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Abstract

Seiberg-Witten and Gromov invariants for self-dual harmonic 2-forms

by

Christopher A. Gerig

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Michael Hutchings, Chair

For a closed oriented smooth 4-manifold X with b2
+(X) > 0, the Seiberg-Witten invariants

are well-defined. Taubes’ “SW=Gr” theorem asserts that if X carries a symplectic form
then these invariants are equal to well-defined counts of pseudoholomorphic curves, Taubes’
Gromov invariants. In the absence of a symplectic form there are still nontrivial closed self-
dual 2-forms which vanish along a disjoint union of circles and are symplectic elsewhere. This
thesis describes well-defined counts of pseudoholomorphic curves in the complement of the
zero set of such near-symplectic 2-forms, and it is shown that they recover the Seiberg-Witten
invariants over Z/2Z. This is an extension of Taubes’ “SW=Gr” theorem to non-symplectic
4-manifolds.

The main results are the following. Given a suitable near-symplectic form ω and tubular
neighborhood N of its zero set, there are well-defined counts of pseudoholomorphic curves
in a completion of the symplectic cobordism (X − N , ω) which are asymptotic to certain
Reeb orbits on the ends. They can be packaged together to form “near-symplectic” Gromov
invariants as a map Spinc(X) → Λ∗H1(X;Z). They are furthermore equal to the Seiberg-
Witten invariants with Z/2Z coefficients, where ω determines the “chamber” for defining
the latter invariants when b2

+(X) = 1.
In the final chapter, as a non sequitur, a new proof of the Fredholm index formula for

punctured pseudoholomorphic curves is sketched. This generalizes Taubes’ proof of the
Riemann-Roch theorem for compact Riemann surfaces.
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Chapter 1

Taming the pseudoholomorphic beasts
in R× (S1 × S2)

1.1 Introduction

Motivation

The Seiberg-Witten invariants, introduced by Witten [80], are defined for any closed
oriented 4-manifold X with b2

+(X) ≥ 1. These invariants SWX(s) are constructed by
counting solutions to the Seiberg-Witten equations associated with a given spin-c struc-
ture s ∈ Spinc(X). When b2

+(X) > 1 the invariants only depend on the smooth structure
of X and a choice of “homology orientation” of X. When b2

+(X) = 1 the invariants also
depend on a choice of “chamber.”

The Gromov invariants, introduced by Taubes [54] who generalized the work of Gromov
[13] and Ruan [47], are defined for any closed symplectic 4-manifold (X,ω). These invariants
GrX,ω(A) are constructed by counting pseudoholomorphic curves in X which represent a
given homology class A ∈ H2(X;Z). The invariants only depend on the smooth structure of
X.

Now, the existence of a symplectic structure implies that b2
+(X) > 0, and when b2

+(X) = 1
a given symplectic form determines a canonical “chamber” with which to define the Seiberg-
Witten invariants of X. The symplectic form also determines a canonical “homology orienta-
tion” of X and it induces a canonical identification of H2(X;Z) with Spinc(X). Under these
identifications it was shown by Taubes [63] that the Gromov invariants and the Seiberg-
Witten invariants are equivalent. But what occurs when X does not have a symplectic
structure? This was originally asked by Taubes during 1995 in a paper [71] from which we
quote the ending:

“It is observed that there are manifolds with nonzero Seiberg-Witten invariants which do not

admit symplectic forms. With this understood, one is led to ask whether there is any sort of

“Gromov invariant” interpretation for the Seiberg-Witten invariants in the nonsymplectic world.”
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In the absence of a symplectic form but keeping b2
+(X) > 0, given a generic Riemannian

metric on X there are still nontrivial closed self-dual 2-forms which vanish transversally along
a disjoint union of circles in X and are symplectic elsewhere. These were studied intensively
in unpublished work of Karl Luttinger during the early 1990’s. Such a 2-form ω is called a
near-symplectic form, and X − ω−1(0) is a noncompact symplectic 4-manifold which has an
almost complex structure J determined by ω and the Riemannian metric. It was noticed by
Taubes that the estimates on symplectic 4-manifolds which were used to find J-holomorphic
curves from given Seiberg-Witten solutions could also be used to find J-holomorphic curves
when ω−1(0) 6= ∅.

Theorem 1.1.1 (Taubes [64]). If X has a nonzero Seiberg-Witten invariant then there exists
at least one J-holomorphic curve in X−ω−1(0), homologically bounding ω−1(0) in the sense
that it has intersection number 1 with every linking 2-sphere of ω−1(0).

This provides evidence that there might be “Gromov invariants” for non-symplectic 4-
manifolds, and that they might recover the Seiberg-Witten invariants. An elaboration can be
found in [70, 69]. But there are difficulties in constructing well-defined counts of such curves
because J becomes singular along ω−1(0). That is, a suitable Fredholm theory for the moduli
spaces of curves in X−ω−1(0) is hard to establish (see [73, 60]). We can rephrase the problem
(see [65]), for which it is standard to complete X−ω−1(0) by attaching symplectization ends
and then the J-holomorphic curves satisfy certain asymptotic conditions. The boundary Y
of a tubular neighborhood of ω−1(0) is a contact manifold, with contact form induced by ω,
and the J-holomorphic curves are asymptotic to periodic orbits of the Reeb flow induced by
the contact form on Y . Models of these curves in the symplectization of the contact manifold
with Y = S1×S2 are studied in [51, 61, 62, 38], and the aforementioned difficulties are now
caused by the contact dynamics: the existence of certain Reeb orbits permits the existence
of non-transverse multiply covered curves in the relevant moduli spaces (see Remark 1.3.10).

As will be explained momentarily, we overcome the transversality difficulties by modifying
the chosen neighborhood of ω−1(0) and hence the contact dynamics on each component
S1 × S2 of Y . We then pick out the appropriate J-holomorphic curves to count using
embedded contact homology (ECH), a Floer theory constructed by Hutchings [28]. ECH was
originally motivated by the desire to find an analog of Taubes’ equivalence SWX = GrX,ω
in dimension three, granted that a version of Seiberg-Witten Floer homology [33] existed on
the gauge theory side. These two homologies are now known to be isomorphic by Taubes
[55], using the same techniques that were used to prove SWX = GrX,ω. All of this machinery
plays a crucial role in this thesis.

Near-symplectic geometry

Throughout this thesis, (X, g) denotes a closed connected oriented smooth Riemannian
4-manifold with b2

+(X) ≥ 1, where b2
+(X) denotes the dimension of any maximal positive-

definite subspace of H2(X;R) under the intersection form on X. In particular, if X is
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simply connected then the only spaces excluded by this assumption on b2
+(X) are 4-spheres

and their blow-ups CP 2
# · · ·#CP 2

. Let ω ∈ Ω2(X;R) be a nontrivial closed self-dual (hence
harmonic) 2-form. These always exist by Hodge theory, and in fact, the set of such 2-forms
determines a subspace H2

+(X;R) ⊂ H2(X;R) for which b2
+(X) = dimH2

+(X;R). A nice
property of ω is that the complement of its zero set Z := ω−1(0) is symplectic,

ω ∧ ω = ω ∧ ∗ω = |ω|2dvolg

but we cannot always expect Z = ∅, i.e. for X to be symplectic. For starters, if a symplectic
form existed then an almost complex structure could be built from it and the metric, forcing
1− b1(X) + b2

+(X) to have even parity by characteristic class theory. What we do know in
general is that Z cannot contain any open subset of X [8, Corollary 4.3.23].

For generic metrics, Honda [16, Theorem 1.1] and LeBrun [36, Proposition 1] have shown
that there exist nontrivial closed self-dual 2-forms that vanish transversally as sections of
the self-dual 3-plane subbundle

∧2
+ T

∗X of
∧2 T ∗X → X. Such 2-forms are examples of

Definition 1.1.2. A closed 2-form ω : X →
∧2 T ∗X is near-symplectic if for all points

x ∈ X either ω2(x) > 0, or ω(x) = 0 and the rank of the gradient ∇ωx : TxX →
∧2 T ∗xX is

three.

It follows from [1, Proposition 1] that we can always find a metric for which a given
near-symplectic form is self-dual, and we assume throughout this thesis that such metrics
have been chosen. It follows from the definition that Z consists of a finite disjoint union of
smooth embedded circles [46, Lemma 1.2], and Z is null-homologous while the individual
zero-circles need not be [45, Proposition 1.1.26]. Moreover, the zero-circles are not all the
same but come in two “types” depending on the behavior of ω near them:

Let NZ denote the normal bundle of Z ⊂ X, identified with the orthogonal complement
TZ⊥ such that TX = TZ ⊕ NZ . The gradient ∇ω defines a vector bundle isomorphism
NZ →

∧2
+ T

∗X|Z , and we orient NZ such that ∇ω is orientation-reversing. The orientation

of TX orients
∧2

+ T
∗X, so TZ is subsequently oriented. As described in [73, 46, 15], ω

determines a particular subbundle decomposition

NZ = LZ ⊕ L⊥Z

where LZ → Z is a rank one line bundle. Explicitly, LZ is the negative-definite subspace
with respect to the induced quadratic form on NZ ,

v 7→ 〈∇vω(∂0, ·), v〉

where ∂0 ∈ Γ(TZ) is the unit-length oriented vector field. A zero-circle of Z is called
untwisted if LZ restricted to that zero-circle is orientable, and twisted otherwise.1

1The literature uses the terminology “even and odd” as well as “orientable and non-orientable” to describe
the zero-circles, but the author has found this to be very confusing.
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By work of Luttinger, any given pair (ω, g) of closed self-dual 2-form and Riemannian
metric can be modified so that Z has any positive number of components (see [46, 52]), but
as noted by Gompf (see [46, Theorem 1.8]), the number of untwisted zero-circles must have
the same parity as that of 1−b1(X)+b2

+(X). We can use these modifications to get rid of all
twisted zero-circles (see [46, Remark 1.9]), and explicit constructions of near-symplectic forms
having only untwisted zero-circles are given in [9, 50] in terms of handlebody decompositions.

Main results

Let ω be a near-symplectic form on (X, g) whose zero set Z has N ≥ 0 components, all
of which are untwisted zero-circles. As we just mentioned, this can always be arranged.

Remark 1.1.3. The assumption that Z has only untwisted zero-circles can be weakened in
this thesis to some extent. As will be clarified in the appendix, we may assume Z to also
have twisted zero-circles which are non-contractible in X.

Let N denote a union of arbitrarily small tubular neighborhoods of the components of
Z ⊂ X. Using Moser-type results of Honda [15] (see also [65, §2e]), N can be chosen so that
the complement

(X0, ω) := (X −N , ω|X−N )

is a symplectic manifold with contact-type boundary, where each boundary component is a
copy of (S1×S2, e−1λTaubes). Here, λTaubes is an overtwisted contact form which is described in
Section 1.3, and studied intensively by Taubes in order to characterize the pseudoholomorphic
“beasts” living in the symplectization R× (S1 × S2).

Remark 1.1.4. The orientation of S1 × S2 as a contact 3-manifold disagrees with the
orientation of S1 × S2 as a boundary component of X0, so each boundary component of
X0 is concave (if the orientations agreed then it would be a convex boundary component).
This is consistent with a well-known result of Eliashberg: an overtwisted contact 3-manifold
cannot be the convex boundary of a symplectic 4-manifold, i.e. there are no symplectic
fillings of this contact 3-manifold. But note that (N , ω) is a near-symplectic filling.

There is a canonical spin-c structure sω on X0 whose positive spinor bundle is S+ =
C ⊕ K−1, where C → X0 denotes the trivial complex line bundle and K is the canonical
bundle of (X0, J) for any chosen ω-compatible almost complex structure J . Any other spin-c
structure on X0 differs from sω by tensoring with a complex line bundle on X0. It follows
from Taubes’ work on near-symplectic geometry that ω also induces a canonical identification
of Spinc(X) with the set

Relω(X) :=
{
A ∈ H2(X0, ∂X0;Z)

∣∣ ∂A = 1 ∈ H1(∂X0;Z)
}

where 1 is the oriented generator on each component (the orientation conventions are spec-
ified in Section 1.3). This correspondence is given by restricting s ∈ Spinc(X) to X0, which
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differs from sω by a unique complex line bundle Ls → X0, and taking the Poincaré-Lefschetz
dual of c1(Ls). Denote the resulting class by As ∈ Relω(X).

Of relevance to the Seiberg-Witten invariants of X will be J-holomorphic curves in a
completion of (X0, ω) which represent classes in Relω(X). The completion (X,ω) of (X0, ω)
is obtained by attaching cylindrical ends to the components of ∂X0 and extending ω over
them (see Section 1.2). In order to obtain well-defined counts we need all curves to be
transverse. Unfortunately, there are special Reeb orbits in (S1× S2, λTaubes) for which there
exist non-transverse multiply covered curves in X asymptotic to multiple covers of those
orbits.2 What can we do?

A given class A ∈ Relω(X) determines an upper bound ρ(A) of the “lengths” of the
possible Reeb orbits which the relevant J-holomorphic curves are asymptotic to, so there
are only finitely many orbits which permit the existence of non-transverse curves. The idea
now is to go back and choose a different tubular neighborhood N , determining a different
contact form on S1 × S2 having the same contact structure ξTaubes as λTaubes. In particular,
we search for a particular contact form whose Reeb orbits of “lengths” less than ρ(A) do
not permit the existence of non-transverse curves representing A. This is the content of the
following lemma, proved in Section 1.3.

Lemma 1.1.5. For A ∈ Relω(X), there exists a tubular neighborhood N of Z in X such
that the symplectic cobordism (X − N , ω) has contact-type boundary, where each boundary
component is a copy of (S1×S2, λA). Here, λA denotes a nondegenerate overtwisted contact
form with contact structure ξTaubes such that its Reeb orbits of symplectic action less than
ρ(A) are ρ(A)-flat and are either positive hyperbolic or ρ(A)-positive elliptic.

The “ρ(A)-positive” condition on the elliptic orbits is a key ingredient to preventing
the existence of (negative ECH index) non-transverse curves that represent A, and this was
observed by Hutchings [26] for more general symplectic cobordisms. The “ρ(A)-flatness”
condition on λA is needed in order to identify our counts of curves with the Seiberg-Witten
invariants, as Taubes [55] did for the isomorphism between ECH and Seiberg-Witten Floer
cohomology.

The relevant counts of curves will a priori depend on a suitably generic choice of J and
they will be packaged together as elements in ECH∗(−∂X0, ξTaubes). Roughly speaking, the
ECH chain complex over Z is generated by “orbit sets” which are finite sets of pairs (γ,m)
of Reeb orbits γ in (−∂X0, ξTaubes) and multiplicities m ∈ N. To define invariants of X, we
will first count J-holomorphic curves in X to obtain a cycle in the ECH chain complex: the
asymptotics of each curve define a generator Θ of the ECH chain complex, and the integer
coefficient attached to each such Θ is an integrally weighted count of the curves which are
asymptotic to Θ. Specifically,

Theorem 1.1.6. With (X,ω,A) specified above, fix a nonnegative integer I and an ordered
set of equivalence classes [η̄] := {[η1], . . . , [ηp]} ⊂ H1(X;Z)/Torsion, where 0 ≤ p ≤ I such

2The problem is worse: these non-transverse curves also have negative ECH index (see Remark 1.3.10).
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that I − p is even. For suitably generic J on X, there is a well-defined element

GrIX,ω,J(A, [η̄]) ∈ ECH∗(−∂X0, ξTaubes)

concentrated in a single grading g(A, I). This element is given by integrally weighted counts
of (disjoint and possibly multiply covered) J-holomorphic curves in (X,ω) which satisfy the
following: They are asymptotic to Reeb orbits with respect to λA whose total homology class
in each S1×S2 component is the oriented generator; they represent the relative class A; they
pass through a priori chosen base points in X0; they pass through an a priori chosen ordered
set of disjoint oriented loops in X0 which represent [η̄]; and they have ECH index I.

Here, the “ECH index” may be viewed as a formal dimension of the relevant moduli space
of J-holomorphic currents, while the point/loop constraints carve out a zero-dimensional
subset of the moduli space. These curves are explicitly specified in Proposition 1.3.17 and
Proposition 1.3.19.

Now, a given s ∈ Spinc(X) determines not only the class As ∈ Relω(X) but also an
integer

d(s) :=
1

4

(
c1(s)2 − 2χ(X)− 3σ(X)

)
where c1(s) denotes the first Chern class of the spin-c structure’s positive spinor bundle,
χ(X) denotes the Euler characteristic of X, and σ(X) denotes the signature of X. This
integer d(s) is the formal dimension of the moduli space of Seiberg-Witten solutions on X
with respect to s.

Using ideas from Seiberg-Witten theory,3 we will show in Chapter 2 that g(As, d(s)) is
the lowest grading for which ECH∗(−∂X0, ξTaubes) is nonzero. After choosing an ordering of
the components of Z, there is then an identification of the group ECHg(As,d(s))(∂X0, ξTaubes)
with Z (see Proposition 1.3.2, Remark 1.3.22, and Proposition 1.3.30).

Definition 1.1.7. Fix an ordering of the zero-circles of ω. The near-symplectic Gromov
invariants

GrX,ω,J : Spinc(X)→ Λ∗H1(X;Z)

are defined as follows. The component of GrX,ω,J(s) in ΛpH1(X;Z), for p ≤ d(s) such that
d(s)− p is even, is

[η1] ∧ · · · ∧ [ηp] 7→ Gr
d(s)
X,ω,J(As, [η̄]) ∈ Z

and it is defined to be zero for all other integers p.

These invariants currently depend on the choice of ω and J . With Z/2Z coefficients,
we will show in Chapter 2 that they recover the Seiberg-Witten invariants of X, hence are
smooth invariants.4

3We may also be able to establish this fact using J-holomorphic curves alone.
4We may also be able to establish invariance, with Z coefficients, by varying (ω, J) and analyzing the

resulting moduli spaces of curves.
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Theorem 1.1.8 (Chapter 2). Let (X,ω) be as specified above, and s ∈ Spinc(X). Then

GrX,ω(s) = SWX(s) ∈ Λ∗H1(X;Z)⊗ Z/2Z

where ω determines the chamber for defining the Seiberg-Witten invariants when b2
+(X) = 1.

Remark 1.1.9. We expect that Theorem 1.1.8 also holds with Z coefficients, similarly to
how Taubes’ isomorphisms (between embedded contact homology and a version of Seiberg-
Witten Floer homology) with Z/2Z coefficients can be lifted to Z coefficients (see [57, §3.b]).
Note that the definition of SWX depends on a choice of homology orientation of X, while the
definition of GrX,ω depends on a choice of ordering of the zero-circles of ω. We expect that
ω, with a fixed ordering of its zero-circles, canonically determines a homology orientation of
X (see Chapter 2 for an elaboration).

Definition 1.1.7 is an extension of Taubes’ Gromov invariants [54], which were constructed
in the setting Z = ∅ and refined by McDuff [40] in the presence of symplectic embedded
spheres of square −1. To see how Taubes’ invariants fit into the framework of Theorem 1.1.6,
we first set ∂X0 = ∅ so that (X,ω) = (X,ω) is a closed symplectic 4-manifold. We then
make the identification ECH0(∅, 0) ∼= Z whose generator is the empty set of orbits. For a
given s ∈ Spinc(X), the corresponding absolute class As ∈ H2(X;Z) determines the ECH
index

I(As) := c1(TX) · As + As · As ∈ 2Z

which equals d(s), and Taubes’ invariants may be interpreted as

Gr
I(As)
X,ω,J(As, [η̄]) ∈ ECH0(∅, 0)

since all J-holomorphic curves have no punctures.

Remark 1.1.10. If X is a symplectic manifold and ω0 is a near-symplectic form, we may
consider a deformation of ω0 to a symplectic form ω1 through near-symplectic forms (except
at a finite number of times along the deformation). The near-symplectic Gromov invariants
of (X,ω0) must equal Taubes’ Gromov invariants of (X,ω1) in light of Theorem 1.1.8 and
[71, Theorem 4.1]. The relation between the respective pseudoholomorphic curves is not
pursued in this thesis, but we leave the reader with a question: When a zero-circle shrinks
and dies, does a holomorphic plane decrease its symplectic area and vanish, or does it close
up into a sphere, or else?

Remark 1.1.11. With respect to Theorem 1.1.1, we expect that the near-symplectic Gro-
mov invariants are related to counts of J-holomorphic curves in X − Z by shrinking N to
its core Z. These curves would homologically bound Z in the sense that they have algebraic
intersection number 1 with every linking 2-sphere of Z. A curve may also “pinch off” along
Z in the sense that a portion of the curve forms a multi-sheeted cone in a small neigh-
borhood of a point on Z. These properties correspond to the following facts: a relevant
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J-holomorphic curve in X −N is asymptotic to an orbit set on each S1 × S2 whose total
homology class is the oriented generator of H1(S1×S2;Z), and some orbits in that orbit set
may be contractible. This is in agreement with Taubes’ study [73] of the structure of such
curves in the vicinity of Z.

What follows is a brief outline of the remainder of this chapter. Section 1.2 consists of
a review of ECH, with a clarification in Section 1.2 of “L-flat approximations” which were
defined and used in Taubes’ isomorphisms [55]. Section 1.3 consists of the relevant facts of
the contact manifold (S1 × S2, λTaubes). Section 1.3 specifies how λTaubes is to be modified,
through a particular change in the tubular neighborhood N of Z. Section 1.3 clarifies the a
priori difficulties with constructing well-defined counts of curves inX0 = X−N ; in particular,
we have to separate the cases where the relative classes A ∈ Relω(X) may be represented
by multiply covered exceptional spheres. Section 1.3 specifies the relevant J-holomorphic
curves when there are no multiply covered exceptional spheres, while Section 1.3 permits the
existence of multiply covered exceptional spheres. Section 1.3 specifies the integer weights
that are assigned to the J-holomorphic curves for the definition of GrIX,ω,J(A, [η̄]). Section 1.3
establishes the independence of choices of base points and loops that are used to define the
relevant moduli spaces of J-holomorphic curves. Section 1.3 clarifies what GrIX,ω,J(A, [η̄])
looks like as a class in ECH. Lastly, the appendix clarifies what changes are to be made in
this thesis when ω is chosen to have twisted zero-circles.

1.2 Review of pseudoholomorphic curve theory

The point of this section is to introduce most of the terminology and notations that
appear in the later sections. Further information and more complete details are found in
[28].

Orbits with λ

Let (Y, λ) be a closed contact 3-manifold, oriented by λ ∧ dλ > 0. Let ξ = Kerλ be
the contact structure, oriented by dλ. Equivalently, ξ is oriented by the Reeb vector field
R determined by dλ(R, ·) = 0 and λ(R) = 1. A Reeb orbit is a map γ : R/TZ → Y for
some T > 0 with γ′(t) = R(γ(t)), modulo reparametrization, which is necessarily an m-fold
cover of an embedded Reeb orbit for some m ≥ 1. A given Reeb orbit is nondegenerate if
the linearization of the Reeb flow around it does not have 1 as an eigenvalue, in which case
the eigenvalues are either on the unit circle (such γ are elliptic) or on the real axis (such
γ are hyperbolic). Assume from now on that λ is nondegenerate, i.e. all Reeb orbits are
nondegenerate, which is a generic property of contact forms.

An orbit set is a finite set of pairs Θ = {(Θi,mi)} where the Θi are distinct embedded
Reeb orbits and the mi are positive integers. An orbit set is admissible if mi = 1 whenever
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Θi is hyperbolic. Its symplectic action (or “length”) is defined by

A(Θ) :=
∑
i

mi

∫
Θi

λ ≥ 0

and its homology class is defined by

[Θ] :=
∑
i

mi[Θi] ∈ H1(Y ;Z)

For a given Γ ∈ H1(Y ;Z), the ECH chain complex ECC∗(Y, λ, J,Γ) is freely generated over
Z by equivalence classes of pairs (Θ, o), where Θ is an admissible orbit set satisfying [Θ] = Γ
and o is a choice of ordering of the positive hyperbolic orbits and a Z/2Z choice for each such
orbit, such that (Θ, o) = −(Θ, o′) if o and o′ differ by an odd permutation. We will suppress
the notation of the orientation choices o. The differential ∂ECH will be defined momentarily.

Curves with J

Let (Y±, λ±) be two contact 3-manifolds as above, possibly disconnected or empty. A strong
symplectic cobordism from (Y+, λ+) to (Y−, λ−) is a compact symplectic manifold (X,ω) with
oriented boundary

∂X = Y+ t −Y−
such that ω|Y± = dλ±. We can always find neighborhoods N± of Y± in X diffeomorphic to
(−ε, 0]× Y+ and [0, ε)× Y−, such that ω|N± = d(e±sλ±) where s denotes the coordinate on
(−ε, 0]. We then glue symplectization ends to X to obtain the completion

X :=
(
(−∞, 0]× Y−

)
∪Y− X ∪Y+

(
[0,∞)× Y+

)
of X, a noncompact symplectic 4-manifold whose symplectic form is also denoted by ω. We
will also use the notation X to denote the symplectization R×Y of (Y, λ), with ω = d(esλ).

An almost complex structure J on a symplectization (R× Y, d(esλ)) is symplectization-
admissible if it is R-invariant; J(∂s) = R; and J(ξ) ⊆ ξ such that dλ(v, Jv) ≥ 0 for v ∈ ξ.
An almost complex structure J on the completion X is cobordism-admissible if it is ω-
compatible on X and agrees with symplectization-admissible almost complex structures on
the ends [0,∞)× Y+ and (−∞, 0]× Y−.

Remark 1.2.1. With respect to the Riemannian metric defined by the symplectic form and
the admissible almost complex structure, the symplectic form is a self-dual harmonic 2-form.

Given a cobordism-admissible J on X and orbit sets Θ+ = {(Θ+
i ,m

+
i )} in Y+ and Θ− =

{(Θ−j ,m−j )} in Y−, a J-holomorphic curve C in X from Θ+ to Θ− is defined as follows.

It is a J-holomorphic map C → X whose domain is a possibly disconnected punctured
compact Riemann surface, defined up to composition with biholomorphisms of the domain,
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with positive ends of C asymptotic to covers of Θ+
i with total multiplicity m+

i , and with
negative ends of C asymptotic to covers of Θ−j with total multiplicity m−j (see [28, §3.1]).
The moduli space of such curves is denoted by M(Θ+,Θ−), but where two such curves
are considered equivalent if they represent the same current5 in X, and in the case of a
symplectization X = R × Y the equivalence includes translation of the R-coordinate. An
element C ∈ M(Θ+,Θ−) can thus be viewed as a finite set of pairs {(Ck, dk)} or formal sum∑
dkCk, where the Ck are distinct irreducible somewhere injective J-holomorphic curves and

the dk are positive integers.
Let H2(X,Θ+,Θ−) be the set of relative 2-chains Σ in X such that

∂Σ =
∑
i

m+
i Θ+

i −
∑
j

m−j Θ−j

modulo boundaries of 3-chains. It is an affine space over H2(X;Z), and every curve C defines
a relative class [C] ∈ H2(X,Θ+,Θ−).

A broken J-holomorphic curve (of height n) from Θ+ to Θ− is a finite sequence of holo-
morphic curves {Ck}1≤k≤n and orbit sets {Θ±k }1≤k≤n+1, such that there exists an integer
1 ≤ k0 ≤ n such that the following holds:
• {Θ+

k }k≥k0 belong to (Y+, λ+) and {Θ−k }k≤k0 belong to (Y−, λ−),
• Θ−1 = Θ− and Θ+

n+1 = Θ+ and Θ−k = Θ+
k−1 for k > 1,

• Ck ∈M(Θ+
k ,Θ

−
k ) with respect to J |R×Y+ for k > k0 (symplectization levels),

• Ck ∈M(Θ+
k ,Θ

−
k ) with respect to J |R×Y− for k < k0 (symplectization levels),

• Ck0 ∈M(Θ+
k0
,Θ−k0

) with respect to J (cobordism level),
• Ck is not a union of unbranched covers of R-invariant cylinders for k 6= k0.

The moduli space of such broken curves is denoted by M(Θ+,Θ−). There is an analogous
definition of a broken J-holomorphic current, with the further requirement that each current
Ck for k 6= k0 is not a union of R-invariant cylinders with multiplicities.

There are relevant versions of Gromov compactness for the aforementioned moduli spaces.
Any sequence of J-holomorphic curves {Cν}ν≥1 ⊂M(Θ+,Θ−) with fixed genus and uniform
energy bound has a subsequence which converges in the sense of SFT compactness [3] to a bro-
ken J-holomorphic curve. Any sequence of J-holomorphic currents {Cν}ν≥1 ⊂ M(Θ+,Θ−)
with uniform energy bound has a subsequence which converges in an appropriate sense to a
broken J-holomorphic current (C1, . . . , Cn) ∈M(Θ+,Θ−), such that

n∑
k=1

[Ck] = [Cν ] ∈ H2(X,Θ+,Θ−)

for ν sufficiently large (see [73, Proposition 3.3] and [28, Lemma 5.11]).

5For example, if C is a d-fold cover of an embedded curve C, then the associated current is the R-valued
functional on Ω2(X) given by σ 7→ d

∫
C
σ. In particular, all branching data of the cover has been lost.
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ECH

Denote by τ a homotopy class of symplectic trivializations of the restrictions of ξ± =
Kerλ± to the embedded orbits appearing in the orbit sets Θ±. The ECH index of a current,
or more generally of a class in H2(X,Θ+,Θ−), is given by

I(C) = cτ (C) +Qτ (C) + CZI
τ (C)

where cτ (C) denotes the relative first Chern class of detTX over C with respect to τ (see
[28, §3.2]), Qτ (C) denotes a relative self-intersection pairing with respect to τ (see [28, §3.3]),
and

CZI
τ (C) =

∑
i

m+
i∑

k=1

CZτ (Θ
+k
i )−

∑
j

m−j∑
k=1

CZτ (Θ
−k
j )

is a sum of Conley-Zehnder indices (of covers of orbits in Θ±) with respect to τ . The
definition of the Conley-Zehnder index will not be reviewed here (see [28, §3.2]), but it is
noted that we can adjust τ over a given embedded orbit γ so that

CZτ (γ
m) = 0

when γ is positive hyperbolic,
CZτ (γ

m) = m

when γ is negative hyperbolic, and

CZτ (γ
m) = 2bmθc+ 1

when γ is elliptic. Here, the linearization of the Reeb flow around an elliptic orbit is conjugate
to a rotation by angle 2πθ with respect to τ , and θ ∈ R − Q is the rotation number. The
equivalence class of θ in R/Z is the rotation class of the elliptic orbit, which does not depend
on τ .

The Fredholm index of a curve C, having ith positive end asymptotic to αi with multiplicity
mi and jth negative end asymptotic to βj with multiplicity nj, is given by

ind(C) = −χ(C) + 2cτ (C) + CZ ind
τ (C)

where
CZ ind

τ (C) =
∑
i

CZτ (α
mi
i )−

∑
j

CZτ (β
nj
j )

If C has no multiply covered components then we have the index inequality

ind(C) ≤ I(C)− 2δ(C)
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where δ(C) denotes an algebraic count of singularities of C with positive integer weights (see
[28, §3.4]). If J is furthermore generic then M(Θ+,Θ−) is an ind(C)-dimensional manifold
near C.

Denote by MI(Θ
+,Θ−) the subset of elements in M(Θ+,Θ−) that have ECH index I.

In a symplectization X = R×Y there is a characterization of currents with low ECH index.
That is, if J is generic and C is a J-holomorphic current in the symplectization X = R× Y
then
• I(C) ≥ 0, with equality if and only if C is a union of R-invariant cylinders,
• If I(C) = 1 then C = C0tC1, where C1 is an embedded ind = I = 1 curve and I(C0) = 0.

See [28, Proposition 3.7] for a proof. Given admissible orbit sets Θ± of (Y, λ), the coefficient
〈∂ECHΘ+,Θ−〉 is the signed6 count of elements in M1(Θ+,Θ−). If J is generic then ∂ECH

is well-defined and ∂2
ECH = 0. The resulting homology is independent of the choice of J ,

depends only on ξ and Γ, and is denoted by ECH∗(Y, ξ,Γ).

If Y is connected then Taubes constructed a canonical isomorphism of relatively graded
modules

ECH∗(Y, ξ,Γ) ∼= ĤM
−∗

(Y, sξ + Γ) (1.1)

where ĤM
−∗

(·) is a version of Seiberg-Witten Floer homology defined by Kronheimer and
Mrowka [33] and sξ is a certain spin-c structure determined by ξ. Moreover, both homologies
admit absolute gradings by homotopy classes of oriented 2-plane fields on Y and Taubes’
isomorphism preserves these gradings (see [7]).

Gradings and U-maps

Assume Y to be connected in this section. For each Γ there is a canonical absolute Z/2Z
grading on ECH∗(Y, ξ,Γ) by the parity of the number of positive hyperbolic Reeb orbits in
an admissible orbit set Θ. The total sum

ECH∗(Y, ξ) :=
⊕

Γ∈H1(Y ;Z)

ECH∗(Y, ξ,Γ)

has an absolute grading by homotopy classes of oriented 2-plane fields on Y (see [30, §3]),
the set of which is denoted by J(Y ). This grading of an admissible orbit set Θ is denoted
by |Θ|.

As described in [30, §3], [33, §28], and [12, §4], there is a well-defined map J(Y ) →
Spinc(Y ) with the following properties. If H2(Y ;Z) has no 2-torsion then the Euler class of
the given 2-plane field uniquely determines the corresponding spin-c structure. There is a
transitive Z-action on J(Y ) whose orbits correspond to the spin-c structures: If [ξ] ∈ J(Y )
then [ξ] + n is the homotopy class of a 2-plane field which agrees with ξ outside a small

6The moduli spaces are coherently oriented in the sense of [22, §9].
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ball B3 ⊂ Y and disagrees with ξ on B3 by a map (B3, ∂B3)→ (SO(3), {1}) of degree 2n.7

A given orbit J(Y, s) is freely acted on by Z if and only if the corresponding Euler class is
torsion.

With that said, ECH∗(Y, ξ,Γ) has a relative Z/dZ grading, where d denotes the divis-
ibility of c1(ξ) + 2 PD(Γ) in H2(Y ;Z)/Torsion. It is refined by the absolute grading and
satisfies

|Θ+| − |Θ−| ≡ I(Σ) mod d

for any Σ ∈ H2(Y,Θ+,Θ−), thanks to the index ambiguity formula [28, Equation 3.6].

Similarly to the degree −1 ECH differential, there is a degree −2 chain map

Uy : ECH∗(Y, λ,Γ)→ ECH∗−2(Y, λ,Γ)

that counts ECH index 2 currents passing through an a priori chosen base point (0, y) ∈
R× Y , where y does not lie on any Reeb orbit (see [28, §3.8]). Such a current is of the form
C0tC2, where I(C0) = 0 and C2 is an embedded ind(C1) = I(C1) = 2 curve passing through
(0, y). On the level of homology this U -map does not depend on the choice of base point.

L-flat approximations

The symplectic action induces a filtration on the ECH chain complex. For a positive real
number L, the L-filtered ECH is the homology of the subcomplex ECCL

∗ (Y, λ, J,Γ) spanned
by admissible orbit sets of action less than L. The ordinary ECH is recovered by taking the
direct limit over L, via maps induced by inclusions of the filtered chain complexes.

Let u : C → X be an immersed connected J-holomorphic curve and denote by NC its
normal bundle. The linearization of the J-holomorphic equation for C defines its deformation
operator, a 1st order elliptic differential operator

DC : L2
1(NC)→ L2(T 0,1C ⊗NC), η 7→ ∂η + νCη + µC η̄

where the appropriate sections νC ∈ Γ(T 0,1C) and µC ∈ Γ(T 0,1C ⊗ N2
C) are determined by

the covariant derivatives of J in directions normal to C, ∂ is the d-bar operator arising from
the Hermitian structure on NC , and η̄ denotes the conjugate of η in N−1

C . Let NC and T 0,1C
be suitably trivialized on an end of C asymptotic to a Reeb orbit γ. Then DC is asymptotic
(in the sense of [76, §2]) to the asymptotic operator associated with γ,

Lγ : L2
1(γ∗ξ)→ L2(γ∗ξ), η 7→ i

2
∂tη + νη + µη̄

and the pair (νC , µC) is asymptotic to the pair (ν, µ) over γ.
For a fixed L > 0 it will be convenient to modify λ and J on small tubular neighbor-

hoods of all Reeb orbits of action less than L, in order to relate J-holomorphic curves to

7This convention is opposite to that used in [33].
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Seiberg-Witten theory most easily. The desired modifications of (λ, J) are called L-flat ap-
proximations, and were introduced by Taubes in [55, Appendix] and [59, Proposition 2.5].
They induce isomorphisms on the L-filtered ECH chain complex, but for the point of this
thesis (see Lemma 1.3.9 and Section 1.3) we really only need to know that:
• The Reeb orbits of action less than L (and their action) are not altered,
• The C1-norm of the difference between the contact forms can be made as small as

desired,
• The pair (ν, µ) associated with an elliptic orbit with rotation number θ in a given

trivialization is modified to (1
2
θ, 0), so that its asymptotic operator is complex linear.

Remark 1.2.2. The proof of Theorem 1.1.8 in Chapter 2 will make crucial use of Taubes’
isomorphism between ECH and Seiberg-Witten Floer cohomology, and that makes use of
L-flat approximations. The key fact here is that Taubes’ isomorphism actually exists on the
L-filtered chain complex level, for which L-flat orbit sets are in bijection with Seiberg-Witten
solutions of “energy” less than 2πL.

1.3 Towards a near-symplectic Gromov invariant

This section spells out the proof of Theorem 1.1.6. We introduce the contact form on
S1 × S2 that was studied in the past by Taubes, and then we find a different contact form
on S1 × S2 whose contact dynamics is “tame” in a certain sense. This new contact form
is better suited for establishing well-defined counts of J-holomorphic curves in X − Z. We
also find a tubular neighborhood N of Z in X for which the induced contact dynamics on
its boundary ∂N is given by our new contact form. Then we construct the relevant moduli
spaces of J-holomorphic curves in X − N which are to be counted, including their integer
weights, and from there we define the relevant class in ECH. We retain the same assumptions
that are made in Section 1.1.

Taubes’ contact form

The main focus of this thesis is S1 × S2 equipped with Taubes’ contact form

λTaubes = −(1− 3 cos2 θ)dt−
√

6 cos θ sin2 θdϕ (1.2)

for coordinates (t, θ, ϕ) ∈ S1 × S2 such that 0 ≤ t ≤ 2π and 0 ≤ θ ≤ π and 0 ≤ ϕ ≤ 2π. In
order for λTaubes ∧ dλTaubes to be positive, S1 × S2 is oriented by the 3-form

− sin θ dt dθ dϕ

The S1-factor will be oriented by the 1-form −dt, and the S2-factor will be oriented by the
2-form sin θ dθ dϕ. This contact manifold was originally studied in [65, 15, 45], and we now
describe some details that will be of use later on.
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The Reeb field associated with λTaubes is

−1

1 + 3 cos4 θ
RTaubes, RTaubes = (1− 3 cos2 θ)∂t +

√
6 cos θ ∂ϕ

The Reeb orbits live in the constant θ = θ0 slices of S1 × S2 satisfying

θ0 ∈ {0, π} or

√
6 cos θ0

1− 3 cos2 θ0

∈ Q ∪ {±∞} (1.3)

The two nondegenerate orbits at θ0 ∈ {0, π} are elliptic. They are denoted by e0, eπ and
called the exceptional orbits. The remaining orbits are degenerate, there being an S1-family
of orbits for each such θ0. In other words,

T (θ0) := {constant θ = θ0 slice} ⊂ S1 × S2

is a torus foliated by orbits. Taubes’ contact form is therefore not nondegenerate, but it is
“Morse-Bott” in the sense of [4].

Remark 1.3.1. The contact structure ξTaubes = KerλTaubes is overtwisted, as pointed out
in [65, §2.f] and [15, Proposition 9]. A well-known result of Hofer states that an over-
twisted contact 3-manifold must have at least one contractible orbit, and indeed we see that
T (arccos( 1√

3
)) and T (arccos(− 1√

3
)) consist of contractible orbits. The remaining orbits are

all homologically nontrivial.

With the contact structure ξTaubes oriented by dλTaubes, we compute

c1(ξTaubes) = −2 ∈ Z ∼= H2(S1 × S2;Z)

by using the section sin θ ∂θ ∈ Γ(ξ) and noting that the orientation on ξTaubes disagrees with
the orientation on the S2-factor at θ = 0 and θ = π. The spin-c structure sξ determined by
ξTaubes satisfies

c1(sξ + 1) = c1(sξ) + 2 = c1(ξTaubes) + 2 = 0

and so Taubes’ isomorphism (1.1) reads

ECHj(S
1 × S2, ξTaubes, 1) ∼= ĤM

j
(S1 × S2, sξ + 1)

where j ∈ J(S1 × S2, sξ + 1) ∼= Z as Z-sets. There is a unique class j = [ξ∗] represented
by an oriented 2-plane field ξ∗ on S1 × S2 which has vanishing Euler class and is invariant
under rotations of the S1-factor.

Proposition 1.3.2. If Γ ∈ H1(S1 × S2;Z) is not the oriented generator 1 then

ECH∗(S
1 × S2, ξTaubes,Γ) = 0
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In the remaining case Γ = 1, ECHj(S
1 × S2, ξTaubes, 1) is zero in gradings below j = [ξ∗],

and for each n ≥ 0
ECH[ξ∗]+n(S1 × S2, ξTaubes, 1) ∼= Z

The homotopy class [ξ∗] has odd parity under the canonical absolute Z/2Z grading on ECH.
After perturbing λTaubes to a nondegenerate contact form, [ξ∗] is generated by a single positive
hyperbolic orbit wrapping positively once around the S1-factor in T (π

2
) = S1 × {equator}.

Proof. The first two statements are proved in [33, §IX.36] for the relevant version of Seiberg-
Witten Floer homology, so they follow for ECH via Taubes’ isomorphism (1.1). The latter
two statements follow from the relevant statements in [20, §12.2.1]. This reference uses a
“twisted” version of ECH that remembers some information about the relative homology
classes of the J-holomorphic curves in S1 × S2, but the untwisted version may be obtained
via a spectral sequence in [20, §8.1].

In the upcoming section, Taubes’ contact form will be modified in various ways. We now
preemptively analyze the contact form efλTaubes for a given smooth function f : S1×S2 → R
depending only on the θ coordinate, whose contact structure is nonetheless ξTaubes. Such a
contact form can be written as

λ = a1(θ)dt+ a2(θ)dϕ (1.4)

for some smooth pair
a = (a1, a2) : [0, π]→ R2 − {(0, 0)}

Let a× a′ := a1a
′
2− a2a

′
1, where the tick-mark signifies the derivative with respect to θ. The

condition for λ to be a positive contact form is then

a× a′(θ)
sin θ

< 0

for all θ ∈ [0, π]. For θ ∈ (0, π) the Reeb field of λ is

R =
1

a× a′(θ)

(
a′2(θ)

∂

∂t
− a′1(θ)

∂

∂ϕ

)
and the condition (1.3), for which T (θ0) ⊂ S1×S2 is a torus foliated by orbits, is now given
by

a′1(θ0)

a′2(θ0)
∈ Q ∪ {±∞} (1.5)

Every embedded orbit in T (θ0) represents the same class in H1(T (θ0);Z) and they all have
the same action A(θ0) > 0. There are also two exceptional nondegenerate elliptic orbits at
θ0 ∈ {0, π}.
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Lemma 1.3.3. The exceptional elliptic orbit at θ = θ0, for θ0 ∈ {0, π}, has rotation class(
sign lim

θ→θ0

−a′2(θ)

sin θ cos θ

)
a′1(θ0)

a′2(θ0)
mod 1

In particular, the rotation class for either exceptional orbit of Taubes’ contact form is
√

3
2

mod 1.

Proof. The Reeb field along each exceptional orbit is

1

a1(θ0)
∂t

Note that a1(θ0) > 0, because Taubes’ contact form satisfies it and ef is a positive rescaling.
Therefore, in a neighborhood of θ = θ0 the Reeb flow is in the positive t-direction and
wraps −a′1(θ0)/a′2(θ0) times around the ϕ-coordinate circle after traversing once around the
t-coordinate circle. The rotation class of each elliptic orbit is therefore

ε · −a
′
1(θ0)

a′2(θ0)
mod 1 (1.6)

where ε = ±1 depending on whether the ϕ-coordinate circle is positively or negatively
oriented with respect to the orientation of the contact planes Tθ0S

2 given by dλ. To determine
ε, we use the Cartesian coordinates{

(x, y) = (sin θ cosϕ, sin θ sinϕ)

dx dy = sin θ cos θ dθ dϕ

near each pole of S2. In these coordinates,

dλ|Tθ0S2 =

(
lim
θ→θ0

a′2(θ)

sin θ cos θ

)
dx dy

and ε is precisely the sign of this paranthetical expression.

Changing Taubes’ contact form

In order to obtain well-defined counts of J-holomorphic curves which represent a given
class A ∈ Relω(X), we will need to ensure a bound on their energy as well as a bound on
the symplectic action of their orbit sets. As explained in [27], these bounds are given by a
particular quantity ρ(A), defined as follows:

Let u : Σ → X0 be any given smooth map which represents A, where Σ is a compact
oriented smooth surface with boundary and u(∂Σ) ⊂ ∂X0. Then

ρ(A) :=

∫
Σ

ω +

∫
∂Σ

e−1λTaubes (1.7)
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This quantity is additive with respect to composition of symplectic cobordisms, and it van-
ishes on exact symplectic cobordisms (recall that a symplectic cobordism is exact if the
contact form on the boundary extends as a global primitive 1-form of the symplectic form).
Subsequently, ρ(A) does not change if the symplectic cobordism (X0, ω) is modified by com-
posing it with an exact symplectic cobordism.

Remark 1.3.4. We can view ρ : Relω(X)→ R as either a measure of the failure of exactness
of ω, or as an energy. In particular, if (X,ω) were a closed symplectic manifold, i.e. ∂X0 = ∅
and A ∈ H2(X;Z), then ρ(A) = A · [ω].

Now, three modifications will be made to Taubes’ contact form. First, we will want all
Reeb orbits to be nondegenerate in order to define ECH. Second, we will want all Reeb
orbits of action less than ρ(A) to be ρ(A)-flat in order to relate the J-holomorphic curves
to Seiberg-Witten theory. Third, we will want the elliptic orbits of action less than ρ(A),
especially the exceptional orbits, to be “ρ(A)-positive” in order to guarantee transversality
of the relevant moduli spaces of J-holomorphic curves (see Remark 1.3.10 below). As defined
in [26], the quantifier “ρ(A)-positive” means the following:

Definition 1.3.5. Fix L > 0. Let γ be a nondegenerate embedded elliptic orbit with rotation
class θ ∈ R/Z and symplectic action A(γ) < L. Then γ is L-positive if θ ∈ (0,A(γ)/L)
mod 1.

A key property of any L-positive elliptic orbit γ is that if L is much greater than A(γ),
then CZτ (γ

m) = 1 for m < L/A(γ) and a particular choice of trivialization τ of γ∗ξTaubes.

The next lemma below shows how to modify the Morse-Bott orbits, in the sense of [4]
and adapted from [26, Lemma 5.4]. For a given positive contact form written as (1.4), the
lemma requires the following technical condition

a′ × a′′(θ0) < 0 (1.8)

for all θ0 ∈ (0, π) that satisfy (1.5). Note that Taubes’ contact form satisfies the technical
condition.

Lemma 1.3.6. Suppose the positive contact form λ = a1(θ)dt+a2(θ)dϕ satisfies the technical
condition (1.8). Then for every L > 0 and sufficiently small δ > 0, there exists a perturbation
efδ,Lλ of λ satisfying the following properties:
• fδ,L ∈ C∞(S1 × S2) satisfies ||fδ,L||C0 < δ,
• efδ,Lλ agrees with λ near the exceptional orbits at θ0 ∈ {0, π},
• Each torus T (θ0) with A(θ0) < L is replaced by a positive hyperbolic orbit and

an L-positive elliptic orbit, both of action less than L and within δ of A(θ0),
• efδ,Lλ has no other embedded orbits of action less than L.
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Proof. The function fδ,L is given by Bourgeois’ perturbation [4] of λ, which breaks up each
T (θ0) into two embedded nondegenerate orbits of action slightly less than A(θ0) in lieu
of orbits of action greater than L. Namely, there is a positive hyperbolic orbit and an
elliptic orbit eθ0 , both representing the same class in H1(T (θ0);Z). For sufficiently small
perturbations there cannot exist other orbits of action less than L, otherwise we would find
a sequence {(γk, δk)}k∈N of such orbits of uniformly bounded action L and perturbations
δk → 0 for which a subsequence converges to one of the original degenerate orbits (by the
Arzelà-Ascoli theorem), yielding a contradiction.

It remains to compute the rotation class of the elliptic orbit created from each Morse-
Bott family. Let a⊥ := (a2,−a1). The basis 〈∂θ, a⊥〉 defines a trivialization τ of the contact
structure ξ over S1 × (S2 − {poles}), since

dλ(∂θ, a
⊥) = −a× a′(θ) > 0

for 0 < θ < π. We then compute the Lie derivatives

L∂θR = − a′ × a′′

(a× a′)2
a⊥, La⊥R = 0

to see that the linearized Reeb flow along T (θ0) induces the linearized return map

1 +

(
0 0

r(θ0)A(θ0) 0

)
on ξ in the chosen basis, where

r := − a′ × a′′

(a× a′)2

The linearized return map along eθ0 is a perturbation of the original linearized return map
along T (θ0), so the rotation number of eθ0 has the same sign as r(θ0), i.e. it has the opposite
sign of a′ × a′′(θ0). This rotation number can be made arbitrarily small by choosing δ
sufficiently small. In other words, it follows from the technical condition (1.8) that each eθ0
is L-positive.

Now we show how to modify the exceptional orbits while preserving the technical condi-
tion (1.8).

Lemma 1.3.7. Given c ≥ 0 and 0 < ε ≤
√

3
2
, there exists a smooth nonpositive function

fε,c on S1 × S2 which only depends on the θ coordinate, such that efε,cλTaubes satisfies the
technical condition (1.8) and whose exceptional orbits e0 and eπ have rotation classes both
equal to ε mod 1.

Proof. By Lemma 1.3.3, the rotation classes under consideration are(
sign lim

θ→θ0
(3 cos θ − 1

cos θ
)

) ∂fε,c
∂θ

3 cos2 θ−1
sin θ

− 6 cos θ
√

6(1− 3 cos2 θ)− ∂fε,c
∂θ

√
6 cos θ sin θ

mod 1
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for θ0 ∈ {0, π}. After setting
∂fε,c
∂θ

:= f̃ε(θ) sin θ

for a smooth function f̃ε : [0, π] → R, it follows that the rotation classes of e0 and eπ are
respectively given by

− 1√
6

(
f̃ε(θ)− 3 cos θ

) ∣∣∣
θ=0

mod 1

1√
6

(
f̃ε(θ)− 3 cos θ

) ∣∣∣
θ=π

mod 1

These are both equal to ε upon setting f̃ε(θ) = (3−
√

6ε) cos θ. We then pick the antideriva-
tive of f̃ε using c so that the desired function on S1 × S2 is

fε,c(t, θ, ϕ) = −3−
√

6ε

2
cos2 θ − c (1.9)

A brute force calculation shows that efε,cλTaubes satisfies the technical condition (1.8).

Remark 1.3.8. As a sanity check, if ε =
√

3
2

and c = 0 then we recover Taubes’ contact

form.

We now move forward and show how exactly Taubes’ contact form is to be modified to
prove Lemma 1.1.5 in the introduction. Such modifications give us control over the orbits of
low symplectic action, at the expense of producing new orbits of high symplectic action with
unknown properties. This is sufficient for the purposes of this thesis, because for a given
class A ∈ Relω(X) only the orbit sets of symplectic action less than ρ(A) are relevant to the
tentative Gromov invariant.

Lemma 1.3.9. Suppose (X,ω) is a near-symplectic 4-manifold such that all components of
Z are untwisted zero-circles, and fix A ∈ Relω(X). Then there is a choice of neighborhood N
of Z in X such that (X −N , ω) is a symplectic manifold with contact-type boundary whose
boundary components are copies of (S1×S2, λA). Here, λA is a nondegenerate contact form
with contact structure ξTaubes but whose orbits of symplectic action less than ρ(A) are all
ρ(A)-flat and are either positive hyperbolic or ρ(A)-positive elliptic.

Proof. By Lemma 1.3.7, for any L sufficiently greater than ρ(A) there is a smooth function
fε,c on S1 × S2 for any c ≥ 0 and sufficiently small choice of ε such that the exceptional
orbits of efε,cλTaubes are L-positive. By Lemma 1.3.6, we can perturb this new Morse-Bott
contact form (à la Bourgeois) so that all orbits of action less than L are nondegenerate and
L-positive when elliptic. As explained in Section 1.2, we can perturb the resulting contact
form (à la Taubes) so that all orbits of action less than L are furthermore L-flat. This new
contact form is still degenerate, but it can be perturbed to become nondegenerate without
disturbing the existing orbits of action less than L and without introducing other orbits of
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Figure 1.1: Hypersurface defined by FA in red

action less than L. Explicitly, let U ⊂ S1 × S2 be the union of L-flat neighborhoods of the
orbits of action less than L, which do not contain any other orbits, and use [5, Lemma 2.2]
to make a generic perturbation of the contact form on the complement of U .

The final result is a contact form λA which has the same contact structure as λTaubes, so
for c sufficiently large there exists a smooth negative function FA ∈ C∞(S1 × S2) such that
the maximum value of FA over S1 × S2 is less than −1 and

λA = eFAλTaubes

It remains to show that the neighborhood N can be chosen so that the contact form on
any boundary component of X−N is λA, preserving compatibility with ω. Assume without
loss of generality that Z is a single circle. We first choose the neighborhood N∗ of Z as
specified in Section 1.1. Moreover, this choice of N∗ can be constrained further (using [65,
Lemma 2.3]) so that for any fixed κ > 1, there is a neighborhood Nκ ⊂ N∗ of Z such that
(N∗−Nκ, ω) is symplectomorphic to

(
[−κ,−1)×S1×S2, d(esλTaubes)

)
, where s denotes the

coordinate on [−κ,−1). We choose κ ≥ − inf FA > 1, because (N∗ − Nκ, ω) then contains
the contact hypersurface {

(s, x) ∈ R× (S1 × S2)
∣∣ s = FA(x)

}
with contact form λA. Therefore, our desired neighborhood is

N := Nκ ∪
{

(s, x) ∈ [−κ,−1)× (S1 × S2)
∣∣ s ≤ FA(x)

}
which is the subset of N∗ “below the contact hypersurface” (a schematic is given by Fig-
ure 1.1). Note that the quantity ρ(A) has not changed, since (X − N , ω) differs from
(X −N∗, ω) by composition with an exact symplectic cobordism.

ECH cobordism maps

Fix A ∈ Relω(X). Thanks to Lemma 1.3.9, we choose N so that (X0, ω) is a strong
symplectic cobordism from the empty set (∅, 0) to a disjoint union of N copies of the contact
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3-manifold (S1×S2, λA). Let X denote its completion, and fix a cobordism-admissible almost
complex structure J on (X,ω). As shown in [27], there are induced ECH cobordism maps
of the form

ΦA : ECH0(∅, 0, 0)→ ECH∗(
N⊔
k=1

S1 × S2, ξTaubes, 1) (1.10)

defined by suitable counts of Seiberg-Witten instantons on X. Since ECH0(∅, 0, 0) ∼= Z is
generated by the empty set of orbits, and a choice of ordering of the components of ∂X0 de-
fines an identification of ECH∗(

⊔N
k=1 S

1×S2, ξTaubes, 1) with
⊗N

k=1ECH∗(S
1×S2, ξTaubes, 1),

the map (1.10) should really be viewed as an element

ΦA ∈
N⊗
k=1

ECH∗(S
1 × S2, ξTaubes, 1)

We now present a definition of ΦA via counts of J-holomorphic curves in X. In Chapter 2
we will show that these two definitions coincide.

Remark 1.3.10. As explained in [28, 27], the main problem with constructing ECH cobor-
dism maps via J-holomorphic curves is that negative ECH index curves can arise and it is
currently unknown how to count them appropriately. In this thesis, negative ECH index
curves (with punctures) do not arise in the counts for ΦA thanks to our choice of contact
form for the boundary components of X0. If we used Taubes’ contact form instead, the rota-
tion classes of the exceptional orbits would allow the Conley-Zehnder index of their multiple
covers to get large enough in magnitude to force the ECH index to become negative:

Example 1.3.11. Let C ↪→ X be an embedded J-holomorphic plane asymptotic to the
exceptional orbit e0 with multiplicity 1, such that 0 = ind(C) = I(C) = 0. Fix the triv-

ialization τ of e∗0ξTaubes so that the rotation number of e0 is
√

3
2
− 1. Then cτ (C) = 1,

Qτ (C) = 0, CZτ (e0) = 1, and

I(d · C) = d · cτ (C) + d2Qτ (C) + CZI
τ (d · C) = −2

d∑
k=1

bk(

√
3

2
− 1)c

which is negative for d ≥ 5.

An exceptional sphere in X is an embedded smooth sphere of self-intersection −1, and
X is minimal if there are no exceptional spheres. As with Taubes’ Gromov invariants for
closed symplectic 4-manifolds, the trouble with multiply covered exceptional spheres is that
they have negative ECH index: a holomorphic exceptional sphere with multiplicity d > 1
has index −d(d− 1). We will deal with this complication momentarily.

Let Eω ⊂ H2(X0, ∂X0;Z) denote the set of classes represented by symplectic exceptional
spheres in X0. Note that there is a nondegenerate bilinear pairing

H2(X0;Z)⊗H2(X0, ∂X0;Z)
·→ Z
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induced by Poincaré-Lefschetz duality and the relative cap-product, and e · e = −1 for any
e ∈ Eω.

Lemma 1.3.12. For generic cobordism-admissible J on (X,ω), every symplectic exceptional
sphere is isotopic through symplectically embedded spheres to the image of a (unique) J-
holomorphic sphere.

This technical lemma was originally proved for closed symplectic 4-manifolds in [41,
Lemma 3.1] (see also [77, Theorem 5.1]), and we will prove it at the end of Section 1.3. By
intersection positivity of J-holomorphic curves, a J-holomorphic exceptional sphere is the
unique J-holomorphic curve in its homology class. We will denote the unique J-holomorphic
representative of e ∈ Eω by Ee.

Definition 1.3.13. Let Θ = {(Θi,mi)} be an orbit set for (−∂X0, λA). An element C ∈
M(∅,Θ) is called good if the only exceptional sphere components have multiplicity one.

If there is a good element representing the class A then

e · A ≥ −1 ∀ e ∈ Eω

Indeed, if C is a connected J-holomorphic curve then e·[C] ≥ 0 (by positivity of intersections)
unless C = Ee, for which e · [C] = −1. Thus there are no good elements when

e · A ≤ −2

for at least one e ∈ Eω. In light of this, we will first assume in Section 1.3 that e · A ≥ −1
for all e ∈ Eω, and then we will relax the assumption in Section 1.3.

When there are no multiply covered exceptional spheres

In this section we assume that e · A ≥ −1 for all e ∈ Eω. To construct the counts of
J-holomorphic curves for Theorem 1.1.6, we first make the following choices:

• an integer I ≥ 0,
• an integer p ∈ {0, . . . , I} such that I − p is even,
• an ordered set of p disjoint oriented loops η̄ := {η1, . . . , ηp} ⊂ X0,
• a set of 1

2
(I − p) disjoint points z̄ := {z1, . . . , z(I−p)/2} ⊂ X0 − η̄.

Denote by MI(∅,Θ;A, z̄, η̄) the subset of elements in MI(∅,Θ) which represent the class
A and intersect all points z̄ and all loops η̄. Define the chain

ΦI
J,z̄(A, η̄) :=

∑
Θ

∑
C∈MI(∅,Θ;A,z̄,η̄)

q(C) ·Θ ∈
N⊗
k=1

ECC∗(S
1 × S2, λA, 1) (1.11)
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where Θ indexes over the admissible orbit sets, and q(C) ∈ Z are weights that will be specified
later in Section 1.3. This is the chain which is to be used for Theorem 1.1.6.

Since the existence of curves in MI(∅,Θ;A, z̄, η̄) implies

A(Θ) ≤ ρ(A)

there are only finitely many orbit sets Θ which can arise in ΦI
J,z̄(A, η̄). Therefore, the fact

that this chain is well-defined (for the given choices of data J, z̄, η̄) follows from the following
proposition.8

Proposition 1.3.14. In the above setup, for generic J , the moduli space MI(∅,Θ;A, z̄, η̄)
is a finite set for each admissible orbit set Θ.

Before we prove this proposition we must figure out what the curves inMI(∅,Θ;A, z̄, η̄)
look like. Given two distinct connected somewhere injective curves C1 and C2, denote by
C1 · C2 the algebraic count of intersections. In our analysis we will make use of a “self-
intersection” number that depends on ρ(A) and stems from [26, Definition 4.7]. Given a
connected somewhere injective curve C, define

C · C :=
1

2
[2g(C)− 2 + ind(C) + h(C) + 2eA(C) + 4δ(C)]

where g denotes its genus, eA denotes the total multiplicity of all ρ(A)-positive elliptic orbits,
and h denotes the number of ends at hyperbolic orbits. Note that when C has no punctures,
C · C is the algebraic count of self-intersections.

Next, it is crucial to know that for any multiply covered curve arising in our analysis, its
Fredholm index is nonnegative. This is granted by the following lemma.

Lemma 1.3.15. Suppose J is generic and f : C̃ → C is a d-fold branched cover (with
b branch points) of a somewhere-injective J-holomorphic curve C → X, where the ends
of C are asymptotic to either positive hyperbolic orbits or d-positive elliptic orbits. Then
ind(C̃) ≥ b. Furthermore, if C̃ is connected and C is a Fredholm index 0 plane whose end is
asymptotic to a d-positive elliptic orbit, then ind(C̃) > 0 unless f = 1.

Proof. The trivialization τ is assumed to be chosen so that the Conley-Zehnder indices of
the orbits are as specified in Section 1.2. Let e (and ẽ) denote the number of ends of
C (and C̃) at elliptic orbits, and let b denote the number of branch points of f . Then
ind(C) = −χ(C) + 2cτ (C)− e which is nonnegative by genericity of J , and

ind(C̃) = b− d · χ(C) + 2d · cτ (C)− ẽ = d · ind(C) + b+ (de− ẽ)

which is nonnegative because ẽ ≤ de.

8Proposition 1.3.14 is the analog of [68, Proposition 7.1] (also [54, Proposition 4.3]) for closed symplectic
manifolds and [28, Lemma 5.10] for symplectizations.
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If C is the plane satisfying the hypotheses in the statement of the lemma (in particular,
e = 1), and g denotes the genus of C̃, then the Riemann-Hurwitz formula implies

b = d+ 2g − 2 + ẽ

and hence
ind(C̃) = 2(d+ g − 1) ≥ 0

which is zero if and if only f = 1.

Finally, there will be certain pseudoholomorphic curves in X that require special atten-
tion. We give them a name:

Definition 1.3.16. A J-holomorphic curve in X is special if it has Fredholm/ECH index
zero, and is either an embedded torus or an embedded plane whose negative end is asymptotic
to an embedded elliptic orbit with multiplicity one.

Proposition 1.3.17. For generic J , every current in MI(∅,Θ;A, z̄, η̄) is good and takes
the following form. Its underlying components are embedded, pairwise disjoint, and pairwise
do not both have negative ends at covers of the same elliptic orbit. An embedded component
which intersects l of the points in z̄ and l′ of the loops in η̄ has (ECH and Fredholm) index
2l + l′. A component can be multiply covered only when it is special.

Proof. Decompose a given current as

C = {(Ck, dk)} ∪ {(Eσ,mσ)}

where σ indexes the components which are (covers of) exceptional spheres. Then [26, Propo-
sition 4.8] implies

I = I(C) ≥
∑
k

dkI(Ck) +
∑
k

dk(dk − 1)Ck · Ck −
∑
σ

mσ(mσ − 1) +
∑
k 6=k′

dkdk′ Ck · Ck′

+ 2
∑
σ,k

mσdk Eσ · Ck (1.12)

Since Ck is not an exceptional sphere and Θ contains only positive hyperbolic and ρ(A)-
positive elliptic orbits,

Ck · Ck ≥ 2δ(Ck) (1.13)

Indeed, Ck cannot be a plane whose end is at a positive hyperbolic orbit because ind(Ck)
would then be odd hence nonzero.

Because A =
∑

k dk[Ck] +
∑

σmσ[Eσ], the inequality (1.12) can be rewritten as

I ≥
∑
k

dkI(Ck)+2
∑
k

dk(dk−1)δ(Ck)+
∑
σ

mσ(mσ+1)+
∑
k 6=k′

dkdk′ Ck ·Ck′+2
∑
σ

mσ[Eσ] ·A
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By the index inequality ind(Ck) ≤ I(Ck) − 2δ(Ck) and the assumption e · A ≥ −1 for all
e ∈ Eω, we can simplify the inequality further as

I ≥
∑
k

dk ind(Ck) + 2
∑
k

d2
kδ(Ck) +

∑
σ

mσ(mσ − 1) +
∑
k 6=k′

dkdk′ Ck · Ck′ (1.14)

If Ck intersects l ≥ 0 of the base points and l′ ≥ 0 of the loops then ind(Ck) ≥ 2l + l′. The
inequality (1.14) is thus an equality,

I =
∑
k

dk ind(Ck) + 2
∑
k

d2
kδ(Ck) +

∑
σ

mσ(mσ − 1) +
∑
k 6=k′

dkdk′ Ck · Ck′ (1.15)

In particular, there are no negative index curves nor nodal curves.9 The remaining properties
of the curves stated in the proposition can be read off from (1.15), and [26, Proposition 4.8]
implies that Ci and Cj for i 6= j do not both have negative ends at covers of the same ρ(A)-
positive elliptic orbit. To clarify the components which are multiply covered when I(Ck) = 0,
note that the equality (1.12) implies

0 = Ck · Ck

if dk > 1. A zero self-intersection can only hold if Ck is a torus or an embedded plane with its
end at an elliptic orbit with multiplicity one (or an embedded cylinder with ends at distinct
hyperbolic orbits, but such cylinders cannot be multiply covered thanks to admissibility of
Θ).

For the upcoming proof of Proposition 1.3.14, it will be crucial to know that a generic
cobordism-admissible J satisfies certain Fredholm regularity properties. We state these
properties as a definition.

Definition 1.3.18. For a given cobordism-admissible J , the moduli spaceMI(∅,Θ;A, z̄, η̄)
is said to be cut out transversally if the following is true for every current C in the moduli
space: For a component (C, 1) ∈ C its deformation operator DC is surjective, and for a
component (C, d) ∈ C with d > 1 the pull-back of DC to any unbranched cover f : C̃ → C
with deg(f) ≤ d is injective.

It turns out that regularity automatically holds for special planes (see Lemma 1.3.23).
Likewise, Taubes was able to establish regularity for the special tori in his work on the
Gromov invariants: The proof of [68, Proposition 7.1] (see also the proof of [54, Lemma 5.4])
explains how to perturb J on special tori to achieve regularity, with one caveat. Taubes
requires J to be perturbed on the entire image of each torus, but the images of the tori
appearing inMI(∅,Θ;A, z̄, η̄) can intersect the symplectization ends of X, for which J has
additional constraints that do not appear in Taubes’ work. Thankfully, this requirement of
Taubes is weakened in [79]. In particular, the perturbations can be made local to the curve
in the cobordism region X0.

9The existence of nodal curves is a priori possible because the symplectic form is not exact.



CHAPTER 1. TAMING THE PSEUDOHOLOMORPHIC BEASTS IN R× (S1 × S2) 27

Proof of Proposition 1.3.14. We follow the proof of [28, Lemma 5.10] which argues that the
ECH differential ∂ECH is well-defined. Suppose otherwise that there are infinitely many
such currents in MI(∅,Θ;A, z̄, η̄). By Gromov compactness for currents, any sequence of
currents inMI(∅,Θ;A, z̄, η̄) has a subsequence converging to a possibly broken ECH index
I current from ∅ to Θ, with the cobordism level intersecting the points z̄ and the loops
η̄. The symplectization levels of the broken holomorphic current do not have any closed
components, thanks to exactness of the symplectic form (a sequence of tori sliding off the
ends of X would have been a source of noncompactness). The cobordism level C is an
element of M(∅,Θ′;A′, z̄, η̄) where Θ′ is a potentially inadmissible orbit set that satisfies
A(Θ′) ≤ ρ(A), and I ≥ I(C). But the proof of Proposition 1.3.17 shows that in fact I = I(C)
and that C has no nodes. With nodes now excluded, no exceptional spheres arise in the limit
if they did not originally exist.

To show that the broken current is in fact unbroken, we will make use of SFT compactness
(for curves) in lieu of Gromov compactness (for currents) as follows. We claim that there are
only finitely many possibilities for the multiply covered components in our given sequence
of currents. Assuming this claim for the moment, we can restrict to a subsequence {Cν} ⊂
MI(∅,Θ;A, z̄, η̄) so that the multiply covered components are the same. The remaining
components of the subsequence are embedded and asymptotic to a fixed orbit subset Θ′′ ⊆ Θ,
and by the above convergence as currents we can restrict to a further subsequence so that
they represent the same relative homology class in H2(X,∅,Θ′′). It then follows from [30,
Corollary 6.10, Proposition 6.14] that there is a uniform bound on the genus of the embedded
components, so we can restrict to a further subsequence so that the topological type of the
embedded components is fixed. Now we invoke SFT compactness to obtain a convergent
subsequence that converges as curves to a broken J-holomorphic curve.

By additivity of the ECH index, all symplectization levels have ECH index 0. Note
that a sequence of closed components cannot break, because the only I = 0 curves in a
symplectization are covers of R-invariant cylinders. Using additivity of the Fredholm index,
in lieu of nonnegativity of the Fredholm index by Lemma 1.3.15, the proof of [21, Lemma
7.19] concludes that there is in fact only one level (that is, there cannot exist symplectization
levels of the broken curve consisting solely of nontrivially branched covers of R-invariant
cylinders). Thus the limiting curve is unbroken.

To complete the argument that MI(∅,Θ;A, z̄, η̄) is a finite set, it remains to prove: 1)
the aforementioned claim, and 2) that the limiting curve is isolated.

As for (1), if there were infinitely many possible multiply covered components (of a
current representing the class A) then there would be infinitely many special tori or special
planes (the underlying components). A formal repeat of the previous paragraphs shows that
an infinite subsequence of such embedded curves must converge to an unbroken Fredholm
index 0 curve. So it suffices to prove that this limiting curve is isolated, which is the goal of
(2).

As for (2), such isolation is only violated if a sequence of embedded curves {Ck} converges
to a multiply covered curve f : C̃∞ → C∞, where C∞ is a special torus or special plane.
And this only occurs if ind(Ck) = ind(C̃∞) = 0 for all k, otherwise there would be point
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constraints on Ck and hence point constraints on C∞, contradicting the fact that ind(C∞) =
0. Therefore, C̃∞ is an unbranched cover of C∞ by Lemma 1.3.15. Now, such a convergent
sequence {Ck} would produce a nonzero element in the kernel of the pull-back Df of the
deformation operator DC∞ , but this contradicts the fact that MI(∅,Θ;A, z̄, η̄) is cut out
transversally for generic J .

We end this section with a proof of Lemma 1.3.12. We postponed the proof until now
because it makes convenient use of the proof of Proposition 1.3.14.

Proof of Lemma 1.3.12. We follow the proof of [77, Theorem 5.1]. Given a symplectic ex-
ceptional sphere in the class e ∈ Eω, we can always construct a (probably non-generic)
cobordism-admissible almost complex structure J0 on (X,ω) which is integrable in a neigh-
borhood of the sphere. This J0-holomorphic sphere has Fredholm/ECH index zero and is
automatically transverse (see Lemma 1.3.23). Now we deform J0 to J1 = J using a generic
smooth 1-parameter family {Js}s∈[0,1] of cobordism-admissible almost complex structures
and deduce what happens to the J0-holomorphic sphere. That is, we analyze the parametric
moduli space M0(e, {Js}) consisting of pairs (C, s) such that s ∈ [0, 1] and C is the unique
Js-holomorphic sphere representing e if it exists.

Due to the existence of the J0-holomorphic exceptional sphere we know that

c1(e) = χ(S2) + e · e = 1

and therefore all Js-holomorphic spheres representing E are embedded, have Fredholm/ECH
index 0, and are automatically transverse (see Lemma 1.3.23). It follows that the natural
projection mapM0(e, {Js})→ [0, 1] is a submersion. It suffices to show thatM0(e, {Js}) is
compact, for then there exists a (unique) Js-holomorphic sphere representing e for every s ∈
[0, 1]. Compactness fails only if a sequence of Js-holomorphic exceptional spheres (varying s)
becomes nodal or breaks. But we already know that there are no nodal spheres representing
e, and the proof of Proposition 1.3.14 can be copied verbatim to show that there are no
broken curves representing e.

Allowing multiply covered exceptional spheres

In this section we do not assume that e · A ≥ −1 for all e ∈ Eω, so we cannot rule out
the existence of multiply covered exceptional spheres. When (X,ω) is a closed symplectic
manifold, McDuff [40] showed how Taubes’ construction of the Gromov invariants could be
modified to count multiple covers of exceptional spheres. What we show now is that McDuff’s
modification also works in our setting of (X0, ω). The idea is to add extra base points to
the set z̄ from the previous section, which “pin down” any positive index component of a
J-holomorphic curve that exists to offset the negative index sphere components.

For each e ∈ Eω, define its algebraic multiplicity to be the quantity me(A) := max(−e ·
A, 0). Then denote

m(A) :=
∑
e∈Eω

(
me(A)2 −me(A)

)
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We formally repeat Section 1.3 using the moduli spaceMI(∅,Θ;A, z̄′, η̄), except z̄′ denotes

• a set of 1
2

(I − p+m(A)) disjoint points z̄′ := {z1, . . . , z(I−p+m(A))/2} ⊂ X0 − η̄.

If e ·A < −1 for some e ∈ Eω then this moduli space does not contain any good elements, i.e.
every element has a holomorphic exceptional sphere component with multiplicity at least
2 (see Section 1.3 and Lemma 1.3.12). Each such sphere does not pass through any base
point in z̄′, and the goal of this section is to demonstrate that we can effectively “isolate
and ignore” such spheres. To start, we can mimic the proofs of Proposition 1.3.14 and
Proposition 1.3.17 to show:

Proposition 1.3.19. In the above setup, for generic J , the moduli space MI(∅,Θ;A, z̄′, η̄)
is a finite set for each admissible orbit set Θ. For each current in such a moduli space,
its underlying components are embedded, pairwise disjoint, and pairwise do not both have
negative ends at covers of the same elliptic orbit. A component which intersects l of the
points in z̄′ and l′ of the loops in η̄ has (ECH and Fredholm) index 2l+ l′. A component can
be multiply covered only when it is special or an exceptional sphere. For each e ∈ Eω such
that me(A) > 0, every current must have (Ee,me(A)) as a component.

Proof. Decompose a given current in MI(∅,Θ;A, z̄′, η̄) as

C = {(Ck, dk)} ∪ {(Eσ,mσ)} ∪ {(Fσ′ ,mσ′)}

where Eσ ·A < −1 and Fσ′ ·A ≥ −1 for Eσ, Fσ′ ∈ Eω. The proofs of Proposition 1.3.14 and
Proposition 1.3.17 are only affected by dropping the constraint on A that e ·A ≥ −1 for all
e ∈ Eω, for which (1.12) now implies

I = I(C) ≥
∑
k

dk ind(Ck) +
∑
σ

mσ(mσ + 1) + 2
∑
σ

mσ[Eσ] · A (1.16)

It suffices to show that the right-hand-side of (1.16) is bounded below by I. Due to the point
and loop constraints, the first term on the right-hand-side of (1.16) is bounded below by

2 · 1

2
(I − p+m(A)) + p = I +m(A)

Note that, by definition, the third term on the right-hand-side of (1.16) is

−2
∑
σ

mσ ·m[Eσ ](A)

Therefore, it suffices to show that

m(A) +
∑
σ

mσ(mσ + 1)− 2
∑
σ

mσ ·m[Eσ ](A) ≥ 0
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By definition of m(A), we are reduced to showing that

m[Eσ ](A)2 −m[Eσ ](A) +m2
σ +mσ − 2mσ ·m[Eσ ](A) ≥ 0 (1.17)

for each index σ. Now, the left-hand-side of (1.17) is precisely(
mσ −m[Eσ ](A)

)2
+
(
mσ −m[Eσ ](A)

)
so it suffices to show that

mσ ≥ m[Eσ ](A)

for each index σ. To show this, we look at the decomposition of A = [C] into the components
of C and compute [Eσ] · A to get

−m[Eσ ](A) = −mσ + [Eσ] · ([C]−mσ[Eσ]) ≥ −mσ

where the latter inequality follows from positivity of intersections of J-holomorphic curves.
The desired result follows.

We now rephrase the result of Proposition 1.3.19 to remove the multiply covered ex-
ceptional spheres; this is the analog of [40, Lemma 3.3] for closed symplectic 4-manifolds.
Consider the relative class

A′ := A+
∑

e∈Eω | e·A<−1

(e · A)e

which satisfies e · A′ ≥ −1 for all e ∈ Eω, and the nonnegative integer

I ′ := I +m(A)

which has the same parity as I. Since each current in MI(∅,Θ;A, z̄′, η̄) consists of a good
element representing A′ ∈ Relω(X) and the same collection of disjoint multiply covered
exceptional spheres representing −

∑
e∈Eω | e·A<−1(e · A)e, we have the following corollary.

Corollary 1.3.20. In the scenario of Proposition 1.3.19, there is a one-to one correspon-
dence

MI(∅,Θ;A, z̄′, η̄)←→MI′(∅,Θ;A′, z̄′, η̄) (1.18)

which simply ignores the exceptional sphere components having multiplicity greater than one.

Therefore, in the definition of the chain (1.11) we may use the finite setsMI′(∅,Θ;A′, z̄′, η̄).

Remark 1.3.21. It may be possible to establish a blow-up formula by counting J-holomorphic
curves on X and any of its blow-downs, along the lines of [37, Theorem 4.2] for closed sym-
plectic manifolds, but the details have not been sorted out. Instead, the blow-up formula
follows as a corollary from the blow-up formula for the Seiberg-Witten invariants (see Chap-
ter 2).
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Orientations and weights

This section defines the integer weight q(C) attached to a current C = {(Ck, dk)} which
belongs to a given moduli space MI(∅,Θ;A, z̄, η̄), for a generic choice of J . This moduli
space is assumed to be cut out transversally (see Definition 1.3.18) and e · A ≥ −1 for all
e ∈ Eω, but see Remark 1.3.25 for the case of multiply covered exceptional spheres. The
total weight is of the form

q(C) = ε(C)
∏
k

r(Ck, dk) ∈ Z

where r(C, d) is an integer weight attached to each component (C, d), and ε(C) is a global
sign which depends on the ordering of both the set η̄ and the set P of positive hyperbolic
orbits in Θ. We specify these below.

Remark 1.3.22. Remember that Θ is an orbit set for the disjoint union of N copies of
S1×S2. In order to identify ECH of this disjoint union with the tensor product of N copies
of ECH of S1 × S2, we need to choose an ordering of the N copies of S1 × S2 (which is
an ordering of the zero-circles of ω). Once this ordering is made we can decompose P as
P1t · · · tPN , where Pk is the set of positive hyperbolic orbits in the orbit set Θk for the kth

copy of S1×S2, and (Θ, o) = ±(Θ1, o1)⊗ · · · ⊗ (ΘN , oN). Here, the sign ± is determined by
whether the ordering of P defined by o (dis)agrees with the ordering of P1t· · ·tPN defined
by o1 ⊗ · · · ⊗ oN .

Given orientations of the admissible orbit sets (o of Θ), each moduli spaceMI(∅,Θ;A, z̄, η̄)
is “coherently oriented” with the conventions in [22, §9.5] (based off of [2]). In particular,
KerDC is oriented for every component C of C.

We first define r(C, 1), following [54, §2] and [24, §2.5]. Recall that the set η̄ is ordered,
and labelled accordingly as {η1, . . . , ηp}. The curve C intersects l of the loops for some
l ∈ {0, . . . , p}, say {γ1, . . . , γl} written in the order that they appear in η̄. Denote the
intersection points by {w1, . . . , wl}. The curve C then must intersect 1

2
(I(C)− l) points in z̄,

which without loss of generality are the points {z1, . . . , z(I(C)−l)/2}. From this data we build
the RI(C)-vector space

VC :=

1
2

(I(C)−l)⊕
i=1

Nzi ⊕
l⊕

i=1

(
Nwi/π(Twiγi)

)
where Nx denotes the fiber of the normal bundle NC of C over the point x ∈ C, and π denotes
the canonical projection of TX onto NC . Then VC is oriented because the normal bundle of
C is oriented, the loops γi are oriented, and the points wi are ordered; the ordering of the
points zi does not matter because each Nzi is 2-dimensional. For generic J , the restriction
map

Ker(DC)→ VC

is an isomorphism, and r(C, 1) = ±1 depending on whether this restriction map is orientation-
preserving or orientation-reversing.
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Before defining r(C, d) when d > 1, it will be useful to write out r(C, 1) in the cases
where I(C) = 0 and C is either an exceptional sphere, a special torus, or a special plane.
Then r(C, 1) is the modulo 2 count of spectral flow of a generic path of Fredholm first-order
operators from the deformation operator DC to a complex linear operator. The following
“automatic transversality” lemma will help us compute this spectral flow.

Lemma 1.3.23. Let C be a connected immersed J-holomorphic curve in X with ends at
nondegenerate Reeb orbits {γj}, let g denote the genus of C, and let h+ denote the number
of ends of C at positive hyperbolic orbits (including even multiples of negative hyperbolic
orbits). Given any Cauchy-Riemann type operator

D : L2
1(NC)→ L2(T 0,1C ⊗NC)

that is asymptotic to the fixed asymptotic operators Lγj of C, if

2g − 2 + h+ < ind(D)

then D is surjective. In particular, if the inequality holds for the deformation operator DC

then C is transverse without any genericity assumption on J .

See [76, Proposition 2.2] for a proof of this lemma and the technical definition of “a
Cauchy-Riemann type operator that is asymptotic to an asymptotic operator.” In the case
where C is an exceptional sphere, Lemma 1.3.23 implies r(C, 1) = 1. In the case where C
is a special torus, Lemma 1.3.23 unfortunately does not say anything. In the case where C
is a special plane, its asymptotic operator over the elliptic orbit is L-flat and hence complex
linear. Thus its deformation operator has the form

DC = ∂ + νC + µC

with complex anti-linear term µC asymptotic to zero along the end of C. We then apply
Lemma 1.3.23 to the path of Cauchy-Riemann type operators10

r ∈ [0, 1] 7→ ∂ + νC + (1− r) · µC (1.19)

The asymptotic operators of (1.19) are all the same, so the Fredholm index remains constant.
Thus there is no spectral flow when deforming DC to a complex linear operator and hence
r(C, 1) = 1.

We now consider r(C, d) when d > 1. Here, C is necessarily either a special torus or
a special plane. In the case where C is a torus, the explicit description of r(C, d) is found
in [54, Definition 3.2] and will not be repeated here. Suffice to say, the weight assigned

10We stated “automatic transversality” for operators that aren’t necessarily deformation operators of
J-holomorphic curves because it may not be possible for the path of operators (1.19) to come from a path
of admissible J .
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to a multiply covered torus is determined by the spectral flows of four operators on C and
guarantees that Taubes’ Gromov invariants are well-defined. Along a path of almost complex
structures, multiple covers of tori may “pop off” to nearby honest curves, or two tori with
opposing sign may collide and annihilate, and this must be accounted for in order to obtain
an actual invariant.

In the case where C is a plane, we define

r(C, d) := r(C, 1) = 1

because it turns out that C is “automatically super-rigid.” To elaborate, given any connected
(branched) multiple cover f : C̃ → C and deformation operator DC = ∂ + νC + µC there is
an induced pull-back deformation operator

Df = ∂ + f ∗νC + f ∗µC

from Γ(f ∗NC) to Γ(T 0,1C̃⊗f ∗NC). This Fredholm operator satisfies ind(Df ) = ind(C̃)−2b,
where b is the number of branch points of f and ind(C̃) is the Fredholm index of the J-
holomorphic curve C̃ → C → X (see [25, 79]). Granted that ind(C) = 0, we say that C is
d-nondegenerate if Ker(Df ) = 0 for all unbranched covers of C of degree no greater than d,
and that C is super-rigid if Ker(Df ) = 0 for all (branched) covers of C. For a special plane
C, similarly to the setup when d = 1, we can deform Df to a complex linear operator along a
path of Cauchy-Riemann type operators such that the Fredholm index stays constant. The
following lemma is a version of “automatic transversality” for such operators over C̃ (see
[25] or [76, Proposition 2.2] for a proof).

Lemma 1.3.24. Let C be a connected immersed J-holomorphic curve in X with ends at
nondegenerate Reeb orbits, let f : C̃ → C be a branched cover with b branch points, g̃ denote
the genus of C̃, and let h̃+ denote the number of ends of C̃ at positive hyperbolic orbits
(including even multiples of negative hyperbolic orbits). Given any Cauchy-Riemann type
operator

D : L2
1(f ∗NC)→ L2(T 0,1C̃ ⊗ f ∗NC)

that is asymptotic to fixed asymptotic operators of C̃ and satisfies ind(D) = ind(C̃)− 2b, if

2g̃ − 2 + h̃+ + ind(C̃)− 2b < 0

then D is injective.

For a special plane C and a given cover f ,

ind(C̃) = 2− 2g̃ + 2b− e−
e∑
i=1

CZτ (γi)

where e is the number of punctures of C̃ such that its ith end is asymptotic to the elliptic
orbit γi, and the trivialization τ is chosen so that the Conley-Zehnder indices are as specified
in Section 1.2. Thus from Lemma 1.3.24 we see that not only is C super-rigid but there is
no spectral flow when deforming Df to a complex linear operator for any f .
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Remark 1.3.25. Section 1.3 concerns the case that e · A < −1 for some e ∈ Eω. Define

r(Ee,me(A)) := r(Ee, 1) = 1

where Ee denotes the unique holomorphic sphere representative of e such that me(A) ≥ 1,
which makes the identification of the moduli spaces in the correspondence (1.18) orientation-
preserving.

It remains to define ε(C). First, note that an even (respectively, odd) Fredholm index
component of C has an even (respectively, odd) number of ends asymptotic to positive
hyperbolic orbits, and it intersects an even (respectively, odd) number of loops. Second,
note that an ordering of the components of C determines a partition of P whose ordering
differs from the fixed ordering of P by a permutation σP , and it also determines a partition
of η̄ whose ordering differs from the fixed ordering of η̄ by a permutation ση̄. Third, note
that any permutation σ has a sign ε(σ) given by its parity. Then

ε(C) := ε(σP)ε(ση̄)

which does not depend on the ordering of the components of C.

Remark 1.3.26. Our definition of ε(C) is consistent with that in Taubes’ construction of
the Gromov invariants [54, §2]. There are no Reeb orbits to deal with for closed symplectic
4-manifolds, so ε(C) reduces to the sign associated with the ordering of the set of loops η̄.
That sign is well-defined, i.e. independent of the ordering of the components of C, because
every component of C is closed and thus has even Fredholm index.

Equations for chain maps and chain homotopies

The goal of this section is to show that ΦI
J,z̄(A, η̄) defines an element in ECH, and to

clarify its dependence on z̄ and η̄. In light of Corollary 1.3.20, assume e · A ≥ −1 for all
e ∈ Eω.

Proposition 1.3.27. For generic J , the chain ΦI
J,z̄(A, η̄) is a cycle,

∂ECH ◦ ΦI
J,z̄(A, η̄) = 0 (1.20)

The proof relies on a gluing theorem, for which we need some information about the
asymptotics of the curves that are to be glued. The multiplicities of the positive (respec-
tively, negative) ends of a connected curve asymptotic to a given orbit γ defines a positive
(respectively, negative) partition of the total multiplicity m of γ. A key fact is that a
nontrivial component of a holomorphic current that contributes to the ECH differential or
the U -map satisfies the partition conditions [28, §3.9], which means the partitions p±γ (m) are
uniquely determined by the orbit γ. For example, if γ is elliptic with rotation class θ ∈ (0, 1

m
)

mod 1 then p+
γ (m) = (1, . . . , 1) and p−γ (m) = (m).
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Proof of Proposition 1.3.27. To prove the chain map equation (1.20), we fix an admissible
orbit set Θ and analyze the ends ofMI+1(∅,Θ;A, z̄, η̄). A broken curve arising as a limit of
curves inMI+1(∅,Θ;A, z̄, η̄) cannot contain a multiply covered punctured component in the
cobordism level, except for a cover of a special plane or an embedded cylinder11 (asymptotic
to hyperbolic orbits). This follows from the arguments in the proof of Proposition 1.3.14,
for which the cobordism level C now satisfies

I + 1 ≥ I(C) ≥ I

If there were no such multiply covered punctured components, the proof of ∂2
ECH = 0 in

[21] could be copied to conclude that the number of signed gluings is 1 in the case needed
to prove (1.20). That is, the proof of [21, Lemma 7.23] would carry over verbatim to show
that a broken curve consists of
• a Fredholm/ECH index I curve in the cobordism level (intersecting z̄ and η̄),
• a Fredholm/ECH index 1 curve in the symplectization level, and
• possibly additional levels between them consisting of connectors, i.e.

branched covers of R-invariant cylinders.
The obstruction bundle “gluing analysis” used to prove [21, Theorem 7.20] would then
prove (1.20).

Remark 1.3.28. Multiple covers of exceptional spheres do not arise in this process: two
curves having nonnegative index cannot glue together to form a negative index curve. This is
consistent with the fact that the exceptional spheres are rigid and a sequence of such spheres
do not break.

Therefore, it suffices to show that there is no further obstruction bundle gluing needed
when our multiply covered curves are introduced. To start, we note that such multiple covers
must be unbranched, otherwise the Fredholm index would be too big (see Lemma 1.3.15).
Next, we note that an unbranched cover of a plane (respectively, cylinder) is necessarily
disjoint copies of a plane (respectively, cylinder), thanks to the Riemann-Hurwitz formula.
Let’s first analyze the cylinders, and then the planes:

For each d > 1 we can compute the number of ways to glue a d-fold cover of a cylinder
using the same reasoning as in the proof of ∂2

ECH = 0 which computes the number of gluings
for two embedded ECH index 1 curves along hyperbolic orbits. In particular, it follows
from [21, Lemma 1.7] that there are no connectors, otherwise their Fredholm index would
be too big. Thus the multiply covered cylinder would have to glue directly to a curve in the
sympletization level, for which the positive partition conditions are satisfied. Thus there are
either no ways to glue or there are an even number of ways to glue, given by the number of
permutations of the ends of the cylinders that glue (see [21, §1.5]). And as explained in [21,

11There can exist multiple covers of index 0 embedded cylinders at hyperbolic orbits, because the orbit
set between the levels of the broken curve need not be an admissible orbit set.
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Remark 1.5], half of those gluings have one sign and the other half have the other sign, so
the total signed count of gluings is zero.

For each d > 1 we claim that there is exactly one way to glue a d-fold cover of a special
plane. If this multiply covered plane were to glue to an ECH index 1 curve with a connector
inbetween, then the gluing of the multiply covered plane and the connector would be another
(multiply covered) plane. But the only way this glued curve could have Fredholm index 0 is
for the connector to be a disjoint union of R-invariant cylinders, thanks to Lemma 1.3.15, so
there is no nontrivial gluing. Thus the multiply covered plane would have to glue directly to
a curve in the symplectization level, for which the positive partition conditions are satisfied.
That means the ends of the multiply covered plane satisfy p+

γ (d) = (1, . . . , 1), where γ is
the elliptic orbit which the underlying plane is asymptotic to, and therefore there is exactly
one possible gluing (the d disjoint copies of the plane are indistinguishable, so there are no
permutations for matching the ends of the curves).

The cycle ΦI
J,z̄(A, η̄) a priori depends on the choice of loops η̄ and points z̄ (and J). We

now show that each loop in η̄ can move around in its homotopy class and each point in z̄
can move into the ends of X, without affecting the induced homology class in ECH. Our
argument follows [24, §2.5] which argues that the U -map does not depend on the choice of
base point.

Proposition 1.3.29. Fix an element [η̄] ∈ Λp(H1(X;Z)/Torsion) and an ordering of the
zero-circles of ω. For generic J , the homology class GrIX,ω,J(A, [η̄]) represented by the chain
ΦI
J,z̄(A, η̄) does not depend on the choice of z̄ nor on the choice of representative η̄ ⊂ X0 for

[η̄]. Furthermore,

GrIX,ω,J(A, [η̄]) = U (I−p)/2 ◦GrpX,ω,J(A, [η̄]) ∈
N⊗
k=1

ECH∗(S
1 × S2, ξTaubes, 1)

where U (I−p)/2 denotes 1
2
(I−p) compositions of any of the U-maps from components of ∂X0.

Proof. Let Θ be an admissible orbit set such that A(Θ) ≤ ρ(A). Let {y1, . . . , y(I−p)/2} ⊂ ∂X0

be a collection of base points which do not lie on any Reeb orbit. Pair each yk ∈ ∂X0 with
zk ∈ z̄ and choose embedded paths γk : [0, 1]→ X0 from zk to yk such that the image of γk
only intersects ∂X0 in yk. Define the chains

Kγk :=
∑

Θ

∑
C∈MI−1(∅,Θ;A,z̄−zk,η̄,γk)

q(C) ·Θ ∈
N⊗
k=1

ECC∗(S
1 × S2, λA, 1)

where Θ indexes over the admissible orbit sets. The proofs of Proposition 1.3.14 and Proposi-
tion 1.3.17 also work in this setting to show that Kγk is well-defined: the decrement I → I−1
and the path constraint of γk is compensated by the removal of the point constraint of zk.
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We can check that

∂ECH ◦Kγk = ΦI
J,z̄(A, η̄)− Uyk ◦ ΦI−2

J,z̄−zk(A, η̄) (1.21)

by counting ends and boundary points of the moduli spaceMI(∅,Θ;A, z̄ − zk, η̄, γk), using
the same gluing analysis as in the proof of Proposition 1.3.27. Passing to homology and
iterating through the recursive equation (1.21) for 1 ≤ k ≤ 1

2
(I − p), the desired result

concerning the U -map follows.
A similar argument yields the independence of the loop ηk in X0 that represents [η̄k]. Note

here that H1(X;Z) ∼= H1(X0;Z), which follows from the homological long exact sequence
for the pair (X,X0) in lieu of

Hk(X,X0;Z) ∼= Hk(clN , ∂N ;Z) ∼= H4−k(clN ;Z) ∼= H4−k(Z;Z)

These isomorphisms are given respectively by excision, Poincaré-Lefschetz duality, and Z
being a deformation retraction of clN ; these homologies are trivial for k ∈ {1, 2}.

Gradings

The remaining statement to be proved in Theorem 1.1.6 is the fact that the element
GrIX,ω,J(A, [η̄]), despite being a sum over many orbit sets, is concentrated in a single grading
of ECH.

Proposition 1.3.30. GrIX,ω,J(A, [η̄]) ∈ ECHg(A,I)(−∂X0, ξTaubes, 1), where the grading g(A, I)
is determined by A and I. In terms of the canonical absolute Z/2Z grading on ECH, the
parity of g(A, I) is equal to the parity of I.

Proof. We prove this in a slightly more general scenario. Consider a symplectic cobordism
(X,ω) from the empty set to a contact 3-manifold (Y, λ), a homology class Γ ∈ H1(Y ;Z)
satisfying

c1(ξ) + 2 PD(Γ) = 0

and a relative homology class A ∈ H2(X,−Y ;Z) satisfying ∂A = −Γ. Let α and β be
admissible orbit sets on (Y, λ) in the class Γ. Let C and C ′ be J-holomorphic currents in the
completion X which represent A and are asymptotic to α and β, respectively. Since C and
C ′ both represent A, the difference

[C ′]− [C] ∈ H2(Y, α, β)

can be used to measure the grading difference

|α| − |β| = I([C ′]− [C]) = I(C ′)− I(C)

where the last equality follows from additivity of the ECH index. Therefore, I(C ′) = I(C) if
and only if |α| = |β|.
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For an admissible orbit set Θ on (Y, λ), let ε(Θ) be the number of positive hyperbolic
orbits in Θ, which determines the parity of |Θ| as a canonical absolute Z/2Z grading. The
“index parity” formula [28, Equation 3.7] states that

I(C) ≡ ε(Θ) mod 2

for C ∈ MI(∅,Θ). Therefore, the parities of g(A, I) and I agree.

As mentioned in Section 1.1, a given spin-c structure s ∈ Spinc(X) determines the relative
class A = As ∈ H2(X0, ∂X0;Z) and also the index I = d(s). It will be shown in Chapter 2
that g(As, d(s)) is equal to N [ξ∗], i.e.

Gr
d(s)
X,ω,J(As, [η̄]) ∈

N⊗
k=1

ECH[ξ∗](S
1 × S2, ξTaubes, 1) ∼= Z

This fact, g(As, d(s)) = N [ξ∗], makes sense for a few reasons. First, [ξ∗] has odd parity while
N has parity equal to that of b2

+(X)−b1(X)+1, which is also the parity of d(s), so the parity
of N [ξ∗] agrees with that of d(s) hence g(As, d(s)). Second, it follows from Proposition 1.3.2
that ECHj(−∂X0, ξTaubes) is a single copy of Z if and only if j = N [ξ∗].

1.4 Appendix

In this thesis we have assumed that Z consists of only untwisted zero-circles. As we now
clarify, a straightforward modification allows us to include twisted zero-circles as long as
they are non-contractible in X.

In the presence of a twisted zero-circle, the corresponding boundary component of (X0, ω)
is (S1×S2, e−1λσTaubes). Here, λσTaubes is the pushforward of λTaubes under the double covering
map S1× S2 → S1× S2, for which the nontrivial deck transformation is the fixed-point-free
involution

σ(t, θ, ϕ) = (t+ π, π − θ,−ϕ)

Since λTaubes is σ-invariant, the orbits in (S1 × S2, λTaubes) descend to the orbits in (S1 ×
S2, λσTaubes), so that λσTaubes is a Morse-Bott contact form. The images of the exceptional

orbits coincide, giving a single exceptional elliptic orbit with rotation class
√

3
2

mod 1. The

images of the tori T (θ0) for θ0 6= π
2

are also tori foliated by orbits. However, the image of
the torus T (π

2
) is a Klein bottle: it is described as a closed interval family of orbits, whose

endpoints lift to orbits in (S1 × S2, λTaubes) that are fixed set-wise by σ. These endpoints
are double covers of orbits that have one-half the period of the other orbits in the interval.

The contact structure ξσTaubes associated with λσTaubes is also overtwisted. Although ξTaubes

and ξσTaubes are not homotopic over S1 × S2 [15, Theorem 10], they have the same Euler
class: e(ξσTaubes) can be computed using the pushforward of the section sin θ ∂θ ∈ Γ(ξTaubes).
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Thus ξTaubes and ξσTaubes are homotopic over the 2-skeleton of S1×S2 and their corresponding
spin-c structures are the same. Subsequently,

ECHj(S
1 × S2, ξσTaubes, 1) ∼= ĤM

j
(S1 × S2, sξ + 1) ∼= ECHj(S

1 × S2, ξTaubes, 1)

and
J(S1 × S2, sξ) =

{
[ξTaubes], [ξ

σ
Taubes]

}
and the homotopy class [ξ∗] has even parity under the canonical absolute Z/2Z grading on
ECH∗(S

1 × S2, ξσTaubes, 1).
The analog of Lemma 1.3.9 now says that the relevant modification of λσTaubes for a given

class A ∈ Relω(X) is a nondegenerate contact form λA whose orbits of action less than
ρ(A) are either ρ(A)-positive elliptic, positive hyperbolic, or negative hyperbolic. Indeed,
Bourgeois’ perturbation breaks up the Klein bottle of orbits into two doubly covered negative
hyperbolic orbits and an embedded elliptic orbit with rotation number slightly positive [4,
§2.2, §9.5], and the exceptional orbit of λσTaubes can be appropriately modified because the
function (1.9) constructed in the proof of Lemma 1.3.7 is σ-invariant.

The existence of these negative hyperbolic orbits may cause problems. The problem
with the proof of Proposition 1.3.14 for λσTaubes is that the inequality (1.13) is false for an
embedded plane C asymptotic to a negative hyperbolic orbit. In particular, the current
(C, d) for d > 1 has negative ECH index −1

2
d(d− 1) and may arise in the cobordism level of

a broken current. Of course, if the twisted zero-circles are non-contractible in X then these
planes cannot exist.
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Chapter 2

Seiberg-Witten and Gromov
invariants

2.1 Introduction

Continuing with the setup of the previous chapter, (X, g) denotes a closed connected
oriented smooth Riemannian 4-manifold with b2

+(X) ≥ 1. Furthermore, ω denotes a self-
dual near-symplectic form on X whose zero set Z := ω−1(0) has N ≥ 0 components, all of
which are untwisted zero-circles.1 Such 2-forms always exist, but the parity of N must be
the same as that of b2

+(X)− b1(X) + 1.
In Chapter 1 we defined the near-symplectic Gromov invariants

GrX,ω : Spinc(X)→ Λ∗H1(X;Z)

in terms of counts of pseudoholomorphic curves in a certain completion of X − Z, and it a
priori depends on an almost complex structure on X−Z. Before we recall how this invariant
is defined, we state the main theorem of this paper (from which it follows that GrX,ω over
Z/2Z is indeed a smooth invariant of X).

Theorem 2.1.1. Given (X,ω) as above and s ∈ Spinc(X),

GrX,ω(s) = SWX(s) ∈ Λ∗H1(X;Z)⊗ Z/2Z

where ω determines the chamber for defining the Seiberg-Witten invariants when b2
+(X) = 1.

Remark 2.1.2. As explained in Section 2.3, a choice of homology orientation of X is the
same thing as a choice of ordering of the zero-circles of ω plus a choice of homology orientation
of the cobordism obtained from X by removing tubular neighborhoods of the zero-circles.
We expect that there is a canonical homology orientation one on the cobordism determined
by ω, and that Theorem 2.1.1 can be lifted to Z coefficients.

1We may also allow components of Z to be twisted zero-circles which are non-contractible in X (see
Section 1.4), but we restrict our attention to untwisted zero-circles for simplicity of notation.
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We now explain the setup for defining GrX,ω, as it sets the stage for the rest of the this
paper. Let N denote the union of arbitrarily small tubular neighborhoods of the components
of Z ⊂ X, chosen in such a way that the complement

(X0, ω) := (X −N , ω|X−N )

is a symplectic manifold with contact-type boundary, where each boundary component is a
copy of (S1 × S2, ξTaubes). We will specify the contact form on S1 × S2 momentarily.

It follows from Taubes’ work on near-symplectic geometry that ω induces an H2(X;Z)-
equivariant map

τω : Spinc(X)→ H2(X0, ∂X0;Z), s 7→ PD(c1(E)) (2.1)

where E → X0 is the complex line bundle that defines the decomposition of the positive
spinor bundle associated with the restricted spin-c structure s|X0 ,

S+(s|X0) = E ⊕K−1E

and K → X0 is the canonical bundle determined by ω; see the upcoming Section 2.3 for an
elaboration. The following lemma shows that τω gives a canonical identification of Spinc(X)
with the set

Relω(X) :=
{
A ∈ H2(X0, ∂X0;Z)

∣∣ ∂A = 1 ∈ H1(∂X0;Z)
}

where 1 is the oriented generator on each component (the orientation conventions are spec-
ified in Section 1.3).

Lemma 2.1.3. The map τω is injective, and its image consists of the subset of relative
homology classes whose boundary is the oriented generator of H1(∂X0;Z), i.e. for each s on
X

∂τω(s) = −(1, . . . , 1) ∈ −
N⊕
k=1

H1(S1 × S2;Z)

Proof. The restriction map Spinc(X)→ Spinc(X0) is injective, or in terms of the cohomology
actions, the restriction map H2(X;Z) → H2(X0;Z) is injective. This follows from the
cohomological long exact sequence applied to the pair (X,X0) because

H2(X,X0;Z) ∼= H2(clN , ∂N ;Z) ∼= H2(clN ;Z) = 0

using excision and Poincaré-Lefschetz duality. Then τω is injective, since

τω(s⊗ E)− τω(s) = PD c1(E|X0)

for any complex line bundle E → X.
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Likewise, the determinant line bundle det(S+(s|∂X0)) is trivial. In terms of the cohomol-
ogy actions, the restriction map H2(X;Z)→ H2(∂X0;Z) is trivial because it factors through
H2(clN ;Z) = 0. On each boundary component, this constraint

0 = c1

(
det
(
S+(s|S1×S2)

))
= 2c1(E|S1×S2) + c1(K−1|S1×S2)

implies
c1(E|S1×S2) = 1 ∈ Z ∼= H2(S1 × S2;Z)

because K−1|S1×S2 = ξTaubes.

We now fix a spin-c structure s ∈ Spinc(X) and chooseN so that−∂X0 = ∂N is a contact
3-manifold whose contact form is λs on each component, as provided in Lemma 1.3.9. Here,
λs is precisely λτω(s) in the notation of Lemma 1.3.9, which is a particular rescaling of Taubes’
overtwisted contact form λTaubes but whose orbits of symplectic action less than ρ(τω(s)) are
all ρ(τω(s))-flat. The quantity ρ(τω(s)) ∈ R is spelled out in Section 1.3 and the notion of
“flatness” is spelled out in Section 1.2. (The importance of “flatness” becomes evident in
Theorem 2.4.5.)

The component of the element GrX,ω(s) in ΛpH1(X;Z) is defined to be zero if d(s) − p
is odd or negative, where

d(s) :=
1

4

(
c1(s)2 − 2χ(X)− 3σ(X)

)
and otherwise it is determined by its evaluation on [η1]∧ · · · ∧ [ηp] for a given ordered set of
classes [η̄] := {[ηi]}pi=1 ⊂ H1(X;Z)/Torsion. In order to construct this number

GrX,ω(s)
(
[η1] ∧ · · · ∧ [ηp]

)
∈ Z

we must first introduce the set Eω ⊂ H2(X0, ∂X0;Z) of classes represented by symplectic
exceptional spheres in X0 (which is empty if X is minimal). Then we fix the following data:
• an ordered set of p disjoint oriented loops η̄ ⊂ X0 which represent [η̄],
• a set of 1

2

(
d(s)− p+m (τω(s))

)
disjoint points z̄ ⊂ X0 − η̄,

• a cobordism-admissible almost complex structure J on the completion (X,ω) of (X0, ω).
Here, m (τω(s)) denotes the “algebraic multiplicity” of τω(s) as defined in Section 1.3, which
equals 0 if e · τω(s) ≥ −1 for all e ∈ Eω (such as when X is minimal).

Given this data, we form the moduli spaceMd(s)(∅,Θ; τω(s), z̄, η̄) of J-holomorphic cur-
rents in X that satisfy the following properties:
• they are asymptotic to the admissible orbit set Θ,
• they have ECH index d(s),
• they represent τω(s)
• they intersect every point and loop in z̄ ∪ η̄.

It turns out that this moduli space is a finite set for generic J (see Proposition 1.3.14) and
each Θ satisfies A(Θ) < ρ (τω(s)) whenever the moduli space is nonempty. Moreover, each
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Θ has an absolute grading as a generator of the ECH chain complex ECC∗(−∂X0, λs, 1) and
they are all the same grading (see Section 1.3), denoted g(s). Thus we can form the Gromov
cycle2

ΦGr :=
∑

Θ∈g(s)

MΘΘ ∈ ECCg(s)(−∂X0, λs, 1) (2.2)

where
MΘ :=

∑
C∈Md(s)(∅,Θ;τω(s),z̄,η̄)

q(C) ∈ Z

As a further reminder, each orbit set Θ comes equipped with a choice of orientation so that
the moduli spaces are all coherently oriented, and q(C) is a certain integer weight associated
to each current C (see Section 1.3).

Now, ECH∗(−∂X0, λs, 1) is the tensor product
⊗N

k=1 ECH∗(S
1 × S2, λs, 1). In terms of

the absolute grading on ECH∗(S
1×S2, λs, 1) by homotopy classes of oriented 2-plane fields

on S1 × S2, there is a unique class [ξ∗] such that

ECH[ξ∗](S
1 × S2, λs, 1) ∼= Z

while ECH[ξ∗]+n(S1 × S2, λs, 1) = 0 when n < 0 (see Proposition 1.3.2). In the proof of
Theorem 2.7.1 it will be shown that g(s) = N [ξ∗]. That said, GrX,ω(s)

(
[η1]∧ · · · ∧ [ηp]

)
is by

definition the coefficient of the class

[ΦGr] ∈ ECHg(s)(−∂X0, ξTaubes, 1) ∼=
N⊗
k=1

ECH[ξ∗](S
1 × S2, ξTaubes, 1) (2.3)

as a multiple of the positive generator 1 ∈
⊗N

k=1 ECH[ξ∗](S
1 × S2, ξTaubes, 1).

What follows is an outline of the remainder of this chapter. In Section 2.2 we briefly
describe an application of Theorem 2.1.1 to 3-manifolds. Then we review the relevant gauge
theory in Section 2.3, followed by a review of Taubes’ isomorphisms between Floer homologies
in Section 2.4. In Section 2.5 we reduce Theorem 2.1.1 to the case that there are no multi-
ply covered exceptional spheres, via the “blow-up” formula in Seiberg-Witten theory. The
reason for taking this route to prove Theorem 2.1.1 is that we do not know how to directly
relate the moduli spaces of pseudoholomorphic curves with the moduli spaces of Seiberg-
Witten solutions in the presence of multiply covered exceptional spheres. In Section 2.6 we
relate the Gromov cycle to a formally similar “Seiberg-Witten cocycle,” by constructing a
correspondence between the moduli spaces of pseudoholomorphic curves and Seiberg-Witten
solutions on X. This mimics the correspondence from Section 2.4 but the story is much more
complicated, the reason being that the existence of multiply covered tori and planes prevents
an honest bijection between moduli spaces of pseudoholomorphic curves and Seiberg-Witten
solutions (see Section 2.6). In Section 2.7, we relate the “Seiberg-Witten cocycle” (and thus

2In the notation of Chapter 1, ΦGr = Φ
d(s)
J,z̄ (τω(s), η̄).
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the Gromov cycle) to the Seiberg-Witten invariant of X, by “stretching the neck” along
the zero-circles of the near-symplectic form. Finally, the appendix briefly clarifies some of
the differences and complications that occur in Taubes’ constructions of the 3-dimensional
isomorphisms (between Floer homologies) versus the 4-dimensional equivalences (between
invariants).

2.2 S1-valued Morse theory

A basic example of a near-symplectic manifold is (S1 × M,ωf ), where M is a closed
oriented Riemannian 3-manifold with b1(M) > 0, the metric on S1 × M is the product
metric dt2 + gM , and ωf is defined momentarily. A result of Honda [14] and Calabi [6] says
that for gM suitably generic, any nonzero class in H1(M ;Z) is represented by a harmonic
map f : M → S1 (i.e. d∗df = 0) with nondegenerate critical points crit(f) of index 1 or 2,
hence a harmonic 1-form df with transversal zeros. Then

ωf := dt ∧ df + ∗3df

is a closed self-dual 2-form which vanishes transversally on Zf := S1×crit(f). All zero-circles
are untwisted, as can be seen by writing out ωf in local coordinates and comparing to the
standard model on R×R3. There are an even number of zero-circles, i.e. b2

+(X) + b1(M) + 1
is even, because b1(X) = b1(M) + 1 and b2(X) = 2b1(M) and b2

+(X) = b1(M). Here, we
note that

H1(M ;R)→ H2
+(X;R) , a 7→ [dt ∧ a]+ =

1

2
(dt ∧ a+ ∗3a)

is an isomorphism.
After equipping (S1×M)−Zf = S1×

(
M−crit(f)

)
with the compatible almost complex

structure J determined by ωf and dt2 + gM , the S1-invariant connected J-holomorphic sub-
manifolds are of the form C = S1× γ, where γ is a single gradient flowline of ∇f . Since the
Morse trajectories in M are either periodic orbits (of some period) or paths between critical
points, C is either a torus (with multiplicity) or a cylinder which bounds two zero-circles in
S1 ×M (see Figure 2.1).

In their PhD theses, Hutchings and Lee built a 3-dimensional invariant IM,f of M which
suitably counts the gradient flowlines (see [19, 18, 29]), and they further showed that it equals
a version of topological (Reidemeister) torsion defined by Turaev [75]. It was subsequently
shown by Turaev that this Reidemeister torsion equals the 3-dimensional SW invariant SWM

of M (see [74]). Strictly speaking, there is a required choice of “homology orientation” on
M with which to define SWM , a “chamber” (determined by f) with which to define SWM

when b1(M) = 1, and an ordering of the set crit(f) with which to define IM,f . While SWM

is a function of the set Spinc(M) of spin-c structures, IM,f is a function of the set

Relf (M) :=
{
η ∈ H1(M, crit(f);Z) | ∂η = [crit(f)]

}
and there exists an H1(M)-equivariant isomorphism τf between them [19, Lemma 4.3]. In
other words,
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Figure 2.1: Zero set of near-symplectic form in bold

Theorem 2.2.1 (Hutchings-Lee-Turaev). Let (M, f) be as above, and fix an ordering of the
critical points of f . Then

IM,f

(
τf (s)

)
= ±SWM(s) ∈ Z

for all s ∈ Spinc(M), where f determines the chamber for defining SWM when b1(M) = 1.
The ± sign is pinned down by a suitable choice of homology orientation of M and ordering
of crit(f).

Now, we can recover Theorem 2.2.1 over Z/2Z without having to pass through Rei-
demeister torsion, via a dimensional reduction of Theorem 2.1.1.3 It was shown in [43,
Theorem 3.5] that the 4-dimensional SW invariant recovers the 3-dimensional SW invariant:
all solutions to the SW equations on S1 ×M associated with product spin-c structures are
S1-invariant. It will be shown elsewhere [11] that the near-symplectic Gromov invariant
recovers Hutchings-Lee’s flowline invariant.

Corollary 2.2.2 ([11]). Let (M, f) be as above, and let π : S1 ×M → M be the projection
map onto the second factor. Fix an ordering of the critical points of f (hence of the zero-
circles of ωf ) and a homology orientation of M (hence of S1 ×M). Then

IM,f (s) = GrS1×M,ωf (π
∗s) ≡(2) SWS1×M(π∗s) = SWM(s)

for all s ∈ Spinc(M). When b1(M) = b2
+(S1 ×M) = 1, the chamber is determined by f

(hence ωf).

In fact, when f has no critical points (hence ωf is symplectic) this was already known [18,
Remark 1.10]. The first instance appeared in [48] for the special case of a mapping torus of a
symplectomorphism of a Riemann surface, in which Salamon showed that the 3-dimensional
SW invariants recover the Lefschetz invariants of the symplectomorphism.

We end this discussion with a brief sketch of the first equality in Corollary 2.2.2. While
the gradient flowlines for IM,f sit inside M , the J-holomorphic curves for GrS1×M,ωf do not

3This was in fact an expectation and also the motivation, as explained in [19, §4.2.1].
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sit inside S1 ×M but rather inside the completion of the complement of Zf . Explicitly, we
choose a 3-ball neighborhood

⊔
k B

3 of the critical points of f , hence a tubular neighborhood
N = S1 ×

⊔
k B

3 of the zero-circles in Zf . Then

X0 := (S1 ×M)−N = S1 × (M −
⊔
k

B3)

is a symplectic manifold and H2(X0, ∂X0;Z) is isomorphic to a direct sum of | crit(f)| copies
of

H2(S1 × (M −B3), S1 × S2;Z) ∼= H2(M −B3, S2;Z)⊕H1(M −B3, S2;Z)

using the relative Künneth formula. The relative 1st homology class τf (s) ∈ H1(M, crit(f);Z)
has corresponding relative 2nd homology class [S1]× τf (s) = τωf (π

∗s) ∈ H2(X0, ∂X0;Z).
Since Taubes’ contact form is S1-invariant, it follows from Chapter 1 that we can choose

the 3-balls in such a way that −∂X0 is a contact boundary of X with ωf equal to a scalar
multiple of dλTaubes on each component. Although the playground

(
X0, ωf , J, τωf (π

∗s)
)

is

S1-invariant, the calculation of GrS1×M,ωf

(
τωf (π

∗s)
)

uses a modification Taubes’ Morse-
Bott contact form λTaubes (and the boundary ∂X0) into a non-S1-invariant nondegenerate
contact form λs, and so (−∂X0, λs) does not arise from any choice of the 3-balls. This
is a complication, because we would like to lift flowlines γ ⊂ M to S1-invariant curves
S1 × γ ⊂ X and count them. Nonetheless, a limiting argument will show that we can
perturb the S1-invariant setup to the non-S1-invariant setup and relate the corresponding
pseudoholomorphic curves.

2.3 Review of gauge theory

The point of this section is to introduce most of the terminology and notations that
appear in the later sections. Further information and more complete details are found in
[33, 23].

Closed 3-manifolds

Let (Y, λ) be a closed oriented connected contact 3-manifold, and choose an almost com-
plex structure J on ξ that induces a symplectization-admissible almost complex structure
on R × Y . There is a compatible metric g on Y such that4 |λ| = 1 and ∗λ = 1

2
dλ, with

g(v, w) = 1
2
dλ(v, Jw) for v, w ∈ ξ.

View a spin-c structure s on Y as an isomorphism class of a pair (S, cl) consisting of
a rank 2 Hermitian vector bundle S → Y and Clifford multiplication cl : TY → End(S).
We refer to S as the spinor bundle and its sections as spinors. The set Spinc(Y ) of spin-c

4The factors of 1
2 can be dropped or changed to any other nonzero real number by a particular rescaling

of the metric, but they will be left in to be consistent with the papers of Taubes and Hutchings.
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structures is an affine space over H2(Y ;Z), defined by

(S, cl) + x = (S⊗ Ex, cl⊗1)

where Ex → Y is the complex line bundle satisfying c1(Ex) = x ∈ H2(Y ;Z). Denote by
c1(s) the first Chern class of detS; it satisfies c1(s + x) = c1(s) + 2x.

The contact structure ξ (and more generally, any oriented 2-plane field on Y ) picks out
a canonical spin-c structure sξ = (Sξ, cl) with Sξ = C⊕ ξ, where C→ Y denotes the trivial
line bundle, and Clifford multiplication is defined as follows. Given an oriented orthonormal
frame {e1, e2, e3} for TyY such that {e2, e3} is an oriented orthonormal frame for ξy, then in
terms of the basis (1, e2) for Sξ,

cl(e1) =
(
i 0
0 −i

)
, cl(e1) =

(
0 −1
1 0

)
, cl(e1) =

(
0 i
i 0

)
There is then a canonical isomorphism

H2(Y ;Z)→ Spinc(Y ), x 7→ (Ex ⊕ (ξ ⊗ Ex), cl)

where the 0 class corresponds to sξ. In other words, there is a canonical decomposition
S = E ⊕ ξE into ±i eigenbundles of cl(λ). Here and in what follows, the tensor product
notation is suppressed.

A spin-c connection is a connection A on S which is compatible with Clifford multipli-
cation in the sense that

∇A(cl(v)ψ) = cl(∇v)ψ + cl(v)∇Aψ

where ∇v denotes the covariant derivative of v ∈ TY with respect to the Levi-Civita con-
nection. Such a connection is equivalent to a Hermitian connection (also denoted by A) on
det(S), and determines a Dirac operator

DA : Γ(S)
∇A−→ Γ(T ∗Y ⊗ S)

cl−→ Γ(S)

With respect to the decomposition S = E ⊕ ξE, the determinant line bundle is detS = ξE2

and any spinor can be written as
ψ = (α, β)

There is a unique connection Aξ on ξ such that its Dirac operator kills the spinor (1, 0) ∈
Γ(Sξ), and there is a canonical decomposition

A = Aξ + 2A

with Hermitian connection A on E. We henceforth refer to a spin-c connection as a Hermitian
connection on E, and denote its Dirac operator by DA.

The gauge group C∞(Y, S1) acts on a given pair (A,ψ) by

u · (A,ψ) = (A− u−1du, uψ)
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In this paper, a configuration c refers to a gauge-equivalence class of such a pair, and the set
of configurations is denoted by

B(Y, s) := (Conn(E)× Γ(S))/C∞(Y, S1)

Fix a suitably generic exact 2-form µ ∈ Ω2(Y ) as described in [23, §2.2], and a positive
real number r ∈ R. A configuration c solves Taubes’ perturbed SW equations when

DAψ = 0, ∗ FA = r(τ(ψ)− iλ)− 1

2
∗ FAξ + i ∗ µ (2.4)

where FAξ is the curvature of Aξ and τ : S→ iT ∗Y is the quadratic bundle map

τ(ψ)(·) = 〈cl(·)ψ, ψ〉

An appropriate change of variables recovers the usual SW equations (with perturbations)
that appear in [33].

Remark 2.3.1. There are additional “abstract tame perturbations” to these equations re-
quired to obtain transversality of the moduli spaces of its solutions (see [33, §10]), but they
have been suppressed because they do not interfere with the analysis presented in this paper.
Further clarification on this matter can be found in [23, §2.1] and [55, §3.h Part 5], where
the same suppression occurs.

Denote by M(Y, s) the set of solutions to (2.4), called (SW) monopoles. A solution
is reducible if its spinor component vanishes, and is otherwise irreducible. After attaching
orientations (this being a Z/2Z choice for each monopole, see Section 2.3), the monopoles

freely generate the SW Floer chain complex ĈM
∗
(Y, λ, s, J, r). The chain complex differential

will not be reviewed here. Of importance to this paper are irreducible monopoles with certain
bounds on their energy

E(c) := i

∫
Y

λ ∧ FA

Denote by ĈM
∗
L(Y, λ, s, J, r) the submodule generated by irreducible monopoles c with

energy E(c) < 2πL. When r is sufficiently large, ĈM
∗
L(Y, λ, s, J, r) is a subcomplex of

ĈM
∗
(Y, λ, s, J, r) and the homology ĤM

∗
L(Y, λ, s, J, r) is well-defined and independent of

r and µ. Taking the direct limit over L > 0, we recover the ordinary ĤM
∗
(Y, s) in

[33] which is independent of λ and J . It is sometimes convenient to consider the group

ĤM
∗
(Y ) :=

⊕
s∈Spinc(Y ) ĤM

∗
(Y, s) over all spin-c structures at once.

Symplectic cobordisms

Let (X,ω) be a strong symplectic cobordism between (possibly disconnected or empty)
closed oriented contact 3-manifolds (Y±, λ±). Due to the choice of metric g± on Y± in
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Section 2.3 (and following [23, §4.2]), we do not extend ω over X using d(esλ±) on the ends
(−∞, 0]×Y− and [0,∞)×Y+. Instead, we extend ω using d(e2sλ±) as follows. Fix a smooth
increasing function φ− : (−∞, ε] → (−∞, ε] with φ−(s) = 2s for s ≤ ε

10
and φ−(s) = s for

s > ε
2
, and fix a smooth increasing function φ+ : [−ε,∞) → [−ε,∞) with φ+(s) = 2s for

s ≥ − ε
10

and φ+(s) = s for s ≤ − ε
2
, where ε > 0 is such that ω = d(esλ±) on the ε-collars of

Y±. Then the desired extension is

ω̃ :=


eφ−λ− on (−∞, ε]× Y−
ω on X \

((
[0, ε]× Y−

)
∪
(
[−ε, 0]× Y+

))
eφ+λ+ on [−ε,∞)× Y+

(2.5)

Now choose a cobordism-admissible almost complex structure J on (X, ω̃). As in [23, §4.2],
we can equip X with a metric g so that it agrees with the product metric with g± on the
ends (−∞, 0]× Y− and [0,∞)× Y+ and so that ω̃ is self-dual. Finally, define ω̂ :=

√
2ω̃/|ω̃|g

and note that J is still cobordism-admissible.
The 4-dimensional gauge-theoretic scenario is analogous to the 3-dimensional scenario.

View a spin-c structure s on X as an isomorphism class of a pair (S, cl) consisting of a
Hermitian vector bundle S = S+ ⊕ S−, where S± have rank 2, and Clifford multiplication
cl : TX → End(S) such that cl(v) exchanges S+ and S− for each v ∈ TX. We refer to S+ as
the positive spinor bundle and its sections as (positive) spinors. The set Spinc(X) of spin-c
structures is an affine space over H2(X;Z), and we denote by c1(s) the first Chern class of
detS+ = det S−. A spin-c connection on S is equivalent to a Hermitian connection A on
det(S+) and defines a Dirac operator DA : Γ(S±)→ Γ(S∓).

A spin-c structure s on X restricts to a spin-c structure s|Y± on Y± with spinor bundle
SY± := S+|Y± and Clifford multiplication clY±(·) := cl(v)−1 cl(·), where v denotes the outward-
pointing unit normal vector to Y+ and the inward-pointing unit normal vector to Y−. There
is a canonical way to extend s over X, and the resulting spin-c structure is also denoted by
s. There is a canonical decomposition S+ = E ⊕ K−1E into ∓2i eigenbundles of cl+(ω̂),
where K is the canonical bundle of (X, J) and cl+ :

∧2
+ T

∗X → End(S+) is the projection
of Clifford multiplication onto End(S+). This agrees with the decomposition of SY± on the
ends of X.

The symplectic form ω picks out the canonical spin-c structure sω = (Sω, cl), namely that
for which E is trivial, and the H2(X;Z)-action on Spinc(X) becomes a canonical isomor-
phism. There is a unique connection AK−1 on K−1 such that its Dirac operator annihilates
the spinor (1, 0) ∈ Γ((Sω)+), and we henceforth identify a spin-c connection with a Hermitian
connection A on E and denote its Dirac operator DA.

In this paper, a configuration d refers to a gauge-equivalence class of a pair (A,Ψ) under
the gauge group C∞(X,S1)-action. A connection A on det(S+) is in temporal gauge on the
ends of X if

∇A =
∂

∂s
+∇A(s)
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on (−∞, 0]× Y− and Y+ × [0,∞), where A(s) is a connection on det(SY±) depending on s.
Any connection can be placed into temporal gauge by an appropriate gauge transformation.
Given monopoles c± on Y±, the set of configurations which are asymptotic to c± (in temporal
gauge on the ends of X) is denoted by

B(c−, c+; s) ⊂ (Conn(E)× Γ(S+))/C∞(X,S1)

Fix suitably generic exact 2-forms µ± ∈ Ω2(Y±), a suitably generic exact 2-form µ ∈
Ω2(X) that agrees with µ± on the ends of X (with µ∗ denoting its self-dual part), and a
positive real number r ∈ R. Taubes’ perturbed SW equations for a configuration d are

DAΨ = 0, F+
A =

r

2
(ρ(Ψ)− iω̂)− 1

2
F+
AK−1

+ iµ∗ (2.6)

where F+
A is the self-dual part of the curvature of A and ρ : S+ →

∧2
+ T

∗X is the quadratic
bundle map

ρ(Ψ)(·, ·) = −1

2

〈
[cl(·), cl(·)]Ψ,Ψ

〉
Similarly to the 3-dimensional equations, there are additional “abstract tame perturbations”
which have been suppressed in this paper (see [33, §24.1]). Denote by M(c−, c+; s) the set of
solutions to (2.6) in B(c−, c+; s), called (SW) instantons.

Similarly to ECH, an “index” is associated with each SW instanton, namely the local
expected dimension of the moduli space of SW instantons. Denote by Mk(c−, c+; s) the
subset of elements in M(c−, c+; s) that have index k.

Closed 4-manifolds

The case (Y±, λ±) = (∅, 0) recovers Seiberg-Witten theory on closed oriented symplectic
4-manifolds. In general, for closed oriented Riemannian 4-manifolds (X, g), we can recover
Seiberg-Witten theory from the above setup by ignoring the appearance of ω and thus
ignoring the canonical decomposition of S+. The set of spin-c structures is then only an
H2(X;Z)-torsor. A configuration d = [A,Ψ] ∈ B(X, s) solves the (perturbed) SW equations
when

DAΨ = 0, F+
A =

1

4
ρ(Ψ) + iµ (2.7)

where µ ∈ Ω2
+(X;R) is now a self-dual 2-form. Denote the space of solutions to (2.7) by

M(s).
When b2

+(X) > 0, a generic choice of µ makes M(s) into a finite-dimensional compact
orientable smooth manifold, where the orientation is determined by a homology orientation
on X (see also Section 2.3), this being an orientation of

det+(X) := det(H1(X;R))⊗ det(H2
+(X;R))
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As explained in [67, §1.c], if X is equipped with a symplectic form then there is a canonical
homology orientation.

The dimension of M(s) is given by

dimM(s) =
1

4

(
c1(s) · c1(s)− 2χ(X)− 3σ(X)

)
where σ(X) denotes the signature of X, and the parity of dimM(s) is equal to the parity of
1− b1(X) + b2

+(X).
If dimM(s) < 0 then M(s) is empty and the SW invariant SWX(s) is defined to be zero.

In the remaining cases, the SW invariant SWX(s) is an element of Λ∗H1(X;Z)/Torsion
and given by suitable counts of elements in M(s) (see Definition 2.3.3). For example, if
dimM(s) = 0 then SWX(s) ∈ Z is the signed count of the finite number of oriented points
in M(s).

Choice of “chamber”

When b2
+(X) > 1, the value of the SW invariant is a diffeomorphism invariant of X

independent of the choice of generic pairs (g, µ) ∈ Met(X) × Ω2
+(X;R), where Met(X)

denotes the Frechet space of smooth Riemannian metrics on X. When b2
+(X) = 1, there is a

“wall-crossing phenomenon” as follows. Denote by ωg the unique (up to scalar multiplication)
nontrivial near-symplectic form with respect to g. The set of pairs (g, µ) satisfying the
constraint ∫

X

ωg ∧ µ+ 2π[ωg] · c1(s) = 0 (2.8)

defines a “wall” which separates Met(X) × Ω2
+(X;R) into two open sets, called c1(s)-

chambers. The SW invariant is constant on any c1(s)-chamber, and the difference between
chambers is computable.

If X is equipped with a symplectic structure ω (oriented by ω2 > 0) then there is a
canonical c1(s)-chamber, namely those pairs (g, µ) for which the left hand side of (2.8) is
negative.

Kronheimer-Mrowka’s formalism

The previous sections concerned the setup of SW theory from the point of view of sym-
plectic geometry (using Taubes’ large perturbations). We now briefly review some relevant
aspects of SW theory from the point of view of Kronheimer-Mrowka’s monopole Floer ho-
mology.

Let B(Y, s) denote the space of configurations [A, ψ]. Since we are not taking large
perturbations to the SW equations, we have to deal with the reducible locus Bred(Y, s) which
prevents B(Y, s) from being a Banach manifold. This is done by forming the blow-up Bσ(Y, s),
the space of configurations [A, s, ψ] such that s ∈ R≥0 and ‖ψ‖2 = 1, equipped with the map

Bσ(Y, s)→ B(Y, s), [A, s, ψ] 7→ [A, sψ]
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This is a Banach manifold whose boundary ∂Bσ(Y, s) consists of reducible configurations
(where s = 0). The same setup applies to the case that X is a closed 4-manifold. The
integral cohomology ring H∗(Bσ(M, s);Z), for M either Y or X, is isomorphic to the graded
algebra

A(M) :=
(
Λ∗H1(M ;Z)/Torsion

)
⊗ Z[U ]

where U is a 2-dimensional generator (see [33, Proposition 9.7.1]).
We can construct a certain vector field Vσ on Bσ(Y, s) using the pull-back of the gradient

of the Chern-Simons-Dirac functional LCSD : B(Y, s)→ R (see [33, §4.1]). Strictly speaking,
the Chern-Simons-Dirac functional is not well-defined on B(Y, s) unless c1(s) is torsion, but
such spin-c structures are the only ones relevant to this paper. Likewise, the perturbed
gradient gradLCSD + q gives rise to a vector field Vσ + qσ, where q is an “abstract tame
perturbation” (see [33, §10]). We always assume that q is chosen from a Banach space of
tame perturbations so that all stationary points of Vσ + qσ are nondegenerate.

The critical points (i.e. stationary points) of Vσ + qσ are either irreducibles of the form
[A, s, ψ] with s > 0 and [A, sψ] ∈ crit(gradLCSD +q), or reducibles of the form [A, 0, ψ] with
ψ an eigenvector of DA. A reducible is boundary-stable (respectively, boundary-unstable) if
the corresponding eigenvalue is positive (respectively, negative). Denote by

C(Y, s) = Co(Y, s) t Cu(Y, s) t Cs(Y, s)

the decomposition of the set of critical points into the respective sets of irreducibles and
boundary-(un)stable reducibles. We can package these critical points together in various

ways to form the monople Floer (co)homologies, such as

̂

HM ∗(Y, s) and ĤM
∗
(Y, s) – the for-

mer cochain complex is generated by Co(Y, s)tCs(Y, s) while the latter complex is generated
by Co(Y, s)t Cu(Y, s), both equipped with coherent choices of orientations (see Section 2.3).
The differentials will not be reviewed here, but we do assume in this paper that all pertur-
bations q are chosen so that the differentials are well-defined.

Remark 2.3.2. If q is one of Taubes’ sufficiently large perturbations associated with a
contact form (given in Section 2.3), then the image of C(Y, s) under the blow-down map is
M(Y, s). In fact, we don’t need to use the blow-up model.

Let X either be a closed 4-manifold or have boundary Y . There is a partially-defined
restriction map r : Bσ(X, s) 99K Bσ(Y, s) whose domain consists of those configurations
[A, s,Ψ] satisfying ΨY := Ψ|Y 6= 0, such that

r([A, s,Ψ]) =
[
A|Y , s‖ΨY ‖2,ΨY /‖ΨY ‖2

]
Similarly, if X = [0, 1]×Y then there is a family of restriction maps rt : Bσ(X, s) 99K Bσ(Y, s)
for t ∈ [0, 1]. If we instead work over R × Y or cylindrical ends such as (−∞, 0] × Y , then
we need to use L2

k,loc-norms (see [33, §13]).
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With respect to a cylindrical completion X of X, the unperturbed SW equations (2.7)
on B(X, s) now take the form

DAΨ = 0, F+
A = s2 1

4
ρ(Ψ) (2.9)

on Bσ(X, s). In the cylindrical case X = R× Y with spin-c structure induced from s on Y
and cylindrical perturbation p, any solution d to the pσ-perturbed version of (2.9) on R× Y
determines a path ď(t) := rt(d) ∈ Bσ(Y, s), because there is a unique continuation theorem
which ensures that rt is defined on each slice d|{t}×Y (see [33, §10.8]).

In the general case of a cobordism (X, s) : (Y+, s+)→ (Y−, s−), we fix abstract perturba-
tions q± on Y± and extend them to a suitable abstract perturbation p on X. To fix notation,
if X is a symplectic cobordism with data (ω, λ±) then we denote by pω and qλ± the abstract
perturbations which are used in Section 2.3 to define Taubes’ perturbed SW equations.

Given c± ∈ C(Y±, s±), we denote by M(c−, c+; s) the subset of pσ-perturbed SW solutions
d ∈ Bσ(X, s) for which ď (on the ends of X) is asymptotic to c± as t→ ±∞. Depending on
the context, we may alternatively write M(c−, X, c+; s) to make the manifold explicit. Note
that M(c−, c+; s) = M(c−, c+; s) when using Taubes’ perturbations in Section 2.3.

In the cylindrical case X = R × Y there is an R-action by translation on M(c−, c+; s).
The resulting equivalence class of unparametrized nontrivial trajectories, where a trajectory
is nontrivial if it is not R-invariant, is denoted by M̆(c−, c+; s). The moduli space of broken
trajectories in the sense of [33, Definition 16.1.2] is denoted by M̆+(c−, c+; s).

We now revisit Section 2.3, where M(s) ⊂ B(X, s) for a closed 4-manifold X. As ex-
plained in [33, §27], for generic perturbations to the SW equations (2.9) on Bσ(X, s) the
resulting moduli space of SW solutions is diffeomorphic to M(s) via the blow-down map.
We will therefore define the SW invariants using the blown-up configuration space, and M(s)
will also denote the moduli space of SW solutions in Bσ(X, s). The moduli space gives a
well-defined element [M(s)] ∈ H∗(Bσ(X, s);Z).

Definition 2.3.3. For a given choice of homology orientation of X, and a given choice
of c1(s)-chamber when b2

+(X) = 1, the Seiberg-Witten invariant SWX(s) ∈ Λ∗H1(X;Z) is
defined as follows. Its value on a ∈ ΛpH1(X;Z)/Torsion, for p ≤ d(s) such that d(s) − p is
even, is

SWX(s)(a) :=
〈
U

1
2

(d(s)−p)a, [M(s)]
〉
∈ Z

and it is defined to be zero for all other integers p.

Homology orientations

To coherently orient the moduli spaces M(c−, c+; s), as explained in [33, §20, §28.4], we
must make a Z/2Z choice for each generator c± and we must choose a (cobordism) homology
orientation on X. The latter is an orientation of

det+(X) := det(H1(X;R))⊗ det(I+(X;R))⊗ det(H1(Y+;R))
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where I+(X;R) is defined as follows: The relative cap-product pairing

H2(X, ∂X;R)×H2(X;R)→ H4(X, ∂X;R) ∼= R

induces a nondegenerate quadratic form on the kernel of the restriction map H2(X;R) →
H2(∂X;R), and I+(X;R) ⊂ H2(X;R) is a maximal nonnegative subspace for this quadratic
form. The set of homology orientations is denoted by Λ(X). In the case that X = [0, 1]× Y
there is a canonical homology orientation o(X) ∈ Λ(X), and it is implicitly used when
coherently orienting the moduli spaces of trajectories on R×Y to define the monopole Floer
differentials. In the case that Y± = ∅, we recover the notion of homology orientation of a
closed 4-manifold in Section 2.3.

Likewise, the Z/2Z set of orientations for a configuration c ∈ Bσ(Y ) is denoted by Λ(c)
and defined in [33, §20.3]. These sets are defined so that, when c0 is a reducible critical point
of the unperturbed Chern-Simons-Dirac functional, there is a canonical choice o(c0) ∈ Λ(c).

We now explain these choices in a bit more detail, for the case that (X,ω) is a symplectic
cobordism and the moduli spaces are defined using Taubes’ large perturbations.

Any c ∈ B(Y, s) determines a self-adjoint operator Lc which, roughly speaking, is the
linearization of Taubes’ perturbed SW equations and the gauge group action. A monopole
c ∈ M(Y, s) is nondegenerate if the kernel of Lc is trivial. Similarly, the linearization of
Taubes’ perturbed SW equations and the gauge group action at a given configuration d ∈
B(c−, c+; s) between monopoles c± determines its deformation operator

Dd : L2
1(iT ∗X ⊕ S+)→ L2(i

∧2
+ T

∗X ⊕ S− ⊕ iR)

When c± are irreducible and nondegenerate, this operator is Fredholm.
Fix spin-c structures s± and nondegenerate monopoles c± on Y±. Let B(c−, c+) denote

the union of B(c−, c+; s) over all spin-c structures on X which restrict to s± on Y±, and let
Λ(c−, c+) denote the orientation sheaf of the determinant line bundle detD → B(c−, c+).
The collection {Λ(c−, c+)} over all nondegenerate monopoles c± ∈ M(Y±, s±) satisfies the
following property: Each nondegenerate monopole c has an associated Z/2Z-module Λ(c)
such that there is a canonical isomorphism

Λ(c−, c+) ∼= Λ(c−)⊗Z/2Z Λ(X)⊗Z/2Z Λ(c+)

and the orientations {o(c−, c+) ∈ Λ(c−, c+)}c±∈M(Y±,s±) are coherent if, after fixing a homology
orientation o(X) ∈ Λ(X), there exists a corresponding set of choices {o(c) ∈ Λ(c)}c∈M(Y±,s±)

such that o(c−, c+) = o(c−)o(X)o(c+).
If d is nondegenerate, i.e. Coker(Dd) = 0, then the restriction of Λ(c−, c+) to d’s compo-

nent of M(c−, c+; s) is canonically isomorphic to the set of orientations of Ker(Dd).

Remark 2.3.4. It is currently unknown whether there is a canonical homology orientation
of (X,ω), except in the case of a closed symplectic 4-manifold [67, §1.c]. But the search for a
canonical choice can be “pushed to the boundary ∂X,” as follows. Fix the canonical spin-c
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structures sξ± on Y± and the canonical spin-c structure sω on X. Consider the canonical
configurations

cξ± := [Aξ± , (1, 0)] ∈ B(Y±, sξ±)

and the canonical configuration

dω := [AK−1 , (1, 0)] ∈ B(cξ− , cξ+ ; sω)

There are perturbations to these configurations, still denoted cξ± and dω, which are non-
degenerate solutions to Taubes’ perturbed SW equations for r sufficiently large, and the
deformation operator Ddω has trivial kernel and cokernel. Thus there is a canonical orien-
tation of det(Ddω), i.e. a canonical choice in Λ(cξ− , cξ+). If it can be shown that there are
canonical choices in Λ(cξ±), then there is a canonical choice in Λ(X).

Choice of near-symplectic homology orientation

The case relevant to this paper is a (closed) near-symplectic manifold (X,ω) and the
induced symplectic cobordism (X0, ω). As explained in [33, §3.4, §26.1], there is a composi-
tion law for (cobordism) homology orientations. Namely, we view X as the composition of
cobordisms

∅ N−→
N⊔
i=1

S1 × S2 X0−→ ∅

and then there is a specification Λ(X) = Λ(N ) ⊗Z/2Z Λ(X0) so that a choice of homology
orientation for two objects in {X,N , X0} determines a homology orientation of the third
object in that set.

Now, N is the disjoint union of N copies of S1 × B3, the tubular neighborhoods of the
zero-circles of ω. Since each S1 × B3 has a canonical homology orientation, a homology
orientation of N is equivalent to a choice of ordering of the zero-circles of ω. Therefore, once
an ordering of the zero-circles and a homology orientation of X have been fixed, there is an
induced homology orientation of X0. (Likewise, if it turns out that ω determines a canonical
homology orientation of X0, then a homology orientation of X is determined by a choice of
ordering of the zero-circles.)

Gradings and U-maps

The group ĤM
−∗

(Y ) has an absolute grading by homotopy classes of oriented 2-plane
fields on Y (see [33, §28] or [30, §3]), the set of which is denoted by J(Y ). This grading of a
critical point c ∈ C(Y, s) is denoted by |c| ∈ J(Y ).

As described in [33, §28] and [12, §4], there is a well-defined map J(Y ) → Spinc(Y )
with the following properties. If H2(Y ;Z) has no 2-torsion then the Euler class of the given
2-plane field uniquely determines the corresponding spin-c structure. There is a transitive
Z-action on J(Y ) whose orbits correspond to the spin-c structures: If [ξ] ∈ J(Y ) then [ξ]+n
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is the homotopy class of a 2-plane field which agrees with ξ outside a small ball B3 ⊂ Y and
disagrees with ξ on B3 by a map (B3, ∂B3) → (SO(3), {1}) of degree 2n.5 A given orbit
J(Y, s) is freely acted on by Z if and only if the corresponding Euler class is torsion. In

particular, there is an induced relative Z/dZ grading on ĤM
−∗

(Y, s), where d denotes the
divisibility of c1(s) in H2(Y ;Z)/Torsion.

It is useful to write out the relative Z grading on ĤM
−∗

(Y, s) when s is torsion, as follows.
Given c± ∈ C(Y, s), each trajectory d ∈M(c−, c+; s) over R×Y has a Fredholm operator Qd

which, roughly speaking, is the linearization of the perturbed version of (2.9) and the gauge
group action (see [33, §14.4]). The relative grading gr(c−, c+) between c− and c+ is defined
to be the Fredholm index of Qd for any d ∈M(c−, c+; s),6 and

|c+| = |c−|+ gr(c−, c+)

as expected.

The chain complex ĈM j(Y, s) for ĤM j(Y, s) in grading j is a finitely generated free

abelian group (see [33, Lemma 22.3.3]), and the cochain complex for ĤM
j
(Y, s) in grading

j is then defined by ĈM
j

= Hom(ĈM j,Z). If Y is disconnected, then ĈM ∗(Y, s) and

ĈM
∗
(Y, s) are the tensor products of the respective (co)chain complexes of the components

of Y . The same applies to the other flavors of monopole Floer (co)homology.

Fix a base point y ∈ Y and consider SW instantons on R×Y for a given spin-c structure
s on Y . Denote by M2(c−, c+; s, y) the subset of SW instantons [A, (α, β)] ∈ M2(c−, c+; s)
for which α ∈ Γ(E) vanishes at (0, y) ∈ R× Y . There is a degree −2 chain map7

Uy : ĤM
−∗

(Y, s)→ ĤM
2−∗

(Y, s)

that counts the elements of M2(c−, c+; s, y), and on the level of cohomology this U -map does
not depend on the choice of base point.

2.4 Review of Taubes’ isomorphisms

More details about the relation between pseudoholomorphic curve theory and gauge
theory are found in [63, 23, 55, 56, 57, 58, 59].

5This convention is opposite to that used in [33].
6Indeed, by [33, Proposition 14.4.5, Lemma 14.4.6] the index does not depend on the choice of d.
7This definition is given in [59, §1.b] and agrees with that in [33, §25.3] as well as that in [34, §4.11]. See

[35, §2.5] for details.
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Vortices and orbits and curves

The isomorphism between SW Floer cohomology and ECH was inspired by the equiv-
alence of the 4-dimensional invariants, the SW invariants and the Gromov invariants. But
these relations were preceded (and depended on) the analogous correspondence in two di-
mensions, between vortices and points in the complex plane.

A pair (A,α) consists of a Hermitian connection on the trivial complex line bundle
C→ C and a section of it, and c denotes its gauge-equivalence class under the gauge group
C∞(C, S1). Given a nonnegative integer n, the n-vortex equations for a configuration c are

∗FA = −i(1− |α|2), ∂Aα = 0, |α| ≤ 1,

∫
C
(1− |α|2)dvol = 2πn (2.10)

The solutions are called n-vortices, and their moduli space is denoted by Cn. For n = 0 this
space is the single point (0, 1) up to gauge-equivalence, and when n > 0 this space has the
structure of a complex manifold that is biholomorphic to Cn. In fact,

Theorem 2.4.1 ([31, 53]). Given a nonnegative integer n and a collection of (not necessarily
distinct) points z1, . . . , zn ∈ C, there exists a unique solution (A,α) of the vortex equation
(up to gauge-equivalence) having finite energy and vortex number n and satisfying

α−1(0) =
n⋃
j=1

{zj}

Conversely, all finite energy solutions having vortex number n ≥ 0 are gauge-equivalent to a
solution of this form.

The biholomorphisms Cn ≈ Symn(C) ≈ Cn are given by

c 7→ {z1, . . . , zn} 7→ (σ1, . . . , σn), σk =
n∑
j=1

zkj =
1

2π

∫
C
zk(1− |α|2)dvol

and the origin 0 ∈ Cn corresponds to the unique symmetric vortex (A,α) satisfying α−1(0) =
0.

Given µ ∈ C∞(S1,C) and ν ∈ C∞(S1,R), the function

hµν : Cn → R, (A,α) 7→ 1

4π

∫
C
(2ν|z|2 + µz̄2 + µ̄z2)(1− |α|2)dvol (2.11)

induces a time-dependent Hamiltonian vector field for a particular Kähler metric on Cn,
whose closed integral curves c(t) : S1 → Cn satisfy

i

2
c∗(∂t)

(1,0) +∇(1,0)hµν |c = 0 (2.12)

where ∇(1,0) denotes the holomorphic part of the gradient. A solution is nondegenerate if the
linearization of this equation, with respect to a certain covariant derivative, at the solution
has trivial kernel (see [56, §2.b Part 3]).
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Theorem 2.4.2. ([56, §2.b]) Let (µ, ν) denote the pair associated with an L-flat nondegen-
erate Reeb orbit γ of a contact 3-manifold, and n a positive integer. If γ is elliptic then there
is a single (nondegenerate) solution to (2.12), the constant map to the unique symmetric
vortex. The same result holds if γ is hyperbolic and n = 1. If n > 1 and γ is hyperbolic,
there are no solutions to (2.12).

Remark 2.4.3. The solutions granted by this theorem are used to define the isomorphism
between ECH and a version of Seiberg-Witten Floer homology. The fact that there are no
solutions when n > 1 and γ is hyperbolic is not a problem, because such a pair (γ, n) does
not arise in an admissible orbit set.

Now we consider J-holomorphic curves in the completion (X,ω, J) of a symplectic cobor-
dism. Let π : NC → C denote the (holomorphic) normal bundle of an immersed connected
J-holomorphic curve C inM(Θ+,Θ−), and let SNC ⊂ NC denote the unit circle subbundle.
Form the n-vortex bundle

CNC ,n := SNC ×S1 Cn

whose projection onto C will also be denoted by π. With respect to a Hermitian metric and
compatible connection on NC , the (1, 0)-part of its vertical tangent space is

T vert
1,0 CNC ,n = (Ker dπ)1,0 = SNC ×S1 T1,0Cn

Sections c ∈ Γ(CNC ,n) can be viewed as S1-invariant maps SNC → Cn, so their covariant
derivative can be taken and restricted to the horizontal subspace T horSNC . This defines a
“del-bar” operator

c 7→ ∂c ∈ Γ(c∗T vert
1,0 CNC ,n ⊗ T 0,1C)

Given the pair (νC , µC) associated with the deformation operator DC of C, define the fol-
lowing section of π∗T 0,1C → CNC ,n,

hνCµC =
1

4π

∫
C

[
2νC |z|2 + (µC z̄

2 + µ̄Cz
2)
]

(1− |α|2) (2.13)

and denote by ∇1,0hνCµC the corresponding section of T vert
1,0 CNC ,n ⊗ π∗T 0,1C.

Denote by Γ0(CNC ,n) the space of sections that are asymptotic to zero on the ends of C.
Of interest to this paper are those sections c ∈ Γ0(CNC ,n) which satisfy the equation

∂c + c∗∇1,0hνCµC = 0 (2.14)

because, as will become evident later, they are “halfway” between J-holomorphic curves and
SW instantons. Denote the space of such solutions by

Z0 ⊂ Γ0(CNC ,n)

Using the identification Cn ≈ Cn there is a bundle isomorphism

CNC ,n
∼=

n⊕
j=1

N j
C
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and (2.14) then takes the form

∂η + νCℵ(η) + µCF(η) = 0 (2.15)

for sections η ∈ Γ0(
⊕n

j=1 N
j
C). Here, ∂ is the del-bar operator with respect to the Hermitian

connection on NC ,

F : Γ(
n⊕
j=1

N j
C)→ Γ(

n⊕
j=1

N j−2
C )

is some fiber-preserving bundle map that is not R-linear unless n = 1, and

ℵ : Γ(
n⊕
j=1

N j
C)→ Γ(

n⊕
j=1

N j
C)

is the map that multiplies the jth summand by j.
For n = 1, F is the complex conjugation operator and so (2.15) becomes

∂η + νCη + µC η̄ = 0 (2.16)

for sections η ∈ Γ0(NC). The space of solutions to (2.16) is thus equal to Ker(DC). For
example, if C is an index 0 curve cut out transversely then the space of solutions to (2.16)
is a point, the constant map to the unique symmetric vortex.

Remark 2.4.4. In the setting of [55] where X is a symplectization, the only multiply covered
curves to be considered were R-invariant cylinders, for which µC = 0. The nonlinear map F
only played a role in the setting of [63] where X is a closed manifold, due to the existence
of multiply covered tori. In this paper, the space of solutions to (2.15) for n > 1 will be of
concern whenever C is either a special torus or a special plane.

In [56, §2.f] Taubes spells out the appropriate Morrey spaces to be used for compactly
supported sections of the bundles c∗T vert

1,0 CNC ,n and c∗T vert
1,0 CNC ,n ⊗ T 0,1C. They are denoted

by Kc (or Kc∗ for a different norm) and Lc, respectively. At any given c ∈ Γ0(CNC ,n), the
linearization of the operator in (2.15) which cuts out Z0 is the R-linear operator

∆c : Kc → Lc, ζ 7→ ∂ζ + νCℵ(ζ) + µCdFc(ζ) (2.17)

and an element c ∈ Z0 is called regular if Coker(∆c) = 0.
If all points were regular and Z0 was compact, then Z0 would be a finite set of points

and there would be an associated SW instanton in the image of Ψr for each point in Z0.
When d = 1, the operator (2.17) is precisely the deformation operator DC which has trivial
cokernel (for generic J), and hence Z0 consists of a single regular point. But in general,
there is no guarantee that any point is regular when d > 1 and µC 6= 0. Luckily for ECH, if
d > 1 then C is an R-invariant cylinder with µC = 0, in which case Z0 consists of a single
regular point.
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Maps between ECH and SW Floer cohomology

In [55], Taubes defined a canonical isomorphism of relatively graded Z/dZ-modules (with
Z/2Z coefficients)

ECHL
∗ (Y, λ,Γ, J) ∼= ĤM

−∗
L (Y, λ, sξ + PD(Γ), J, r) (2.18)

under the assumption that r is sufficiently large and (λ, J) is a generic L-flat pair, where d
denotes the divisibility of c1(sξ + PD(Γ)) = c1(ξ) + 2 PD(Γ) in H2(Y ;Z)/Torsion. Taking
the direct limit as L→∞, Taubes’ isomorphism becomes

ECH∗(Y, λ,Γ) ∼= ĤM
−∗

(Y, sξ + PD(Γ))

A detailed explanation can be found in [23], specifically the proof of [23, Theorem 1.3]. As
shown in [7], Taubes’ isomorphism also preserves the absolute gradings by homotopy classes
of oriented 2-plane fields

ECHj(Y, λ, J) ∼= ĤM
j
(Y )

where ECH∗(Y, λ) :=
⊕

Γ∈H1(Y ;Z) ECH∗(Y, λ,Γ) and j ∈ J(Y ). As shown in [59, Theorem

1.1], Taubes’ isomorphism also intertwines the respective U-maps. We now briefly explain
how this isomorphism (2.18) was constructed.

Theorem 2.4.5 (Taubes). Fix L > 0 and a generic L-flat pair (λ, J) on the nondegenerate
contact 3-manifold (Y, λ). Then for all r sufficiently large and Γ ∈ H1(Y ;Z), there is a

canonical bijection from the set of generators of ĈM
∗
(Y, λ, sξ + PD(Γ), J, r) to the set of

generators of ECCL
∗ (Y, λ,Γ, J).

As shown in [55, Theorem 4.2], the isomorphism is actually established on generators of
the chain complexes, so that for any given admissible orbit set

Θ ∈ ECCL
∗ (Y, λ,Γ, J)

there exists a unique irreducible monopole

cΘ = [AΘ, (αΘ, βΘ)] ∈ ĈM
−∗
L (Y, λ, sξ + PD(Γ), J, r)

To construct cΘ, an arbitrary smooth map cΘi : S1 → Cmi is first assigned to each pair
(Θi,mi) ∈ Θ. From such a map, a “potential candidate” (Ar, (αr, 0)) for a monopole is
constructed which almost solves Taubes’ perturbed SW equations when r is large; this would
not be possible if Θi was not a Reeb orbit (see [56, Lemma 3.4]). When cΘi satisfies (2.12),
perturbation theory is then used to find an honest solution nearby this candidate. It turns
out that there is precisely one such map cΘi (see Theorem 2.4.2).

As shown in [55, Theorem 4.3], the chain complex differentials also agree: Given two
generators

Θ± ∈ ECCL
∗ (Y, λ,Γ, J)
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and their corresponding generators

cΘ± ∈ ĈM
−∗
L (Y, λ, sξ + PD(Γ), J, r)

there is an orientation-preserving diffeomorphism betweenM1(Θ+,Θ−) and M1(cΘ− , cΘ+ ; s),
which is R-equivariant with respect to the translation actions. As a reminder, the moduli
M1(cΘ− , cΘ+ ; s) depends on r and we assume r is sufficiently large. In analogy with the
construction for chain complex generators, the map

Ψr :M1(Θ+,Θ−)→M1(cΘ− , cΘ+ ; s) (2.19)

is constructed as follows (see [56, §5] for more details). Given C ∈ M1(Θ+,Θ−) there exists
a complex line bundle E → X and a “potential candidate”

(A∗,Ψ∗) ∈ Conn(E)⊕ Γ(E ⊕K−1E)

for a SW instanton which almost solves Taubes’ perturbed SW equations when r is large.
Here, E has a section whose zero set (with multiplicity) is C, and away from C the bundle
E is identified with the trivial bundle. Away from C the pair (A∗,Ψ∗) is close to (A0, (1, 0)),
where A0 is the flat connection on E coming from the product structure. Near a component
(C, d) ∈ C the pair (A∗,Ψ∗) is determined by a section

cC,d ∈ Γ0(CNC ,d)

Roughly speaking, when cC,d is in Z0 for all components (C, d) ∈ C, a gluing construction
perturbs the pair (A∗,Ψ∗) to a SW instanton Ψr(C).

The assertion that Ψr mapsM1(Θ+,Θ−) onto a union of components of M1(cΘ− , cΘ+ ; s)
that contain solely nondegenerate SW instantons is given in [57, §3.a]. The proof that Ψr

is surjective consists of three main arguments spelled out in [58, §3-7]. First, certain global
properties of SW instanton solutions to Taubes’ perturbed SW equations are established in
[58, §3] and in [58, Lemma 5.2, Lemma 5.3]. Second, these global results are used to assign
an element inM1(Θ+,Θ−) to a given SW instanton in M1(cΘ− , cΘ+ ; s) and is done so in [58,
§4] and in [68, §5-7]. Third, these assignments are given by the map Ψr and is done so in
[58, §6-7].

Given a basepoint y ∈ Y , the analogous bijection

Ψy
r :M2(Θ+,Θ−; y)→M2(cΘ− , cΘ+ ; s, y)

is established in [58, Theorem 2.6] and closely follows the construction of Ψr.

2.5 The blow-up formula

Recall that an exceptional sphere in X is an embedded smooth sphere of self-intersection
−1, and X is minimal if there are no exceptional spheres. If X is not minimal then it is a
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blow-up of the form

X = Xmin#

n︷ ︸︸ ︷
CP 2

# · · ·#CP 2

where Xmin is minimal and n ≤ b2(X), though this decomposition is not necessarily unique.

Examples of exceptional spheres include each exceptional divisor per copy of CP 2
with

respect to this decomposition.

Suppose for the moment that X = Xmin#CP 2
. A homology orientation for Xmin deter-

mines one also for X, and we suppose that these have been fixed. There is an identification
of algebras

A(X) ∼= A(Xmin) =
(
Λ∗H1(Xmin;Z)/Torsion

)
⊗ Z[U ]

and the respective SW invariants will both be defined over A(Xmin). We make the identifi-
cation H2(X;Z) ∼= H2(Xmin;Z) ⊕ Z[E], where E ⊂ X is the exceptional divisor satisfying
[E] · [E] = −1. Since S3 has a unique spin-c structure, we have a bijection

Spinc(X)→ Spinc(Xmin)⊕ Spinc(CP 2
)

induced by restriction. Given s ∈ Spinc(X) with d(s) ≥ 0, we write smin ∈ Spinc(Xmin) for
its restriction to Xmin. The blow-up formula [44, Theorem 2.2] then reads

SWX(s) (a) = SWXmin
(smin)

(
U

1
2

(d(smin)−d(s))a
)

(2.20)

for any homogenous element a ∈ A(Xmin) of degree d(s). For example, if s is the spin-c
structure that satisfies c1(s) = c1(smin)± PD[E] then SWX(s) (a) = SWXmin

(smin) (a).

Let Eω ⊂ H2(X0, ∂X0;Z) denote the set of classes represented by symplectic exceptional
spheres in (X0, ω). The goal of this section is to reduce Theorem 2.1.1 to the case that X
is either minimal or that the relative class τω(s) is not represented by a pseudoholomorphic
curve with a multiply covered exceptional sphere component. That is,

Theorem 2.5.1. Given (X,ω, J),

GrX,ω(s) = ±SWX(s) ∈ Λ∗H1(X;Z)⊗ Z/2Z

for any s ∈ Spinc(X) satisfying e·τω(s) ≥ −1 for all e ∈ Eω. Here, ω determines the chamber
for defining the Seiberg-Witten invariants when b2

+(X) = 1.

Proof of Theorem 2.5.1 ⇒Theorem 2.1.1. Given any s ∈ Spinc(X) and its corresponding
relative class A := τω(s) ∈ H2(X0, ∂X0;Z), consider the relative class

A′ := A+
∑

e∈Eω | e·A<−1

(e · A)e
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and its corresponding spin-c structure

s′ := s +
∑

e∈Eω | e·A<−1

(e · A)e

noting that τω is equivariant with respect to the homology action. The set {e ∈ Eω | e ·A <
−1} is represented by a disjoint collection of symplectic exceptional spheres {E1, . . . , En} in
X.8

We claim now that these spheres can be blown down to obtain a minimal near-symplectic
manifold (Xmin, ωmin). This is because McDuff’s symplectic blow-down operation [39, Lemma
2.1] is constructed locally in the 4-manifold and thus applies to the near-symplectic category
(the operation avoids Z ⊂ X).9 That is, by the symplectic neighborhood theorem we can
excise a neighborhood of a symplectic exceptional sphere and glue in a Darboux 4-ball (whose
radius depends on the symplectic area of the sphere), and there is an explicit near-symplectic
form ωmin whose pull-back agrees with ω away from the exceptional spheres.

Assume n = 1 without loss of generalization. Let E ⊂ X be the (symplectic) exceptional
divisor, let π : (X,ω) → (Xmin, ωmin) be the blow-down map, and make N small enough to
avoid a neighborhood of E. Defining

Xmin,0 := Xmin − π(N )

and noting that ∂X0 = ∂Xmin,0, the relative Mayer-Vietoris sequence gives

H2(X0, ∂X0;Z) ∼= H2(Xmin,0, ∂Xmin,0;Z)⊕ Z[E]

We can construct compatible almost complex structures on X0 and Xmin,0 in such a way that
π|X0 is holomorphic, and c1(K−1

X0
) = π∗c1(K−1

Xmin,0
)− PD[E], where KX0 and KXmin,0

are the
canonical bundles of (X0, ω) and (Xmin,0, ωmin), respectively.

By hypothesis we know that [E] · A = −m for some positive integer m ≥ 2. We then
compute

d(s′) = d(s) +m2 −m (PD[E] · c1(s′))

Since E ∩N = ∅ and H2(X) ↪→ H2(X0), we also compute

PD[E] · c1(s′) = PD[E] · c1(s′|X0) = PD[E] ·
(
2 PD(A′) + c1(K−1

X0
)
)

= 0 + PD[E] · π∗c1(K−1
Xmin,0

)− [E] · [E] = 1

Therefore, using the blow-up formula (2.20) we see that

SWX(s) (a) = SWX(s′)
(
U

1
2
m(m−1)a

)
8This is a symmetry argument: If we write A = m1e1 +m2e2 + B such that ei · B ≥ 0, then e1 · A < 0

implies m2(e1 · e2) < m1 while e2 · A < 0 implies m1(e1 · e2) < m2, so (m1 + m2)(e1 · e2) < m1 + m2 and
hence e1 · e2 = 0.

9Likewise, given any near-symplectic 4-manifold (X,ω) we can choose a Darboux ball away from ω−1(0)

and construct a near-symplectic blow-up (X#CP 2
, ωblow) such that ω−1

blow(0) is identified with ω−1(0).
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Separately, it follows from Corollary 1.3.20 that

GrX,ω(A) (a) = GrX,ω(A′)
(
U

1
2
m(m−1)a

)
Since e · A′ ≥ −1 for all e ∈ Eω, we are done.

We end this section with an example of a blow-up formula for the near-symplectic Gromov
invariants, which follows immediately from Theorem 2.5.1. Again, we expect the equivalence
to also hold with Z coefficients.

Corollary 2.5.2. Suppose (X,ω) is a near-symplectic manifold with a symplectic exceptional
sphere E and its near-symplectic blow-down (Xmin, ωmin). Given a spin-c structure s± ∈
Spinc(X) satisfying c1(s±) = c1(smin) ± PD[E], where smin denotes the restriction of s± to
Xmin,

GrX,ω(s±) ≡(2) GrXmin,ωmin
(smin)

after fixing an ordering of the zero-circles of ω (hence of ωmin). In terms of relative homology
classes, τω(s+) = τωmin

(smin) + PD[E] and τω(s−) = τωmin
(smin).

2.6 Equating ECH and HM cobordism counts

In light of the reduction from Theorem 2.1.1 to Theorem 2.5.1, we now fix (X,ω, s) such
that e · τω(s) ≥ −1 for all e ∈ Eω. Subsequently, (−∂X0, λs) and (X,ω, J) are also fixed. We
also fix an ordering of the zero-circles of ω, as well as a homology orientation of X0 (hence
of X). Denote by

ss := sω + τω(s)

the spin-c structure on X0 (and on X) that corresponds to the relative class τω(s). This
spin-c structure is identified with sξ + 1 on the ends of X. Denote by E → X the complex
line bundle for the spinor decomposition S+ = E ⊕ K−1E associated with ss. Now, make
the following choices:

• an integer I ≥ 0,
• an integer p ∈ {0, . . . , I} such that I − p is even,
• an ordered set of p disjoint oriented loops η̄ := {η1, . . . , ηp} ⊂ X0,
• a set of 1

2
(I − p) disjoint points z̄ := {z1, . . . , z(I−p)/2} ⊂ X0 − η̄.

Denote by MI(cΘ,∅; ss, z̄, η̄) the subset of SW instantons d = [A,Ψ = (α, β)] ∈MI(cΘ,∅; ss)
for which α ∈ Γ(E) vanishes at each point zi ∈ z̄ and at some point wi along each loop ηi ∈ η̄.

To define the sign q(d) attached to each d in this subset, we build the RI-vector space

Vd :=

1
2

(I−p)⊕
i=1

Ezi ⊕
p⊕
i=1

(
Ewi/∇Adα(Twiηi)

)
(2.21)
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as in [67, §2.c]. For generic choices of perturbations µ ∈ Ω2(X) that define Taubes’ perturbed
SW equations (2.6), the covariant derivative of α along ηi at wi is nonzero and the restriction
map

Ker(Dd)→ Vd

is an isomorphism. Then q(d) = ±1 depending on whether this restriction map is orientation-
preserving or orientation-reversing. Here, Ker(Dd) is oriented by the coherent orientations
(see Section 2.3), and Vd is naturally oriented because the complex bundle E is oriented, the
loops γi are oriented, and the points wi are ordered.

Notation 2.6.1. Denote M := MI(∅,Θ; τω(s), z̄, η̄) and M := MI(cΘ,∅; ss, z̄, η̄) unless
otherwise specified, since these moduli spaces will appear often. We remind the reader that
both M and M depend on (λ, J) while M also depends on r (and abstract perturbations).

Theorem 2.6.2. For an admissible orbit set Θ with action less than ρ(τω(s)), generic J ,
and sufficiently large r, ∑

C∈M

q(C) ≡(2)

∑
d∈M

q(d)

The proof of Theorem 2.6.2 is spelled out in the following sections. The key point is
that all relevant constructions which occur in a symplectization and a closed symplectic
manifold generalize to (completed) cobordisms, because the analysis takes place local to the
J-holomorphic curves.

We will construct a multi-valued map (see Definition 2.6.11)

Ψr :M→M

almost the same way as in Section 2.4, but the analysis associated with R-invariant cylinders
in [55] disappears and the analysis associated with holomorphic tori in [63] appears. The
map Ψr is multi-valued because, for a multiply covered plane or torus, the associated space
Z0 may consist of more than a single (possibly non-regular) point.

All relevant estimates about Taubes’ perturbed SW equations have been established in
the literature already. For example:

Lemma 2.6.3. There exists κ ≥ 1 such that if r ≥ κ and if (A,Ψ = (α, β)) solves Taubes’
perturbed SW equations (2.6) on X then

|α| ≤ 1 + κr−1

|β|2 ≤ κr−1(1− |α|2) + κ2r−2

Proof. This was already stated in [23, Lemma 7.3] for exact symplectic cobordisms, and
there are no changes in general. In fact, the proof of this lemma also appears in [65, §6]
for our precise setup. The proof follows the arguments in [68, Proposition 2.1, Proposition
2.3] on the compact region X0 of X. This argument extends over the ends (−∞, 0] × ∂X0
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of X, as in the case of symplectizations [58, Lemma 3.1], because the desired bounds are
guaranteed on ∂X0 by [72, Lemma 2.2].

Briefly, from DAΨ = 0 we know that D∗ADAΨ = 0. We rewrite this equation using the
Bochner-Weitzenböck formula,

∇∗A∇AΨ +
Rg

4
Ψ +

1

2
cl+(F+

A)Ψ = 0 (2.22)

where Rg denotes the Ricci scalar curvature of g on X. Introducing the components Ψ =
(α, β),

α =
1

2

(
1 +

i

2
cl+(ω̂)

)
Ψ, β =

1

2

(
1− i

2
cl+(ω̂)

)
Ψ

we take the inner products of (2.22) with Ψ and (α, 0) and (0, β) separately. We then apply
the maximum principle to each of the resulting equations, and then we combine all of the
resulting inequalities to get the asserted bounds (as well as others).

The following proposition is the analog of [23, Proposition 7.1] (which in turn is the analog
of [58, Proposition 5.5]), asserting that SW instantons on a symplectic cobordism give rise
to pseudoholomorphic curves. Its proof uses Lemma 2.6.3 numerous times along with other
estimates established in [68] on closed symplectic manifolds and in [58] on symplectizations.
It is explained in [23, §7] how these estimates from [58] on a symplectization carry over,
with minor modifications, to exact symplectic cobordisms. But we must make an additional
modification for everything to carry over to strong symplectic cobordisms; (X0, ω) is such
a cobordism. We will elaborate on these modifications immediately after introducing some
notation and stating the proposition.

Fix data (S1 × S2, λs, J, µ, r, sξ + 1) as needed to write down Taubes’ perturbed SW
equations (2.4). Another way to say that a configuration c is a solution of (2.4) is that it is
a critical point of a certain functional, the “Seiberg-Witten action”

a : B(S1 × S2, sξ + 1)→ R

whose definition will not be repeated here (see [23, Equation 97]) save for the remarks that
a differs from LCSD by an O(r) constant, and a is a gauge-invariant functional because sξ +1
is a torsion spin-c structure. Likewise, fix data (X, ω̂, J, µ, r, ss) which extends the data on
each S1 × S2 boundary component of X0 as needed to write down Taubes’ perturbed SW
equations (2.6), hence M(c,∅; ss, z̄, η̄). Let

s∗ : X → (−∞, 0]

denote the piecewise-smooth function that agrees with the (−∞, 0] coordinate on each cylin-
drical end of X and equals 0 on X0.

Proposition 2.6.4. Fix (S1×S2, λs, J, µ, r, sξ +1) as above on each end of (X, ω̂, J, µ, r, ss).
Given K ≥ 1 and δ > 0, there exist constants κ ≥ 1 and κδ ≥ 1 such that the following holds:
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Take r ≥ κδ and let d = [A, (α, β)] be an element of M(c,∅; ss, z̄, η̄) satisfying either
a(c) ≤ Kr or ind(Dd) > −Kr. Then
• E(c) ≤ 2πρ(τω(s)) + δ.
• Each point in X where |α| ≤ 1− δ has distance less than κr−1/2 from α−1(0).
• There exists

(a) a positive integer n ≤ κ and a partition of (−∞, 0] into intervals I1 < · · · < In,
each of length at least 2δ−1, with [−1, 0] ⊂ In, and

(b) a broken10 J-holomorphic curve {Ck}1≤k≤n in X (with cobordism level Cn)
asymptotic to the orbit set Θ (in −∂X0) determined by c in Theorem 2.4.5

such that for each k = 1, . . . , n we have

sup
z∈Ck∩s−1

∗ (Ik)

dist(z, α−1(0)) + sup
z∈α−1(0)∩s−1

∗ (Ik)

dist(Ck, z) < δ

and z̄ ∪ η̄ ⊂ Cn ∩ α−1(0) ⊂ X.

As remarked above, there are some differences between this proposition and [23, Propo-
sition 7.1]. The minor differences are the additional point/loop constraints (as handled in
[59, Lemma 4.4]) and the fact that the cobordism X0 has only negative ends (so the quantity
Ad in [23, Proposition 7.1] is replaced by a(c)). The major difference is the appearance of
the homomorphism ρ : Relω(X)→ R. This is ultimately due to the fact that in the proof of
[23, Proposition 7.1], Stokes’ theorem is used under the assumption that ω̂ is exact over X0,
while in our case ρ measures the failure of our non-exact 2-form ω̂ to satisfy Stokes’ theorem
with the boundary 1-form λs (this is also explained in [27]).

Remark 2.6.5. If we are to compare Proposition 2.6.4 with [58, Proposition 5.5] then, as in
[23], we must replace the manifold R×M by X, the subset [s1, s2]×M by s−1

∗ ([s1, s2]), the
2-form ds∧ a+ 1

2
∗ a by ω̂, the 2-form ∂

∂s
A±BA by F±A , and the spectral flow fd by ind(Dd).

SW instantons from multiply covered tori and planes

With respect to the analogous bijectionM1(Θ+,Θ−)→M1(cΘ− , cΘ+ ; s) over a symplec-
tization (see (2.19)), the analysis in [55] to handle (covers of) R-invariant cylinders is simple:
for an R-invariant cylinder C = R × γ, the section µC vanishes and hence the unique sym-
metric vortex which solves (2.12) over γ extends to the unique symmetric vortex solution
to (2.15) over C. If µC did not vanish, the bundle map F would prevent such an extension
(since F(0) 6= 0). This unfortunately turns out to be the case for the special planes and
special tori in the scenario at hand. The appropriate analysis to handle the tori is given
in [63] and, as will now be shown, can be mimicked to handle the planes. A key point is

10Strictly speaking, we get a “generalized” broken curve, whose definition only differs from an honest
broken curve by requiring that we do not mod out by R-translation of the curves in the symplectization
levels of the broken curve.
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that there will be no issues with asymptotics, because all perturbations along the curves are
required to decay to zero along the curves’ ends.

Let (C, d) be a component of C ∈ M where C is a special plane and d > 1. As a reminder,
Z0 ⊂ Γ0(

⊕d
j=1N

j
C) denotes the subspace of elements in the kernel of ∂ + νCℵ+ µCF which

are asymptotic to zero on the ends of C.

Proposition 2.6.6. Z0 is compact.

Proof. The proof copies [67, Proposition 2.7] and its proof in [67, §3] for the analogous case
that C is a holomorphic torus. Strictly speaking, [67, Proposition 2.7] argues that Z0 is
compact if and only if certain Cauchy-Riemann type operators associated to multiple covers
of C have trivial kernel and cokernel. As the relevant analysis is performed locally along the
curve, the argument extends almost verbatim to the case that C is a holomorphic special
plane. What follows is the brief setup and discussion about the necessary changes required
to handle covers of holomorphic special planes.

Let π : NC → C denote the normal bundle of C with respect to X, and let s : NC → π∗NC

denote the tautological section. Define the maps

R : Γ0(
d⊕
q=1

N q
C)→ R, y = (y1, . . . , yd) 7→ sup

C
sup
q
|yq|1/q

p : Γ0(
d⊕
q=1

N q
C)→ Γ(π∗Nn

C), y = (y1, . . . , yd) 7→ sd + π∗y1 · sd−1 + · · ·+ π∗yn

and suppose there exists a sequence {yj}j∈N ⊂ Z0 with Rj := R(yj) increasing and un-
bounded. Then define the subsets

Σj := {η ∈ NC | p(yj)(Rj · η) = 0}

The proof of [67, Proposition 3.1] shows that a subsequence of {Σj}j∈N converges pointwise to
the image of a somewhere-injective J-holomorphic map ϕ : C ′ → NC which does not factor
through the zero-section of NC . Here, J on NC is the unique almost complex structure
whose restriction to the fibers of π agrees with the almost complex structure J on X. Now,
the composition π ◦ ϕ : C ′ → C is a d-fold holomorphic covering and ϕ defines a nontrivial
element in the kernel of the Cauchy-Riemann type operator Dπ◦ϕ induced from DC (see [25,
42, 76]). But this contradicts super-rigidity of C Lemma 1.3.24. Thus Z0 is compact.

Remark 2.6.7. Since the holomorphic special plane has index zero, it may be possible to
modify J in a small neighborhood of its image so that µ becomes 0, following the methodology
of Taubes’ L-flat approximations (this was brought to the author’s attention by Taubes).
The a priori issue is that, although all special planes satisfy automatic transversality, there
may be other nearby J-holomorphic curves which pop into existence at some point along
the smooth path of modifications of J . If this issue can be ruled out, as in the case of the
L-flat approximations, then Z0 is a single (regular) point and there is no need for Kuranishi
structures along special planes.
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Figure 2.2: Ck in black, UCk in red, UΘi in blue (U0 not shown)

Kuranishi structures

The point of [56, §5] is to construct families of configurations (A∗,Ψ∗) ∈ Conn(E)×Γ(S+)
for C = {(Ck, dk)}, such that away from

⋃
k Ck ⊂ X the curvature of A∗ is flat and the E-

component of Ψ∗ is covariantly constant. The construction involves patching together local
configurations on open sets in X. The difference between compact and noncompact X is
that, in the noncompact case, there need not be an embedding of a fixed-radius tubular
neighborhood of the curves. This complication occurs because the curves may have multiple
ends approaching multiple covers of the same Reeb orbit, or an end approaching a multiple
cover of a Reeb orbit. But by Proposition 1.3.17 this complication does not occur for the
special planes!

The cover of X is prescribed by the bullet points of [56, Equation 5-3], and further
described as follows (a schematic example is depicted in Figure 2.2):

• There is an open set UΘi for each orbit Θi that is not approached by a special plane,
such that UΘi lives far out on the ends of X. These sets are pairwise disjoint.

• There is an open set UCk for each component Ck that is not a special plane, such that
UCk lives in a compact region of X (this set does not completely cover the Ck unless
this component is closed). These sets are pairwise disjoint.

• There is an open set UCk for each special plane Ck, given by a fixed-radius tubular
neighborhood of Ck. These sets are pairwise disjoint and furthermore disjoint from all
preceding open sets.

• There is an open set U0 to cover the remainder of X.

Notation 2.6.8. Use k′ to index the components of C that are special planes or special tori,
and use k′′ to index the remaining components. Use the index k when it doesn’t matter



CHAPTER 2. SEIBERG-WITTEN AND GROMOV INVARIANTS 70

what the components of C are.

The constructions in [56, §5] do not require c = (ck) ∈
⊕

k Z
(k)
0 nor for c to be the zero

element. Instead, it can and will be assumed that c belongs to

Y :=
⊕
k′

K(k′)
Λ ⊕

⊕
k′′

Z(k′′)
0

where K(k′)
Λ is a suitably small open neighborhood of Z(k′)

0 in Γ0(
⊕dk′

j=1N
j
Ck′

). This neighbor-
hood will be specified in the upcoming Lemma 2.6.10.

As in [56, §5], we begin the search for a solution to the large r version of Taubes’
perturbed SW equations by considering families of configurations

(
A(c, ξ, b, r),Ψ(c, ξ, b, r)

)
parametrized by

c ∈ Y
b ∈ Γ(iT ∗X ⊕ S+)

ξ ∈ K :=
⊕
k′

Kck′
⊕K′′

Here, K′′ is a Banach space described in [56, §5.b.4] – while Kck′
is constructed using the

bundle T vert
1,0 CNCk′ ,dk′

along all of Ck′ , the space K′′ is constructed using the pullback of the

vortex bundle T1,0Cmi along the ends of each component Ck′′ ∈ C at each (Θi,mi) ∈ Θ and
using the restriction of the vortex bundle T vert

1,0 CNCk′′ ,1
along the remainder of Ck′′ .

Such a configuration
(
A(c, ξ, b, r),Ψ(c, ξ, b, r)

)
solves the large r version of Taubes’ per-

turbed SW equations when [56, Equation 5-20] is satisfied, written schematically as

Db + r1/2b ∗ b− v = 0

lim
s→−∞

b = bΘ
(2.23)

where bΘ is determined by cΘ. Here, b 7→ b ∗ b denotes a (r-independent) quadratic fiber-
preserving map from iT ∗X⊕S+ to i∧2

+ T
∗X⊕S−, D is the deformation operator associated

with
(
A(c, ξ, 0, r),Ψ(c, ξ, 0, r)

)
, and v is the remainder (it is an error term determined by

the failure of
(
A(c, ξ, 0, r),Ψ(c, ξ, 0, r)

)
to solve the SW equations). The idea now is to first

project (2.23) onto a certain subspace, solve for b in terms of c and ξ (and r), and then use
the remaining part of (2.23) to solve for ξ in terms of c.

For each c ∈ Y and ξ ∈ K, [56, §6 Part 6] introduces a map tξ : K2 → L2(iT ∗X ⊕ S+)
(see [56, Equation 6-9]), where K2 is the version of K using the L2-norm. Let Πξ denote the
L2 orthogonal projection onto the image of tξ. The result of [56, §6] is a solution to

(1− Πξ)
(
Db + r1/2b ∗ b

)
= (1− Πξ)v (2.24)

Specifically, using the contraction mapping principle, [56, Proposition 6.4] solves for b as a
smooth function of {c, ξ, r}, given appropriate bounds on ξ and further assuming bounds on
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a certain term (1−Πξ)(v−vh) that appears in (2.24). This assumed bound on (1−Πξ)(v−vh)
is specified in [56, Lemma 6.3] and guaranteed when c ∈

⊕
k Z

(k)
0 , but in general we have to

check whether this bound is actually satisfied.
It remains to solve

Πξ

(
Db + r1/2b ∗ b− v

)
= 0 (2.25)

and to find those c ∈ Y for which the term (1 − Πξ)(v − vh) is suitably bounded. When

c /∈
⊕

k Z
(k)
0 , the constructions in [56, §7] need to be augmented by the constructions in [66].

Indeed, it is shown in [56, §7.d] that the term

θ := r1/2Πξ(v− vh)

is large when ck is far away from Z(k)
0 , so that (2.25) need not be solvable. What follows are

the modifications to [56, §7] that come directly from [66, §5]. In this regard, as the planes and
tori Ck′ are disjoint from the other components of C and do not approach multiply covered
Reeb orbits, the analysis in [66] complements (and does not interfere with) the analysis in
[56].

Remark 2.6.9. For the convenience of the reader, here is a dictionary between [66, §5] and
our setup (which follows [56, §5-7]). Our variables {c, ξ, b, v−vh} appear as {yk, xk, hk, errk}
in [66]. Our equations (2.23),(2.24),(2.25) appear as [66, Equation 5.3, Equation 5.12, Equa-
tion 5.16]. Also, [56, Proposition 6.4] appears as [66, Lemma 5.5], while the argument of [56,
§7.d] corresponds to the argument of [66, §5.f] in which θ appears as [66, Equation 5.17].

While we’re giving a dictionary, here is a parallel between the above constructions and the
analogous constructions for Reeb orbits (i.e. the construction of cΘ from Θ). Our equations
(2.23),(2.24),(2.25) are the analogs of [56, Equation 3-6, Equation 3-16, Equation 3-35].
Solving these equations amounts to a proof of Theorem 2.4.5, for the following reason: A key
lemma [56, Lemma 3.8] guarantees a unique solution to [56, Equation 3-35] whenever c ∈ Z0

with Coker ∆c = 0, while Theorem 2.4.2 guarantees that Z0 = {c = 0} with Coker ∆0 = 0,
so there is a unique monopole cΘ.

As in [56, §7], we view the left hand side of (2.25) as an operator

Y ⊕K → L, (c, ξ) 7→ r−1/2T (c, ξ)

Here, the Banach space L is defined in [56, §6.7]; it is the analog of K in which all bundles
are tensored with T 0,1Ck. We then take the Taylor expansion

T (c, ξ) = T0(c) + T1(c) · ξ + T2(c, ξ)

where T0(c) := T (c, 0) and T1(c) is linear and T2(c, ·) is the remainder.
In the absence of special planes and special tori, the kernel of T (c, ξ) is described by [56,

Proposition 7.1]. The existence of such elements hinges on appropriate bounds on the Tj
and requires T1(c) to satisfy additional properties, granted as follows:
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• the bounds on T2 are established in [56, §7.e.3] and granted by the small norms on K,

• the bounds on T0(c) are established in [56, §7.e.1] and granted by the constraint c ∈⊕
k Z

(k)
0 ,

• the properties of T1(c) are ultimately granted by the constraint
⊕

k Coker ∆ck = 0,
which in turn is granted by the fact that

⊕
k CokerDCk = 0 for generic J .

However, for a plane or torus Ck′ it can be the case that Coker ∆ck′
6= 0, so the proof of [56,

Proposition 7.1] needs to be modified. The resolution is to relax the constraint ck′ ∈ Z(k′)
0

and appeal to Kuranishi structures as in the proofs of [66, Lemma 5.1, Proposition 5.2]. We
do this now.

Using the fact that Z(k′)
0 is compact (see Proposition 2.6.6 for special planes and [67,

Proposition 2.7] for special tori), we have the following analog of [66, Lemma 5.1] whose
proof is contained in [66, §5.a,§5.g.2].11

Lemma 2.6.10. Let (Ck′ , dk′) be a plane or torus as above. There exists a finite dimensional

vector subspace Λk′ ⊂ Γ0(
⊕dk′

j=1N
j
Ck′
⊗ T 0,1Ck′) such that for all ck′ ∈ Z(k′)

0 , the projection

of Λk′ onto Coker ∆ck′
is surjective. Denote by Q

(k′)
Λ : Γ0(

⊕dk′
j=1N

j
Ck′
⊗ T 0,1Ck′) → Λk′

the L2 orthogonal projection. There also exists a smooth dim(Λk′)-dimensional submanifold

K(k′)
Λ ⊂ Γ0(

⊕dk′
j=1N

j
Ck′

) with compact closure, satisfying the following properties:

1) If ck′ ∈ K(k′)
Λ then

(1−Q(k′)
Λ )

(
∂ck′ + νCk′ℵ(ck′) + µCk′F(ck′)

)
= 0

2) Z(k′)
0 embeds in K(k′)

Λ as the zero set of the map

ψ
(k′)
Λ : K(k′)

Λ → Λk′ , ck′ 7→ Q
(k′)
Λ

(
∂ck′ + νCk′ℵ(ck′) + µCk′F(ck′)

)
3) For a suitably chosen r-independent constant εk′ > 0, for each ck′ ∈ K(k′)

Λ there is

some element in Z(k′)
0 that is within εk′ distance (with respect to the L2 norm) to ck′, and

(1−Q(k′)
Λ )∆ck′

is surjective.

We now show how this lemma is used to modify the arguments in [56, §7]. Following
[56, §7.b.5], we write the components of T as ((TCk)Ck∈C, (TΘj)Θj∈Θ). In terms of the Taylor
expansion, each component TCk(ck, ξk) equals the sum of the 0th order term

T0Ck(ck, ξk) = ∂ck + νCkℵ(ck) + µCkF(ck)

and the linear term
T1Ck(ck, ξk) = ∆ckξk

and the remainder12 T2Ck(ck, ξk). For planes or tori, the linear term T1Ck′
may have nonzero

11The submanifold KΛ in [66, Lemma 5.1] has dimension d + dim(Λ), where d = indR ∆. In our case,
indR ∆ = indRDCk′ = 0. For the reader’s benefit, we point out that the integer d is misstated as d =
2m(n + 1 − g) + m(m − 1) in [66, Lemma 5.1], though correctly stated as d = 2m(1 − g) + m(m + 1)n =
2m(n+ 1− g) +m(m− 1)n in [66, Proposition 3.2].

12The remainder is denoted by Rk in [66].
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(co)kernel. To deal with this, we first apply the operator 1−Q(k′)
Λ to the TCk′ components,

and we subsequently abuse notation to denote the resulting operator by

T :=

((
(1−Q(k′)

Λ )TCk′
)
Ck′∈C

, (TCk′′ )Ck′′∈C, (TΘj)Θj∈Θ

)
Note that the 0th order term of T vanishes by definition of the space Y . We then restrict
the domain of T to Y ⊕ (

⊕
k′ L⊥ck′ )⊕K

′′, where

Lck′
:= Ker(1−Q(k′)

Λ )∆ck′
⊂ Γ0(

dk′⊕
j=1

N j
Ck′

)

We now rerun [56, §7] to solve this projected equation T (c, ξ) = 0 uniquely for ξ(c) ∈ B as
a function of c, where B is a sufficiently small ball in (

⊕
k′ L⊥ck′ )⊕K

′′ ⊂ K. This association
c 7→ ξ(c) induces the smooth map

ΨC,r : Y → B(cΘ,∅; ss), c 7→
(
A
(
c, ξ(c), b (c, ξ(c)) , r

)
,Ψ
(
c, ξ(c), b

(
c, ξ(c)

)
, r
) )

(2.26)

and it remains to find those c ∈ Y that will satisfy ΨC,r(c) ∈M.

The evaluation of the projection Q
(k′)
Λ TCk′ defines the smooth map

ψC,r : Y →
⊕
k′

Λk′ , c 7→
⊕
k′

[
ψ

(k′)
Λ (ck′) +Q

(k′)
Λ

(
∆ck′

ξk′ + T2Ck′
(ck′ , ξk′)

)]
(2.27)

By construction,
ΨC,r

(
ψ−1
C,r(0) ∩ Yz̄,η̄

)
⊂M

where
Yz̄,η̄ := Ψ−1

C,r
(
B(cΘ,∅; ss, z̄, η̄)

)
⊂ Y

As explained in [66, §6] and [59, §4], ΨC,r is a smooth embedding for sufficiently large r and
it maps ψ−1

C,r(0) ∩ Yz̄,η̄ homeomorphically onto an open subset of M.
Finally, the proof of [67, Proposition 2.10] can be copied and combined13 with the proof

of [58, Theorem 1.2] to show that the inverse image of M under ΨC,r for any given C ∈ M
is precisely ψ−1

C,r(0) ∩ Yz̄,η̄, and that each element in M lies in the image of ΨC,r for some
C ∈ M. In other words, each image Im ΨC,r constitutes a “Kuranishi model” for an open
subset of M.

We can now state the anticipated correspondence between M and M.

13The relevant arguments involve “special sections” of powers of NCk
associated with the component

(Ck, dk), denoted by o in [58, Equation 7-9] and by h in [67, Equation 5.26]; they differ by a factor of 1
dkπ

.

In this regard, Taubes remarks in [58] that [67, Lemma 5.5] is flawed and must be replaced by [58, Lemma
7.1].
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Definition 2.6.11. For an admissible orbit set Θ with action less than ρ(τω(s)), generic J ,
and sufficiently large r, the multi-valued bijection Ψr :M→M is given by the composition

C 7→ ψ−1
C,r(0) ∩ Yz̄,η̄ 7→ ΨC,r

(
ψ−1
C,r(0) ∩ Yz̄,η̄

)
where the first map is multi-valued and the second map is injective.

Remark 2.6.12. The expected dimension of the moduli of SW instantons agrees with
the ECH index of the relevant J-holomorphic currents, i.e. the association of a current
C ∈ M(∅,Θ; τω(s)) to a given d ∈MI(cΘ,∅; ss) satisfies I(C) = I. The analogous statement
on symplectizations is proven in [57, §2.b.6], and it can be mimicked to yield the generalized
statement on symplectic cobordisms, as done in [7, Theorem 5.1].

Proof of Theorem 2.6.2

First, suppose that M contains only elements of the form {(Ck, dk = 1)}. Then the
multi-valued map Ψr in (2.6.11) is an honest bijection

M←→M

(Such a bijection is the analog of both [55, Theorem 4.3] and [67, Proposition 2.6].) In this
case, Theorem 2.6.2 is proved.

Next, suppose that each Z(k)
0 corresponding to each dk > 1 pair (Ck, dk) from any C ∈ M

consists of only regular points. Each Z(k)
0 is subsequently compact, hence a finite set of

points. Then we can rephrase the multi-valued map Ψr in (2.6.11) as a bijection⋃
{(Ck,dk)}∈M

⊕
k

Z(k)
0 ←→M

(Such a bijection is the analog of [67, Proposition 2.9].) To prove Theorem 2.6.2 in this case,

we need to count the points in Z(k)
0 and show that the resulting number is r(Ck, dk). We

instead handle this in the general scenario, where Z(k)
0 may also contain non-regular points.

Fix a special torus or special plane Ck′ with multiplicity dk′ , representing a component

of a given current C ∈ M. If Z(k′)
0 were a finite set of regular points, then we could count

the points (with appropriate signs) to define a weight

r′(Ck′ , dk′) ∈ Z

attached to (Ck′ , dk′) ∈ C (see [67, §2.f]). In general, the weight r′(Ck′ , dk′) ∈ Z is defined
in [67, §2.g] and roughly speaking, it is the signed count of zeros of a small perturbation of

the map ψ
(k′)
Λ : K(k′)

Λ → Λk′ from Lemma 2.6.10. In fact, ψC,r is such a small perturbation of⊕
k′ ψ

(k′)
Λ , so by construction of (2.6.11) it suffices to show that

r′(Ck′ , dk′) = r(Ck′ , dk′)
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in order to complete the general proof of Theorem 2.6.2.
If Ck′ is a torus then [67, Proposition 2.15] asserts that r′(Ck′ , dk′) = r(Ck′ , dk′). The

analogous result for planes is as follows.

Proposition 2.6.13. For generic J , the weight r′(Ck′ , dk′) is equal to +1 when Ck′ is a
J-holomorphic special plane. In particular, r′(Ck′ , dk′) = r(Ck′ , dk′).

Proof. [67, Proposition 2.12] implies that r′(Ck′ , dk′) is independent of µCk′ for Ck′ a special
plane. In particular, r′(Ck′ , dk′) is equal to the signed count of points of the version of

Z(k′)
0 defined with µCk′ = 0. This version consists of a single regular point with positive sign

(namely, the constant map to the unique symmetric vortex) because the operator ∂+νCk′ℵ is
complex linear and has trivial kernel and cokernel for generic νCk′ . Thus r′(Ck′ , dk′) = +1.

2.7 Relation of SW counts

In this section we are always using Z/2Z coefficients. The goal of this section is to
prove Theorem 2.5.1 (and therefore Theorem 2.1.1). It follows from Theorem 2.4.5 and
Theorem 2.6.2 using I = d(s) that the Gromov cycle ΦGr is chain-isomorphic (over Z/2Z)
to the Seiberg-Witten cocycle

ΦSW :=
∑

cΘ∈g(s)

McΘcΘ ∈ ĈM
g(s)

(−∂X0, sξ + 1)

where
McΘ :=

∑
d∈Md(s)(cΘ,∅;ss,z̄,η̄)

q(d) ∈ Z/2Z (2.28)

The number GrX,ω(s)
(
[η1] ∧ · · · ∧ [ηp]

)
is therefore equal to the coefficient of the class

[ΦSW ] ∈
N⊗
k=1

ĤM
[ξ∗]

(S1 × S2, sξ + 1)

as a multiple of the positive generator 1 ∈
⊗N

k=1 ĤM
[ξ∗]

(S1×S2, sξ+1). In fact, the following
theorem shows that this coefficient is the corresponding Seiberg-Witten invariant.

Theorem 2.7.1. Fix (X,ω) and assume s ∈ Spinc(X) is such that e · τω(s) ≥ −1 for all
e ∈ Eω. Fix an integer p such that 0 ≤ p ≤ d(s) and d(s)− p is even, and fix an ordered set
of homology classes [η̄] := {[ηi], . . . , [ηp]} ⊂ H1(X;Z)/Torsion. Then

SWX(s)
(
[η1] ∧ · · · ∧ [ηp]

)
≡(2) GrX,ω(s)

(
[η1] ∧ · · · ∧ [ηp]

)
In particular, g(s) = N [ξ∗] as an absolute grading of the N-fold tensor product of ĤM

∗
(S1×

S2).
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Before we prove this theorem we make the following remarks. The work of Kronheimer-
Mrowka (specifically, [33, Proposition 27.4.1]) recovers the Seiberg-Witten invariant SWX(s)
using their monopole Floer (co)homologies, explicitly by removing two copies of the 4-ball
B4 from X and counting certain14 SW instantons on the resulting cobordism S3 → S3.
Although not provided in [33], the same result could have been obtained by removing two
copies of S1×B3, because both spaces (B4 and S1×B3) have positive scalar curvature and
a unique spin-c structure extending the fixed torsion spin-c structure on their boundary (see
[33, Proposition 22.7.1]). There would necessarily be more work to do when using S1 × B3

because there exists a circle’s worth of reducible monopoles on S1 × S2 (to the unperturbed
SW equations), compared to a single reducible monopole on S3.15

In the proof of Theorem 2.7.1 we will remove N copies of S1 × B3 from X, namely,
the tubular neighborhoods of the zero-circles. This is a “neck stretching” argument along
the contact hypersurfaces (S1 × S2, λs) in X, and we analyze the SW equations under this
deformation. It is important to note that on X0 we can use Taubes’ large perturbations to
the SW equations, for which there are no reducible solutions, but on each S1×B3 we cannot
do this because there is no symplectic form (or said another way, the near-symplectic form ω
degenerates somewhere inside S1×B3). We therefore interpolate, on the “neck region” of X,
between Taubes’ large perturbations on X0 and very small perturbations on each S1 × B3,
where the small perturbations are chosen in such a way that we can understand the SW
instantons on each S1 ×B3 completely.

A final remark is that in this setup, we do not run into the usual difficulties that
Kronheimer-Mrowka have when defining monopole Floer cobordism maps for cobordisms
with disconnected and empty ends. These difficulties are ultimately due to the (stratified)
space of reducible monopoles on the (positive and negative) boundary components of the
cobordism, and are avoided in our setup thanks to Taubes’ large perturbations.

Proof of Theorem 2.7.1. We closely follow the arguments in [33, §26, §27.4, §36.1] that re-
cover the Seiberg-Witten invariant and establish the composition law for monopole Floer
(co)homology. These arguments involve judicious choices of Riemannian metrics and ab-
stract perturbations on X to “stretch the neck” and compare the resulting moduli spaces of
SW instantons.

Let T denote the circle H1(S1 × S2; iR)/H1(S1 × S2; 2πiZ) ∼= S1 which parametrizes
reducible monopoles to the unperturbed SW equations over S1 × S2. In fact, all monopoles
are reducible because S1 × S2 has a metric of positive scalar curvature (see [33, Proposition
22.7.1]). After fixing a reference connection A0 on det(S) so that any other Hermitian
connection can be written as A = A0 + 2a for some a ∈ Ω1(Y ; iR), there is a retraction map

14They build a “mixed” map
−−→
HM : ĤM ∗(S3)→

̂

HM ∗(S3) and pair the image of a generator 1 ∈ ĤM ∗(S3)

with a generator 1̌ ∈

̂

HM ∗(S3). A homology orientation of the cobordism is identified with a homology
orientation of X.

15We must also choose a homology orientation of S1×S2, i.e. an orientation of the vector space H1(S1×
S2;R) ∼= R, in order to identify a homology orientation of X with that on the cobordism.
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Figure 2.3: “Stretching the necks” of X, depicted in gray

p : B(S1×S2, sξ + 1)→ T sending [A0 + 2a,Ψ] to the equivalence class of the harmonic part
aharm of a (see [33, §11.1]).

Let f be the “height” Morse function on T with two critical points, and let f1 = f ◦ p
be the corresponding function on B(S1 × S2, sξ + 1). The gradient of f1 is an abstract
perturbation qf := grad f1 (assumed small by re-scaling f), and the reducible critical points
of gradLCSD + qf are the maximum and minimum critical points {α, β} of f on T. The
perturbed Dirac operators associated with α and β in the blow-up Bσ(S1 × S2, sξ + 1) do
not have kernel, but to guarantee that their spectrums are simple we add a further small
perturbation to qf (still denoted qf ) which vanishes on Bred(S1 × S2, sξ + 1). Label the
corresponding critical points in Bσ(S1 × S2, sξ + 1) as ai and bi in increasing order of the
index, where a0 and b0 correspond to the first positive eigenvalues of the perturbed Dirac
operator at α and β (the critical points are boundary-stable for i ≥ 0 and boundary-unstable
for i < 0).

Consider a component Nk ≈ S1 × B3 of N =
⊔N
k=1Nk, equipped with a metric having

positive scalar curvature and containing a collar region of its boundary in which the metric
is cylindrical. Choose a small perturbation pN on Nk equal to qf on the end, so that the
corresponding moduli spaces M(∅,Nk, ai; s) and M(∅,Nk, bi; s) are regular. Here, s on Nk
is the unique spin-c structure which extends sξ + 1 on its boundary S1 × S2.

Let X(T ) be the closed manifold (diffeomorphic to X) obtained by attaching, for each
end of X0, two copies of the cylinder [0, T ] × S1 × S2 and one copy of another cylinder
[0, 1]× S1 × S2 and the kth component Nk of N (see Figure 2.3):

X(T ) := N ∪
N⋃
k=1

( (
[0, T ]× S1 × S2

)
∪
(
[0, 1]× S1 × S2

)
∪
(
[0, T ]× S1 × S2

) )
∪X0

The perturbed SW equations on X(T ) carry the following perturbations:

• Taubes’ perturbation pω on X0 which extends over the adjacent copies of [0, T ]×S1×S2

using Taubes’ perturbation qλ on ∂X0,

• the perturbation pN on eachNk which extends over the adjacent copies of [0, T ]×S1×S2

using the perturbation qf on ∂Nk,
• an “interpolating” perturbation pcyl on each copy of [0, 1]×S1×S2 which agrees with
qλ near {0} × S1 × S2 and with qf near {1} × S1 × S2.
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To simplify notation we write Ik for the kth copy of [0, 1] × S1 × S2 and I :=
⊔N
k=1 Ik.

Consider the moduli space M(X(T ), s) for the manifold equipped with this perturbation.
As T ∈ [0,∞) varies, these form a parametrized moduli space

M(X, s) :=
⋃

T∈[0,∞)

{T} ×M(X(T ), s)

This has a compactification

M+(X, s) :=
⋃

T∈[0,∞]

{T} ×M(X(T ), s)

formed by attaching a fiber at T = ∞, where M(X(∞), s) is defined to be the set of
quintuples (d0, d̆1, d2, d̆3, d4) such that

d0 ∈M(∅,N , ci1 ; s)

d̆1 ∈ M̆+(ci1 , ci2)

d2 ∈M(ci2 , I, ci3 ; sξ + 1)

d̆3 ∈ M̆+(ci3 , ci4)

d4 ∈M(ci4 , X0,∅; ss)

The spaceM+(X, s) is stratified by manifolds, its codimesion-1 strata consisting of the fiber
M(X, s) over T = 0 and those strata over T =∞ with ci1 = ci2 and ci3 = ci4 (so that d̆1 and
d̆3 belong to point moduli spaces). The latter strata are of the form

M(∅,N , c1; s)×M(c1, I, c2; sξ + 1)×M(c2, X0,∅; ss)

where each of c1 = {ck1}1≤k≤N and c2 = {ck2}1≤k≤N is a critical point on I associated with
the perturbations qf and qλ, respectively.

We now incorporate the point and loop constraints that are used to define the closed
SW invariant. As z̄ and η̄ sit inside X0 ⊂ X and X may be written as the composition of
cobordisms X0 ◦ I ◦ N , we may decompose the element

u := U
1
2

(d(s)−p)[η1] ∧ · · · ∧ [ηp] ∈ A(X)

as the product
u = R∗N (1) ^ R∗I(1) ^ R∗X0

(u0)

where 1 ∈ H0(Bσ(N );Z), 1 ∈ H0(Bσ(I);Z), u0 ∈ Hd(s)(Bσ(X0);Z), and RW : Bσ(X) →
Bσ(W ) is the restriction map associated with W ∈ {N , I, X0}; the product operation is
defined in [33, §23.2].

There is a continuous map defined in [33, §26.1],

r :M+(X, s)→ [0,∞]× Bσ(N , s)× Bσ(I, sξ + 1)× Bσ(X0, ss)
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which, in particular, is given by (T, d) 7→ (T, d|N , d|I , d|X0) for T < ∞. Likewise, the
image r (M+(X, s)) is also stratified by manifolds, and the only relevant strata which pair
nontrivially with the cocycle 1× 1× u0 are determined by

dimM(∅,Nk, ck1; s) = 0 (2.29)

dimM(ck1, Ik, ck2; sξ + 1) = 0 (2.30)

dimM(c2, X0,∅; ss) = d(s) (2.31)

for each k. The dimensions of M(∅,Nk, ck1; s) are computed in Lemma 2.7.4 below, from
which it follows that (2.29) forces ck1 = a−1. Then (2.30) forces |ck2| = |ck1|, which follows im-
mediately from the definition of the grading (see [33, §22.3]), or less directly from the fact that
such a product cobordism induces an isomorphism on all monopole Floer (co)homologies.

As explained in [33, §36], ĤM
[ξ∗]

(S1 × S2, sξ + 1) is isomorphic to

̂

HM [ξ∗](S
1 × S2, sξ + 1),

with the former generated by a−1 and the latter generated by b0.16 Therefore, each ck2 must

be one of the finitely many irreducible generators c ∈ ĈM
[ξ∗]

(S1 × S2, sξ + 1, qλ) such that
M(c, X0,∅; ss) has dimension d(s), and hence g(s) = N [ξ∗].

Notation 2.7.2. Here and in what follows, we abuse notation by letting c and a−1 denote
either the respective monopoles ck and a−1 on a single component of ∂X0 or the respective
collections {ck}1≤k≤N and {a−1}1≤k≤N . Also, we refer to c as both a monopole and a cochain

in ĈM
∗

while ĉ denotes the corresponding chain in ĈM ∗ which pairs nontrivially with the
cochain c, i.e. c(ĉ) = 1.

It follows from Lemma 2.7.4 below that the moduli space M(∅,Nk, a−1; s) is a point.
The version of Stokes’ theorem in [33], applied to the Z/2Z-pairing of r (M+(X, s)) with
δ(1× 1× u0) = 0, therefore implies

SWX(s)
(
[η1] ∧ · · · ∧ [ηp]

)
=
〈
u, [M(s)]

〉
=
∑

c∈N [ξ∗]

〈
1, [M(a−1, I, c; sξ + 1)]

〉
·
〈
u0, [M(c, X0,∅; ss)]

〉
=
∑

c∈N [ξ∗]

McMc ∈ Z/2Z

(2.32)

where Mc denotes the count of points in the 0-dimensional moduli space M(a−1, I, c; sξ + 1),
and Mc is defined by (2.28).

The kth chain complex is ĈM [ξ∗](S
1 × S2, sξ + 1, qf ) = Z/2Z〈â−1〉. The cobordism Ik

induces a chain map

m̂k : ĈM ∗(S
1 × S2, sξ + 1, qf )→ ĈM ∗(S

1 × S2, sξ + 1, qλ)

16Both a−1 and b0 belong to the same absolute grading in J(S1 × S2, sξ + 1) because their Z-grading
difference is gr[a−1, b0] = 0 (see [33, Equation 16.9, Equation 36.1]).
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which is a quasi-isomorphism (and the isomorphism on homology is canonical, see [33, Corol-
lary 23.1.6]). In grading [ξ∗] it is given by

zâ−1 7→ z
∑

ck∈[ξ∗]

Mk
ck ĉ

k

where z ∈ Z/2Z and Mk
ck

denotes the count of points in the 0-dimensional moduli space
M(a−1, Ik, ck; sξ + 1). Thus I induces the chain map

m̂ =
N⊗
k=1

m̂k :
N⊗
k=1

ĈM ∗(S
1 × S2, sξ + 1, qf )→

N⊗
k=1

ĈM ∗(S
1 × S2, sξ + 1, qλ)

which is also a quasi-isomorphism, and in grading N [ξ∗] it sends â−1 to
∑

c∈N [ξ∗]
Mcĉ because

Mc =
∏N

k=1 Mk
ck

(the index c ∈ N [ξ∗] here means that ck ∈ [ξ∗] for all k). Since [m̂(â−1)] is

the positive generator of
⊗N

k=1 ĤM [ξ∗](S
1×S2, sξ + 1) ∼= Z/2Z, the near-symplectic Gromov

invariant is the evaluation of the SW cocycle ΦSW ∈
⊗N

k=1 ĈM
[ξ∗]

(S1× S2, sξ + 1, qλ) at the
cycle m̂(â−1),

GrX,ω(s)
(
[η1] ∧ · · · ∧ [ηp]

)
= ΦSW

 ∑
c∈N [ξ∗]

Mcĉ

 =
∑

c∈N [ξ∗]

McMc ∈ Z/2Z

This number is precisely that in (2.32), so the proof is complete.

Remark 2.7.3. Equivalently, because the chain map m̂k is a quasi-isomorphism, we know
that the cochain map in grading [ξ∗]

m̂∗k : ĈM
[ξ∗]

(S1 × S2, sξ + 1, qλ)→ ĈM
[ξ∗]

(S1 × S2, sξ + 1, qf ), c 7→ c ◦ m̂k

is also quasi-isomorphism. Then GrX,ω(s)
(
[η1] ∧ · · · ∧ [ηp]

)
is equal to the evaluation of

m̂∗(ΦSW ) at the cocycle a−1.

Lemma 2.7.4. For sufficiently small perturbations pN and qf , the moduli spaces M(∅, S1×
B3, ai; s) and M(∅, S1×B3, bi; s) are empty for i ≥ 0. The moduli space M(∅, S1×B3, a−i; s)
has dimension 2i − 2 for i ≥ 1, such that M(∅, S1 × B3, a−1; s) is a point, and the moduli
space M(∅, S1 ×B3, b−i; s) has dimension 2i− 1 for i ≥ 1.

Proof. We mimic the analogous proof for a 4-ball B4, given by [33, Lemma 27.4.2]. The
key point is that both S1 × B3 and B4 have metrics of positive scalar curvature and have
trivial 2nd (co)homology. We have already discussed the qσf -perturbed SW solutions over
(S1 × S2, sξ + 1) at the beginning of Theorem 2.7.1, and we continue to use that notation.
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With respect to the unperturbed SW equations (without blowing up) over S1 ×B3,
there are no solutions with nonzero spinor Φ that decay to zero on the cylindrical end
[0,∞)× S1 × S2 because the scalar curvature is positive (see the integration-by-parts trick
of [33, Proposition 4.6.1]). For pN sufficiently small the reducible solutions persist and are
asymptotic to α = [Aα, 0] or β = [Aβ, 0].

Now, the restriction of a reducible solution d ∈ M(∅, S1 × B3, ai; s) to the cylindrical
end is a path

ď(t) = [Aa, 0, ψ(t)]

satisfying ψ(t) → ψi, where ai = [Aα, 0, ψi]. Following the argument of [33, Proposition
14.6.1], we would then obtain a nonzero solution to the perturbed Dirac equation on S1 ×B3

with asymptotics Ce−λitψi (nonzero constant C) as t→∞ on the cylindrical end. If λi > 0
then we just argued that such spinors cannot exist, so M(∅, S1 × B3, ai; s) is empty. If
λ−i < 0 then, as in [33, Proposition 14.6.1], such spinors with growth bound Ce−λ−it have
the form

∑−1
k=−i cke

−λktψk on the cylindrical end. Thus dimM(∅, S1×B3, a−i; s) = 2(i− 1)
and M(∅, S1 ×B3, a−1; s) is a single point.

On the other hand, the restriction of a reducible solution d ∈M(∅, S1×B3, bi; s) to the
cylindrical end is a path

ď(t) = [A(t), 0, ψ(t)]

with A(t) a trajectory lying over a Morse flowline of f on T ⊂ B(S1 × S2, sξ + 1) and
asymptotic to Aβ. We compute dimM(∅, S1×B3, b−i; s) for i ≥ 1 indirectly, thanks to the
formal dimension formula

dimM(∅, S1 ×B3, b−i; s) = dimM(∅, S1 ×B3, a−i; s) + gr[a−i, b−i]

given by [33, Proposition 24.4.6]. Since gr[a−i, b−i] = indf (α)− indf (β) = 1, the dimension
of M(∅, S1×B3, b−i; s) must be 2(i− 1) + 1. Finally, by [33, Proposition 24.4.3] we see that
M(∅, S1 × B3, bi; s) must be empty for i ≥ 0 because bi is boundary-stable and there are
no irreducible SW instantons on S1 ×B3.

Remark 2.7.5. Mrowka mentioned to the author the following heuristic, which can be made
precise. The holonomy map

hol : M(X, s)→
N∏
k=1

U(1)

along the N zero-circles of ω is cobordant to the restriction map

res : M(X0, ss)→
N∏
k=1

Bred(S1 × S2, sξ + 1)

where M(X0, ss) is the moduli space of SW solutions to the unperturbed equations on X0

without blowing up. The cobordism is defined by “stretching the neck,” and we identify
Bred(S1 × S2, sξ + 1) with U(1) by taking the holonomy of a flat connection along the S1-
factor of S1 × S2.
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2.8 Appendix – some explanation to Taubes’ analysis

This paper can be viewed as a sort of amalgam of [55] and [63]. There was a complicated
feature of [63] that did not arise in [55], and a complicated feature of [55] that did not arise in
[63], and both features appeared in this paper. Namely, the multiply covered tori in [63] had
to be delicately counted and the map to the Seiberg-Witten moduli space required the use
of Kuranishi structures, and R-invariance in [55] played a complicating role for the analysis
associated with non-R-invariant holomorphic curves. This latter complication came from the
existence of multiple ends of a curve hitting the same orbit, or a single end hitting an orbit
with multiplicity. An elaboration is given in [55, §5.c.1], and a slightly different elaboration
is given below.

In the compact scenario, in order to build a Seiberg-Witten solution from a pseudoholo-
morphic curve C with n ends approaching a single orbit γ, an n-vortex solution is “grafted”
into the normal bundle NC , and a disk-subbundle of NC is embedded into the ambient 4-
manifold. In the noncompact scenario, that means a 1-vortex solution would be “grafted”
into NC for each end of C, but to ensure embeddedness of a disk-subbundle the radii of
the fibers would need to get smaller as γ is approached. Subsequently, the Dirac operator
of the corresponding spinor would involve derivatives of the radial coordinate of the fibers,
ultimately preventing us from getting the appropriate bounds on the spinor needed to obtain
a nearby Seiberg-Witten solution.

To resolve this issue, a 1-vortex solution is not “grafted” into NC for each of its n ends.
Instead, consider the normal bundle NR×γ of the cylinder R × γ. Then NC and NR×γ are
“nearby” to each other along the ends of C and R× γ, and objects defined on them can be
compared using cutoff-functions and a change of variables. Over a point in the cylinder, the
curve hits the disk-fiber in n points, and an n-vortex solution is “grafted” into NR×γ whose
zeros are those n points. This solution is then compared to the would-be solution from the
original approach, and seen to be approximately the same except for the worry of varying
radial coordinates.

This approach is inspired by the following fact in vortex theory: Given two 1-vortices
spaced far apart in R2 and one 2-vortex in R2 whose zeros are located at the two 1-vortices,
the difference between the pair of 1-vortices and the single 2-vortex is exponentially small
with respect to the distance between the two 1-vortices.
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Chapter 3

“Riemann-Roch” for punctured
curves

In [54], Taubes proved the Riemann-Roch theorem for compact Riemann surfaces, as a
by-product of taking clever perturbations of the Cauchy-Riemann operator in order to define
his Gromov invariant for pseudoholomorphic curves. We will do the same for noncompact
surfaces, that is, we will recover the formula for the Fredholm index of a Cauchy-Riemann
operator that is asymptotic to nondegenerate asymptotic operators. What follows is a sketch.

Acknowledgements. The main idea stems from a chat with Cliff Taubes on how to extend
his transversality results from closed symplectic manifolds to symplectic cobordisms, and
builds off of related work with Chris Wendl on closed symplectic manifolds [10]. I appreciate
them and their inspiration. Subsequently, a detailed version of this result (with a different
style) now appears in Chris Wendl’s book on Symplectic Field Theory [78, §5].

3.1 Setup

Suppose that C is a connected Riemann surface with punctures, and that E → C is a
holomorphic line1 bundle with fixed trivialization τ near the punctures. Compactify C so
that the neighborhood of the punctures are modeled on [0,∞)× S1, and for each puncture
denote the corresponding circle by γ. Take a Cauchy-Riemann type operator

D : Γ(E)→ Γ(T 0,1C ⊗ E)

with its asymptotic operators
Aγ : Γ(γ∗E)→ Γ(γ∗E)

for all punctures. With respect to τ : γ∗E
∼=→ S1×C the asymptotic operator takes the form

Aγ = i∂t + Aγ(t)

1The technique also works for higher rank bundles: take determinants and use the Splitting Lemma.
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where Aγ(t) is a smooth loop of symmetric matrices. Assume all asymptotic operators are
nondegenerate (0 is not an eigenvalue) so that D is a Fredholm operator.

Example 3.1.1. In practice, C is a pseudoholomorphic curve in a 4-dimensional symplectic
cobordism between contact 3-manifolds, with punctures asymptotically approaching non-
degenerate Reeb orbits. Here, E is its normal bundle and D is the (normal) deformation
operator.

Theorem 3.1.2 (Schwarz [49]). The Fredholm index of D is given by

ind(D) = χ(C) + 2c1(E, τ) +
∑
γ

CZτ (Aγ)

where CZτ (Aγ) is the Conley-Zehnder index and c1(E, τ) is the relative 1st Chern class.

Here is an outline of a novel proof of the index formula, using analytic perturbation
theory as in [32]:

1) Construct an “L-flat approximation” for all Aγ, i.e. a suitably nice asymptotic operator
which Aγ is homotopic to, such that ind(D) doesn’t vary.

2) Prove ind(D) = ind(D+B) for some B ∈ Γ(T 0,1C⊗E2) whose winding number along
the ends of C with respect to τ satisfies windτ (Bγ) = CZτ (Aγ).

3) Prove ind(D + rB) = #B−1(0) by taking sufficiently large r ∈ R+, this being a
concentration principle.
We put these steps together, noting that

#B−1(0) = c1(T 0,1C ⊗ E2, τ) + windτ (B)

by definition, to get

ind(D) = c1(T 0,1C, τ) + 2c1(E, τ) +
∑
γ

windτ (Bγ) = χ(C) + 2c1(E, τ) +
∑
γ

CZτ (Aγ)

The proof of (1) is given in [55, Appendix]. The proof of (3) is a regurgitation of [54, §7],
because the argument is local in nature. A new contribution is (2), which did not arise in
[54] because there were no punctures (hence no asymptotic constraints).

Remark 3.1.3. The Riemann-Roch formula for the case of closed Riemann surfaces follows
by additivity of the Fredholm index with respect to gluing the punctured surfaces at their
cylindrical ends. The Riemann-Roch formula can be recasted in the following form: the index
equals twice the degree of the bundle plus the Euler characteristic of the surface. When we
introduce punctures, the definition of the degree (as a relative 1st Chern class) requires some
choice of trivialization of the bundle along the ends of the surface, and a different choice
might change the degree. To get an invariant, a ‘boundary correction’ term is needed to
compensate – this is the Conley-Zehnder index.

Remark 3.1.4. In using the Conley-Zehnder index, we will suppose the circles γ are non-
degenerate (possibly multiply covered) Reeb orbits.
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3.2 L-flat approximation

The point here is to reduce everything WLOG to the case that our Fredholm operator
D has asymptotic operators with “nice” explicit descriptions, so that we can do hands-on
computations in the subsequent section. As explained in [55, Appendix], there is a homotopy
through nondegenerate operators (with fixed Conley-Zehnder index) from a given asymptotic
operator Aγ to an L-flat asymptotic operator. The notion of L-flatness is explained in
Section 1.2. The homotopy extends to a homotopy of Fredholm operators of constant index
from D to a Cauchy-Riemann type operator with L-flat asymptotics, and we abuse notation
by denoting the resulting operator D with asymptotic operators {Aγ}.

We fix L greater than the symplectic action of γ. We also fix the trivialization τ so that
the Conley-Zehnder indices are as specified in Section 1.2. For multiply covered orbits we
can pull back the asymptotic operator of the underlying embedded orbit, so we assume γ
is embedded. The result of how an L-flat Aγ(t) acts on η(t) ∈ Γ(γ∗E) is given as follows
(see[55, Lemma 2.3]):

(1) If γ is an embedded elliptic orbit (irrational rotation number θ) then

η 7→ θ η

(2) If γ is an embedded positive hyperbolic orbit (rotation number 0) then for some
sufficiently small positive constant ε.

η 7→ εi η̄

(3) If γ is an embedded negative hyperbolic orbit (rotation number 1) then for some
sufficiently small positive constant ε

η 7→ 1

2
η + εieitη̄

3.3 Spectral flow for the perturbed asymptotic

operator

This section prescribes the asymptotic limits (with respect to the fixed trivialization τ)
of the desired section B ∈ Γ(T 0,1Σ ⊗ E ⊗ E). All asymptotic operators are assumed to
be L-flat from now on. The nonzero complex numbers C∗ will be identified as a subset of
GL2(R) via a+ bi 7→

(
a −b
b a

)
.

The perturbed operator
Dr := D + rB

will remain Fredholm of constant index for all r ∈ R if and only if each perturbed asymptotic
operator

Aγ,r := Aγ + rBγ(t)

remains nondegenerate. In other words, Aγ,r must not have any spectral flow as a function
of r.
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Theorem 3.3.1. Aγ,r has no spectral flow if and only if windτ (Bγ) = CZτ (Aγ), with the
additional constraint that Bγ(0) /∈ iR when γ is a positive hyperbolic orbit or an even cover
of a negative hyperbolic orbit.

Proof. As the focus is now on a single asymptotic operator, the subscript γ will be dropped.
The Reeb orbit γ is an m-fold cover of some embedded orbit α, and is parametrized by
t ∈ R/2πmZ. Note that the perturbed asymptotic operators act on complex-valued sections
η(t) ∈ L2

1(R/2πmZ,C), and the study of Aγ reduces to the study of Aα by pull-back via
R/2πmZ→ R/2πZ.

Suppose α is elliptic with rotation number 0 < θ < 1. Then CZτ (γ) = 2bmθc+ 1 and

A(t) · η(t) =

(
θ 0
0 θ

)
η(t) = θ η(t).

We may assume that B satisfies windτ (Bγ) = n ∈ Z and takes the form

B(t) · η(t) = B0e
int/mη̄(t), B0 ∈ C∗.

We now look for solutions to Arη = 0. This first-order complex differential equation is

i
dη

dt
+ θη + rB0e

int/mη̄ = 0.

Use the Fourier expansion η(t) =
∑

k∈Z ake
ikt/m and compare modes to obtain the recurrence

relation

(θ − k

m
)ak + rB0ān−k = 0.

Swapping k → n − k gives another recurrence relation (concerning the same coefficients ak
and an−k), and these two relations combine to give the constraint

r2 =
1

|B0|2
(θ − k

m
)(θ − n− k

m
).

If r2 > 0 then there is spectral flow, and if r2 < 0 then there is no spectral flow. Indexing
over l ∈ {0, . . . ,m− 1}, suppose l

m
< θ < l+1

m
, so that CZτ (γ) = 2l + 1. If n ≥ 2l + 2 then

there is spectral flow (choosing k = l+ 1) because (θ− k
m

) and (θ− n−k
m

) are both negative.
If n ≤ 2l then there is spectral flow (choosing k = l) because (θ− k

m
) and (θ− n−k

m
) are both

positive. If n = 2l + 1 then there is no spectral flow because (θ − k
m

) and (θ − n−k
m

) are of
opposite sign for any k (if k ≤ l then n−k

m
≥ l+1

m
, and if k ≥ l + 1 then n−k

m
≤ l

m
). We’re

done.

Suppose α is positive hyperbolic with rotation number 0. Then CZτ (γ) = 0 and

A(t) · η(t) =

(
0 ε
ε 0

)
η(t) = εi η̄(t)
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for ε ∈ R+ small. Again we may assume that B satisfies windτ (Bγ) = n ∈ Z and takes the
form

B(t) · η(t) = B0e
int/mη̄(t), B0 ∈ C∗.

The first-order complex differential equation to solve is now

i
dη

dt
+ (rB0e

int/m + εi)η̄ = 0.

Use the Fourier expansion η(t) =
∑

k∈Z ake
ikt/m to obtain the recurrence relation

−k
m
ak + rB0ān−k + εiā−k = 0.

There is spectral flow when n 6= 0 (see Appendix 3.5), but when n = 0 the recurrence relation
contradicts itself (unless B0 is purely complex). Indeed,

−k
m
ak + (rB0 + εi)ā−k = 0

which by swapping k → −k gives another recurrence relation (concerning the same coeffi-
cients ak and a−k), and these two relations combine to give the constraint

|B0|2r2 + (B̄0 −B0)εir + ε2 = − k
2

m2
.

This is never satisfied unless B0 = b0i (where b0 ∈ R∗) and k = 0, in which case r = − ε
b0

(hence η(t) = 1 is in the kernel). We’re done.

Suppose α is negative hyperbolic with rotation number 1. Then CZτ (γ) = m and

A(t) · η(t) =
1

2
η(t) + εieitη̄(t)

for ε ∈ R+ small. Again we may assume that B satisfies windτ (Bγ) = n ∈ Z and takes the
form

B(t) · η(t) = B0e
int/mη̄(t), B0 ∈ C∗.

The first-order complex differential equation to solve is now

i
dη

dt
+

1

2
η + (rB0e

int/m + εieit)η̄ = 0.

Use the Fourier expansion η(t) =
∑

k∈Z ake
ikt/m to obtain the recurrence relation

(
1

2
− k

m
)ak + rB0ān−k + εiām−k = 0.
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There is spectral flow when n 6= m (see Appendix 3.5), but when n = m the recurrence
relation contradicts itself (unless B0 is purely complex and m is even). Indeed,

(
1

2
− k

m
)ak + (rB0 + εi)ām−k = 0

which by swapping k → m − k gives another recurrence relation (concerning the same
coefficients ak and am−k), and these two relations combine to give the constraint

|B0|2r2 + (B̄0 −B0)εir + ε2 = −(
1

2
− k

m
)2.

This is never satisfied unless B0 = b0i (where b0 ∈ R∗) and k = m
2

with m even, in which
case r = − ε

b0
(hence η(t) = eit/2 is in the kernel). We’re done.

3.4 Localization argument

Using homotopy theory (i.e. obstruction theory), we can extend the choices of Bγ given
in Theorem 3.3.1 to a global B ∈ Γ(T 0,1C ⊗E2) having nondegenerate zeros. Note that the
zeros are bounded away from the punctures due to the existence of the trivialization τ .

Theorem 3.4.1. For r >> 0 and B as above, ind(D + rB) = #B−1(0).

Proof. Using a sequence of cutoff functions to invoke a noncompact version of Stokes’ the-
orem, there is a Bochner-Weitzenböck formula for ||Dη + rBη̄||2 in terms of the quantities
r2
∫
C
|Bη̄|2 and rR

∫
C
∂B · η̄2 (here, R means the real part). The same localization argument

as in [54, §7] shows that the positive zeros of B contribute to the kernel of D + rB for
sufficiently large r ∈ R+, while the negative zeros of B contribute to the cokernel. Roughly
speaking, the support of any sequence ηr ∈ Ker(D+rB) must concentrate near the (positive)
zeros of B. The result follows.

Remark 3.4.2. This proof hinges on the asymptotic behavior of the perturbation object
B. If B had compact support or exponentially decayed to zero at the punctures of C, we
could have a sequence {(ηr, r)} ∈ Γ(E)⊕ R+ with ηr ∈ Ker(D + rB) and r →∞ such that
supC(ηr) “runs away” towards the punctures.

3.5 Appendix

We supply the missing computation in Section 3.3 but only in the case that γ is an
embedded positive hyperbolic orbit and the perturbation is Bγ(t) = eit (so n = m = B0 = 1),
because the other cases are handled in the same way. Solving for the kernels of the perturbed
asymptotic operators Aγ,r is equivalent to solving the following 1st order complex differential
equations for smooth functions η : R/2πZ→ C− {0} defined on the circle,

i
∂η

∂t
+ (reit + εi)η̄ = 0
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where ε ∈ R+ is sufficiently small and fixed and r ∈ R+ is a nonzero positive real parameter.
We would like to find the set of all such r for which Ker Aγ,r 6= ∅, as well as dimR Ker Aγ,r,
though it suffices to prove the existence of one such r.

There are at least three ways to do this. The result is a unique solution to Aγ,rη = 0
which occurs around r ≈

√
ε. Two methods are given in a MathOverflow post [17]. We now

give the third method:
When γ is a hyperbolic orbit, the perturbed asymptotic operator Aγ,r has trivial kernel

when r = 0 and r = r∗ >> 0 (use the Bochner-Weitzenböck formula to see this). The
Conley-Zehnder index is a Z-valued invariant of homotopy classes of such operators, and the
net spectral flow of r ∈ [0, r∗] 7→ Aγ,r is

CZτ (Aγ,r∗)− CZτ (Aγ) = windτ (Bγ)− CZτ (γ)

Thus when windτ (Bγ) 6= CZτ (γ) there must exist at least one r > 0 for which Ker Aγ,r 6= 0.
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