at the very centre of the cluster and provide enough
constraints to disentangle PIEMD, NFW or Sérsic-based models.

Although strong lensing is a wonderful tool to infer surface densities, it becomes rapidly
limited by the models and the observed lensing configuration. For instance, it is not possible to
constrain the central density slope without radial images. Actually, the presence of radial images
strongly suggests the presence of a flat core.

In a forthcoming paper, we will expand this method to constrain cosmological parameters
with strong lensing. With a large number of multiple images with known redshift, one should
be able to compare the strong lensing cosmography constraints (similarly to the early work
of Golseet al (2002) and Soucailet al (2004)) with other methods such as the CMB/WMAP
results, or supernovae or cosmic shear results.
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Appendix A. Critical lines computation with marching squares

A multiscale marching squares technique has been implemented inlenstool to compute the
critical lines. Marching squares is a computer graphics algorithm that generates contour lines for
a 2D scalar field. It is similar to the marching cubes algorithm (Lorensen and Cline 1987). The
algorithm proceeds through a scalar field taking four neighbour locations at a time (thus forming
an imaginary square), then determining the line needed to represent the part of the contour that
passes through this square. The individual lines are then fused into the desired contour.

This is done by creating an index to a precalculated array of 16 (24
= 16) possible line

configurations within the square (see figureA1), by treating each of the four scalar values as a
bit in a 4-bit integer. If the scalar’s value is higher than the iso-value (i.e. it is inside the contour)
then the appropriate bit is set to one, while if it is lower (outside), it is set to zero. The final
value after all four scalars are checked, is the actual index to the line configuration array.

In the critical lines case, the scalar field is not knowna priori. Therefore, we adopt a
multiscale algorithm to focus towards the critical lines. As illustrated in figureA2, the field is
split in two recursively until we reach a higher limit for the size of a rectangle. Then, if a critical
line is detected in a rectangle, it is split further. The rectangles with no critical line detected are
left aside. Once the size of the rectangle has reached a lower limit, a line is kept in memory for
this rectangle according to the marching squares configurations. The individual lines are then
fused into the critical lines contour.

The previous technique was a line following algorithm calledsnake. It starts from
the centre of a clump and picks amplification samples along its way outwards. When an
amplification sign change is encountered, it precises the infinite amplification position and
circles the clump until it comes back to its starting point along the critical line.

In complex environment, thesnake algorithm sometimes gets lost and produces
incomplete critical lines. Conversely, the multiscale marching square algorithm never gets lost
and identifies all the critical lines in the field. However, it can miss a part of critical line if the
higher limit is too large.

Appendix B. Pseudo-elliptical Sérsic potential

As another addition tolenstool, we have incorporated the Sérsic density profile (Sérsic
1968) as an alternative description of the matter density. The motivation for including it is
that as the Sérsic profile describes the 2D luminosity profile of elliptical galaxies (Ciotti 1991;
Caonet al1993; Sérsic 1968), it can be used to separately model the baryonic matter component
(which should be traced by the light) and the DM component, given enough lensing constraints.
In addition, Merrittet al (2005, 2006), found that a deprojected Sérsic profile gives a better fit
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Figure A1. Sixteen square configurations. The empty and filled circles are points
with positive and negative amplification respectively. The dashed lines are the
inferred critical lines.

Figure A2. Multiscale marching square field splitting. The boxes represent the
splitting squares and the red lines, the critical curve contour. The imposed upper
and lower limits for the boxes sizes are 10′′ and 1′′ respectively. The 1

′′

boxes are
not plotted for clarity.

than an NFW profile to the 3D density profile of DM halos from simulations. Elíasdóttir and
Möller (2007) found that given that the surface density distribution is indeed given by a Sérsic
profile, but fitted by an NFW using lensing constraints, it can lead to unrealistic estimates of the
parameters (e.g. the predicted weak lensing signal and the concentration parameter), making
the Sérsic profile an interesting alternative for modelling the DM halos themselves. Finally, the
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special case of the Sérsic indexn = 1, corresponds to an exponential disk, making it useful for
modelling spiral galaxies. Spiral lenses are comparatively rare to date, but dedicated efforts are
being made to find such lenses, and with the inclusion of the Sérsic profile to Lenstool, it can
now be used to study and model such lenses.

The Sérsic 2D density profile has three free parameters (n, Re and6e) and is given by:

6ser= 6e exp

[
−bn

((
R

Re

)1/n

− 1

)]
, (B.1)

whereR is the projected radius,n is the Sérsic index,bn is a constant chosen such thatRe is the
radius containing one-half of the projected mass and6e is the density atRe. The Sérsic profile
reduces to the de Vaucouleurs profile forn = 4, and to the exponential disk forn = 1. The other
parameters of the Sérsic profile inlenstool are its position on the sky, its PA and its ellipticity.

The elliptic version of the Sérsic profile is calculated using the pseudo-elliptical
approximation developed by Golseet al (2002). It is introduced in the expression of the circular
Sérsic potential by substitutingR by Rε, using the following elliptical coordinate system:

xε =
√

(1− ε)x,

yε =
√

(1 +ε)y,

Rε =
√

x2
ε + y2

ε ,

φ = arctan(yε/xε).

(B.2)

In this definition,ε = (a2
− b2)/(a2 + b2), wherea andb are respectively the semi-major

and the semi-minor axes of the elliptical potential. From the elliptical lens potentialϕε(r ) ≡

ϕ(rε), Golseet al (2002) proposed generic expressions to compute the elliptical deviation angle
αε(r), the convergenceκε(r), the shearγε(r) and the projected mass density6ε(r):

6ε(r) = 6(rε) + ε cos 2φε(6̄(rε) − 6(rε)). (B.3)

The pseudo-elliptical developments are limited to small ellipticities. For instance for the
NFW, whenε > 0.25, the surface iso-densities become increasingly boxy/peanut. Similarly
for the Sérsic potential, we have found that whenε > 0.25, the goodness of fit (defined in
Golseet al) measured atRε = Re becomes larger than 10%. We also fit the relation betweenε6

andε and foundε6 = 3.55ε − 3.42ε2 with aχ2
= 10−5.

The ellipticities of the potentials used in this paper and of the projected mass densitiesε6

are linearly proportional through multiplicative factors (reported in table1).
The range of valid surface density axis ratioq = b/a provided by the pseudo-elliptical

approximation for the SIE, the NFW and the Sérsic potentials areqSIE > 0.65,qNFW > 0.53 and
qSersic> 0.44 respectively. FromN-body simulations Oguriet al (2003) found that the most
probable projected axis ratio isq = 0.6. The pseudo-elliptical technique is therefore able to
model most of the triaxial halos.

In case of highly elliptical mass distributions, the PIEMD model (Kassiola and Kovner
1993) produces elliptical iso-densities because the ellipticity has been introduced directly in the
projected mass distribution and not at the level of the potential.
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