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Abstract The general form of the anisotropy parameter of the expansion for
Bianchi type-III metric is obtained in the presence of a single diagonal imperfect
fluid with a dynamically anisotropic equation of state parameter and a dynamical
energy density in general relativity. A special law is assumed for the anisotropy
of the fluid which reduces the anisotropy parameter of the expansion to a simple
form (∆ ∝ H−2V−2, where ∆ is the anisotropy parameter, H is the mean Hub-
ble parameter and V is the volume of the universe). The exact solutions of the
Einstein field equations, under the assumption on the anisotropy of the fluid, are
obtained for exponential and power-law volumetric expansions. The isotropy of
the fluid, space and expansion are examined. It is observed that the universe can
approach to isotropy monotonically even in the presence of an anisotropic fluid.
The anisotropy of the fluid also isotropizes at later times for accelerating models
and evolves into the well-known cosmological constant in the model for exponen-
tial volumetric expansion.

Keywords Bianchi type III, Anisotropic fluid, Dark energy, Isotropization

1 Introduction

Some large-angle anomalies, which appear to indicate violation of the statistical
isotropy, have been found in the cosmic microwave background (CMB) radia-
tion [1; 2; 3; 4; 5] (see [6; 7; 8; 9; 10; 11; 12] for the anomalies). Non-trivial
geometry, i.e., broken spherical symmetry, of the universe seems as the most
promising explanation of these anomalies (see [6; 11; 12]). For instance, Jaffe
et al. [13; 14; 15] showed that removing a Bianchi component from the WMAP
initial data release can account for several large-angle anomalies and leave a
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statistically isotropic sky. The low value of the quadrupole moment, which has
been known since the first COBE [1; 2] results, is the most apparent of these
anomalies and still exist in the high resolution WMAP data [3; 4; 5]. Campanelli
et al. [16; 17] showed that, in Bianchi type-I framework, allowing the universe
to be plane-symmetric with eccentricity (regardless of the origin) at decoupling
of order 10−2 can resolve the quadrupole problem without effecting higher mul-
tipoles. They also concluded that WMAP data require an addition to the standart
cosmological model that resembles the Bianchi morphology, which are homoge-
neous but not necessarily isotropic (see [18; 19] for review on Bianchi metrics).
Thus somehow in the cosmological models, the universe should have achieved a
slightly anisotropic geometry inspite of the inflation. One may classify the models
according to whether this occurs at an early time or at late times of the universe.
In the context of the former class, the generic inflationary models can be modified
in a way to end inflation with slightly anisotropic geometry, e.g. [16; 17]. In the
context of the latter class, the isotropy of the space that achieved during inflation
can be distorted in the late time acceleration of the universe by modifiying the
dark energy (DE), e.g. [20; 21; 22].

In generic inflationary models [23; 24; 25; 26] characterized by an accelerated
expansion in the early universe, space is assumed to be homegenous and isotropic
from the begining and inflation is driven by a scalar field, which is isotropic.
Some authors also studied scalar field models in Bianchi type space-times (e.g.
[27; 28]). However, any possible anisotropy of the Bianchi metrics should have
been died away during the inflation [18; 19]. On the other hand, scalar fields may
be replaced by vector fields, which give rise to anisotropic EoS parameter, once
the metric is generalized to Bianchi type metrics. Inflation by using vector field
first introduced by Ford [29], nevertheless it was suffering from fine tuning prob-
lem. Recently, Koivisto and Mota [30] have considered several new classes of
viable vector field alternatives to the inflaton within in the Bianchi type-I frame-
work. Golovnev et al. [31] has constructed a succesful model, which either could
give completely isotropic universe or slightly anisotropic universe at the end of
inflation. Such models would also provide opportunity to construct more realistic
inflationary models than the Bianchi type inflationary models which are driven by
a scalar field and isotropize as evolved. Because in such models one generalizes
not only the metric, but also the EoS parameter of the inflaton in accordance with
the metric, and afterwards it can be showed whether the metric and/or the energy
source evolves towards the isotropy.

On the other hand, these lowest multipoles represent the scale of the horizon
at approximately the DE domination begins, since then it is natural to associate
these anomalies with the present acceleration of the universe and the intrinsic
nature of the DE rather than inflation (thus, inflaton). An anisotropic DE energy
can derive an anisotropic late time acceleration and can break the isotropy that
had been achieved during inflation. The paramount characteristic of the DE is a
constant or slightly changing energy density as the universe expands, but we do
not know the nature of the DE very well (see [32; 33; 34; 35; 36; 37; 38; 39]
for reviews on the DE). DE has conventionally been characterized by the equa-
tion of state (EoS) parameter w = p/ρ which is not necessarily constant, where
ρ is the energy density and p is the pressure. The simplest DE candidate is the
vacuum energy (w = −1), which is mathematically equivalent to the cosmolog-
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ical constant (Λ). The other conventional alternatives, which can be described
by minimally coupled scalar fields, are quintessence (w ≥ −1), phantom energy
(w≤−1) and quintom (that can cross from phantom region to quintessence region
as evolved) and have time dependent EoS parameters. In all these models, DE is
handled as an isotropic fluid. However there is no a priori reason to assume the DE
is isotropic in nature. In principle, the EoS parameter of DE may be generalized
by determining the EoS parameter separately on each spatial axis in a consistent
way with the considered metric, since the energy density is a scalar quantity but
the pressure is vectorial. Such DE candidates can also be studied in the context
of vectorial fields and such candidates have been proposed by several authors (see
[20; 40; 41; 42; 43; 44]). Unlike Robertson-Walker (RW) metric Bianchi type met-
rics can admit a DE that wields an anisotropic EoS parameter according to their
characteristics. The cosmological data—from the large-scale structures [45] and
Type Ia supernovae [46; 47] observations—do not rule out the possibility of an
anisotropic DE either [20; 48].

In last years cosmological models in the presence of an anisotropic DE within
the Bianchi type-I framework have been studied by several authors. Rodrigues
[22] has proposed a ΛCDM cosmological model extension whose DE compo-
nent preserves its nondynamical character but wields anisotropic vacuum pres-
sure. Koivisto and Mota [21] have presented a two-fluid model in the presence of
an anisotropic DE and perfect fluid which are interacting, and presented a vector
field action for DE as an example of the possibility of an anisotropic DE. They
have shown that such models are cosmologically viable and can explain the large-
angle anomalies in the CMB. Koivisto and Mota [49] have investigated cosmolo-
gies where the accelerated expansion of the universe is driven by a field with an
anisotropic equation of state by introducing two skewness parameters to quantify
the deviation of pressure from isotropy. They have studied the dynamics of the
background expansion and analyzed a special case of an anisotropic cosmolog-
ical constant in detail. Akarsu and Kilinc [50] have proposed a two-fluid model
in the presence of a perfect fluid and dynamical DE which wields dynamical and
anisotropic EoS parameter.

All of the above studies are based on the idea that an anisotropic fluid gives
rise to an anisotropy in the expansion in Bianchi type-I space-time. However, an
anisotropic fluid must not necessarily promote the anisotropy in the expansion.
Candidates of such energy sources may also act so as to support isotropization
of the expansion as has mentioned by Akarsu and Kilinc [50] in relatively earlier
times and as has shown in this study, within the Bianchi type-III framework, in the
entire history of the universe. Thus, even if we observe an isotropic expansion in
the present universe we still cannot rule out possibility of DE with an anisotropic
EoS.

Bianchi type-III cosmological models in the presence of DE have been stud-
ied in general relativity in the last thirty years. Moussiaux et al. [51] has given an
exact particular solution of the Einstein field equations for vacuum with a cosmo-
logical constant. Lorenz [52] has presented a model with dust and a cosmological
constant. Chakraborty and Chakraborty have given a bulk viscous cosmological
model with variable gravitational constant (G) and Λ in [53]. Singh et al. [54]
have investigated a model with variable G and Λ in the presence of perfect fluid by
assuming a conservation law for the energy-momentum tensor. Recently, Tiwari
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[55] has studied a model in the presence of perfect fluid and a time dependent
Λ with constant deceleration parameter. Bali and Tinker [56] have investigated a
model in the presence of bulk viscous barotropic fluid with variable G and Λ.

Letelier [57] has examined some two-fluid cosmological models, which have
similar symmetries to those Bianchi type-III models, where the distinct four-
velocity vectors of the two non-interacting perfect fluids generate an axially sym-
metric anisotropic pressure.

In this study we have first obtained the general form of the anisotropy parame-
ter of the expansion for Bianchi type-III metric in the presence of a single diagonal
imperfect fluid with a dynamically anisotropic EoS parameter and a dynamical
energy density in general relativity. Then we have made an assumption on the
anisotropy of the fluid in a way to reduce the anisotropy parameter of the expan-
sion to a simple form and obtained a hypothetical fluid that obeys to a special form
of an anisotropic EoS parameter. The exact solutions of the Einstein field equa-
tions have been obtained by assuming two different volumetric expansion laws in
a way to cover all possible expansions: namely, exponential expansion and power-
law expansion. Some features of the evolution of the metric and the dynamics
of the anisotropic DE fluid have been examined. It has been shown that, in the
Bianchi type-III framework, there can be solutions in which anisotropic fluid does
not promote anisotropic expansion.

2 Field equations

We consider the homegenous and anisotropic space-time described by Bianchi
type-III metric in the form

ds2 = dt2−A(t)2dx2−B(t)2e−2αxdy2−C(t)2dz2 (1)

where A(t),B(t) and C(t) are the scale factors (metric tensors) and functions of the
cosmic time t, and α 6= 0 is a constant. (Bianchi type-I metric can be recovered
by choosing α = 0, but the underlying Lie algebra of the isometry group of the
Bianchi type-I and type-III metrics are completely different [19]. This metric does
not cover Robertson-Walker metric, but gets its closest form to RW metric when
A(t) = B(t) = C(t), thus we may talk about its approaching to isotropy, but not a
total isotropization of this metric.)

The simplest generalization of the EoS parameter of a perfect fluid may be
to determine the EoS parameter separately on each spatial axis by preserving
the diagonal form of the energy-momentum tensor in a consistent way with the
considered metric as disccused in the introduction. (In fact, within the Bianchi
type-III framework we would allow the off-diagonal terms with T 2

1 = T 1
2 to be

non-null. However, in this study, we are dealing only with an anisotropic fluid
whose energy-momentum tensor is in diagonal form.) Thus, we may write down
the energy-momentum tensor of the fluid in the following form,

Tν
µ = diag[T0

0,T1
1,T2

2,T3
3]. (2)

Then we may parametrize it as follows,

Tν
µ = diag[ρ,−px,−py,−pz] = diag[1,−wx,−wy,−wz]ρ

= diag[1,−w,−(w+ γ),−(w+δ )]ρ, (3)
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where ρ is the energy density of the fluid; px, py and pz are the pressures and wx,
wy and wz are the directional EoS parameters on the x, y and z axes respectively;
w is the deviation-free EoS parameter of the fluid. We have parametrized the devi-
ation from isotropy by setting wx = w and then introducing skewness parameters
δ and γ that are the deviations from w respectively on the y and z axes. w,δ and γ

are not necesarilly constants and can be functions of the cosmic time t.
The Einstein field equations, in natural units (8πG = 1 and c = 1), are

Gµν = Rµν −
1
2

Rgµν =−Tµν (4)

where gµν uµ uν = 1; uµ = (1,0,0,0) is the four-velocity vector; Rµν is the Ricci
tensor; R is the Ricci scalar, Tµν is the energy-momentum tensor.

In a comoving coordinate system, Einstein’s field equations (4), for the anisotropic
Bianchi-III space-time (1), in case of (3), read as

Ȧ
A

Ḃ
B

+
Ȧ
A

Ċ
C

+
Ḃ
B

Ċ
C
− α2

A2 = ρ, (5)

B̈
B

+
C̈
C

+
Ḃ
B

Ċ
C

=−wρ, (6)

Ä
A

+
C̈
C

+
Ȧ
A

Ċ
C

=−(w+δ )ρ, (7)

Ä
A

+
B̈
B

+
Ȧ
A

Ḃ
B
− α2

A2 =−(w+ γ)ρ, (8)

α

(
Ȧ
A
− Ḃ

B

)
= 0 (9)

where the over dot denotes derivation with respect to the cosmic time t.

3 General discussion on isotropization and the solution

The anisotropy of the expansion can be parametrized after defining the directional
Hubble parameters and the mean Hubble parameter of the expansion. The direc-
tional Hubble parameters in the directions of x,y and z for the Bianchi type-III
metric defined in (1) may be defined as follows,

Hx ≡
Ȧ
A

, Hy ≡
Ḃ
B

and Hz ≡
Ċ
C

(10)

and the mean Hubble parameter is given as

H =
1
3

V̇
V

=
1
3

(
Ȧ
A

+
Ḃ
B

+
Ċ
C

)
, (11)

where V = ABC is the volume of the universe. The anisotropy parameter of the
expansion is defined as

∆ ≡ 1
3

3

∑
i=1

(
Hi−H

H

)2

, (12)
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where Hi(i = 1,2,3) represent the directional Hubble parameters in the directions
of x,y and z respectively.

∆ = 0 corresponds to isotropic expansion. The space approaches isotropy, in
case of diagonal energy-momentum tensor (T 0i = 0, where i = 1, 2, 3) if ∆ →
0,V →+∞ and T 00 > 0 (ρ > 0) as t →+∞ (see [58] for details).

After giving the above definition (12), if we use only the Einstein field equa-
tions (5–9) without introducing any constraint, we can obtain the most general
form of the anisotropy parameter of the expansion for Bianchi type-III model in
the presence of an anisotropic fluid with a diagonal energy-momentum tensor in
general relativity.

Solution of the Eq. (9) gives

B = c1A, (13)

where c1 is the positive constant of integration. We substitute (13) into (7), subtract
the result from (6), and obtain that the skewness parameter on the y axis is null,

δ = 0, (14)

which means that the directional EoS parameters, hence the pressures, on the x and
y axes are equal. On the other hand, the deviation of the directional EoS parameter
from w on the z axis, γ , is not constrained to be null by the Einstein field equations.
Now, using (10), (11), and (13), anisotropy parameter of the expansion (12) can
be reduced to

∆ =
2
9

1
H2 (Hx−Hz)

2 . (15)

Hx −Hz, the difference between the expansion rates on x and z axes, can be
obtained by using the field equations.

The field equations are reduced to the equations below, when Eqs. (13) and
(14) are substituted into (5–9),

Ȧ2

A2 +2
Ȧ
A

Ċ
C
− α2

A2 = ρ, (16)

Ä
A

+
C̈
C

+
Ȧ
A

Ċ
C

=−wρ, (17)

2
Ä
A

+
Ȧ
A

2

− α2

A2 =−(w+ γ)ρ. (18)

On solving the equation which is obtained by subtracting (17) from (18) we obtain

Hx−Hz =
Ȧ
A
− Ċ

C
=

λ

V
+

1
V

∫ (
α2

A2 − γρ

)
V dt, (19)

where λ is the real constant of integration and the term with γ is the term that
arises due to the possible intrinsic anisotropy of the fluid. Finally using (19) in
(15) we obtain the anisotropy parameter of the expansion,

∆ =
2
9

1
H2

[
λ +

∫ (
α2

A2 − γρ

)
V dt

]2

V−2. (20)
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The anisotropy parameter of the expansion can be reduced to the equation
below (21) for a Bianchi type-III cosmological model in the presence of a perfect
(thus isotropic) fluid by choosing γ = 0,

∆ =
2
9

1
H2

[
λ +α

2
∫ V

A2 dt
]2

V−2. (21)

The integral term in (20) vanishes for

γ =
α2

ρA2 , (22)

which also leads to the following energy-momentum tensor

Tν
µ = diag

[
1,−w,−w,−w− α2

ρA2

]
ρ, (23)

and reduces the anisotropy parameter of the expansion to the following form

∆ =
2
9

λ 2

H2 V−2. (24)

One can check that this behaviour of the ∆ (24) we obtained by using an anisotropic
fluid (23) in Bianchi type-III space-time is equivalent to the ones that can be
obtained similarly for Bianchi type-I and Bianchi type-V space-times by using
any isotropic fluid. Then one would see that the results we obtain for ∆ in the
models given below are equivalent to the ones obtained in [59] for Bianchi type-I
and in [60; 61] for Bianchi type-V space-time models in case of isotropic fluid.

The vanishing of the integral term also reduces the difference between the
expansion rates on x and z to the following form,

Hx−Hz =
λ

ABC
. (25)

We can also obtain the most general form of the energy density in Bianchi
type-III framework by using the first field equation (5) and the definition of the
anisotropy parameter of the expansion (12),

ρ = 3H2
(

1− ∆

2

)
− α2

A2 . (26)

Below we present the exact solutions of the model in the presence of an
anisotropic fluid described by the energy-momentum tensor given in (23), i.e.,
we use (22) in the Einstein field equations (16–18);

Ȧ2

A2 +2
Ȧ
A

Ċ
C

= ρ +
α2

A2 = (1+ γ)ρ, (27)

Ä
A

+
C̈
C

+
Ȧ
A

Ċ
C

= −wρ, (28)

2
Ä
A

+
Ȧ2

A2 = −wρ. (29)
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Now we have three linearly independent equations (27–29) and four unknown
functions (A,C,w and ρ), thus an extra equation is needed to solve the system
completely. To do that we have used two different volumetric expansion laws,

V = c2e3kt (30)

and

V = c2t3m, (31)

where c2,k and m are positive constants. In this way, all possible expansion his-
tories, the exponential expansion (30) and the power-law expansion (31), have
been covered. The models with the exponential expansion and power-law for
m > 1 exhibit accelerating volumetric expansion. On the other hand while model
for m = 1 exhibits volumetric expansion with constant velocity, the models for
m < 1 exhibit decelerating volumetric expansion. Thus, phenomenologically, the
anisotropic fluid we dealed here can be considered in the context of DE in the
models with exponential expansion and power-law expansion for m > 1.

4 Model for exponential expansion

After solving the field equations (27–29) for the exponential volumetric expansion
(30) by considering (13) and (25), we obtain the scale factors as follows

A =
(

c2

c1c3

) 1
2

ekt− 1
9

λ

kc2
e−3kt

, (32)

B =
(

c1c2

c3

) 1
2

ekt− 1
9

λ

kc2
e−3kt

, (33)

C = c3ekt+ 2
9

λ

kc2
e−3kt

, (34)

where c3 is a positive constant of integration. The mean Hubble parameter is,

H = k (35)

and the directional Hubble parameters on the x,y and z axes are, respectively,

Hx = Hy = k +
1
3

λ

c2
e−3kt and Hz = k− 2

3
λ

c2
e−3kt . (36)

Using the directional and mean Hubble parameters in (15) we obtain

∆ =
2
9

λ 2

c22k2 e−6kt . (37)

One can check that this behaviour of the ∆ is equivalent to the ones obtained for
exponential expansion in Bianchi type-I [59] and Bianchi type-V [60; 61] cosmo-
logical models with isotropic fluid.
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We can obtain the energy density of the fluid by using the scale factors in (27);

ρ = 3k2− 1
3

λ 2

c22 e−6kt −α
2 c1c3

c2
e−2kt+ 2

9
λ

kc2
e−3kt

. (38)

The deviation-free part of the anisotropic EoS parameter may be obtained by using
(32) and (38) in (29);

w =
λ 2 +9c2

2k2e6kt

λ 2−9c22k2e6kt +3α2c1c2c3e4kt+ 2
9

λ

kc2
e−3kt

. (39)

While the δ is already found to be zero, we can obtain γ by using (32) and (38) in
(22) as follows

γ =− 3α2c1c2c3e4kt+ 2
9

λ

kc1
e−3kt

λ 2−9c22k2e6kt +3α2c1c2c3e4kt+ 2
9

λ

kc2
e−3kt

. (40)

The anisotropy of the expansion (∆ ) is not promoted by the anisotropy of the
fluid and decreases to null exponentially as t increases. The space approaches to
isotropy in this model, since ∆ → 0,V → ∞ and ρ > 0 as t → ∞.

Both terms with λ and α contribute to the energy density of the fluid ρ nega-
tively. The energy density (ρ), the deviation-free EoS parameter (w) and the skew-
ness parameter (γ) are dynamical. As t → ∞, the anisotropic fluid isotropizes and
mimics the vacuum energy, which is mathematically equivalent to the cosmologi-
cal constant (Λ), i.e., γ → 0,w→−1 and ρ → 3k2.

One can observe that the universe approaches to isotropy monotonically even
in the presence of the anisotropic fluid, and the anisotropic fluid isotropizes and
evolves to the cosmological constant in case of exponential volumetric expansion.
These observations are worth to pay attention, since we are inclined to think that
anisotropy in an energy source gives rise to increase anisotropy in the expansion.

5 Model for power-law expansion

After solving the field equations (27–29) for the power-law volumetric expansion
(31) by considering (13) and (25), we obtain the scale factors as follows

A =
(

c2

c1c3

) 1
2

tme−
1
3

λ
c1

t1−3m
3m−1 , (41)

B =
(

c1c2

c3

) 1
2

tme−
1
3

λ
c1

t1−3m
3m−1 , (42)

C = c3tme
2
3

λ
c1

t1−3m
3m−1 , (43)

where c3 is a positive constant of integration. The mean Hubble parameter is

H =
m
t

(44)
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and the directional Hubble parameters on the x,y and z axes are, respectively,

Hx = Hy =
m
t

+
1
3

λ

c2
t−3m and Hz =

m
t
− 2

3
λ

c2
t−3m. (45)

Using the directional and mean Hubble parameters in (15) we obtain

∆ =
2
9

λ 2

c22
t2−6m

m2 . (46)

One can check that this behaviour of the ∆ is equivalent to the ones obtained for
the models that correspond to the power-law expansion in Bianchi type-I [59] and
Bianchi type-V [60; 61] cosmological models with isotropic fluid.

We can obtain the energy density of the fluid by using the scale factors in (27);

ρ = 3m2t−2− 1
3

λ 2

c22 t−6m−α
2 c1c3

c2
t−2me

2
3

λ
c2

t1−3m
3m−1 . (47)

The deviation-free part of the anisotropic EoS parameter may be obtained by using
(41) and (47) in (29);

w =
λ 2t2 +3mc2

2(3m−2)t6m

λ 2t2 +3α2c1c2c3t4m+2e
2
3

λ
c2

t1−3m
3m−1 −9m2c22t6m

. (48)

While the δ is already found to be zero, we obtain γ by using (41) and (47) in (22)
as follows

γ =− 3α2c1c2c3t4m+2e
2
3

λ
c2

t1−3m
3m−1

λ 2t2 +3α2c1c2c3t4m+2e
2
3

λ
c2

t1−3m
3m−1 −9m2c22t6m

. (49)

The volume of the universe expands indefinitely for all values of m.
Anisotropy of the expansion (∆ ) is not promoted by the anisotropy of the fluid.

It behaves monotonically, decays to zero for m > 1/3 and diverges for m < 1/3 as
t → ∞, and is constant for m = 1/3.

One can see that the terms with λ and α contribute the energy density of the
fluid (ρ) negatively, and thus we can determine which values of m are convenient
for which times of the universe by applying the condition ρ > 0. If λ is null,
according to the condition on ρ , the models for m < 1 may represent the relatively
earlier times of the universe, the models for m > 1 may represent the relatively
later times of the universe and the model for m = 1 may represent the entire uni-
verse provided that 3c2 > α2c1c3. The cases for non-zero values of λ should be
examined seperately. The models for 0 < m ≤ 1/3 may represent the relatively
earlier times of the universe, 1/3 < m < 1 may represent the intermediate times
of the universe and m > 1 may represent the relatively later times of the universe.
Finally the model for m = 1 may represent the relatively later times of the universe
if 3c2 > α2c1c3, otherwise the intermediate times.

Thus, we may examine the behaviours of ∆ ,w and γ as t → ∞ only for m≥ 1.
For m > 1,∆ → 0 and V → ∞ as t → ∞, thus universe approaches to isotropy.
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w → −1 + 2
3m and γ → 0 as t → ∞, which means that the EoS parameter of

the fluid isotropizes and approaches a value in quintessence region with regard
the value of m at the later times of the universe for accelerating models. For
the model m = 1 under the condition mentioned in the previous paragraph, w →
−(3−α2c1c3/c2)−1 and γ → (α2c1c3)/(3c2−α2c1c3) as t →∞. Thus, the space
approaches to isotropy since ∆ → 0 and V → ∞ as t → ∞, but the fluid does not
for the model m = 1.

Similarly to the model with exponential expansion, the universe approaches to
isotropy monotonically even in the presence of the anisotropic fluid for m > 1 and
for m = 1 with appropriate values of the constants. However, the anisotropic fluid
isotropizes only in the accelerating models (m > 1) at later times of the universe
and its EoS parameter evolves into the quintessence region.

6 Conclusion

We have first obtained the general form of the anisotropy parameter for the expan-
sion of Bianchi type-III metric in the presence of a single imperfect fluid with a
dynamically anisotropic equation of state (EoS) parameter and a dynamical energy
density in general relativity. Then we have made an assumption on the anisotropy
of the fluid in a way to reduce the anisotropy parameter of the expansion to a sim-
ple form and obtained a hypothetical fluid with an special anisotropic EoS fluid.
The exact solutions of the Einstein field equations have been obtained by assum-
ing two different volumetric expansion laws in a way to cover all possible expan-
sions: namely, exponential expansion and power-law expansion. The anisotropy
of the fluid, expansion and space have been examined.

It is observed that eventhough the fluid we used wields an anisotropic EoS
parameter, its anisotropy does not promote anisotropy in the expansion. The expan-
sion anisotropy decays to zero monotonically in the models with the exponential
expansion and in the power-law expansion when m > 1/3. The universe approaches
to isotropy in the accelerating models (exponential expansion and the power-law
models with m > 1). The anisotropy of the fluid isotropizes at later times of the
universe in the accelating models. The the fluid evolves into the vacuum energy
with w = −1, which is mathematically equivalent to the cosmological constant
(Λ) at the later times of the universe in the model for exponential expansion. The
EoS parameter of the fluid evolves into the quintessence region at later times of
the accelerating (m > 1) universes in the power-law models. The anisotropic fluid
we used here can be considered in the context of dark energy (DE), at least phe-
nomenologically, in the accelerating models.

This model is of interest because it shows that even in the presence of an
anisotropic fluid, the universe can approach to isotropy monotonically and also
the anisotropy of the fluid can isotropize in the accelerating models. In short, an
accelerated expansion period isotropizes both the expansion anisotropy and the
anisotropy of the fluid in our study. Thus, even if we observe an isotropic expan-
sion in the present universe we still cannot rule out possibility of DE with an
anisotropic EoS. Additionaly we can conclude that an anisotropic DE does not
necessarilly distort the symmetry of the space, and consequently even if it turns
out that spherical symmetry of the universe that achieved during inflation has not
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distorted in the later times of the universe, we can not rule out the possibility of
an anisotropic nature of the DE at least in Bianchi type-III framework.
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