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Abstract We use the framework of asymptotically safe
quantum gravity to derive predictions for scalar leptoquark
solutions to the b → s and b → c flavor anomalies. The pres-
ence of an interactive UV fixed point in the system of gauge
and Yukawa couplings imposes a set of boundary conditions
at the Planck scale, which allows one to determine low-
energy values of the leptoquark Yukawa matrix elements.
As a consequence, the allowed leptoquark mass range can
be significantly narrowed down. We find that a consistent
gravity-driven solution to the b → s anomalies predicts a
leptoquark with the mass of 4–7 TeV, entirely within the
reach of a future hadron-hadron collider with

√
s = 100 TeV.

Conversely, in the case of the b → c anomalies the asymptot-
ically safe gravity framework predicts a leptoquark mass at
the edge of the current LHC bounds. Complementary signa-
tures appear in flavor observables, namely the (semi)leptonic
decays of B and D mesons and kaons.

1 Introduction

Recent years have seen substantial development in the field
of asymptotically safe quantum gravity [1–14]. An ambitious
program has emerged around the fact that graviton fluctua-
tions induce in the trans-Planckian regime universal contri-
butions to the renormalization group (RG) running of matter
couplings [15–30] that can be calculated via the functional
renormalization group [31]. It has also been established that,
given the matter content of a certain theory under study, at
the energy scale where gravity is not negligible the renor-
malization group system of the gravity and matter couplings
can develop a non-trivial (interactive) fixed point [27,32–35].
This feature has important consequences for our understand-
ing of whether a given quantum field theory can be consid-
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ered fundamental. For example, in the standalone Standard
Model (SM) the running of the hypercharge gauge coupling
encounters eventually a Landau pole in the deep ultraviolet
(UV), but the presence of gravitational interactions can tame
its running by antiscreening graviton fluctuations, so that the
gauge coupling remains finite [27,32,33]. Thus, the theory
with a UV fixed point can be non-perturbatively renormaliz-
able.

The important finding that quantum gravity and matter can
feature interactive fixed points in the extreme trans-Planckian
regime has opened the exciting possibility of deriving the
values of the observable quantities of the SM (gauge, Yukawa
and scalar couplings) from first principles [34–37]. The RG
flow of the system, emerging from the UV fixed point, down
to the electroweak symmetry breaking (EWSB) scale along
the UV-safe trajectory, has led in fact to specific predictions
(or postdictions in some cases) for the top Yukawa coupling
[34] and the quartic coupling of the Higgs potential [36]. This
framework was also used to predict the Lagrangian couplings
of a few New Physics (NP) models extending the SM by an
extra U(1) gauge symmetry and a scalar field with portal
couplings [38–42].

In the spirit of the above-cited works, in this paper we try
to investigate whether the embedding in an asymptotically-
safe gravity framework could improve the predictivity of
particular NP models for which some experimental infor-
mation exists, but it is still incomplete and/or not sufficient
to draw a clear direction for future searches that should con-
firm unequivocally the existence of the NP itself and uncover
its properties. A practical example we have in mind has to
do with the so-called flavor anomalies in b → s [43–54]
and b → c [55–64] transitions. These are a set of measure-
ments, reported over the past several years by LHCb and other
experimental collaborations, which suggest to high statistical
significance a departure from the SM predictions of certain
decay amplitudes involving a change of flavor of the par-
ticipating fermions. NP solutions to the flavor anomalies are
usually cast in terms of bounds on certain products of masses
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and couplings, but the current experimental information does
not allow to pinpoint the particular mass scale at which the
NP could be directly observed. An extra piece of theoretical
information, provided for example by specific boundary con-
ditions of the NP Yukawa couplings in the deep UV, could
help to bridge this gap.

In this study we focus on the well known scalar leptoquark
(LQ) solutions to the flavor anomalies (for a review, see, e.g.,
Ref. [65]). Scalar LQs provide a simple, single-field addition
to the SM that, in the first approximation, does not need to
be embedded with care into an additional UV completion
but instead necessitates only of some basic assumptions on
the scalar potential. On the other hand, LQs bring their own
bag of complications to the fixed-point analysis, which we
will discuss in detail in the following sections. First and fore-
most, they are not expected to be flavor-universal and there is
in principle no knowledge of the alignment between the LQ
and SM Yukawa matrices in flavor space. In practice, one can
pick a particular basis for the fixed-point analysis and make
sure that the basis remains well-defined along the entire RG
flow. We will choose to work in the quark mass basis, in which
the SM Yukawa matrices remain diagonal. As a direct con-
sequence, we will treat the Cabibbo–Kobayashi–Maskawa
(CKM) matrix parameters as renormalizable dimensionless
couplings of the Lagrangian and add them to the fixed-point
analysis as was done, e.g., in Ref. [37].

We will show that, if we require consistency with the
neutral-current, b → s flavor anomalies, the information
derived from the trans-Planckian fixed-point analysis leads
to very specific predictions for the mass of the LQ, which
should lie approximately in the 5–10 TeVrange. This places
it outside of the foreseeable reach of the LHC, but well within
the early reach of a 100 TeV hadron machine according to
the most conservative estimates. On the other hand, as the
strength required for a NP contribution to the b → c anoma-
lies is larger than in the neutral current case, our analysis con-
firms the well known fact that the charged-current anomalies
point to new states just above the current sensitivity of the
LHC. In this sense, one does not draw new indications from
the UV completion, but we find it interesting per se that this
kind of solutions can be made consistent with a theoretical
embedding so far unexplored in this context.

The structure of the paper is the following. In Sect. 2 we
give a brief overview of asymptotic safety in quantum grav-
ity and we recall the mathematical setup used for the UV
fixed-point analysis. In Sect. 3 we introduce the scalar LQ
explanation for the b → s flavor anomalies. Subsections are
dedicated to the full fixed-point analysis, a description of
its solutions, and a summary of its low-scale predictions. In
Sect. 4 we provide the full fixed-point analysis, description
of solutions, and summary of low-scale predictions for the
scalar LQ involved in the b → c case. We summarize our
findings in Sect. 5. Some technical details of the LQ models

and of the RG flow analyses are given in Appendix A and
Appendix B.

2 Asymptotic safety from quantum gravity

In the presence of non-negligible gravitational interactions, a
regime expected to be entered while approaching the Planck
scale, the RG flow of matter couplings is modified [15–30,32,
33]. For generic gauge (g) and Yukawa (y) couplings, such
gravity-corrected beta functions are schematically given by

βg = βSM+NP
g − g fg, (1)

βy = βSM+NP
y − y fy, (2)

where βx ≡ dx/d log Q, and the first term on the right hand
side in both equations denotes standard contributions to the
RG running from the SM and NP. The effect of gravitational
interactions, captured by the parameters fg and fy , is uni-
versal in the sense that gravity distinguishes between dif-
ferent types of matter interactions (gauge, Yukawa, scalar
quartic, etc.), while, being blind to the internal symmetries,
does not explicitly depend on the corresponding couplings.
Note that in Eqs. (1) and (2) we neglect possible quantum
gravity effects proportional to higher powers in the matter
couplings.

In the presence of asymptotically safe quantum gravity, the
gravity-induced contributions fg and fy are determined by
both the gravitational dynamics and the matter content of the
coupled theory, whether this is the SM or its NP extension
[21,26,29,30,66]. While the SM and NP contributions are
well defined in a given NP framework, the theoretical status
of the parameters fg and fy is far from being definitively
settled.

It was shown in Ref. [24] that the leading quantum grav-
ity contribution to the gauge coupling beta functions cannot
be negative, irrespective of a chosen RG scheme. In partic-
ular, one can prove that fg = 0 as long as the RG scheme
preserves a certain symmetry of the classical gauge-gravity
Lagrangian, whereas strictly positive values are obtained as
soon as one breaks this symmetry, irrespective of any other
technical choices. Note, from Eq. (1), that a strictly positive
fg is required to enforce asymptotic freedom in the gauge
sector, and in this sense one is inclined to choose an RG
scheme in which the leading non-universal coefficient is non-
zero to be consistent with the low-energy phenomenology.
Conversely, higher-order calculations would be required to
determine the fate of theories with fg = 0. The existence of a
non-trivial combined fixed point in a coupled system of grav-
ity and matter has been confirmed in Ref. [29]. It was shown
there that in such a setup gravity is asymptotically safe, while
the gauge sector asymptotically free (see also Ref. [67] for
an early review).
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The theoretical status of the leading-order gravity correc-
tion fy is less clear. Only a set of simplified models has been
analyzed in the literature in this context [20,21,25,26], but
no general results and definite conclusions regarding the sign
of fy are available. Note, however, that quantum gravity is
indispensable to generate a weakly coupled Yukawa fixed
point [68,69].

Additional unknowns adhere to the issue of how the grav-
ity sector can carry the addition of matter, with large uncer-
tainties that can stem from various sources. The first one is the
choice of truncation of the theory space. In Einstein–Hilbert
truncation only two operators in the scale-dependent effec-
tive action are retained, leading to the gravitational dynamics
being governed exclusively by the Newton and cosmological
constants [2]. Inclusion of higher order interactions enriches
the theory by additional free parameters [5,10,70–72]. Sec-
ondly, within a chosen truncation, the derivation of gravity
contributions to the matter beta functions is cutoff-scheme
dependent [4,73] and various results can differ by up to 50–
60% [66].

For all these reasons, we will follow the approach of Refs.
[34,35,41,42] and treat fg and fy as free parameters whose
specific values will define a particular set of boundary con-
ditions for the SM and NP couplings at the Planck scale,
obtained by following the RG flow of the coupling system
from the UV fixed point. On the other hand, the requirement
of matching the SM parameters onto their experimentally
measured values imposes strong limitations on the allowed
magnitude of fg and fy , where the former is usually deter-
mined by the low-energy hypercharge coupling.

A fixed point of the system of Eqs. (1) and (2) is given by
any set {g∗, y∗}, generically indicated with an asterisk, such
that βg(g∗, y∗) = βy(g∗, y∗) = 0. In order to determine the
structure of the fixed point one needs to analyze the RG flow
in its vicinity. The standard method is to linearize the RG
equation system of the couplings, {αi } ≡ {g, y}, around the
fixed point. One derives the stability matrix, M ,

Mi j = ∂βi/∂α j |{α∗
i } , (3)

whose eigenvalues θi , called critical (or scaling) exponents,
characterize the power-law evolution of the couplings in the
vicinity of {α∗

i }.
If a critical exponent is negative the corresponding

eigendirection is UV attractive and dubbed as relevant. All
the RG trajectories along this direction will asymptotically
reach the fixed point. A deviation of a relevant coupling from
the fixed point introduces a free parameter in the theory
and this freedom can be used to fine tune the coupling at
some high scale to match an eventual measurement in the
infrared (IR). Conversely, if an eigenvalue of M is positive,
the corresponding eigendirection is UV repulsive and com-
monly dubbed as irrelevant. In this case there exist only one
trajectory the coupling’s flow can follow in its run to the IR,

thus providing potentially a clear prediction for its value at
the low, experimentally interesting scale. All the trajectories
which emanate from the UV stable fixed points correspond
to theories that remain finite at high energies. Finally, θi = 0
introduces amarginal eigendirection. The RG flow along this
direction is logarithmically slow and one needs to go beyond
the linear approximation to decide whether a fixed point is
attractive or repulsive.

3 Flavor anomalies in b → s transitions

We consider in this section the anomalies recorded in the last
several years at LHCb [43–50], Belle [51,52], CMS [53], and
ATLAS [54], involving substantial deviations from the SM in
the measured values of the lepton-flavor violating ratios and
angular distributions of the decays B → K (∗)μμ. Numerous
global fits [74–93] have pointed to the likely emergence of
NP in the effective operators

Oμ (′)
9 = αem

4π

(
s̄γρPL(R)b

) (
μ̄γ ρμ

)
,

Oμ (′)
10 = αem

4π

(
s̄γρPL(R)b

)
(μ̄γ ργ 5μ) , (4)

the statistical significance of which exceeds, according to
some analyses, the 5σ level.

Among the NP scenarios well suited to induce the required
deviation in the Wilson coefficient Cμ

9 ,1 LQs are particularly
appealing for their simplicity. For example, the anomalies
could be explained by the tree-level exchange of a single
component of the scalar LQ S3 [65,94–101], which is a triplet
of SU(2)L . However, as is generally the case when matching
renormalizable NP models to the flavor constraints expressed
in terms of operators of dimension higher than 4, even a rel-
atively precise measurement of the corresponding Wilson
coefficient does not suffice to pinpoint the scale and inter-
action strength of the LQ independently, as the constraints
are expressed in terms of a ratio coupling/mass. Thus, in
order to make specific predictions, one has to introduce some
assumptions on the nature of the UV completion. We show
here that asymptotically safe gravity provides a predictive
high-energy framework for the S3 LQ in the context of the
b → s anomalies.

We remind the reader that a solution to the flavor anoma-
lies implies (we constrain ourselves for simplicity to the sin-
gle dimension Cμ

9 = −Cμ
10)

Cμ
9 = −Cμ

10 ∈ (−0.7,−0.3) (5)

at the 2σ level [91]. The corresponding operator can be gener-
ated by the LQ S3, whose SU(3)c×SU(2)L×U(1)Y quantum

1 A negative deviation from the SM expectation ofCμ
9 alone is sufficient

to explain the data, but other operators can be nonzero too, cf. the global
fits cited above.
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numbers are (3̄, 3, 1/3). We can write down the interaction
Lagrangian in terms of left-chiral two-component spinors in
the mass basis (we use the Weyl notation throughout this
work),

L ⊃ Ŷ L
i j

(
−φ1/3dL ,iνL , j − √

2φ4/3dL ,i eL , j

)

+Ỹ L
i j

(√
2φ−2/3uL ,iνL , j − φ1/3uL ,i eL , j

)
+ H.c. ,

(6)

where a sum over repeated SM generation indices is intended,
numbers in subscripts indicate the scalar fields’ electric
charge, and the up- and down-type couplings are related to
each other by the CKM matrix V as Ỹi j = V ∗

ik Ŷk j . Note that
we do not address in this work the physics of neutrinos, which
we assume form a separate system not affecting the fixed-
point analysis of states that are heavier by several orders of
magnitude. We thus constrain ourselves to a SM-like frame-
work, in which the charged lepton generations do not mix
with one another. Additional details on the S3 Lagrangian
and the complete list of adopted assumptions are given in
Appendix A.

By matching to the Oμ
9 operator via the t-channel

exchange of φ4/3 one gets

Cμ
9 = −Cμ

10 = πv2
h

V33V ∗
32αem

Ŷ L
32Ŷ

L∗
22

m2
S3

, (7)

where vh is the Higgs vev, αem is the fine structure constant,
and we have attributed a common mass mS3 to the triplet’s
states.

Equation (5) leads to the 2σ bound

0.4 × 10−3
( mS3

TeV

)2 ≤ Ŷ L
32Ŷ

L∗
22 ≤ 1.1 × 10−3

( mS3

TeV

)2
,

(8)

which, as was explained above, does not provide an inde-
pendent determination of the LQ mass and coupling. On the
other hand, if a specific value of the Yukawa couplings were
to emerge from the UV completion, Eq. (8) would provide
a clear indication of the LQ mass scale, subject only to the
experimental precision of the flavor measurements. In the
next subsection we derive the value of the LQ Yukawa cou-
pling from the fixed-point analysis of the system in minimally
coupled quantum gravity in the trans-Planckian regime.

3.1 Fixed-point analysis

Since we seek to connect the high-scale boundary conditions
with observable quantities at the low scale, we derive the
renormalization group equations (RGEs) in the quark mass
basis. Besides, since we use specifically the measurements
of b → s anomalies to constrain the NP system at the low
scale, we choose to work in a down-origin basis for the S3

Yukawa matrices. A more detailed discussion of our choice
of basis can be found in Appendix A.

As the Yukawa matrices of the SM and those of the LQ
system do not necessarily commute, we are left with diago-
nal Yukawa entries for the SM and arbitrary textures for the
down-type Ŷ L

i j matrices. However, since we neglect the neu-
trino mass, we can always choose a charged-lepton Yukawa
matrix diagonal in flavor space and thus we do not gener-
ate inter-column, charged lepton-flavor violating elements
via RG flow. The CKM matrix elements are subject to RG
running like the SM and NP Yukawa couplings. Above the
Planck scale, the system is coupled to the quantum fluctua-
tions of the graviton, which introduce the fg and fy terms
in the RGEs and give rise to the possible emergence of UV
(Gaussian and interactive) fixed points.

In the present analysis we focus only on the parameters
affecting the phenomenological b → s constraints. This
means that we work effectively in a 2-family (second + third)
approximation in which the CKM matrix is parametrized by
one single rotation angle. Additionally, we do not include
in the analysis the Yukawa couplings of the quarks of the
first two generations, as their impact on the running of other
parameters is negligible. One should expect to be able to set
these negligible parameters along a relevant direction of a
Gaussian fixed point in the trans-Planckian UV [37].

The minimal system of couplings consists of 8 indepen-
dent parameters,

gY , g2, g3, yt , yb, Ŷ
L
22, Ŷ

L
32, V33, (9)

where, respectively, gY , g2 and g3 are the gauge couplings
of U(1)Y , SU(2)L and SU(3)c, and yt and yb denote the
Yukawa couplings of top and bottom quarks. Note that the
Yukawa coupling Ŷ L

12 does not enter the fixed-point analy-
sis in our approximation. We do make sure, however, that if
it is assumed to be zero at the Planck scale, it does not get
renormalized at the low scale into values in tension with the
experimental bounds. Finally, we point out that we limit our
analysis to real couplings only. The relevant RGEs for the
S3 plus SM system coupled to gravity are given in Appendix
A.2

Let us explore the structure of the fixed points for the
system given by Eq. (9). The non-abelian gauge couplings
develop non-interactive UV fixed points, indicated hence-

2 It is worth pointing out that we do not incorporate the parameters of
the scalar potential in the fixed-point analysis. They do not enter at one
loop in the RGEs of the gauge-Yukawa system, for which we derive
the phenomenological predictions related to the flavor anomalies, see
Appendix A. Moreover, we have checked numerically that the predic-
tions for the NP Yukawa couplings change minimally under the addition
of perturbative 2-loop contributions to the beta functions. This variation
is negligible with respect to the experimental uncertainty on the Wilson
coefficients and does not affect the leptoquark mass determination.
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forth with an asterisk,

g∗
3 = 0, g∗

2 = 0, (10)

therefore they will correspond to the relevant directions in the
coupling space. The trans-Planckian running of gY , on the
other hand, is tamed by the graviton fluctuations, which lead
to the generation of an interactive fixed point. As discussed in
Sect. 2, matching the irrelevant gY onto its phenomenological
value in the IR allows one to unambiguously fix the parameter
fg ,

g∗
Y = 4π

√
6 fg
43

. (11)

One obtains fg = 0.01 and g∗
Y = 0.48.

The second quantum gravity parameter, fy , can be fixed
if one of the SM Yukawa couplings presents a UV interac-
tive fixed point [35], as in that case it is used to match the
flow to the IR along the irrelevant direction onto the value of
the corresponding quark mass. At the same time, the CKM
matrix element V33 must be set to zero at the fixed point to
span a relevant direction [37]. The following combinations
of the fixed-point values in the SM Yukawa sector are then
possible:

FP1 : y∗
t 
= 0, y∗

b = 0, V ∗
33 = 0,

FP2 : y∗
t = 0, y∗

b 
= 0, V ∗
33 = 0,

FP3 : y∗
t 
= 0, y∗

b 
= 0, V ∗
33 = 0. (12)

Finally, three different sets of fixed-point values of the LQ
Yukawa matrix entries can be obtained, allowing one of the
two elements Ŷ L

22, Ŷ L
32 to be interactive, or none:

FPa : Ŷ L∗
22 
= 0, Ŷ L∗

32 = 0,

FPb : Ŷ L∗
22 = 0, Ŷ L∗

32 
= 0,

FPc : Ŷ L∗
22 = 0, Ŷ L∗

32 = 0. (13)

Note that a solution with both non-zero elements of the
matrix Ŷ L

i j is not compatible with a relevant fixed point for
V33. The list of fixed points of phenomenological interest
is summarized in Table 1. The values assumed by fy at the
various fixed points are also presented in Table 1.

The SM couplings correspond directly to eigendirections
of the stability matrix. The relevant couplings are g3, g2, and
the one among the top and bottom Yukawa couplings whose
fixed-point value is zero, denoted with y0 in what follows.
The deviation of the relevant couplings from their UV fixed
point at some high scale Λ introduces several free parameters
characterizing UV-safe trajectories running out of the fixed
point:

δg2,3(Λ) = g∗
2,3 − g2,3(Λ), δy0 = y∗

0 − y0(Λ). (14)

Conversely, the irrelevant couplings gY and y/0 (the SM
Yukawa coupling(s) whose fixed-point value is nonzero) are
expected to be entirely determined by their fixed-point value

and thus constitute predictions of the theory. The behavior
of the NP Yukawa couplings in the vicinity of the fixed point
depends on which of the scenarios introduced in Eq. (13) is
considered and will be discussed individually in the follow-
ing paragraphs.

A word of caution is in order, though. The character of
a coupling as a relevant parameter does not need to persist
along its entire RG flow from the UV to the IR, as it may be
affected by the existence of other fixed points in the system.
In this regard, we anticipate here that all of the considered
solutions found for the SM+S3 leptoquark system eventually
cross over in their trans-Planckian flow to the basin of attrac-
tion of a fixed point characterized by IR-attractive V ∗

33 = 1,
y∗
t 
= 0, y∗

b = 0, Ŷ L∗
22 
= 0 and Ŷ L∗

32 = 0. Explicitly,

y∗
t = 4π

3

√
17 fg + 86 fy

43
, Ŷ L∗

22 = 4π

√
10 fg + 86 fy

301
.

(15)

We dub this trans-Planckian IR fixed point as FPIR. Its
origin can be qualitatively understood by inspection of the
RGEs presented at the end of Appendix A. Equations (A.17)
and (A.19) imply that, because of the negative contributions
induced by the hypercharge coupling, both yt and Ŷ L

22 can
eventually become substantial in their flow to the IR, inde-
pendently of their starting point in the UV. The consequence
of this growth is that the contribution proportional to g2

Y will
be counterbalanced by y2

t in Eq. (A.17) and by (Ŷ L
22)

2 in
Eq. (A.19) (with some correction proportional to yt Ŷ L

32 that
kicks in when V 2

33 ≈ V 2
32). This effect is dominated by the

size of g∗
Y and hence by the gravitational coupling fg , and it

is much less sensitive to the parameter fy . As we shall see
in the next paragraphs, in most of the cases of phenomeno-
logical interest the presence of FPIR along the RGE flow
effectively washes out much of the freedom associated with
relevant directions in the Yukawa-coupling theory space.

Scenarios of type FPa For a fixed point of the type FP1a

or FP3a , the coupling Ŷ L
22 is irrelevant, while the system

(V33, Ŷ L
32) spans a 2-dimensional submanifold in the cou-

pling space, on which both couplings are relevant but do not
correspond to eigendirections of the stability matrix.

The phase diagram of Ŷ L
32 vs.V33 in the vicinity of the fixed

point is shown in Fig. 1a, with all the remaining couplings
fixed at their fixed-point value. The fixed point is marked
as a red dot, and the arrows indicate the RGE flow of the
system towards the UV. For the trajectories shown in red, the
fixed point can be reached from any direction, confirming that
both couplings are indeed relevant.3 However, for any fixed
deviation δV33, there exists an upper bound on the allowed

3 Note in Fig. 1a, that the streamlines flow with different speed along
the V33 and Ŷ L

32 directions, giving the impression of entering the fixed
point in the UV along one and the same line.
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Table 1 Fixed-point values and the corresponding fy of the SM+S3 Yukawa coupling system invoked for an explanation of the b → s anomalies.
The low-energy prediction for the NP sector is shown in the last column on the right. The symbol † indicates those scenarios in which the predicted
top mass exceeds the experimental value

fy y∗
t y∗

b Ŷ L∗
22 Ŷ L∗

32 Prediction

FP1a 0.0014 4π

√
208 fg+946 fy

5289 0 4π

√
146 fg+1376 fy

5289 0 Ŷ L
22Ŷ

L
32(mS3 ) < 0

FP1b 0.0088 4π

√
17 fg+86 fy

387 0 0 4π

√
10 fg+86 fy

301 mS3 ∈ [7, 11] TeV †

FP1c 0.0024 4π

√
17 fg+86 fy

387 0 0 0 mS3 ∈ [7, 11] TeV †

FP2a −0.0006 0 4π

√
5 fg+86 fy

387 4π

√
10 fg+86 fy

301 0 Ŷ L
22Ŷ

L
32(mS3 ) < 0

FP2b −0.0004 0 4π

√
40 fg+946 fy

5289 0 4π

√
170 fg+1376 fy

5289 mS3 ∈ [4, 7] TeV

FP2c −0.0001 0 4π

√
5 fg+86 fy

387 0 0 mS3 ∈ [4, 7] TeV

FP3a 0.0014 4π

√
484 fg+430 fy

8643 4π

√
−211 fg+1634 fy

8643 4π

√
218 fg+2408 fy

8643 0 Ŷ L
22Ŷ

L
32(mS3 ) < 0

FP3b 0.0087 4π

√
617 fg+1634 fy

8643 4π

√
−356 fg+430 fy

8643 0 4π

√
338 fg+2408 fy

8643 mS3 ∈ [7, 11] TeV †

FP3c 0.0023 4π

√
41 fg+86 fy

645 4π

√
−19 fg+86 fy

645 0 0 mS3 ∈ [7, 11] TeV †

Fig. 1 a Phase diagram in the
plane (V33, Ŷ L

32) in the vicinity
of the UV fixed point FP1a ,
indicated here as a red dot. All
the remaining couplings are set
to their fixed-point values. The
RG flow directions point
towards the UV. Only the RG
trajectories marked in red allow
one to reach the UV fixed point.
b Phase diagram in the plane
(V33, Ŷ L

22) in the vicinity of the
UV fixed point FP1b

(a) (b)

size of the corresponding δŶ L
32, and viceversa, which is due to

the nontrivial beta function of the elementV33. This fact bears
the important consequence that δŶ L

32 never reaches a value
large enough to guarantee that Ŷ L

32 remain positive along the
full length of its flow to the IR. More specifically, close to the
relevant fixed point the running of Ŷ L

32 is dominated by yt ,
which introduces a positive contribution to the beta function
[see Eq. (A.20) in Appendix A],

dŶ L
32

dt
� 1

16π2 Ŷ
L
22 y

2
t V33

√
1 − V33

2. (16)

Inevitably, in scenarios FP1a , FP3a one obtains Ŷ L
22Ŷ

L
32 < 0

at the low scale, in contradiction with the phenomenological
requirement, cf. Eqs. (5), (7).

The situation is very similar for fixed point FP2a , although
in this case Ŷ L

32 corresponds to an irrelevant direction. Once

more, due to Eq. (16), the low-scale prediction is phenomeno-
logically disfavored.

Scenarios of type FPb In this case both LQ Yukawa couplings
become irrelevant directions. While Ŷ L

32 corresponds to an
eigenvector of the stability matrix, the flow of Ŷ L

22 close to
the fixed point is entirely dictated by the UV hypercritical
surface relating it with the relevant CKM matrix element
V33: Ŷ L

22(t) ≡ F (V33(t)). The corresponding phase diagram
is shown in Fig. 1b. Since in this case the main contribution to
the Ŷ L

22 beta function is negative [see Eq. (A.19) in Appendix
A],

dŶ L
22

dt
� − 2

16π2 Ŷ
L
32 y

2
t V33

√
1 − V33

2, (17)

the product Ŷ L
22Ŷ

L
32 is positive at the low scale, as required by

global fits to the Wilson coefficients, Cμ
9 = −Cμ

10 < 0.
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Fig. 2 RG flow of the gauge
and Yukawa couplings from the
trans-Planckian energies down
to the EWSB scale for scenarios
featuring the fixed point a FP1b,
and b FP2b. The sub-Planckian
flow is depicted in the inset
panels

(a) (b)

The phenomenological predictions, obtained by following
the RG flow of the examined coupling system from the UV
fixed point towards the IR, differ somewhat for FP1b, FP2b,
and FP3b. In all three cases the requirement to fit the measured
value of the hypercharge coupling, which we assume to be
gY (Mt ) = 0.3583 [102], fixes fg = 0.01. Case FP1b features
irrelevant nonzero top Yukawa coupling at the fixed point.
But whether y∗

b = 0 corresponds instead to a relevant or
irrelevant direction – a key question from the point of view
of the phenomenological viability of this scenario – hinges
on the precise value of fy . For small fy , y∗

b = 0 is irrelevant.
Thus, we choose a minimal fy for which yb becomes relevant:
fy = 0.0088. One then obtains the following low-energy
predictions for the SM and LQ Yukawa couplings at Q =
mS3 = 9 TeV,

yt (mS3) = 1.07, yb(mS3) = 0.01,

Ŷ L
22(mS3) = 1.04, Ŷ L

32(mS3) = 0.05. (18)

The top mass is by around 20% too large with respect to
the SM predictions – a price to pay for fitting correctly the
bottom mass in scenario FP1b.

The trans-Planckian flow of the parameters of the system
is presented in Fig. 2a. Their IR behavior is determined by
the crossover towards the basin of attraction of fixed point
FPIR, which happens around log Q ≈ 300 in Fig. 2a. FPIR is
characterized by IR-attractive V ∗

33 = 1, y∗
t ≈ 0.62, y∗

b = 0,

and Ŷ L∗
22 ≈ 0.67, cf. Eq. (15). Since in this case Ŷ L

32 is large
and positive in the deep UV, it remains positive in its flow
towards the IR while asymptotically approaching zero from
above.

Given the fixed values of fg and fy , the EWSB values of
Ŷ L

22, and Ŷ L
32 are unambiguously predicted by the RG flow

towards the IR after gravity decouples (see inset panel in
Fig. 2a). Moreover, since both LQ couplings run slowly over
several orders of magnitudes in scale, one can precisely deter-
mine the range of LQ masses for which the analyzed scenario

is consistent with the explanation of b → s anomalies. It cor-
responds to mS3 = 7 − 11 TeV.

Fixed point FP2b features a different behavior. The param-
eter fy is precisely determined by fitting yb to its IR value
giving: fy = −0.0004. At Q = mS3 = 5 TeV we obtain

yt (mS3) = 0.83, yb(mS3) = 0.01,

Ŷ L
22(mS3) = 0.63, Ŷ L

32(mS3) = 0.03. (19)

Note that the top mass can be matched onto the SM with a
high degree of accuracy. The corresponding range of LQ
mass reads mS3 = 4–7 TeV. The trans-Planckian flow of
the parameters of the system is presented in Fig. 2b. At
the energies Q ≈ exp(4000) ≈ 101700 GeV one observes
the crossover of the top Yukawa coupling from the basin of
attraction of the UV fixed point FP2b to the basin of attraction
of its IR fixed point FPIR with y∗

t ≈ 0.24. It results in a char-
acteristic “plateau” in the running of yt and allows for a good
fit to the top mass once gravitational interactions decouple.

Finally, FP3b behaves quite similarly to FP1b. While fy
is fixed by the bottom mass, the predicted mass of the top
quark at low-energies is once more a little too large. At Q =
mS3 = 9 TeV we obtain

yt (mS3) = 1.07, yb(mS3) = 0.013,

Ŷ L
22(mS3) = 1.04, Ŷ L

32(mS3) = 0.05. (20)

Note that there is a difference between cases FP1b, FP3b,
where yt is irrelevant with fy = 0.0088, and FP2b, where it
is relevant with fy = −0.00044. The size of fy determines
the size of the top Yukawa coupling at FPIR, which reads 0.62
and 0.24, respectively. In the latter case, | fy | 
 fg , similarly
to one of the SM cases presented in Ref. [37], and this leads
to a good top mass determination.

Scenarios of type FPc Fixed points of type FPc are character-
ized by two relevant directions for the Gaussian Ŷ L∗

22 = 0 and
Ŷ L∗

32 = 0. However, predictivity is restored in these cases by
virtue of the flow of the CKM matrix element V33. Matching
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Fig. 3 RG flow of the gauge
and Yukawa couplings from the
trans-Planckian energies down
to the EWSB scale for scenarios
featuring the fixed point a FP1c,
and b FP2c. The sub-Planckian
flow is depicted in the inset
panels

(a) (b)

it to its low-energy experimental determination once again
drives the system, first to the basin of attraction of fixed points
reminiscent of type FPb, and subsequently to the basin of
attraction of FPIR. The latter determines the values of Ŷ L

22
and Ŷ L

32 at the Planck scale. The low-scale predictions for
FP1c, FP2c, and FP3c resemble closely the predictions for
FP1b, FP2b, and FP3b, with the former and latter featuring a
slightly too large top quark mass (in both cases yt emerges
from an irrelevant UV fixed point), and the middle one instead
providing a good fit to the top mass (y∗

t = 0 is relevant in
the UV) and NP predictions closely aligned with those of
FP2b. The trans-Planckian flow for case FP1c is depicted in
Fig. 3a, whereas the one for FP2c is shown in Fig. 3b. Note
the presence of two subsequent IR fixed points: at the center
of the plots one can see the cross-over towards the FPb-like
fixed points, whereas close to the Planck scale towards FPIR.

3.2 Low-scale predictions

We show in Fig. 4 the LQ mass and coupling position in
the plane (mS3, Ŷ

L
22), predicted to be in 2σ agreement [91]

with the b → s anomalies in FP1b (dashed blue) and FP2b

(solid red). The case FP3b roughly overlaps with FP1b and
is not shown in the plot. The same can be said for FP1c,
FP3c, which roughly overlap with FP1b, and for FP2c, which
overlaps with FP2b. In dark gray we show the current lower
bound from LQ pair production at ATLAS [103], and in light
gray the bound from single quark production as recast in Ref.
[101]. The dashed (dotted) line marks the estimated reach
of the hadron-hadron collider FCC-hh at

√
s = 100 TeV

and 1 ab−1 (10 ab−1) integrated luminosity [104]. While the
predicted LQ mass appears to be hopelessly too large to be in
reach of the LHC, it fall squarely within the expected early
reach of a hadron 100-TeV machine.

The coupling Ŷ L
12 – not included in the fixed-point anal-

ysis – is strongly constrained by the measurement of the

Fig. 4 The low-energy Yukawa coupling and mass ranges predicted
by the trans-Planckian fixed-point analysis for the LQ S3 to be in 2σ

agreement with the b → s anomalies. In red solid the range for FP2b,
in dashed blue the range for FP1b. Dark gray region shows the current
lower bound from color LQ pair-production at ATLAS [103], light gray
region gives the bound from single quark production as recast in Ref.
[101]. The dashed (dotted) black line marks the estimated reach of the
hadron-hadron collider FCC-hh at

√
s = 100 TeV and 1 ab−1 (10 ab−1)

integrated luminosity [104]

BR(K 0
L → μ+μ−) = (6.84 ± 0.11) × 10−9 [105], which

is practically saturated by the absorptive long-distance con-
tribution through K 0

L → γ γ . One gets the 90% C.L. bound
[106]
∣∣∣Re(Ŷ L∗

12 Ŷ L
22)

∣∣∣ � 1.2 × 10−5
(mS3

TeV

)2
. (21)

In FP2b, the scenario in best agreement with the experi-
mental bounds, Ŷ L

32 and Ŷ L
22 flow along irrelevant directions.

The latter in particular becomes substantial at the low scale,
being tied to the flow of the CKM matrix element V33. If we
assume that Ŷ L

12(MPl) = 0 (independently of whether this
happens along a relevant or irrelevant direction of flow), we
get that
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dŶ L
12

dt
� − y2

t V31

16π2

(
V32Ŷ

L
22 + V33Ŷ

L
32

)
(22)

predicts Ŷ L
12 = 1.6 × 10−6 at Q = mS3 , which makes this

scenario consistent with Eq. (21).
Another potential low-energy bound comes from the

experimental determination of the D0 → μ+μ− branch-
ing ratio. The current measurement, BR(D0 → μ+μ−) <

7.6 × 10−9 at the 95% C.L. at LHCb [107] is already a few
years old and might possibly be renewed with fresh data soon.
Roughly following, e.g., the analysis of Ref. [108], we can
express the branching ratio in terms of the S3 LQ parameters,
assuming the t-channel exchange of the scalar φ1/3. One gets

BR(D0 → μ+μ−)

= τD
f 2
DM

5
D

256πM2
c

(
2MμMc

M2
D

λ

1 − λ2/2

|Ỹ L
22|2

2m2
S3

)2

, (23)

where τD = 4.1×10−13 s is the D0 lifetime, fD = 212 MeV
is the D0 decay constant, λ = 0.226 is a Wolfenstein param-
eter, and MD , Mc, Mμ, are the D meson, charm quark, and
muon mass, respectively. Equation (23) yields the 2σ bound

|V22Ŷ
L
22| � 0.63

mS3

TeV
, (24)

which is currently not testing our scenarios at Q = mS3 ≈
5 TeV.

4 Flavor anomalies in b → c transitions

We move on to the second group of flavor anomalies receiv-
ing widespread attention in recent years: the deviations from
the SM in the RD(∗) = BR(B̄ → D(∗)τν)/BR(B̄ → D(∗)lν)

ratios, which have been observed at BELLE and LHCb [57–
64], confirming previous hints from BaBar [55,56]. These
anomalies in b → c transitions also imply a potential vio-
lation of lepton-flavor universality and admit an explanation
with LQs [65,96,98,101,109–119].

While the NP potentially contributing to the b → s
anomalies has to compete with SM loop effects, in the case
of the charged-current B anomalies that we discuss in this
section the eventual presence of NP has to compete with the
SM at the tree level. For equivalent Yukawa couplings, new
states are thus naturally expected to be much lighter than in
Sect. 3, potentially in reach of the next round of LHC data.
In this regard, we do not attempt in this work to analyze
NP models providing a simultaneous explanation to both the
b → s and b → c anomalies, but rather keep Sects. 3 and 4
separated and independent of one another. Moreover, we do
not expect the trans-Planckian fixed-point analysis to provide
in the case of b → c anomalies phenomenological informa-
tion that is fundamentally enriching with respect to the well
known findings of the numerous global fits existing in the

literature [114,118,120–125]. We rather use this section to
analyze the extent of the consistency of this NP with a gravity
UV completion.

Several different operators in the weak effective theory
are able to provide, alone and in combination, a 2σ expla-
nation to the b → c anomalies, including the vector opera-
tor OV1 = (c̄γ μPLb)(τ̄ γμPLν), which is favored in single-
operator scenarios and in combination with others. OV1 can
be generated at the tree level by integrating out the scalar LQ
S1 or the vector LQ U1. As we have mentioned in Sect. 1, we
focus on the scalar LQ to avoid having to introduce a further
UV completion besides gravity.

The LQ S1 is an SU(2) singlet. With respect to the
SU(3)c×SU(2)L ×U(1)Y gauge group its quantum numbers
are (3̄, 1, 1/3). One writes down the interaction Lagrangian
in the SM quark mass basis in terms of left-chiral (unbarred)
and right-chiral (barred) two-component spinors,

L ⊃
(
Ỹ L
i j uL ,i eL , j −Ŷ L

i j dL ,iνL , j +Y R
i j ū R,i ēR, j

)
S1+H.c., (25)

where repeated indices i, j are summed over the SM genera-
tions, and the Yukawa coupling matrices are again related to
each other by the CKM matrix V , Ỹ L

i j = V ∗
ir Ŷ

L
r j . Additional

details of the S1 model are given in Appendix B.
When integrated out at its mass scale, S1 generates the

CV1 Wilson coefficient,

CV1 = Ŷ L
33Ỹ

L
23

4
√

2GFV23 m2
S1

, (26)

which features up- and down-like LQ Yukawa couplings (we
limit ourselves to the case of real couplings). Global fits
including the ratio R(J/ψ) and the longitudinal polariza-
tion fraction of the τ lepton and D∗ meson in the data set
[114,118] point to the 2σ interval

0.13

(
m2

S1

TeV2

)

� Ŷ L
33Ỹ

L
23 � 0.36

(
m2

S1

TeV2

)

. (27)

We anticipate at this point that the fixed-point analysis
predicts a product of left-chiral couplings Ŷ L

33Ỹ
L
23 too small

to fall within the interval (27), without finding at the same
time mS1 in the region already excluded by the LHC. It bears
resemblance in this with the typical Yukawa values provided
in Eqs. (18)–(20). We must therefore seek for an alternative
solution, also favored by the global fits, characterized by a
much smaller Wilson coefficient CV1 , as long as it is accom-
panied by a substantial Wilson coefficient for the operator
OS2 = (c̄PRb)(τ̄ PLν), CS2 � 0.05 (see, e.g., Ref. [118]). In
the S1 LQ scenario we can generate

CS2 = − Ŷ L
33Y

R
23

4
√

2GFV23 m2
S1

, (28)

which now involves the right-chiral couplings.
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An additional complication arises from the fact that with
substantial couplings of left and right chirality that connect
the charm quark to the tau lepton we generate corrections
to the mass of these two particles. The Yukawa couplings
of the charm quark and of the tau lepton must therefore be
included in the fixed point analysis, and one ought to make
sure that the corresponding masses are matched at the low
energy. Note that the mass of the charm quark and the tau
lepton are not very dissimilar from one another and therefore
the corresponding Yukawa couplings do not feature a large
hierarchy. This is fortunate, as it allows us to find, after run-
ning to the low scale, solutions that can match to the correct
masses to a good approximation.

4.1 Fixed-point analysis

We employ the down-origin LQ Yukawa basis for the fixed-
point analysis, as justified by the low-scale phenomenology.
While the fit to the b → c anomalies, Eq. (27), does not pro-
vide explicit guidance in this regard, some other strong flavor
constraints do. For example, the measurement of the branch-
ing ratio BR(K+ → π+νν̄) < 1.85×10−10 at the 90% C.L.
at NA62 [106,126], implies Ŷ L

13Ŷ
L
23 ∈ [−3.7, 8.3] × 10−4

(mS1/ TeV)2. In an up-type origin scenario for the cou-
plings, this bound forces Ỹ L

23 into a narrow interval, (Ỹ L
23)

2 ≈
[−4, 2]×10−3 (mS1/ TeV)2, which ends up excluding poten-
tially viable fixed-point solutions. Conversely, the points pre-
sented in the following paragraphs, obtained in the down-
origin basis for the LQ Yukawa couplings, are not in tension
with flavor constraints.

The minimal set of couplings whose fixed point structure
we are going to analyze consists of 12 independent parame-
ters,

gY , g2, g3, yt , yb, yc, yτ , Ŷ
L
23, Ŷ

L
33, Y

R
23, Y

R
33, V33. (29)

The RGEs for the S1 plus SM system in the trans-Planckian
regime are presented in Appendix B. Note that the element
Y R

33 of the right-handed LQ Yukawa matrix must be included
in the analysis, as it is generated through the running even if
its initial value is set to zero.

In analogy with the fixed-point structure discussed in
Sect. 3, the non-abelian gauge couplings remain asymptoti-
cally free, while the abelian one develops a UV interactive
fixed point,

g∗
3 = 0, g∗

2 = 0, g∗
Y = 12π

5

√
2 fg

5
. (30)

By fitting to the low-scale value of the hypercharge coupling
one obtains fg = 0.01 and g∗

Y = 0.48.
The situation in the Yukawa sector of the SM is, however,

more involved. As the analysis includes the RGEs of the
second and third generation of up-type quarks, we strive to
preserve the hierarchy yt > yc along the full RG flow to avoid

the poles in the beta function of the CKM matrix element
V33, cf. Eq. (B.39) and Ref. [37]. This implies that only three
combinations of fixed-point values for top and charm Yukawa
couplings are possible: y∗

t = 0, y∗
c = 0; y∗

t 
= 0, y∗
c = 0;

y∗
t > y∗

c 
= 0. The first of these cases does not yield solutions
with LQ Yukawa couplings of the correct sign to fit the b → c
anomalies. We thus focus on the cases with y∗

t 
= 0.
Another difference with the analysis of Sect. 3 is that we

here need to fit four SM Yukawa couplings simultaneously.
Like in Sect. 3, matching yt and yb to their low-scale value
determines the gravitational parameter fy , so that we should
demand

y∗
c = 0, y∗

τ = 0 , (31)

and look for a solution in which both associated directions
are relevant. Additionally, yt and yc generate additive chiral
symmetry-breaking contributions to the tau lepton Yukawa
running,

dyτ
dt

≈ −6

16π2

(
ycŶ

L
23Y

R
23 + yt Ŷ

L
33Y

R
33

)
, (32)

cf. Eq. (B.34). Therefore, in order to generate a UV fixed
point for yτ one of the elements Y R

33, Ŷ L
33 has to vanish at

the fixed point. Since Y R
33 does not enter directly the Wilson

coefficients CV1 and CS2 , we set Y R∗
33 = 0.

We are left with two possible combinations of fixed-point
values in the SM Yukawa sector,

FP1 : y∗
t 
= 0, y∗

b = 0, V ∗
33 = 0,

FP2 : y∗
t 
= 0, y∗

b 
= 0, V ∗
33 = 0, (33)

accompanied by four different choices for the LQ Yukawa
matrix elements,

FPa : Ŷ L∗
23 
= 0, Ŷ L∗

33 = 0, Y R∗
23 
= 0,

FPb : Ŷ L∗
23 
= 0, Ŷ L∗

33 = 0, Y R∗
23 = 0,

FPc : Ŷ L∗
23 = 0, Ŷ L∗

33 
= 0, Y R∗
23 
= 0,

FPd : Ŷ L∗
23 = 0, Ŷ L∗

33 
= 0, Y R∗
23 = 0. (34)

Note that we do not obtain any solutions corresponding to
Ŷ L∗

23 
= 0 and Ŷ L∗
33 
= 0, as they are not compatible with a

relevant direction for V33.
The fixed points that are of phenomenological interest as

possible solution to the b → c anomalies are summarized in
Table 2. We do not report in there fixed points of the type of
FP2 in Eq. (33), as they predict too large a bottom mass at
the low scale.

Fixed points of type FP1c and FP1d yield a low-scale set
of solutions not dissimilar to FP1b of Sect. 3. The dominant
contribution to RG running takes in both cases the same form,

dŶ L
33

dt
� 1

16π2 Ŷ
L
23 y

2
t V33

√
1 − V33

2, (35)
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Table 2 Possible fixed points and the corresponding fy of the SM+S1 system with the left- and right-handed couplings. The low-energy prediction
for the NP sector is shown in the last column on the right

fy y∗
t y∗

b Ŷ L∗
23 Ŷ L∗

33 Y R∗
23 Fit quality at mS1

1a 0.0037 4π

√
362 fg+1500 fy

5
√

295
0 4π

√−249 fg+1250 fy

5
√

295
0 4π

√
68 fg+65 fy√

295
2 σ

1b 0.0017 4π

√
14(27 fg+125 fy )

5
√

355
0 4π

√
219 fg+2000 fy

5
√

355
0 0 Ŷ L

33Ŷ
L
23 < 0

1c 0.0032 4π

√
51 fg+250 fy

15
√

5
0 0 2π

√−66 fg+500 fy
25 −4π

√
141 fg+125 fy

25 Ŷ L
33Ŷ

L
23 too small

1d 0.0044 4π

√
51 fg+250 fy

15
√

5
0 0 2π

√
3 fg+25 fy

5 0 Ŷ L
33Ŷ

L
23 too small

Fig. 5 RG flow of the gauge and Yukawa couplings from the trans-
Planckian energies down to the EWSB scale in the case of scenario
FP1a . The sub-Planckian flow is depicted in the inset panels

which leads to a reduction of the matrix element Ŷ L
33 during its

flow towards the IR. The low-energy value of Ŷ L
33 is very small

and results inconsistent with either Eq. (27) or CS2 � 0.05
at the TeV scale (the low-scale value we obtain for Y R

23 does
not affect this conclusion).

We now turn to discussing scenarios FP1a and FP1b. The
asymptotically free coupling Ŷ L

33 is now associated with a
relevant direction and its deviation from the UV fixed point is
a free parameter of the theory. Since the main contribution to
its running is given by Eq. (35), it is driven to negative values
as soon as the CKM matrix element V33 starts to depart from
its fixed point. The RG flow of the coupling system from the
vicinity of the UV fixed point towards the IR is shown for
FP1a in Fig. 5.

Fixed points FP1a and FP1b bear resemblance to FP1a of
Sect. 3, see also Fig. 1a. They do not, however, yield an
identical low-scale phenomenology. The evolution of FP1a

is triggered mostly by the presence of the right-handed irrel-

evant coupling Y R
23. Since its contribution to the running of

Ŷ L
23 is large and positive,

dŶ L
23

dt
� 1

16π2

(
Ŷ L

23 (Ŷ R
23)

2 − 2Ŷ L
33 y

2
t V33

√
1 − V33

2
)

,

(36)

see also Eq. (B.35), Ŷ L
23 decreases towards the IR. As a conse-

quence, we see that in FP1a both Ŷ L
23 and Ŷ L

33 can become neg-
ative and relatively sizable at the Planck scale. This behavior
guarantees the partial consistency of the low-energy predic-
tions of the model with the b → c flavor anomalies. Con-
versely, in scenario FP1b Ŷ L

23 never becomes negative due to
a small fixed-point value of the top Yukawa coupling. As a
consequence, FP1b turns out to be not consistent with the
low-energy phenomenology of the flavor anomalies.

The Yukawa couplings yc, yb, yτ , which vanish at the
fixed point, correspond to relevant directions in the coupling
space, as long as fy exceeds the minimal value for which yb
becomes relevant, as discussed in Sect. 3. We checked that
by fixing fy at this minimal value we predict the top mass
at Q = mS1 = 1.5 TeV in very good agreement with the
experimental measurement, yt (mS1) = 0.98. However, the
elements Ŷ L

33(mS1), Ŷ
L
23(mS1), and Ŷ R

23(mS1) are too small to
fit the b → c anomalies. Therefore, we need to increase fy at
the price of enhancing the top mass. Choosing fy = 0.0036,
we obtain the following predictions for FP1a :

yt (mS1) = 1.01, yb(mS1) = 0.013,

yc(mS1) = −0.009, yτ (mS1) = 0.01,

Ŷ L
23(mS1) = −0.37, Ŷ L

33(mS1) = −0.41.

Y R
23(mS1) = 0.85. (37)

In all the scenarios discussed in this section yt corresponds
to an irrelevant direction and the low-scale prediction for
the top mass results by ∼ 10% too large with respect to its
experimentally measured value. We also observe that a fit to
the tau lepton mass drives the charm mass to values by ∼
40% too large, even if the corresponding Yukawa couplings
flow along relevant directions. This is an expected effect,
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Fig. 6 Solid (dashed) blue line gives the 1σ (2σ ) confidence region of
the b → c global fit of Ref. [118] in the plane (Ŷ L

33Ỹ
L
23, Ŷ L

33Y
R

23) of the
S1 Yukawa couplings at mS1 = 1.5 TeV. The red dot marks the position
of FP1a

due to the explicit breaking of chiral symmetry introduced
by the presence of the Y R

i j couplings, which ties the running
of yc to yτ . All these things considered, however, the fixed
point of type FP1a features a satisfactory agreement between
the quantum gravity UV completion and the full low-scale
phenomenology.

4.2 Low-scale predictions

We show in Fig. 6 the position of the fixed point FP1a in
the plane (Ŷ L

33Ỹ
L
23, Ŷ L

33Y
R

23), compared to the 1σ (solid) and
2σ (dashed) regions of the global fit to RD/RD∗ , R(J/ψ),
and the longitudinal polarization of the τ and D∗ presented
in Ref. [118]. Like in Ref. [118], the LQ mass is set at a
reference value of mS1 = 1.5 TeV.

Given the presence of relatively large left-handed LQ
Yukawa couplings in Eq. (37), the model is subject to a
tight constraint from the measurement of the branching ratio
BR(B → K (∗)ν̄ν) [109]. The LQ contribution can be written
as [127]

RK = RK ∗ = 2

3
+ 1

3

∣∣CSM
L − 2c̃ql

∣∣2

∣
∣CSM

L

∣
∣2 , (38)

where CSM
L = −6.38 [128] and

c̃ql ≈ (5 TeV)2

V33V ∗
32

(
1

4

Ŷ L
23Ŷ

L
33

m2
S1

)

. (39)

By comparing the experimental determination, BR(B →
K ∗0 ν̄ν)exp < 1.8 × 10−5 at the 90% C.L. [129], with
RK ∗ · BR(B → K ∗0 ν̄ν)SM, where BR(B → K ∗0 ν̄ν)SM =

0.92 × 10−5, one gets

− 0.020 ≤ Ŷ L
23Ŷ

L
33

m2
S1

/ TeV2 ≤ 0.061 , (40)

which places FP1a at the very edge of exclusion. Note that
the model parameters imply that RK ∗ = RK = 2.4 and that
all decays of the type BR(B → K (∗)ν̄ν) provide an equally
good experimental venue to probe this kind of models.

A potentially complementary signature for testing this sce-
nario can be obtained by improving the precision of lepton
universality measurements in the kaon sector. We define the
universality as

RK ,exp
τ/μ = BR(τ− → K−ν)

BR(K− → μ−ν)
= 0.01095 · (1 ± 0.015) ,

(41)

as reported by the Particle Data Group (PDG) [130]. In the
FP1a case we calculate

RK
τ/μ = ττ

τK

r3
K

2r2
μ

(
1 − r2

K

r2
K − r2

μ

)2
(V12 + gL)2

V 2
12

, (42)

where ττ = 2.9 × 10−13 s and τK = 1.25 × 10−8 s are the
tau and kaon lifetimes, V12 ≈ λ ≈ 0.226, rX = MX/Mτ ,
and

gL ≡ v2
h

m2
S1

λ(Ŷ L
23)

2

4
, (43)

in terms of the Higgs vev, vh . At 1σ we get

|Ŷ L
23| ≤ 0.57

mS1

TeV
. (44)

To test the value derived in Eq. (37), Ŷ L
23 = −0.37 at mS1 =

1.5 TeV, the measurement error in Eq. (41) should be reduced
to δRK

τ/μ/RK
τ/μ ≈ 2 × 10−3.

Besides RK
τ/μ, similar sensitivity to the S1 model is

expected in the observables RDs
τ/μ and B → τν, which pro-

vide additional testing ground for this scenario.
Finally, one can use well known analytic approximations

(see, e.g., Ref. [114]) to calculate RD and RD∗ given the
parameters of FP1a in Eq. (37). With mS1 = 1.5 TeV we
obtain

RD(FP1a) = 0.341 , RD∗(FP1a) = 0.270. (45)

On the other hand, strictly speakingmS1 = 1.5 TeV is already
excluded at the 95% C.L. by the most recent ATLAS data on
LQ pair production in the gluon–gluon channel [103]. The
most recent bound, at mS1 > 1.7 TeV, pushes FP1a slightly
outside of the 2σ favored region for the RD(∗) anomalies, as
the contours in Fig. 6 move a little to the right and down,
whereas the benchmark point remains roughly in the same
place. Incidentally, at mS1 = 1.7 TeV the constraint from

123



Eur. Phys. J. C           (2021) 81:272 Page 13 of 21   272 

BR(B → K ∗0 ν̄ν) falls short of excluding the Yukawa values
given in Eq. (37). One recalculates

RD(FP1a, 1.7 TeV) = 0.332 ,

RD∗(FP1a, 1.7 TeV) = 0.267. (46)

At mS1 = 1.7 TeV, the LHC is expected to reach in the
p p → μ+μ−jet channel (quark–quark + quark–gluon pro-
duction) a 95% C.L. sensitivity to |Y R

22| ≈ 0.80 with 300 fb−1

of integrated luminosity [108]. In the corresponding chan-
nel with final-state tau leptons – appropriate to test the value
given in Eq. (37),Y R

23 = 0.85 – the LHC sensitivity drops, and
is expected to exclude a Yukawa coupling larger by approxi-
mately 60% than in the muon case [101]. Still, a combination
of the reach of gluon–gluon, quark–quark, quark–gluon pro-
duction channels is likely to corner the scenario discussed
here in the very near future.

5 Summary and conclusions

In this paper we used the framework of asymptotically safe
quantum gravity to derive predictions for the mass of scalar
LQs as solutions to the experimental anomalies recorded in
recent years in b → s and b → c transitions. Our pre-
dictions are obtained by embedding a SM extension with a
single LQ in a trans-Planckian completion in which gravi-
tational interactions induce corrections to the beta functions
of the Lagrangian (gauge and Yukawa) couplings. The lat-
ter thus develop interactive fixed points in the extreme UV,
which parametrize specific sets of boundary conditions at
the Planck scale. The flavor phenomenology is then unam-
biguously determined by following the coupling flow to the
EWSB scale.

The low-scale phenomenological predictions follow from
two main sources: the presence of a fixed point in gY (and
therefore the size and sign of fg ≈ 0.01) and the decoupling
scale MPl. In this sense, the predictions described here can
potentially stem from quantum gravity effects as long as they
induce an interactive trans-Planckian fixed point in gY that
can be matched to the SM. The leading-order correction to
the Yukawa couplings, fy , has subdominant impact on the
final result (additionally, fy cancels out altogether from the
beta function of V33). Note that our low-scale predictions
do not depend on the higher-order expansion of the physics
above the Planck scale, but only on the Planck-scale value of
the SM and NP couplings.

Being flavor-blind, gravitational interactions do not gener-
ate by their own very nature flavor signatures. They can, how-
ever, be a source for the Planck-scale boundary conditions of
the Yukawa textures favored by the flavor phenomenology.
Once the low-scale value of the NP Yukawa couplings is
determined in this way, we found that by assuming a 2σ con-

sistency with the neutral-current, b → s anomalies, the pre-
dicted LQ mass lies in the range 4–7 TeV. These values are
too large to be in reach of the high-luminosity LHC, but fall
squarely within the early reach of a 100-TeV hadron collider,
according to the most conservative estimates. Complemen-
tary signatures in flavor observables like BR(KL → μ+μ−)

or BR(D0 → μ+μ−) require significant increases in the
experimental sensitivity with respect to the current bounds.

The trans-Planckian fixed-point analysis encounters some
additional complications when applied to LQ solutions to
the charged-current, b → c anomalies, mostly due to the
presence of explicit chiral-symmetry violating terms in the
Yukawa coupling RGEs, which induce some tension in the
low-energy fit to the fermion masses. The situation is, how-
ever, very optimistic from the observational point of view, as
the LQ mass and Yukawa couplings are predicted to be at the
very edge of the current LHC bounds, well within the reach
of 300 fb−1.

The present study can be extended in several directions.
First of all, the fixed-point analysis can be broadened to incor-
porate the impact of all three families of quarks and three real
mixing angles of the CKM matrix. While we do not expect
this extension to affect significantly our predictions on the
low-energy NP phenomenology, it would be interesting to
verify whether such a setup can still be consistent with the
SM.

In a similar spirit, one could include in the analysis the
non-trivial flavor structure of the leptonic sector, which we
neglected here for the sake of simplicity. The non-trivial form
of the neutrino mixing matrix could potentially lead to lepton
flavor-changing signatures, which will be tested in the next
few years by experiments like MEG-II and others. Following
this direction of investigation, one would also need to address
the mechanism for generating neutrino masses.

Finally, we did not incorporate in the fixed-point analy-
sis the parameters characterizing the scalar potential of the
model. We do not expect them to impact our findings, as the
scalar couplings enter the RGEs of the gauge and Yukawa
couplings at the third and the second loop, respectively,
and in the perturbative domain their impact becomes highly
loop-suppressed. However, an extended analysis of the scalar
potential can be an interesting topic per se. The issue of its
stability, as well as the correct prediction of the Higgs boson
mass, could be analyzed and compared to the NP predictions
and signatures presented here.

LQ solutions to the flavor anomalies have been extensively
studied in the literature from the point of view of their com-
patibility with a large number of constraints defined at about
and below their mass scale. We find it encouraging that they
can also show consistency with the theoretical framework
of asymptotically safe quantum gravity, which is defined far
above the scale that can be tested directly and was previously
left unexplored in this context.
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Appendix A: Trans-Planckian renormalization of S3

We review in this appendix the notation we use for rotating
the SM and LQ fields. The LQ S3 is characterized by the SM
quantum numbers (3̄, 3, 1/3). One defines the 3 × 3 Yukawa
matrix YL in the “flavor” (or gauge-symmetric) basis accord-
ing to the Lagrangian

L ⊃ (YL)i j Q
T
i (iσ2)S3L j + H.c. , (A.1)

where QT
i = (uLi , dLi ) and L j = (νL j , eL j )T are SU(2)L

doublets of two-component left-chiral Weyl spinors, S3 is the
scalar LQ matrix

S3 =
(

φ1/3
√

2φ4/3√
2φ−2/3 −φ1/3

)
, (A.2)

and σ2 is the second Pauli matrix. It is well known that the
quantum numbers of S3 allow for the presence of Lagrangian
terms of the type QT (iσ2)S

†
3 Q, potentially leading to fast

proton decay [131]. We assume in this paper that these are for-
bidden by a symmetry (for example, conservation of baryon
and/or lepton number).

The LQ is characterized by a scalar potential connecting
it to the SM Higgs doublet, H :

V (H, S3) = 1

2
m2

S3
Tr[S†

3 S3] + 1

8
λS3

(
Tr[S†

3 S3]
)2

+1

2
λHS3Tr[S†

3 S3]H†H. (A.3)

The LQ fields do not develop a vacuum expectation value
(vev).

We carry out the transformation from the flavor basis to the
quark mass basis via the unitary rotation matrices UL , UR ,
DL , and DR . If YU , YD , and YE are the Yukawa matrices
of the SM in the flavor basis, the corresponding diagonal
matrices Yu and Yd in the mass basis are given by

Yu = U †
LYUUR , Yd = D†

LYDDR , (A.4)

and the CKM matrix is defined asV ≡ U †
L DL . We assume for

simplicity that the charged lepton Yukawa matrix is trivially
diagonal in the flavor basis so that Ye ≡ YE .

We work in the quark mass basis throughout this work. We
further introduce several assumptions, which significantly
simplify the analysis and yet produce interesting phenomeno-
logical signatures at the low scale.

– We treat the Yukawa couplings of the SM and NP as real
in flavor space

– Above the LQ mass scale, we work in the 2-quark family
approximation. As the flavor anomalies only constrain
the second and third quark family this is a reasonable
approximation simplifying the fixed-point analysis. As a
direct consequence, the CKM matrix is orthogonal and
described by one rotation angle for the purposes of the
fixed-point analysis

– We neglect the physics of neutrino masses and oscil-
lations. In this approximation the SM charged lepton
Yukawa matrices are rotated by the identity matrix

– We restrict the fixed-point analysis to the gauge-Yukawa
system at one loop. We have checked numerically that
the predictions for the NP couplings change minimally
under the addition of perturbative 2-loop contributions.
The parameters of the scalar potential do not enter at
one loop in the gauge-Yukawa RGEs, and do not affect
the phenomenological predictions presented in this work.
One should keep in mind, however, that if the theory
is expected to be complete the full fixed-point analysis
should include the parameters of Eq. (A.3) and their cou-
pling to the graviton, fλ. The full system should show
consistency with the 125 GeV Higgs mass and the sta-
bility of the scalar potential at all scales (see Refs. [132–
135] for some related work). We leave the analysis of
these important but separated issues for future work.

One obtains the LQ Yukawa matrices introduced in Sect. 3
in the quark mass basis via unitary rotations

Ỹ L = UT
L YL , Ŷ L = DT

L YL , (A.5)

which lead to Ỹ L = V ∗Ŷ L . We emphasize that the matrices
in Eq. (A.5) are not diagonal as we do not enforce any flavor
symmetry.

Since the texture of the SM and NP Yukawa matrices is
not fixed by additional flavor symmetries, their elements are
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all subject to RG-running modifications. Elements that are
zero in a particular basis at one scale, do not necessarily
remain zero or small in the same basis at a different scale.
One can however choose to remain at each and every scale
in one specific basis, for example the quark mass basis that
we select in this work, in which the SM Yukawa matrices
are diagonal and the rotation matrices run accordingly. The
explicit scale dependence ofUL (t),UR(t), DL(t), and DR(t)
will have to be factored into the RG flow.

Additionally, one can choose to carry out the fixed-point
analysis in a preferential basis for the LQ Yukawa matrices:
the up-origin Ỹ L , or the down-origin Ŷ L . Whether one or
the other basis is chosen will result in one or another set of
UV fixed point. Some of the fixed points will be consistent
with the low-scale phenomenological constraints, whereas
others will be in tension or outright excluded. In the case of
the b → s anomalies, the nature of the constraint, Eq. (8),
leads to the natural choice of the down-origin basis for our
analysis. Following standard procedure (see, e.g., Ref. [37]),
we define the squared Yukawa matrices at the scale t = log Q
in the flavor basis:

MU = YUY
†
U , MD = YDY

†
D , ML = YLY

†
L . (A.6)

The corresponding diagonal Yukawa matrices in the mass
basis at the scale t are given by

Y 2
u (t) = U †

L(t)MU (t)UL(t) ,

Y 2
d (t) = D†

L(t)MD(t)DL(t) , (A.7)

as well as the non-diagonal squared matrix
(
Ŷ L Ŷ L†

)
(t) = DT

L (t)ML(t)D∗
L(t). (A.8)

We useSARAHv4.12.2 [136] to derive the one-loop RG
flow for the (squared) Yukawa matrices in the flavor basis and
then use the unitarity of the rotation matrices to connect them
to the RG flow in the mass basis. One writes

∂t Y
2
u +

[
Y 2
u ,

(
∂tU

†
L

)
UL

]
= U †

L (∂t MU )UL (A.9)

∂t Y
2
d +

[
Y 2
d ,

(
∂t D

†
L

)
DL

]
= D†

L (∂t MD) DL (A.10)

∂t

(
Ŷ L Ŷ L†

)
+

[
Ŷ L Ŷ L†,

(
∂t D

T
L

)
D∗

L

]
= DT

L (∂t ML) D∗
L .

(A.11)

The l.h.s. of Eqs. (A.9) and (A.10) is now recast as a sum
of one diagonal and one purely off-diagonal matrix, the first
of which features the SM Yukawa coupling beta function,
whereas the second parametrizes the scale dependence of
the rotation matrices. Note, on the other hand, that the l.h.s.
of Eq. (A.11) is not characterized by any specific texture, as
both addends feature diagonal and off-diagonal elements.

The scale dependence of Eqs. (A.9) and (A.10) can be
used to derive unambiguously the flow of the absolute values

of the CKM matrix elements [137–140]. We use the unitarity
of the rotation matrices and the fact that V = U †

L DL to write

dVi j
dt

=
∑

k=1,2,3

[(
∂tU

†
L UL

)

ik
Vk j − Vik

(
∂t D

†
L DL

)

k j

]
,

(A.12)

and then use the identity

1

|Vi j |2
d|Vi j |2
dt

= 2Re

(
1

Vi j

dVi j
dt

)
(A.13)

to be allowed to ignore safely the unknown imaginary part of
the diagonal elements of the matrices ∂tU

†
L UL and ∂t D

†
L DL .

We present here the one-loop gauge-Yukawa-CKM sys-
tem of equations for S3 in the down-origin basis and 2-family
approximation. We only give the equations for the parame-
ters affecting the low-scale phenomenology of the b → s
anomalies. All other parameters can be considered to be zero
and relevant at the UV fixed point.

dg3

dt
= −13

2

g3
3

16π2 − fgg3 (A.14)

dg2

dt
= −7

6

g3
2

16π2 − fgg2 (A.15)

dgY
dt

= 43

6

g3
Y

16π2 − fggY (A.16)

dyt
dt

= 1

16π2

[
3y2

b + 9

2
y2
t − 17

12
g2
Y

−9

4
g2

2 − 8g2
3 − 3

2
V33

2y2
b

+3

4

(
V32

2(Ŷ L
22)

2 + 2V32V33Ŷ
L
22Ŷ

L
32

+V33
2(Ŷ L

32)
2
)]

yt − fy yt (A.17)

dyb
dt

= 1

16π2

[
9

2
y2
b + y2

t − 5

12
g2
Y

−9

4
g2

2 − 8g2
3 − 3

2
V33

2y2
t

+3

4
(Ŷ L

32)
2
]
yb − fy yb (A.18)

dŶ L
22

dt
= 1

16π2

{[
7

2
(Ŷ L

22)
2 + 11

4
(Ŷ L

32)
2

−5

6
g2
Y − 9

2
g2

2 − 4g2
3

+1

2
y2
t V32

2
]
Ŷ L

22 + 2y2
t V32V33Ŷ

L
32

}

− fy Ŷ
L
22 (A.19)

dŶ L
32

dt
= 1

16π2

{[
17

4
(Ŷ L

22)
2 + 7

2
(Ŷ L

32)
2

+1

2
y2
b − 5

6
g2
Y − 9

2
g2

2
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−4g2
3 + 1

2
y2
t V33

2
]
Ŷ L

32 − y2
t V32V33Ŷ

L
22

}

− fy Ŷ
L
32 (A.20)

d|V33|
dt

= V23

16π2

[
−3

2
V23V33y

2
b + 3

4

(
V22V32(Ŷ

L
22)

2

+V22V33Ŷ
L
22Ŷ

L
32 + V23V32Ŷ

L
22Ŷ

L
32

+V23V33(Ŷ
L
32)

2
)]

− V32

16π2

[
3

2
V32V33y

2
t − 3

4
Ŷ L

22Ŷ
L
32

]
. (A.21)

Moreover, the orthogonality of the CKM matrix in the 2-
family approximation leads to

V22 = V33 , V23 = −V32 =
√

1 − V33
2. (A.22)

Appendix B: Trans-Planckian renormalization of S1

We present here the RG flow of the S1 gauge-Yukawa sys-
tem in the trans-Planckian regime. S1 carries the SM quantum
numbers (3̄, 1, 1/3). In the flavor basis, the Lagrangian fea-
tures NP Yukawa matrices of the left (L) and right (R) type.
In terms of left-chiral (unbarred) and right-chiral (barred)
Weyl fields one writes

L ⊃ (YL)i j Q
T
i (iσ2)L j S1 + (YR)i j ū Ri ēR j S1 + H.c. ,

(B.23)

where a sum over repeated family indices i, j is implied,
QT

i = (uLi , dLi ) and L j = (νL j , eL j )T are SU(2)L doublets
and σ2 is the second Pauli matrix. As was the case for S3, we
assume that terms that are dangerous for proton decay are
forbidden.

In dealing with Eq. (B.23), we adopt the assumptions
introduced and justified in Appendix A. Namely, we restrict
ourselves in the fixed-point analysis to real Yukawa couplings
and the 2-family approximation; we neglect the physics of
neutrinos and consider only diagonal charged-lepton matri-
ces; we do not introduce the scalar potential sector parameters
in the fixed-point analysis.

The Yukawa matrices transform to the quark mass basis
via the unitary rotations

Y R = UT
R YR Ỹ L = UT

L YL Ŷ L = DT
L YL , (B.24)

which yield Ỹ L = V ∗Ŷ L .
As is explained in Sect. 4, we perform the fixed-point anal-

ysis in the down-origin basis of the left-handed LQ Yukawa
couplings, which is not in tension with the low-energy con-
straints. One must add to Eqs. (A.9)–(A.11) the correspond-
ing RGEs

∂t Y
2
u +

[
Y 2
u ,

(
∂tU

†
R

)
UR

]
= U †

R

(
∂t MU

)
UR (B.25)

∂t

(
Y RY R†

)
+

[
Y RY R†,

(
∂tU

T
R

)
U∗

R

]
= UT

R (∂t MR)U∗
R ,

(B.26)

obtained by rotating the squared matrices defined in the flavor
basis,

MU = Y †
UYU , MR = YRY

†
R . (B.27)

We present here the one-loop gauge-Yukawa-CKM sys-
tem of equations for S1 in the down-origin basis and 2-family
approximation. We only give the equations for the parame-
ters affecting the low-scale phenomenology of the b → c
anomalies. All other parameters can be considered to be zero
and relevant at the UV fixed point.

dg3

dt
= −41

6

g3
3

16π2 − fgg3 (B.28)

dg2

dt
= −19

6

g3
2

16π2 − fgg2 (B.29)

dgY
dt

= 125

18

g3
Y

16π2 − fggY (B.30)

dyc
dt

= 1

16π2

{[
3y2

b + 9

2
y2
c + 3y2

t + y2
τ

−17

12
g2
Y − 9

4
g2

2 − 8g2
3 − 3

2
V23

2y2
b + 1

2
(Y R

23)
2

+1

2

(
V22

2(Ŷ L
23)

2 + V23
2(Ŷ L

33)
2

+2V22V23Ŷ
L
23Ŷ

L
33

)]
yc

−2yτY
R

23

(
V22Ŷ

L
23 + V23Ŷ

L
33

)}
− fy yc (B.31)

dyt
dt

= 1

16π2

{[
3y2

b + 3y2
c + 9

2
y2
t + y2

τ

−17

12
g2
Y − 9

4
g2

2 − 8g2
3 − 3

2
V33

2y2
b + 1

2
(Y R

33)
2

+1

2

(
V32

2(Ŷ L
23)

2 + V33
2(Ŷ L

33)
2

+2V32V33Ŷ
L
23Ŷ

L
33

)]
yt

−2yτY
R

33

(
V32Ŷ

L
23 + V33Ŷ

L
33

)}
− fy yt (B.32)

dyb
dt

= 1

16π2

{[
9

2
y2
b + 3y2

c + 3y2
t + y2

τ

− 5

12
g2
Y − 9

4
g2

2 − 8g2
3

−3

2

(
V23

2y2
c + V33

2y2
t

)

+1

2
(Ŷ L

33)
2
]
yb

}
− fy yb (B.33)

dyτ
dt

= 1

16π2

{[
3y2

b + 3y2
c + 3y2

t

+5

2
y2
τ − 15

4
g2
Y − 9

4
g2

2
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+3

2

(
(Ŷ L

23)
2 + (Ŷ L

33)
2
)

+ 3

2

(
(Y R

23)
2 + (Y R

33)
2
)]

yτ

−6
[
ycY

R
23

(
V22Ŷ

L
23 + V23Ŷ

L
33

)

+ytY
R

33

(
V32Ŷ

L
23 + V33Ŷ

L
33

)]}
− fy yτ (B.34)

dŶ L
23

dt
= 1

16π2

{[
4(Ŷ L

23)
2 + 7

2
(Ŷ L

33)
2 + (Y R

23)
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33

(
y2
c V22V23

+y2
t V32V33

)
− 2yτ

(
ycV22Y

R
23

+yt V32Y
R

33

)}
− fy Ŷ
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dŶ L
33

dt
= 1

16π2

{[
9

2
(Ŷ L
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L
23 + V23Ŷ
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L
33)

2
)

− 2yτ yt
y2
t − y2

c

(Ŷ L
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(B.39)

As before, the orthogonality of the CKM matrix in the
2-family approximation leads to

V22 = V33 , V23 = −V32 =
√

1 − V33
2. (B.40)
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