ACAT-2021 IOP Publishing
Journal of Physics: Conference Series 2438(2023) 012030 doi:10.1088/1742-6596/2438/1/012030

Distributed file systems performance tests on
Kubernetes/Docker clusters

Federico Fornari', Alessandro Cavalli', Daniele Cesini!, Antonio
Falabella', Enrico Fattibene!, Lucia Morganti', Andrea Prosperini
and Vladimir Sapunenko!

! CNAF - Ttalian Institute for Nuclear Physics, Bologna, Italy

1

E-mail: federico.fornari@cnaf.infn.it

Abstract. Modern data centers need distributed file systems to provide user applications with
access to data stored on a large number of nodes. The ability to mount a distributed file system
and leverage its native application programming interfaces in a Docker container, combined with
the advanced orchestration features provided by Kubernetes, can improve flexibility in installing,
monitoring and recovering data management and transfer services. At INFN-CNAF some
distributed file systems (i.e. IBM Spectrum Scale, CephFS and Lustre-ZFS) deployment tests
with Kubernetes and Docker have been conducted recently with positive results. The purpose
of this paper is to show the throughput scores of the previously mentioned file systems when
their servers are containerized and run on bare metal machines using a container orchestration
framework. This is a preliminary study: for the time being, only sequential read/write tests
have been considered.

1. Introduction

INFN-CNAF is one of the Worldwide LHC Computing Grid (WLCG) Tier-1 data center,
providing computing, networking and storage resources to a wide variety of scientific
collaborations, ranging from particle physics to bioinformatics to industrial engineering.
Containerization technologies leverage isolation and resource limitation to improve physical
CPU and memory utilization by running services, while container orchestration tools can ease
service management in a distributed environment providing features like automation and failover.
Therefore, the aim of this work is to analyze the performances of file systems managed and
exported by containerized clusters deployed with Docker [1] and Kubernetes [2]. A suitable
testbed, providing computing and networking resources through bare metal machines, has been
exploited to verify cluster performances and stability, allowing to compare the behavior of
different distributed file systems. For a comparison between throughput results obtained with
containerized and non-containerized file systems deployed on virtual machines, see [3].

2. Methodology

The testbed cluster consists of 8 16-core Intel Xeon nodes (CPU E5-2609 v4 @ 1.70 GHz) with a
total amount of 320 CPUs and 1.5 TB RAM; 4 nodes have been designated as clients and 4 have
been configured as servers. Network communication between nodes is ensured by two 10 Gbit/s
interfaces coupled with bonding. Each of the 8 nodes is provided with 30 8-TB rotating disks

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
BY of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOIL.
Published under licence by IOP Publishing Ltd 1

ACAT-2021 IOP Publishing
Journal of Physics: Conference Series 2438(2023) 012030 doi:10.1088/1742-6596/2438/1/012030

belonging to JBODs connected via Serial Attached SCSI interface. The cluster provides access
to production storage exposed with Ceph, comprising a total number of 240 disks, corresponding
to an overall raw storage space of about 2 PB. The OS installed on the nodes is CentOS 7.7.

The same kind of deployment has been replicated using three different distributed file systems:
IBM Spectrum Scale [4] (formerly GPFS), CephF'S (the Ceph [5] POSIX-compliant file system)
and Lustre [6] with ZFS backend. Three disks per node have been used for the Kubernetes-
managed distributed file systems to be tested: on each of the 4 servers, one disk has been assigned
to GPFS, one to Ceph and one to Lustre. The distributed file systems have been configured
in separated Kubernetes namespaces and the tests have been executed on one file system at a
time. All the containers have been deployed using Docker 20.10.1 and Kubernetes 1.20.1.

Concerning GPFS (IBM Spectrum Scale 5.0.5-2) cluster deployment, Figure 1 illustrates the
setup. It comprises 4 containerized servers deployed on nodes 5 to 8, and 4 containerized clients
on nodes 1 to 4, mounting the file system to perform read/write tests. Each GPFS server has
a 8-TB disk attached and configured as network shared disk (NSD) and a replica 2 file system
has been created over the NSDs.

ARCHITECTURE: KUBERNETES GPFS CLUSTER ARCHITECTURE: KUBERNETES CEPH CLUSTER

QUORUM QUORUM QUORUM ANAGER CEPH CEPH CEPH CEPH
MANAGER MANAGER MANAGER SERVER SERVER SERVER SERVER
NODE 5 NODE 6 NODE 7 NODE 8 NODE 5 NODE 6 NODE 7 NODE 8

GPFS SERVER GPFS SERVER GPFS SERVER GPFS SERVER CEPH MON/MGR CEPH MON/MGR CEPH MDS CEPH MON/MGR

K8S POD/ K8S POD/ K8S POD/ K8S POD/ K8S POD/ K8S POD / K8S POD/ K8S POD/

DOCKER CONT. DOCKER CONT. DOCKER CONT. DOCKER CONT. DOCKER CONT. DOCKER CONT. DOCKER CONT. DOCKER CONT.
Q‘L’NS[N (L‘gilusnz Nsoa‘éil]? Nsp4<£i£' 'j-l[:)OSD1 'ii’l»osoz osogiill:) os[)4(=ig,=>
— — — — — — — —
— — -— — — -— —] —
L — -— T L — L —

—

REPLICA 2
FILESYSTEM

REPLICA 2 CEPHFS

GPFS CLIENT GPFS CLIENT GPFS CLIENT ‘GPFS CLIENT CEPH CLIENT CEPH CLIENT CEPH CLIENT CEPH CLIENT
K8S POD/ K8S POD/ K8S POD/ K8S POD/ K8S POD/ K8S POD / K8S POD/ K8S POD/
DOCKER CONT. DOCKER CONT. DOCKER CONT. DOCKER CONT. DOCKER CONT. DOCKER CONT. DOCKER CONT. DOCKER CONT.
NODE 1 NODE 2 NODE 3 NODE 4 NODE 1 NODE 2 NODE 3 NODE 4
. .
Figure 1. GPFS cluster setup. Figure 2. Ceph cluster setup.

ARCHITECTURE: KUBERNETES LUSTRE CLUSTER

VQLU_IAE
E L8 TB)
NODE 5/ I
NODE 7

] Q METADATA SERVER 0BJ. STOR. SERVER
@ <~ K8SPOD/ le—————— K8SPOD/ — @
] DOCKER CONT. DOCKER CONT. y p

LUSTRE CLIENT
K8S POD /
DOCKER CONT.

LUSTRE
DRBD LUSTRE

2Fs prak DRBD
u— NODE 6/ —
— NODE 8 —

LUSTRE CLIENT

K8s POD/
DOCKER CONT.

Figure 3. Lustre cluster setup.

ACAT-2021
Journal of Physics: Conference Series

IOP Publishing
2438(2023) 012030 doi:10.1088/1742-6596/2438/1/012030

In Figure 2 a schematic view of the Ceph Nautilus (14.2.10) cluster with containerized servers
is reported. The cluster has been configured and started using customized Kubernetes Helm
Charts [7]. The 4 servers have been distributed in the following way: 3 cluster nodes (nodes 5,
6 and 8) host Ceph monitor and manager services, while the CephF'S metadata server has been
instantiated on node 7. Each server has a Ceph Object Storage Device (OSD) configured on a
8-TB disk. A CephFS replica 2 file system has been created over the OSDs, and 4 client Pods,
mounting the file system to perform read/write tests, have been started on nodes 1 to 4.

The Lustre Kubernetes cluster has been setup implementing replica 2 data redundancy using
Distributed Replicated Block Device [8] (DRBD) and deploying 4 servers: 2 Object Storage
Servers (OSSs) and 2 Metadata Servers (MDSs). Figure 3 shows that 2 OSS Pods have been
configured on nodes 5 and 7 to use 8-TB disks replicated respectively on nodes 6 and 8 via
DRBD, and the same procedure has been adopted to setup 2 MDS Pods on nodes 1 and 3,
using two 8-TB DRBD-coupled disks. 4 client Pods have been started on each of the 4 cluster
nodes configured for the 2 MDSs. The Lustre version selected for the setup is 2.12.4, following
compatibility matrix with CentOS 7.7 kernel version.

The tests have been carried out with iozone [9], alternating sequential write and read
operations on binary files with increasing size from 4 to 32 GB, involving a number of parallel
threads equally increasing from 4 to 32, in order to write and read 1 TB data at maximum
(32 parallel threads reading/writing 32 GB files). iozone has been configured to distribute the
execution of the processes over the 4 client Pods via ssh.

3. Results

Table 1 illustrates typical read and write throughput for a single GPFS NSD server, showing
an average throughput during reading phases which is around 150 MB/s for each of the servers.
During writing phases, a single NSD server throughput averages on about 180 MB/s. iozone
surface plots in Figure 5.a reveal that on client side the total average read throughput is about
650 MB/s, while total write throughput reaches about 360 MB/s.

Average read and write throughput for a single server during the 32 GB files phase of the
test are presented in Figure 4. Average write throughput seen over the entire test for each Ceph
OSD is around 1 Gbit/s, as shown in Table 1. iozone surface plots in Figure 5.b testify huge
throughput values on client side, especially for read operations.

Table 1 shows that the average write throughput for a typical Lustre Object Storage Server is
140 MB/s, while average read throughput is around 160 MB/s. iozone surface plots for Lustre
(Figure 5.c) are pretty similar to Ceph ones, with very high throughput on client side, especially
for read operations.

Distributed File System

Average Read (MB/s)

Average Write (MB/s)

GPFS
Ceph
Lustre

153
85
158

178
122
140

Table 1. Average throughput for each distributed file system, measured for one of the 4 servers,
over the entire test.

4. Discussion

The aggregated average write throughput of the 4 GPFS NSD servers is around 700 MB/s,
roughly corresponding to 6 Gbit/s. Such throughput value is in accordance with expected
performance for a single rotating disk connected via 6Gb SAS interface: the sustained transfer

ACAT-2021 IOP Publishing
Journal of Physics: Conference Series 2438(2023) 012030 doi:10.1088/1742-6596/2438/1/012030

AVERAGE SERVER THROUGHPUT (File Size = 32 GB)

£ ‘ ~+GPFS READ
2 20 7 \/ *\‘

=) GPFS WRITE
a 100 « -

T -+CEPH READ

9 80

3 CEPH WRITE
& 60 ~ ~LUSTRE READ
= 40 — --LUSTRE WRITE

4 8 16 32
NUMBER OF THREADS

Figure 4. Distributed file systems server throughput, measured for one of the 4 servers, with
32 GB files.

rate specified by the vendor is generally around 200-250 MB/s per rotating disk. No evident
cache effects are detectable on GPFS clients, as visible in Figure 5.a. GPFS is provided with
a client-side cache design: the cache is kept in a dedicated and pinned area of each application
node’s memory called the pagepool, which is 1 GB by default.

The data reported in Figure 4 for Ceph OSD throughput does not include read throughput
outliers due to strong cache effects. However, considering the case of 32 threads, where total
amount of read/written data reaches 1 TB (which is 4 times larger than a single server RAM), a
read throughput around 1 Gbit/s shows up, and this occurs for all the OSD servers. This
is expected behavior by iozone, since it caches blocks or files, and does not wait for the
storage system to acknowledge that a write is fully committed before moving on. If the size
of read/written data gets sensibly higher than the server’s RAM size, cache effects are ruled
out. As a matter of fact, Figure 5.b shows that the average Ceph client throughput in the region
of big files (> 16 GB) vs. many threads (> 16) gets back to a range of values similar to GPFS
ones, standing between 300 and 400 MB/s.

Lustre shows the effects of caches with small files similarly to Ceph. On client side, big files
(> 16 GB) vs. many threads (> 16) region in Figure 5.c shows average throughput values going
down towards the expected range of values, around 300-400 MB/s.

5. Conclusions
Some conclusions can be drawn about containerized distributed file system clusters.

The 3 file systems have manifested good stability during the execution of our tests. This has
been a preliminary study: only sequential read/write operations have been run. The presented
data allows to determine that GPFS guarantees the highest read/write throughput on server
side and the minimum cache effects on client side. Although dominated by cache contributions
during small files read /write operations, Ceph and Lustre show to resemble GPFS performances
when total amount of read /written data gets significantly higher than a server’s RAM. Focusing
on single servers, Lustre shows higher average throughput than Ceph. In our tests, Lustre
servers have achieved half the overall throughput with respect to Ceph and GPFS, since Lustre
data replication has been implemented with DRBD.

The main result of our work has been to successfully verify that Kubernetes can be used
to efficiently manage distributed file systems installation and operability, with good level of
performances regardless of the specific file system type.

ACAT-2021 IOP Publishing

Journal of Physics: Conference Series 2438(2023) 012030 doi:10.1088/1742-6596/2438/1/012030

a)

670

GPFS READ THROUGHPUT (I0ZONE) GPFS WRITE THROUGHPUT (IOZONE)

5 660
g 650
P
2
] 640
ES
] 630
2 o g g
] 3
610 1 g g
4 = =
8
16 32 16 32
32 32
FILE SIZE (GB) FILE SIZE (GB)
b) CEPH READ THROUGHPUT (I0ZONE) CEPH WRITE THROUGHPUT (I0ZONE)
8000
E 70000 E‘ 7000
o 60000 =) 6000
E 50000 g
= = 5000
= 40000 =2
a o 4000
g oo g
2 20000 4 3 3000
[=] [=]
£ 10000 « &£ 2000 a
E o a E 1000 S
3
= 0 [
= -
* *
Physical Bandwidth s 32
Limit = 4 x 20 Gbit/s g 76 () FILE SIZE (GB)
C) LUSTRE READ THROUGHPUT (IOZONE) LUSTRE WRITE THROUGHPUT (I0ZONE)
1200
5 /0000 —
@ 60000 2 w000
E 50000 2 800
P 2
2 40000 5
& 30000 600
o 20000 4 S e
& 10000 » 2 “»
[o 3 E 20 g
2 2
.
=
16
Physical Bandwidth 2

Limit = 4 x 20 Gbit/s g¢ 576 (as)

FILE SIZE (GB)

Figure 5. Read and write throughput as measured with iozone benchmark for GPFS (a),
Ceph (b) and Lustre (c) file systems.

References

[1]
2]
3]
[4]
[5]
[6]
7]
8]
[9]

https
https
https
https
https
https
https
https
https

://www.docker.com (Last seen: September 2022)

://kubernetes.io (Last seen: September 2022)
://pos.sissa.it/378/020/pdf (Last seen: September 2022)
://www.ibm.com/products/spectrum-scale (Last seen: September 2022)
://ceph.io (Last seen: September 2022)

://wwu.lustre.org (Last seen: September 2022)
://github.com/ffornari90/ceph-helm (Last seen: September 2022)
://www.drbd.org (Last seen: September 2022)

://wwu.iozone.org (Last seen: September 2022)

