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The quantum entanglement of two objects
is defined as a type of correlation where the act
of measurement on a subsystem immediately
affects the state of the other, even if they are
separated by a distance. While most quan-
tum technologies are based on discrete spin
states, entanglement in continuous variables
is regarded as the holy grail of quantum infor-
mation theory.

It has been demonstrated in Ref. [1] that
the Coulomb interaction between mesoscopic
particles accumulates a significant amount of
entanglement, even when they are confined in
harmonic traps. However, the entanglement
gain is amplified by letting go of the harmonic
confinement [2], at least along the line join-
ing their centers. In this work, we implement
the ideas of Ref. [3] in a hypothetical experi-
ment of two identical nuclei released from the
ground state of harmonic traps. Once pre-
pared, the traps are switched off, and the
particles interact with each other in free fall.
Since the harmonic oscillator ground state is
a Gaussian, the bipartite state at t = 0 is a
two-mode Gaussian.

Formalism
Following the seminal approach as in

Refs. [2, 3] we write the Hamiltonian in the
displacement space

Ĥ =
p̂2A
2m

+
p̂2B
2m

+ ZAZB
α~c

L+ (x̂B − x̂A)
, (1)

where L is the separation between the two
nuclei, x̂A and x̂B are their displacements
from initial mean positions, with p̂A and p̂B
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their respective momenta. ZA and ZB are
their atomic numbers, and α ≈ 1/137 is the
fine-structure constant that characterizes the
strength of Coulomb interaction. The two-
mode Gaussian is now transformed from the
LAB to the COM frame of reference. Unlike
the regular literature on scattering theory, the
COM can no longer be described as a plane
wave [3]. In fact, at t = 0, it is a Gaussian
wave packet of width, just like the reduced
mass. The Hamiltonian in this frame decou-
ples as

Ĥ =

(
P̂ 2

4m

)
+

(
p̂2

m
+ ZAZB

α~c
L+ r̂

)
. (2)

where r is the displacement of the reduced
mass from its initial average location. Accord-
ingly, the COM behaves as a Gaussian wave
packet expanding in the free space, and re-
duced mass evolves in time under the influ-
ence of the Coulomb potential, which can be
further expanded in a Taylor series:

Ĥr =
p̂2

m
+ ZAZB

α~c
L

N∑
n=0

(−1)n
r̂n

Ln
. (3)

where N is the order of interaction. Given
that the potential is truncated at the second
order, the time-evolution conserves the Gaus-
sianity of the bipartite quantum state. Ac-
cordingly, the state of the system at any given
time is fully described by the first two statisti-
cal moments (variances and correlations). In
other words, the covariance matrix encodes all
relevant information as there is in the density
matrix. For a bipartite system, the covariance
matrix is given by

σij =
1

2
〈ûiûj + ûj ûi〉 − 〈ûi〉 〈ûj〉 , (4)

where û = (x̂A, p̂A, x̂B , p̂B).

Proceedings of the DAE Symp. on Nucl. Phys. 66 (2022) 693

Available online at www.sympnp.org/proceedings



Results and discussion
We assume the potential to be truncated up

to the second order and employ the techniques
of Ref. [3] to derive a time-dependent analyt-
ical solution for the covariance matrix. The
same is then utilized to quantify the entangle-
ment with logarithmic negativity [4] and von-
Neumann entropy of entanglement [5]. For a
demonstration, we consider two 196Au nuclei,
nuclei separated by a distance of 2 µm and re-
leased after cooling in harmonic traps of fre-
quency 1012 Hz. The logarithmic negativity
and the entanglement entropy are shown in
Fig. 1. It can be easily seen that the Coulomb
interaction creates a huge amount of entangle-
ment, that too within a nanosecond!

It is proved in Ref. [3] that force gradi-
ent is the dominant contributor to position-
momentum correlations, and the inclusion of
higher than quadratic term in the expansion
s are crucial for obtaining the momentum de-
pendence of the entanglement gain. An ex-
tension of our methods in this way will reveal
the entanglement gain in the Coulomb scat-
tering. It is worth pointing out that nuclear
experiments are performed at room tempera-
ture only, and the effects of decoherence must
be incorporated. Also, while the positions and
momenta of mesoscopic objects can be mea-
sured with weak probing lasers, some alterna-
tives must be implemented for the nuclei.

Conclusions
We calculated the Coulomb-mediated gain

of Gaussian entanglement between two nuclei.
The Coulomb interaction is treated as a direct
coupling in the bipartite system of two Gold
nuclei released after cooling in harmonic traps.
It is shown that the Coulomb interaction gen-
erates a huge amount of entanglement within
a nanosecond. The impacts of decoherence
due to temperature and an extension to in-
corporate momentum dependence will reveal
the gain of entanglement in realistic Coulomb
scattering experiments.
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FIG. 1: Coulomb-mediated entanglement be-
tween two Gold nuclei released after cooling in
harmonic traps. The separation between the nu-
clei is 2 µm, and the trapping frequency is 1012

Hz. Coulomb potential is truncated up to the sec-
ond order in the displacement, and the entangle-
ment quantifiers are calculated within the covari-
ance matrix formalism.
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