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Resumo

De todas as épocas que o nosso Universo passou, a época Primordial € a fase mais intrigante e repleta
de questdes em aberto. Desde do proprio comeco do Universo as previsdes dos primeiros elementos leves
que foram cruciais para o evoluir do Universo, a fase primordial do Universo tem um papel extremamente
valioso na compreensdo absoluta da evolu¢do do nosso Universo.

O sucesso da nossa compreensdo e descri¢do atual desta época € alcangado usando a descricdo mo-
derna da cosmologia que € construida com base na Relatividade Geral em conjunto com o modelo padrdo
de particulas. Contudo, apesar deste sucesso, diversos problemas existem que pdem em questdo se nao é
necessdrio alterar algum destes dois modelos. Problemas ao nivel da descri¢do mais tardia do Universo,
como a origem da expansdo acelerada e a tensdo da constante de Hubble, podem ser vistas como fortes
indicios que € necessario uma nova fisica. Para apoiar ainda mais este ideia, problemas nas fases iniciais
do Universo, como a origem tedrica da inflacdo, a assimetria entre matéria e anti-matéria e a dispari-
dade entre as observagdes do litio primordial face ao previsto teoricamente, sdo também pontos bastante
relevantes que apoiam a necessidade de nova fisica. Adicionalmente, o facto de o modelo padrdao de
particulas apontar para uma unificacdo das trés interacdes fundamentais que descreve: interagdo eletro-
magnética, interacdo fraca e interacao forte, a altas energias, pode ser também usado como um racional
para argumentar que a gravidade a altas energias pode ter outra descricio e se essa nova descri¢ao levaria
a uma nova cosmologia e a uma nova fisica.

Comecando pelo inicio do nosso Universo, o modelo cosmolégico atual recorre a inflacdo, um pe-
riodo de expansdo extremamente rdpida que ocorreu nos instantes iniciais do Universo, proposta para
resolver problemas do modelo padrao da cosmologia, como o problema do horizonte, da planura e da
auséncia de monopdlos magnéticos. Durante essa fase, o Universo expandiu-se exponencialmente em
uma fracdo de segundo, suavizando as irregularidades iniciais e levando a homogeneidade e isotropia
observadas na radiacdo c6smica de fundo. Essa ideia, originalmente introduzida por Alan Guth, ganhou
peso com a criagdo de modelos que envolvem um campo escalar chamado por vezes de inflatdo, que seria
responsavel por este processo inflaciondrio. A inflacdo também fornece um mecanismo natural para a
geracdo das flutuacdes de densidade que deram origem as estruturas césmicas, ligando-se diretamente a
teoria da perturbac@o césmica. Contudo, a origem tedrica da inflagdo ainda permanece sem uma resposta
convincente estando muitas vezes associada a teorias de gravidade modificadas e a extensdes ao modelo
padrdo da fisica de particulas

Adicionalmente, entre os desafios mais fundamentais e intrigantes do Universo Primordial, a assime-
tria observada entre matéria e anti-matéria destaca-se como um dos problemas centrais da cosmologia
moderna. Esta questdo, inicialmente vista como uma peculiaridade das condi¢des iniciais do Universo,
passou a ser encarada, a partir do trabalho seminal de Andrei Dmitrievich Sakharov, como um fend-
meno que necessita de explicacdo dentro das proprias leis fisicas que governam a evolucao do Universo.
Sakharov formulou trés condi¢Oes necessdrias, hoje conhecidas como os "critérios de Sakharov", que
qualquer modelo ou mecanismo capaz de explicar a assimetria matéria-antimatéria deve satisfazer. Estes
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critérios estabelecem as bases para a criacio de teorias sobre a geragdo de uma preferéncia pela matéria
sobre a anti-matéria, sendo que tal processo ¢ denominado de Bariogénese. Ao longo das ultimas dé-
cadas, diversas abordagens tedricas foram propostas para explicar esta assimetria, onde a maioria delas
s@o ancoradas na fisica de particulas e interacdes fundamentais, tratando a gravidade como um elemento
secunddrio ou complementar. No entanto, uma proposta distinta surge ao colocar a gravidade no centro
deste processo. Conhecida como Bariogénese Gravitacional, esta teoria difere das abordagens convenci-
onais ao tratar a gravidade nao apenas como um pano de fundo estitico, mas como uma componente ativa
e essencial na gerac@o da assimetria. Este mecanismo sugere que a interacio gravitacional desempenha
um papel primordial na quebra de simetria entre matéria e anti-matéria, abrindo novas perspetivas para a
compreensdo dos processos que moldaram o Universo primordial.

Esta tese tem entdo como objetivo explorar o impacto de modificagdes a gravidade no contexto da
bariogénese e inflacdo onde o foco principal serd a assimetria entre matéria e anti-matéria.

Dito isto, comega-se por realizar uma introducio detalhada sobre as descricdes que a gravidade ja
teve, como o modelo padrao de cosmologia foi criado, que problemas atualmente existem neste modelo
onde foram expostos com detalhes os problemas (modernos e passados) associados a época primordial e
finaliza-se este primeiro capitulo da tese com uma breve introdugdo a geometria diferencial e derivagdo
da relatividade geral através do principio variacional.

No segundo capitulo, o modelo padrdo cosmolégico é apresentado com os detalhes necessarios asso-
ciado a sua aplicacdo ao Universo Primordial e adicionalmente é exposta uma descri¢do termodinamica
necessdria para a descricdo tedrica da bariogénese.

O capitulo seguinte é dedicado a apresentar o contexto tedrico associado a bariogénese. Os critérios
de Sakharov sdo apresentados e explicados seguindo-se a exposicdo dos trés mecanismos de bariogénese
que foram trabalhados nesta tese: Bariogénese Eletro-fraca, Bariogénese através de Teorias da Grande
Unificacdo e Bariogénese Gravitacional. As duas primeiras teorias sdo construidas sobre a estrutura
tedrica da fisica de particulas usando a gravidade como ferramenta de segunda ordem enquanto que
o0 terceiro mecanismo, como ja referido, usa a gravidade de forma mais fundamental. Os problemas
associados a estes mecanismos sdo expostos com énfase nos da Bariogénese Eletro-fraca uma vez que
a gravidade pode ter um papel importante para os resolver. O problema em questio corresponde a
capacidade deste mecanismo ter uma transicdo de fase de primeira ordem quando ocorre a transi¢io
eletro-fraca.

No capitulo 4, sdo introduzidas e detalhadas as duas teorias de gravidade modificada selecionadas
para aplicacdo aos mecanismos discutidos no capitulo 3. Para os dois mecanismos de cardter menos
dependente da gravidade, foi escolhida a teoria escalar-tensorial, enquanto para o terceiro mecanismo,
mais centrado na gravidade, optou-se pela teoria f(R,72). Sio apresentadas as equagdes de campo asso-
ciadas a ambas as teorias, bem como suas cosmologias e demais aspetos tedricos relevantes. Além disso,
foi discutida a conexdo entre os principios tedricos da inflagdo cdsmica e as teorias escalar-tensorial,
destacando como estas influenciam o comportamento do Universo primordial.

No penultimo capitulo, que precede o sumdrio e as conclusdes, sdo expostos os resultados obtidos
da aplicacdo dessas teorias de gravidade modificada aos diferentes mecanismos de bariogénese. No caso
da teoria escalar-tensorial, observou-se que a modificacdo da taxa de expansdo do Universo impacta
significativamente os cendrios de bariogénese. Com base no modelo cosmoldgico considerado, que se
divide em trés épocas, sendo a primeira dominada pelo campo escalar desta teoria, os resultados indicam
compatibilidade com os principais constrangimentos impostos pela Bariogénese Eletro-fraca. Ademais,
a aplicac@o da teoria escalar-tensorial aos mecanismos de Bariogénese através das Teorias da Grande
Unificacdo também forneceu resultados preliminarmente positivos. Os resultados mais promissores, no
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entanto, foram obtidos no contexto da Bariogénese Gravitacional onde diversos cendrios de sucesso fo-
ram identificados, sendo que a teoria de f(R,72) se destacou ao apresentar o maior niimero de resultados
positivos. Entre estes, 0 modelo que mais sobressaiu pode ser interpretado como uma versao ligeiramente
modificada da Relatividade Geral, introduzindo um parametro adicional constante que ajusta as previsdes
cosmoldgicas padrao sugerindo um novo caminho para a compreensao da Bariogénese gravitacional.
Palavras chave: Gravidade Modificada, Universo Primordial, Cosmologia, Bariogénese, Inflacao



Abstract

This thesis investigates fundamental questions related to the early Universe, particularly focusing on
baryogenesis and cosmic inflation. While the current cosmological model, built on General Relativity
and the Standard Model of particle physics, has been successful in describing many aspects of the Uni-
verse, unresolved issues, such as the matter-antimatter asymmetry, the origin of cosmic inflation, and the
acceleration of the Universe’s expansion, suggest the need for new physics. In this work, modifications
to gravity, specifically scalar-tensor theories (STT) and the f(R,7?) theory, are explored as potential
solutions for the long last problem of the asymmetry between matter and anti-matter. To do such, the
Electroweak baryogenesis mechanism and Baryogenesis thru Grand Unification Theories were explored
using STT while Gravitational baryogenesis was explored using (R, 7?). The relation between inflation
and STT was also briefly exposed.

The results show that these alternative gravitational models can provide new insights into the mecha-
nisms of baryogenesis, with the f(R,7?2) theory offering particularly promising outcomes for gravitati-
onal baryogenesis.

Keywords: Modified Gravity, Primordial Universe, Cosmology, Baryogenesis, Inflation
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Chapter 1

Introduction

1.1 So what is gravity?

1.1.1 Gravity from the ancient to Einstein, from Newton’s apple to Cosmology

Gravity is, to date, probably the most enigmatic fundamental interaction and presents the greatest
challenge when one tries to achieve a universal description. The path that led to our current understan-
ding of gravity is full of contributions and built on advances that only giants could make such as Galileo,
Newton and Einstein. Historically, gravity was the first interaction encountered by humanity and the first
to be studied through experimental investigation. The famous Galileo Galilei introduced experimental
tools like pendulums and incline planes to explore gravity at the terrestrial scale unavailing surprising
properties of an interaction that we observe in our daily lives. In addition to this contribution, it was
Galileo who established a relationship between references that are in movement, and Galileo’s famous
transformations. Newton brought the first mathematical description of gravity in a general thus cemen-
ting the beginning of the in-depth study of gravity. For a long time, Newton’s description of gravity
remained untouchable and reigned supreme being able to describe almost all the observations done by
Kepler, classical physics and other phenomena. Despite the tremendous success of such a description,
Newton’s description of gravity was haunted by a single problem that would end Newton’s absolute
gravitational description in Physics.

The dethronement of Newton’s gravity formalism started in the second half of the 19th century when
observations of Mercury reported a strange behaviour in the precession of the perihelion of the planet
that could not be explained by simply employing Newton’s mechanics. Attempts to solve this problem
without calling into question Newton’s theory were the norm. The most famous effort came from Le
Verrier, who speculated on the existence of a planet close to Mercury, never before observed, called Vul-
can. However, there were no observations to support this theory and it quickly fell into oblivion. The
answer would appear almost seventy years later at the hands of a young, courageous and curious German
physicist. Seeking to extend his theory of special relativity [[1]], Albert Einstein developed the theory that
today we call the best description of gravity: General Relativity (GR). Already dethroning Newton in
his notion of absolute space and time, by introducing the idea of space and time being one entity and
time being relative, Einstein boldly proposed a theory of gravity beyond expectations, a theory based on
a geometric description that used differential geometry in a way that no one thought could be used to
describe gravity in such a deep way. Finished and published in 1915, Einstein presented to the world the
theory of General Relativity. This theory would be experimentally proven by the results observed for the
precession of Merury’s orbit, as well as other experimental outcomes like the Lense-Thirring gravito-



1.1 So what is gravity?

magnetic precession (1918) and the gravitational deflection of light by the Sun, measured in 1919 during
a Solar eclipse by Arthur Eddington, giving the final blow to Newton’s theory of gravity declaring GR as
the new best theory to describe gravity. Although such dethrone was received as a shock, GR had already
started to receive a lot of attention and work developed since its theorization and soon, physicists started
to see the "true power"of the generalization of special relativity. The first marvelous result came by the
hands of a famous German physicist, that at the time of is contributions to GR was a German soldier
fighting in the front lines of World War I. Karl Schwarzschild was the first physicist to find exact soluti-
ons for the Einstein field equations that described what we today call Black Holes. This result brought an
intriguing description of the nature of gravity, space-time, describing perplexing phenomena such as the
event horizon and, most important, the problem and notion of singularities in GR. Physics inside the core
of a black-hole remains a problem without solution with GR being unable to answer the question: what
happens inside the black-hole singularity. In 2019, the Event Horizon Telescope Collaboration present to
the world the first strong evidence for the existence of this tremendous and mysterious objects [2]. Five
years before, the LIGO (Laser Interferometer Gravitational-Wave Observatory) Scientific Collaboration
and Virgo Collaboration announced the first direct detection of gravitational waves from the merging
of two black-holes [3]]. Both of this results sedimented General Relativity as a phenomenal theory of
gravity.

Besides the ramifications of GR to astrophysics, GR presented the perfect (or maybe almost perfect)
framework for dealing with the nature of the universe, its origins and its evolution. Starting with a paper
published in 1917 by Albert Einstein [4], cosmology saw its birth. Initiating with a static description of
the Universe, Einstein made the first kick to our comprehension of the Universe’s evolution. Although
this static description, motivated by the personal beliefs of Einstein, was received with some positivity
its fate soon came when Edwin Hubble, using the Hooker Telescope, the world’s largest telescope at
the time, discovered that our Universe was not static, it was expanding [3]. This groundbreaking dis-
covery lead to the developed of many cosmological descriptions of the Universe with different ideas,
evolution’s of the Universe and ends to it but only one prevailed as the best description, the Fried-
mann—Lemaitre-Robertson—Walker description. This description refers to a category of universes that
are homogeneous and isotropic (we will revisit this point later). Space-time divides into evenly curved
space and cosmic time shared by all moving observers. This description is now recognized as the FLRW
or Robertson-Walker metric. Equipped with such description, physicists unveiled the inner working of
our Universe. The great dilemma of the beginning of the Universe saw a possible answer by the hands of
a Belgian physicist who was also a Roman Catholic priest, Georges Lemaitre. Having already given an
important contribution to the conclusion that our Universe was not static but was in expansion, Lemai-
tre inspired by the biblical teachings and description of the beginning of the Universe, Lemaitre found
that GR was able to describe a Universe that emerged from a single point, a "primordial atom". Such
a bold claim received several critics, with the majority claiming that such a theory was religious-based
and not scientific. Despite the criticism, the Big Bang theory, a name not given by Lemaitre itself but
by one of his critics, Fred Hoyle, prevailed as the favoured and best description of the beginning of our
Universe standing out from the remaining competing theories when one of its most crucial prediction,
the Cosmic Wave Background (CMB), was observed in 1964 at Bell Labs [6]. It can be said that this
paved the way for modern cosmology, as from this point forward, the field saw a significant increase in
contributions and studies with famous names such as Roger Penrose, Stephen Hawking, George F. R.
Ellis and many others making important contributions. Another fundamental concept developed within
the Big Bang theory is the cosmologic inflation [[7], an epoch characterized by an exponential expansion
that occurred in a extremely short interval of time. Even though the success of the Big Bang predicti-
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ons and results, some shortcomings persisted such as the flatness problem, the Horizon problem and the
Magnetic-monopole problem that can be all solved with inflation. The first problem stems from the ob-
servation that certain initial conditions of the universe seem to be finely tuned to very "special"values [§]].
Small deviations from these values would have significant effects on the appearance of the universe at
the present time. The Horizon problem is related to the reason connected to the Universe appearing
homogeneous and isotropic at large scales. The last problem stems from the possible existence of Grand
Unification theories (GUTs) [9], that unify the tree fundamental interactions of particle physics. At high
temperatures, such as in the early universe, the electromagnetic force, strong, and weak nuclear forces
are not fundamental forces but arise from spontaneous symmetry breaking of a single gauge theory and
the problem comes from the prediction of magnetic monopoles from these theories that are a class of
exotic particles never observed [10,|11]. Inflation can solve these three problems as a rapid expansion of
the Universe is able to justify the horizon problem, to answer the fine tuning problem presented by the
flatness problem and if magnetic monopoles were created a period of inflation occurring at a temperature
below that at which magnetic monopoles can be produced, monopoles would be pushed apart as the uni-
verse expands, potentially reducing their observed density by several orders of magnitude. By the turn of
the last century, the final ingredient to the modern cosmological description of the Universe was found,
the expansion rate of the Universe was accelerating! Observations of the Type la supernovae confirmed
that the Universe is currently experiencing an exponentially accelerated expansion, known as late-time
cosmic acceleration [[12, 13} (14 [15]].

With all this, the current model of cosmology was developed, called the Standard Model of Cos-
mology (SMC), or ACDM [16] where A stands for the Cosmological constant [17] that is necessary
to obtain an accelerated expansion and CDM denotes Cold Dark Matter. This model incorporates the
several key ideas previously presented and as well observational results such as: the CMB, Baryonic
Acoustic Oscillations [18 [19], the primordial power spectrum’s and the capability to reproduced obser-
ved phenomena such as the large-scale structure in the distribution of galaxies, the observed abundances
of hydrogen (including deuterium) and helium and the accelerating expansion of the universe observed
in the light from distant galaxies and supernovae. In conjunction with the Standard Model of Particle
Physics, a theoretical model that appeared much later than GR, these two models are our current best
understanding of the Universe.

1.1.2 Cosmology with General Relativity describes well the late and the early Universe,
right?

The remarkable achievements of GR make it a cornerstone of modern physics and the strong expe-
rimental evidence continues to support this theory as the best explanation for gravity. However, as the
precision of measuring instruments has improved, and with the launched of new probes and telescopes
that can test GR (such as the James-Webb Telescope, the Euclid Mission, and LISA, Laser Interferometer
Space Antenna, in the future) and obtain more data for cosmology, tensions between GR predictions and
observational data have emerged and increasingly indicate that GR may not be the ultimate description
of gravity [[16]]. Many of these tensions are referred to as late-time tensions, meaning that they are related
to the present time and not very far behind in the past of our Universe. From these tensions, the two that
most stand out are the Hubble tension (see [20] for an in-depth review), where local measurements of
the Hubble parameter are in tension with the value inferred from a ACDM that fit the CMB data, and the
o8 tension where measurements of weak gravitational lensing at low redshifts indicate weaker matter
clustering compared to what is expected from the standard ACDM cosmological model with parameters
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determined by CMB measurements[16]. Additionally, the standard model of cosmology has two major
theoretical weaknesses. The major problem stems from the fact cosmological constant, which is equiva-
lent to introducing a uniformly distributed form of energy, has no satisfactory theoretical description and
observations rule out the best theoretical descriptions [21, 22} 23] 24/ 25]]. The second problem is related
to GR in cosmology being incapable to justify the existence of dark matter, which is thought to constitute
about 25% of the total matter/energy content present in the Universe [16}26]. Even though dark matter
is a theoretical prediction of particle physics that was not yet detected, its applications on the astrophy-
sical domain as the most acceptable answer to the observed anomalous galactic rotation curves [27, 28]
can be interpreted as a shortcoming of GR at the scales at question.

Although the problems associated with the late-time epoch of the Universe are well recognized, the
primordial epoch also presents a significant number of unresolved questions and challenges. The primor-
dial stage of the Universe is characterized by a unique theoretical framework, distinct from that of the
late-time Universe, due to its extremely high energy scales. This epoch provides a natural laboratory for
exploring high-energy physics. The Big Bang theory, which describes the origin of the Universe, posits
an initial singularity, a singular point from which the Universe is thought to have emerged. However,
this concept has faced criticism, as it could be interpreted as a limitation of General Relativity or even a
flawed prediction of the Big Bang theory itself. Conceptually, the idea of an initial singularity is more
intuitive, as it allows us to imagine a Universe beginning from a state of zero size with infinite tempera-
ture and energy density, where all fundamental interactions are unified within a still-unknown theoretical
framework. Nonetheless, it is also possible that the Universe undergoes a cyclic cosmological evolution,
in which it never actually contracts to a state of zero size. Subsequently, the Big Bang theory is intrin-
sically linked to the concept of inflation, as inflation addresses three significant cosmological problems
that the Big Bang theory has. However, the true nature of inflation is not truly understood. From a
theoretical point of view inflation is a simple mechanism but from a fundamental point of view inflation
stands as a complex and profound unanswered question. Following this problem, in the time-line of the
Universe evolution a fundamental problem also arises. The standard model of particle physics predicts
that all particles burst into existence following same laws of physics with no reason for a unbalance in
the production of particles or anti-particles. Therefore, total annihilation of particles and anti-particles
would happen resulting in a Universe with only radiation. However, our own existence and astronomical
observations [29, [30} [31]] point out to the existence of an asymmetry between matter and anti-matter.
Although the asymmetry observed is very small, of the order of 10~!!, the implications that this asym-
metry brings to the evolution of the Universe are extremely important as it has impact in the formation
of the first light elements. Andrei Dmitrievich Sakharov was one of the first physicists that try to solve
this problem by introducing a “recipe” to generate and preserve the asymmetry [32]. This work laid the
ground for the study of mechanisms able to generate this asymmetry that are denominated as baryogene-
sis mechanisms. Baryogenesis stands as the crucial theoretical field searching to solve this problem with
mechanisms and phenomena that, in the majority of the cases, brings new physics typically in the form
of extensions of the standard model of particle physics. Another problem connected to the primordial
Universe is the lithium problem. The current model for the Big Bang Nuclesynthesis (BBN) [33]], the
process that formed the first light elements, hydrogen, deuterium, helium and lithium, in the Universe,
and one of the only few probes of the very early Universe with direct experimental or observational con-
sequence, when in combination with the data from the Wilkinson Microwave Anisotropy Probe (WMAP)
cosmic baryon density show that the 7Li observations lie below the prediction [34]]. A recent update on
the numerical/computational side of the BBN calculation was achieve with the code PRIMAT [35, 136]
but the lithium problem still persist. Diverse solutions have been proposed [37]] ranging from observa-
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tional problems, astrophysical processes, nuclear phenomena, modified statistics, exotic new physics in
the early universe and changes to the cosmological description.

Additionally, in recent years, another (pseudo-)problem appeared due to the James Webb Space
Telescope (JWST) [38] observations. The James Webb Space Telescope has identified exceptionally
bright early galaxies, i.e, high-redshift galaxies with surprisingly high stellar masses [39} 40, 41]], which
suggests a potential conflict with the predictions of the ACDM cosmological model. Some solutions
have been proposed both from an observational point of view [42]] but the majority of the belief resides
in modifications to ACDM such as non Gaussianities in primordial fluctuations [43]], modified dark
energy description [44], heavy primordial black-holes (PBHs) [45] or more exotic approaches as axion
miniclusters [46]. The PBHs approach is particularly interesting as this objects can also be a viable
candidate for DM [47, 48]]. Another (pseudo-)problem is the anomalies of the CMB [16]. Additionally,
with the future launch of LISA, the existence of Primordial Gravitational Waves, a phenomena that offers
a unique glimpse into the early Universe and serve as the sole probe of the physics associated with the
inflationary epoch will play a role on better understanding the primordial universe as many new physics
predict this indirect observational and it will also serve to test and constraint the current cosmological
model [49] 150, I51]].

From a more fundamental and theoretical perspective, General Relativity also faces significant chal-
lenges, such as the presence of singularities. These singularities, typically associated with the centers of
black holes, are regions of spacetime where both the curvature and the energy density of matter become
infinite. The existence of such singularities suggests the need for a quantum theory of gravity. Moreover,
when considering the very early stages of the Universe, it becomes essential to incorporate quantum cor-
rections to General Relativity and idea explore by Alexei Alexandrovich Starobinsky [52] that eventually
lead to his famous model for inflation.

1.1.3 If the standard model of cosmology has problems, what do we do?

With cosmology encountering a diverse array of challenges across two distinct epochs of the Uni-
verse, it raises the question of what strategies might effectively address these issues. While there are nu-
merous potential approaches to tackling these problems, two major branches of research have emerged
as particularly prominent. The first branch mainly focuses on modifications to the matter-energy sec-
tor, such as the introduction of unknown particles like axions, the introduction of neutrinos with unique
behaviors like self-interaction or special interactions with dark matter, dark matter possessing particular
properties such as self-interaction, and various models of dark energy. The latter includes numerous the-
oretical frameworks designed to construct a viable model, as discussed in the literature [20, |53} 154} 55]].
These models encompass scalar fields, spinor fields, (non-)abelian vector theories, the cosmological
constant, fluids with complex equations of state, and theories involving higher-dimensional spaces. From
the late-time standpoint, the dark energy approach has is advantageous sides as it is able to obtain the late
accelerated expansion of the Universe without much effort. Additionally, according to Lovelock’s theo-
rem [56, 157, the only possible second order Euler-Lagrange expression obtainable in a four-dimensional
space from a scalar density of the form £ = L(guv) is Huv = /—8(AGuv + A2guv) where A1 and A,
are constants with one leading to Newton’s gravitational constants, G, and the other to the cosmological
constant, A, in the Einstein’s field equations, therefore, the cosmological constant appears in a natural
way. Furthermore, dark matter (for in-depth reviews see [26, [58|, 159]]) stands also as a strong theore-
tical contender to solve diverse problems in cosmology as it is a favorite among the others theoretical
possibilities due to the belief that the standard model of particles has unknown sectors.
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Alternatively, the previous problems and weaknesses related to GR can be used to argue that so-
mething new needs to appear, in other words, possibly a new theory of gravity. This logic leads to the
second branch characterized by modifying the gravitational description and searching different theories
of gravity that can tackle all the problems mentioned. Changes in the gravitational description lead to
changes in the cosmological description and such modifications can answer the issues mentioned. Addi-
tionally, without a proper theory of quantum gravity, the search for this "holy grail"can also benefit from
the study and exploration of modified theories of gravity. Modifications to gravity that go beyond GR
are not a recent idea, as right after the publication of GR new theories of gravity were also proposed one
of the most famous and early modified theories of gravity proposed was the Brans-Dicke scalar-tensor
theory of gravity [60].

Numerous modified theories of gravity have been proposed; for a comprehensive reviews, see [61,
62,163, 164] and the modern development of modified gravity theories can be traced back to the seminal
work of Hans Adolf Buchdahl [65]], in which he introduced a Lagrangian of the form f(R), with R
representing the Ricci scalar. By employing the variational principle, a theoretical framework that will
become particularly important later, Buchdahl explored the cosmological implications of this theory.

1.1.4 Why modified gravity in the primordial Universe?

Given the energy scales characteristic of the primordial Universe, the primary focus of this thesis, it
is reasonable to suggest that, like the three fundamental interactions described by the Standard Model of
particle physics, which are unified under a Grand Unified Theory at high energy scales, gravity may also
necessitate a different theoretical framework in such high energy regimes. Although this hypothesis ap-
pears straightforward, its implications and consequences are significantly more complex. This idea can
be traced back to Paul Dirac, who in 1937 proposed the Large Number Hypothesis (LNH) [66]. Dirac’s
hypothesis suggests that the gravitational "constant"might not be constant at all but could instead vary
over time. This concept eventually led to the development of the Brans-Dicke scalar-tensor theory of
gravity—a theory in which the gravitational interaction is mediated by both a scalar field and the tensor
field of general relativity. Dirac proposed that ”any two of the very large dimensionless numbers occur-
ring in nature are connected by a simple mathematical relation, in which the coefficients are of the order
of magnitude of unity.” For instance, the ratio of the electromagnetic to gravitational forces between a
atomic time unit, mf{o ~ 10%°, suggest a potential relationship between these large dimensionless quan-

proton and an electron in a hydrogen atom ~ 10*, and the ratio of the age of the Universe to the

tities. Dirac believed that this apparent coincidence among various cosmological and atomic constants
hinted at an as-yet-undiscovered theory that connects the quantum mechanical origins of the Universe
to its cosmological parameters. Furthermore, during the very early epochs of the Universe, quantum
gravitational processes may have played a crucial role in shaping its evolution [67, 168} 169], which further
emphasizes the need for a quantum theory of gravity. As previously mentioned, modified gravity the-
ories could provide valuable insights into the development of such a theory. This motivation is further
strengthened by the realization that any attempt to unify particle physics with gravity inevitably requires
some modification of Einstein’s theory of gravity. Indeed, such modifications are almost dictated by the
principles of quantum mechanics. If one starts with Einstein’s gravity combined with particle fields at
the tree level, quantum corrections will modify the gravitational interactions. These modifications result
in interactions that are only finite if a cutoff is introduced, indicating that the theory, as it stands, is not
renormalizable [70].

Therefore, when examining the early stages of the Universe, the notion of alternative descriptions
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of gravity beyond General Relativity can be justified by the aforementioned arguments. In fact, in this
context, modified theories of gravity have provided valuable insights and made significant contributions
to addressing the challenges associated with the primordial Universe. For instance, the initial singularity
predicted by the Big Bang theory can be circumvented by proposing a cyclic cosmological model, where
the Universe never contracts to a point of zero size—a theoretical outcome that some modified gravity
theories support (that will be studied later on). Furthermore, one of the most notable achievements in
this area, as previously mentioned, is the Starobinsky model of inflation [52]. This model, which is
based on a Lagrangian of the form £ = R+ Alf[—i (where M? is a constant with dimensions of mass),
provides exceptionally accurate predictions for inflation [16]]. A more detailed analysis of this model
will be discussed in subsequent sections. Additionally, modified gravity has recently offered a promising
solution to the lithium problem, demonstrating that this issue can be effectively addressed within the
framework of f(R) gravity theory [71].

Furthermore, the matter-antimatter asymmetry, arguably the most fundamental problem of the pri-
mordial Universe and the central focus of this thesis, can also be addressed through modifications to
gravitational theory. Although this problem is typically explored through particle physics mechanisms
and extensions of the Standard Model of particle physics, where gravity is considered only as a back-
ground framework, gravity itself could play a more central role and become a key component in these
mechanisms. This idea is supported by the concept of gravitational baryogenesis [72], a mechanism that
involves coupling the derivative of the Ricci scalar to the baryonic current, thereby providing a framework
capable of generating the observed matter-antimatter asymmetry. While this mechanism has been suc-
cessful within the context of GR, its limitations become apparent, prompting the exploration of this
mechanism within the framework of modified theories of gravity. This approach has shown promising
results and offers a potential path forward for addressing these shortcomings (73| 74,75, (76,77} [78. [79].

Moreover, since modifications to GR result in different expansion rates for the Universe that will have
an impact on the interaction rates of particles, it becomes possible to consider combining mechanisms
primarily developed within the framework of particle physics with these modified gravitational theories.
This approach could potentially address existing problems and alleviate the constraints associated with
these mechanisms.

With this being said, this thesis will explore ways to solve the asymmetry problem by exploring
gravitational baryogenesis in the context of the modified theory of gravity f(R,7?), with 72 being the
contraction of the stress-energy tensor with itself, and with scalar-tensor theories, exploring how modifi-
cations to the expansion rate of the Universe can benefit two well-established baryogenesis mechanisms
such as electroweak baryogenesis [80, 81}, 182]] and GUT baryogenesis [9, 83]]. The links between modi-
fied gravity and inflation will also be exposed in a brief manner.

1.2 Differential geometry

As mentioned before, the mathematical framework behind General Relativity is manly built with
differential geometry, a branch of mathematics dedicated to the study of the geometry of smooth shapes
and smooth spaces, otherwise known as smooth manifolds. Additionally, many modified theories of gra-
vity use also mathematical concepts of differential geometry. With such an important role, a good and
cohesive introduction to this topic must be done. Therefore, in this section a brief exposition of diffe-
rential geometry with only the basics and fundamentals will be done. Diverse books, lessons, and others
materials exist when talking about differential geometry, but for this thesis, it was used the book [84] and
the review paper [85] to construct this section. The subjects will be exposed in a physicist like manner
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aiming to expose the fundamentals with the necessary formalism.

1.2.1 The basics of topological spaces and manifolds

Differential geometry, more in specific for this study, Riemannian geometry is a complex subject
that has tremendous tools for both mathematicians and physicists. It works profoundly with topology
therefore demands a cohesive comprehension of topological notions, a complex subject. But as you
usually do with difficult things, we will start with the fundamental and simplest part.

To begin with, a topological space is a mathematical framework that allows for the examination of
properties of a space that remain unchanged under continuous transformations. Within this framework,
two spaces are considered topologically equivalent if one can be transformed into the other through
continuous deformation without tearing or joining. This concept holds significant importance in physics,
as it can be applied to numerous physical systems capable of undergoing continuous changes without
affecting their core properties, such as symmetries and internal relationships. This idea also underpins
our understanding of spacetime. The four-dimensional reality we experience, termed "spacetime,"is
described in classical physics as a “four-dimensional continuum.” This implies that four coordinates
are necessary to uniquely define events. In both pre-relativistic and special relativistic frameworks, it
is assumed that there is a direct correspondence between events in spacetime and the topological space
R*. From a practical viewpoint, the primary interest of physicists in studying topological spaces lies
in the associated metric, which is used to measure distances between points. However, as expected,
not all topological spaces have a metric associated. Additionally, considering that in physics most of
the systems are dynamical and governed by a set of equations, if only any global properties of the
system were assumed, such as its topology, this would limit the solutions to the equations that govern
the system and would not allow to take into account a wealth of interesting physical phenomena. To
obtain a complete description manifolds are introduced. In simple terms, manifolds, denoted by M, are
a subclass of topological spaces that are locally Euclidearﬂ This means that for each point P € M, there
exists a neighborhood in which one can define a set of coordinates {x } to specify points around it, much
like in Euclidean space (for a better visualization imagine a sphere that when we zoom in a good amount
we see a flat plane). Therefore, we can describe a manifold as a topological space that locally resembles
Euclidean space R". However, the global structure of a manifold can differ from R”, resulting in a space
that exhibits more complex properties than those found in standard Euclidean space. Additionally, it is
crucial to differentiate between the topological space R” and the vector space R". The topological space
R" allows for the discussion of points p and their local neighborhoods, focusing on spatial relationships
and continuity. In contrast, the vector space R" involves a set of points that adhere to specific algebraic
rules, including operations such as vector addition and scalar multiplication. Essentially, while R" as
a topological space concerns itself with the structure of points and their proximities, introducing vector
space axioms transforms these points into vectors j, thereby endowing them with additional algebraic
properties.

In sum, a manifold M can be understood as a space composed of points p. As a topological space,
M has a well-defined concept of neighborhoods, enabling analysis of the local structure around a point
p. Specifically, there exists a local homeomorphism, which is a mapping from M to R” that preserves
the topological structure locally. This mapping transforms the point p and its surrounding neighborhood
into a point and its neighborhood in R”. Given the coordinate system in R”, where each point is uniquely

I'To be slightly more precise, M is a topological space which is locally homeomorphic to the topological space R" and
more technically, a real n-dimensional manifold M is a real n-dimensional topological space which is Hausdorff, paracompact,
and locally homeomorphic to n-dimensional Euclidean space R".
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identified by n coordinates, this process facilitates the assignment of coordinates to the points within
M. Tt is important to note that the assignment of coordinates is not unique. Although we typically label
points in R” using n numerical values, different individuals might choose distinct coordinate grids for
this purpose. We represent a coordinate system by {x*} where x* is the u-th coordinate. To connect
one coordinate system to another, we utilize the concept of a coordinate transformation. This is actually
a specific example of a broader concept known as a diffeomorphism ¢, which is a smooth (infinitely
differentiable) function ¢ : N — M that maps one manifold N onto another manifold M. In the case
of a coordinate transformation, this diffeomorphism takes the form ¢ : M — M, meaning it maps the
manifold M onto itself. Additionally, it must have a smooth inverse and relate the original coordinates
{x"} to a new set of coordinates {x*} := {¢ (x*)}.

1.2.2 Vector Fields and Tensor Fields

The idea of dimensions is embedded in us and in our description of our Universe. With this notation,
comes the idea of scalars, vectors and even tensors but how are these objects, or more in specific and
fundamentally vector/tensor fields, related with topology? Starting with vectors (that usually are also
called contravariant vectors), the fundamental idea is to realize that a vector allows us to define the
directional derivative of scalar fields. This corresponds to the intuitive notion that a vector has a direction
with an object which is intrinsically defined on the manifold, that in this case is a scalar f : M —
R. Formally, in a given coordinate system, {x"}, one can write the directional derivative of f (in this
coordinate system) as

vi=va, (1.1)

with d, = % being the basis vectors {e,} and where v € C*(M) are n smooth functions of the
coordinates. Additionally, we define the components of the vector field v with respect to a coordinate
system {x*} as

= w(xH), (1.2)

that usually in physics we call the vector field (or contravariant vector sometimes - index raised). Before
we move forward, it is helpful to introduce some key terminology and provide a slightly more abstract
definition of tangent vectors. Recall that a vector field v is a function that maps smooth functions on the
manifold, denoted as C* (M), to other smooth functions on the manifold, C*(M). A tangent vector at a
point p is defined as a map v, that takes smooth functions on the manifold, C*(M), to real numbers R.
This is done by evaluating the vector field v at the specific point p € M,

v, 1 C°(M) =R
vp(f) = v, - (1.3)

Essentially, a tangent vector v, at a point p is defined by applying the vector field v to a smooth
function f and then evaluating the result at p, resulting in a real number. The set of all tangent vectors
at the point p is referred to as the tangent space at p and is denoted by 7, M. In addition to this, there
is the concept of the tangent bundle, which can be informally understood as the collection of all tangent
spaces across every point on the manifold M. It is important to note that the tangent space at any point
p, denoted T, M, is a real, n-dimensional vector space. This implies that for any two elements, such as
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vp and u, in T, M, all operations that are valid for vectors in R" can also be performed. Specifically,
all elements in 7, M adhere to the rules of vector addition, scalar multiplication, and other vector space
operations.

With this defined, the next fundamental concept is the concept of a covector (or 1-form in a more
formal way or covariant vector sometimes - index lowered). Since 7, M is a real, n-dimensional vector
space, it naturally has a corresponding real, n-dimensional dual space, denoted by 77 M. This dual space
is also known as the cotangent space at p and consists of linear functionals. A linear functional & can
be described as a function that takes a vector as input and outputs a real number. Formally, this can be
defined as the linear map

o:T,M—R (1.4)

v— (a,v) €R, (1.5)

where « is identified as a covector, and (-,-) represents the inner product of a 1-form with a vector (an
inherent property). In a given coordinate system {x* }, the components of o can be defined as

04 == (0t,dy), (1.6)

which means that these components are derived by evaluating the linear functional on the basis vectors
of T, M. By o being a linear map, the expression for the pairing of v with ¢ in terms of coordinates can
be computed as

(o,v) = {a, v dy) = v (@, d) = vF o,

where in the last it is implicit the Einstein summation convention, i.e., a sum due to repeated indices.
The vector v is first expanded in terms of its basis, followed by applying the linearity of (-,-), and finally
using the defined components of the covector. It’s important to note that both vector fields and covectors
fields are defined as linear maps. Additionally, in any coordinate system {x*}, the basis covectors for
T,y M can be defined as dx*, allowing to express the components of the dual-vector a as

o = oy dxt. 1.7
where the basis covectors are required to satisfy the condition
(det,9y) = &Y', (1.8)

with &!' being the Kronecker delta to ensure consistency with the earlier definition and reproduce the
coordinate pairing. By both vector fields and covectors fields being linear maps, one can employ a
definition of more complex objects, such as tensors, as multilinear maps. A tensor of type (p,q) is
defined as a multilinear map

H: (TM)®*P@(T*M)® - R, (1.9)

with ©? representing (7. M) p times (and the same for 7 and that accepts p vectors and g covectors as
arguments and returns a real number. This can also be represented as

H(v],...,vp,ocl,...,ocq). (1.10)
Due to the multilinearity property of H, in a coordinate system {x* }, we can express it as
0 i
Hvi, .. vp, 0, 0) = Wl (an)y, - (0)y, Hy ') (1.11)

10
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where the components of H are defined as

Hy' 3" = H(y,, .., 0y, dx" ... dx"). (1.12)

1.2.3 Transformations and Densities

The behaviour of vectors and covectors under coordinate changes is simple. A change of coordi-
nates can be defined as a diffeomorphism that maps the original coordinates {x*} to new coordinates
{x#"}. Given these two coordinate system, {X*} and {x*}, a vector (and equally a covector) in the first
coordinate system are related with the second coordinate system in the following way

v=vd, =1"dy,, (1.13)

where V¥ are the components of v with respect to the vector basis d /dx*, in a new coordinate system x*
and v* #£ ¥V, Moreover, the inner product of a vector and a dual vector, given that 1-forms map vectors
to real numbers in a coordinate-independent manner, is given by

(a,v) = v = a7, (1.14)

Although for vectors these transformations are simple, tensors, due to their multilinear nature, exhibit
specific transformation behaviors under coordinate changes. Employing a more formal description, the
transformation of partial derivatives under such a coordinate change can be written as

0 ox*t 0 P
— = 7 1.15
dxH  JxH oA TH oA’ (1.1)
where J ﬁ denotes the Jacobian matrix defined as
o
A
[T (1.16)

This definitatons allows directely to obtain the results present in Eq.(I.13)). Additionaly, given that the
transformation ¥ (x) is a diffeomorphism, the Jacobian is non-degenerate, which ensures the existence

of an inverse
oxH

Finally, with these notations, by utilizing the multilinear properties of tensors, we can derive the

Y (1.17)

transformation behavior for these objects as

AF Aoy =T T (U (D HG (1.18)

At this stage, it is useful to introduce the concept of tensor densities. A tensor density is a type
of tensor (including scalar fields, which are tensors of type (0,0)) that does not transform in the usual
manner but instead acquires a factor involving the determinant of the Jacobian matrix. A tensor density
IC of weight w transforms according to

(Z]"'CO,_ w —1\o —1\®p ;v Vg - M1--- UL
Kﬁl"‘ﬁql = (det(J))" (J )[.Lll - )#5‘][3: "'JﬁZKvl.i.vqpa (1.19)

where w is the density weight. This transformation highlights that a tensor density of weight zero is sim-
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1.2 Differential geometry

ply an ordinary tensor. Tensor densities play a crucial role in integrating over manifolds. To ensure that
integrals constructed from tensorial quantities are independent of the coordinate system, the integrand
must transform as a scalar density with weight w = 4-1.

1.2.4 (Pseudo-)Riemannian metric, affine connection and covariant derivative

The framework defined until this point is almost complete (at least for our interest) but still lacks
two crucial capabilities. The first capability is the scalar product. We have primarily worked with the
manifold M that is adequate for discussing various mathematical and physical concepts such as events,
curves (which are used to model observers and test particles), scalar fields, vector fields, general tensor
fields of type (p,q), and tensor densities. The notion of scalar product allows to known lengths of curves
and magnitudes of vectors. To obtain such feat can be obtained with the metric tensor g. The metric
serves as a generalization of the notion of scalar product between vectors from Euclidean geometry to
any kind of geometry. In a formal way, the metric is defined as

g TMXTM—R
(u,v) > g(u,v) (1.20)

which satisfies the following axioms

Al Symmetry: g(B,a) =g(a,B) ,

A2 Linearity in both slots: g(f B1+ B2, ) = fg(B1, ) + (B2, @)
g(B.fout+a)=fg(B,ou)+g(B ),

A3 Non-degeneracy: If g(B, ) = 0 for all &« =0, then 8 =0.

The metric tensor is fundamentally a function that takes two vectors as inputs and returns a real
number. When provided with a coordinate chart {x*} and a basis {e, } of the tangent space 7 .M, the
components of the metric tensor g in that particular chart and basis can be defined as

8uv = g(eﬂ,ev). (L.21)

According to axiom Al, we have g,y = gyy, indicating that the metric tensor is symmetric. Axiom
A3 ensures the existence of an inverse metric, denoted by g"¥. The metric tensor and its inverse satisfy
the important relation g, g = 8Y'. An additional important point of metrics is the nomenclature used.
Physicists, besides calling g, as metric, often also refer to ds? = guvdx*dx" as a “metric”. However, if
we adhere more strictly to mathematical definitions, the metric is more accurately described as a tensor,
denoted by g = gy dx* ®dx". This tensor formalism captures the full, coordinate-independent nature
of the metric. Nonetheless, in this thesis, we will also refer to ds®> as a metric. This expression, ds,
represents the line element or the squared infinitesimal distance between two points in the manifold
and is a commonly used shorthand in physics to describe the geometry encoded by the metric tensor
g. By allowing this notation, we maintain consistency with the terminology frequently used in physical
literature, while still aligning with the more precise mathematical definitions when necessary.

By utilizing axiom A2, we can further express g(v,w) as

gv,w) =g(Wey,w'ey) a2 vig(ey,wVey) A2 vwVe(ey,ev) = guvtw . (1.22)

12



1.2 Differential geometry

Additionally, it is possible to establish an isomorphism between 7, M and T; M through the metric
oy =guvet’ = oy, =gy, =1, (1.23)

so the metric can be understood as a way to lower and raise indices.

This framework extends the familiar concept of the scalar product between vectors from Euclidean
geometry to more general geometric contexts as previously mentioned. Given a metric tensor g, we can
define not only the norm of vectors but also the angles between them, as well as compute areas, volumes,
and other geometric quantities. For instance, the norm of a vector v is defined as

V17 = g(n,v) = guv*v = v (1.24)

It’s no surprise that the metric has an intrinsic relation with the manifold as a specific metric "de-
fines"what type of manifold is at question. For example, if a differentiable manifold M admits a Rie-
mannian metric, then M is called a Riemannian manifold. In a Riemannian metric, all eigenvalues are
positive, reflecting its positive-definite nature. In contrast, a pseudo-Riemannian metric includes both po-
sitive and negative eigenvalues. The count of positive eigenvalues i > 0 and negative eigenvalues j < 0
defines the index of the pseudo-Riemannian metric, denoted as the pair (i, j). A pseudo-Riemannian
metric with exactly one negative eigenvalue (j = 1) is referred to as a Lorentzian metric, characterized
by the index (i,1). When a manifold M is equipped with a Lorentzian metric, it is termed a Lorent-
zian manifold. A quintessential example of a Lorentzian metric is the Minkowski metric, expressed as
(Nuv) = diag(—1,1,1,1), which represents the flat spacetime of special relativity. Correspondingly, a
4-dimensional Minkowski space(-time) serves as a standard example of a Lorentzian manifold. The use
of Lorentzian manifolds to model spacetime is motivated by the observation that time and space are ex-
perienced differently; therefore, assigning different signs to the temporal and spatial components of the
metric aligns with this distinction. For the remainder of this discussion, we shall focus on 4-dimensional
Lorentzian manifolds. Hereafter, the metric tensor will be denoted by g,y to differentiate it from its
determinant, which will be referred to as g.

Additionally, in contexts where Lorentzian metrics are used, such as in relativity, vectors can be
classified based on their norms as spacelike, timelike, or null. Specifically, a vector v is considered

spacelike if g(v,v) >0,
vis called { null if g(v,v) =0, (1.25)
timelike if g(v,v) <O0.

This classification relies on the assumption that the signature of g is mostly positive. If we were
to define the signature of a Lorentzian metric as (1,7 — 1), the conditions involving > and < would be
reversed for even n. However, these definitions are consistent across both conventions when the number
of dimensions 7 is odd.

This classification of vectors can be extended to curves and hypersurfaces as well. A curve 7y is
classified as

spacelike if its tangent vector is everywhere spacelike,
Yis < null if its tangent vector is everywhere null, (1.26)

timelike  if its tangent vector is everywhere timelike.

With the metric defined, the second notion that we need is an object that can determine the change
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1.2 Differential geometry

of a vector along a curve on M. This object is referred to as an affine connection, and it serves to
link nearby tangent spaces 7, M. The affine connection enables the differentiation of vector fields on a
manifold M in a manner analogous to the differentiation of scalar functions.

To define it, lets start by considering a Lorentzian manifold M. In this curved spacetime, even the
basis vectors change as one moves along a curve on M. This variation is captured by the connection

coefficients, denoted as I'*

1uv> Which are defined by

duey = Fffvea . (1.27)
In general, the connection coefficients of a Lorentzian manifold can be written as
Lty = {iv; +K . (1.28)

where {gv} are the Christoffel symbols, which are defined as

1
{iv} = 58" (Qugva +9vgur — daguv) (1.29)
and K¢ v 1s the contorsion tensor, which is defined as

1

KaquE(T“uv+Tpav+Tvau). (1.30)

The contorsion tensor is defined in terms of the torsion tensor, whose definition is
o — o (07
Ty =0y -y (1.31)

Utilizing now definition (I.27)), one can show that the differentiation of a vector field v = v¥e,, pro-
ceeds as follows
o (Vey) = (8#\/") ey +v'oye, = (8#\/" + F‘vaa) ey. (1.32)

This formulation highlights how the connection coefficients I'}j, account for the changes in both
the components v of the vector field and the basis vectors e, themselves, providing a way to perform
differentiation in a curved space, beyond the straightforward differentiation of functions in flat space.
Therefore, without much formalism, we can define the covariant derivative of contravariant vector V" as

Vuv' =gy + Ty 0%, (1.33)

The covariant derivative serves to extend the concept of the partial derivative from flat spaces, where
the basis vectors are uniform and do not vary from one point to another, to curved manifolds, where
this is no longer the case. In flat spaces, differentiation is straightforward because the coordinate system
remains unchanged. However, on a curved manifold, the coordinate basis vectors change from point to
point, and thus, a more refined notion of differentiation is needed. The covariant derivative compensates
for the variability of the basis vectors, allowing for the consistent differentiation of tensor fields across
the manifold.

When defining the covariant derivative of a covector (or dual-vector or 1-form), a similar construc-
tion is used, but with a crucial difference: the connection term appears with a negative sign (for a full
deduction see [84, 85]]). This difference ensures that the derivative of the covector properly reflects the
geometry of the space, maintaining consistency with the fundamental properties of tensor fields and their
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1.2 Differential geometry

transformations under coordinate changes. Thus, for a covector the covariant derivative is given by
Vo = 8#ocv—1"ﬁvoc,(. (1.34)
Generalizing for tensors with arbitrary covariant and contravariant indices, one has
Vb = Qi+ Tl Ty o T Tk — T T — T, Tt (135)

Given that we are considering a Lorentzian manifold, which is a differentiable manifold equipped
with a metric, certain conditions can be imposed on the connections we work with. A natural constraint
is to require the metric tensor gy, to be covariantly constant. This condition implies that the norm
of a vector or, equivalently, the inner product between two vectors, remains unchanged under parallel
transport. Mathematically, this requirement is expressed as

Vaguv =0, (1.36)

which is known as the metricity condition. When a connection satisfies this condition, it is referred to as
a metric connection.
Additionally, if we impose that the connection coefficients are symmetric in their lower indices,
oQ _ 17
Cov =TV, 1.37)
we ensure, according to Eq. (I.31), that the torsion tensor vanishes. Consequently, this also implies that

the contorsion tensor is zero. Under these conditions, the connection coefficients, or Christoffel symbols,
take the following form

1
Fﬁv = Egal (8,118% +avgu/1 - 8/’Lguv) . (1.38)

The resulting affine connection is known as the Levi-Civita connection. This result aligns with the
fundamental theorem of Riemannian geometry, which asserts that on any (pseudo-)Riemannian manifold,
there exists a unique affine connection that is both torsion-free and compatible with the metric. This
unique connection is precisely the Levi-Civita connection, characterized by the Christoffel symbols.

1.2.5 Integrating over manifolds

The last important tool to define and explore is integration over manifolds. Considering an m-
dimensional Lorentzian manifold M, there exists a volume element that remains unchanged under coor-
dinate transformations. Mathematically this can be overseen but in physics, this property is particularly
significant when developing physical theories, as it ensures that the laws of physics are expressed in a
form that is consistent and independent of the chosen coordinate system. The invariance of the volume
element under such transformations is essential because it allows for a formulation of physical laws
that are universally applicable throughout the manifold. Thus, the volume element plays a vital role in
maintaining the general covariance of physical theories, reinforcing the principle that the laws of nature
should hold true universally, regardless of location or coordinate choice.

Tensor densities are crucial for performing integration on manifolds in a way that respects coordinate
independence. To ensure that an integral remains consistent regardless of the coordinate system used for
representing and performing the integration, the integrand must transform as a scalar density with a
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1.2 Differential geometry

weight of w = +1. For instance, the square root of the determinant of the metric tensor, \/—g, is a tensor
density with weight w = +1. Therefore, we can now define the invariant volume element as

Q= /—gdxldx®...dx™, (1.39)

By working in a four-dimensional space-time one can use Eq.(I.39) to define an integration of an
arbitrary function f over all space-time leading to

/M fOQMm = /M V—gfd*x. (1.40)

The physical meaning of this integration comes from f. One can substitute the f function by the
Lagrangian of a gravitational theory, £, and define its correspondent action by

SE/ EQM:/ V—gLd*x, (1.41)
M M

defining therefore a fundamental framework. In physics, actions are fundamental as they provide the
basis for deriving the field equations that govern the dynamics of a theory. A critical tool for integration
on manifolds, especially Lorentzian manifolds, is the generalized Stokes’ Theorem. This theorem is

/ do=[ o (1.42)
M oM

where o represents a differential form, dw denotes its exterior derivative, and d M signifies the boundary

expressed as

of the manifold M. This theorem generalizes familiar vector calculus theorems and plays a crucial role
in deriving field equations.

1.2.6 Curvature

Working with spaces that usually are curved, it is important to consider how the direction of a vector
changes under parallel transport, a way of transporting geometrical quantities along smooth curves in a
manifold. Indeed such consideration leads to one of the most important concepts in differential geometry,
curvature. To describe and quantify curvature in curves and surfaces, one has to introduce the Riemann
curvature tensor that can be expressed in terms of the Christoffel symbols as

RY,, = 0uTg, —ITf, +T5, 5, —T% TG, (1.43)

This tensor has important properties, called the Bianchi identities. These identities are relations
between the covariant derivatives of the components of the Riemann tensor, and are expressed as

Vleuv + Vnglu + V#ngl =0. (1.44)
Additionally, one of the traces of the Riemann tensor is the Ricci tensor given by
Ryy = Rﬂ‘av. (1.45)

that gives a more compact and simple representation of the curvature of a Riemannian manifold. In
physics, it describes how does the space-time volume of an object varies due to gravitational tides. At
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1.3 General Relativity from the variational principle

last the trace of Ricci tensor gives the Ricci scalar
R:guvR‘uv, (1.46)

a quantity particularly significant in curvature-based theories of gravity as it offers a way to quantify the
average curvature of spacetime without the computational complexity associated with a rank-4 tensor
and, being a scalar, it remains invariant under Lorentz transformations, making it an ideal candidate for
inclusion in the gravitational action.

With these three quantities defined, one can obtain the contract Bianchi identities by using Eq (1.44)

and Eq. (I.36), giving

1
VHER,y = EVVR, (1.47)
which can be equivalently expressed as
u 1
\% Ruv_iguvR =0, (1.48)
where it is defined |
Guv =Ruy — iguVR’ (1.49)

as the Einstein tensor.

1.3 General Relativity from the variational principle

There are numerous methods to derive GR field equations, but one particularly prominent approach
is through the action principle, specifically the variational principle. This method was introduced in the
context of GR by David Hilbert [86] (the man who almost beat Einstein in the race to deduce GR field
equations), who sought to formulate the theory’s Lagrangian framework. Today, deriving the Einstein
field equations through the action principle is the preferred method, as it requires only the theory’s
Lagrangian. This approach proves particularly useful when exploring modified theories of gravity, as one
starts with an assumed Lagrangian or action, and the variational principle directly yields the modified
field equations. We will derive the Einstein field equations using this variational approach as the main
ideas and results from this derivation will be of use in the following sections.

There are two foundational principles, fundamental two GR, that also motivated this method: the
principle of general covariance and the equivalence principle. The first asserts that the laws of physics
must maintain the same form in all coordinate systems. In contrast, the equivalence principle posits
that in a specific coordinate system, the effects of gravity can be locally negated. In addition to these
principles, GR must also satisfy the requirement that, in the weak-field limit, it approximates Newton’s
theory of gravitation. For a gravitational scalar potential ® that corresponds to a matter density p, this
potential satisfies the Poisson equation

AP =47nGp, (1.50)

where A denotes the Laplacian operator, and G is the gravitational constant. In GR, the gravitational
potential @ is substituted by the metric tensor components gy, which serve as the primary field of the
theory. Instead of a mass density p, the theory uses the energy-momentum tensor 7}, to describe matter’s
dynamics in spacetime. The corresponding field equations in GR, known as Einstein’s field equations,
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1.3 General Relativity from the variational principle

are given by
1 8nG

Ruv_iguvR: C—4Tuv, (1.51)
where c is the speed of light in a vacuum. The gravitational coupling constant 877G /c* ensures that in
the limit of weak gravitational fields, Equation (I.5T)) simplifies to the Poisson equation (I.50).

With this in mind, lets start with the variational principle derivation. Lets begging by the simple,
the vacuum. Considering this, the GR Lagrangian responsible for obtaining the field equations will
only have a component responsible for the geometric part. By the metric tensor being considered as the
field that mediates the gravitational interaction, the geometric Lagrangian has to contain a dependence
on derivatives of the metric, in order to describe its dynamics. The simplest scalar that satisfies this
condition is the Ricci scalar. Therefore, the geometric Lagrangian should be proportional to it so the

vacuum field equations can with

A
Ly = %R, (1.52)
where the constant factor appears to reproduce the Newtonian limit in the presence of matter, giving the
action
A
Sen = Jo— /M V—g R d*x, (1.53)

where M is a 4-dimensional Lorentzian manifold with a Lorentzian metric g,y that has a determinant g
and on which one defines a set of coordinates {x*} as usual.

Employing now the concept of action principle, to derive the motion equations of a given theory, by
means of the variational principle, one have to perform independent variations with respect to the fields
that enter the action. Therefore, we must vary it respect to the inverse metric applying dSgy = 0, in other
words, by requiring vanishing of the variation. Doing such, Eq.(1.53)) becomes

A
167G

OSgy = / ) (\/—gg“vRuv) d*x. (1.54)
M

To give a more comprehensive demonstration, lets explore how the each quantity is affected by the
variation. Applying the product rule one has

O(v _gg“vRuv) =68(v _gg“v)Ruv + \/jggﬂvaRﬂv . (1.55)

Starting by the last term of the previous equation. The variation of the Ricci scalar is given by

5R'uv — Vasrgv - Vvsrﬁa, (156)

that corresponds to the well known Palatini identity resulting in

V=88"P8Rop = Vi[v/—g(g*P 8Tl 5 — 55 2P ST, )] = O/ =8 (g™ ST — 85 g™ 8T,)], (1.57)

where it was used the metricity condition (I.36). This quantity is a covariant divergence of a vector so by
the Stokes’s theorem this vanishes when integrated over the invariant volume element and hence
it does not contribute to the field equations, thus we do not need to incorporate it in the final result of the
variation.
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1.3 General Relativity from the variational principle

The second term gives

1 1
8(vV—gg"")Ruy = /—808"P Ry — SV —280pRO8™P = /=58P (Ryp — 58apR),  (158)

where it was used

1
0v/— :—E\/—gg#v5g‘”. (1.59)
With this simplifications done we can look again to the Eq.(1.54) we can now write
1 4
OSEH = Ton G/ V—gbég"¥ [R”V—zg#vR} d'x=0, (1.60)

that, by using the action principle that states that for an arbitrary variation of the metric tensor, dg"", the
quantity inside the brackets of Eq.(I.60) must be zero, allows to obtain the following field equations

1
R'uv_igu_vR:O, (1.61)
where usually it is defined the Einstein tensor as
1
Guv =Ryv — Eg’”R' (1.62)

Incorporating matter, corresponds to consider a Lagrangian responsible for the matter sector
»Cm:»cm (gllV7‘P) ’ (163)

that is considered to be a function of the metric tensor and of a collection of possible non-gravitational
matter fields, V.
The density Lagrangian of matter, when varied gives

1 0(v/—gLm
8 (vV—8Lm) = v—g ( 5gfv )V —g6g"", (1.64)
that allows to defined the energy-momentum tensor as
_ 2 8(V/—8Ln)
Tyv = — N TT (1.65)

where we enforce the condition that L,, depends only on the metric components, and not on their deriva-
tives.

Combining then the geometric part and the matter sector Lagrangians and famous Gibbons-Hawking-
York (GHY) boundary term [87, [88]], a term that is necessary whenever the manifold M has a boundary
d M, otherwise the variational principle is ill-defined and would not give any field equations (for further
details see [89,190,91])), the GR action is given by

SGr [g7lp] = SEH[ ] +Scuy [h] + Smatter[ga‘y] (166)

/ AR (R~ 2A) + Sl W)+ ?{ dyIlek.  (L67)

167rG

In this context, the cosmological constant, A, was introduced due to its importance. The parameter
€ is defined as € = nyn* = %1, where n* represents the unit normal vector to the boundary d M. This
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1.3 General Relativity from the variational principle

normal vector is normalized such that € = +1 when d M is a timelike hypersurface, and € = —1 when
d M is a spacelike hypersurface. Here, i denotes the determinant of the metric induced on the boundary
dM, while K signifies the trace of the extrinsic curvature of d M, considered as a hypersurface embed-
ded within the manifold M. The GHY term is necessary whenever the manifold M has a boundary d M.
In this thesis we will not attend to or be bothered by boundary terms as it is beyond the scope of this
work. Thus, to obtain the field equations with matter we do the previous procedure using the derived
results giving the varied action

1 1 2 6(v/—8Lm)
N :7/ V=8 |Ruy — =guvR+ «? SgHva* 1.68
resulting in
1
Ruv - EguvR - K‘Tuv 3 (1.69)

withk =8n1G=M ;lz with Mp; being the Planck mass. An important result can be obtained by taking the
divergence of Eq. (1.69) and using the Bianchi identities (I.48)), one obtains the conservation equation
of GR

VAT, =0. (1.70)

This conservation corresponds to the vanishing of the covariant divergence of the energy-momentum
tensor of matter, implying that the energy-momentum tensor is conserved. A direct implication this result
is the diffeomorphism invariance of General Relativity [92]. Alternatively, the vanishing of the covariant
divergence of the energy-momentum tensor of matter can be interpreted as indicating that there is no
transfer of energy and momentum between geometry and matter. Consequently, GR does not provide a
suitable framework for studying irreversible matter creation from gravitational fields. These results and
ideas will be fundamental when talking about modified theories of gravity.

The last point important to address in the section is the consideration of which fundamental field(s)
is/are to be considered in the theory and consequently when using the variational principle. In the de-
duction where made it was assumed that the metric was the fundamental field of GR, which means
that this field is responsible for mediating the gravitational interaction, being called the metric forma-
lism. However, this isn’t necessarily the only possible "true"consideration. For example, why couldn’t
we also assumed that the affine-connection was a fundamental field? This corresponds to the Palatini
formalism [93] that treats the metric and the affine connections independently. Although for GR both
formalism give the same results, when considering alternative descriptions and modifications to GR this
fact does not hold. There are three different formalisms [85} [64]], the two previously mentioned and the
metric-affine. This formalism assumes also that the metric and the affine connections are independent
of each other like the Palatini formalism, but considers that the matter Lagrangian depends also on the
connections. In this work it will only be considered the metric formalism.
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Chapter 2

Standard Cosmology in the Primordial
Universe

Starting this thesis by introducing the current framework for cosmology with an emphasis on the
primordial description seems counter-intuitive as the objective of this thesis is to explore changes to such
cosmological description. Although given that the objective of this thesis is to explore modifications
to the standard cosmological model, it is important an introduction to the current state of the art. This
introduction not only encapsulates how modifications to gravity can alter standard cosmology but also
provides a foundation that will be valuable throughout the thesis.

2.1 Fundamentals

In a brief manner, the Standard Cosmology Model (SCM) is characterized by General Relativity and
the Cosmological Principle where GR serves to dictate the field equations to be used connecting the
geometric description of space-time with the non-gravitational fields, and the Cosmological Principle
declares which metric (the quantity responsible for characterizing the gravitational field) is adequate to
describe our Universe at larges scales. As previously seen, the Einstein field equations can be derived

from the action

S:/d“x\/fg [;K(R—zA)Jrﬁm : 2.1)

where \/—g L,, is the Lagrangian density for the matter fields. As seen in the last section, by varying this
action with respect to the inverse metric, g"V, one obtains the following field equations

1
Ryy — ERgMV +Aguv = KTy , (2.2)

where 7}y is the energy momentum-tensor of the matter fields defined as in (I.65).

With regard to the cosmological principle, it states that our Universe at sufficient large scales is
homogeneous and isotropic (a logical assumption given the realization of inflation) leading to the use
of the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric to describe our Universe. This metric is
expressed as follows [94] 95]]

dr?
1 —kr?

ds? = —di> +d*(¢) +r2(d6% +sin’0d%¢) | , (2.3)

where a(t) is the scale factor of the Universe, and r, 0, and ¢ represent spatial comoving coordinates,
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2.1 Fundamentals

with r as the radial coordinate and 0 and ¢ as spherical angular coordinates. The curvature parameter
k can take values of —1, 0, or +1, corresponding to a Universe with negative, zero (flat), or positive
curvature, respectively. Throughout this work, the metric signature convention used is (—, +,+,+).

Additionally, for the matter sector, we assume an energy-momentum tensor that is consistent with
the symmetries of the FLRW metric, given by [94]

Tuy = (P + p)upuy + pguv (2.4)

where p represents the energy density of the Universe’s matter content, and p is the isotropic pressure.
This form of the energy-momentum tensor corresponds to that of a perfect fluid. Substituting this tensor
into the Einstein field equations (2.2), and considering the FLRW metric (2.3)), yields the following
dynamical equations

K A
_§p+§’ 2.5)

K
6

where H = a(t)/a(t) is the expansion rate of the Universe, with the overdot indicating a derivative with

H)+H () =~ £ (p+3p) +5 6

respect to cosmic time ¢. Equation (2.5)) is known as the Friedmann equation and is derived from the
00 component of Einstein’s field equations. On the other hand, Eq. (2.6) is the Raychaudhuri equation,
which describes the acceleration of the Universe and is obtained by subtracting the Friedmann equation
from the i — i components of the Einstein field equations. Furthermore, these equations can be used
alongside the conservation equation, which results from the fact that the Einstein tensor, Gy, satisfies the
contracted Bianchi identities, leading to the conservation of the energy-momentum tensor, i.e., V,TH" =
0. The conservation equation is given by

p=-3H(t)(p+p), 2.7

which stems from the conservation of energy and is inherent in the structure of the gravitational field
equations. To complete the system of equations governing the evolution of the scale factor, an appropriate
barotropic equation of state is introduced, i.e., p = wp = (y— 1)p. For all components, the simplest
equation of state is provided by

Yri=Y(n—1)pi, (2.8)
i i
where 7; is a constant parameter, and ¥ — 1 represents the speed of sound, v2, in the fluid i characterizing
the i-th component of the Universe’s matter content. This equation of state allows the integration of the
energy conservation equation (2.7), leading to

_3y,
p(1)=Y pio (i&?) =Y pio(1+2)7", (2.9
i i
where p(t) =Y, pi(t) represents the total energy density of the Universe at a given time ¢, and p; o = p;(to)
and ag = a(ty) are integration constants, which, without loss of generality, can be set to the values of each
component i of the Universe’s matter content and the scale factor’s present-day value, t = . The set of
equations (2.5)), (2.6) and make the fundamental framework of cosmology as they dictate the overall
evolution of the Universe.
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2.1.1 Evolution of the Universe from the Friedmann equations

To study the time evolution of the Universe, or the dynamic behavior of the scale factor, the history
of the Universe is often divided into several cosmological epochs, each dominated by a single fluid with a
constant parameter ¥;. Key epochs of interest include the radiation fluid (i = R), where p =p /3 (yg =4/3
or wg = 1/3); incoherent matter (i = M), where p = 0 (3 = 1 or wy; = 0); and vacuum energy (i = V),
where p = —p (% = 0 or wy = —1), which is equivalent to a cosmological constant. Additionally, stiff
matter fluid (i = S), characterized by p = p (¥s = 2 or wg = 1), may also be relevant.

From Eq. (2.9), the density profile for each epoch is p(t) ~ p;(¢) o< a(t)~>%. Substituting this pro-
file into the Friedmann equation (2.3)) shows that for ¥ > 2/3 or w; > 1/3, the curvature term, k* /a?,
dominates only at later times, assuming a cosmological constant does not dominate earlier. Thus, for
early Universe modeling, assuming a flat model (k = 0) is reasonable unless otherwise specified. This
simplifies the Friedmann equation (2.5]) and allows for integration, yielding the cosmological solutions
2 21

a(t) <t H(t):@;, ity #0, (2.10)

alt) o< V5", H(t):\/§, ify=0. (2.11)

These solutions suggest that the early Universe was dominated by radiation, the intermediate Uni-
verse by matter, and, without vacuum energy, the late Universe would remain matter-dominated. Howe-
ver, current observations indicate otherwise, as the accelerated expansion of the Universe cannot be
explained within the current framework with only a matter-dominated content [[12, [13]]. Furthermore, if
the Universe underwent an initial period of inflation, there was a very early epoch dominated by vacuum
energy, leading to an exponential expansion characterized by the cosmological solution (2.1T).

Additionally, the Friedmann equation can be expressed in a more convenient form through the in-
troduction of two dimensionless parameters: the critical density, determined by setting A = k = 0 in the

aforementioned equation, defined as
_ 3HA(1)

Pe=—7T"": (2.12)

and the dimensionless density parameter, denoted as Q(z), representing the ratio of the energy density p
to the critical density (p.) at a given time

Q) = ;fc((tt) . 2.13)

~—

With these definitions, Eq. (2.5]) can be reformulated as

k

g =20 -1 (2.14)

This establishes a correlation between the sign of k and the sign of Q — 1. Specifically, for kK = 0 (indi-
cating a flat model), Q = 1; for k = 1 (indicating a closed model), Q > 1; and for k = —1 (indicating an
(open model), Q < 1.

Using Eq. (2.9), and considering that the present-day value of the critical density parameter is given
by pco = %, the density parameter as a function of redshift z can be written as

2
)= HIj?Z)

Y Qio(1+2"+Qa| , (2.15)
i
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2.2 Thermodynamics of the Primordial Universe

where Qp = ﬁ and Q;o = g:‘(’)

fluid component to the present—day density parameter, respectively.

represent the contributions from the cosmological constant and the i-th

Furthermore, the total density parameter can be expressed in terms of partial density parameters
Pio

Peo’
lativistic species and i = M represents non-relativistic species. By integrating the energy conservation

where i = R denotes re-

assigned to specific components or species i, such that Qp =Y,;Q;0 =Y

equation (2.7) using the barotropic equation (2.§), the Friedmann equation can ultimately be formulated
as:

=H;

Y Qo1+ +Q,] . (2.16)

This form of the Friedmann equation links the expansion rate of the Universe H(z) with the contribu-
tions from various components, including matter, radiation, and vacuum energy, as well as the curvature
of the Universe. The equation is fundamental for understanding the evolution of the Universe, particu-
larly in predicting how different epochs, such as the radiation-dominated, matter-dominated, and vacuum
energy-dominated eras, influence the overall dynamics and geometry of the cosmos.

2.2 Thermodynamics of the Primordial Universe

In addition to the previously discussed framework, studying the Primordial Universe requires a robust
understanding of thermodynamics. This early stage of the Universe is deeply intertwined with statisti-
cal and dynamical processes that are fundamentally thermodynamic in nature, making thermodynamics
a crucial pillar of the standard cosmological model during this period. The relationship between ther-
modynamics and gravitation, as well as its role in the primordial Universe, are extensive topics that could
each warrant a dissertation on their own. Therefore, this thesis will focus on the essential aspects of ther-
modynamics necessary for a deeper understanding of the standard model of cosmology in the context of
the Primordial Universe, particularly in what relates to baryogenesis.

2.2.1 Kinetic and Chemical Equilibrium

In thermodynamics, a system isolated from external influences will eventually reach a state of ther-
mal equilibrium after sufficient time has passed. At this point, all observable properties—such as particle
density (n), energy density (p), pressure (p), and entropy density (s)—stabilize into their most probable
configurations. These macroscopic quantities can be expressed through integrals over the distribution
function f(x“, p*), which describes the system’s phase space density. Given the Cosmological Principle,
which asserts that the Universe is homogeneous and isotropic on large scales, it follows that the phase
space distribution must also be isotropic and homogeneous. As a result, the distribution function simpli-
fies to £ (x4, p?) = f(|p|,t) = f(E,t), where E = /p? + m? is the relativistic energy [96}[97]]. Neglecting
explicit time dependence (later revealed through its link to temperature), the phase space distribution for
particle species i in kinetic equilibrium—under the assumption of an ideal gas—takes the form of either
the Fermi-Dirac (FD) or Bose-Einstein (BE) distributions [96) 97]]:

fi(P) = [CXP (E(ﬁ;_“> + 1} R : (2.17)

where E; is the energy of species i, and m; is the rest mass. The term ; is the chemical potential, with
the plus sign indicating fermions (FD statistics) and the minus sign indicating bosons (BE statistics). If
the 41 term is omitted, the result approximates the Maxwell-Boltzmann (MB) distribution for classical
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2.2 Thermodynamics of the Primordial Universe

and distinguishable particles. While this classical approximation is not exact, it remains useful in the
absence of degenerate Fermi species (where u; = T;) or Bose condensation. In such cases, the deviation
from FD or BE statistics is typically minimal, often less than 10% [98]]. This approximation becomes
particularly effective for non-relativistic particles where m; > T; and m; > T + L;, in which case the MB
distribution becomes essentially accurate.

To expand on the concept, it is necessary to consider the role of the chemical potential, a key ther-
modynamic variable in systems with variable particle numbers. The chemical potential represents the
infinitesimal change in energy due to the addition of one particle of a given type. It can be understood
through the fundamental thermodynamic relation [96]:

dE =TdS— pdV + Y wdN;, (2.18)
i

where S is entropy, V is volume, and A; is the number of particles of species i. In equilibrium gases,
the interaction term Y ; 4;dN; = O reflects the conservation of chemical potentials. A deviation from this
condition would change the particle numbers of the species involved, ultimately lowering the system’s
free energy, FF = E — TS, where E is internal energy. Under constant temperature and volume, this
relation simplifies to:

dF =Y pdN;. (2.19)

For equilibrium to hold, both kinetic and chemical equilibrium must be maintained. In equilibrium,
the distribution functions not only take the familiar thermal forms from Eq. (2.17), but the chemical
potentials of interacting species are also interconnected. In chemical equilibrium, the chemical potentials
of species participating in reactions are conserved. For example, in a reaction like a; +az + -+
b1 + by + ..., the chemical potentials follow the rule:

) Mo, =) M- (2.20)
k k

This principle also applies to radiation. Since photons can be emitted or absorbed in arbitrary reacti-
ons, any reaction involving charged particles, such as i +i — i+ i+ 7, implies that iy = 0 in equilibrium.
In reactions involving particle-antiparticle annihilation, such as i +i <+ 2, equilibrium requires that:

Wi+ =0, 2.21)

indicating that particle and antiparticle chemical potentials are equal in magnitude but opposite in sign.
For self-conjugate particles (where i = i) or in cases of symmetry between particles and antiparticles
(n; = n;), chemical equilibrium demands that y; = 0. Thus, the distribution function in equilibrium
depends solely on temperature, reducing the phase space description to f(7).

2.2.2 Free Particle Gases and Interactions in an Expanding Universe

In the context of an expanding Universe, it is essential to apply equilibrium thermodynamics with
caution. The dynamic nature of such a Universe implies that temperature (7') and chemical potential
(u) are not static but evolve to ensure the conservation of energy and particle number. An expanding
Universe represents a non-equilibrium system, causing deviations from standard equilibrium distribution

functions and necessitating explicit consideration of time-dependent behaviors.
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2.2 Thermodynamics of the Primordial Universe

Consider gases composed of stable, non-interacting particles—particles that neither decay nor engage
significantly with their environment. For these freely propagating particles, the number of particles in a
given volume d?*x within the momentum interval d3p is conserved [96, 97]], and can be represented as

8i

dN; =
(27)?

fi(x, p, 1) d&*xd’p = Cte, (2.22)

where g; denotes the internal degrees of freedom (e.g., spin states) of particle i [96]. According to the
SCM, gases of freely moving particles exhibit homogeneity and isotropy, implying that their distribution
functions are spatially uniform and depend solely on momenta and time. Furthermore, the physical
three-momentum decreases with the scale factor, following (|p| o< a~!), while the proper volume spatial
element scales as (d°x o a’). By examining Eq. (2.22)), one can infer that if the distribution function
at a specific time (¢ = ;) is known, such that f;(|ps|,2s) = fia(|pa|), then at a later time (¢ > 14), the
distribution function adheres to the relation f;(|p|,¢)d*xd*p = fiu(|pa|)d*xqd®ps = fia(a|p|/aq)d>xd>p.
This indicates that the distribution function is determined by the redshifted momentum. Thus, for a
stable particle species in equilibrium that decouples at (r =1,), its distribution function before decoupling
follows the usual thermal form, while after decoupling, it simplifies to f;?(a|p|/aq).

When considering interactions, it is crucial to assess whether particles are coupled or decoupled by
comparing the interaction rate, I'ip, to the Universe’s expansion rate

Iine > H, coupled, (2.23)
It < H, decoupled. (2.24)

Although true equilibrium is challenging to achieve in an expanding Universe, the gradual expan-
sion often allows particle distributions to approximate local equilibrium. Given the homogeneity of the
Universe, local thermodynamic quantities reflect global values. Therefore, when particle interactions are
significantly faster than the expansion rate, equilibrium-like distributions can emerge on the timescale of
expansion. Particles will approach equilibrium-like states whenever condition (2.23)) is satisfied. Howe-
ver, when I'ipe < H, equilibrium does not necessarily break down. For this to occur, the rate of a crucial
reaction maintaining equilibrium must remain below the Hubble parameter H.

For a stable and massless particle species i with p; = 0 that is in equilibrium at ¢ < f; and decouples
at t4, its distribution function at later times is given by

ol 1= 57 (OO o (IROD) ] per (1) )

Here, T; = T(t;) and a4 = a(t;) denote the temperature and scale factor at decoupling, respectively. The
temperature of the decoupled species at any subsequent time ¢ is:

T(1) = 24 1, (2.26)

Although the decoupled particle species may not be in thermal equilibrium, its distribution function
retains the same shape as the equilibrium distribution function for massless particles. However, the
effective temperature continually decreases as 7; o< a~!. For observed decoupled photons of the Cosmic
Microwave Background with negligible chemical potential (|u,/7y| < 10~%) [99], if the Universe was
ever in equilibrium, the photon distribution has consistently been Planckian (as given by Eq. (2.23) with
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2.2 Thermodynamics of the Primordial Universe

the — sign). Thus, the photon number density, energy density, and pressure can be computed as

2

_ 87 _ & Ey _28(3) .3
ny = / |p| Tﬂ/@EY/TY—]dEY_ 77:2 Tyv (227)
py = —gy e f”’(!p)cﬁp—gY/E; aE, = 13 (2.28)
4 (27:)3 vy 2m2 ) BT 1 T 1577 ‘

|p| P [ Ey L. :

= T B TS WO 22

P ( ) fy (Ip)d 6m2 ) eEr/Ty—1 7 3Py 4577 (2.29)

where gy = 2 accounts for the two photon polarization states, and the integration over all angles was
performed. For other potentially decoupled particle species, their number density at any time is given by

=t | {p(gb)il] o= () (%) 230

where gl = gefr; = gi for bosons or gty = 3/4g; for fermions. If these particle species were in equili-

brium with photons prior to their decoupling, their number density remains comparable to that of pho-
tons. These decoupled species thus persist as relic backgrounds in the Universe. The temperature at
which decoupling occurs is commonly referred to as the "freezing temperature,"denoted 7. This tempe-
rature can be approximately estimated using the "freezing relation":

i (Tr) = H(Ty) . (2.31)

In cases where a particle species i decouples at a time #; when it has transitioned to a non-relativistic
state (T; < m;), and when m; — ; > T, its distribution function follows the Maxwell-Boltzmann (MB)
distribution at the time of decoupling. Here, the kinetic energy is much smaller than the rest mass m;,
allowing the approximation E; = m; + p?/(2m;). For such particles, the distribution function at later
times (t > 1) is

=t o ems [ alt) 1 m; — Wip B| a(r)?
) =7 (00 ) = apen (252 Jew (50 ) e

where U;p is the chemical potential at the time of decoupling. Thus, post-decoupling, the distribution

function retains its equilibrium form, albeit with an effective chemical potential ;(¢) and temperature 7;

given by

i) = m; + (“D_m> (1),  Ti)= <ad>2Td- (2.33)

This results in an effective temperature that decreases more rapidly than for decoupled massless
particle species. Particles that decouple in a non-relativistic state are often considered candidates for
"cold dark matter,"as they remain as a cold relic background in the Universe.

If a particle species i has a small but non-zero mass and is relativistic at the time of decoupling
(m; < Ty), its distribution function becomes “frozen” in the form characteristic of massless particles.
The spectrum remains thermal with a temperature that decreases with the scale factor a~! as long as
T > m;. Once the temperature of the thermal bath falls below the particle’s mass, the distribution
function and number density adopt a form consistent with relativistic particles. Although the distri-
bution function transitions to the MB distribution form, the energy density aligns with that of a non-
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2.2 Thermodynamics of the Primordial Universe

relativistic particle species, i.e., p >~ mn. As a result, the equilibrium distribution function is no longer

1 This scenario is associated with "hot dark matter"and "warm

maintained, characterized by T o« a~
dark matter"[[100, (101} [102] [103]], where particles decouple in a relativistic state but maintain massless

distribution functions in momentum space.

2.2.3 The Matter Content of the Universe

When the primary components of the Universe reach equilibrium, it becomes possible to accurately
estimate key thermodynamic quantities such as the total number density, energy density, and pressure by
considering only the contributions from species in equilibrium. In these scenarios, the calculations for
these quantities are straightforward, as outlined earlier.

Even if the Universe had a past equilibrium state, it is reasonable to assume that, in many instances,
even when equilibrium between the major components is disrupted, the matter composition can still be
effectively described. This can be done by incorporating contributions from particle species that follow
thermal distribution functions, albeit with temperatures distinct from the equilibrium temperature of the
cosmic medium, denoted by 7. Including these contributions into the overall equilibrium quantities
is not only advantageous but also relatively simple. Hence, if the non-equilibrium components can
be represented by an equilibrium distribution function, the total number density, energy density, and
pressure can be expressed as follows

— i d = ! dEl
Z /f P i 2m2 /mi exp[(Ei - .ul)/Tl] +1

_ T3 T; m; Hi
= ({747 {7 23

- Tt T; mi Mi
%>&<{T}’{E}’{n}>’ (235

p=Y 8 BPfi(B) 43 /°° m2)3/2 o,
; i(f)) 67t2 ,GXpE w)/T] £ 1

2T4 T; m; i
(T {FHE). ew

where the second relation follows from the angular integration, using EdE = |p|d|p|. The

terms & ({x}, {z}, i) = L& (a, zi i) M{x), {z), (i}) = LN (i, z, i), and

P.({x:}, {z}, {vi}) = Li P (xi, 7, yi) serve as a convenient parametrization of the *effective degrees of

freedom* in the number density, energy density, and pressure for a genuine Bose-Einstein gas in thermal

28



2.2 Thermodynamics of the Primordial Universe
equilibrium, namely, p = £,py/gy, n = Niny/{(3)gy, and p = P.py/gy. Here,

T; i i L\ = u? —zu
‘/\/;'i<a =" i='u> = gi< >/dbl7 (2.37)
Zi

70 ° _f’y T; T o exp(u—y;)£1

2 2.2

T; m; i 15 (T\* /= \Ju —zu
(Lo _mo M _ bl /—d 238
i <TaZl T;"yl T, 7[4gl T A exp(u—yi):lzl u, ( )

T; m o 15 (T\* [~ (2—22)3?

+ i i i _ i i

T =1 y. == = o = — 17 d 2.39
PL <TaZL ’I;"yl T,) 7[4gl<T> /Z, exp(u—y,'):lzl u., ( )

where u = E /T. These expressions encapsulate the individual contributions of each species to the total
degrees of freedom across the thermodynamic quantities.

The statistical framework presented here connects the primary thermodynamic variables, the number
density, the energy density, and the pressure, with the temperature of the surrounding medium. All
relevant quantities are expressed in terms of the photon temperature, which serves as the equilibrium
temperature of the medium. The parameters N *, £, P, were introduced to simplify the analysis, as they
encapsulate the key behaviors of each thermodynamic variable. Additionally, using temperature, mass,
and chemical potential as parameters facilitates the computation of the required integrals, providing a
useful basis for various approximations, such as m < T, applicable in the ultra-relativistic limit. While
integrals such as (2.37)-(2.39) are often not expressible in terms of elementary functions, they can be
solved numerically or, in some cases, analytically under specific conditions.

2.2.3.1 Non-Relativistic Case

In the case where Maxwell-Boltzmann statistics are approximately valid, the integrals in equations
(2.37H2.39) can be computed and expressed in terms of special functions. Specifically, these integrals
take the following form

T, omi o\ T T, mi T\’ (mi\° .
e (T ) = e (P ) = (F) () e, o
1 1 1 1 1 1

v (Liomi i\ _ 45 (T Ki(zi) MB
&l <TTT =27 ) U300 NMB, 2.41)

Here, K, (z) represents a modified Bessel function of the second kind, and the superscript refers to

the interpretation of the integrals in terms of Maxwell-Boltzmann (MB) distribution functions, which
exclude the £1 terms present in the original functions. As previously mentioned, in situations where
neither degenerate fermions nor a Bose condensate are present, this approximation introduces only a
small quantitative difference from the exact Fermi-Dirac (FD) and Bose-Einstein (BE) statistics. As a
result, under the physical conditions where particles are non-relativistic (m; > T;) and m; > T; + ;, this
approximation becomes highly accurate. This second condition leads to occupation numbers significan-
tly below unity, indicating a dilute gas, a scenario consistent with earlier assumptions. Such conditions
are commonly met in cosmological contexts, although they are violated in high-density environments
such as white dwarfs and neutron stars. Consequently, quantities such as /\/ij , Eij , and Pij become inde-
pendent of the statistical framework (with j = MB, +, —).

For large 7 values (m; > T), the approximation K> (z;) = \/7/(2z;)e *+ O(1/z;) and <1 + 3122((12’30 =

% + % leads to the following expressions
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3
T m: ‘LL T m m, Ui
= (2L 2 Jad i) - 2.42
V(755 ) =3 (7) <T> @4
T, mp W T, mj W
+ i i i :t
=, =, = | = —, =, = 2.43
() () (”T) @
T, m; W 45 (T | 1 T, m; W
Pl (LA ) b (i ol A U 2.44
! <T’T,-’T,- nt \ T 2+ 3T N T T, T; ( )
This yields the non-relativistic number density (n;), energy density (p;), and pressure (p;) as
3/2 .
m _mi—hy
n,—gi( 2;;) e T, (2.45)
3
pi = min; + EniTia (2.46)
pi =il < p;. (2.47)

2.2.3.2 Relativistic Case

In the relativistic limit where 7; > m; and the chemical potential is approximately zero (u; = 0), it
is possible to derive the corresponding expressions by simplifying the earlier equations. Under these
conditions, the particle species are relativistic, and the chemical potential can be reasonably neglected,

leading to
(T 7\’
N 7:0.0) =280)ger, { 7 ) - (2.48)
(T (T 7\
& ?,0,0 =P; ?,0,0 =8efii \ 7 ) - (2.49)
This results in the relativistic number density and energy density for species i as
3

S C752) " T, (2.50)

2

T
pi= %geff,-Ti‘l =3pi, (2.51)

where ggff,- = % gi and gefr, = % g; for fermions, and ggffl_ = geft, = &; for bosons.

2.2.3.3 Total Energy Density

The total energy density in a system with both relativistic and non-relativistic particles can be ap-
proximated by primarily considering the relativistic species, as their contribution to pressure and energy

density dominates. This can be expressed as[96]

o,
p= Do, )

where the effective degrees of freedom are summed over as
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-y g,< i> +— y g,( )4. (2.53)

bosons fermlons

This sum separates into contributions from species in thermal equilibrium (7; = T") and those decou-
pled from the photon gas (7; # T)

equlhbrlum Z gi +* Z i (2.54)
bosons fermlons
4
gilecoupled Z g,< > _|_, Z g;( ) . (255)
bosons fermlons

2.2.3.4 Net Particle Number

The comparison between a particle species and its corresponding antiparticle is often of interest,
especially when calculating the net particle excess in a state of full equilibrium. In chemical equilibrium,
the chemical potential of a particle species it and its antiparticle i~ are equal in magnitude but opposite
in sign, represented as it = y+ = —u;—. Under this condition, the net number density of particles i
relative to antiparticles i~ can be determined using Eq. (2.34)), leading to the following expression [96]

T3 3
gé;'z 2 (%) + (%) } , for relativistic fermions (7; > m;)
3 3
Nt —Nj- = gé;'z 2n? (%) —1 (%) ] ,  for relativistic bosons (T; > m;) (2.56)

2gi ('%T")s/ 2 inh (%) e<77il) , for all non-relativistic species (7; < m;)

For practical purposes, it is often helpful to express these quantities in terms of small chemical
potentials, particularly in cases where || < m (where no Bose-Einstein condensation occurs). In this
regime, the net particle number is given by

£ . .
ey = 8 (*T‘> o (";) , @57)
1 1
where
+ L 6 ” /12 _ 2 e —F
alc<zl_7;>:7'czaic\/zl u u _Zimdu7 (M—EZ/T), (258)
with a™! =1, a=! = ™ = 2. The superscripts +1, —1, and +0 correspond to Fermi-Dirac, Bose-

Einstein, and Maxwell-Boltzmann statistics, respectively. In the massless limit (m; = 0), the function
a*¢(0) simplifies to a®¢(0) = 1.

2.2.4 Entropy in the Expanding Universe

Entropy holds a crucial position in the thermodynamic description of the Universe, particularly due
to its relationship with the scale factor. Within the field of thermodynamics, entropy is also fundamental
to the discipline’s core principles. This is especially true in scenarios involving a varying number of
particles, where entropy’s significance is highlighted by the general formulation given in Eq. (2.18). This
formulation is structured around the understanding that energy and the number of particles are extensive
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properties, scaling proportionally with the volume of the system, whereas temperature and pressure
manifest as local characteristics independent of volume. Consequently, entropy itself is classified as an
extensive property. It is beneficial, therefore, to reformulate the fundamental thermodynamic equation
by expressing energy, number of particle, and entropy in terms of their densities within a cosmological
volume V. This reformulation leads to the following expression

(Ts—p — p+un)dV + (Tds—dp + udn)V =0, (2.59)

where p =E/V,n=N/V and s = §/V. This relation is valid both for the entire system and any of its parts
and so, using it for a region of constant volume inside the system it is possible to obtain Tds = dp — udn
and using it subsequently for the entire system, gives the entropy density [[104]

_y Pitpi- Lt 2o ([T fmi|fRLY s
=Ly 458({T}’{n}’{n}>T 20

where S, ({T;/TY}, {m;/T}, {w:;/T}) = ¥: S5 (T;/T, m;/T, p;/T) with 7 defined as

I m; W T (3 1 45 u;
S,i i i 1) Si + 4 i

represents the contributions of each species i to the effective degrees of freedom within entropy. Equa-
tion (2.60) corresponds to the general expression without assuming any specific case, where the compu-
tation of such a general case requires numerical methods. However, the relativist and non-relativist cases

can be calculated analytically.
In the relativistic case, considering 7; > m; and vanishing chemical potentials, the expression for Sl.jE

ST 0,0 _Belli gk Tih0) = Y’ (2.62)
i 2@( )geﬂ T = Leff; T P .

which in turn allows to compute the total energy density for relativistic species

is given by

2m? 3
Srelativistic = Z Egeff,-Ti . (2.63)
i

Another way to obtain this result is to use directly the first equality of Eq. (2.60) with 4 = 0 and
considering that in the relativistic scenario, the energy density and pressure have the relation p = 3p,
allowing in combination with Eq. (2.52)) to write the entropy density for relativistic species as

+pi 4 - 2m?
Srelativistic = Z Pi T_pl = g Z% = Z — = Zeff; T (264)
i i FRRY

45

For the non-relativistic case, one considers m; > T; satisfying the condition m; — t; > T that allows
to compute Sl.i as

3
T, m; i 45g,' T/(5 m; — U; T; 3 m;\ 2 Homi
se(Lomi MY _ \/7 > S (M) 2.65
l(T’Ti’Ti w\V2\2" T )\r) \7) .
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leading to the following total entropy density for non-relativistic species

5 i omiT; s
Snon—relativistic = Zni |:2 +In <g( oy )2>:| ) (2.66)

4 nl

where Eq. (2.45) was used to express the entropy density in terms of the number density.
Once more, this result can be obtained directly by using the first equality of Eq. (2.60), Eq. (2.46)
and Eq. (2.47), yielding [104]

5 m; — W

Snon—relativistic — Z —n;+ n;.
B T

(2.67)

To calculate the total entropy density, one can approximate that relativistic species will dominate
the contribution when comparing the results for relativistic and non-relativistic cases. Therefore, using
Eq.([2.52), the total entropy density can be expressed as[96]]

. . 2
s= Y PP S g (2.68)

where

T\’ 7 T\’
gs= Y, & <T) t3 Y & <T> - (2.69)

i=bosons i=fermions
A notable point to consider is that when all relativistic species are in thermal equilibrium, that is,
they share the same temperature, it is a good approximation to assume that g.s equals g. [96]. The
entropy of all relativistic species remains conserved as long as their distribution functions stay thermal.
In this scenario, any entropy production from non-equilibrium processes is negligible compared to the
total entropy, which is overwhelmingly dominated by the relativistic species. Therefore, treating the
expansion of the Universe as adiabatic is an excellent approximation. In this context, entropy serves as a
reliable tool for tracking the evolution of the scale factor in relation to temperature, which is then given
by the following expression

acgX(T)T. (2.70)
Finally, the second law of thermodynamics plays a central role in shaping our understanding of the
early Universe. According to this law, the entropy of any closed system must increase, and it only remains
constant during equilibrium or adiabatic processes. In an expanding Universe, applying the fundamental
principles of thermodynamics to a comoving volume V = a> gives the following differential equation, in

the case of thermal equilibrium
d(a’s)

dt

This equation reveals that energy conservation can be interpreted directly in terms of entropy. When the

=0. Q2.71)

chemical potentials vanish, the above equation describes the conservation of entropy in a comoving

3

volume, S = a’s. The discussion concludes with two key points. First, for a Universe undergoing

adiabatic expansion, a direct relationship exists between its expansion (or redshift) and its cooling, given
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by
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and the second is related to the number of particles. Considering a number of a given species i in
comoving volume, V; = a*n; is proportional to the number density of the species N divided by s, that is,
V; = cte. X n;/s = cte x N where N is conveniently defined as

nj

N=-—. (2.74)
N

Subsequently, from Eq. (2.72) it is possible to establish the differential relation

da dS. dT S, T

which in turn, combined with the dynamical Eq. (2.5) for the flat model, written in terms of p =
7?E,T*/30 can be used to find the time-temperature relation

873Gy . .\ P /dS,  dT
t——/( % &T) <3S*+T>’ (2.76)

which relates the age of the Universe with the temperature.

2.2.5 Baryons in the early Universe

As seen in the previous section, it becomes clear that the conservation of entropy within a como-
ving volume can be utilized to establish quantitative, time-independent parameters of asymmetries in
conserved quantum numbers [99, [104]. This framework is particularly useful in analyzing the baryon
asymmetry of the Universe, which is marked by the dominance of baryonic matter and the effective ab-
sence of antimatter. In the absence of baryon number-violating processes, baryon asymmetry remains
conserved within a comoving volume, ensuring that

(np — nl-,)a3 = constant, 2.77)

where n;, and nj denote the number densities of baryons and antibaryons, respectively. Using this rela-
tion, along with Eq. (2.74), we can immediately see that the ratio

By

B (2.78)
s

where ng = nj, — ng, represents a time-independent measure of baryon asymmetry, assuming that the
Universe’s expansion is isotropic. This assumption holds true with a high degree of precision throughout
most of the Universe’s history. After photon decoupling, the number of non-interacting photons in a
comoving volume remains constant, with the temperature of the photon background 7 scaling as Ty o
a~!(t) and the photon number density ny ~ a~3(¢). Consequently, following this period, and provided
that no further baryon number-violating processes occur, the ratio ng/n, remains constant.
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2.2 Thermodynamics of the Primordial Universe

At higher temperatures, the annihilation of massive particles begins once the temperature drops below
their respective masses. These annihilations heat the primordial plasma, leading to an increase in photon
number density. Therefore, it is more practical to introduce the quantity B, which remains effectively
constant under thermal equilibrium conditions throughout the expansion. In the Standard Model of
particle physics, assuming no new long-lived particles, there is no significant transfer of entropy to the
photons after the annihilation of ete™ pairs, resulting in the constancy of a3n,,. Therefore, at lower
temperatures, particularly below 7' < 1 MeV, the baryon-to-photon ratio is used

n="8 (2.79)

which also remains constant in this temperature regime and can be related to the quantity B as follows:

s, )
0= :VBS - ( (4;(3) ;) B, ~ 0?14. (2.80)

The baryon-to-photon ratio, 7, is approximately ten times the value of B, making the two quantities
nearly equivalent. However, at higher temperatures, the baryon-to-photon ratio may deviate by one to two
orders of magnitude due to the contributions of heavier particles to the entropy density, which dilutes the
ratio by a similar factor. Other sources of dilution may include first- and second-order phase transitions
in the early Universe, as well as the out-of-equilibrium decay of unstable particles. These processes can
significantly reduce the primordial baryon asymmetry represented by ng/s.

Current evidence indicates that the present-day baryon asymmetry is approximately [16}30, 31,105}
106, 107, [108]]

%B ~92x 107", 2.81)

This small value has profound implications for the history of the Universe, particularly by supporting
the assumption used in calculating the total entropy density. It also implies that the number density
of non-relativistic species, such as protons and neutrons, remains low in the cosmic medium at low
temperatures, when these particles become non-relativistic. In the next section this problem will be
explored more thoroughly.
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Chapter 3
Baryogenesis

From a phenomenological standpoint, the observed baryonic asymmetry represents a major unresol-
ved issue in our understanding of the early Universe. According to the Standard Model (SM) of particle
physics, our most robust theoretical framework, the Big Bang should have produced equal quantities
of particles and antiparticles. This symmetry would have resulted in their mutual annihilation, leaving
behind a Universe composed solely of photons.

In this section, we will introduce the foundational concepts required to address this long-standing
problem, and provide the essential frameworks that will underpin the discussions in the subsequent sec-
tions.

3.1 Sakharov conditions

In the context of baryogenesis, it is well established that, without imposing certain ad hoc conditions,
there is no straightforward solution to the perplexing question of the apparent asymmetry between matter
and antimatter in the Universe. A more plausible approach is to assume that this asymmetry was dynami-
cally generated in the early Universe. In this case, the process responsible for creating the asymmetry is
referred to as baryogenesis. This was the idea of A.D. Sakharov that proposed that the baryon asymmetry
might not result from unnatural initial conditions but could instead be explained through microphysical
laws [32]. These laws imply that an initially symmetric Universe could dynamically develop the ob-
served asymmetry, creating a theoretical framework for understanding this phenomenon within particle
physics and cosmology. Sakharov outlined a “recipe” for generating this asymmetry, which has become
fundamental to the study of baryonic asymmetry. The three conditions defined by Sakharov are:

1. Baryon number violation;
2. Violation of C (charge conjugation symmetry) and CP (the composition of parity and C);
3. Departure from the equilibrium.

The major path to take when building such type of processes is the fulfilment of the Sakharov condi-
tions. The first criterion is straightforward: starting from a symmetric Universe, baryon number violation
must occur for the Universe to evolve into a state where the baryon-to-photon ratio, 7, is non-zero. This
violation generates a net baryon number, AB > 0, where a simple example of such a process can be
represented as X — Y + b, leading to AB = 1.

The second Sakharov condition is essential because if charge conjugation (C) and charge-parity (CP)
symmetries were preserved, there would be no preference for matter over antimatter. In such a case,
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3.2 Baryogenesis mechanisms: Electroweak theory, Grand Unification Theories and Gravity

baryon number-violating interactions would produce baryons and antibaryons at equal rates, maintaining
a net baryon number of zero. In other words, the thermal average of the baryon number operator B,
which is odd under both C and CP transformations, remains zero unless these symmetries are violated.
To illustrate this, we can compute the thermal equilibrium average of B as follows [[109]

(B)y =Tt (fBHB) _ [(CPT)(CPT)’le’ﬁHB] = Tr (fﬁH (CPT)(CPT)*I) = Tt (e*ﬁHB) :
3.
showing that in equilibrium, (B); = 0, which implies no generation of a net baryon number.

The departure from thermal equilibrium is particularly crucial for the following work. This departure
can be driven directly or indirectly by the expansion of the Universe, linking macroscopic cosmological
dynamics with the microphysical processes that explain the observed asymmetry between matter and
antimatter. As a result, the observed baryon number emerges from the interplay between the laws gover-
ning both macroscopic and microscopic phenomena. In thermal equilibrium, the process X — Y + b is
balanced by its inverse process ¥ + b — X, resulting in no net change in the baryon number. Departure
from equilibrium disrupts this balance, allowing for the generation of a non-zero baryon number.

3.2 Baryogenesis mechanisms: Electroweak theory, Grand Unification
Theories and Gravity

When talking about baryogenesis mechanisms, there exists a plethora of mechanisms to choose. Most
baryogenesis mechanisms depend on physics beyond the Standard Model (for more details, see [[110, 111}
112} 113} [114]), highlighting how the baryon asymmetry can serve as a gateway to new physics. The
necessity for physics beyond the SM arises not only as a potential solution to the asymmetry problem,
where Grand Unified Theories (GUTs) were initially proposed due to their natural inclusion of baryon
number violation, but also due to the SM’s insufficient CP violation and the limitations of Electroweak
Baryogenesis (EWB), a process relying solely on SM interactions [80, 81} 182, [115] [116]. Gravity can
also make a crucial contribution to the asymmetry problem, with Gravitational Baryogenesis (GB) [[72]
being the most well-built mechanism.

In this thesis, these three mechanisms will be explored and their framework will be presented and
extended by using modified theories of gravity. This work will be divided into two paths. Path A will
consist on using a Scalar-Tensor theory in the context of EWB and GUTB. Path B will consist in using
f(R,T?) in the context of GB. The idea behind this stratification is to explore more deeply the role of
gravity in the context of baryogenesis where in Path A gravity plays a secondary role and on Path B is
a first-order component.

3.3 Electroweak Baryogenesis

Electroweak baryogenesis is a widely studied and theoretical framework that aims to explain the
baryon asymmetry observed in the Universe. As the name suggests, this mechanism postulates that the
imbalance between baryons and antibaryons emerged during the electroweak phase transition in the early
Universe. In the Standard Model, it was initially believed that two of the Sakharov conditions necessary
for baryogenesis were not fulfilled, leading to the conclusion that the SM could not facilitate baryon
number violation. This stems from the fact that, at the classical level, baryon number is conserved,
as expressed by the conservation laws 9,4 = d,j¢ = 0, where j% = §y’q and j¢ = I'*l represent the
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3.3 Electroweak Baryogenesis

baryonic and leptonic vector currents, respectively. These conservation laws imply that the baryonic
and leptonic charges, defined as B = [d’x jg and L = [d>x jg, are time-independent. Consequently,
baryon number violation does not occur within the SM framework at this classical level. However,
when quantum corrections are taken into account, this conservation no longer holds. In regions where
quantum fluctuations around the local value of the gauge field, W, are small, the baryon number change,
AB, remains zero. Yet, large field configurations can lead to baryon number violation. In 1976, 't Hooft
demonstrated that certain special field configurations, known as instantons, allow for tunneling between
states with different baryon numbers. Specifically, an instanton can transition from a state |@, B) to a state
|@, B+ 3) with a probability per unit volume proportional to (@, B +3|@,B) oc e 4%/ ~, 107194 where
Oy = g‘zy /4w is the weak coupling constant. This result, which applies at zero temperature, explains why
baryon-number violation has not been observed experimentally.

However, at finite temperatures, the situation changes. In this case, field configurations known as
sphalerons, which are saddle-point solutions of the classical field equations, can transition over the barrier
separating vacua. These sphalerons sit atop the energy barrier and are thus "ready to fall,"as their name,
derived from Greek, suggests. The rate of such processes is determined by the fluctuations around the
sphaleron solution. Arnold and MacLerran calculated the rate per unit volume and unit time as

T E
‘S/ph = a(Esph)3mW(T)exp <— ;?h>, (3.2)

where my (T) = gwv/2 is the temperature-dependent mass of the W boson, a is a constant, and Egpn 18
the sphaleron energy, given by

o 2mw(T) my
Esph - oy B <mW(T)> ’ (3-3)

where my is the mass of the Higgs boson, and the function B takes values between 1.56 and 2.72. As a
result, Egyp, is on the order of 10 TeV, and thus the sphaleron rate, I'spp, is typically small at temperatures
just below the electroweak phase transition, 7' ~ 100 GeV.

Above the electroweak phase transition, before symmetry breaking occurs and the Higgs boson is in
its symmetric vacuum, the W boson mass vanishes. Dimensional analysis suggests that, in this regime,
the sphaleron rate scales as I'spp JV ~ Koc‘}‘, T4, and lattice some computations have refined this to I'sph =
(25.4+£2.0) (XVSVTA'. By considering the thermal volume V = T3, the sphaleron rate is found to be
[gph =~ 10~°7. Comparing this rate with the expansion rate of the Universe gives a temperature threshold
of T, ~ 106g*_1/ 2(T)mPl ~ 10'2 GeV. Consequently, sphaleron processes come into equilibrium when
the temperature drops below this value. If no net B — L asymmetry exists at that time, the sphaleron
processes will wash out any existing baryon or lepton number.

3.3.1 The Electroweak Baryogenesis Mechanism

For Electroweak Baryogenesis (EWB) to occur, the initial conditions assumed are a hot, radiation-
dominated early Universe with zero net baryon charge, where the full SU(2), x U(1)y electroweak
symmetry is preserved [81} [117, [118] [119} [120]. As the temperature of the Universe drops below the
electroweak scale, the electroweak symmetry spontaneously breaks because of the Higgs field settling
into a vacuum state. During this phase transition, the baryogenesis process occurs.

Theoretically, this phase transition proceeds as bubbles of the broken phase nucleate within the
plasma, which is still in the symmetric phase. These bubbles expand, collide, and eventually coalesce,
leaving behind only the broken phase [81} [121]]. The production of baryons as the bubble wall sweeps
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3.3 Electroweak Baryogenesis

through space can be categorized into two distinct mechanisms [109]:

1. Nonlocal baryogenesis: Particles interact with the bubble wall in a manner that violates CP sym-
metry, generating an asymmetry in a quantum number other than the baryon number in regions
of the unbroken phase, away from the wall. Baryon-number violating processes then convert this
pre-existing asymmetry into a baryon number asymmetry, leading to the generation of baryons
(see [122,1123]] for more details).

2. Local baryogenesis: Baryons are produced when baryon number and CP-violating processes take
place together near the bubble walls.

In general, both mechanisms will contribute to the baryon asymmetry, and the total asymmetry will
be the sum of the contributions from both processes. However, there are conditions that determine which
mechanism dominates. If the speed of the bubble wall exceeds the speed of sound in the plasma, local
baryogenesis dominates. Otherwise, nonlocal baryogenesis is typically more efficient [[109].

3.3.2 The conditions for a successful EWB: the Sphaleron Bound

In order for any model of Electroweak Baryogenesis that proceeds via the bubble wall scenario to
be considered successful, it must satisfy two essential requirements that have a deep connection with the
asymmetry production and the departure from equilibrium. First, sphaleron processes must be effective
in the symmetric phase to ensure that sphaleron transitions are in equilibrium and that baryon number
violation is fully efficient outside the bubble. Second, it must be guaranteed that sphaleron processes be-
come ineffective after the completion of the phase transition so that the previously generated asymmetry
does not get diluted.

The fulfillment of the first requirement can be examined by comparing the rate of baryon number non-
conserving processes in the symmetric phase to the expansion rate. The thermal rate per unit volume of
sphaleron events, as given by [109], is

Ton (T) = (o), (3.4)
This can be expressed as
M 4
V" = Frzgh‘“ = Mkay T, (3.5)

where M = % The prefactor k was calculated in [[124] and was found to have an additional dependence

on ay, such that k¥ ~ 2504 . Using this result, the equilibrium condition for sphaleron transitions in the
symmetric phase (V" (T) > H(T)) is satisfied if

Mpy
T <7.53Moay —, (3.6)
\/ *
where Ty, is defined as
Mp,
Topn = 7.53Mo5; . (3.7)
Ny W \/gj

For the Standard Model, with g, = gsy = 106.75, this yields Tspp = 7.5 X 10'2 GeV. Therefore, the
temperature at which sphaleron processes reach equilibrium is very high and is not a significant concern.

The second requirement is somewhat different and is a criterion that must be met for the bubble-wall
scenario to be successful. To have such a scenario, one must ensure that the electroweak phase transition
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3.3 Electroweak Baryogenesis

is a strong first-order phase transition [80, 81 [82]. To determine the bound for this criterion, one begins
with the master equation which can be expressed as

— 1—‘sph
dr T 9(Ng+Nyp)

T

= —n;—22 (ug+ pr), (3.8)

where g and y; denote the chemical potentials for baryon number B and lepton number L, respectively.
Assuming B— L =0, g+ Uz, can be computed (see [125]) as

13N
u3+uL=7—BT 2, (3.9)
ng

Substituting this result into the master equation and integrating formally yields

NBf 13 Ly Fsph(T(I/)) f
Bl 2 —sehA ) 3.10
Nae e"p[ ol e et G40

where 7¢c, represents the time at which bubble nucleation begins and #; denotes the time at which sphale-
ron processes cease to be effective. Here, N, /Np,. represents the dilution of the baryon asymmetry, with
Npg, being the final asymmetry to be preserved until the present day.

The thermal rate per unit time and volume for fluctuations between neighboring minima, given by

[1O9], is
My \? Eqon(T
o (T)=u (aWWT> My exp <—"*‘T()> - (3.11)

This can be rewritten in terms of the sphaleron energy as

7
Lopn = 20T (47:) < gr ) P T

o \4 [ Eson(T)\’ Eqon(T
~2.8 x 10°xT* (%) ( S‘}’;; )> exp [—Sp‘}()] (3.12)

where the approximation in the final step is from reference [[126], and the prefactor k¥ was found to be in
the range 10~* < k < 0.1 [[127]. For simplicity, let us define the rate for baryon non-conserving processes
as

I
Vs(T) = M T“;h. (3.13)

Substituting this definition into the integral in Eq. (3.10) and making some assumptions, one obtains
a simplified expression. Specifically, since the dominant contribution to the integral comes from tempe-
ratures very close to T¢,, and transitions at lower temperatures are highly suppressed by the exponential
factor, one can approximate the integral by evaluating the integrand at 7' = T¢;:

Np
In <f> VB (Ten) g — 1), (3.14)
Bc
Np, an/So

Defining the dilution as S = Noe — ns./sc

the entropy at the time of the phase transition, and ng, = ng(tr) is the baryon-to-entropy density ratio

, where sy is the entropy at the present time, s¢ = s(tc,) is
observed today, the maximum allowable dilution that preserves the observed baryon density is given by

Smax ~7x 1071 nSTCC Consequently, the baryon asymmetry produced at the electroweak phase transition,
z—g, remains an open question. However, generating a large asymmetry is generically difficult and is
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3.4 GUT Baryogenesis

very unlikely to exceed 10°. Hence, one can reasonably set the bound Np. S 10°. To prevent baryon
asymmetry from being washout, the requirement S > 10~ must be met.

In standard cosmology, the time-temperature relation for a radiation-dominated Universe is given by
t = 0.301g; 'Mp;T~2. Therefore,

-2

T
tr —tc, = 0.301Mp; [g*(TC,)_lTC_rZ —g.(Ty) ' T 7| ~ 0.301Mpl%, (3.15)
X *\LCr

where T =~ 0 implies integrating until 7y = co. Using the relation between ¢ (7¢,) and Egpn(Tc,) [126],

(P(TCr)_ 8 Esph(TCr)

= , 3.16
Tcr 4nB TCr ( )
and assuming tc, —ty = 0.301Mp; Tc_r2 /g+(Tcr), the sphaleron bound can be written as
4 4 2.8 x 10° 4 T;
l@B_ﬂn —TE@B > In M(OLW) +In( =52 ’ (3.17)
ow Ter ow Ter 5In10 x B’ 4r 2H¢,

where ¢c, = ¢(T¢,) and He, = H(T,) is the standard cosmology expansion rate for a radiation-
dominated Universe at the time of the phase transition. The parameter B as a function of the Higgs
mass my is approximated by [126]] as

2
B <m”> ~1.5840.32 (’"’”) —0.05 <m”> : (3.18)

my my my
valid for 25 GeV < my < 250 GeV. This parameter ranges from B(0) = 1.52 to B(ec) = 2.70 [128},[129,

130, [131]]. For T¢, = 10? GeV, ng=3, oy =0.0336, k = 0.1, and B = 1.9, the sphaleron bound in Eq.

(3.17) can be numerically solved to give
¢Cr

TCr

>1.2. (3.19)

As previously mentioned, this condition is essential for the success of Electroweak Baryogenesis
(EWB). Failure to meet this requirement compromises the viability of the mechanism. Unfortunately,
current observations suggest that this is the case for EWB. Recent measurements of the Higgs mass in-
dicate that the Electroweak Phase Transition is not a strong first-order transition, but rather a smooth
crossover [[132} 133} 1134} [135,[136]. This limitation has long been a significant challenge for the EWB
mechanism. A common solution has been to introduce additional and more complex sectors to the SM.
However, in [[137]], an alternative approach was proposed, focusing instead on modifying the cosmologi-
cal description. Specifically, it was suggested that the Universe could be dominated by the kinetic energy
of a scalar field, which scales as a'/®. In the same line of reasoning, this thesis will explore the use of
modified gravity with the goal of relaxing the constraint in question as the sphaleron bound has a relation
with the expansion rate of the Universe.

3.4 GUT Baryogenesis

The primary objective of Grand Unified Theories (GUTS) is to integrate the strong, weak, and elec-
tromagnetic forces, as well as quarks and leptons, within the framework of gauge field theory based
on a non-Abelian symmetry group [138], (139, [140, [141]. A key feature of GUTs is the placement of
leptons and baryons in the same multiplets, leading to their mixing under gauge transformations. Conse-
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3.4 GUT Baryogenesis

quently, baryon and lepton numbers are not independently conserved, enabling interactions that violate
baryon number, such as e +d <+ it + it or decays of superheavy gauge (or Higgs) bosons, for example
X — e~ +d+u+i. To elucidate the mechanisms of baryon number violation, consider a scenario where
X, X, q, g, 1, and [ represent an arbitrary superheavy gauge boson, its antiparticle, a quark, an antiquark, a
lepton, and an antilepton, respectively. Given that the decays of superheavy bosons are central to baryo-
genesis, the following discussion will focus on this topic. Superheavy bosons, such as X, have decay
modes of the form X — gl and X — Gg, while their antiparticles X can decay via X — gl and X — gqq
(for more details [96] [142]). These decays explicitly violate baryon number, thus satisfying the first of
Sakharov’s conditions for baryogenesis. More specifically, if we denote the branching ratios of the vari-
ous decay modes of X and X as r, 1 —r, 7, and 1 — 7, the net baryon number produced by the decay of an
X boson is given by By = r/3—2(1—r)/3, and for an X boson, itis By = —7/3 +2(1 —F) /3. Therefore,
the total net baryon number produced by the decay of an X and X pairis € = By + By =r —F.

To further explore this, consider the decay channel X — gI(1), where the parity (P) of state (1) is
denoted as (1) or ({). The following transformation properties can be written

Under CPT: T'(X — 11)=T(1 {— X),
UnderCP: T (X - 11)=TX—>14), (3.20)
Under C: IX—=11)=IX—11),
where I represents the decay width of X to a g/ state. From this we can conclude [96]]
e=r—i=IX=1N+T(X —=1})-TX—=11)-T(1). (3.21)

This result holds regardless of the specific choice for state (1). However, it is evident that if charge
conjugation (C) or combined charge-parity (CP) symmetry is preserved, then € = 0. Thus, two additional
conditions must be met for baryogenesis: violation of C and CP, as well as departure from thermal
equilibrium. While CP violation in GUTs can be a complex topic, this discussion will focus on the
necessary departure from equilibrium and the mechanism of Non-Inflationary GUT-Baryogenesis.

3.4.1 Departure from equilibrium and Inflation

The third Sakharov criterion is satisfied when the Universe’s expansion rate surpasses the rate of
particle interactions. Essentially, the critical factor is the comparison between cosmic expansion and
microphysical processes. In the early Universe, when the bosons responsible for baryon non-conserving
processes are still relativistic, they remain in thermal equilibrium, with their number density given by
ny = ng = (gx/gy)ny = (£ (3)/m*)gxT>. Here, symmetric initial conditions imply equal numbers of X
and X bosons. As the temperature drops, these numbers stay in equilibrium only if creation and annihi-
lation processes, like decays and inversions, proceed faster than the cosmic expansion rate, i.e., I' 2> H.
If particle interactions slow down relative to expansion (I' < H), the bosons decouple, and their numbers
"freeze out,"remaining comparable to the photon count. For sufficiently massive bosons, annihilation
and decay become inefficient when T' < my, causing the number of X and X bosons to deviate from
equilibrium. This leads to an overabundance, with ny ~ ng ~ ny > ny! = ng! = (mxT)*?exp(—m/T).
This excess creates the out-of-equilibrium condition necessary for generating baryon asymmetry, as the
heavy X particles undergo baryon- (B) and charge-parity- (CP) violating decays. Given these decays
proceed via renormalizable operators, very heavy particles are required, with masses my > 10> —10!°
GeV for gauge bosons, and my > 10'% — 10'® GeV for scalar bosons [96} [109]. Annihilation becomes
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3.4 GUT Baryogenesis

limited by the particle number, Iy, < nx, while decay processes maintain equilibrium. For simplicity,
annihilation is neglected in this analysis.

In scenarios where inflation is not included, as inflation carries the risk to ”washout” the asymme-
try produced, it is generally assumed that the early Universe was filled with a hot, dense mixture of all
fundamental particles in thermal equilibrium, including the supermassive bosons responsible for baryon-
nonconserving processes. This assumption is a critical aspect of the model. Several processes involving
superheavy bosons can impact the final value of baryon asymmetry. To leading order in ¢, these pro-
cesses include the decays and inverse decays of superheavy bosons (order o), baryon-nonconserving
fermion collisions (BNC-scattering processes), and Compton-type or annihilation-like reactions (both of
order OtSZ). Typically, second-order processes are insignificant, and higher-order processes are generally
negligible [143]]. However, among the second-order processes, BNC-scattering is the most likely to be
relevant in certain situations. Any process besides decay will only serve to dampen the generation of
asymmetry produced by the decays themselves. The effectiveness of these damping processes in coun-
teracting the decays depends on their rates relative to the expansion rate of the Universe. If we consider
only decay, inverse decay, and BNC-scattering processes, the departure from thermal equilibrium can
be quantified by calculating the rates of each process. Formal derivations of these rates are provided in
[96l [143]]. They are expressed as follows

2 oxm% /T if T > my,
Ty oy— X )X x/ o X (3.22)
\/ T2 +mi oxmy if T < my,
1 ifTme,
FID ~ FDXeq ~ ZFD (323)
/7 /8(myx /T >exp(—my /T) if T < my,
T3 mxyT  if T = my,
s ~ Ao 2 )X ~ T (3.24)

Al
(T2 +mg)? T35 /my if T <my,

where X1 represents the equilibrium number of X bosons, I';p corresponds to the inverse decay rate, and
I's refers to the BNC-scattering rate. The constant A is a numerical factor, on the order of 10°, accounting
for the number of available scattering channels, among other factors.

For baryogenesis, the most critical rate is the decay rate I'p, as decays primarily regulate the number
of X and X bosons. Decay processes dominate the reduction of superheavy boson numbers, as annihila-
tion processes are of higher order (a?). Given that these bosons mediate baryon nonconservation, their
decay plays a central role in the process.

To assess the effectiveness of these decay and inverse decay processes, we define the quantity

r ax GeV
K= <D> —3.68x 108X Y (3.25)
2H T=my 8x8 Mx

where K measures the effectiveness of decays (I'p/H), inverse decays (I';p), and, inversely proportional
to o, the effectiveness of BNC-scattering processes (I's/H @) at the crucial moment when the bosons X
become non-relativistic (7' = my). At this point, the bosons must undergo a rapid reduction in number
to remain in equilibrium.

With the previous framework defined, we have all the tools to work with GUTB in the context of
modified gravity aiming to see how MG can help GUTB.
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3.5 Gravitational Baryogenesis

Gravitational baryogenesis is a proposed mechanism for generating baryon asymmetry while preser-
ving thermal equilibrium. It involves an interaction term given by [72]]

Lin = A;gaﬂ (R)JY (3.26)
where dy, (R) represents the derivative of the Ricci scalar R, and J; g denotes the baryon number current. In
an expanding universe, this term can lead to violations of CP and CPT symmetries by directly coupling
the Ricci scalar with the baryon number current. This interaction can also be extended to lepton currents
or any current associated with a net B — L charge in equilibrium. The parameter M? represents the
cutoff scale of the effective theory and it is hypothesized that this interaction originates from a higher-
dimensional operator in supergravity theories [[144} [145]. Moreover such operators may appear in a
low-energy effective field theory of quantum gravity, particularly if the fundamental scale M, is close to
the reduced Planck scale Mp; ~ 2.4 x 10'® GeV [72].

A distinguishing feature of this mechanism is that CP violation originates from gravitational inte-
ractions. As the universe expands, microscopic CP violation is magnified due to changes in baryon
energy, which leads to dynamic CPT violation that affects the energy distributions of particles and an-
tiparticles. Consequently, a CP-conserving but baryon number-violating interaction in equilibrium can
generate the baryon asymmetry, which is enhanced by the interaction term and becomes fixed once
the baryon number-violating interactions decouple. To quantify this, in a flat Friedmann-Lemaitre-
Robertson-Walker universe with spatially constant R, the interaction term induces differential energy
contributions for baryons and anti-baryons, modifying their thermal equilibrium distributions as fol-

lows [72]1146]]
1.
(uR)Jy = WR(nB —ng), (3.27)

*

1
M?

where J§ = ng — ng, with np and nj representing the number densities of the baryon and antibaryon,
]%71;
leading to CPT symmetry violation. Consequently, the chemical potential for baryons is given by

respectively. This results in a shift in baryon energy of approximately relative to anti-baryons,
Up = —Ug = —%. In an expanding Universe, considering the relativistic regime (7" > m) and T > g,
using Eq.(2.56) for fermions and Eq.(2.68) the asymmetry produced by the interaction given in Eq.(3.26)
at the temperature where the baryon number violation processes decouple, Tp, is given by [[72]

np 15gb R
~ — 3.28
s dm2g, M2T | (3-28)
Tp

where R is determined based on the cosmological model used. In essence, the coupling term in (3.26)
modifies the thermal equilibrium distribution and the chemical potential, driving the universe toward a
nonzero equilibrium B-asymmetry (or L-asymmetry) through B-violating (or L-violating) interactions.
This mechanism is closely related to spontaneous baryogenesis [[147, [148], where, in the case of gravi-
tational baryogenesis, the Ricci scalar from a gravitational background takes on the role usually filled
by an axion in spontaneous baryogenesis. In spontaneous baryogenesis, the symmetry that guarantees
baryon number conservation in the unbroken phase is spontaneously broken. Upon symmetry breaking,
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Figure 3.1: Schematic representation of the generation of baryon asymmetry in the regime of thermal equilibrium. Image taken
from arXiv:2409.04623 [gr-qc].

the Lagrangian density acquires an additional term

(9u9)
f

where ¢ is typically a pseudo-Nambu-Goldstone boson associated with an approximate symmetry related

[::

Jg (3.29)

to the baryon number, and f is a parameter linked to the scale of symmetry breaking.

Both of these mechanisms can occur if the baryon number-violating processes occur in thermal equi-
librium. In an expanding Universe, the generation of baryon asymmetry within thermal equilibrium
follows a specific sequence. During periods when the expansion rate H significantly surpasses the inte-
raction rate I',i.e., when I" > H, corresponding to temperatures 7' > Tp, baryon asymmetry is produced
by processes that violate either baryon number (B) or lepton number (L), all while maintaining thermal
equilibrium. As the temperature decreases to T = Tp, where H ~ I, these processes decouple. Once
H <T, or T < Tp, the baryon asymmetry becomes effectively frozen. This process is schematically
illustrated in Fig. [3.1] This feature is particularly noteworthy as it challenges the Sakharov conditi-
ons. In fact, these conditions are not strictly necessary but are a fundamental
framework of baryogenesis. This phenomenon has been widely studied in the context of spontaneous
baryogenesis [148]], which requires only the violation of baryon number (B) while remaining in
thermal equilibrium. Under such conditions, spontaneous baryogenesis is typically more efficient.

For this thesis, gravitational baryogenesis will be explored in the context of modified theories of
gravity as from a phenomenological perspective, modifying gravitational baryogenesis offers solutions to
several challenges present in its original formulation. One prominent issue is the difficulty in generating
a non-zero asymmetry during the radiation-dominated era, where the equation of state is characterized
by w = 1/3. However, this problem can be mitigated by considering deviations where w ~ 1/3 [72].
Additionally, as already mentioned in the Introduction, modified gravitational baryogenesis can address
scenarios where the generated asymmetry is either too small or excessive. This approach may also
help to resolve intrinsic issues, such as the instabilities [153] [155]]. The modified theory of gravity
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chosen was f(R,7?) as it is a non-minimally geometry-matter coupled (NMGM) theory that brings
a more impactful role of matter in to the cosmological description as we will see later on. Another
rational behind the choice of this theory is the fact that in theories in which matter and geometry are
non-minimally coupled, one interesting feature is the non-conservation of the matter energy-momentum
tensor V#T),, # 0 [156] [157, [158, [159]. This feature can be seen from a thermodynamic perspective
as describing irreversible processes of matter creation [160, [161] and recently this phenomenology was
explored in [[162]].

The concept of gravitationally-induced particle production offers a compelling reason to investi-
gate the direct coupling of matter-related quantities with the baryonic current. However, it is important
to clarify that in this context, gravitational particle production is not used directly to generate baryonic
asymmetry. More interestingly, this mechanism, which emerges from the non-conservation of the energy-
momentum tensor in theories involving geometry-matter couplings, can be combined with gravitational
baryogenesis to achieve the desired baryonic asymmetry. This combination requires careful attention to
various factors, such as ensuring entropy conservation after the baryogenesis epoch and devising a me-
chanism to produce more particles than antiparticles through a B-violating process, which may or may
not involve gravitational particle creation. In gravitational baryogenesis, despite the "gravitational"label,
gravity does not directly induce B or B-L violation. Instead, gravity affects the net baryon current via
the cosmological background, while the resulting baryon asymmetry depends on an existing B-violating
process. The interaction term from Eq. (3.26) amplifies the baryon asymmetry to its observed value,
which becomes fixed once the B-violating processes decouple. Consequently, a mechanism that utilizes
gravitational particle production to generate baryonic asymmetry, coupled with a B-violating process po-
tentially linked to gravitational effects, and subsequently amplifies this asymmetry through gravitational
baryogenesis, can be considered primarily gravitational in nature. This holds true even when additional
mechanisms contribute to the asymmetry.

A similar idea was explored in [163l], where GR was employed to describe the gravitational dyna-
mics, resulting in a different rationale for gravitational particle production than the approach discussed
here. More recently, in [[164]], a related mechanism was proposed that integrates Cosmological Gravitati-
onal Particle Production (CGPP) [1635]], which combines cosmic inflation, quantum field theory, general
relativity, and particle physics, with baryogenesis arising from Grand Unified Theories.
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Chapter 4

Modified theories of gravity

In this chapter, we introduce alternative theories to General Relativity, often referred to in the lite-
rature as modified gravity theories. A concise overview will be provided, with a focus on scalar-tensor
theories and theories involving non-minimal couplings between geometry and matter, more specifically
f(R,T?), where T2 = TuvT*Y. These approaches offer a range of possibilities for addressing limitations
of General Relativity, particularly for the previous problems mentioned. The relation between inflation
and scalar-tensor theories will also be briefly mentioned. This chapter is based on [116 [146].

4.1 Scalar-Tensor theories

When extending Finstein’s General Relativity while preserving its metric framework, Scalar-Tensor
Theories (STT) assume a central role. These theories introduce an additional scalar field to mediate
gravitational interactions alongside the metric tensor field. A notable example is the Brans-Dicke theory,
introduced in 1961 [60] having the action

1

Sgp = ——
BD ™ Ten

O,
/M\ﬁ—gd“x |:¢R—$Dg“vaﬂ¢av¢ +Su (4.1)
with wpp being a dimensionless constant, ¢ plays a role analogous to G~! and Sy, being the usual action
related to the matter sector that does not contain the scalar field ¢. Later this theory was generalized by
Bergmann [[166]], Wagoner [[167]], and Nordtvedt [[168]] to include arbitrary coupling parameters. Curren-
tly, the fundamental action for STTs is expressed as

SSTT = 1;7’[//\/1 \/ng4x |:¢[R—2)L(¢)] — wgp)g“vauqbam +SM y (4.2)

where @(¢) is a dimensionless function representing the coupling between the scalar field and gravity
(referred to as the coupling parameter), and A(¢) is another function of the scalar field that can be
interpreted as both a potential for ¢ and a cosmological parameter (for this work we will set A (¢) = 0).
In this framework, the scalar field ¢ acts as an effective gravitational constant Geﬂ-{ﬂ. Due to the presence
of a non-zero kinetic term (g*¥¢ ;¢ ) in the action, ¢ is no longer constant but a dynamical variable with

I'The relation between the scalar field ¢ and the Newton’s gravitational constant, that we are familiar with and it is measured
in the Cavendish experiment, is subtle. For both BD gravity and STT, one could define an effective gravitational constant
Getf = Gy /¢ where Gy is the gravitational constant normalized to its present value, which in what follows will be set as
1 [169]. However, this definition does not lead to be the coupling as measured by the Cavendish experiment. Instead, the latter
is given by: G = (Gn/0)(2wo +2/2w¢ + 3) [169] [170].
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dimensions of squared mass. STTs might be seen as emerging from the low-energy limit of superstring
theory, where the Brans-Dicke field could be related to the dilaton [171L [172].

Unlike GR, where gravity is mediated solely by the metric tensor gy, STT involves both the metric
tensor and the scalar field ¢, therefore, when varying the action one must do it with respect to the metric
tensor, 6g"V, yielding a field equation, and also varying it with respect to the scalar field, 6@, providing
an additional equation of motion. Varying (4.2) with respect to the inverse metric gives (see [173} [174]
for a more step by step derivation)

1
0SstT = Ton /M d*xy/—g8g"" [(bGuv —(VuVy —gu)o _H;(t?/) - S”Tuv} ; 4.3)
that leads to the field equation
1 1 T,
Gy = 5(vuvv — g )0 + 6JLIfﬂQ + 8n% , (4.4)
where [ = V, V¥ is the D’ Alembert operator, G,y is the Einstein’s tensor as defined in Eq.(1.62)) and
Hm,) can be seen as the stress-energy tensor of the ¢-field being defined as

0] 1
i) = 28 (3,030 — Sew0"03u0) 4.5)
and Ty is the usual stress-energy tensor defined in Eq.(I.63). During the calculation of the variation
in (.3) we have taken into account the typical requirement that any variations in any field, as well as
variations of their first derivatives, vanish on the integration boundary d M. Varying now (4.2)) with
respect to ¢ gives

1 09 o—9¢0
0pS. :—/ d*x\/—g8¢ |R+20— — ———0,03%¢ | . 4.6
oSstr =1 [ 4 g¢[+ p 92 090”9 (4.6)
resulting in the modified classical Klein-Gordon equation
1
O¢p=——— (82T — g"" 9,00 4.7
¢ 2@((]))—!—3[” g8 ouw v¢}> 4.7)

where it was used the trace of Eq.(.4) and with T = g"VT},,. It can be seen from the Klein-Gordon
equation that by allowing @(¢) to tend to o, the right side of the equation may vanish. This will
be the case when @ dominates over @'(¢). In this case, a solution of the type ¢ = constant, which
corresponds to GR, is then admitted by the wave equation (4.7). Therefore, was usually admitted that
GR is recovered in the @ — oo of the scalar tensor theories and the value of @ was related to the degree
of departure from GR of a scalar tensor theory. However, it was been pointed out that whenever the
energy-momentum trace is vanishing (the case of radiation and vacuum) this may not be the case and GR
can be fully recovered for a finite o [175].

4.1.1 Cosmology in STT

To derive cosmological solutions for scalar tensor theories (STT) [176], we employ the field equa-
tions (#.4) in conjunction with Eq. (.7). As presented before, we assume a Universe governed by the
FLRW metric, with matter content modeled as a perfect fluid satisfying the barotropic equation of state
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(2.8)). With this being said, one obtains

1", a9 o(¢) $* 8mp
(a) a¢+*_TP BEX) (4.8)
a_a¢ 1 a@) ¢ _ 8rpBy-2)e@)+3 (@) o
a a9 220(9)+3¢ 3¢ 20(0)+3 3¢ :
P S
¢+[ +2wa()xl3]¢=2w(g’+3(4—3y}. (4.10)

To fulfill path A, we will adopt the three-epoch model discussed in [[177,[178] and used in [[116]], and
we refer the reader to these sources for a comprehensive examination of the model’s intricacies. Initially,
the model assumes that the Universe is described by an FLRW metric and an energy-momentum tensor
of the form given by Eq. (2.4)), which corresponds to a perfect fluid as the matter content. The barotropic
equation of state is expressed by Eq. (2.8)), while a spatially flat geometry (k = 0) is assumed. The model
delineates three distinct epochs, each characterized by different types of fluid domination and distinct
values of the coupling parameter o, reflecting the key phases in the Universe’s evolution.

To demonstrate how the effects of a general scalar-tensor theory at any given moment can be reduced
to those of a Jordan-Brans-Dicke (JBD) theory, we develop the field equations for scalar-tensor theories
(Egs. @.8)-(.9)), allowing the coupling parameter @ to vary with the scalar field ¢. To facilitate this,
we introduce the conformal time 7] defined through the differential relation

dt = adn, (4.11)
along with the variables defined in [179]
2
X=¢dd, Y= / a’+3d¢ (4.12)
and the relation between p(¢) and a(t)
a\ 7
p(1) = po () , (4.13)
aop

which is obtained by integrating the energy conservation equation (Eq. (2.7)) using the barotropic equa-
tion of state (Eq. (2.8))). The field equations (4.8))-(@.10) can thus be rewritten as

4-3y
(X')? 4 4kX? — (Y'X)* = 4MX Gﬁ) , (4.14)
) X\
X" 44kX =3M(2—7) ((P) : (4.15)
v 3 (x\ 7
(Y'X) = M(4—3y) 5013 <¢> : (4.16)

where the prime denotes differentiation with respect to n and M = 87p/3, with py being an arbitrary
initial condition for the energy density. Two key aspects of the scalar-tensor cosmological solutions
are critical for understanding the interaction between quantum processes and the Universe’s expansion
during epochs relevant to baryogenesis. First, these processes occur during the radiation epoch, where
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4.1 Scalar-Tensor theories

the early expansion is dominated by the scalar field’s energy density [176} [179]. Second, Eq. {#.12),
valid during the radiation epoch, allows the definition of an average value of the coupling parameter,
(o), over any time interval, even if  is strictly increasing. Specifically, for any time interval [t;,;], we
define

Ij /2043 d¢
2<a)>ij+3 i 3¢ 4.17)
3 e ‘
t; (1)

enabling the treatment of a general scalar-tensor theory as a Brans-Dicke theory with a constant coupling
(w);j, averaged over the given time interval.

We divide the radiation epoch into two intervals: the first corresponds to a stage dominated by
the Jordan-Brans-Dicke (JBD) scalar field, while the second is characterized by radiation and ultra-
relativistic matter domination over the scalar field. This phase is followed by a matter-dominated era,
where p ~ 0. The full evolution is described by the following three-epoch solution for a flat FLRW
Universe in the general JBD framework

0<t<t.: a(t)=A1, (4.18)
te <t <ty alt)=Ay(t—120)"? (4.19)
2042
log <t <ty: a(t)=A3(t—t3)3*, (4.20)
where ¢ is given by [[180] as
g= @ 4.21)

3((1)+HE 2”’37”)

and Ay, Ay, A3, 1, and f3g are constants, determined by the junction conditions that ensure the smooth-
ness of the solution. Continuity of both the scale factor and its first derivative at = 7. and t = 1., leads
to the following relations

Ar = \/2qA 17, (4.22)

1
o = <1 — ) e, 4.23)

2q

and
4+ 4\ o
_ w 3o+ 1 2042
Ay =\/2qA17 <3w - 4> (feg —120)2 35, (4.24)
w

By=———1 1. 4.25
30 3014 eq T 120 (4.25)

In this solution, the Brans-Dicke scalar field evolves as

0<t<tc: ¢(t)=t 7, (4.26)
1.<t<ty: O)=0, 4.27)
tg <t <ty: O()=0s(t—t30)95, (4.28)

where @1, ¢, and ¢3 are constants that ensure the continuity of ¢ at 7. and 7.
In the first epoch, for 0 < ¢ <, the sign of ¢ /¢ depends on g. For g > 1/3, which corresponds
to the (—) branch in Eq. (#21) (denoted ¢_), we find that ¢ /¢ is negative, leading to a decreasing ¢
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and consequently a gravitational constant G that increases towards infinity over time. In cases where
g > 1, corresponding to the (+) branch (denoted g-.), this leads to accelerated expansion, and occurs
for —3/2 < @ < —4/3. Conversely, for ¢ < 1/3, which is always associated with the (+) sign, ¢/¢
is positive, implying that ¢ increases with time, causing G to approach zero as t — oo. It is also worth
noting that for ¢ < 0, corresponding to —4/3 < @ < 0, the scale factor contracts with time.

4.1.2 STT and inflation

Since the early development of the inflationary paradigm, scalar-tensor theories have played a pi-
votal role. A notable early contribution was the proposal of Extended Inflation [181], where inflation
was first linked to alternative theories of gravity. This model revived the spirit of Guth’s original in-
flationary concept, proposing a first-order phase transition associated with high-energy particle physics.
However, unlike standard inflation driven by General Relativity (GR), Extended Inflation employed a
Jordan-Brans-Dicke (JBD) framework. In this setup, the expansion of the universe was driven by a va-
cuum energy, leading to a rapid power-law expansion instead of the exponential one predicted by GR.
The model incorporated a Higgs-like sector within the matter Lagrangian, undergoing a strongly first-
order phase transition. A key implication of this approach is that &, which remains constant in other
models (since H depends on false vacuum energy and A on the barrier shape), becomes time-dependent.
By allowing the Newtonian gravitational constant to decrease during inflation, the expansion rate could
also decrease, leading to a growing &, potentially crossing a critical threshold &,.

Building on this work, Steinhardt and Accetta (1991) introduced a more sophisticated model, termed
"hyperextended inflation" [182], designed to overcome some of the challenges associated with exten-
ded inflation. They adopted a more general scalar-tensor framework, formulating the Lagrangian as
follows [[183]]

Lo = f(0)R— %amp Mg %8”68“6 —V(6)+ 16T Loper (4.29)

where f(¢) is the non-minimal coupling between the scalar field ¢ and the curvature R, and Loper
represents the Lagrangian of the matter fields other than the inflaton.

Similar to extended inflation, hyperextended inflation follows the old inflationary scenario, with the
scalar field o trapped in a false vacuum state. The false vacuum energy density V(o) dominates, dri-
ving superluminal expansion. Inflation ends when quantum tunneling nucleates bubbles of true vacuum,
which expand near the speed of light. In this model, the effective Newton’s constant is inversely propor-
tional to f(¢), meaning that if f(¢) increases, the effective gravitational constant decreases, leading to
a decrease in H and €. Almost any monotonically increasing f(¢) can be utilized during inflation [182].
By redefining the field as ¢ = f(¢), the Lagrangian simplifies to

Ly=¢R— “’fp"’)am ot — %%68“6 — V(o) + 167 Lother , (4.30)

where @(9) = f(¢)/(2f'(¢)). This Lagrangian leads to an action that is entirely equivalent to the action
in (#2) when A(¢) vanishes and Ly = Lomer + L. In particular, for the case of f(¢) = &2, where
& is a constant, the result is @ = & /8, a constant, thereby recovering the standard Jordan-Brans-Dicke
(JBD) framework and, within it, the results of extended inflation. From this, one can see that the basic
idea behind hyperextended inflation closely follows the principles of extended inflation. However, if one
considers a more complex form like f(¢) = &(¢? 4 ¢"2/M™), where n > 2 and & is a constant (as in
[182]]), some intriguing consequences emerge. In this model, for ¢ > M, the behavior of extended infla-
tion is recovered. However, as ¢ approaches the order of M, the inclusion of higher-order nonminimal
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couplings slows down the cosmic expansion even further. This could result in a wider range of initial
conditions and parameters that allow for an acceptable distribution of bubble sizes (see, for example,
[184]). Despite this, by the end of inflation, @ should approach &(1). Interestingly, as the higher-order
terms in f(¢) become more significant, f(¢) could reach a maximum value at some point beyond the
end of inflation. As a result, f’(¢) would tend toward zero, causing ®(¢) = f(¢)/(2f'(¢)) to approach
infinity, which would halt the evolution of ¢. At this stage, the model would become indistinguishable
from GR. It is worth noting that Barrow and Maeda [185]] used the Lagrangian (4.30) and treated w(¢) as
their fundamental expression, expanding it in a truncated Taylor series as @ (@) = @y + ®,,¢™ for some
m. While the Lagrangians in and are equivalent, choosing @(¢) as the simplest function
rather than f(¢) leads to the construction of distinct models. In fact, when f(¢) contains more than
two terms, it is generally impossible to express the equivalent @(¢) in closed form because one would
need ¢ = f~'(¢), and f may not be analytically invertible. Additionally, Steinhardt and Accetta’s ap-
proach introduces a singularity in the ¢-¢ transformation for certain values of ¢, meaning that there is
no analytic @(¢) corresponding to their formulation. These approaches have been extensively discussed
in [[186]].

Despite the appeal of hyperextended inflation, it appears difficult to implement it successfully when
all observational constraints are considered. As noted in [[187], for models of this type, where bubble
nucleation ends inflation, there is no way to reconcile all observational constraints and achieve a viable
inflationary scenario.

4.2 f(R,T?) gravity

The modified theory of gravity f(R,7?) [188] was initially developed to address the late-time ac-
celeration problem, but it also showed promising results in tackling issues related to spacetime singu-
larities [189, [190] that occur within the framework of GR. Since GR alone is insufficient due to the
anticipated effects of quantum gravity.

The action for f(R,7?) gravity reads [[188]

1
=5 / d*x/—gf(R,T%) + / d*x/=gLom, 4.31)

where Kk =8n1G =M ;12 and f(R, 7'2) is a well behaved function of the Ricci scalar and 72 and £, is the
matter Lagrangian. Varying the action with respect to the inverse metric, we find [190]]

1 v 1 \% 1
8= g [ OB+ Frad (™) — S O™ + = 8(V=gLmla's, (432

where subscripts denote differentiation with respect to R and 72, respectively. We define

8(TpT*F) 1 " wg 9L
=_ ¥ - _ _ p__ Y =m
Oy = —5 v = ~2Ln(Tuy = 58uT) =TTy + 21 Tyq 4T PR (4.33)
From Eq.(4.32) we obtain the field equations
1 o 1
JrRRuv — Efguv + (guvVaV* =V Vy) fr = k(Tyy — EfTZ Ouv)- (4.34)

These reduce, as expected, to the field equations for f(R) gravity in the special case where f(R,T?) =
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f(R) (see [191] for a complete review of this theory) and to the Einstein equations without a cosmological
constant when f(R,7?2) = R. Assuming a perfect fluid for 7y, Eq.(2-4), and £ = p [192] we have

T=3p-p , T =p°+3p’ (4.35)

and
Ouy = — (P> +4pp +3p° Jupuy . (4.36)

In the context of f(R,7?) gravity, we examine a particular class of models characterized by the
form [146]
fR,T?) =R+nM3 " (T%)", (4.37)

which is referred to as energy-momentum powered gravity. This model represents a specific case of
f(R,T?) theories. In this formulation, 1 is a dimensionless constant that determines the coupling
strength associated with the scalar 72, while the parameter n governs the specific form of the model.
The inclusion of the term M}%I_S” ensures the proper dimensional consistency of the new terms introduced
by 77 in the cosmological equations. For convenience, we define a new constant, i)’ = nM}Z,I_S”. When
n = 1, the model was studied in [[189], and the cases n = 1/2 and n = 1/4 correspond to models that have
been studied in [[188]].
For this model, the field equations reduce to

1
Ry = 5 8uvR = KTy, (4.38)
where Tﬁf,f is given by
/
|1
TS = T + %(ﬂ)" 5 (T)guy —nbuy| - (4.39)

Taking the trace of the field equations one obtains
-1 1
2(T) =n(T?)" 0=~ (kT +R), (4.40)

with 6 being the trace of 6, and T the trace of the energy-momentum tensor. This equation allows us
to evaluate 72 depending on the choice of 7.
4.2.1 Cosmology in f(R,7?) gravity

Using the FLRW metric and the field equations (4.38)), one obtains the following modified Friedmann
equations [190]

! 1
12 =15+ L (o243 {(n - ) +3p%) +4npp} , (.41
!/
Ho =P T2 gy [’T(pz +3p%) +2npp} , 442)

where H = d/a is the Hubble parameter. Considering now the barotropic equation of state, p = wp, the
previous equations can be recast as [146, [190]]

! ~2n
H? = K‘% + %Cﬂd(n, W), (4.43)
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4.2 f(R,T?) gravity
where Cr,4 is a function that depends on the choice of n and w given by
1
Crra(n,w) = (143w?)" 1| (n— S+ 3w?) 4 dnw| (4.44)

and the acceleration equation reduces to [[146} [190]

! ~2n
K1+3wp_np

H+H>=—
+ 6 3

Cace(n,w), (4.45)

where Cy.. returns a constant based on the choice for n and w, and is given by

1
Cace = (1+3w?)" ! %(1 +3w?) +2nw| . (4.46)

A notable aspect of this modified theory of gravity is the presence of the p?” term in both equations,
which bears a resemblance to quantum geometric effects observed in loop quantum gravity [193]] and
braneworld scenarios [194]]. Finally, the modified continuity equation is obtained by direct derivation
from the Friedmann equation (4.47)) leading to [[146] [190]

P =—3Hp(1+w)Ceon(n,w), (4.47)

where C.,,(n,w) is the extra term originated from 72, and is given by

K+1'p2 In(1+3w)(1+3w?)"!
K+210'p?" 'nCpq(n,w)

Ceon(n,w) = (4.48)

A detailed examination of the cosmological equations shows that the overall cosmological behavior
is primarily governed by the three functions under consideration ( Cr,q(n,w), Cacc(n,w) and Ceop(n,w)),
along with the specific value of n chosen. In the context of baryogenesis, we concentrate on the radiation-
dominated era that follows inflation, thereby circumventing the problem of symmetry washout caused by
inflation. In this epoch, it is standard to set w = 1/3, as this equation of state corresponds to a radiation-
dominated universe. Nevertheless, it is important to note that, with this assumption, Eq. does not
simplify to the usual form for the energy density, p o< a—*, as typically expected for the radiation era. To
address this issue, one can impose the condition

Ceon(n,w) =1, (4.49)

as proposed in [190]]. While this condition successfully reproduces the standard GR continuity equation,
it imposes unnecessary restrictions on the parameters n and w. Instead, if the aim is merely to recover
the familiar form of the energy density for a radiation-dominated universe, a less stringent condition can
be employed by imposing
4
(14+w)Ceon(n,w) = 3 (4.50)

Solving this constraint for p?"~! leads to the expression

- 1-3w
P , @.51)
nMyg, " (3nA(w) — 8nCryq)
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where A(w) is defined as
A(w) = (14+w)(14+3w)(14+3w?)" L. (4.52)

Upon analyzing Eq.(4.51)), it becomes evident that the right-hand side corresponds to a constant.
For the equation to yield a physically meaningful solution within a dynamical cosmological setting, it
is necessary to set n = 1/2, as a constant p would not be viable. This result highlights the significance
of the n = 1/2 model within energy-momentum powered gravity, as it successfully reproduces the form
p o< a~* for specific values of 1 and w. By imposing n = 1/2, the condition (#351)) can be reformulated
to establish a relation between 1 and w, resulting in

1—-3w
JA(w) —4Cp (5, w)

n.=nw) = (4.53)
This relationship not only ensures the correct form of the energy density, but also serves as a cons-
traint on 7). The value of w dictates the 1) necessary to satisfy this condition, opening up new possibilities
to investigate baryogenesis. An intriguing result is that for w = 1/3, the required 1 becomes zero, effec-
tively reducing the theory to GR. This result will be explored in further detail in the subsequent section.
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Chapter 5
Baryogenesis in Modified gravity

In this chapter, the results for Path A and Path B will be presented. The results for the EWB and
GUTB are from [116]] and the GB results from [[146].

5.1 Scalar-Tensor EWB

A distinct thermal history of the Universe can significantly affect Electroweak Baryogenesis (EWB).
This consideration arises from the sphaleron bound, a critical criterion which, if unmet by a specific
EWB model, invalidates it as a viable explanation for the observed baryon asymmetry of the Universe
(BAU).

The sphaleron bound is derived based on a particular assumption regarding the expansion rate of
the Universe, and it can be relaxed if an alternative thermal history is considered. In the context of
scalar-tensor theories, this bound must be reformulated in terms of the expansion rate during the early
cosmological epochs. However, due to its similarity with GR, the second epoch is not expected to
substantially alter the sphaleron bound. Moreover, as the third epoch occurs much later than the relevant
timeframe, we focus on expressing the expansion rate for the first two epochs in STT in terms of both
the temperature and the expansion rate for a radiation-dominated Universe in standard cosmology (H),

as follows -
H(T) (T.\ ¢
I_‘el (T) = (C ) <T> y T > Tc» 5.1)
H(T '
Fez(T): ( )7 TCZTZTeq?

where H(T) = 1.66\/5T*T2/Mp1 and { is defined as [177,[179]

c[(py ] 52

with p{f and pg” representing the present-day radiation and matter energy densities, respectively.
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5.1 Scalar-Tensor EWB

Consequently, the sphaleron bound from Eq. (3.17) can be reformulated for STT as

) 3
4x gerp 71< ”¢”B>>

(04774 TCr Oow TCr ~
5 _ 5.3
IH[W(%)]+1n(;;gcr)+(2qq1)1n(n,)+1n(g), Ter > To, 63
5
245055 ) n (s ) ferste

It follows that, to significantly relax the sphaleron bound, the phase transition must occur during
the first epoch. From Eq.(5.1)), it is clear that the parameter ¢ must be smaller than 1/2; otherwise, the
expansion rate during the first epoch will negatively impact the sphaleron bound by raising its lower limit
instead of lowering it. This is because, for ¢ > 1/2, the expansion rate in the first cosmological epoch
in STT is lower than the standard GR expansion rate for a radiation-dominated Universe, making the
sphaleron processes in the broken phase more effective in erasing the asymmetry.

In addition to the requirement of a strong first-order phase transition, another critical condition must
be satisfied to ensure efficient baryon number violation. Specifically, sphalerons must be in equilibrium
during the symmetric phase. This can be achieved by ensuring that the rate of baryon number non-
conserving processes in the broken phase exceeds the expansion rate of the Universe. Ultilizing the
thermal rate per unit volume of sphaleron events, as given by Eq.(3.4), the rate of baryon number non-
conserving processes in the symmetric phase can be expressed as

M

Vit = 5Ton = Moy T . (5.4)

With this result, the rate of baryon number non-conserving processes in the symmetric phase can be
explicitly written as
V™ =25 Moy T . (5.5)

Thus, under the standard cosmological scenario, the condition for sphaleron transitions to be in
equilibrium during the symmetric phase is given by

mpj

VI™T)>H(T) < T <7.53Ma (5.6)

8x

It is useful to define the temperature T GR " at which sphaleron transitions enter equilibrium, expressed

as

T = 7.53 Moy 22!

(5.7)
8x

where Tg;eh represents the temperature for sphaleron equilibrium in the context of General Relativity

corresponding to T(S;ph ~7.5x 10'> GeV. Similarly, for the first cosmological epoch in STT, the condition

for sphaleron equilibrium in the symmetric phase can be written as

Tsph |1 q|
Vy™T)>T,(T) & T<T. <T?R , (5.8)
C

where the negative sign corresponds to g < 0 or ¢ > 1, and the positive sign applies to 0 < g < 1. Simi-
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5.1 Scalar-Tensor EWB

larly, the temperature T;Tp}}, which marks the crossover between V'™ (T) and I, (T'), is defined as

Tsph i‘ﬁ‘
sph
Torr =T, ( ;R g) ) (5.9)

To ensure clarity, let us impose that the phase transition occurs after sphaleron processes have rea-
ched equilibrium in the symmetric phase, and that nucleosynthesis takes place during the second epoch
following the phase transition. This leads to three possible hypotheses concerning the sequence of these
events:

1. The sphaleron processes enter in equilibrium in the symmetric phase before the phase transition
and the phase transition occurs before the transition for the second epoch, which occurs before
nucleosynthesis.

2. The sphaleron processes enter in equilibrium in the symmetric phase before the transition for the
second epoch and the phase transition occurs in the second epoch before the nucleosynthesis.

3. The transition for the second epoch happens before the sphaleron processes reach the equilibrium.
Then, sphaleron processes enter in equilibrium in the symmetric phase before the phase transition,
which happens before nucleosynthesis.

Analyzing these three events, one can rationalize that the first hypothesis is the one most relevant
for the EWB because, as stated before, the first epoch presents the most impact ruling out the second
hypothesis and third hypothesis. In terms of temperature relations, the first hypothesis is expressed a

1- 2g—1 2g—1

=g 21 =g 2¢-1
TR >0 ' T, T >6;,'T.>6,'T," . © if 0<g<l, (5.10)

that by using the constraint ¢ < 1/2 can be recast as

—1 L
1 T2 Te, TP\
~>g>WT, |In| & A T.> | SR> Ter AT, > Ty (5.11)
2 ¢ Ter
The simultaneous satisfaction of the two latter conditions related with the temperature is necessary be-
cause for
q>In(Ty/Te,)/ n[T2 /(TR )] ~ 0.2, (5.12)
we get
. q/(29-1)
(73R /Tex) Tep < Ty . (5.13)

The intersection of conditions can be written as two conditions for two different ranges of g. However,
numerically, the expression presented in Eq. (5.11)) is easier to compute.

To conclude this brief analysis, it is important to understand that the condition (5.11) is a necessary
condition for a viable electroweak baryogenesis scenario to take place during the first STT cosmological
epoch. Additionally, an important notation to have is related with the ability to constraint the new para-
meters of Eq.(5.3). The main way to do it is to use the Big-Bang nucleosynthesis data. To do such, one
can compute the ratio between the STT expansion rate and GR expansion rate in terms of temperature
creating a relation between these two theories that differ by the term ¢ [177,[178] that can be constrained
by the BNN data.
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5.2 Scalar-Tensor GUTB

5.2 Scalar-Tensor GUTB

Following the framework defined in[3.4] it will be employed the STT outcomes to see if GUTB can be
positively affect by modifications to gravity. Moreover, the mechanism proposed should be regarded as a
preliminary approximation to more realistic GUT scenarios [96]. Taking this into account, the Boltzmann
equations governing the evolution of baryon asymmetry in the model are expressed as follows

X = -Tp(X —Xeo), (5.14)
BZEFD (X—XEQ)—(F1D+2F5)B, (5.15)

with B being the Baryon number per comoving volume and X being the number of X’s per comoving
volume where
X = Sg*aNXX = Sg*aNXEQB = 8g*a£NB R (516)

where g., represents the degrees of freedom for radiation during the relevant epoch, € characterizes the
extent of CP violation, Nx denotes the number density of a generic self-conjugate supermassive boson,
and Ny, is its equilibrium number density. Additionally,

_ Ny =N

NB D) )

(5.17)

defines the net baryon number, while I';, with j = D,ID, S, refers to the decay rate of the supermassive
boson X, its inverse decay rate, and the rate of baryon-number-violating (BNV) scattering, respectively.

In order to proceed, it is useful to introduce a new dimensionless, dynamical variable defined by
7 =my /T, where my is the mass of the generic supermassive boson X. In terms of this variable, the

rescaled equilibrium number of supermassive bosons X is given by

Xip = 2a(2), (5.18)
where
S p
z 1 ifzk1
N S : 5.19
at) = 7k(3) { 352 Pexp(-2) ifz>1 o

and K> (Z) is the modified Bessel function of the second kind. The thermal expansion rate of the Universe

during the first and second epochs can be expressed as

(5.20)

where i = 1, 2 denote the first and second radiation-dominated epochs, and Z. = T./mx, Zeq = Toq/mx
represent the values of Z corresponding to the transition to the second epoch and the time of matter-
radiation equality, respectively. Additionally, the following differential relation holds

dz
T (2)

dr = (5.21)
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5.2 Scalar-Tensor GUTB

Analogously to what has been done in GR, it is useful to define the quantity
r 2-1
— 5 4 ; 5< 5
Ksrr, = <FD> = Korr =Kepfz' if0<z<Z (5.22)
ei/ =1 Ksrr, = Kgr € if z. <

which measures the effectiveness of decays at the critical epoch 7 =1 (my = T), when the number of
self-conjugate supermassive bosons X must decrease to maintain equilibrium. By substituting Eq. (5.22)
into the differential relation in Eq. (5.21)), we obtain

Ksrr,

dr = mf( z)dz, (5.23)

where N
o _ale@E=10 _ [ A=z ifo<z<z o
fl(Z)_Z Fe;‘(z) { fZ(Z) Z if Z. SZSZeq ’ (5.24)

The substitution of this relation and the rescaled equilibrium number of bosons X from Eq. (5.18) into
the Boltzmann equations (5.14)-(3.13)), corresponding to a change of variable, yields

X' = —Ksr1.fi [1p (X = 2a) + 14 (X* — 4a?)], (5.25)
B = KSTT,-fi [8’}’[) (X — 261) — ('}/ID =+ ’)/5) B] , (526)

where the prime ' denotes differentiation with respect to Z, and y; =I";(Z)/I'p(Z = 1), such that

vt

p = 2\/;(12% - { 25?23/2 exp(—2) i;g i ’ (528)
2 _ o=

" :{ %i; igi , (530)

where A is a numerical factor introduced to account for more realistic GUT characteristics, such as the
number of scattering channels. The freeze-out condition I',,(Zf,) ~ I';(Zs; ), where Zz, is the value of Z
at which the j-process freezes during epoch i, can be expressed as

fi(iji) = KSTTi?’j(ij,-) : (5.3D

From Eq. (5.22)), it is evident that the parameter Ksr7; reflects the modification’s impact on the ex-
pansion rate, and consequently, the time-temperature relation, in the STT toy model. This is further
illustrated in the Boltzmann equations (5.26). The differences between STT and GR that influence
baryon asymmetry generation primarily arise during the first epoch, dominated by the Jordan-Brans-
Dicke (JBD) scalar field. The impact is once again mainly encoded in the g parameter. Additionally, the
four processes that can occur during the asymmetry production also are affected by the STT theory and
a careful examination is necessary. Furthermore, at a first-glance the BBN data also can constraint the
parameter z. as the temperature 7, cannot be truly a free parameter as it would had implications in the

60



5.3 Gravitational Baryogenesis in f(R,7?2) gravity

BNN and also the mass of X follows this logic.

5.3 Gravitational Baryogenesis in f(R,7?) gravity

When employing modifications to gravity in the context of gravitational baryogenesis a key com-
ponent arises. Besides the usual term (3.26), it is possible and rationale to consider another terms that
instead of using the Ricci scalar. This new terms are linked to the specific modified theory of gravity
being utilized and are introduced in a similar manner to spontaneous baryogenesis, in other words, one

can consider

1 i i 1
— (R} Modified Gravity, . = 50X} (5.32)

*

ACint =

with X being a arbitrary quantity related with the modified gravity under question. Such concept so-
mewhat emerged early on from the first modifications to Gravitational Baryogenesis [[195] and later
adopt in diverse works of modified gravity in the context of GB (see [[73} 74,75, 76,77, 78,79, 196, [197]
for examples). With this being said, for f(R,7T?) gravity the following terms will be considered

1

e / d*x\/—g o (T*)Jy, (5.33)

1 4 2\\ 7H
o / d*xy/"g u(f(R,T2))JL, (5.34)

that consequently lead to the asymmetries
ny _ 15g, T* 535
s 4m2g, M2T (5-39)
* * TD

my,  15gy Rfr+Tf 1 5 36
s 4mlg. M2T . ’ (30

D

respectively.

Before starting to employ the cosmological description of f(R,772) to obtain the previous asymme-
tries, it is fundamental to do a careful consideration about the parameters M, and Tp, as these play a
pivotal role and demand precise consideration. In the original framework of gravitational baryogenesis,
as outlined in [72]], it is not necessary for M, to reach the Planck scale. For instance, in cases where
baryon number violation (B-violation) is governed by the Majorana mass My of the right-handed neu-
trino—a scenario involving soft B-violation—the expression in Eq. (3.26) avoids violating unitarity up
to the Planck mass, even with M? = MrMp; [72]]. Consequently, the cutoff scale for the duR coupling
can be lowered as needed to facilitate baryogenesis. For the additional couplings introduced in an ad hoc
fashion, the cutoff scale will vary based on specific models and numerical results that lead to a successful
baryogenesis scenario. Once such a scenario is identified it can be compared to the LHC energy scale
offering a way to exclude these terms if M, falls below the detection threshold of the LHC, as these
interactions would have been detected up to this scale.

For the decoupling temperature, Tp, it is generally recognized in the literature that during the
radiation-dominated era following inflation, the decoupling temperature Tp is approximately equivalent
to the inflationary scale M;, where M; ~ 1.6 x 10'® GeV, based on the upper limit imposed by constraints
on tensor mode fluctuations [198]]. Although this approximation is widely accepted, we will re-examine
this assumption in a more critical light. During the slow-roll phase of inflation, as inflation comes to an
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5.3 Gravitational Baryogenesis in f(R,7?2) gravity

end, the scalar field oscillates around the potential minimum, thereby initiating the reheating phase—a
crucial process for the thermalization of the Universe. Consequently, if baryogenesis is assumed to oc-
cur during the radiation-dominated era following inflation, the decoupling temperature must satisfy the
condition Tp < Tgp < My, where Tgp denotes the temperature at which the Universe transitions to radia-
tion domination, or equivalently, the reheating temperature. The exact value of Tgp is contingent on the
inflationary model employed (see detailed discussions in [[199] 200, 201}, 202]]). While in principle Tgp
can approach the Grand Unified Theory (GUT) scale, around ~ 10'® GeV, such high values are often
considered unrealistic. Therefore, the assumption Tp / M is problematic, as it would imply that Typ is
nearly equal to Mj, a scenario rarely achieved in typical inflationary models. To maintain generality, we
refrain from adopting a specific inflationary model. Instead, we take M; as an upper bound, consistent
with the small temperature fluctuations observed in the CMB. In this context, we adopt the conservative
range Trp < 10° — 10! GeV [06} (198, 202, 203} 204]]. This broader range, coupled with the condition
Tp =~ Tgp, allows for more flexibility in the possible values of 7p, compared to the restrictive assumption
Tp ~ M.

Establishing a lower bound for 7p is more challenging. Within the temperature range of 100 GeV to
10! GeV, gauge interactions and sphaleron processes maintain thermal equilibrium [112]. Furthermore,
the lower limit of Tp is closely tied to the specific mechanism responsible for baryon number violation,
which is essential for gravitational baryogenesis. An examination of this issue will be presented later in
this section.

5.3.1 Couplings between d,,(R) and J#

(i) Model n = 1/4:
The model with n = 1/4 as interesting cosmological equations with the modified Friedmann equation
being equal to the standard Friedmann equation in GR

P
H? = 5.37
W (5.37)

and the modified acceleration equation being give by

; 2 M 1/2
H+2H" = 1921/4p : (5.38)

Another interesting aspect of this model is the fact that the coupling constant in this scenario is
dimensionless and x couples to this parameter. By contracting both equations, we derive the following
differential equation

H+2H* +z(n)H =0, (5.39)
with /3
_ NvV3Mp
dM) = oo (5.40)
and that yields the solution
Z
H(t) = pea (5.41)

Having an expression for the Hubble parameter allows to compute R and R. For a flat FLRW metric
with signature (—,+,+,+) the Ricci scalar is given by

R=6(H+2H?), (5.42)
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5.3 Gravitational Baryogenesis in f(R,7?2) gravity

and taking the time derivative provides
R=6(H+4HH). (5.43)

Using Eq. (5.38)) the Ricci scalar has the form

and substituting Eq.(5.41) into Eq.(5.37)) we obtain the time dependent expression for the energy density

2
— 32 <
p(r) =3Mp (e”—Z) ; (5.45)
allowing to write the Ricci scalar as
R—_ n\/gMPl 4 (5.46)
o 1921/4 g2t —2 |’ :
and its time derivative as )
. | nV3Mpet Z
R=6 [901/4 e . 5.47)

We can relate the time of decoupling with the temperature of decoupling by using the equation that
relates the total radiation density with the energy of all relativistic species (Eq.(2.52)) [96]

o,
plr) = 758T", (5.48)

and solving for 7. Substituting this result into Eq. (5.43) gives the relation

z \* g
= °X Ty 4
(am _2) 90m3, P’ (>49)
and
v 10M,
oD — * +2, (5.50)
TGy T1§

so that Eq. (5.47) can be rewritten as

1/2
([ VI5(9)mel P> ME TR+ 2(35 ) 2P ng. T 5:51)
90+/2Mp, ' ‘
Finally, from this result, the asymmetry relation (3.28)) is then given by
ALV 15¢s 2) 2Vi5e 22 ME Ty + 235 a2n 0. T2 (5.52)
s - 47‘[2g*90ﬁMfMpl 2 8x PI*D 8x1p| - .

By setting g, ~ O(1) and g, = 106 (these two parameters will remain fixed throughout this work),
along with M, = Mp; and the specified range for 7p, the asymmetry consistently displays negative values,
regardless of the parameter 1 or the value of M,. This negative asymmetry suggests a preference for the
production of antimatter over matter, thereby making this scenario untenable.
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5.3 Gravitational Baryogenesis in f(R,7?2) gravity

(ii) Model n = 1/2:
For the case with n = 1/2 the modified cosmological equations read

K V3 . K '2¢/3
7 L) p. H+H =541 V3 p (5.53)
3 9 3 9
and by using the full expression for 1)’ can be recast as
3 3
H?— +nv3 Lz, (5.54)
9 Mg,
. 34m2V3\ p
H4+H=— | ——= | & 5.55
+ ( 9 ) M2, (5.55)
respectively.
By substituting Eq. (5.54) into Eq. (5.53)) yields the differential equation
) 2
g (3nt2v3 H>=0, (5.56)
n+v3
that has the analytical solution
H(t)=oa(n) ", (5.57)
with /3
+v3
a(n) = 2, (5.58)
3n+2v3
corresponding to a power law for the scalar factor, a(r) ~ t%. Utilizing the solution derived for H, Eq.
(5.43)) can be reformulated as
. 2o0(n) —1
R=—120(n) ((1}3)) . (5.59)

The solution for the Hubble parameter allows to derive a time-dependent expression for p. By

substituting this solution into the continuity equation (4.47)), we obtain

p(t)+2t7p(r) =0, (5.60)
that has the solution
p(1) = pot 2, (5.61)
where py is a constant. By plotting this solution in conjunction with the solution for H into Eq. (5.54)
we find /3
3v3n+9
po= 12 a3, (5.62)
(3n+2Vv3)
that allows to rewrite (5.48)) as
_ (300" 72 5.63
tD - ﬂ:zg* D - ( . )
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Figure 5.1: Plot of "Tb vs 7. The black line shows the evolution of %"(n), for the n = 1/2 model, the dashed red line indicates
the observation constraint for % and the red dot marks the point where %(ncm) =9.1998 x 10~ with Nerie = —0.06726
being the last rounded numerical value before the observable constraint is not satisfied.

Combining Egs. and into Eq.(3.28)) results in

ny _45ma(n) 2a(n) —1)g g
- M2(30p9)3/2

T3. (5.64)

For n > 0, the asymmetry produced by the previous equation is consistently negative, implying the
generation of antimatter rather than matter, making this scenario unsuitable for successful baryogene-
sis. However, by considering 17 < 0, the model can generate an acceptable asymmetry. Furthermore,
when exploring decoupling temperatures below 10'> GeV and M, values below the LHC energy scale,
successful baryogenesis scenarios with viable values for 1 were identified. Specifically, with Tp = 10!
GeV and M, =9 x 10> GeV, the critical value of n was found to be 1. = —0.00513. Consequently,
cases within this framework are deemed nonviable due to the lack of any observed B-violating inte-
ractions at these energy scales. For Tp = 1 x 10'* GeV and M, = 1 x 10'?> GeV, the plot of 2(n) in
Fig. demonstrates that successful baryogenesis can be achieved with a small absolute value of the
coupling constant 7. This suggests that the additional term 772 can significantly influence the system
without requiring a large constant. The effect of 72 primarily stems from additional terms such as %\/g
and 2%‘/5 in the cosmological equations, introducing new dynamics into the cosmological description.
Additionally, using Eqgs. (5.54) and (5.53)), R can be expressed as

R V3 P , (5.65)
3,
where p can be derived from Eq. (5.61). The results in Fig. [5.1| show that the magnitude of 1 required
for successful baryogenesis mirrors the behavior seen in the GR case, where
p
g,

R=(1-3w) (5.66)

at very high energy scales, and typical gauge fields and matter contents exhibit a trace anomaly characte-
rized by an equation of state (EOS) with (1 —3w ~ 1072 —10~1) [[72,205]]. This allows Eq. (5.66) to be
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used to calculate the asymmetry. In other words, the results for 1 correspond to 1 — 3w ~ 1072 — 1071,
indicating similar behavior between this scenario and GR, suggesting a significant resemblance in the
underlying physical mechanisms described by both frameworks.

Another crucial point is that 1., is larger than the constraint on 1) derived from BBN, as outlined
in [[188]]. This means that the constraint imposed by gravitational baryogenesis does not align with the
fundamental BBN constraint, preventing this specific case from satisfying both successful baryogenesis
and BBN requirements. However, given that the value of 1 derived from the baryogenesis constraint is
relatively small, it is possible to develop a model similar to the one discussed, which addresses the baryon
asymmetry problem while minimizing the impact of the 72 scalar. This would ensure consistency with
BBN. Specifically, such a model could involve a dynamic coupling constant 7 that decreases after the
baryogenesis epoch, eventually converging towards GR or f(R) gravity.

The case with 1 constrained, (4.33), leads to a new framework as the cosmological equations are
different from the previous ones with w = 1/3. With w not being specified, the cosmological equations

read 5
H? = B(Ne,w)—s-, 5.67
B(n.w)3 77 (5.67)
H+H? = —8(n,w)—L (5.68)
3ME,
with 1, representing 1 obtained from Eq. (4.53) and (1., w), 8(n.,w) being given by
1 143w +210,Cace(X,w
B.w) = 14 7. Crna(h.) , 8(m..) = I Creel) (5:69
Substituting once again Eq. into Eq. (5.68) gives the differential equation
ﬁ (n*a W)
that has the solution
H=M"", (5.71)
where A is B )
TI*, w
AN, w) = . (5.72)
1) = B e w) + 81,
The time derivative of the Ricci scalar is then given by
. 24 —1
R=—-12 ( 3 > . (5.73)

The important difference of this special case resides in the form of the continuity equation that is
now is given by

that has the solution
p= pch’ (5.75)

with p. being a positive constant with units GeV4H44,
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Tabela 5.1: Successful cases for different w for the coupling between dy, R and J*. The values for 1, and ng/s are rounded.

TD M* c n, —
[GeV]  [GeV] [Ge\ll)“*“] i v/107"
03 [ 1.95x 10"  Mp 1 x 10% 0.010825  8.915146
—1/3 [ 1.75x 1010 Mp, 1x10% 2.508041 8.716503
—2/3 ] 2x107  1x10° 2x10® —0.986178 8.979037
—0.7 2x 107 3x10*  1x10° —0.919929 8.944976

w

Using once again Eq.(5.48)) the decoupling time-temperature relation is

77:2 —1/4A
tp = ( g*) 7, A pllat (5.76)

30
allowing to write Eq. (3.28) as

2 VA1 . 3
ng _ 45gp(7°g:) " A (24 I)TDA 1. (5.77)

3
309 M2pd*

As previously noted, the case of w = 1/3 leads to 1, = 0, resulting in no asymmetry generation, as
M« = 0 gives A = 0.5, which in turn leads to R = 0. However, one can consider cases where w ~ 1/3,
as discussed earlier, using the approximation (1 — 3w ~ 1072 — 10~!). Before assigning specific values
to w, it is crucial to examine how the asymmetry expression behaves in relation to A. The key finding
here is that the evolution of A(w) decreases inversely with w. Additionally, when 0 < A < 3, which
corresponds to w > %, a negative asymmetry arises, rendering this scenario non-viable and excluding
any non-thermal components with w > %, such as stiff matter (w = 1).

A particularly notable effect occurs when A < 0, where the decoupling temperature, which typically
enhances asymmetry, behaves inversely. This inversion happens because when % —1 <0, the decoupling
temperature appears in the denominator of the asymmetry expression. At the same time, the constant p,
acts to amplify the asymmetry, as it moves into the numerator when ﬁ < 0. Similarly, the inverse
behavior of Tp is observed when A > 3, though in this case, p. does not fully counterbalance the effect.

The cases that successfully generate an acceptable asymmetry are summarized in Table[5.1] The first
case pertains to radiation, using 1 — 3w ~ 1072 — 10~!, as mentioned earlier. The second case involves
an effective perfect fluid representing negative curvature, while the third and fourth cases are associated
with a form of dark energy. These successful scenarios, combined with the fact that this model naturally
aligns with the standard energy density evolution in a radiation-dominated era, underscore the model’s
relevance. Moreover, the conclusion that the influence of 7 in this model leads to an effective coupling
constant, composed of the General Relativity (GR) coupling constant and an additional term proportional
to )’ further highlights how subtle modifications to the GR framework could potentially address the long-
standing issue of baryonic asymmetry. This model’s ability to integrate minor adjustments into GR offers

a promising approach for resolving the persistent challenge of baryonic asymmetry.

(iii) Model n = 1:
The n = 1 case has the following modified Friedmann equations

K 2
H?=Zp+3n'p?, (5.78)
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. 2
H+H = —gp—gn’pz, (5.79)
respectively.

Once again, substituting (5.78) into (5.79) leads to the differential equation
H+2H?>=0, (5.80)

that yields the solution
H(t)= L
S 2

leading to a o< 1'/2. Using Egs. (5.43) and (3.81)) leads to R = 0 (and R = 0 also), allowing to conclude
that there is no asymmetry generated by Eq.(3.26) in this case. Although the Friedmann equations for

(5.81)

this case deviate strongly from GR due to the presence of the quadratic term, p2, from the baryogenesis
point of view, this case behaves exactly as the case of w =1/3 in GR.

5.3.2 Couplings between d,, (77) and J*
(i) Model n = 1/4:
Using the right side of Eq.(4.33)) for this case one has

4
T2 = 12M3, <Z2> , (5.82)

eZt —

and taking into account Egs. (5.49) and (5.50) provides the following expression for 72

3 1/2
12— _gapterps | 3e) N V1M, + 218, 7T (5.83)
- 8«1p 905/2MP1 ) .
resulting in the asymmetry
377 1/4

) 887 1p 3 P 122
—~ =L 13— VI10Mz; +27mg/ TS| - 5.84
s 130\/10M$Mp,[ (64 1 P EREs D 689

The expression for this scenario fails to generate an acceptable asymmetry, as it consistently suppres-
ses the observable value for asymmetry. The contribution from 72 excessively enhances the asymmetry.
Thus, this case is not viable for achieving successful baryogenesis.

(ii) Model n = 1/2:
Using the results for n = 1/2 from subsection and Eq. we can write

4

4 _
T? = gp2: 3p&z 4 (5.85)
leading to
2 16 5 s
2= —pf, (5.86)

where py is given by Eq. (5.62)). This results leads to the asymmetry

m 2007 g
s (30)32M2(po)' 27"

(5.87)
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Tabela 5.2: Successful cases for different w for the coupling between d, T2 and J*. The values for 17, and np /s are rounded.

v Geviy M 0t

1 3% 10% —1/8  9.132028

0.3 1x10%  0.010825 9.056777
—1/3 ] 1x10% 2508041 9.146172

In this scenario no acceptable asymmetry is produced, as it consistently exceeds the imposed cons-
traints. The primary factor influencing this behavior is the exponent of the decoupling temperature. Yet
again, the contribution from the new scalar significantly amplifies the asymmetry, but to an excessive
degree.

Considering the constrained case (#.53) and Eq.(5.75) the scalar 72 is now given by

T2 (w) = (14+3w?)p2 84 (5.88)

leading to
T2(w) = —8A(1+3w?)p2t 841, (5.89)

Using Eq.(5.76)), the asymmetry is then given by

(1 +3u? 2 . 1+1/4A 1
e oA+ I () 590)
s (30)1+1/42 p /4% pp2

In analyzing the previous equation, unlike the case of the dyR coupling, no value of w results in a
negative asymmetry, as the expression 1+ 3w? remains positive for all real values of w. Additionally,
the decoupling temperature parameter once again proves to be critical in determining the viability of
this scenario, as it controls whether the resulting asymmetry aligns with observational constraints. As
previously noted, A decreases as w increases. Therefore, to fully explore the range of possible values
for w, one can fix M, = Mp; and set Tp = 1 x 107 GeV, which helps mitigate the excessive contributions
from the temperature. With this configuration, the successful cases (those where p. does not become
excessively large) for various values of w are summarized in Table[5.2] Two of these cases were already
discussed in the previous section, while the new case, w = 1, corresponds to a stiff fluid. Notably, the
8MTQ coupling can generate a substantial asymmetry for w > %, particularly for w = 1. This contrasts
with the behavior of the dy R coupling, which only produced successful results for w < %

Moreover, the lack of successful baryogenesis when the constraint needed to reproduce the typical
energy density behavior of the radiation era is not applied highlights the subtle nature of modifying the
gravitational framework in the context of gravitational baryogenesis. This suggests that the contribution
of the new coupling being studied is more effective when working within the standard GR framework
with only minor adjustments. Once again, this finding demonstrates how even slight modifications to GR
can effectively tackle the problem of asymmetry.

(iii) Model n = 1:
For the n = 1 case, one an use the trace of the field equations (4.40) resulting in

T>=-90, (5.91)

due to the vanishing of both the Ricci scalar and the trace of the energy-momentum tensor (the trace of
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Tyv is equal to zero for w = 1/3, which is related to radiation). Computing the trace of 6, by using Eq.

(#.306) leads to
4
T? = gpz, (5.92)

which is the same result if Eq. (#.35) was used. The time derivative of 72 is then
, 8.
7= 2pp. (5.93)
Considering the leading orders of p one has
p(t) ===t (5.94)

that provides
T?=—n"1t73, (5.95)

3 —2 —1p—4
tD:1/8—n/307T g ' Tyt (5.96)

Combining all the results the asymmetry is given by

and the decoupling time

@ ~ (8/3)3/28bg£754771/27~11 (5.97)
s T200MmME P ‘

Upon evaluating the previous expression, the term Tj! requires a significantly high value for
M, to counterbalance the temperature component and achieve an observationally consistent baryon
asymmetry. Setting M, = Mp; and adjusting )’ for varying decoupling temperatures (7p), we iden-
tify a relationship between the decoupling temperature and the corresponding magnitude of 1. For
instance, at a decoupling temperature of 1 x 10'! GeV, n reaches the order of 1078 with a criti-
cal value of 7. = 1.2246 x 10784, which, though unphysical, produces an acceptable asymmetry:
.~ 9.1996 x 10~'!. However, for a lower decoupling temperature of 1 x 108 GeV, a comparable asym-
metry is achieved with 1) = 1.224664 x 10~ '8, a value that, although lower, remains extremely small and
renders the scenario unlikely. These findings demonstrate an inverse relationship between the decoupling
temperature and the magnitude of 1) required to sustain a viable asymmetry. For Tp = 2 x 107 GeV, va-
lues of 7 at or below 2.919 x 1073 are sufficient to produce the observed asymmetry. The behavior of
=t (n) for this case is illustrated in Fig. However, a significant complication arises when 7 takes on
positive values, particularly in the context of late-time cosmology. As pointed out by Roshan et al. [[189]],
models where 17 > 0—bearing in mind that the sign in this study is reversed—fail to yield a stable,
late-time accelerated phase. This limitation implies that the model cannot simultaneously account for
both the matter-antimatter asymmetry and the universe’s late-time accelerated expansion. At the lower
bound of 7p = 107 GeV, the necessary 1 values rise to the order of 10*. Thus, if the goal is to generate
asymmetry at temperatures around 107 GeV, the resulting large 1 values would cause the additional term
in the modified Friedmann equations to dominate the cosmological evolution.

Moreover, the requirement for 7 < 10° GeV to achieve asymmetry with a physically reasonable
value of 1) is particularly interesting. This constraint also appears in supergravity theories to prevent ex-
cessive gravitino production. In traditional supergravity models, a similar upper bound on the reheating
temperature is enforced to avoid late-time gravitino decays, which could disrupt Big Bang Nucleosynthe-
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Figure 5.2: Plot of "” vs 7 for the asymmetry generated from coupling term (3.33). The dark blue line shows the evolution
of %(m), the dashed red line indicates the observation constraint for the asymmetry and the red dot marks the point where
'%(nmz) ~9.18443 5 10~ with 1¢;s =2.919 x 1073

sis (BBN) [206]. This parallel underscores the commonality between the decoupling temperature cons-
traints in this model and those found in supergravity frameworks. Furthermore, supergravity models also
feature prominently in inflationary scenarios, with some predicting reheating temperatures consistent
with the values considered in this analysis [207]].

5.3.3 Couplings between d,, (f(R,77)) and JH

(i) Model n = 1/4:
Combining the results from Sections and [5.3.2] the expression from the dy f(R,T) for the
n = 1/4 model is given by

T
M _ gb’ml/f (V3 —2(192)1/4) <3n\/10( 3 VWAME, +2mgl/* T, )] . (5.98)
s 2(192)1/4g"* MpM? 64

As seen in the case where n = 1 for the 3u7—2 coupling, setting M, = Mp; and performing com-
putational calculations revealed an inverse relationship between the decoupling temperature 7 and the
parameter 7). Specifically, as Tp increases, the value of 1 required to meet observational constraints on
baryonic asymmetry decreases. This outcome is due to the interaction between the Ricci scalar and the
scalar term 72, which enables the generation of an acceptable asymmetry. This behavior contrasts with
previous cases involving the dy,R and 8u7'2 couplings. For example, with Tp = 108 GeV and M, = Mp,
the plot of the baryon-to-entropy ratio “2(n) in Figure shows a rapid increase in asymmetry with
rising 7, highlighting the strong dependence on the coupling parameter.

(ii) Model n = 1/2:
For n = 1/2, using the results from Sections and the asymmetry is given by

my 15gpgs* a3 [3a(n)2a(m)—1) n
s M? (30p9)3/2 101/2(py)1/230M3,

(5.99)
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Figure 5.3: Plot of ”—Y” vs 1) for the asymmetry generated from the general coupling for the n = 1/4 model. The green line shows
the evolution of “2(n), the dashed red line indicates the observation constraint for the asymmetry and the red dot marks the
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This result illustrates the interaction between two sources of asymmetry: the Ricci scalar, represented
by the first term in the parentheses, and the scalar 72, represented by the second term. The decoupling
temperature plays a crucial role in this interaction. As discussed in Section [5.3.1] the term associated
with R becomes negative when 1) is positive. Similarly, the contribution from 772 also remains negative
for 1 > 0. Therefore, selecting positive values of 1 results in a negative overall asymmetry, which
signifies an imbalance in favor of anti-matter. In the n = 1/2 model for the d,R coupling, specific
conditions produce asymmetries consistent with observational data, particularly when the parameter M,
is below the energy scale accessible at the LHC, and for realistic values of 1. These results are valid for
decoupling temperatures below 10'> GeV. For instance, at a decoupling temperature of 7p = 10'! GeV
and with M, = 9 x 10° GeV, the critical value of n was found to be 1., = —0.000852. However, such
scenarios have been considered unrealistic. For a decoupling temperature of Tp = 1 x 10!4 GeV and
M, =1 x 10'? GeV, the evolution of the baryon-to-entropy ratio, 2(m), is depicted in Figure As
before, successful baryogenesis is achieved with higher values of 1, driven by the interplay between the
Ricci scalar and the scalar 72. If the contribution were solely from the term associated with R, the result
would align with what was previously obtained in Section However, the inclusion of the scalar 772
significantly raises the value of 1, underscoring its essential role in the baryogenesis mechanism.

Supporting this conclusion, the findings from Section indicate that the coupling of 3117_2 alone
leads to an excessive increase in baryonic asymmetry. In the more general scenario of f(R,7?2), however,
the Ricci scalar and the additional terms derived from f7-» work together to moderate the excessive
contribution of the scalar 772,

Regarding the case with the constraint, the expression for the generated asymmetry is

24, 3/y-1 ’g. 3+1
n _ 15gy [3Qy—1D(EE)L)" L +3wd) (g (5.100)
s mg.M? p2/4y Pi/MMgl . .

One can see that exists again an interplay between both contributions from the different scalars.
Some subspaces of the model parameter space result in a asymmetry that is negative rendering these
cases non-viable. Considering Tp = 1 X 1013 GeV and M, = 1 x 10'2 GeV two successful cases
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Figure 5.4: Graphical representation of "Tb vs 1 derived from the general coupling term f' (R,Tz) for the case n = 1/2. The
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% (Nerir) & 9.195741 x 107! with 1,y = —0.01058.

where for, one for w = 0.3 with p. = 7.5 x 1032 giving ng/s ~ 9.06400 x 10~'! and for w = —1/3
with p. = 8.8 x 102 resulting in ng/s ~ 9.043081 x 10~!. These results appear less favorable when
compared to those obtained from each individual coupling separately. This outcome arises from
the interplay between the different couplings, where both contributions exhibit limitations that often
invalidate the resulting asymmetry. For instance, in the case of w = 1, the parameter 1), is negative
rendering the contribution of f7~ negative, which necessitates a compensating contribution from the
sector associated with the derivative of the Ricci scalar to counterbalance this negative value. However,
for w = 1, the contribution from the derivative of the Ricci scalar is also negative, thereby failing to
provide the required compensation.

(iii) Model n = 1:
For n =1, there is no contribution to the asymmetry from the Ricci scalar because, in this case, R = 0.
By applying Eq.(5.93) and the decoupling time from Eq.(5.96), the asymmetry in this scenario is given
by
np (8/3)**gpg2n*n’/? 11

BN ' 5.101
s 7200M9,M2 P G101

This case closely resembles the scenario for n = 1 in the 8;17'2 coupling with J*, differing only by a
factor of n’~'. As a result, the behavior in this case will be identical to that described for n = 1 in
Section However, for Tp = 107 GeV with M, = Mp,, the values of 1 required to produce an
acceptable asymmetry are too large to be considered viable, rendering this case nonviable.

5.3.4 Models withn < 1/4and n > 1

Besides the three models previously analyzed, it is also possible to explore the extreme cases where
n < 1/4 and n > 1 within the framework of gravitational baryogenesis. These scenarios were not initially
considered, as they involve coupling constants with unnatural dimensions, hence they are referred to as
extreme cases. However, we will outline a potential theoretical basis for both cases to be applied in the
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context of gravitational baryogenesis.
Starting with the modified Friedmann equations for w = 1/3, we have the following expressions

! ~2n 1
H? = 3]\31231 +%CM <n3> , (5.102)
) P n/p2n 1
H+H>=— — Cace [ n,= | , 5.103
+ W, 3 Ca (n 3 ( )

respectively.

Considering the high-energy scale of the early universe (p — o0), two distinct approximations can be
made depending on whether n < 1/4 or n > 1. In the case of n < 1/4, the p term is expected to dominate
over the p?" term, since the exponent associated with p?" is less than 1. This allows the modified
cosmological equations to effectively reduce to those of GR. Conversely, for n > 1, the quadratic term
p?" dominates, resulting in modified Friedmann equations

! ~21n 1
=P . (n=), (5.104)
3 3
) ! ~21 1
Hym? =1 ’3’ Ciee <n,3> . (5.105)

It is crucial to note that these results hold only under the condition of sufficiently large energy density.
If this condition is not satisfied, the parameter 1)’ invalidates both sets of equations. Another important
point to highlight is the specific case of n = 1. Although not treated as an extreme case in this analysis due
to the unique properties it exhibits, the reasoning supporting the exclusion of n = 1 relates to the energy
density conditions involved. The range of decoupling temperatures considered in this study, which occur
after inflation and during the grand unification era, do not meet the required energy density thresholds.
For the case of n = 1, the approximation used only applies when considering epochs such as pre-inflation
or inflation. Therefore, we did not include n = 1 as an extreme case due to its distinctive behavior under

these specific cosmological conditions.

5.3.5 B-Violation in GB

To fully achieve gravitational baryogenesis, it is necessary to consider a baryon-violating (B-
violating) process that can generate the required asymmetry. While multiple B-violating processes could
be examined, this discussion will remain general by focusing on a B-violating interaction represented by
the operator Op, which has a mass dimension of 4 +m, where m > 0. The rate of B-violation for this

interaction is given by [72]
T2m+l

S

(5.106)

where Mp represents the mass scale associated with Op. As previously noted, B-violating processes cease
when the Hubble parameter H (7T') equals the interaction rate I's(T'), allowing the decoupling temperature
to be determined by equating the expansion rate to the interaction rate.

Such an interaction could arise from an extension to the Standard Model of particle physics or as
a non-renormalizable interaction in an effective field theory. Furthermore, from the perspective of gra-
vitational baryogenesis being rooted in supergravity theories, such theories are expected to include B-
violating processes. This forms a logical connection between the interaction term driving asymmetry
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and the process responsible for generating it. Consequently, to adopt this perspective, constraints on
the reheating temperature, Tgp, must be considered [208]]. In supersymmetric models, especially those
involving warm inflation [209]], additional constraints on Tgp arise due to gravitino production and its as-
sociated challenges. Specifically, these constraints are imposed to: (1) protect Big Bang Nucleosynthesis
(BBN) from being disrupted by late gravitino decays, and (2) prevent overclosure of the universe due to
an overabundance of gravitinos. Since parameters such as the gravitino mass ms, and gravitino decay
processes are model-dependent, we will adopt a conservative upper limit for Txp, specifically Trp < 10°
GeV [206, 210, 211]. In the case of the dyR coupling with n = 1/2, where no specific form for p is
imposed, the first two cases in Table have temperature constraints that prevent the B-violation pro-
cess from originating in supergravity. For the unconstrained case, using Eq. (5.106), Eq. (5.54), and
Eq. with 1 = N and a D = 7 operator, we find Mp ~ 1.96 x 10'* GeV. This value is below the
typical mass scale of Grand Unified Theories (GUTs) and may be linked to a GUT Higgs boson [212].
Similarly, using 1 = 1, the constrained cases yield Mp(w = 0.3) 22 1.996 x 10'* GeV, Mg(w = —1/3) ~
1.932 x 10" GeV, Mp(w = —2/3) =~ 1.915 x 10'* GeV, and Mp(w = —0.7) ~ 1.9120 x 10'* GeV. For
the 8u7'2 coupling with n = 1/2, performing the same calculations for the three constrained cases gives
Mp(w = 1) ~7.90 x 10’ GeV, Mp(w = 0.3) =~ 7.65 x 10’ GeV, and Mp(w = —1/3) ~ 7.40 x 107 GeV.
For n = 1, a similar calculation with D = 7 yields Mp = 1.1333 x 10® GeV. In the more general coupling
duf(R,T?) with D = 6, the model with n = 1/4 gives Mg ~ 6.92 x 103 GeV, while for n = 1/2, the
results are Mp ~ 2.19 x 10'* GeV, Mp(w = 0.3) ~ 2.42 x 10'3 GeV, and Mp(w = —1/3) ~2.34 x 103
GeV.
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Chapter 6

Summary and conclusion

In the present thesis, the connections between the primordial Universe and modified gravity were
explored, more precisely, the problems, with emphasis on matter-antimatter asymmetry, and the possi-
ble solutions stemming from modified gravity. In Chapter 1, a overview of the history behind gravity
was presented, the current best model for cosmology, the problems that this model has, and how one
can address them from the perspective of modified gravity. It was also given a concise introduction to
differential geometry, where the main tools that would be necessary for this thesis were presented. This
Chapter ended with the theoretical framework to derive General Relativity from the variational principle.

Chapter 2 was dedicated to present the Standard Model of Cosmology with emphasis on the Primor-
dial Universe. The cosmological framework was explored combined with the thermodynamic one. In the
thermodynamic side it was explored the key quantities and framework that are fundamental to the study
of the asymmetry between matter and anti-matter. The four core quantities, energy density, pressure
density, number density and entropy, necessary to create a concise framework to explore the asymmetry,
were theoretically defined and studied. The key results presented in this Chapter were the cosmological
equations and their importance to the description of the Universe, as changes to them at the hands of
modified gravity where a fundamental result of this thesis and the theoretical way to defined the baryonic
asymmetry using a thermal description.

In the subsequent chapter, baryogenesis,a theoretical mechanism responsible for generating the
matter-antimatter asymmetry, was explored in depth. The foundational framework for constructing
baryogenesis mechanisms, known as the Sakharov conditions, was introduced. These conditions consist
of three key requirements: the violation of baryon number (B-violation), the violation of charge (C) and
charge-parity (CP) symmetries, and a process that drives the system out of equilibrium. Together, these
conditions provide a phenomenological approach to achieving the desired asymmetry. While they offer
an effective blueprint for developing baryogenesis mechanisms, they are not strictly indispensable.

Following the introduction of the Sakharov conditions, three distinct baryogenesis mechanisms were
discussed: electroweak baryogenesis, baryogenesis within Grand Unified Theories (GUT), and gravita-
tional baryogenesis. Although all three mechanisms have their merits, especially the first two, they also
exhibit significant limitations. The first two, in particular, are well-established within the framework of
particle physics, whereas gravitational baryogenesis gives gravity a more fundamental role. This contrast
inspired the exploration of these limitations in the context of modified theories of gravity.

To address this, two approaches were proposed: Path A and Path B. Path A involves applying
scalar-tensor theories to the frameworks of electroweak baryogenesis and GUT baryogenesis, while Path
B explores the use of f(R,7?) gravity in the context of gravitational baryogenesis.

Electroweak baryogenesis is particularly interesting due to the fact of being completely built only
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using the Standard Model of particle physics. However, from the very start problems of this mechanism
were found, with the most fundamental one being the necessity to ensure that the electroweak phase
transition is a strong first-order, a constraint that is related with the so called sphaleron bound. Without
solving such problem, EWB can be considered inefficient. The main way to solve this problem is to
expand the particle side of the theory by including more complex sectors to the SM but in the thesis
the idea was to modify the expansion rate of the Universe to relax the sphaleron bound. Additionally
one must also ensure efficient baryon number violation, specifically, sphalerons must be in equilibrium
during the symmetric phase. This condition can also be explored with modifications to gravity. For the
GUT baryogenesis the main idea was to explore how gravity can affect such a mechanism that usually
has a deep relation with the expansion rate of the Universe due to the departure of equilibrium required
by the Sakharov conditions. Gravitational baryogenesis presents less fundamental short comings than
the other two mechanisms but still has some problems, as scenarios where the generated asymmetry is
either too small or excessive, intrinsic issues such as the instabilities, that can benefit from modifications
to gravity.

In Chapter 4, two modified theories of gravity, scalar-tensor theory and f(R,72), were introduced
from a theoretical standpoint. For both frameworks, the corresponding field equations were derived,
along with the cosmological descriptions based on the Friedmann-Lemaitre-Robertson-Walker metric,
incorporating a perfect fluid to describe the matter sector.

The cosmological model developed for the scalar-tensor theory follows a three-epoch framework,
comprising the radiation epoch, subdivided into two phases, the first of which is dominated by the JBD
scalar, the second is characterized by radiation and ultra-relativistic matter that dominate over the scalar
field and the third epoch corresponds to a matter-dominated epoch. Additionally, the connection between
inflation and scalar-tensor theories was explored, with two types of inflationary scenarios, extended and
hyperextended inflation, being presented. For the f(R,7?) theory it developed a new constraint on the
parameter 1] of the model f(R,7?) =R+ T[Mgl_ 8”(7'2)". More precisely, to reproduce the standard

description of the radiation energy density, p o< a~*

, among the three possible values of n: n=1/4,
n=1/2, and n = 1, the case n = 1/2 arises naturally from the constraint employed, establishing a
relationship between 1 and the barotropic coefficient w. The n = 1/2 case presented cosmological
equations very similar to the GR ones with the addition of parts that depend on 7).

In Chapter 5 the results of Path A and Path B were presented, in other words, the application of
STT in the context of EWB and GUTB and the application of f(R,7?). Starting by the STT results,
EWB saw a positive impact from the changes to the expansion rate of the Universe, where from the two
epochs considered, the scalar dominated one and the radiation dominated one, the first one presented
the most impactful results. The first epoch demonstrated the ability to relax the sphaleron bound for
q < 1/2. Additionally, an efficient baryon number violation also draws positive results from the first
epoch. Although the reduced results presented, one can clearly see that modifying the expansion rate of
the Universe by using a STT can be a way to help the EWB mechanism surpass the current limitation
that it has.

For the GUTB, a non-inflationary model was extended in the context of STT presented positive
results once more. Both the number of supermassive bosons X and the baryon number are affected by
the changes in the expansion rate with a positive feedback depending on g. A more in-depth analysis is
necessary because the true nature of the impact of the STT is encoded in the different processes that can
occur during the asymmetry production.

Finally, Gravitational baryogenesis experienced significant advances through the adoption of the
modified theory of gravity under consideration. Beyond the standard CPT violation term involving the
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Ricci scalar, two novel contributions were introduced: one associated with the scalar term 72 and another
through a general coupling expressed as f(R,72). The free parameters present in these terms were
carefully examined, and a parameter subspace was excluded due to the prediction of positive results that
would have been observed. It was also explored a generic and simple B-violation mechanism to fully
realize GB. Consequently, this framework not only offers insights into baryogenesis but also provides a
potential means to constrain these modified gravity models.

Among the three models characterized by different values of n, the n = 1/2 model yielded the most
promising results, particularly when constrained by the condition p o« a~*. In contrast, the n = 1/4 and
n = 1 models only showed favorable outcomes under specific conditions: the n = 1/4 model for the
general coupling and the n = 1 model for the coupling with d72. This suggests that these modificati-
ons—where the n = 1/4 model affects only the acceleration equation and the n = 1 model introduces a
quadratic energy density term in both cosmological equations—are not sufficient to resolve the matter-
antimatter asymmetry through gravitational baryogenesis. Moreover, although the n = 1 model adds
quadratic enegy density term, it reproduces the same result as GR for radiation with w = 1/3, which
yields a vanishing asymmetry for this case. The modifications induced by the n = 1/2 model in the
cosmological framework are characterized by a small deviation from GR, parameterized by 1. While the
results for successful baryogenesis did not align with the constraints for 1 in this model, they demons-
trate that even slight deviations from GR can significantly affect the baryonic asymmetry production
through gravitational baryogenesis. Additionally, it was also explored from a theoretical point of view
models that where under the considerations n < 1/4 and n > 1, laying down the cosmological framework
for these two classes.

In conclusion, the primordial Universe represents an extraordinarily rich epoch for theoretical phy-
sics, providing a natural laboratory for high-energy processes and posing fundamental challenges that
remain unresolved. Among these, the matter-antimatter asymmetry stands out as one of the most sig-
nificant problems, if not the most, of this era. A collaborative approach that bridges particle physics
and gravitational physics has the potential to illuminate this seemingly simple yet impactful issue. The
implications of this slight asymmetry are crucial, not only for the emergence of our existence but also
for the evolution of the Universe as we observe it today. The application of modified gravity within the
frameworks of two well-established particle physics mechanisms, Electroweak Baryogenesis and Baryo-
genesis via Grand Unified Theories, has yielded promising results. EWB, in particular, benefited from
a significant relaxation of its most stringent constraints, while GUT baryogenesis also showed positive
developments. Moreover, modified gravity has proven effective when integrated into the Gravitational
Baryogenesis mechanism, where gravity itself plays a central role in generating the baryon asymmetry.
This approach has shown fruitful outcomes, especially within a specific model that can be interpreted as
a slight deviation from General Relativity in the cosmological context. Hence, modified gravity can be a
viable solution to the long last baryonic asymmetry of our Universe.
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