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Abstract: We report on recent experimental results on β decay into self-conjugate (N = Z) nuclei with

mass number 58 ≤ A ≤ 70. Super-allowed β decays from the Jπ = 0+ ground state of a Z = N + 2

parent nucleus are to the isobaric analogue state through so-called Fermi transitions and to Jπ = 1+

states by way of Gamow–Teller (GT) transitions. The operator of the latter decay is a generator of

Wigner’s SU(4) algebra and as a consequence GT transitions obey selection rules associated with this

symmetry. Since SU(4) is progressively broken with increasing A, mainly as a consequence of the spin–

orbit interaction, this symmetry is not relevant for the nuclei considered here. We argue, however,

that the pseudo-spin–orbit splitting can be small in nuclei with 58 ≤ A ≤ 70, in which case nuclear

states exhibit an approximate pseudo-SU(4) symmetry. To test this conjecture, GT decay strength is

calculated with use of a schematic Hamiltonian with pseudo-SU(4) symmetry. Some generic features

of the GT β decay due to pseudo-SU(4) symmetry are pointed out. The experimentally observed GT

strength indicates a restoration of pseudo-SU(4) symmetry for A = 70.

Keywords: Gamow–Teller β decay; pseudo-SU(4) symmetry; odd–odd N = Z nuclei

1. Introduction

Allowed β decays from the Jπ = 0+ ground state of a Z = N + 2 parent nucleus can
proceed through two different processes: either through a super-allowed Fermi transition
to the isobaric analogue Jπ = 0+ state in the N = Z daughter nucleus or to Jπ = 1+ states
by way of Gamow–Teller (GT) transitions. In both cases, a proton is transformed into
a neutron with the emission of a positron and an electron-neutrino. A Fermi transition
can be viewed as a change of the isospin state of a nucleon with other quantum numbers
remaining the same, whereas a GT transition involves the simultaneous flipping of the
nucleon’s spin and isospin.

The GT transition operator is a generator of Wigner’s SU(4) (or supermultiplet) al-
gebra [1], and, as such, GT transitions obey the selection rules dictated by this symmetry.
While SU(4) symmetry might be a reasonable approximation in light (i.e., p-shell) nuclei,
it becomes strongly broken as the mass number A of the nucleus increases, mainly as a
consequence of the spin–orbit interaction. Many years ago, it was argued, however, that a
much weaker pseudo-spin–orbit interaction exists in nuclei. With reference to the original
papers [2,3] for a general definition of pseudo-spin symmetry, in the nuclei of interest
here, it amounts to treating the 1p1/2, 1p3/2 and 0 f5/2 orbitals as a pseudo-sd shell. It then
becomes natural to assume invariance under transformations in pseudo-spin and isospin
space, that is, to assume that the nuclear Hamiltonian exhibits a pseudo-SU(4) symmetry.
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The purpose of this contribution is to present a summary of recently obtained experimental
distributions of GT strength in the 58 ≤ A ≤ 70 mass region and to compare these results
to the predictions of a schematic model with pseudo-SU(4) symmetry.

We start in Section 2 with a brief review of experimental results concerning GT β decay
into N = Z nuclei. In Section 3, a formal definition is given of the GT transition operator
together with various expressions of its matrix elements. This is followed by a discus-
sion of Wigner’s SU(4) symmetry and its extension to pseudo-SU(4) in Sections 4 and 5,
respectively. The GT β decay of nuclei with two valence nucleons is discussed in detail in
Section 6 and applied to the decay of 18Ne and 58Zn as examples of GT transitions ruled by
SU(4) and pseudo-SU(4) symmetry, respectively. The latter approach is extended to A = 62,
66 and 70 in Section 7. Finally, a summary of this work is presented in Section 8.

2. A Review of Experimental Results

In this section, we discuss briefly the latest experimental results regarding four exotic
β decays of interest (see Figure 1). These decays have been studied at radioactive-beam
facilities of the fragmentation type, like GANIL (France) [4], GSI (Germany) [5], and RIKEN
Nishina Center (Japan) [6]. The production of these exotic nuclei is more challenging
with increasing mass. These β decays are not only of interest for nuclear structure but
they are also relevant for explosive nucleosynthesis, in particular for the astrophysical
rp-process [7,8].

Results of the β-decay study of 58Zn into 58Cu have been recently published by Kucuk
et al. [9]. The nucleus 58Zn was produced in GANIL using a primary beam of 64Zn29+ at
79 MeV/nucleon impinging in a natural nickel target with a thickness of 236 mg/cm2. The
reaction fragments were selected in the LISE3 separator [10], identified using the ToF–Bρ

for the (A/q) and the ∆E signal for the Z identification, and implanted in a double-sided
silicon strip detector (DSSD). The implantation detector was surrounded by three EXOGAM
clovers and a smaller EUROBALL clover of high-purity germanium detectors (HPGe) to
detect the β-delayed γ rays. The β decay of 58Zn is dominated by a super-allowed Fermi
transition to the isobaric analog state at 203 keV excitation. Two weaker GT transitions to
the first 1+ state (the ground state) and to a level at 1051 keV excitation were also identified.

Figure 1. Part of the nuclide chart representing the position of the decays of interest. Figure created

using the Colourful Nuclide Chart tool [11]. The decays of interest are marked with black arrows.

The other decays of interest, 62Ge into 62Ga, 66Se into 66As and 70Kr into 70Br have been
recently studied at RIBF in RIKEN Nishina Center. These, together with other nuclei with
30 ≤ Z ≤ 36, were produced by the fragmentation of a 345 MeV/nucleon 78Kr primary
beam with average intensities of 40 pnA impinging on a 5 mm thick 9Be target. The parent
nuclei of interest were produced in four different settings centred on 64Se, 65Br, 66Se, and
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70Kr. The fragmentation reaction products were separated using the BigRIPS fragment
separator [12]. As in the previous case the identification of particles with the atomic number
(Z) and the mass-to-charge ratio (A/q) was performed on the basis of the ∆E − ToF − Bρ

method, in which the energy loss (∆E), time of flight (ToF), and magnetic rigidity (Bρ)
were measured using detectors installed along the BigRIPS fragment separator. In the study,
the WAS3ABi implantation detector [13], consisting of three layers of highly-segmented
DSSDs, was used. This detector was surrounded by the EURICA spectrometer [14], which
consisted of 84 HPGe crystals arranged in twelve clusters at a nominal distance of 22 cm
from the centre of WAS3ABi. The absolute peak efficiency was found to be ∼8% at 1332 keV.

The β decay of 62Ge into 62Ga was first studied in detail at GSI [15], establishing a level
scheme that contained six states. This level scheme was revisited in a recent study by Orrigo
et al. [16] performed at RIKEN as described earlier. Four of the states seen in Ref. [15] were
confirmed in Orrigo’s work [16], and a much richer level scheme was deduced. Eight new
γ rays were identified for the first time in the RIKEN experiment, and the four strongest γ

transitions seen by Grodner et al. [15] in the GSI experiment were confirmed. However, the
Eγ = 1247 keV and Eγ = 2414 keV transitions identified by Grodner were not confirmed
in Orrigo’s study. Figure 2 shows the γ-ray energy spectrum for decay events correlated
with 62Ge implants measured at RIKEN. Based on the measured γ spectra, a new level
scheme was constructed, containing twelve 1+ states, with one state being assigned (1+)
only tentatively. In this last experiment, the half-life value of t1/2 = 73.5(1) ms was also
determined with higher precision than in earlier works. The new value is in agreement
with Kucuk et al. [9] within the uncertainty of their value, thus settling the question of
earlier conflicting values [15,17].

Energy [keV]
500 1000 1500 2000 2500 3000 3500 4000

C
o

u
n

ts
 /

 4
 k

eV

210

3
10

410

5
10

5
7

1
5

11

9
7

8 1
0

1
7

11
1

7

1
3

6
0

1
8

9
9

2
0

11
2

1
6

4

2
6

4
2

2
9

6
7

3
3

4
0

3
5

9
5

Figure 2. γ-Ray energy spectrum for decay events correlated with 62Ge implants.

For the 66Se into 66As case, a publication is in preparation [18] and we will only present
the β-strength results deduced from this work [19] in comparison with theory.

The β decay of the 70Kr isotope was studied in Sveiczer et al. [20] from the RIKEN
data of the same campaign. The level scheme of the 70Br daughter isotope populated in the
β decay of 70Kr was established with eleven populated states below Eexc = 3300 keV and
fifteen γ transitions identified for the first time (see Figure 3). They are shown in Figure 4.
Previously, no levels populated in the β decay were known with the exception of the 2+

state at 933 keV, which was also known from in-beam studies [21,22]. The half-life of the
decay was also determined from implant –β-decay correlations with increased precision,
providing a value of t1/2 = 45.19(14) ms.
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Figure 3. γ-Ray energy spectrum for decay events correlated with 70Kr implants [20].

Figure 4. Partial level scheme of 70Br derived from the β decay of 70Kr. The excitation energies and

most probable spins and parities (Jπ) of the observed states are indicated on the right-hand side of the

levels. The arrow widths are proportional to absolute intensities of the γ rays. Tentatively assigned

levels and their corresponding γ rays are labelled between brackets. Sp represents the one-proton

separation energy [20].

An interesting common feature of the studied decays is that they do not show γ tran-
sitions between the identified 1+ states. This indirectly confirms their Jπ = 1+ assignment
based on the quasi-rule that ∆T = 0 M1 transitions in self-conjugate nuclei are expected
to be weaker by a factor of 100 than the average M1 transition strength [23]. This fact was
already observed in the study of lighter Z = N + 2 decays [24].
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3. The Gamow–Teller Operator and the Ikeda Sum Rule

The GT operator transforms as a rank-one tensor (i.e., vector) in spin and in isospin
space. Conventionally, it is taken to be

A

∑
k=1

M±
µ (k) =

A

∑
k=1

σµ(k)t±(k) =
1√
2

A

∑
k=1

σµ(k)τ±1(k), (1)

where the summation is over the A nucleons in the nucleus, σ̄(k) and τ̄(k) are the spin and
isospin vectors and t±(k) are the isospin raising and lowering operators of nucleon k. For
ease of notation the summation over k and the index k will be suppressed in the following,

∑k M±
µ (k) → M±

µ , etc. The total GT strength created by the operator (1) on an initial state
|i〉 is given by the sum [25]

S±(i) =
+1

∑
µ=−1

∑
f

|〈f|M±
µ |i〉|2, (2)

where the summation in f is over all possible final states. Because of the operator identity
[M+

µ , M−
µ ] = −2Tz, the summed GT β± strength satisfies the Ikeda sum rule [26]

S−(i)− S+(i) = 3(N − Z). (3)

The reduced GT strength from an initial to a final state |JiTiTzi〉 → |JfTfTzf〉, where
states are characterized by total angular momentum J, isospin T, and isospin projection Tz,
is given by

B(GT; JiTiTzi → JfTfTzf) =
1

2Ji + 1
|〈JfTfTzf||M±||JiTiTzi〉|2, (4)

where the matrix element is reduced by the Wigner–Eckart theorem in angular momentum
following the convention of Talmi [27]. The matrix element can be further reduced [28] by
applying the Wigner–Eckart theorem in isospin, leading to

B(GT; JiTiTzi → JfTfTzf) =
1

2(2Ji + 1)

(
Ti 1 Tf

−Tzi Tzi − Tzf Tzf

)2

|〈JfTf|||σ̄τ̄|||JiTi〉|2, (5)

where the matrix element is now reduced in angular momentum J and isospin T.
The calculation of GT strength for a Hamiltonian with pseudo-spin symmetry requires

matrix elements of the type

〈LSJT|||(Yλ × σ̄)(1)τ̄|||L′S′ J′T′〉 =
√

3 Ĵ Ĵ′





L S J
L′ S′ J′

λ 1 1



〈LST||||Yλσ̄τ̄||||L′S′T′〉, (6)

with x̂ =
√

2x + 1 and where the symbol in curly brackets is a nine-j coeffcient and Yλµ(θ, ϕ)
is a spherical harmonic of multipolarity λ [27]. The matrix element on the left-hand side of
Equation (6) is reduced in J and T while that on the right-hand side is reduced in L, S and
T. This formula will be applied for λ = 0 (the standard GT operator) and for λ = 2, which
contributes to the pseudo-spin-transformed operator (see below). The reduced GT strength
for the transition |LiSi JiTiTzi〉 → |LfSf JfTfTzf〉 is therefore

B(GT; LiSi JiTiTzi → LfSf JfTfTzf) (7)

=
3(2Jf + 1)

2

(
Ti 1 Tf

−Tzi Tzi − Tzf Tzf

)2




Lf Sf Jf

Li Si Ji

λ 1 1





2

|〈LfSfTf||||Yλσ̄τ̄||||LiSiTi〉|2.
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4. Wigner’s SU(4) Symmetry

Wigner [1] assumed that the nuclear Hamiltonian is spin as well as isospin independent,

[H, σµ] = [H, τν] = [H, σµτν] = 0, (8)

in which case the nuclear Hamiltonian has SU(4) symmetry. The n-nucleon eigenstates of
this Hamiltonian can be classified according to

U(4Γ) ⊃ U(Γ) ⊗ UST(4)
↓ ↓ ↓

[1n] [h̄] [h̄′]
, (9)

where Γ is the orbital dimension of the single-particle space, Γ = ∑l(2l + 1), and 4Γ is the
total dimension for neutrons and protons that takes care of the spin and isospin degrees
of freedom. If the nucleons occupy an entire shell of the harmonic oscillator with major
quantum number N, containing the orbital angular momenta l = N, N − 2, . . . , 1 or 0, then
Γ equals (N + 1)(N + 2)/2.

The labels beneath the algebras in Equation (9) denote their (irreducible) represen-
tations. The nucleons are identical under U(4Γ) and therefore the representation of this
algebra must be completely anti-symmetric, [1n] ≡ [1, . . . , 1]. A representation of U(s)
is characterized by s non-negative, ordered labels h1 ≥ h2 ≥ · · · ≥ hs, and therefore
[h̄] ≡ [h1, . . . , hΓ] and [h̄′] ≡ [h′1, . . . , h′4]. Further, since the representation of U(4Γ) is totally
anti-symmetric, the representations [h̄] of U(Γ) and [h̄′] of UST(4) must be conjugate; that is,
their Young tableaux are obtained from each other by interchanging rows and columns.

The definition of the generators of the different algebras in terms of nucleon creation
and annihilation operators can be found in Ref. [29]. Here, we just point out that the
classification (9) can be replaced by an equivalent one,

U(4Γ) ⊃ U(Γ) ⊗ SUST(4)
↓ ↓ ↓

[1n] [h̄] (λ, µ, ν)
, (10)

where the labels (λ, µ, ν) are related as follows to [h̄′]:

λ ≡ h′1 − h′2, µ ≡ h′2 − h′3, ν ≡ h′3 − h′4. (11)

A supermultiplet contains all states in a representation [h̄] of U(Γ) or, equivalently, in
a representation (λ, µ, ν) of SUST(4). The basic idea of Wigner’s model is that the nucleon–
nucleon interaction favors states with maximal spatial symmetry and therefore the different
supermultiplets are well separated in energy. States at low energy in the spectrum of a
given nucleus have maximal spatial symmetry and are said to belong to the favoured
supermultiplet.

For a nucleus with N neutrons and Z protons, the favoured supermultiplet cannot
contain states with isospin less than T = |Tz| = |N − Z|/2. The allowed values of S and T
in the representation (λ, µ, ν) are found from the branching rule

SUST(4) ⊃ SUS(2) ⊗ SUT(2)
↓ ↓ ↓

(λ, µ, ν) S T

, (12)

the Wigner coefficients of which can be obtained with general techniques [30,31]. In this
way, one determines the favoured supermultiplet that is compatible with the Tz of a nucleus.

The point of interest in the present discussion is that the operator σµτν is a generator
of the SUST(4) algebra and, as a consequence, GT transitions are forbidden between states
belonging to different supermultiplets.
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Let us further specify the orbital part U(Γ) of the classification (10). As shown by
Elliott [32,33], for an entire oscillator shell [Γ = (N + 1)(N + 2)/2], the following generic
orbital classification exists:

U[(N + 1)(N + 2)/2] ⊃ SU(3) ⊃ SO(3). (13)

There are, in fact, 2N−1 possible SU(3) subalgebras, distinguished by different phase choices
in the quadrupole generator. Of particular interest for the example discussed below is the
sd shell with N = 2, in which case Equation (13) reduces to

U(6) ⊃ SU±(3) ⊃ SO(3). (14)

Two SU(3) subalgebras can be defined, differing by the relative sign of the sd and dd
components of the quadrupole operator, akin to the situation in the interacting boson
model (IBM) [34]. Since it turns out that the phase is of relevance for GT transitions, the
two subalgebras are explicitly denoted as SU±(3).

To summarize, the n-nucleon eigenstates of a Hamiltonian with SU(4) symmetry can
be written as

|n(λµν)αLSJT〉, (15)

where α denotes any remaining label necessary for a full characterization of the states in
orbital space.

5. Pseudo-SU(4) Symmetry

But for the lightest nuclei, SU(4) symmetry is strongly broken mainly as a consequence
of the spin–orbit interaction. In certain mass regions, however, a pseudo-SU(4) symmetry
might be appropriate. The latter derives from the idea of pseudo-spin symmetry, which was
suggested simultaneously and independently by Arima et al. [2] and by Hecht and Adler [3]
and was given an explanation the context of relativistic mean-field theory [35–37]. With
reference to the example discussed below, in nuclei with 28 ≤ N, Z ≤ 40, this symmetry
arises by treating the 1p1/2, 1p3/2 and 0 f5/2 orbitals as a pseudo-sd shell.

A nuclear Hamiltonian with pseudo-SU(4) symmetry satisfies

[H, σ̃µ] = [H, τν] = [H, σ̃µτν] = 0, (16)

where σ̃µ are Pauli matrices in pseudo-spin space. Since the pseudo-spin–orbit splitting
(between 1p3/2 and 0 f5/2 in the above example) is substantially smaller than the standard
spin–orbit splitting (between 1p1/2 and 1p3/2, or between 0 f5/2 and 0 f7/2), the violation
of the first commutator in Equation (16) is correspondingly smaller. The Hamiltonian
satisfying the commutation relations (16) has eigenstates with the following labels:

|n(λ̃µν)α̃L̃S̃JT〉, (17)

where n is the number of nucleons in an entire pseudo-oscillator shell, L̃ is the total pseudo-
orbital angular momentum, S̃ the total pseudo-spin, and α̃ is any necessary remaining label.

In the example of the pseudo-sd shell, the degeneracy of the 1p3/2 and 0 f5/2 orbitals is
necessary but not sufficient for pseudo-SU(4) symmetry to hold since the latter requires
also that the nucleon–nucleon interaction be invariant under pseudo-spin and isospin
transformations. In particular, a pseudo version of SU(3) can be formulated [38,39]. More
generally, it can be tested whether a realistic shell-model interaction satisfies invariance
under pseudo-SU(4) and pseudo-SU(3), as was performed in Ref. [40] for A = 58, 60 nuclei.

The GT matrix element between the pseudo-SU(4) states (17)

〈n(λ̃fµfνf)α̃f L̃fS̃f JfTfTzf||σ̄τ̄||n(λ̃iµiνi)α̃i L̃iS̃i JiTiTzi〉, (18)
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can be rewritten as the matrix element of the transformed operator between SU(4) states (15),

〈n(λfµfνf)αfLfSf JfTfTzf|| ˜̄στ̄||n(λiµiνi)αiLiSi JiTiTzi〉. (19)

One therefore needs to apply the pseudo-spin transformation to the GT operator. In the
following we use the pseudo-spin transformation involving the r-helicity operator as
defined by Bohr et al. [41]

Õ = O +
1

r2
(r̄ · σ̄)[O, r̄ · σ̄], (20)

for any operator O. More general transformations can be defined [42], in particular the
p-helicity transformation suggested microscopically [36,43], leading to the same expres-
sion for the GT matrix elements. The pseudo-spin transformation (20) applied to the GT
operator yields

˜̄στ̄ = −σ̄τ̄ +
2

r2
(r̄ · σ̄)r̄τ̄ = −1

3
σ̄τ̄ − 4

√
2π

3
[Y2 × σ̄](1)τ̄. (21)

The first term is proportional to the GT operator itself and therefore follows the same
selection rules. However, allowed GT transitions in pseudo-SU(4) have f t values that are
about one order of magnitude larger than the corresponding ones in SU(4) due to the factor
− 1

3 . The second term in Equation (21) introduces a dependence on the quadrupole deformation
of the nucleus. This differs from standard SU(4), where predicted f t values are structure
independent.

6. An Example: Gamow–Teller Decay of a Two-Nucleon System

We calculate GT transitions between two-nucleon states in the sd and pseudo-sd shells,
applicable to the decays 18Ne → 18F and 58Zn → 58Cu, respectively. In the sd shell, we
assume that the Hamiltonian conserves the orbital angular momentum L and the spin S,
in addition to the total angular momentum J and isospin T. In the pseudo-sd shell, the
Hamiltonian is assumed to conserve L̃, S̃, J, and T.

The B(GT) strength can be obtained with the help of Equation (7), together with the
two-nucleon matrix element in an LST basis,

〈l1l2LST||||Yλσ̄τ̄||||l′1l′2L′S′T′〉direct (22)

= L̂L̂′ŜŜ′T̂T̂′(−)l1+l′2+λ

{
S S′ 1

1/2 1/2 1/2

}{
T T′ 1

1/2 1/2 1/2

}
〈1/2||σ̄||1/2〉〈1/2||τ̄||1/2〉

×
[
(−)L′+S′+T′

{
L L′ λ

l′1 l1 l2

}
〈l1||Yλ||l′1〉δl2l′2

+ (−)L+S+T

{
L L′ λ

l′2 l2 l1

}
〈l2||Yλ||l′2〉δl1l′1

]
,

where

〈1/2||σ̄||1/2〉 = 〈1/2||τ̄||1/2〉 =
√

6, 〈l||Yλ||l′〉 = (−)l l̂λ̂l̂′√
4π

(
l λ l′

0 0 0

)
. (23)

The GT transition strength between anti-symmetric two-nucleon states can be obtained by
taking appropriate combinations of the direct matrix element (22).

6.1. The 18Ne → 18F Decay

The GT transitions take place from the ground state of the parent nucleus with the
structure

|0+1 〉 ≡ |L = S = J = 0, T = 1〉 = α001| 1S1(s
2)〉+ β001| 1S1(d

2)〉, (24)
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to two possible states in the daughter nucleus

|1+1 〉 ≡ |L = 0, S = J = 1, T = 0〉1 = α010| 3S0(s
2)〉+ β010| 3S0(d

2)〉,
|1+2 〉 ≡ |L = 0, S = J = 1, T = 0〉2 = β010| 3S0(s

2)〉 − α010| 3S0(d
2)〉, (25)

with α2
LST + β2

LST = 1 and where the notation 2S+1LT is used. In round brackets are
indicated the single-particle orbital angular momenta s and d, from which the coupled
orbital angular momentum L is obtained. If L and S are conserved, a decay to other states
in the daughter nucleus is not possible. With the expression (22), we find

〈3S0(s
2)||||σ̄τ̄||||1S1(s

2)〉 = 〈3S0(d
2)||||σ̄τ̄||||1S1(d

2)〉 = −6,

〈3S0(s
2)||||σ̄τ̄||||1S1(d

2)〉 = 〈3S0(d
2)||||σ̄τ̄||||1S1(s

2)〉 = 0, (26)

and with the help of Equation (7) we obtain

B(GT; 0+1 → 1+1 ) = 6(α001α010 + β001β010)
2,

B(GT; 0+1 → 1+2 ) = 6(α001β010 − β001α010)
2. (27)

For a Hamiltonian with SU(4) symmetry [e.g., Elliott’s SU(3) model], one has α001 = α010

and β001 = β010, and all GT strength is concentrated in the 1+1 level. If SU(4) symmetry
is broken but L and S are conserved, for example, by taking an interaction with unequal
isoscalar and isovector strengths, the B(GT) strength is distributed over two 1+ levels.
Note that, since the initial system has no neutrons, S− = 0, and the Ikeda sum rule (3)
is satisfied.

6.2. The 58Zn → 58Cu Decay

As explained in Section 5 the calculation of GT transitions in a pseudo-sd shell can be
replaced by one in the sd shell with the transformed GT operator ˜̄στ̄ of Equation (21). With
the latter operator transitions take place from the ground state (24) of the parent nucleus to
five possible states in the daughter nucleus, namely to the two 1+ states (25) and to

|1+3 〉 ≡ |L = 2, S = J = 1, T = 0〉1 = α210| 3D0(sd)〉+ β210| 3D0(d
2)〉,

|1+4 〉 ≡ |L = 2, S = J = 1, T = 0〉2 = β210| 3D0(sd)〉 − α210| 3D0(d
2)〉,

|1+5 〉 ≡ |L = 2, S = J = 1, T = 1〉 = | 3D1(sd)〉. (28)

Note that a GT transition to a T = 1 state is allowed. The first piece of the transformed
GT operator (21) is proportional to σ̄τ̄, for which we use the expression (26). The matrix
elements of Y2σ̄τ̄ are obtained from Equation (22)

〈3D0(sd)||||Y2σ̄τ̄||||1S1(s
2)〉 = −

√
45

2π
, 〈3D0(d

2)||||Y2σ̄τ̄||||1S1(s
2)〉 = 0,

〈3D0(sd)||||Y2σ̄τ̄||||1S1(d
2)〉 = −

√
9

2π
, 〈3D1(d

2)||||Y2σ̄τ̄||||1S1(d
2)〉 =

√
90

7π
,

〈3D1(sd)||||Y2σ̄τ̄||||1S1(s
2)〉 = −

√
45

π
, 〈3D1(sd)||||Y2σ̄τ̄||||1S1(d

2)〉 =
√

9

π
, (29)
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leading to

B(GT; 0+1 → 1+1 ) =
2

3

(
α001α010 + β001β010)

2,

B(GT; 0+1 → 1+2 ) =
2

3

(
α001β010 − β001α010)

2,

B(GT; 0+1 → 1+3 ) =
8

105

(√
35α001α210 +

√
7β001α210 −

√
20β001β210)

2,

B(GT; 0+1 → 1+4 ) =
8

105

(√
35α001β210 +

√
7β001β210 +

√
20β001α210)

2,

B(GT; 0+1 → 1+5 ) =
4

15

(√
10α001 −

√
2β001)

2. (30)

We now apply these expressions to the SU(3) limits of the pseudo-sd shell, for which
the coefficients αLST and βLST are listed in Table 1. Note that SU−(3) and SU+(3), cor-
responding to prolate and oblate shapes, respectively, differ by just a sign in one of the
coefficients. The Gamow–Teller strengths B(GT; 0+1 → 1+i ) obtained after inserting the
coefficients of Table 1 in Equation (30) are shown in Table 2. The total strength given by the
Ikeda sum rule (remember that S− = 0) is not found in the SU(3) limits. The reason is that
a fraction of the ground-state wave function corresponds to two protons in the 0 f5/2 orbital
and the total Ikeda sum rule can only be recovered if the model space includes the 0 f7/2

orbital, which is absent from the pseudo-sd shell. The same fraction 502
105 ≈ 4.781 is found in

SU−(3) and SU+(3), but the strength is differently distributed in the two limits, indicating
the impact of the shape of the nucleus on the B(GT) distribution. This simple analysis
therefore confirms the original proposal of Hamamoto and Zhang [44] that the distribution
of GT strength depends on the shape of the nucleus, a result later confirmed in several
nuclei theoretically [45,46] and based on theoretical calculations, experimentally [47–52].

Table 1. The coefficients αLST and βLST of the expansions (24), (25), (28) in the SU(3) limits of the

sd shell.

α001 β001 α010 β010 α210 β210

SU−(3)
√

5
9

√
4
9

√
5
9

√
4
9

√
7
9

√
2
9

SU+(3)
√

5
9

√
4
9

√
5
9

√
4
9

√
7
9 −

√
2
9

Table 2. Gamow–Teller strengths B(GT; 0+1 → 1+i ) in the SU(3) limits of the pseudo-sd shell.

0+1 → 1+1 0+1 → 1+2 0+1 → 1+3 0+1 → 1+4 0+1 → 1+5

SU−(3) 0.667 0 1.243 2.338 0.533
SU+(3) 0.667 0 3.575 0.006 0.533

We conclude this illustrative example with the remark that identical results are ob-
tained with the standard Gamow–Teller operator σ̄τ̄ acting in the model space formed by
the 1p1/2, 1p3/2 and 0 f5/2 orbitals, a calculation which then necessarily must be carried out
in jj coupling.

7. Gamow–Teller Decay of 58 ≤ A ≤ 70 Nuclei

In order to extend the preceding results to nuclei with more valence nucleons, we
consider the following schematic Hamiltonian:

H = ǫs̃ns̃ − 4π ∑
T=0,1

a′T ∑
i<j

δ(r̄i − r̄j)δ(ri − R0)− ∑
±

κ±(Q± · Q± + 3L · L), (31)

which depends on the five parameters ǫs̃, a0, a1, κ−, and κ+. We choose the d̃ orbitals
1p3/2 and 0 f5/2 at zero energy and put the s̃ orbital 1p1/2 at an energy ǫs̃. The coefficients



Symmetry 2023, 15, 2001 11 of 15

aT ≡ a′TC(R0) (where C(R0) is a radial integral) determine the strengths of the surface
delta interaction (SDI) in the isoscalar (T = 0) and isovector (T = 1) channels. The
parameters κ± are the strengths of the quadrupole interaction, where κ− (κ+) corresponds
to prolate (oblate) deformation. The term 3L · L is added such that, in combination with
Q± · Q±, the sum of the two terms is proportional to the quadratic Casimir operator of
SU±(3). Signs in the Hamiltonian (31) are chosen such that all parameters are positive. The
Hamiltonian (31) clearly is of a schematic nature and one cannot expect to obtain with it a
detailed reproduction of the data. The purpose of the present exercise is rather to arrive at
an intuitive understanding how the B(GT) distribution depends on the different terms.

We first study the dependence of the B(GT) distributions on the character of the
quadrupole deformation. In Figure 5 is shown the calculated GT strength in the decay
(N = Z − 2) → (N = Z) for A = 58, 62, 66, and 70, in three typical cases, namely
no quadrupole deformation (κ± = 0), prolate (κ− = 20 keV), or oblate (κ+ = 20 keV)
deformation. For ease of comparison, other parameters are kept fixed, ǫs̃ = 0, a0 = 0.5
and a1 = 0.6 MeV. A standard GT quenching of q2 = 0.742 is applied. The distribution
calculated for A = 58 confirms the result of the previous section in the pseudo-SU±(3)
limits since for prolate deformation the GT strength is pushed to higher excitation energy.
For higher mass numbers A, however, this simple SU(3) picture is altered by the SDI: it
is rather in the case of oblate deformation that GT strength is found at higher excitation
energy. The distributions for A = 66 and A = 70 are exactly the same since for ǫs̃ = 0 the
Hamiltonian (31) has particle–hole symmetry.

0 1 2 3 4 5 0 1 2 3 4 5
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3
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2
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1
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3

4

1
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3

4
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ΣB
(G
T
;
0
1+
→1 i+

)
ΣB

(G
T
;
0
1+
→1 i+

)

A = 58

No deformation

Prolate

Oblate

A = 62

No deformation

Prolate

Oblate

A = 66

No deformation

Prolate

Oblate

A = 70

No deformation

Prolate

Oblate

Figure 5. Distributions of the GT strength in the decay from N = Z − 2 to N = Z nuclei for A = 58,

62, 66, and 70, and its dependence on the quadrupole deformation. The Hamiltonian (31) is used

with ǫs̃ = 0. The quadrupole deformation is either zero (κ± = 0, blue), prolate (κ− = 20 keV, red), or

oblate (κ+ = 20 keV, purple). The parameters of the SDI are a0 = 0.5 and a1 = 0.6 MeV, and the GT

strength is calculated with a quenching factor q2 = 0.742.

To compare with the observed B(GT) distributions, some empirical procedure should
be followed to obtain the parameters in the Hamiltonian (31). There is only a weak
dependence of the GT strength on ǫs̃, which is taken constant, ǫs̃ = 1 MeV. In contrast, the
parameters of the SDI do strongly impact the B(GT) distributions. They can be determined
from two experimental properties, namely the difference ∆E2 ≡ E(2+1 ) − E(0+1 ) in the
parent (or in its mirror nucleus) and the difference ∆E1 ≡ E(1+1 )− E(0+1 ) in the daughter.
Given the quadrupole moment Q(2+1 ) = −0.10(6) in 58Ni [53], a weak prolate deformation
is taken for A = 58. Little is known of the deformation in the heavier nuclei, and we have
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assumed that the deformation remains weakly prolate from 62Ga to 70Br. It should be noted,
however, that the small GT strength observed at low energy for A = 62 and 66 seems to
favor an oblate deformation. This procedure leads to the parameters given in Table 3. The
calculated B(GT) distributions obtained with the parameters of Table 3 are compared with
the experimental ones in Figure 6.
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A = 58 A = 62

A = 66 A = 70

Figure 6. Distributions of the GT strength in the decay from N = Z − 2 to N = Z nuclei for A = 58,

62, 66, and 70. The experimental B(GT) distributions and their uncertainties are indicated in grey.

Parameters of the Hamiltonian (31) are given in Table 3 and the GT strength is calculated with a

quenching factor q2 = 0.742.

Table 3. Parameters (in keV) of the Hamiltonian (31) together with the experimental (ex) and

calculated (th) energy differences ∆E2 and ∆E1 (see text) for A = 58, 62, 66, and 70.

A ǫs̃ a0 a1 κ− κ+ ∆E2,ex ∆E2,th ∆E1,ex ∆E1,th

58 1000 500 470 10 0 1356 1363 −203 −178
62 1000 600 710 10 0 954 936 571 564
66 1000 640 820 10 0 957 949 837 860
70 1000 480 700 10 0 945 907 1120 1147

It should be emphasised that the GT strength is sensitively dependent on several
parameters in the schematic Hamiltonian (31), and hence no firm conclusion can be drawn
on the question whether a prolate or an oblate deformation agrees better with experiment.
Nevertheless, one feature in the calculated distributions, namely the GT strength to the first
1+ level, is largely independent of the detailed structure of the Hamiltonian. Insight into this
result can be obtained with reference to the transformed GT operator (21). The first piece of
the transformed operator, − 1

3 σ̄τ̄, is responsible for GT strength towards the 1+1 level. Since
a0 6= a1, the SU(4) symmetry is broken, but this breaking is so small that the ∆L = 0 GT
strength is mainly concentrated in 1+1 . Because of the factor 1

3 in the transformed operator,

the predicted strength is one-ninth of the SU(4) value, that is, B(GT; 0+1 → 1+1 ) ≈ 2
3 q2. In

contrast, the distribution of the ∆L = 2 strength at higher excitation energy generated by

the second piece of the transformed operator, − 4
√

2π
3 [Y2 × σ̄](1)τ̄, is strongly influenced by

the values of a0 and a1 and their interplay with the strength of the quadrupole force.
It is seen from Figure 6 that the calculated B(GT; 0+1 → 1+1 ) value agrees with experi-

ment for A = 58. This is one of the arguments to propose the existence of a pseudo-SU(4)
symmetry in 58Cu [40]. On the other hand, the calculated B(GT; 0+1 → 1+1 ) value in A = 62
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and 66 is much larger than what is observed. Given that B(GT; 0+1 → 1+1 ) ≈ 2
3 q2 is a robust

prediction of pseudo-SU(4), one is led to conclude that this symmetry is absent from 62Ga
and 66As. By the same token, the experimentally observed GT strength in A = 70 indicates
a restoration pseudo-SU(4) symmetry in 70Br.

8. Conclusions

In this contribution, a review was given of the properties of Gamow–Teller (GT)
transitions in the nuclear shell model under the assumption of SU(4) or pseudo-SU(4)
symmetry. Since the GT transition operator is a generator of the SU(4) algebra, SU(4)
symmetry gives rise to selection rules in β decay. These are approximately observed in light
nuclei but strongly broken in heavier ones. Nevertheless, a symmetry-based analysis of
GT strength can still be carried out by assuming a nuclear Hamiltonian with pseudo-SU(4)
rather than SU(4) symmetry. The main outcome of the latter analysis is the observation of a
dependence of GT strength on the shape of the nucleus, thus confirming from a symmetry
perspective the study of Hamamoto and Zhang [44], who derived the same result in a
mean-field approach. However, schematic calculations show that other terms in a nuclear
Hamiltonian with pseudo-SU(4) symmetry also strongly influence the distribution of GT
strength. Therefore, the connection between the shape of the nucleus (i.e., prolate or oblate)
and the distribution of GT strength is not a straightforward one.

SU(4) symmetry dictates that most of the GT strength from the ground state of a
Z = N + 2 parent nucleus is concentrated in the yrast Jπ = 1+ state of the N = Z daughter
nucleus. This property is no longer valid for a Hamiltonian with pseudo-SU(4) symmetry,
in which case the GT strength can go to many Jπ = 1+ states with a distribution that
intricately depends on several parameters in the Hamiltonian. Nevertheless, one robust
property, largely independent of parameters, survives in pseudo-SU(4): the yrast Jπ = 1+

state collects about one-ninth of the strength expected in SU(4), B(GT; 0+1 → 1+1 ) ≈ 2
3 q2,

where q is the GT quenching factor. The observed GT strength in the 58Zn → 58Cu decay
is consistent with this prediction and therefore supports the existence of a pseudo-SU(4)
symmetry in the A = 58 nuclei. GT strength in support of pseudo-SU(4) symmetry is also
found in the 70Kr → 70Br decay but not in the 62Ge → 62Ga and 66Se → 66As decays. On
the basis of these observations, one can therefore conjecture a restoration of pseudo-SU(4)
symmetry in the A = 70 nuclei.
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Abbreviations

The following abbreviations are used in this manuscript:

GANIL Grand Accélérateur National d’Ions Lourds

GSI GSI Helmholtzzentrum für Schwerionenforschung

GT Gamow–Teller

RIKEN Rikagaku Kenkyüjyo

SDI surface delta interaction
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