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Abstract We investigate the nature of the forces involved
during the collapse of a compact stellar object such as an
unstable neutron star. The collapse ensues from an initial
static configuration described by the Vaidya–Tikekar solu-
tion until the time of formation of the horizon. As the object
collapses it radiates energy to the exterior spacetime in the
form of a radial heat flux. The matching of the interior
to the exterior Vaidya spacetime determines the temporal
behaviour of the solution. Utilizing a dynamical Tolman–
Oppenheimer–Volkoff equation, we investigate the evolution
of the various forces at play within the collapsing fluid sphere.
A novel connection has been made between structurally fun-
damental quantities (forces) and the spacetime geometry of
the gravitational formalism used.

1 Introduction

Gravitational collapse is an important phenomenon in astro-
physics in which the theory of General Relativity (GR) may
be applied and studied. The gravitational potentials involved
are in general, both space and time dependent and so the
full time-dependent Einstein Field Equations (EFEs) are uti-
lized. Off diagonal elements of the energy–momentum ten-
sor due to shearing, viscosity and most notably heat flux, are
also invoked and this provides a physically rich scenario for
thermodynamic analyses, otherwise limited in static, time-
independent GR. Physical problems involving gravitational
collapse have been well studied since the pioneering work
of Oppenheimer and Snyder [1] in which the collapse of
a spherically symmetric cloud of dust was studied with an
empty space exterior as described by the Schwarzschild solu-
tion. The inclusion of radiation within the exterior spacetime
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was made by Vaidya [2] and this allowed for more accurate
models of gravitational collapse in which radiation trans-
fer is necessary. An important step forward was also made
by Misner and Sharp [3]. A connection was made with the
Oppenheimer–Volkoff equations for hydrostatic equilibrium,
allowing for more realistic equations of state in the case of
adiabatic collapse and the inclusion of neutrino flux for a
non-adiabatic scenario [4]. Other notable researchers include
Bonnor et al. [5], Santos [6] and Chan et al. [7]. Bonnor et
al. gave an extensive review of radiating spherical collapse.
Herrera, Santos and Chan have looked into various aspects of
the dynamics of gravitational collapse, augmenting models
to include viscous effects, imperfect fluids and anisotropy.

Gravitational collapse is the physical phenomenon which
occurs during the birth or death of stellar objects. Protostar
formation begins with the self-gravitational collapse of inter-
stellar clouds in a process which can take hundreds of thou-
sands to millions of years. Relativity theory is not required
for the most part of such a collapse process. At the other end
of the spectrum, so to speak, and more relevant to applica-
tions of GR is the formation of supernova remnants such as
neutron stars and black holes. These processes are probably
about sixteen orders of magnitude more rapid than say pro-
tostar formation, yet gravity provides the key driving force,
dominating all other forces if a black hole is the final state of
collapse. Computation of the timescales involved in the for-
mation of neutron stars or black holes from the progenitors
of core-collapse supernovae necessitates the use of GR or
higher gravity theories. Such computations suggest collapse
processes of the order of tens of milliseconds [8]. The release
of gravitational binding energy in supernovae is typically of
the order of 1051 ergs [9] and in the more extreme case of
neutron star collapse, perhaps as high as 1054 ergs [10]. In
complementing such luminosity data which is accessible to
both theoretical and experimental methods, an investigation
of the dynamical forces at work might help elucidate the
time-dependent structural properties of collapsing neutron
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star material up until horizon formation. At the present time,
such investigations remain computationally based using GR
or extended gravity theories.

An alternative to black hole formation, due to a core-
collapse supernova of sufficient magnitude, could be the col-
lapse of a neutron star which has become unstable. Such a
scenario might arise as a result of accretion, eventually lead-
ing to a core with a critical density, or in the more spectacu-
lar event in which two stars merge. Such events are actively
studied with the inclusion of gravitational wave research. A
recent theoretical study investigates the collapse of an unsta-
ble neutron star with initial conditions derived from realistic
equations of state [11]. A detailed analysis of the radial oscil-
lation modes was used to establish instability. Other methods
for determining instability include evaluation of the adiabatic
index [12,13], however this might not guarantee stability with
respect to radial oscillations.

The Tolman–Oppenheimer–Volkoff (TOV) equation for
hydrostatic equilibrium provides insight into the internal
forces present in compact stellar objects [14,15]. Originally
developed using the time-invariant field equations for spher-
ically symmetric bodies of isotropic matter in static gravi-
tational equilibrium, it is then linked to an equation of state
to provide a definite internal structure of the body. Since its
original inception, the TOV equation has been augmented
to include pressure anisotropy [16] which naturally arises if
a non-perfect fluid scenario is assumed. Such assumptions
are supported by investigations into strong magnetic fields,
solid cores and other properties likely to be inherent in com-
pact objects [17,18]. Further work has provided the so-called
dynamical Tolman–Oppenheimer–Volkoff equation, devel-
oped via the scheme of Misner and Sharp [19]. This dynam-
ical TOV equation is suitable for monitoring gravitational
collapse processes such as the collapse of an unstable neu-
tron star [20].

In our study, we make use of the Vaidya–Tikekar gravi-
tational potential in setting up an initial configuration repre-
senting an unstable neutron star. This gravitational formalism
has been shown to be well-suited to modelling superdense
compact objects [21]. The potential incorporates a spheroidal
parameter which allows for the enhancement of physical fea-
tures associated with superdense matter such as high core
densities, required as a precursor to gravitational collapse.
We take as our initial configuration, the example of an unsta-
ble neutron star of appropriate mass and radius as given by
[11]. Instability analysis is disregarded for the time being, in
order to focus on the implementation of the dynamical TOV
equation which is the aim of this study.

2 The field equations

In modelling gravitational collapse, we consider the matter
distribution to be shear-free and spherically symmetric. This
is a reasonable assumption when modelling a relativistic,
radiating star. In this case there exist coordinates for which
the line element may be expressed in a form that is simul-
taneously isotropic and comoving. We make use of a line
element similar to that originally proposed by de Oliveira et
al. [22] and modified by Sharma and Das [23] for study-
ing radiating, gravitational collapse. With the coordinates
(xa) = (t, r, θ, φ) this line element, for the interior space-
time of the stellar model, takes the form

ds2 = −A2
0(r)dt

2 + f 2(t)

×
[
B2

0 (r)dr2 + r2(dθ2 + sin2 θdφ2)
]
, (1)

where the metric functions are to be determined according
to physically viable gravitational potentials. We consider a
model which represents a spherically symmetric, shear-free
fluid configuration with heat flux. For our model, the energy–
momentum tensor for the stellar fluid takes the form

Tab = (ρ + pt )uaub + pt gab + (pr − pt )χaχb

+qaub + qbua , (2)

where ρ is the energy density, pr and pt are the radial and
tangential stresses respectively and qa = (0, q, 0, 0) is the
heat flux vector assumed to flow in the radial direction due to
spherical symmetry. The fluid four-velocity u is co-moving
and is given by

ua = 1

A
δa0 . (3)

and χa is a unit space-like four-vector along the radial direc-
tion. The following relations need to be satisfied

uaua = −1, uaqa = 0, χaχa = 1, χaua = 0.

The fluid collapse rate � = ua;a of the stellar model is
given by

� = 3
Ḃ

AB
, (4)

where dots represent differentiation with respect to t .
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The nonzero components of the Einstein field equations
for the line element (1), in geometrized units, are

8πρ = 1

f 2

[
1

r2 − 1

r2B2
0

+ 2B ′
0

r B3
0

]
+ 3 ḟ 2

A2
0 f

2
, (5)

8πpr = 1

f 2

[
− 1

r2 + 1

r2B2
0

+ 2A′
0

r A0B2
0

]

− 1

A2
0

[
2
f̈

f
+ ḟ 2

f 2

]
, (6)

8πpt = 1

f 2

[
A′′

0

A0B2
0

+ A′
0

r A0B2
0

− B ′
0

r B3
0

− A′
0B

′
0

A0B3
0

]

− 1

A2
0

[
2
f̈

f
+ ḟ 2

f 2

]
, (7)

8πq = − 2A′
0 ḟ

A2
0B

2
0 f 3

, (8)

We rewrite Eqs. (5)–(7) in the form

ρ = ρs

f 2 + 3 ḟ 2

8π A2
0 f

2
, (9)

pr = (pr )s
f 2 − 1

8π A2
0

[
2
f̈

f
+ ḟ 2

f 2

]
, (10)

pt = (pt )s
f 2 − 1

8π A2
0

[
2
f̈

f
+ ḟ 2

f 2

]
, (11)

where ρs , (pr )s and (pt )s denote the energy density, radial
pressure and tangential pressure respectively of the initial
static configuration. These are given by

8πρs =
[

1

r2 − 1

r2B2
0

+ 2B ′
0

r B3
0

]
, (12)

8π(pr )s =
[
− 1

r2 + 1

r2B2
0

+ 2A′
0

r A0B2
0

]
, (13)

8π(pt )s =
[

A′′
0

A0B2
0

+ A′
0

r A0B2
0

− B ′
0

r B3
0

− A′
0B

′
0

A0B3
0

]
. (14)

Equations (6) and (7) can be used to calculate the
anisotropy parameter, defined as

δ (r, t) = (pt − pr ) (15)

This is similar to a definition given by [23]. In order to con-
struct a static model of the initial configuration, Sharma and
Das assumed that the anisotropy parameter, δ, was separable
in r and t, i.e.

δ (r, t) = δs(r)

f 2(t)
(16)

Then Eq. (15) reduces to

δs(r) = 1

8π

[
A′′

0

A0B2
0

− A′
0

r A0B2
0

− B ′
0

r B3
0

− A′
0B

′
0

A0B3
0

− 1

r2B2
0

+ 1

r2

]
(17)

which is clearly independent of t. They further utilized the
Finch and Skea ansatz which has been successfully used to
model compact stars [24]. In order to solve (17), Sharma and
Das assumed a particular profile for the anisotropy parame-
ter based on physically reasonable behaviour. Equation (17)
reduces to a second order equation in A0 for which they
obtained the general solution. Hence the initial static config-
uration could be fully specified.

In this paper, we adopt a different approach. We begin
with an initial static configuration described by a Vaidya–
Tikekar (V–T) model which is suitable for modelling super-
dense compact objects. The V–T ansatz, together with a lin-
ear equation of state has been used recently by Sharma et
al. to generated new and viable solutions for describing pul-
sars [25]. We make further use of this work by setting up
initial static configurations which represent an unstable neu-
tron star. Gravitational collapse then ensues in which heat is
dissipated and a black hole remnant is formed.

3 Junction conditions

Since the interior is radiating energy, the exterior spacetime
is described by Vaidya’s outgoing solution [2] given by

ds2 = −
(

1 − 2m(v)

r

)
dv2−2dvdr+r2

(
dθ2 + sin2 θdφ2

)
.

(18)

The quantity m(v) represents the Newtonian mass of the
gravitating body as measured by an observer at infinity, as a
function of the retarded time v. The metric (18) is the unique
spherically symmetric solution of the Einstein field equations
for radiation in the form of a null fluid. The Einstein tensor
for the line element (18) is given by

Gab = − 2

r2
dm

dv
δ0
aδ

0
b . (19)

The energy momentum tensor for null radiation assumes the
form

Tab = 	wawb , (20)
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where the null four-vector is given by wa = (1, 0, 0, 0). Thus
from (19) and (20) we have

	 = − 2

r2
dm

dv
, (21)

for the energy density of the null radiation. Since the star
is radiating energy to the exterior spacetime we must have
dm

dv
≤ 0.

The necessary conditions for the smooth matching of the
interior spacetime to the exterior spacetime was first pre-
sented by Santos [6] in his seminal paper. The junction con-
ditions for the line elements (1) and (18) are given by

(pr )
 = (qB0 f )
 (22)

m(v) =
[
r f

2

(
1 − 1

B2
0

+ (r ḟ )2

A2
0

)]




(23)

4 A Vaidya–Tikekar static configuration

Vaidya and Tikekar [21] have developed realistic compact
stellar models according to the gravitational potential for-
mulation given by

B2
0 (r) = 1 − K (r2/L2)

1 − (r2/L2)
(24)

where K is a spheroidal parameter which allows for depar-
ture from spherical symmetry with respect to the radial coor-
dinate. This formulation has been shown to be suitable for
modelling superdense stellar matter and is less prone to insta-
bility due to anisotropy in pressure towards the surface. A
linear equation of state, pr = αρ −β, together with the stan-
dard time-independent field equations are used to generate
the gravitational potential,

A2
0(r) = J

(
1 − r2/L2

)n (
1 − Kr2/L2

)α

eK
(
L2−r2

)
β/2

(25)

where

n = 1

2

(
−1 − 3α + L2β + K (1 + α − L2β)

)
(26)

and J is a constant to be determined through matching of both
potentials at the boundary. Matching of the internal metric to
a Schwarzschild exterior at the boundary provides

L2 = R2 (2KM − K R + R)

2M
. (27)

The surface energy density is given by

ρs = (1 − K )
(
3 − K R2/L2

)

L2
(
1 − K R2/L2

)2 (28)

and

β = αρs . (29)

We choose α = 1/3 which then sets ρs = 4B where B is
the MIT Bag constant.

5 Non-adiabatic collapse process

In order to develop the temporal dependence for the collapse
process, the boundary condition (pr )
 = (qB)
 is used.
Making use of (8) and (10) with the static part set to zero, we
obtain

2 f f̈ + ḟ 2 − 2a ḟ = 0 (30)

where

a =
(
A′

0

B0

)




(31)

which sets the temporal dependence of the model.
An integral of (30) is given by

ḟ = 2a

(
1 − 1√

f

)
(32)

in which the integration constant was set so that f = 1
represents the initial static configuration at t = −∞. This
can be further integrated to obtain

t = 1

a

[
f

2
+ √

f + ln(1 − √
f )

]
(33)

A similar result was originally obtained by Bonnor et al.
[5] and subsequently used in a model incorporating pressure
anisotropy by Govender et al. [26]. Recently, Pretel and da
Silva [11] obtained a similar result with a temporal function
defined to be the square of the one we have defined, and
Veneroni and da Silva [27] also displayed similar results. We
also express the second derivative of f as

f̈ = −2a2

f 2

(
1 − √

f
)

(34)

which is clearly directed towards the centre of the gravita-
tionally collapsing system.
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It is necessary to determine the lower limit of f at which
the event horizon is formed. This is determined by examining
the asymptotic behaviour of the surface redshift, given by

z
 =
[
dv

dτ

]




− 1 =
[

1

B0
+ r ḟ

]−1




− 1 (35)

where τ is the proper time defined on the surface boundary.
Divergence of z
 leads to

fbh =
(

2M

R

)2

(36)

which gives the time of formation of the black hole.

6 A dynamical model

We follow a model similar to that used by Pretel and da
Silva [11] describing an unstable neutron star with radius
R = 9.384 km and mass M = 2.015M� which undergoes
gravitational collapse to form a black hole. We investigate
various settings of the spheroidal parameter and associated
parameters required for the models, as shown in Table 1.
Vaidya and Tikekar [21] initially proposed a value of K =
−2 for the spheroidal parameter although the suitability of
larger negative values (more radially asymmetric potentials)
has been investigated, with K = −20 of particular interest
[25]. Values of the MIT Bag constant B are calculated from
ρs = ρ(r = R) and are a bit higher than the more common
value of 60 MeV/fm3. Higher MIT Bag constants have been
utilised in studies of strange stars [28] wherein it is noted
that a higher value softens the equation of state. Studies of
semiempirical mass-radius relationships for strange stars also
required the use of large values (B ≈ 110 MeV/fm3) [29].
We note that the temporal dependence parameter, a, is related
to the surface gravity by

a = M

R2 = gs
√

1 − 2M/R. (37)

For our model, the parameter which sets the temporal
dependence is calculated to be a = 0.03377 km−1. This
gives a surface gravity of gs = 0.05582 km−1c2 = 5.02 ×
1014 cm/s2 for the initial configuration. This is about twice
the surface gravity of a typical neutron star but within an
upper bound as given by Bejger and Haensel [30].

The mass function (23) is given by

m(r, f ) = f m0(r) + 2r3 a2

A0(r)2

(
1 − √

f
)2

(38)

Table 1 Model parameters of initial unstable static configuration

Model K L (km) ρs (km−2) n J B MeV/fm3

1 −2 15.51 0.01551 −0.4670 0.5425 117

2 −5 19.83 0.01399 1.168 13.45 105

3 −10 25.45 0.01330 8.121 2.191E+5 99.9

4 −20 34.00 0.01290 37.88 4.849E+20 97.0

where

m0(r) = 4π

∫
ρ0(r)r2dr = r3

[
R3

M
+ 2K

1 − K

(
R2 − r2

)]−1

(39)

is the mass of the initial configuration. The temporal
function, evaluated at the time of horizon formation, gives
fbh = 0.4018. At horizon formation, the mass function
gives m(R, fbh) = 1.277M� which corresponds to the
mass of the black hole remnant. The radius of the horizon
is rbh = R × fbh = 3.770 km. The time-dependent field
equations allow for the evaluation of physical quantities at
important points in spacetime, in particular the central densi-
ties (ρc) and pressures (pc). Results of these calculations are
given in Table 2 for comparison and integration with models
in similar studies.

7 Dynamical Tolman–Oppenheimer–Volkoff equations

A generalized Tolman–Oppenheimer–Volkoff (TOV) equa-
tion, incorporating heat-flux, may be obtained from the diver-
gence of the energy–momentum tensor and the Einstein field
equations [31]. Within our formalism, we obtain

∂

∂r
pr = −(ρ + pr )B

2
0 f

[
m

(r f )2 + 4π(r f )pr + r

A2
0

f̈

]

+2

r
(pt − pr ) − B2

0 f 2

A0

[
q̇ + 5q

ḟ

f

]
. (40)

This equation can be re-arranged as

(ρ + pr )
r

A2
0

f̈ = Fg + Fh + Fa + Fq (41)

where the gravitational, hydrostatic, anisotropic and heat-
flux forces are defined as

Fg = −(ρ + pr )

[
m

(r f )2 + 4π(r f )pr

]
(42)

Fh = − 1

B2
0 f

[
p′
r

]
(43)

Fa = 1

B2
0 f

[
2

r
(pt − pr )

]
(44)
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Table 2 Core densities and
pressures at initial and final
stages

Model no. K ρc( f = 1)

(1015 g/cm3)

ρc( f = fbh)
(1015g/cm3)

pc( f =
1) (1035

dyne/cm2)

pc( f =
fbh) (1035

dyne/cm2)

1 −2 2.004 12.41 3.513 21.76

2 −5 2.453 15.19 5.102 31.60

3 −10 2.731 16.91 6.046 37.45

4 −20 2.920 18.08 6.675 41.35

Fig. 1 Temporal progression of surface forces for K = −2 (solid) and
K = −20 (dashed)

Fq = − 1

A0
f

[
q̇ + 5q

ḟ

f

]
. (45)

Equation (41) has the form of Newton’s second law and the
forces identified therein correspond to those found in similar
studies [20,32]. The resultant force is given by

Fs = (ρ + pr )
r

A2
0

f̈ (46)

We plot the temporal dependence at the boundary in Fig. 1
for the models determined by spheroidal parameters of K =
−2 and K = −20. The normalized spatial profiles are shown
in Figs. 2, 3, 4 and 5 at various stages of collapse, namely at
f = 1 which corresponds to the initial static configuration,
then at f = 0.7, f = 0.5 and finally at f = fbh = 0.4018
which corresponds to the time of formation of the black hole.

8 Discussion

We now provide further discussion of the trends and physical
viability of our dynamical gravitational collapse model. Fig-
ure 1 shows the effect of the spheroidal parameter K on the
magnitudes of the forces generated at the surface boundary,
with respect to the time measurement parameter f . At early
times ( f ≈ 1), the stellar configuration is in an unstable,

Fig. 2 Force profiles at f = 1 for K = −2 (solid) and K = −20
(dashed)

Fig. 3 Force profiles at f = 0.7 for K = −2 (solid) and K = −20
(dashed)

quasi-static equilibrium with a resultant force close to zero.
Initially, heat dissipation to the exterior and the associated
heat-flux force are zero. As the star collapses and radiates,
the component forces grow in magnitude, most notably at late
times ( fbh < f < 0.5). The gravitational force is increas-
ingly negative and is clearly the dominant driving force. We
observe that the force due to anisotropy is positive, indicat-
ing that the tangential pressure dominates the radial pressure.
This gives rise to a repulsive force which tends to counter-
act the effect of the gravitational force. Similar trends are
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Fig. 4 Force profiles at f = 0.5 for K = −2 (solid) and K = −20
(dashed)

Fig. 5 Force profiles at f = fbh for K = −2 (solid) and K = −20
(dashed)

observed for the forces at the surface for the more aspheri-
cal settings of the spheroidal parameter (K = −20). Apart
from the anisotropy-free hydrostatic component, we observe
that radial asymmetry tends to diminish slightly the magni-
tudes of the forces at the surface boundary. Figures 2, 3, 4
and 5 display the radial profiles and show the progression of
the internal stresses. The initial, quasi-static equilibrium is
shown in Fig. 2 where there is no resultant force through-
out the configuration. Gravitational collapse could be ini-
tiated due to the extreme and hostile environment of com-
pact objects such as neutron stars which most likely have
marked seismological activity. Accretion of material could
also assist in inducing collapse. There appears to be com-
petition between the inwardly driven gravitational force and
the outwardly directed hydrostatic force, with the difference
being enhanced with larger deviations from spherical sym-
metry i.e., a larger magnitude of the spheroidal parameter,
K . Figures 3, 4 and 5 show the evolution of the forces as the
star collapses. As time progresses (decreasing values of f ),
we note that the magnitudes of the competing forces increase

with the largest effects occurring at a comoving radial dis-
tance of about 2/5 of the surface boundary rb. While the
forces due to gravity, aniosotropy and the hydrostatic inter-
action exhibit similar behaviour, the force due to the heat-flux
changes sign. During the initial stages of collapse (Fig. 3), we
see that the force due to heat flux (Fq ) promotes the collapse
although it is relatively small in magnitude, dominated by
the other forces. During the later stages (Figs. 4, 5), the heat
flux has a retarding effect. As the core collapses, its density
increases leading to a larger output of energy. Although the
heat flux is directed outwards, the inertia associated with it
has a tendency to ’stall’ the collapse process. The effect of
the spheroidal parameter, K , is more noticeable within the
interior of the collapsing fluid than at the surface and we note
that aspheroidicity generally promotes instability.

9 Conclusion

In this work we investigated the stability of a collapsing, radi-
ating star by focussing on the forces at play within the stel-
lar fluid. We employed a dynamical Tolman–Oppenheimer–
Volkoff equation which allowed us to take snapshots of the
various forces at work as functions of the temporal and radial
coordinates. We observed that the magnitudes and behaviours
of the various forces are altered as the collapse proceeds.
This in turn drives the fluid to greater instability. We fur-
ther showed that the spheroidal parameter, K , in the Vaidya–
Tikekar superdense stellar model is well suited and plays a
key role in the evolution of the forces within the stellar mate-
rial. Our work confirms earlier findings by Sharma et al. [25]
that deviation from spherical geometry can influence the sta-
bility of the fluid. For the more asymmetric case (K = −20)

we noted a local minimum of the resultant force within the
interior. Such minima, generated within short timeframes,
might produce shock waves which could result in material
being ejected from the surface, a likely consequence of such a
collapse process. Radial asymmetry also appears to promote
inhomogeneity within the matter distribution which could in
turn affect the opacity and resulting heat flow properties of
the collapsing medium. Inhomogeneity might arise due to
string fields as recently investigated [33]. Although outside
the scope of the present study, heat transport properties of
the medium would further enhance the description of grav-
itational collapse problems with the theoretical framework
already having been set up by Herrera et al. [34]. Neverthe-
less, we have already observed the dynamics of the heat flux
which is the novel finding of our study. As the star collapses,
the heat generated from the conversion of gravitational poten-
tial energy appears to initiate towards the surface, thus pro-
moting the collapse process. During the later stages, heat
within the core seems to stall the collapse process although
the net force promotes continued collapse into a black hole.
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We believe that our approach is novel within the framework
of General Relativity theory and demonstrates for the first
time the connection between dynamical and structurally fun-
damental quantities (forces) and the spacetime geometry via
the spheroidal parameter, K , of the gravitational formalism
used.
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