
C
ER

N
-T

H
ES

IS
-2

01
4-

37
1

27
/0

2/
20

15

ATLAS Detector Simulation in
the Integrated Simulation
Framework applied to the

W Boson Mass Measurement

Dissertation
zur Erlangung des akademischen Grades

Doctor of Philosophy

eingereicht an der
Fakultät für Mathematik, Informatik und Physik

der

Universität Innsbruck

von

Mag. rer. nat. Elmar Ritsch
elmar.ritsch@uibk.ac.at

Betreuer der Dissertation:
Ao. Univ.-Prof. Dr. Emmerich Kneringer (Institut für Astro- und Teilchenphysik)

Prof. Dr. Daniel Froidevaux (CERN & Radboud University Nijmegen)
Dr. Andreas Salzburger (CERN)

Innsbruck, Dezember 2014

Das auf der Titelseite abgebildete Logo der Universität Innsbruck, ist der offiziellen
Homepage der Universität entnommen : http://www.uibk.ac.at

http://www.uibk.ac.at

Abstract

One of the cornerstones for the success of the ATLAS experiment at the Large Hadron
Collider (LHC) is a very accurate Monte Carlo detector simulation. However, a limit
is being reached regarding the amount of simulated data which can be produced and
stored with the computing resources available through the worldwide LHC computing
grid (WLCG).

The Integrated Simulation Framework (ISF) is a novel approach to detector simula-
tion which enables a more efficient use of these computing resources and thus allows for
the generation of more simulated data. Various simulation technologies are combined
to allow for faster simulation approaches which are targeted at the specific needs of in-
dividual physics studies. Costly full simulation technologies are only used where high
accuracy is required by physics analyses and fast simulation technologies are applied
everywhere else.

As one of the first applications of the ISF, a new combined simulation approach is
developed for the generation of detector calibration samples used in the W boson mass
measurement. The precise measurement of the W boson mass is crucial for testing the
validity of the Standard Model (SM) of particle physics. With a targeted relative error
of less than 10−4 for the measurement with the ATLAS detector, billions of simulated
collision events are required. Using the flexibility of the ISF, an outstanding agreement
with full Geant4 simulation is achieved for the simulation of the crucial lepton observables
in Z → ee events. File sizes which are 2 times smaller and execution speeds which are
about 5 times faster than traditional Geant4 simulation approaches illustrate that an
important step towards the large-scale Monte Carlo production for the W boson mass
measurement is achieved through using the ISF.

i

Acknowledgements

The writing of this thesis was not possible without the help and support of so many
people.

I want to begin by thanking Dr. Andreas Salzburger for being a great teacher since my
very first days in the field of high energy physics when I was summer student at CERN.
Your support and guidance all along the way allowed me to be involved in projects which
are essential for the operation of physics experiments in a large collaboration. I benefit
from this valuable knowledge and experience for the rest of my personal and professional
life.

Thank you Prof. Dr. Emmerich Kneringer, for your excellent support from the final
years of my diploma studies onwards and throughout my entire time as a doctoral stu-
dent. Your support enabled me to carry out the doctoral studies at the University in
Innsbruck, while being based in Geneva for most of the time.

Prof. Dr. Dietmar Kuhn I want to thank you for giving me the great opportunity to
discover the field of high energy physics. Without your support and the support of the
entire group, I would not be writing this PhD thesis nor would I experience the unique
work environment at CERN.

This thesis would not have been possible without the help and support of many col-
leagues and friends in the ATLAS collaboration. I thank particularly Dr. John Chapman
for your support of my PhD project from the very first day on, and also for being very
patient when mistakes were made (usually by me). Thank you Dr. Andreas Schälicke
and Dr. Peter Sherwood for your valuable inspiration and guidance in the early stage of
my PhD project. I thank Dr. Michael Dührssen and Dr. Zach Marshall for taking your
time in answering numerous questions that I had.

A big thanks goes to my (partly former) office mates Dr. Anthony Morley and
Dr. James Catmore for patiently helping me out so many times and finding answers
to problems which I was not able to solve alone. You really showed me what the collab-
orative spirit is all about and I can not thank you guys enough for it.

Thank you Cécile and Bouhlala for your patience in times when work demanded a
great deal of my time. It is your support which gives me the power to write this thesis
and carry out my PhD studies.

iii

Contents

Abstract i

Acknowledgements iii

Contents v

I Introduction and Overview 1

1 Introduction and Motivation 3

1.1 MC Production Computing Resource Usage 5

2 The Standard Model of Particle Physics 9

2.1 Particles in the Standard Model . 9

2.2 The W Boson Mass . 12

3 The ATLAS Experiment 15

3.1 Coordinate System . 17

3.2 The Inner Detector Subsystem . 18

3.3 The Calorimeter Subsystem . 20

3.4 The Muon Spectrometer Subsystem . 21

3.5 Particle Signatures . 24

3.6 Trigger System . 25

3.7 ATLAS Computing Grid . 26

4 ATLAS Monte Carlo Simulation 29

4.1 The ATLAS Offline Software Framework (Athena) 29

4.1.1 Athena Application Flow . 30

4.1.2 StoreGate . 32

4.2 Monte Carlo Simulation Chain and Persistent Data Formats 32

4.2.1 Event Generation (EVNT Format) 34

4.2.2 Detector Simulation (HITS Format) 35

4.2.3 Digitization (RDO Format) . 36

4.2.4 Reconstruction (ESD and AOD Formats) 36

v

4.3 Full and Fast Detector Simulation . 37

4.3.1 Geant4 . 39

4.3.2 Fast ATLAS Track Simulation (Fatras) 40

4.3.3 FastCaloSim . 42

4.4 Combined ATLAS Detector Simulations 42

4.4.1 ATLFASTII . 43

4.4.2 ATLFASTIIF . 44

II The Integrated Simulation Framework 45

5 The Vision 47

5.1 Common Simulation Framework . 52

5.2 Simulation Flavours and Simulator Mixing 52

5.3 Integration into ATLAS Monte Carlo Production 53

5.4 Extensibility . 53

5.5 ISF within a Fast ATLAS Monte Carlo Chain 54

6 ISF Particle Routing 55

6.1 Routing Rules . 56

6.1.1 Static Routing Rules . 58

6.1.2 Semi-Dynamic Routing Rules . 59

6.1.3 Dynamic Routing Rules . 61

6.2 The ISF Routing Chain . 64

6.2.1 Static Routing Rules in the Routing Chain 66

6.2.2 Semi-Dynamic Routing Rules in the Routing Chain 66

6.2.3 Dynamic Routing Rules in the Routing Chain 67

7 ISF Components 71

7.1 Simulators and SimulationServices . 72

7.1.1 Requirements for Simulators . 73

7.2 Particle Routing and the ParticleBroker 74

7.3 ATLAS Detector Regions . 75

7.3.1 Identifying ATLAS Detector Regions with the GeoIDService . . . 77

7.4 Monte Carlo Truth Recording with the TruthService 80

7.4.1 Track Records at ATLAS Region Boundaries trough the Entry-
LayerTool . 81

7.5 Particle Barcodes with the BarcodeService 81

8 ISF Program Flow 87

8.1 Simulation Input Processing . 87

8.1.1 Input Particle Filtering with GenParticleFilters 88

8.2 The Particle Loop . 88

8.3 Monte Carlo Truth Recording . 90

vi

9 Simulator Integration into the Integrated Simulation Framework 95

9.1 Geant4 . 95

9.1.1 FADS User Actions for ISF Integration 97

9.2 Fatras . 98

9.3 FastCaloSim . 99

9.3.1 Legacy Mode . 99

9.3.2 ISF Mode (Non-Legacy Mode) . 100

9.3.3 Fast Calorimeter Punch-Through Simulation 101

9.4 Particle Killer Simulator . 101

9.5 Combined ATLAS Detector Simulation Setups 101

9.5.1 ATLFASTII . 101

9.5.2 ATLFASTIIF . 102

III ISF Fast Simulation Results and Performance Measurements 105

10 ISF Computing Performance 107

10.1 Performance Analysis Tools . 107

10.1.1 PerfMon . 107

10.1.2 GPerftools . 108

10.2 CPU Time per Simulated Event . 109

10.2.1 Partial Event Simulation . 109

10.3 ISF CPU Profiling . 112

10.3.1 ISF Geant4 Detector Simulation 112

10.3.2 ISF ATLFASTII Detector Simulation 115

10.3.3 ISF ATLFASTIIF Detector Simulation 118

10.3.4 ISF Core Components . 122

11 Accuracy of ISF Detector Simulation 125

11.1 ATLFASTII . 126

11.1.1 Legacy Mode . 126

11.1.2 ISF Mode . 128

11.2 ATLFASTIIF . 129

12 ISF in the Context of the W Boson Mass Measurement 131

12.1 Analysis Method . 132

12.1.1 W and Z Boson Observables in the Transverse Plane 133

12.1.2 MW Measurement . 136

12.1.3 Detector Calibration . 140

12.2 Simulation Requirements . 141

12.3 ISF Simulator Configuration . 142

12.4 Simulator Tuning . 144

12.4.1 Calorimeter Response . 145

12.4.2 FastCaloSim Energy Scale Factors 147

vii

12.4.3 Applying Energy Scale Factors in FastCaloSim 152
12.5 Results . 153

12.5.1 Physics Performance . 154
12.5.2 Computing Performance . 164

12.6 Discussion . 167

IV Outlook and Conclusions 171

13 Outlook 173
13.1 Improved ISF Fast Simulation for the W Boson Mass Analysis 173
13.2 ISF and the ATLAS Fast Simulation Chain 174
13.3 ISF Pileup Simulation . 175
13.4 Concurrent Processing with ISF . 176
13.5 Simulator Integration and Particle Routing 177

14 Conclusions 179

V Appendix 183

A ISF Core Implementation 185
A.1 ISFParticle . 185
A.2 Simulation Kernel . 186

A.2.1 Event Filter Tool . 188
A.3 Particle Broker . 189

A.3.1 Simulation Selector . 192
A.4 Simulation Services . 197

A.4.1 Simulation Service Requirements 198
A.5 Detector Regions . 201

A.5.1 Envelope Definition Service . 202
A.5.2 GeoID Service . 205

A.6 Monte Carlo Truth . 206
A.6.1 Input Processing . 208
A.6.2 Truth Incident . 212
A.6.3 Truth Service . 215
A.6.4 Truth Strategies . 216
A.6.5 Barcodes and Barcode Service . 218
A.6.6 Entry Layer creation with the EntryLayerTool 222

A.7 Framework Configuration . 223

Bibliography 225

0

Part I

Introduction and Overview

1

Chapter 1

Introduction and Motivation

Particle physics is among the most fundamental approaches of natural science aimed at
understanding the laws of nature. It concerns the study of the fundamental forces and
processes acting upon the elementary parts of matter. These elementary parts of matter,
and composite objects formed by small numbers of elementary parts of matter, are
generally referred to as particles. A number of sciences benefit from the understanding
gathered in particle physics and its experiments. Its application ranges from studying
the (early) development of the universe to radiation therapy in medicine.

Numerous particle physics experiments are dedicated to measuring particle properties
in order to study the interactions between them. In doing so, new (unstable) particles
are discovered and theoretical models are being tested by experiments. This thesis
concerns the ATLAS experiment [1] at the Large Hadron Collider (LHC) [2] at the
CERN laboratory near Geneva, Switzerland. In the LHC, collisions of protons (or lead
ions) at high energies1 are performed to probe the structure of matter. The particles
emerging from these collisions are measured as they traverse particle detectors like the
ATLAS detector. The measurements of these particles are needed to understand the
underlying processes involved in the creation of the particles and to compare this to
different theoretical predictions.

Modern particle physics relies strongly on computer simulation in order to facilitate
accurate physics studies. The physics processes taking place at the initial particle col-
lision are simulated with so-called event generators. Detector simulation, on the other
hand, aims to describe the effect of the detector to traversing particles emerging from
the collision. Detector digitization emulates the response of the detector to the particles
which are simulated by the detector simulation. The particles traversing the detector
interact with its material or decay into other particles. Due to the highly complex design
of modern high energy physics detectors and the stochastical behaviour of the numerous
particle-matter interaction processes, it is nearly impossible to predict the detector mea-
surements for a given input analytically – even if the underlying processes were entirely
understood. Therefore, software tools are used to simulate the most relevant processes
and their impact on the measurements of the particles traversing such a particle detec-

1The LHC is designed for collision energies up to 14 TeV centre-of-mass energy.

3

Introduction and Motivation

tor. These detector simulations together with detector digitizations enable a detailed
modelling of the detector response to incident particles, which is a necessity for many
physics studies. Monte Carlo (MC) methods [3, 4] are used to simulate the stochastical
behaviour of the particle decay and interaction processes. Reconstruction software is
used to identify and measure particles in both, simulated and recorded data.

Many particle physics studies require simulated collision events in order to estimate
uncertainties in the experimental setup. Figure 1.1 illustrates the importance of detec-
tor simulation in the search for the Higgs boson and its discovery [5, 6]. In this study,
detector simulation is carried out to compute the uncertainty of the predicted measure-
ment outcome of the null hypothesis, in which the Higgs boson would not exist. The
significance of the null hypothesis is tested by comparing the predicted measurement
outcome and its uncertainty with the data recorded by the detector. This directly leads
to the discovery of the Higgs particle, due to a very low significance of the computed
null hypothesis with the measured data.

 [GeV]Hm
200 300 400 500

µ
9

5
%

 C
L
 L

im
it
 o

n

­1
10

1

10
σ 1±

σ 2±

Observed

Bkg. Expected

ATLAS 2011 ­ 2012
­1

Ldt = 4.6­4.8 fb∫ = 7 TeV: s
­1

Ldt = 5.8­5.9 fb∫ = 8 TeV: s

 LimitssCL

110 150

Figure 1.1: In the search for the Higgs particle, Monte Carlo detector simulation is
crucial for predicting the uncertainty of the expected measurement of the null hypothesis
(background-only hypothesis). The 95% confidence level (CL) upper limit on the signal
strength µ is shown as a function of the Higgs mass mH . A significant disagreement
between the predicted null hypothesis and the measured data is visible at mH ≈ 126.5
GeV (image: [5]).

Besides the crucial role of simulation in the discovery of the Higgs particle, it is an
important tool for data analysis in almost any high energy physics study. Some studies
required high-statistics simulation samples in order to achieve significant results. About
one billion simulated collision events were required for the measurement of the W boson
with the D0 experiment [7]. Due to this high demand for simulation samples, a dedicated

4

Introduction and Motivation

fast simulation approach was developed for this particular analysis.

In general, the most accurate simulation methods are often very time consuming.
The resulting lack of high statistics simulation samples can become a limiting factor
for the accuracy of physics analyses. Therefore, different fast simulation approaches are
developed by the high energy physics community in order to speed up the generation
of simulated data. Such methods are of crucial importance for physics analyses that
aim to test a variety of models by scanning a parameter space (that is inherent to the
respective theoretical model) and comparing the compatibility between the resulting
simulated data and the measured data.

In this thesis a flexible simulation framework for the ATLAS experiment is presented,
named the Integrated Simulation Framework (ISF). The framework enables fast detector
simulation approaches by balancing high simulation accuracy with high simulation speed.
It allows for dynamically defined regions of interest (ROIs) within individual events due
to its innovative particle routing algorithms. Different simulation techniques may be used
to simulate particles within the different ROIs. Thus, allowing to use highly accurate
particle simulation where required by physics studies and fast simulation techniques
where less critical for subsequent analyses.

Moreover, the Integrated Simulation Framework is developed to unify all ATLAS
detector simulation approaches into one common program flow. This enables the use of
the ISF as the default simulation framework for official ATLAS Monte Carlo production.
The ISF is responsible for carrying out tasks which are common to all ATLAS detector
simulation setups. Various full and fast simulation approaches were developed over time,
however, compatibility between the individual approaches was generally not supported
before the implementation of the ISF. Simulation techniques which are integrated into
the ISF are compatible with each other and can be used in combination within the
framework. This enables entirely new ATLAS detector simulation approaches, which
were not possible in the past.

1.1 MC Production Computing Resource Usage

Given the importance of MC detector simulation to physics analyses, several billions
of collision events are typically simulated in various ATLAS Monte Carlo production
campaigns. Four ATLAS MC production campaigns were carried out during the first
period of LHC operation (Run 1): mc09, mc10, mc11 and mc12. Table 1.1 summarizes
the approximate number of events simulated in full and fast ATLAS detector simulation
in the last two campaigns during Run 1 (mc11 and mc12) and in the ongoing mc14 MC
production campaign.

The computing grid, a worldwide network of computing centres, is used by the AT-
LAS collaboration for simulation production, data processing and for the storage of
datasets. Figure 1.2 illustrates that the ATLAS computing grid usage is dominated by
Monte Carlo simulation.

2mc14 is the currently ongoing ATLAS Monte Carlo production campaign. Therefore, the provided
numbers of simulated events are not final.

5

Introduction and Motivation

MC Campaign
Full Simulation Fast Simulation

(109 events) (109 events)

mc11 3.64 3.27
mc12 6.37 6.43
mc142 0.85 −

Table 1.1: Billions of events simulated with full and fast ATLAS detector simulation in
the mc11, mc12 and mc14 MC production campaigns, respectively (source: [8, 9]).

The demand for computationally intensive MC production will further increase with
the start of LHC Run 2 in spring 2015. Collision data with an integrated luminosity
of 26.4 fb−1 was recorded by the ATLAS detector throughout LHC Run 1 from 2010
to 2012 [10]. An integrated luminosity of about 100 fb−1 is expected to be recorded
by the ATLAS detector during LHC Run 2 from 2015 to 2017 [11]. This significant
increase of recorded luminosity is enabled through a higher instantaneous luminosity
provided by the LHC due to more challenging pile-up3 conditions. With the given ”flat
computing budget” throughout the next years [12], the available computing resources
must be utilized more efficiently in order to cope with the increased demand.

The costs of generating the entire mc12 simulation sample can be estimated to be
about 16 million CHF4 if it were generated on the Amazon Elastic Compute Cloud (EC2)
[15]. This estimate likely provides an upper bound of the real cost as the computing
resources used for ATLAS MC production are generally operated by non-commercial
institutions. With this estimate, a 1% speed improvement in the mc12 production
algorithms results in the generation of additional MC samples worth approximately
160 000 CHF in computing costs.

Fast MC production algorithms significantly increase the MC production output rate
with respect to (more accurate) full simulation methods. In other words, fast algorithms
allow for the production of more simulated events per calendar year with a given amount
of computing resources (or budget) than full simulation does. Higher execution speed
is generally achieved with less accurate algorithms. A number of fast algorithms have
been developed by the ATLAS collaboration in order to speed up the individual steps
in the MC production chain and to reduce the corresponding output file sizes:

Fast detector simulation methods aim to increase the speed of MC detector simula-
tion. As detector simulation accounts for the greatest share of ATLAS computing

3Pile-up: in-time and out-of-time proton-proton collisions from the same, previous or next bunch-
crossings.

4This is based on a total number of ∼ 12.7 billion simulated events with an average CPU time
requirement of ∼ 125 seconds per event for detector simulation and ∼ 37 seconds per event for digitization
and reconstruction (source: ATLAS dashboard). Public figures for ATLAS computing costs are not
available. The computing costs (not including storage) are therefore estimated by the cost of equivalent
computing time on the Amazon Elastic Compute Cloud (EC2) with 2 GiB memory per CPU core in
Europe, which equates to about 0.028 CHF/hour.

6

Introduction and Motivation

(a) (b)

Figure 1.2: The ATLAS computing grid utilization between January 2010 and November
2014, averaged over all grid centres. The (a) CPU time consumption and (b) physical
disk sizes of individual ATLAS projects are illustrated relative to the total grid usage.
Monte Carlo production, which consists of MC detector simulation and MC reconstruc-
tion, takes the biggest share of the overall grid resource usage. Within MC production,
detector simulation is by far the most time consuming step (source: ATLAS dashboard
[13, 14]).

resource usage (Figure 1.2a), fast detector simulation can significantly increase the
overall MC production output rate. The Integrated Simulation Framework enables
significant speed improvements in this production step, with a minimal loss of ac-
curacy. In the ISF, full simulation algorithms may only be applied in regions where
high accuracy is necessary for subsequent analyses and fast simulation algorithms
are applied everywhere else.

Fast digitization methods approximate the detector response to the detector simula-
tion output.

Fast reconstruction methods use the MC truth information generated by the detector
simulation in order to lower the algorithmic complexity in the track reconstruction
step.

Approximately half of all simulated events in official ATLAS MC production are
generated using fast simulation methods (Table 1.1). The percentage of fast simulation
is expected to increase in order to cope with the stringent demand during LHC Run 2
operation.

A fast ATLAS Monte Carlo chain is currently being developed. The aim is to combine
the fast algorithms of the three steps described above into one step, potentially achieving

7

Introduction and Motivation

a Hertz-level event simulation output rate. Intermediate output formats in the MC
production chain will not be recorded to disk, thus saving disk space and reducing the
computational costs for input-output processing. The ISF plays a crucial role in enabling
very fast detector simulation approaches. Detector simulation with execution speeds up
to 3000 times faster than full detector simulation has been demonstrated within the ISF.

8

Chapter 2

The Standard Model of Particle
Physics

The Standard Model (SM) of particle physics [16] is a theory which forms the basis of
modern high energy physics. It describes three of the four fundamental forces of nature:
the electromagnetic force, the weak nuclear force and the strong nuclear force. The
Standard Model does not describe gravity1.

This chapter provides a basic description of the most fundamental terms defined by
the Standard Model. The underlying motivation and derivation in mathematical terms
can be found in the references provided throughout this chapter.

Section 2.1 describes the building blocks of matter, their properties and how they in-
teract with each other. The following Section 2.2 covers the importance of the W boson
mass measurement in order to test the consistency of the Standard Model through exper-
iments. The simulation framework described in this thesis is applied to the measurement
of the W boson mass with the ATLAS experiment (covered in Chapter 12).

2.1 Particles in the Standard Model

The fundamental building blocks of matter and the interactions between them are de-
scribed by particles. The theory characterizes four fundamental types of particles (Figure
2.1):

Leptons are subject to the weak force and electrically charged leptons are also subject
to the electromagnetic force. Leptons exist in three generations. Each generation
is formed by an electrically charged particle (with Q = −1e) and a corresponding
(electrically neutral) neutrino particle. Antiparticles with inverted charges exist
for each particle in each generation. The first generation consists of the electron
(e−) and the electron neutrino (νe). The second generation is formed by the muon
particle (µ−) and the muon neutrino (νµ). Finally, the third lepton generation
consists of the tau particle (τ−) and the tau neutrino (ντ). The respective masses

1Though, extensions to the Standard Model are being studied, which try to incorporate gravity.

9

The Standard Model of Particle Physics

of the charged leptons increase from lower to higher generations. Thus, the electron
forms the lightest charged lepton, the muon particle the second lightest/heaviest
and the tau particle the heaviest. Neutrinos are particularly difficult to measure
directly, as they only interact through the weak interaction (and gravity) with other
particles. Only upper bounds for their respective masses have been determined so
far [17].

Quarks are subject to the electromagnetic force, the strong nuclear force and the weak
nuclear force. Quarks have an electric charge of either Q+ = +2

3e or Q− = −1
3e.

Like leptons, quarks exist in three generations. Each generation consists of a
doublet of quarks with charges Q+ and Q− respectively. In addition to the elec-
tric charge, quarks carry one of three colour charges. Antiparticles with inverted
charges exist in each respective generation. The first generation is formed by the
up quark (u) and the down quark (d). The second generation consists of the charm
quark (c) and the strange quark (s). The third generation is formed by the top
quark (t) and the bottom quark (b). The top quark is the heaviest of all funda-
mental particles in the SM. With the exception of the strange quark, the quarks
in each generation are heavier than the leptons of the respective generation. The
force acting between quarks increases with distance, preventing quarks from ap-
pearing as free particles. Free particles composed of multiple quarks exist only
with a net colour charge of zero (they are ”colourless”).

Gauge bosons are the carriers of the fundamental forces of nature which are described
by the Standard Model. Gauge bosons are spin-1 particles with an electric charge
of either Q = ±e or Q = 0. Four different gauge bosons exist. The photon (γ)
is the carrier particle of the electromagnetic force. The electrically charged W±

and neutral Z particles are the carrier particles of the weak nuclear force. The
gluon particles (g) are the carrier particles of the strong nuclear force. At higher
energy scales the weak interaction is comparable in strength to the electromagnetic
interaction, hence, both are described in the common electroweak theory (which
is part of the SM).

The Higgs boson is a key particle predicted by the Standard Model and recently dis-
covered by the ATLAS and CMS collaborations [5, 6] with the Large Hadron
Collider at the CERN laboratory. It is a particle with spin zero and it corresponds
to an excitation of the Higgs field. The non-zero vacuum expectation value of
the Higgs field gives rise to masses of leptons, quarks and gauge bosons. The
Higgs mechanism2 generates the mass of the W± and Z gauge bosons through
electroweak symmetry breaking [18–23]. Lepton an quark masses are generated
through the so-called Yukawa interaction [16].

The fundamental particles described above can form both stable and unstable com-
posite objects. Bound states of quarks (through the strong nuclear force) are classified

2The correct full name is Englert-Brout-Higgs-Guralnik-Hagen-Kibble mechanism.

10

The Standard Model of Particle Physics

as hadrons. Hadron particles are further categorized into mesons and baryons. Meson
particles are quasi-stable bound states of a quark and an antiquark particle. Baryons
are bound states of three quarks. Whereas all meson particles are unstable, one stable
baryon does exist: the proton (uud). Together with the neutron3 (ddu) it forms all
stable nuclei of the visible mass in the universe.

Figure 2.1: The particles of the Standard Model of particle physics. Quark and lepton
particles are classified in three generations, which are arranged by particle mass. Gauge
bosons mediate the fundamental forces described by the Standard Model: the electro-
magnetic force (photon), the weak nuclear force (W± and Z bosons) and the strong
nuclear force (gluon). The recently discovered Higgs boson is an excitation of the Higgs
field which gives rise to mass of the leptons, quarks and gauge bosons (image: [26]).

The validity and accuracy of the Standard Model has been tested by numerous
experiments throughout the last decades. So far, the Standard Model has not yet been
disproven by any experimental result. The Higgs boson is among a number of particles
which have been experimentally discovered after their existence has been predicted by
the SM. Nevertheless, the SM contains 19 free parameters4 which can be determined
only through experimental measurements.

3Free neutrons have a half life of τn = 878.5 ± 0.8 s [17, 24, 25]. However, neutrons do form stable
nuclei together with protons.

4In fact 7 additional parameters are required to describe non-zero neutrino masses in the model. Three
parameters for the respective neutrino masses and seven parameters to describe the mixing between the
neutrino types.

11

The Standard Model of Particle Physics

Figure 2.2: ”Feynman diagrams of loop processes that lead to a dependence of the W
boson propagator on (a) the top quark mass and (b, c) the Higgs boson mass” (images
and caption from [27]).

2.2 The W Boson Mass

The W± boson is a fundamental particle of the Standard Model. Together with the Z
boson, it is the force carrier of the weak nuclear force. Both particles were discovered
in the year 1983 by the UA1 and UA2 experiments at the Super Proton Synchrotron
accelerator-collider [28]. Their masses are generated through electroweak symmetry
breaking which is described by the Higgs mechanism in the SM.

Loop corrections to the W boson propagator (Figure 2.2) introduce a direct relation-
ship between the W± boson mass (MW), the top quark mass (mt) and the Higgs boson
mass (MH) [17, 29–33]. The loop corrections (to all orders) are denoted as ∆r in the
following relationship [33]

M2
W = M2

Z

{
1

2

√
1

4
− πα√

2GµM2
Z

[1 + ∆r (MW ,MZ ,MH ,mt, ...)]

}
, (2.1)

where α is the fine structure constant, Gµ is the Fermi constant and MZ is the Z boson
mass. Due to the MW -dependence of ∆r, an iterative procedure is applied to compute
MW in this equation. Taking into account only one-loop corrections, the dominating
terms in ∆r are proportional to m2

t and log (MH) [17].

Given the precise measurements of α5, Gµ
6, MZ

7 and the recently measured MH , the
dominating experimental uncertainties for testing the validity of Equation 2.1 are MW

(relative error of measurement is 10−4) and mt (10−3) [17]. It is possible to overconstrain
the parameters of the SM in the electroweak sector such that an ”allowed” parameter
space for MW and mt can be computed [36]. In this computation, MW and mt are free
fit parameters and any experimental measurement of them is not taken into account.
Comparing the measured values of MW and mt with this parameter space allows to
stringently test the validity of the SM (see Figure 2.3).

Furthermore, the parameters in the electroweak sector can be overconstrained to
allow for a direct computation of MW . In [38] the W boson mass is computed through

5Recent measurements have determined α with an impressive relative uncertainty of 6.6× 10−10 [34].
6GF usually is determined through a precise measurement of the muon particle lifetime τµ. Recent

experiments have determined GF with a relative uncertainty of 5 × 10−6 [35].
7A combined measurement of five collaborations (ALEPH, DELPHI, L3, OPAL, SLD) has determined

MZ with a relative uncertainty in the order of 10−5 [30].

12

The Standard Model of Particle Physics

Figure 2.3: A comparison of the directly measured values for the W boson mass (MW)
and the top quark mass (mt) with the parameter space consistent with the Standard
Model of particle physics. The green area illustrates the combination of the direct ex-
perimental measurements of MW and mt, respectively. In the blue and grey areas, the
parameters MW and mt are free fit parameters. The blue area illustrates the parameter
space consistent with the other parameters in the SM, taking into account all experimen-
tal and theoretical uncertainties and the recent measurement of the Higgs boson mass
(MH). The grey area does not take into account the MH measurement (image: [37]).

combining NNLO theoretical predictions with the measurements (world average) of all
other parameters in the electroweak sector. This leads to

Mfit
W = 80.3584 ± 0.0046mt ± 0.0030δtheomt ± 0.0026MZ

± 0.0018∆αhad

± 0.0020αS ± 0.0001MH
± 0.0040δtheoMW

GeV ,

= 80.358± 0.008tot GeV ,

(2.2)

with the individual measurement and theoretical uncertainties described in detail in
Reference [38]. The current measured value (world average) is [17]

MW = 80.385± 0.015 GeV . (2.3)

The computed W boson mass in Equation 2.2 and the measured value in Equation
2.3 differ by more than one standard deviation. Moreover, the uncertainty of the ex-
perimentally determined value (world average) is more than twice the size of the error
in the theoretical computation. Hence, it is of particular interest to measure MW more
accurately in order to determine whether the difference between the computed and the

13

The Standard Model of Particle Physics

measured W boson mass is caused solely by measurement uncertainties, or whether this
indeed points to an inconsistency in the electroweak sector of the SM. A permanent
discrepancy could point to loop corrections due to other (yet unknown) particles that
are not considered in the SM fit. Hence, a measurement of MW is an indirect probe for
physics beyond the Standard Model.

Extensive Monte Carlo simulation is fundamental to the method of measuring the
W boson mass with the ATLAS detector. It is used as a tool to the study and minimize
the relevant experimental uncertainties, as well as to conduct the final measurement
of MW . The simulation framework presented in this thesis is being validated with the
aim of generating high-statistics simulation samples for the W boson mass measurement
in due time (Chapter 12). It will ultimately enable the accurate measurement of MW

with the ATLAS experiment, for which a systematic uncertainty of about 7 MeV and a
statistical uncertainty of about 2 MeV is expected with 10 fb−1 of integrated luminosity
collected by the experiment [39]. This measurement will significantly contribute to the
world average value of all MW measurements and hence allow for a more stringent test
of the SM.

14

Chapter 3

The ATLAS Experiment

The ATLAS (A Toroidal LHC ApparatuS) experiment is a general purpose particle detec-
tor at the LHC (Large Hadron Collider) at CERN laboratory near Geneva, Switzerland.
The experiment is situated in a cavern approximately 100 meters underground at point
1 on the LHC ring. It is one of four main detectors which measures particles emerging
from collisions of high energy protons or lead ions in the LHC. The other three detectors
are ALICE [40], CMS [41] and LHCb [42] (see Figure 3.1).

The LHC accelerator is designed to produce proton-proton collisions with centre-of-
mass energies of up to 14 TeV. To date, the highest generated centre-of-mass energy was
8 TeV for proton-proton collisions. There are four collision points along the LHC, each
one situated at one of the four main experiments mentioned above.

The shape and size of the ATLAS detector can be approximated by a cylinder with
length 44 meters and diameter 25 meters (see Figure 3.2). The LHC particle beam
is directed along the cylinder axis and the nominal particle collision point is in the
centre of the detector. Thus, collision products will traverse the detector from the
inside towards the outside and in doing so, they will interact with the surrounding
detector components. This leads to the layer-based design of the detector sub-systems (or
sub-detectors) which guarantees efficient particle identification capabilities and accurate
particle measurements. The innermost system is the ATLAS inner detector which is
used for particle tracking (described in Section 3.2). Subsequently, particles will enter
the calorimeter system where the particle energies are measured (Section 3.3). The muon
spectrometer, surrounding the calorimeter system, is a second tracking detector system
optimized for muon particle measurements (Section 3.4).

The components of each individual sub-detector can be further divided into active
and passive detector parts. Active detector parts are involved in the measurement of
collision products (e.g. silicon pixels measuring particle position and deposited energy).
Active components are embedded in and surrounded by passive detector parts. As such,
these are not directly involved in particle measurements but they are required by the
active components to function (e.g. support structures, cooling systems or electronics).
Particles will interact with both, active and passive detector parts. The signals created
by active detector parts are further referred to as readout signals or energy measure-

15

The ATLAS Experiment

Figure 3.1: Overview of the LHC accelerator complex at CERN. Protons and lead ions
run through a chain of accelerators before they are filled into the final LHC accelerator.
Each individual accelerator along the chain adds more energy to the particles. The image
also shows the position of the four main LHC experiments ATLAS, ALICE, CMS and
LHCb (image: [43]).

ments. In the ATLAS inner detector and muon spectrometer, these signals are used to
reconstruct particle trajectories (further called tracks) through the detector. The energy
measurements in the calorimeter are used to reconstruct the energy deposited by the
particles traversing the ATLAS calorimeter. From this, particle properties such as total
energy, momentum and charge can be determined, which allow to study the preceding
interaction process.

16

The ATLAS Experiment

Figure 3.2: Cut-away view of the ATLAS detector showing the individual detector tech-
nologies in use. The inner detector consists of the pixel detector, the semiconductor
tracker and the transition radiation tracker. A solenoid magnet generates an almost
uniform magnetic field with a strength of two tesla throughout all inner detector compo-
nents. The calorimeter system consists of the liquid argon (LAr) and the scintillator-tile
calorimeter systems. The muon system together with the superconducting toroid mag-
nets forms the outermost part of the ATLAS detector (image: [44]).

3.1 Coordinate System

The global coordinate system [1, 45] used by the ATLAS collaboration has its origin
at the nominal interaction (collision) point in the centre of the detector. The positive
x-axis is defined to point from the interaction point to the centre of the LHC ring, the
positive y-axis points towards the surface and the z-axis points along the beam direction
forming a right-handed coordinate system. The azimuthal angle φ ∈ [−π, π) is measured
in the x-y plane around the beam axis, with the positive x-axis at φ = 0 and the positive
y-axis at φ = π/2. The polar angle θ ∈ [0, π) is measured from the positive z-axis at
θ = 0 to the negative z-axis at θ = π.

The pseudorapidity η of a particle is defined as the rapidity y [46] of an equivalent,
but massless particle:

η = − ln

[
tan

(
θ

2

)]
(3.1)

17

The ATLAS Experiment

3.2 The Inner Detector Subsystem

Figure 3.3: The ATLAS inner detector sub-system consists of the pixel detectors, the
semiconductor tracker (SCT) and the transition radiation tracker (TRT). All three de-
tector technologies are have a central barrel region and a two forward end-cap regions,
respectively (image: [44]).

The inner detector (ID) is the innermost layer of the ATLAS experiment and therefore
closest to the collision point. Particles generated in LHC particle collisions first pass
through the ID before they traverse any other part of the ATLAS detector.

The main purpose of the ID is to track charged particles in order to measure their
charge and momentum, and to locate their production vertices. The ID is embedded in
a solenoidal magnetic field with a central strength of approximately 2 T, causing charged
particles to have a curved trajectory when passing through it. From this, the curvature
can be measured which in turn allows to compute the momentum.

The ATLAS inner detector consists of three sub-detector components (see Figure
3.3) which cover a pseudorapidity range of |η| < 2.5:

18

The ATLAS Experiment

The Silicon Pixel Detector is the innermost detector system in ATLAS. It consists of
three cylindrical layers formed concentrically around the beam pipe in centre of the
detector. Each pixel detector layer consists of a silicon module with a thickness of
250 µm. Charged particles traversing the pixel detector will induce free charges in
the silicon. The readout electronics attached to the silicon layers divides the layers
into individual pixels of size 50 × 400 mm2. The whole ATLAS pixel detector
provides approximately 80.4 million readout channels (individual pixels) where
each channel provides information about the free charge in the corresponding pixel
through a time over threshold (ToT) signal. With the pixel detector being closest
to the initial interaction point, its particle track measurements are essential for
reconstruction of production vertices.

The Semiconductor Tracker (SCT) uses the same silicon-based detector principle
as the pixel detector. The main difference to the pixel detector is that the SCT is
formed with strips of sensitive silicon material and that it has a binary readout.
The strips have a width (pitch) of 80 µm and a length of 6.4 cm. Each SCT layer is
formed by a combination of two silicon strip layers which are twisted by a few mrad
with respect to each other. A charged particle traversing one SCT layer will create
readout signals in two separate silicon strips, which in turn allows to accurately
measure the particle track position (space-point) at the crossing point of both
strips. There are a total of four cylindrically-shaped SCT layers surrounding the
pixel detector. Contrary to the pixel detector, the SCT readout does only provide
information about whether or not a fixed free charge threshold was reached by
each individual silicon strip.

The Transition Radiation Tracker (TRT) consists of approximately 351 000 straw
drift tubes with a diameter of 4 mm each. Each tube is filled with a gas mixture
(Xe-based in LHC Run 1) and has an anode wire running along its centre. Charged
particles traversing the TRT will ionize the gas mixture inside the straws. The free
charge will drift to the central anode wire, where the signal is measured and sub-
sequently used to compute the closes approach radius of the charged particle. The
TRT covers the detector region with pseudorapidity |η| < 2.0. Particles traversing
the TRT create on average 36 measurements in the TRT straws. These measure-
ments contribute to the inner detector track reconstruction and in particular to
the measurement of particle momenta. In addition to the charged particle track
measurements, the TRT also provides particle identification capabilities. The TRT
straws are interleaved with fibers and foils which generate significant transition ra-
diation if crossed by particles with a high Lorentz factor γ [47, 48]. The transition
radiation photons will subsequently contribute to the ionization of the gas in the
in the TRT straws along the initial particle’s track. The TRT signals enhanced by
transition radiation photons are classified as high threshold signals. The number of
high threshold signals along a particle track allows to discriminate electrons from
pions in particular.

19

The ATLAS Experiment

3.3 The Calorimeter Subsystem

Figure 3.4: The ATLAS calorimeter sub-system with the electromagnetic calorimeter
(EM) on the inside, surrounded by the hadronic calorimeter. The EM calorimeter con-
sists of liquid argon-based (LAr) calorimeter systems in the barrel and end-cap regions.
The hadronic calorimeter is composed of scintillator tiles in the barrel and extended bar-
rel region, whereas the end-cap and forward hadronic calorimeter is formed by LAr-based
components (image: [44]).

Particles originating from the interaction point enter the ATLAS calorimeter system
after they have passed through the ID. Its main purpose is to measure the energy of
incident particles. The ATLAS calorimeter is a sampling calorimeter and it consists
of two main parts, the inner electromagnetic (EM) calorimeter and the outer hadronic
calorimeter (see Figure 3.4).

Due to the fine granularity of the electromagnetic calorimeter, it provides precise en-
ergy measurements of particles that interact through electromagnetic processes with the
detector material, in particular photons and electrons. The hadronic calorimeter pro-
vides energy measurements which are suited for jet reconstruction and missing transverse
energy (��E T) measurements.

Two different detector technologies are applied in the ATLAS calorimeter system.
The first technology uses liquid argon (LAr) as the active detector medium and lead as

20

The ATLAS Experiment

the absorber medium. The second technology uses scintillator tiles as the active medium
and steel as the absorber medium. The dense absorber media cause incident particles
to interact with the detector and to create a showers of particles inside the calorimeter.
Shower particles traversing the LAr calorimeter will ionize the liquid argon and thus
create signals on the electrodes surrounding the LAr. The scintillator tiles create light
signals corresponding to the energy of the shower particles it is being traversed by. Both
calorimeter types only measure a fraction of the total shower energy in their active media
(sampling calorimeter), the absorber media have no means of providing a readout signal.

The electromagnetic calorimeter is formed by LAr calorimeters in the barrel and
end-cap region, covering a pseudorapidity range of |η| < 3.2. The hadronic calorimeter
consists of a tile calorimeter in the barrel and extended barrel region (|η| < 1.7), a LAr
calorimeter in the hadronic end-cap region (1.5 < |η| < 3.2) and LAr calorimeter in the
forward region (3.1 < |η| < 3.9). The size of the individual calorimeter cells (granularity)
is dependent on the region of the detector. The EM calorimeter has a finer granularity
in the central η-region which is also covered by the inner detector, thus providing precise
measurements of electrons on photons.

In order to maximize the chance of fully containing incident particles, the total
thickness of the ATLAS calorimeter is approximately 10 interaction lengths (λ). The
thickness of the EM calorimeter is more than 22 radiation lengths (X0). Despite the size
of the calorimeters, is possible for some particles in a particle shower to leak out of the
calorimeter and enter the outermost sub-detector, the muon spectrometer (Section 3.4).

Muons do not create significant particle showers in the calorimeter’s absorber media.
Their interaction is mainly limited to multiple Coulomb scattering and ionization energy
loss processes. Thus, muons (with energies above approximately 4 GeV) will likely pass
the calorimeter and reach the next ATLAS sub-detector, the muon spectrometer.

3.4 The Muon Spectrometer Subsystem

The muon system or muon spectrometer (MS) is the outermost part of the ATLAS
experiment. It is a particle tracking device with precise track reconstruction capabilities.
The name stems from the fact that mostly muons will reach the MS to cause signals on
sensitive detector parts. Ideally, other particle types should either loose all their energy
in the calorimeter (hadrons, electrons, photons) or do not create any signal in the MS
(neutrinos). However, ”hadronic leakage” and decay in flight effects in the calorimeter
do impact measurements in the MS.

Eight superconducting coils generate a (strongly non-uniform) toroid-shaped mag-
netic field throughout the muon system. This allows to measure each particle’s charge
over momentum ratio q/p while traversing the magnetic field. Combining this measure-
ment with the corresponding inner detector q/p measurement, a higher accuracy on the
overall q/p measurement is obtained for these particles.

Four different detector technologies are forming the sensitive detectors in the ATLAS
muon spectrometer:

Monitored Drift Tubes (MDT) are gas filled tubes with a diameter of 29.97 mm and

21

The ATLAS Experiment

a length between 1 and 6 meters each. An anode wire runs along the centre of each
tube and the tube surface acts as a cathode. Charged particles passing through a
MDT ionize the Ar/CO2 gas inside the tube and the freed electrons travel towards
the central anode wire. The readout electronics converts the electron signal at
the anode wire into processable data. The monitored drift tubes provide precise
tracking measurements of charged particles (muons) in the MS throughout a region
of |η| < 2.0.

Cathode Strip Chambers (CSC) are multi-wire proportional chambers covering a
region of 2.0 < |η| < 2.7 in the ATLAS muon system. The increased flux of
particles in regions of higher pseudorapidity renders the use of MDTs ineffective
for particle tracking. Thus, multi-wire proportional chambers are installed, which
are capable of providing particle track measurements with counting rates up to
1000 Hz/cm2.

Resistive Plate Chambers (RPC) are part of the ATLAS trigger system (see Sec-
tion 3.6) in the muon system. RPCs are capable of generating fast response signals
about traversing particles. RPCs consist of two resistive plates (phenolic-melaminic
plastic laminate) aligned parallel to each other and separated by a distance of 2
mm. The gap between the plates is filled with a mixture of gases and an electric
field is applied perpendicular to the plates. Charged particles traversing the gas
will cause electron avalanches which are read out via metallic strips fixed on the
outer surface of the resistive plates. The RPCs cover a region of |η| < 1.05 in the
ATLAS muon system. In addition to their use in the trigger system, the RPC
is also used in the muon track reconstruction, where they provide measurements
arranged orthogonally to the precise MDT chambers.

Thin Gap Chambers (TGC) are part of the ATLAS trigger system covering the
forward muon system regions of 1.05 < |η| < 2.7. Like any detector technology used
in the trigger system, also TGCs generate fast responses to traversing particles.
TGCs are multi-wire proportional chambers. The name thin gap chamber was
given due to the fact that the wire-to-cathode distance (1.4 mm) is smaller than
the wire-to-wire distance (1.8 mm). Common with the RPC measurements, TGC
measurements also provide input to the muon track reconstruction.

22

The ATLAS Experiment

Figure 3.5: The ATLAS muon system with the eight superconducting toroid magnets and
its various sub-systems. Monitored Drift Tubes (MDT) provide precise measurements
of muon particle tracks. Cathode Strip Chambers (CSC) are capable of generating
particle measurements in the high particle flux environment of the forward detector
region. Resistive Plate Chambers (RPC) and Thing Gap Chambers (TGC) generate
very fast measurements which are used by the ATLAS trigger system (image: [44]).

23

The ATLAS Experiment

3.5 Particle Signatures

The ATLAS detector is designed such that different types of particles will leave behind
distinct signatures inside the detector. The combined information from the individual
detector technologies and the sub-detectors allows to extract a great amount of informa-
tion from each measured particle. Whereas individual sub-detectors may provide precise
measurements of particular quantities of a particle (e.g. momentum or energy measure-
ments), the combined information enables efficient particle type identification. Figure
3.6 shows typical signatures for common types of particles.

Figure 3.6: Particle signatures for different particle types when traversing the ATLAS
detector. The particles originate at the interaction point and traverse the ATLAS de-
tector in a radial direction. Charged particle trajectories are bent in the inner detector
and the muon system due to the present magnetic fields (image: [44]).

24

The ATLAS Experiment

3.6 Trigger System

The LHC is designed to generate one proton-proton collision inside the ATLAS detector
every 25 ns. This corresponds to a collision rate of 40 MHz. With an average event size
in the order of a few megabytes, it is not possible with the technology available today, to
record and fully process every single collision event. The processes taking place in most
of the collisions are of little or no relevance for subsequent physics analysis (Figure 3.7).
Thus, a trigger system is introduced to only record events that pass well defined criteria
at a defined rate (400 Hz during Run 1 and 1 kHz in Run 2). These criteria are set to
maximize the chance of recording interesting events, i.e. events which contain objects
which are to be studied in later physics analysis. In general, events containing leptons or
particle jets with high transverse momenta, or events having a large missing transverse
energy in the calorimeter, will be of interest and thus be recorded. The specifics about
the trigger criteria are beyond this work and will thus not be discussed here.

pp
total

80 µb−1

W
total

35 pb−1

Z
total

35 pb−1

t̄t
total

4.6 fb−1

20.3 fb−1

tt−chan
total

4.6 fb−1

20.3 fb−1

WW+WZ

total

4.7 fb−1

WW
total

4.6 fb−1

20.3 fb−1

H ggF

total

4.8 fb−1

20.3 fb−1

Wt
total

2.0 fb−1

20.3 fb−1

WZ
total

4.6 fb−1
13.0 fb−1

ZZ
total

4.6 fb−1

20.3 fb−1

HVBF

total

20.3 fb−1

t̄tW
total

20.3 fb−1

t̄tZ
total

20.3 fb−1

σ
[p

b
]

10−1

1

101

102

103

104

105

106

1011

LHC pp
√
s = 7 TeV

Theory

Data

LHC pp
√
s = 8 TeV

Theory

Data

Standard Model Total Production Cross Section Measurements Status: July 2014

ATLAS Preliminary Run 1
√
s = 7, 8 TeV

Figure 3.7: Standard Model cross sections measured with the ATLAS detector compared
to theoretical predictions (at NLO or higher). The figure illustrates the many orders of
magnitude separating the total cross section of inelastic proton-proton (pp) interactions
and various cross sections for the generation of particles which are studied in Standard
Model physics analyses. A trigger system is required to select and store only those
collision events which are potentially relevant for subsequent physics studies (image:
[49]).

The ATLAS trigger system is divided into three trigger stages (levels):

The Level-1 (L1) trigger lowers the detector output rate to about 75 kHz. It uses
a limited amount of the total detector information to define regions of interest

25

The ATLAS Experiment

(ROIs) in each collision event. Due to the detector specific requirements and the
high event rates in the first trigger stage, the L1 is implemented with custom-built
electronics.

The Level-2 (L2) trigger lowers the detector output rate to about 3.5 kHz. For this
it uses the full detector information inside the previously defined ROIs. The infor-
mation inside the ROIs contains only about 2% of the total event data measured
in the ATLAS detector.

The Event Filter (EF) uses offline computing tools to determine whether the infor-
mation present in the ROIs renders the event worth for permanent storage. This
final stage in the ATLAS trigger chain reduces the detector event rate (trigger
rate) to about 400 Hz during Run 1 and 1 kHz in Run 2.

The stages L2 and EF together form the High-Level-Trigger (HLT) which consists
mainly of commercially available computers and networking hardware.

Specific triggers selecting electrons and muons are used for the detector calibration
and the W boson mass measurement which is covered in Chapter 12.

3.7 ATLAS Computing Grid

The Worldwide LHC Computing Grid (WLCG) [50, 51] is used to store and process
the vast amounts of simulated and recorded data which are produced by the ATLAS
collaboration. The WLCG is divided into three different types of computing sites (see
Figure 3.8):

The Tier 0 is the centre of the WLCG. Any collision event passing the trigger(s) of
an LHC experiment will be sent to the Tier 0 facility. The Tier 0 will execute
a first-pass processing of the detector data (RAW data) using experiment-specific
reconstruction algorithms (Section 4.2.4). The reconstructed datasets (and subsets
of the RAW data) are subsequently distributed among the Tier 1 sites to make
them available for user analysis (and reprocessing). A copy of the RAW data is
archived at the Tier 0 site. Tier 0 responsibilities are currently shared between
the CERN Computing Centre and the Wigner Research Centre for Physics in
Budapest, Hungary.

Tier 1 Facilities are mainly responsible for providing datasets which are of interest for
the whole collaboration. Tier 1 facilities provide access to reconstructed detector
data as well as simulated event data. Each Tier 1 site stores some fraction of the
Tier 0’s RAW detector data and it will be responsible for reprocessing this data in
a reprocessing campaign.

Tier 2 Facilities are mainly used to process physics analysis and simulation jobs.
About 140 Tier 2 sites are currently being hosted by various institutes around
the world. Tier 2 sites differ in size an capacity and thus each site has a specific

26

The ATLAS Experiment

role which will differ from the roles of other Tier 2 sites. An institute hosting a
Tier 2 site that is also involved in a particular physics analysis, will usually use
their local Tier 2 to process and store the corresponding analysis jobs and datasets.

Figure 3.8: The structure of the Worldwide LHC Computing Grid (WLCG). Data from
the LHC detectors is directly sent to the Tier 0 sites in the centre. The Tier 0 facility
processes and distributes this data among the Tier 1 sites which are responsible for
providing access for further analysis. About 140 Tier 2 sites are used for processing and
storing datasets for physics analyses (image: [51]).

27

Chapter 4

ATLAS Monte Carlo Simulation

Monte Carlo detector simulation [52] is a tool used in high energy physics to emulate
the response of a particle detector to individual particles emerging from collision events.
It is used to predict the outcome of various types of measurements – from detector
performance studies to physics analyses. Due to this, Monte Carlo simulation is a central
tool not only for physics studies, but also for detector design and development.

This chapter discusses the individual steps involved in the creation of Monte Carlo
simulation samples for the ATLAS detector. The Athena software framework, which
serves as the underlying software infrastructure for detector simulation and the AT-
LAS offline software, is discussed in Section 4.1. Analysis algorithms may also use the
Athena framework, but this is not a necessity. Section 4.2 discusses the typical Monte
Carlo simulation scheme in ATLAS. In Section 4.3 two different simulation concepts are
introduced: full and fast detector simulation. Both concepts find their use in the AT-
LAS collaboration and the individual detector simulation engines are described in this
section.

4.1 The ATLAS Offline Software Framework (Athena)

The Athena framework [53, 54] is the main software infrastructure used by the AT-
LAS collaboration. This includes all steps involved in Monte Carlo simulation, data
reconstruction and to some extend physics analysis. Athena is based on the Gaudi [55]
framework which was initially developed by the LHCb collaboration.

User implemented C++ classes can be integrated into the Athena framework,
through which access to the event input and event output is provided via so called
StoreGate containers. Athena manages the event loop and the sequence in which dif-
ferent algorithms are executed inside the event loop (the Athena AlgSequence). Thus,
Athena-based programs need to be configured according to the required data flow of the
algorithms involved.

The setup of Athena-based programs is done via Python script files, so called
jobOptions. These scripts are either provided as an argument to an athena shell
command line or, alternatively, generated by job transform wrapper scripts [56]. Job

29

ATLAS Monte Carlo Simulation

transform scripts are used extensively in ATLAS Monte Carlo production campaigns.

The modular design of the framework together with the use of job transform or
jobOptions Python scripts offers great flexibility to configure various types of Athena
programs. Many core functionalities can be adjusted and changed without the need to
re-compile the underlying implementation, written in the C++ programming language.
For the Athena programs discussed in this theses the following properties will generally
be adjusted individually for each program execution:

• defining the input dataset to read and the output dataset to write

• defining which ATLAS offline C++ (or Python) software algorithms will be exe-
cuted

• defining and changing (optional) parameters for these algorithms and the tools
they use

4.1.1 Athena Application Flow

The Athena framework supports custom algorithms and components which are imple-
mented in C++ and Python programming languages. Some older components of the
ATLAS offline software are implemented in Fortran 90, for which C++ wrappers are im-
plemented to allow execution of this code within the Athena framework1. User defined
algorithms are implemented into one or many of the different components provided by
the Athena framework. A complete list of all Athena components is given in Reference
[53]. The most relevant components in the context of this work are: Athena Algorithms,
Athena Tools and Athena Services. A component can be implemented in either of these
categories, however, most commonly a combination of different components is used to
form a complete user algorithm. Figure 4.1 gives an overview of how a combination
of Athena algorithms and Athena tools are used and how they are integrated into an
Athena based program.

Athena algorithms, tools and services are generally implemented by the ATLAS
software developers as a part of the official ATLAS offline software release. Alternatively,
individual components can be implemented on top of the official ATLAS offline software
release in order to carry out specific studies and measurements of (simulated or recorded)
datasets.

Athena Algorithms – AthAlgorithm: The idea of processing individual (particle
collision) events – each of them with its own input and output data – is one of the de-
sign principles of Athena and Gaudi. In order to do so, the framework runs in sequence
through the events in an input dataset and processes them one by one. This loop over
each individual event is know as the event loop. Individual C++ (or Python) based
Athena algorithms are executed on each input event. An Athena algorithm is a C++

1Most of the Fortran-based source code has been replaced over the last years by equivalent algorithms
implemented in C++.

30

ATLAS Monte Carlo Simulation

Figure 4.1: Athena application flow when running multiple Athena algorithms which
use different Athena tools. The data containers for each event are handed to the Athena
algorithms one at a time. The input and output types shown are examples for typical
types used in combination with Athena algorithms and Athena tools. Within one Athena
program execution, the Athena algorithms are called in the same sequence for each
event. This sequence is given by the AlgSequence object, which is configured during
the initialization phase through the Python jobOptions or job transform scripts. In
most cases an input dataset is provided. However, there are certain cases where no
input dataset is needed (for example physics event generators or single particle detector
simulation).

(or Python) based class which inherits from the Athena AthAlgorithm class. While
processing any event, an algorithm has access only to the data relevant to the currently
processed event. This follows along with the underlying design principle of processing
data which is generated by independent collision events. Thus such data needs to be
processed individually. After reading the input data for the current event, the Athena
algorithms are run in a specified order. This order is defined in the AlgSequence Python
object, which is configured for each Athena program execution individually. Each of the
Athena algorithms specified in this sequence is executed once per event. More specifi-
cally, the execute() method of each AthAlgorithm instance is called exactly once per
event through the Athena framework. In general, the list of executed Athena algorithms
depends on the kind of Athena program that is being executed. For ATLAS Monte
Carlo simulation the AlgSequence gets defined via the job transform scripts. For ex-
ample, during ATLAS detector simulation usually only the SimulationKernel algorithm
(Sections 8.2 and A.2) is being executed, whereas in event reconstruction various differ-
ent algorithms are being executed.

31

ATLAS Monte Carlo Simulation

Athena Tools – AthAlgTool: The previously described Athena algorithms may exe-
cute common computations or apply common tasks, which will not be implemented in
each of the algorithms separately. Thus such tasks are implemented only once in cor-
responding Athena tools. Athena tools are C++ classes which inherit from the Athena
AthAlgTool class. These tools can be used by different Athena algorithms with different
in- and outputs. Contrary to the Athena algorithms, Athena tools can be called multiple
times per event. Athena tools are not executed in a predefined sequence, nor are they
called by the Athena framework directly.

Athena Services – AthService: Athena services are similar to Athena tools, in the
sense that they can be run multiple times within a single event. Unlike Athena tools,
services usually provide more general tasks. Therefore, the same service might be used by
many – or even all – Athena algorithms and Athena tools. Examples for Athena services
are the message reporting service, random number generator services or the StoreGate
service. Athena services can be implemented by inheriting from the AthService C++
class which is provided by the Athena framework.

4.1.2 StoreGate

StoreGate (SG) is a central Athena service which manages transient (T) and persistent
(P) data objects needed by one or many Athena algorithms, tools or services. A detailed
description of StoreGate can be found in [57]. Here, only the most important features
of StoreGate are discussed:

• SG does the memory management for most of the registered data objects. This
includes, for example, memory deallocation in case a data object is not needed any
more in its transient form.

• SG manages the conversion from transient data to persistent data formats and vice
versa. For this, StoreGate utilizes so-called TP-converter classes.

• SG data objects can be accessed by users (i.e. Athena algorithms, tools and ser-
vices).

• New data types can be implemented and subsequently handled by SG.

The data objects managed by StoreGate are called collections. Examples of typical
StoreGate collections are TrackCollections which contain all reconstructed particle tracks
and their properties.

4.2 Monte Carlo Simulation Chain and Persistent Data
Formats

This section describes the steps required to generate simulated data for the ATLAS
detector. In order to allow a straightforward comparison of simulated data with recorded

32

ATLAS Monte Carlo Simulation

data, common data formats are generated from the event reconstruction output onwards
(ESD onwards). A brief introduction into the ATLAS full simulation chain and how to
set it up is given in Reference [58]. Further details can be found in Reference [59]
and Reference [53]. Though, partly due to this work, some particular details in these
references may be outdated but the overall data flow has not changed.

Figure 4.2: ATLAS MC data flow from event generation to AOD files. Elliptically-shaped
boxes represent persistent data objects, rectangular boxes are Athena-based algorithms,
which are processing the corresponding data objects. The focus of this work (the Inte-
grated Simulation Framework) concerns the detector simulation part of the chain. The
image also shows the data flow of the ATLFAST and legacy Fatras fast simulation se-
tups3. Though, neither of these two fast simulation setups is currently in use by the
ATLAS collaboration (image: [58, 60]).

Figure 4.2 illustrates the data flow in the generation of simulated ATLAS event data.
Athena-based algorithms are used to process the data in each individual step. The first
step in the chain is the event generation which produces the EVNT output format. The
EVNT files are subsequently read in by the detector simulation which generates the
HITS output format. The detector simulation output is further processed through the
digitization step, generating the RDO format. All subsequent steps are the same for sim-
ulated data and recorded detector data. Thus, the event reconstruction step (generating

3ATLFAST was used in an early stage of the ATLAS experiment, before particle collisions were
recorded by the detector. It is not supported in current ATLAS offline software releases any more.
ATLFAST provided very fast (but less accurate) simulation of detector effects for individual physics
objects. The legacy Fatras fast simulation existed until ATLAS offline software release 16 and is not
supported any longer. ATLFAST and legacy Fatras obtained most of their speedup (compared to the
full simulation chain) by combining a number of different steps into one simulation step.

33

ATLAS Monte Carlo Simulation

the ESD format) and the AOD conversion step are in general not specific to simula-
tion. Though, additional information may be present in simulation-based ESD/AOD
files compared to files generated from detector measurements. MC truth information or
links between reconstructed particles and the initial generator particles are two exam-
ples of additional information which is present in simulated data only. The following
subsections cover each of the steps in the MC chain and the corresponding persistent
data formats in detail.

The persistent data formats described in this section are based on a common POOL
ROOT format which enables the persistent storage of C++ objects. Further information
about POOL ROOT can be found in References [53, 61, 62]. This section covers only
the most relevant persistent data formats for the context of this thesis.

Individual job transform scripts exists to execute each individual step in the ATLAS
Monte Carlo simulation chain:

Sim tf.py

ATLAS detector simulation using the ISF framework (Section 4.2.2).

Digi tf.py

Digitization of the detector simulation output (Section 4.2.3).

Reco tf.py

Reconstruction of the digitization output or the detector readout (Section 4.2.4).
This script can also be used to run digitization and reconstruction in one execution
step.

EVNT/HITS/RDO/ESD/AOD/NTUPMerge tf.py

Various job transform scripts used for file merging (the individual data formats
are described below).

4.2.1 Event Generation (EVNT Format)

The basis of each event simulation is a physics event generator. Event generators create
data objects representing final state particles, much like the LHC is creating final state
particles through high-energy particle collisions. These particles are stored in the EVNT
data format in the form of HepMC [63, 64] event records. Some event generators also
store a tree of intermittent particles into the EVNT file, which connect the initial collision
particles with the final state particles. Nevertheless, the EVNT file sizes are in the order
of a few ten kilobytes per event. This is much less than other persistent data formats.
This format is purely simulation-based, thus no counterpart in the data stream from the
real detector exists.

The final state particles are input to the detector simulation (the subsequent step).
The particle properties are based on theoretical (and computational) models – such as
the Standard Model of particle physics, supersymmetric models, etc. – which are to
be tested against measured data. Yet, due to the complexity of the physics processes
involved in LHC particle collision, some event generators apply certain simplifications

34

ATLAS Monte Carlo Simulation

and approximations and must thus be tuned against measured data. Therefore, different
tunes may exist which will generally evolve over time. Changing the settings of an event
generator usually leads to a re-simulation of the detector response and hence leads to a
re-run of all steps in the Monte Carlo production chain.

Event generators usually are provided with a set of input parameters, such as the
centre-of-mass energy of the initial colliding protons or other physical properties.

Event generators typically in use by the ATLAS collaboration are Pythia 6 [65],
Pythia 8 [66] and Herwig/Jimmy [67, 68].

4.2.2 Detector Simulation (HITS Format)

The next step in the Monte Carlo chain is the simulation of interactions between the
final state particles created by the event generators and the ATLAS detector. In general,
the detector simulation step computes particle trajectories, particle-matter interactions
and particle decays within the ATLAS detector volume.

The output format of the most common ATLAS detector simulations is the HITS
file format. It contains simulated energy deposits caused by particles traversing the
ATLAS sensitive detector elements. HITS file sizes are usually in the order of hundreds
of kilobytes per event. As with the EVNT data format, HITS files are purely simulation
based, thus, no corresponding file format exists in the ATLAS detector data stream.

Over time, a number of different detector simulation techniques were developer by
the ATLAS collaboration. The most detailed and most commonly used method uses
the Geant4 [69] toolkit (Section 4.3.1). Other faster methods, such as Fatras (Section
4.3.2) and FastCaloSim (Section 4.3.3) are also being developed, applied and main-
tained. In order to form simulation setups which are capable of simulating the entire
ATLAS detector, various combinations of the different simulation methods exist: ATL-
FASTII combines FastCaloSim with Geant4 (Section 4.4.1) and ATLFASTIIF combines
FastCaloSim with Fatras (Section 4.4.2). ATLFASTII and Fatras are not to be confused
with ATLFAST and legacy Fatras, which both are not in use any more. The level of
accuracy with which particle interactions with the detector material are simulated, may
vary between the different approaches.

The detector simulation usually ends when either all particles have energies below
defined thresholds or all particles have left the detector volume.

The work discussed in this thesis, is a framework (the Integrated Simulation Frame-
work) which allows to combine different detector simulation techniques withing one simu-
lated collision event. Thus, enabling a region of interest simulation, in which an accurate
simulation technique can be used for particles of interest (e.g. signal particles of a physics
analysis) and a fast method can be used for the remaining particles in the event. This
approach is demonstrated in a case study for the measurement of the W boson mass
with the ATLAS detector in Chapter 12.

35

ATLAS Monte Carlo Simulation

4.2.3 Digitization (RDO Format)

After the detector simulation step, the simulated detector hits need to be converted into
a data format which corresponds to the format that is retrieved from the detector. This
conversion is carried out by the detector digitization step which creates the RDO format
(RAW Data Objects).

The digitization aims to transform the previously simulated interactions of particles
with sensitive detector material into measurable quantities, such as the free charge drifted
to the readout electronics in tracking detectors, or the energy measured in photomulti-
pliers in the tile calorimeter. The RDO format does not store any particle information
nor physical interpretation of the simulated detector measurements. The output of the
detector itself is in the ByteStream (BS) format, which contains the same level of in-
formation as the RDO format. Due to this similarity, RDO data files can be converted
into BS files. RDO file sizes are usually in the order of a few megabytes per event. All
subsequent steps after the detector digitization are not specific to simulation and they
are carried out for recorded data and simulated data in the same manner.

Besides creating simulated detector output signals, event pile-up can be added to
the simulated signal event during the digitization step. For this, RAW data objects of
minimum bias events are merged with the RAW data objects of the simulated signal
event. The minimum bias samples in this case are either pre-simulated (and digitized)
events or recorded minimum bias collisions from the detector.

4.2.4 Reconstruction (ESD and AOD Formats)

The RDO data obtained from the previous digitization step or from detector measure-
ments, need to be interpreted in order to identify and measure particle properties. Nu-
merous reconstruction algorithms are executed in order to find particle tracks (connecting
detector hits with realistic particle trajectories), measure particle momenta and energies
(track curvature and calorimeter measurements) and do particle identification (various
methods combining the preceding reconstruction results).

The results obtained by the event reconstruction algorithms contain the fundamental
quantities needed for subsequent physics analyses. Reconstructed data are stored in the
Event Summary Data (ESD) format. Both, measured data and simulated data, share the
same common ESD data format. ESD files contain physics objects which are derived from
the information present in simulated (RDO) or recorded (BS) sensitive detector hits.
ESD files from simulated data additionally contain Monte Carlo truth information about
the simulated event. This allows subsequent physics analyses to associate reconstructed
objects with the underlying simulated particles. Apart from the Monte Carlo truth
information, ESD files from recorded data and simulated data are indistinguishable. A
few common examples for ESD-level physics objects are particle track collections or
jet collections. In addition to physics objects, ESD files do contain many sub-detector
specific data collections as well. Due to this high amount of information present in the
ESD format, file sizes of a few megabytes per event are not uncommon.

The Analysis Object Data (AOD) format is derived from the ESD format and it is

36

ATLAS Monte Carlo Simulation

the basis for any ATLAS physics analysis. AOD files contain mostly physics objects
such as individual collections for various identified particle types. In contrast to the
ESD data format, AOD data usually does not contain detailed information about the
individual sub-detectors, and thus has a significantly smaller file size of typically a few
hundred kilobytes per event.

The ESD data format is currently not intended for long term storage on the ATLAS
computing grid (Section 3.7) since the AOD format contains all the objects which are
required by subsequent physics analyses.

The xAOD format replaces the AOD format from Run 2 onwards [70]. It is an
improved version of the AOD format with is compatible with the Athena framework and
with the ROOT data analysis framework [71].

4.3 Full and Fast Detector Simulation

The motivation to develop and use fast detector simulation becomes evident when mea-
suring the simulation time for single particle events4 using Geant4, the most accurate
ATLAS detector simulation. Figure 4.3 illustrates that the detector simulation with
one initial low-energy electron takes more than one second on average per event. The
simulation time increases with higher initial particle energies (due to the increase in the
number of generated secondary particles, Figure 4.4) or if the simulated event contains
more than one initial particle.

It has been shown in a study of the charged-particle multiplicity for pp interactions at
a centre-of-mass energy of

√
s = 900 GeV, that up to nch ≈ 60 charged particles (with

pT > 500 MeV and |η| < 2.5) are measured per event in the ATLAS inner detector
[72]. For higher centre-of-mass energies, even more particles traverse the ATLAS inner
detector: up to nch ≈ 90 are measured in charged-particle multiplicity studies with
an initial centre-of-mass energy of

√
s = 7 TeV [73]. Both studies account only for

particles with pT > 500 MeV, though, the majority of particles are actually generated
with energies below this threshold. It is therefore not surprising to measure detector
simulation times in the order of a few minutes per event for these types of events using
the most accurate ATLAS detector simulation.

After particles have been simulated through the ATLAS inner detector, they will
enter the calorimeter sub-system. It has been shown, that more than 90% of the full
(Geant4) detector simulation time is generally spent inside the calorimeter [74]. This
is due to the high number of secondary particles that are generated when particles
traverse the dense ATLAS calorimeter material. Therefore, the full detector simulation
will spend the majority of its runtime with the simulation of particle showers inside the
calorimeter, which are triggered by the particles leaving the inner detector. As size of
the particle showers in the calorimeter increases with higher particle energies (Figure
4.4), consequently the simulation time increases accordingly. Thus, simulation time

4Single particle event: Events with one initial particle. Detector simulation for such events will usually
process more than one particle in the end. This is due to numerous particles created in interaction
processes of the initial particle with detector material (e.g. particle showers inside the calorimeter).

37

ATLAS Monte Carlo Simulation

Particle Energy (GeV)
1 10 210

G
ea

nt
4

si
m

ul
at

io
n

tim
e

 (
se

c)

-110

1

10

210)-, e+Electron (e
)-π, +πPion (

)-µ, +µMuon (

Figure 4.3: Average simulation time in seconds of single particle events using a Geant4-
based full ATLAS detector simulation (50k events per data point, ATLAS offline software
release 16.0.3.2 with detector description ATLAS-GEO-16-00-00 on a Intel Xeon X5570
@ 2.93 GHz CPU)

becomes a concern for physics studies which require a high number of simulated events
(e.g. supersymmetry studies which need to scan a parameter space in their physical
model or W boson mass measurement which requires a very detailed understanding of
the detector response to signal particles). A detailed comparison of simulation time for
the different ATLAS detector simulations is given in Reference [59].

As described at the beginning of this chapter, detector simulation usually ends when
either all particles have energies below defined thresholds or all particles have left the
detector volume. The energy thresholds are chosen to balance simulation time with
accuracy. Fast simulation energy thresholds are usually much higher than full (Geant4)
simulation energy thresholds. This is partly due to the fact that the physics models used
in fast simulation are less capable of describing effects on particles with low energies.
In many cases, low energy particles will not have a significant impact on a subsequent
physics analysis, and therefore it is acceptable for the simulation to not treat these
particles any further.

The following subsections give an overview of different detector simulation engines
that are used by the ATLAS collaboration. The discussion starts with the most detailed
and most accurate simulation: Geant4 in Section 4.3.1. The fast tracker simulation Fa-
tras is discussed in Section 4.3.2, followed by the fast calorimeter simulation FastCaloSim
in Section 4.3.3. Section 4.4.1 discusses the ATLFASTII simulation setup, which uses
a combination of Geant4 and FastCaloSim to simulate particles traversing the ATLAS
detector. Combining different detector simulation engines to form one common ATLAS

38

ATLAS Monte Carlo Simulation

Figure 4.4: Qualitative comparison of particle shower sizes for a pion particle with low
energy (left) and high energy (right) when entering the ATLAS calorimeter in a full
(Geant4) simulation. The red line illustrates the initial pion particle. The green lines
show secondary particles created by the detector simulation due to interaction of the
pion with the ATLAS calorimeter detector material.

detector simulation is the basis for this work, the Integrated Simulation Framework
(ISF). The details of the ISF design and implementation are covered in part II of this
thesis.

4.3.1 Geant4

Geant4 (G4) is a widely used toolkit for the simulation of particles traversing matter.
It is developed by the Geant4 collaboration [75]. Its main applications are found in
detector simulation for high energy physics experiments, radiation simulation in medical
sciences and a number of space physics projects.

Geant4 is able to simulate interactions for a variety of particle types with many
different materials over a wide range of particle energies. The software is based on
different physics models describing many different kinds of particle-matter interactions.
Furthermore, Geant4 also simulates decays of unstable particles. Geant4 allows for
application-specific geometrical descriptions of the material (or detector) that is to be
simulated.

Geant4 provides a number of parameters which offer the ability to fundamentally
change the simulation’s behaviour and output. Parameters, such as the physics models
to be used (physics list), the simulated physics effects, stepping sizes etc. may affect the
computing performance and accuracy of the Geant4 simulation.

Due to its long-time operating experience, Geant4 has become a highly validated and
sophisticated simulation for many particle physics experiments. Therefore Geant4 is the
main (and most accurate) detector simulation in use by the ATLAS collaboration. This

39

ATLAS Monte Carlo Simulation

comes, however, with the price of an immense demand for computing resources (Section
1.1).

The Geant4 toolkit is commonly used by the ATLAS collaboration and often referred
to full detector simulation. A Python and C++ based Geant4 simulation framework for
the ATLAS detector (named FADS) [59] has been implemented even before the use of the
Athena software framework was adopted by the collaboration. The FADS framework
is used since then and is still configuring the Geant4 toolkit to the specific needs of
the ATLAS detector simulation. The integration of the Geant4 toolkit into the ISF
framework is discussed later in this document in Section 9.1.

4.3.2 Fast ATLAS Track Simulation (Fatras)

Fatras [76–78] (Fast ATLAS Track Simulation) is a fast ATLAS detector simulation for
the inner detector, the muon spectrometer and partially for the calorimeter. Fatras
was re-implemented in the context of this work, however, the underlying fast simulation
principles did not change. Thus, most items covered in this section apply to the legacy
Fatras and the current Fatras implementation.

In Fatras, particle tracks are simulated with the standard ATLAS reconstruction
tools. The detector geometry is based on the reconstruction geometry [79], which is
a much more simplified detector description compared to the detector geometry used
for full Geant4 simulation. The reconstruction geometry describes the ATLAS detector
material almost entirely by a few thin and discrete layers of different materials (Figure
4.5). The layers are arranged such that the overall material effects of the detector on the
traversing particles is reproduced accurately. A dense volume description of the material
inside the calorimeter was recently introduced, to allow the simulation of muon particles
through the calorimeter towards the muon spectrometer more accurately.

In addition to the simplifications in the material distribution, Fatras uses averaged
materials which do not necessarily correspond to any real physical material which is built
into the detector. Particle interactions with these averaged materials are computed either
by parameterized algorithms (which are Fatras-specific) or by accessing routines from
the Geant4 library. For the latter case, the average material parameters are converted
into the closest physically existing material and subsequently, Geant4 routines5 are used
to compute the products of inelastic particle-material interactions.

Due to the techniques described above, Fatras detector simulation executes about a
factor 100 faster in the ATLAS inner detector compared to Geant4-based full detector
simulation.

Compared to Geant4, Fatras gains additional computing time by spending less time
on the simulation (or creation) of secondary particles which are produced in particle-
material interactions. Clearly, this comes at the price of a less accurate description of
the processes occurring in the physical ATLAS detector. However, Fatras still shows
good overall agreement with the full Geant4 detector simulation and with recorded data

5The Geant4 routines to compute hadronic interactions have proven to have sufficiently high execution
speeds for their use in fast simulators.

40

ATLAS Monte Carlo Simulation

Figure 4.5: Photon conversion points shown in Geant4 and Fatras. Since photon con-
version processes are enabled by dense material both depictions show the distribution of
material inside the detector simulation. The discrete and thin layers of material used in
the Fatras simulation are clearly visible (image: [45]).

from the ATLAS detector (Figure 4.6).
The legacy Fatras implementation did replace parts of the standard detector digitiza-

tion algorithms and computed an approximated detector response in the fast simulation
step. In addition, it was capable of creating reconstruction-level output if needed (Fig-
ure 4.2) . In order to fulfill the requirements of the new simulation framework (Section
7.1.1), the output of the current Fatras implementation is the same format as the Geant4
simulation output and thus feeds into the same digitization chain. The fast digitization
modules of the legacy Fatras implementation have been encapsulated and are being pre-
pared to run in a dedicated fast-digitization chain, where the simulated hits from any
simulator may be processed.

41

ATLAS Monte Carlo Simulation

(a) (b)

Figure 4.6: Reconstructed track resolution for electrons simulated with Fatras at different
particle momenta (pT = 5, 20, 50 GeV): (a) d0 track parameter resolution (b) z0 track
parameter resolution (images: [78]).

4.3.3 FastCaloSim

FastCaloSim is a parameterized ATLAS calorimeter simulation [74, 78, 80, 81]. Its
parametrization is based on Geant4 ATLAS detector simulation results. The parame-
terized simulation approach offers various parameters that allow to tune the simulation
output against other references. In current ATLAS Monte Carlo production campaigns,
a FastCaloSim tuning against data is used, as it allows to describe certain aspects of the
calorimeter response even more accurately than full Geant4 detector simulation (Section
4.4.1 and Figure 4.7).

As FastCaloSim is restricted to ATLAS calorimeter simulation only, it is usually
combined with other simulators (such as Geant4 or Fatras) to form a complete AT-
LAS detector simulation. The combination of Geant4 and FastCaloSim is called ATL-
FASTII and is discussed in the following Section 4.4.1. The combination of Fatras and
FastCaloSim is called ATLFASTIIF and is discussed in Section 4.4.2.

4.4 Combined ATLAS Detector Simulations

In contrast to the full Geant4 detector simulation, which is capable of simulating track-
ing detectors and calorimeters, fast ATLAS detector simulators are specific to certain
ATLAS sub-detectors only. Thus, in order to simulate the entire ATLAS detector using
fast simulation, a combination of different simulators is required. The following subsec-
tions discuss different combinations of full and fast simulations. Geant4 combined with
FastCaloSim is discussed in Section 4.4.1, Fatras combined with FastCaloSim in Section
4.4.2.

42

ATLAS Monte Carlo Simulation

4.4.1 ATLFASTII

ATLFASTII is a fast ATLAS detector simulation utilizing the FastCaloSim ATLAS
calorimeter simulation. The Geant4 toolkit is used for ATLAS inner detector and muon
spectrometer simulation. Any muon particle traversing the ATLAS calorimeter is simu-
lated through Geant4 as well. This setup results in an ATLAS detector simulation which
is about ten times faster than the full Geant4 ATLAS detector simulation [59].

The ATLFASTII simulation begins with the simulation of the final state particles
from the event generator EVNT file through the ATLAS inner detector volume using
Geant4. Each particle leaving the ID volume is checked for its particle type and only
muons are further processed by the Geant4 simulation in the calorimeter. All parti-
cles above an energy threshold will cause energy deposits in the calorimeter, which are
computed by the FastCaloSim module. Since FastCaloSim does not perform a particle
transport, muon particles are the only particle type able to enter the ATLAS muon
system in the ATLFASTII simulation setup. Consequently, internal processes in the
calorimeter, such as decays and punch-through are not simulated in ATLFASTII.

Due to the use of Geant4 to simulate the ID and MS in ATLFASTII, the standard
ATLAS reconstruction algorithms can be used to reconstruct particle information for
these sub-detectors. Moreover, the FastCaloSim output format can be converted into the
Geant4 calorimeter simulation output format. Therefore, the calorimeter reconstruction
can be carried out by the standard ATLAS algorithms as well.

Tuning parameters inside FastCaloSim allow to tune the entire ATLFASTII simula-
tion output against any reference. One commonly used ATLFASTII-tune uses recorded
detector data as the reference. With this tune, in particular calorimeter-specific quanti-
ties are in better agreement between ATLFASTII and recorded data as it is the case for
the Geant4 detector simulation output (Figure 4.7).

The ATLFASTII implementation used by the ATLAS collaboration prior to the im-
plementation of the ISF, required two separate detector simulation steps to be executed
within the ATLAS Monte Carlo chain. The first step processed the Geant4 detector
simulation and the second step processed the FastCaloSim calorimeter response. Within
the ISF, both simulators are executed within one step, thus lowering complexity of the
Monte Carlo production chain and improving computing performance at the same time.

43

ATLAS Monte Carlo Simulation

ηR

0.9 0.92 0.94 0.96 0.98 1

E
n
tr

ie
s
 /
 0

.0
0
5

0

200

400

600

800

1000

1200

1400

1600

ηR

0.9 0.92 0.94 0.96 0.98 1

E
n
tr

ie
s
 /
 0

.0
0
5

0

200

400

600

800

1000

1200

1400

1600

ee→Z

Data
G4.9.2
G4.9.4, new geo.
AFII

ATLAS Preliminary

=7 TeV,sData 2010, ∫ ­140 pb≈tdL

ηR

0.9 0.92 0.94 0.96 0.98 1

E
n
tr

ie
s
 /
 0

.0
0
5

0

200

400

600

800

1000

1200

1400

1600

ee→Z

Data
G4.9.2
G4.9.4, new geo.
AFII

Figure 4.7: Energy ratio Rη of a cluster of ∆η∆φ = 3× 7 cells with respect to a cluster
with 7×7 cells in the bulk EM calorimeter layer 2. The image shows the improved agree-
ment between recorded detector data and Geant4 ATLAS detector simulation due to a
newer Geant4 software version and an updated detector geometry description. Clearly
visible is the effect of tuning the FastCaloSim simulation inside ATLFASTII against
data, which provides an even greater accuracy of the simulation output than full Geant4
detector simulation (image: [82]).

4.4.2 ATLFASTIIF

ATLFASTIIF is a fast ATLAS detector simulation, which combines the fast simulators
FastCaloSim and Fatras to form a complete ATLAS detector simulation. It is in many
ways similar to ATLFASTII, however, instead of Geant4 it uses Fatras to simulate the
tracking detectors and muon particles. Thus, Fatras is used for the inner detector and the
muon spectrometer simulation, as well as muon particles inside the calorimeter. All other
particles entering the calorimeter are simulated with FastCaloSim. This combination
results in a complete ATLAS detector simulation which is about one hundred times
faster than the full Geant4 ATLAS detector simulation [59].

ATLFASTIIF is under validation and it was therefore never used in ATLAS Monte
Carlo production campaigns so far.

44

Part II

The Integrated Simulation
Framework

45

Chapter 5

The Vision

A number of full and fast detector simulation approaches are used in high energy physics
experiments in order to cope with the high demand for Monte Carlo simulation samples.
Each type of detector simulation balances accuracy and execution speed in a distinctive
manner (Figure 5.1). A general, rather trivial relation is that more accurate simulations
require more computing resources and are thus slower. A common ATLAS simulation
framework is developed which allows to combine the different simulations and choose an
appropriate simulation technique for each individual particle in the detector simulation.
This chapter covers the specific requirements and design choices for the implementation
of such a framework for the ATLAS experiment. The full list of requirements are realized
in the ATLAS Integrated Simulation Framework (ISF).

The simulation techniques developed by the ATLAS collaboration (also referred to
as simulators) were previously introduced in Section 4.3. Before the implementation of
the ISF, many of these simulation techniques were mutually exclusive and could not
be applied in combination within one simulated event. Mixing different full and fast
simulation techniques for different particles within one event allows to achieve a balanced
combination of high simulation accuracy and high execution speed for the entire event.
Highly accurate simulation (with low simulation speed) may be required only for those
particles which play a significant role in subsequent physics studies. Lower simulation
accuracy (high simulation speed) may be acceptable for the remaining particles in the
event.

One type of combined detector simulation approach has proven to be successful
in a number of ATLAS Monte Carlo production campaigns throughout the previous
years: ATLFASTII. ATLFASTII combines the most accurate simulator Geant4 in the
inner detector with the fast calorimeter simulation FastCaloSim. As the individual
simulation techniques in ATLFASTII are only applied globally within the respective sub-
detectors, particles can not be selected individually for either accurate or fast detector
simulation. However, this might be a requirement in the detector simulation of signal
events for physics studies. A highly accurate simulation of the signal decay products
may be needed, in order to study the initial signal particle with the highest accuracy
available. The remaining particles in an event may be simulated with a less accurate,

47

The Vision

full

library

alternative/fast

parametric

HIERARCHY ACCURACY

high

low

CPU CONSUMPTION

e
ve

n
t

re
c
o
n
st

ru
c
tio

n
(e

ffi
c
ie

n
c
y/

fa
ke

s)
p

h
ys

ic
s

o
b

je
c
t

c
re

a
tio

n

Figure 5.1: The detector simulation hierarchy. Each simulation method used by the
ATLAS collaboration (green) distinctively balances simulation accuracy (blue) and ex-
ecution speed (orange) (image: A. Salzburger).

fast simulation. While maintaining the highest possible accuracy where it is needed,
this approach increases the execution speed of the overall detector simulation due to
using fast simulators where less accuracy is required. Neither the ATLFASTII nor the
ATLFASTIIF simulation approach provide the flexibility to configure the individual
simulators as required by the example given above.

The first set of requirements for an Integrated Simulation Framework emerge from
this limitation present in ATLFASTII. The ISF must allow for various combinations
of full and fast simulation techniques to be used for individual particles within one
event. The framework must also allow to define a number of rules that determine which
simulator is to be used for each particle in the event. Figure 5.2 shows a sketch for
an example ISF setup, where electrons are the particles associated with the physics
signature that is studied with this simulation. Therefore they are simulated in the most
accurate simulator, Geant4. The rest of the event (with the exception of muon particles)
is simulated in the Fatras or FastCaloSim fast simulator.

In addition to allowing for a flexible simulator configuration, the ISF must serve as
the common ATLAS detector simulation framework which is to be used for any type of
ATLAS detector simulation. As such, it must implement core ATLAS detector simula-
tion functionalities, which are to be used by all simulators, independent of the specific
detector simulation setup. Among the core functionalities of the simulation framework

48

The Vision

are the processing of the simulation input and output and the Monte Carlo truth record-
ing. Figure 5.3 illustrates the components of the ISF and its role as an ATLAS detector
simulation framework. The first step within the ISF is the input processing, during which
beam conditions and particle filters are applied to the particle collection created by the
event generator. The ISF routing algorithm identifies the best suited simulator for each
of the particles that passes the filter criteria. These particles are subsequently sent to
the respective simulator for detector simulation. Simulators may return child particles
to the particle router, which will again identify the best suited simulator for each of the
particles. The sensitive detector (SD) hits computed by simulators are recorded directly
into the respective StoreGate collection. Simulators register particle interactions and
decays to a central Monte Carlo truth recorder. The MC truth recorder generates a
consistent MC truth representation of each simulated event and stores it in the corre-
sponding StoreGate collection. Particle barcodes (and interaction vertex barcodes) are
generated by a barcode generator which is independent from the ISF implementation.
The barcodes are provided to the simulator and the MC truth recorder, where they
are stored in SD hits and the MC truth representation, respectively. Standardized ISF
interfaces are used to exchange information between the simulators and the framework.
This enables the integration of various types of simulators into one common framework.
Even future simulators (e.g. fully parametric simulators) can be integrated through the
use of these interfaces. Changes to the ISF code base are therefore not required when
the functionality of individual simulators change or new simulators are integrated into
the framework.

As a result of introducing the ISF as a common simulation framework, the two sepa-
rate detector simulation steps which were previously required for the ATLFASTII setup
are now combined in one simulation step. This is possible as Geant4 and FastCaloSim are
registered as two independent simulators within the ISF, with each processing different
particles of the event.

The following sections cover the specific requirements to the ISF in more detail.

49

The Vision

Figure 5.2: An example ISF simulation setup. The electrons in this example are the par-
ticles associated with the physics signature that is studied with this simulation. Hence,
they require a highly accurate detector simulation, which is chosen to be Geant4. Since
particles close to the electrons may impact their measurement or may be relevant for sub-
sequent physics analyses, a region of interest is defined around the electrons. All particles
in cones around the electrons are therefore also simulated in Geant4. As muon particle
simulation in Geant4 is much faster than the simulation of other particle types, muon
particles in the event are also processed by Geant4. The rest of the event is processed
by fast simulations: Fatras in the inner detector and FastCaloSim in the calorimeter.

50

The Vision

Figure 5.3: The data flow in ATLAS detector simulation with the Integrated Simulation
Framework. At the start of each event, the ISF prepares and filters the event generator
particle collection for detector simulation. The particle router identifies the appropriate
simulator for each particle in the detector simulation. Particles which are generated
inside the simulator by interaction or decay processes may be returned to the ISF for
re-routing. Simulators record the computed sensitive detector hits (or higher-level simu-
lation output) directly to the corresponding StoreGate collection. All simulators register
particle decays and interactions to a common Monte Carlo truth recorder, which gener-
ates a MC truth representation of the simulated particles. An external barcode generator
is used to compute particle and vertex barcodes, which are stored in SD hits and in the
MC truth representation, respectively.

51

The Vision

5.1 Common Simulation Framework

The ISF is designed to serve as the detector simulation framework which is to be com-
monly used for any ATLAS detector simulation – full and fast. As such, the framework
has core responsibilities, which are required by all simulators in any simulation setup:

Common Simulation Tasks : The framework implements central services for input
processing (considering beam conditions), Monte Carlo truth recording and particle
and vertex barcode handling. Interfaces and fundamental data types (such as the
ISF particle representation) are implemented inside the framework, in order to
allow a simulator-independent data flow between components of the ISF and the
individual simulators.

Simulator integration : The ISF supports the integration of all currently existing
ATLAS detector simulators: Geant4, Fatras and FastCaloSim. As the individual
simulator implementations are (to a large extent)1 independent from one another,
they are realized in separate libraries.

Simulation setup and configuration : Any ATLAS detector simulation is initiated
and configured through the ISF. The ISF allows for selecting a predefined detec-
tor simulation configuration or setup through a string identifier (i.e. the simulation
setup name). Athena ConfigurableFactory methods (also called ConfiguredFactory
or ConfGetter) [83] are used to instantiate and configure the Athena algorithms,
tools and services which involved in the detector simulation process in accordance
with the chosen simulation setup. A modular implementation of the ISF configu-
ration is possible due to using ConfiguredFactory methods.

5.2 Simulation Flavours and Simulator Mixing

A key innovation of the ISF is its flexibility to combine various simulators into one
ATLAS detector simulation setup. This is possible as the framework can process particles
through one or many different simulators within one event. This flexibility is enabled
due to the ISF particle routing algorithm which fulfills the following requirements:

• Support existing simulation flavours : The ISF supports the traditional full
Geant4 and ATLFASTII fast simulation flavours. This allows a transparent adap-
tation of the framework for official ATLAS MC production, replacing the two
previously independent simulation configurations.

• Region of Interest (ROI) : The simulation framework supports user-defined
regions of interest within the simulated events. Different simulators may be used

1Cross-dependencies, such as e.g. the Fatras simulator using decay and hadronic interaction processes
from Geant4, are separated out into dedicated packages in order to isolate such dependencies during
build-time.

52

The Vision

within different regions of interest. Separate ROIs may be defined per ATLAS sub-
detector. Thus, allowing to choose an appropriate simulator for detector simulation
within each respective sub-detector.

• Dynamic ROI : Regions of interest may be dynamically defined, based on the
topology of the respective simulation input event (i.e. the generator output).

5.3 Integration into ATLAS Monte Carlo Production

To guarantee a swift integration of the ISF into the ATLAS offline software framework
and the existing Monte Carlo production chain, the following criteria are considered in
the ISF design:

Athena integration : The ISF is implemented within the ATLAS offline software
framework Athena. This implies the use of AthAlgorithms, AthServices and
AthAlgTools for the implementation and configuration of all ISF tasks and algo-
rithms.

Simulation output format : The detector simulation output format is compatible
with the standard ATLAS digitization and reconstruction steps. If the standard
digitization and reconstruction algorithms are to be used for the output of any par-
ticular detector simulator, this simulator is required to generate the corresponding
sensitive detector hits output format. Multiple simulators within the ISF may be
creating SD hits within one event, thus the corresponding SD hit collection will
contain a combination of hits from each of the simulators.

Job transform script : Each individual step in the ATLAS Monte Carlo production
chain is steered through a respective job transform script. The ISF is therefore
configured through a dedicated job transform script named Sim tf.py. Any form
of ATLAS detector simulation can be configured and executed through this script.

5.4 Extensibility

With the central role of the ISF in ATLAS Monte Carlo production, it is essential that
the framework is designed for compatibility towards future developments and extensions
to its functionality. Therefore the following criteria are implemented and considered in
the ISF design:

Extensibility of simulators : The framework allows for the integration of new sim-
ulation techniques or simulators alongside the currently existing simulators. As
the individual simulators in the ISF are integrated through ISF-specific interfaces,
new simulators can be added by implementing these interfaces into the respective
simulator.

53

The Vision

Concurrency readiness : Concurrent processing is currently not exploited in AT-
LAS detector simulation. However, due to current trends in the processor market,
concurrency may become an essential requirement in the near future. The mod-
ular design of the framework allows for individual components to be replaced by
components which support concurrent processing techniques.

5.5 ISF within a Fast ATLAS Monte Carlo Chain

The ISF is one of many steps towards improving the computing performance of the
entire ATLAS Monte Carlo production chain. Fast digitization and fast reconstruction
techniques are currently being developed and validated for use in official ATLAS Monte
Carlo production campaigns [84, 85].

In a first phase, the ISF is to be integrated into the existing MC production chain.
The ISF uses full or fast simulators to process the event generator output through
the detector and, from this, generates detector simulation output which is subsequent
processed by the standard ATLAS detector digitization. In the second phase, the ISF
may feed its output into fast detector digitization and reconstruction algorithms. This
development, however, is independent of the detector simulation framework. In the
third phase, very fast (parametric) detector simulators will be integrated into the ISF.
These simulators generate reconstruction-level output for the particles they simulate,
thus subsequent digitization and reconstruction steps are not required.

In either of the phases described above, the ISF serves as a common framework for
any of the detector simulators (full, fast, parametric).

54

Chapter 6

ISF Particle Routing

Based on the requirements stated in the previous chapter, a completely new algorithmic
approach is needed to solve the problem of identifying the appropriate simulator for
each particle in a simulated event. The algorithm must consider user-defined simulation
selection rules which may even change from one simulated event to another. The problem
becomes increasingly complex with more simulators or regions of interest that are defined
in a detector simulation setup. In particular with some simulators (such as Geant4)
offering full and fast simulation approaches within the same implementation, which may
be seen as two individual simulators in the end. Since this problem concerns the routing
of particles through the simulation framework into the simulators, it is therefore also
called the particle routing problem.

Figure 6.1 illustrates the particle routing problem in simplified terms. Initially, a
set of particles (ISF particle collection) is available that needs to be simulated through
the ATLAS detector. A particle routing algorithm is required to find the appropriate
simulator (among a number of different simulators) for each of the particles. Evidently,
a unique solution is required for each particle in order to guarantee a reproducible
behaviour of the simulation framework. While the initial particles are being simulated,
new secondary particles may be returned by the simulators to the ISF particle collection.
Same as for the initial particles, the routing algorithm must find an appropriate simulator
for each of the secondary particles in the ISF particle collection.

In the following sections, various different routing classifications (Section 6.1) and
their algorithmic realizations (Section 6.2) are discussed .

55

ISF Particle Routing

Particle Collection

?

Particle Routing

Simulator A

Simulator B

Simulator C

secondary particles

Figure 6.1: The routing problem which needs to be solved in the ISF. Starting with
an initial list of particles, a particle routing algorithm must decide on the simulator
to use for each particle. The simulators may generate secondary particles which will be
added to the particle collection. For these, the routing algorithm must also determine the
appropriate simulators. The process is re-iterated until no more particles are returned by
the simulators and thus, all particles have been simulated through the ATLAS detector.

6.1 Routing Rules

Routing rules are user defined rules which are utilized to determine a detector simulator
for each particle within the ISF. For a given particle P , a routing rule i may or may not
suggest one simulator Si which is to be used for the simulation of this particle. For any
condition Ci and a defined simulator Si, any routing rule i will follow this structure:

• If the given particle P fulfills condition Ci then use simulator Si.

For a given routing rule, the simulator Si is a constant throughout the execution of
a detector simulation job.

The following list shows a few illustrative examples of routing rules (in fact these
rules are static routing rules, which are discussed in detail in the following subsection):

1. Simulate all muon particles with Geant4.

2. Discard all particles with a momentum vector orientation of |η| > 5 from detector
simulation.

3. Simulate all particles inside the ATLAS inner detector with Fatras.

4. Simulate all particles inside the ATLAS calorimeter with FastCaloSim.

Typically, a combination of various different routing rules are used to form a realistic
detector simulation setup. However, different individual rules may suggest different
simulators and thus may contradict each other. For example, if one were to combine
rule 1 and 2 from the examples above, it becomes evident that the rules give contradicting
results for a muon particle travelling towards the forward ATLAS detector region with

56

ISF Particle Routing

η > 5. To solve such conflicts two solutions are considered relevant for the purpose of
the ISF:

Prioritization of routing rules : The individual routing rules are given in a priori-
tized order. In the case of conflicts between routing rules, the decision of the rule
with a higher priority is favored. For the example above, this would mean if rule
1 has a higher priority than rule 2, then a muon in the forward region would be
sent to Geant4 rather than being dropped from detector simulation.

Prioritization of simulators : Alternatively, one may prioritize the individual sim-
ulators rather than the routing rules. For this, all routing rules are evaluated for
a given particle and one simulator is chosen among all the suggested simulators.
If there are no conflicting rules for a given particle, a maximum of one simulator
is suggested by any set of routing rules. In this case, the one simulator is chosen
for the simulation of the given particle. If there are conflicting rules for a given
particle, more than one simulator will be suggested. The chosen simulator will be
the one simulator with the highest priority among the suggested simulators. In
the example above, if Geant4 were given a higher priority than not simulating a
particle at all, a combination of rule 1 and 2 would send a muon in the forward
detector region to Geant4.

The prioritization of routing rules approach was favoured for the purpose of the ISF,
due to its more intuitive behaviour.

Whether a routing rule i suggests a simulator Si or not for any one physical particle,
may change during the detector simulation. The outcome of a routing rule can change
if either the condition Ci changes (discussed in the following subsections) or the particle
itself changes. Apart from fully parametric detector simulations, simulators will con-
tinuously update the particles involved in the simulation until a set of final criteria are
met and the simulation is terminated. Consequently, these particles will change and if a
given routing rule is consulted for the very same physical particle at different times, the
outcome may differ. Two simple examples are: a particle which has been propagated
until a geometrical condition in Ci is not fulfilled any longer, or a particle has lost en-
ergy due to ionization such that an energy threshold in condition Ci is not fulfilled any
longer. For the implementation of any routing algorithm, it must be decided, whether
continuously changing simulator decisions for the same physical particle are acceptable
or whether this is to be avoided. In the context of the ISF routing implementation, it
was decided that for each particle one simulator decision per ATLAS sub-detector is
sufficient (see Section 6.2 for details).

The amount of information that is accessed to test condition Ci, varies between
the different classes of routing rules. The various classes are described in detail in the
following subsections: Purely static rules, which do not change from one simulated event
to another, are discussed in Subsection 6.1.1. The routing rules discussed in Section
6.1.2 will change depending on the event topology of the simulation input. Eventually,
Section 6.1.3 discusses fully dynamic routing rules, which update their conditions during
the detector simulation of one event.

57

ISF Particle Routing

6.1.1 Static Routing Rules

Static routing rules are a class of routing rules for which the according conditions Ci do
not change throughout the execution of a detector simulation job. In addition, such rules
must only take into account the information associated with the particle P for which
a routing decision has to be made. If information about other particles in the event is
used to make a routing decision for any one particle, the rule would not be static and
thus the implications discussed in this section would not apply.

Static routing rules can be used to define regions of interest within the ATLAS
detector or with respect to particle kinematics and properties. For instance in the list of
examples provided above, rule number 2 defines a region of interest within the ATLAS
detector for the pseudorapidity range of |η| > 5. It is possible for a particle to start
within the ROI and, during the process of the detector simulation, to leave this ROI.
How this effect is taken into account, depends on the specific implementation of the
routing algorithm. As discussed previously, the ISF evaluates routing rules for each
particle once per ATLAS sub-detector. Thus, if a particle were to leave an ROI that
is defined by a static routing rule within one sub-detector, it would remain within the
same simulator that processed it to this point.

In order to avoid losing particles in the detector simulation, rules selecting a default
simulator may be defined for each detector region. Such rules do not put any restrictions
on a particle and will always suggest a simulator for a given detector region. In the
routing examples provided above, rules 3 and 4 are default simulator rules. These rules
guarantee that each particle within the ATLAS inner detector and calorimeter will indeed
be simulated, even if no other rule applies to a given particle.

Prioritized static routing rules can be used to form the traditional ATLAS detector
simulation setups (low number means high priority):

Full Geant4 detector simulation:

1. Simulate all particles with Geant4.

ATLFASTII fast detector simulation:

1. Simulate all particles in the ATLAS inner detector with Geant4.

2. Simulate muon particles in the ATLAS calorimeter with Geant4.

3. Discard all particles with a momentum vector orientation of η > 5 in the
ATLAS calorimeter from any detector simulation.

4. Simulate all particles in the ATLAS calorimeter with FastCaloSim.

5. Simulate all particles in the ATLAS muon spectrometer with Geant4.

ATLFASTIIF very fast detector simulation:

1. Simulate all particles in the ATLAS inner detector with Fatras.

2. Simulate muon particles in the ATLAS calorimeter with Fatras.

58

ISF Particle Routing

3. Discard all particles with a momentum vector orientation of η > 5 in the
ATLAS calorimeter from any detector simulation.

4. Simulate all particles in the ATLAS calorimeter with FastCaloSim.

5. Simulate all particles in the ATLAS muon spectrometer with Fatras.

Due to the flexibility and simplicity of static routing rules, the ISF routing algorithm
does support static routing rules (Section 6.2.1).

6.1.2 Semi-Dynamic Routing Rules

Semi-dynamic routing rules are a class of routing rules, for which the condition C is
(at least partly) based on information from the initial particles in the simulation input
event (the EVNT format, Section 4.2). A semi-dynamic routing rule must not take into
account particles outside the simulation input of the current event.

In consequence, condition C must be set at the start of the detector simulation for
each event respectively. It will stay the same throughout the simulation of this event.
Before the start of the simulation of the next event, condition C must be reset and
updated according to the new input event. At this point, condition C must discard all
information that is held about the previous event. If this information is not discarded,
the detector simulation framework that is using such a routing rule, may introduce
correlations between independent events.

Semi-dynamic routing rules can be used to cover a wide range of possible applications.
Most commonly, they are used to define regions of interest within an event, based on
the simulation input. For example, such ROIs may be defined in cones around signal
particles in the EVNT file. One application of semi-dynamic routing rules is studied in
detail later in this thesis in Chapter 12.

Figure 6.2 illustrates that ROIs which are defined by the initial particles can lead to
changing simulator decisions during the course of the detector simulation. Thus, if the
semi-dynamic routing rules were strictly enforced, the routing rules would need to be
re-evaluated for each single simulation step of each particle. As mentioned previously,
the approach taken in the ISF routing design evaluates the routing rules for each particle
only once per ATLAS sub-detector.

A region of interest, which is defined solely by the initial conditions of a detector
simulation event (i.e. the generated event), can not adjust to changing conditions which
may occur during the detector simulation. Figure 6.3 illustrates a case where semi-
dynamic routing rules are defined by the initial particle states. During the course of
the detector simulation, the particle defining the ROI leaves this region. According to
the definition of semi-dynamic routing rules, the ROI can not be updated during the
simulation of one event (this is possible with dynamic routing rules, see Section 6.1.3).
This example shows that care must be taken when defining the ROIs using initial particle
states. In this case, either the cone size could be increased, or alternatively, cone-shaped
ROIs could only be defined around particles with a high enough momentum, such that
they are unlikely to bend out of their own ROI.

59

ISF Particle Routing

(a) (b)

Figure 6.2: A region of interest which is defined solely by the initial conditions of a
detector simulation event, can lead to changing simulator decisions during the evolution
of the detector simulation. Figure (a) and (b) show a cone-shaped ROI which is defined
by the initial condition of the electron in the event, respectively. Semi-dynamic routing
rules are used to determine the simulator S for particles inside this ROI (red) and other
routing rules are used outside (blue). Figure (a): The particles involved continue to stay
within the ROI throughout the detector simulation. Thus, the simulator decisions will
not change. Figure (b): The particles bend out of and into the cone ROI. Thus, the
simulator decision for these particles may change, if the semi-dynamic routing rules are
re-evaluated for these particles.

The fact that particles do not change their simulator when bending out of cone-
shaped ROIs is desirable for subsequent processing steps and physics analyses. In the
ATLAS inner detector, the particle measurement in the perigee representation (i.e. point
of closes approach to a particular decay vertex or beam-interaction region) is most rel-
evant for physics analyses. If the perigee position of a particle is close to a vertex of
interest, the particle may be relevant for the analyses. In such a case, the particle will
initially be located within the cone-shaped ROI. The perigee measurement, however,
is derived from all sensitive detector signals of this particle throughout the entire AT-
LAS inner detector. In order to achieve the desired accuracy in this particle’s perigee
measurement, it is important that all inner detector hits are created by the simulator
which is to be used within the ROI – even if some hits may be located outside the ROI.
Thus, if a particle starts within a cone-shaped ROI and bends out during the detector
simulation, it is simulated with the desired simulator close to the perigee position and
throughout the rest of the inner detector simulation.

Due to the flexibility of semi-dynamic routing rules, the ISF routing algorithm does
support semi-dynamic routing rules (Section 6.2.2).

60

ISF Particle Routing

Figure 6.3: In this example, a cone-shaped region of interest is defined around the initial
state of an electron in the detector simulation input event. Due to the magnetic field
present in the ATLAS detector, the simulated electron trajectory leaves the ROI that
was defined around its initial state. An increased cone size, or alternatively, a minimum
momentum requirement for particles creating cone-shaped ROIs, may prevent particles
from bending out of their own ROIs.

6.1.3 Dynamic Routing Rules

Dynamic routing rules are a class of routing rules for which the according conditions Ci
may change during the detector simulation of a given event. Dynamic routing rules can
be used to define and update regions of interest in accordance with changing conditions
within a detector simulation event. Figure 6.3 shows an example where the particle that
initially defines the ROI in a semi-dynamic routing rule, is leaving this ROI during the
detector simulation. With dynamic routing rules, the ROI can be adjusted to the actual
trajectory of the initial particle as it is simulated through the ATLAS detector.

Another example for the use of dynamic routing rules is shown in Figure 6.4. In this
case, a dynamic routing rule creates cone-shaped regions of interest around each electron
and positron in the event. The one electron which is among the initial particles defines
the first ROI (Figure 6.4a). The detector simulation for the photon particle, computes a
conversion into an electron-positron pair [86] (Figure 6.4b). Thus, the dynamic routing
rule defines new ROIs from the resulting electron-positron pair (Figure 6.4c). As a
consequence, the pion particle will now fulfill condition C of the dynamic routing rule
and thus be sent to simulator S of this rule.

The example above shows, that the order in which particles are simulated has a direct
impact on which particles are selected by dynamic routing rules. If the pion particle in
Figure 6.4 were to be simulated before the photon particle, then it would no fulfill the
condition C of the dynamic routing rule. Thus, the pion will probably be simulated

61

ISF Particle Routing

e-

ɣ

π

(a)

e-

ɣ

e-

e+

π

(b)
e-

ɣ

e-

e+

π

(c)

Figure 6.4: A dynamic routing rule that defines cone-shaped regions of interest around
all electrons and positrons in the event. The particles that are selected by this rule are
marked red, the others black. Figure (a) shows the initial state of the event simulation
with an electron, a photon, a pion and a few other particles that are inside the cone
ROI. Figure (b) shows the state after the photon has been simulated and, in this case, it
undergoes a conversion into an electron-positron pair. Subsequently, in Figure (c), the
resulting cones around the electron and positron are shown, which now also contain the
pion particle.

by a different simulator compared to the case where the photon (which undergoes a
conversion) were simulated first.

This may lead to, what is called, inconsistent simulator decisions for the particles
in the event: Looking at the event after it has been simulated, one may find particles
that should have been selected by a given dynamic routing rule, where in fact they were
simulated by a different simulator. This inconsistency arises if the ROI that includes
the particle in question, is created after this particle has already been simulated. Such
inconsistent simulator decisions contradict the users’ intention when defining dynamic
routing rules. Thus, this effect renders the simulation behaviour somewhat non-intuitive
and, therefore, must be avoided.

There are two solutions to solve or minimize this inconsistency:

Prioritization of routing rules : It is possible to minimize this inconsistency by ap-

62

ISF Particle Routing

plying a prioritization of the routing rules (Section 6.1) and trigger the simulation
of a particle as soon as its simulator is determined. To do so, all particles that
can potentially cause a change to the ROIs of the dynamic routing rules, must
be simulated early on. More specifically, these particles must be simulated before
any dynamic routing rule is evaluated for any one particle in the event. In the
example above (Figure 6.4), all photons would need to be selected for simulation
by a dedicated photon routing rule, that has a higher priority than the dynamic
routing rule. After this selection is made, each photon would need to be simulated
right away. Thus, when the dynamic routing rule is evaluated for the first time,
the ROIs will be based on the initial event input and the photon simulation results
(potential electron-positron pair conversions). However, the electron or positron
constantly emits bremsstrahlung [87] during its detector simulation due to the
presence of a magnetic field. Some of these bremsstrahlung photons, again, might
undergo conversions into electron-positron pairs. Thus, new ROIs around these
electrons and positrons will be registered by the dynamic routing rule. To avoid
simulating particles that end up inside these ROIs before they are even created,
also electrons and positrons would need to be selected and simulated prior to the
evaluation of the dynamic routing rule.

”Un-doing” simulated particles : It is possible to get fully consistent simulator
decisions if the simulation framework is capable of discarding all simulation results
of individual, already simulated, particles. This would need to be applied to all
particles for which the simulator decision changes, after they had already been
processed through a detector simulation. In the context of dynamic routing rules,
this will happen if an ROI is created that includes a particle which had already
been simulated at the time of the creation of the ROI. All simulation results of this
particle’s detector simulation must be purged: among other objects, this applies
to all sensitive detector hits, secondary particles and even dynamic routing rules
which were updated due to the secondary particles. Once these simulation results
haven been purged, the particle can be re-simulated within a different simulator.
The purging of simulation results of a particle with many daughter particles, illus-
trates that this method may introduce a significant computational overhead. This
overhead may outweigh the benefits of having fully consistent routing decisions. In
addition, a very detailed bookkeeping would be necessary to associate all simula-
tion results that are produced by any one particle. Thus, this method is considered
as being inefficient in the context of the ISF.

Figure 6.5 illustrates the difference between two methods for dynamic routing rules
to test whether a particle is positioned inside a cone-shaped ROI (with cone size ∆R) or
not. The first method uses the particle position to determine whether it is located within
the ROI. In the figure, the creation vertex of positron e+

2 is positioned within the ROI
(as |ηpos − η0| ≤ ∆R is fulfilled) thus, the particle is selected by the dynamic routing
rule (red). The second method uses the particle momentum to test the condition of the
cone-shaped ROI. The momentum direction η2 of the positron e+

2 in the figure does not

63

ISF Particle Routing

fulfill the ROI condition (as |η2 − η0| � ∆R) thus, the particle will not be selected by the
dynamic routing rule (blue). Either method may be implemented in dynamic routing
rules.

Figure 6.5: An illustration about the difference between position-based and momentum-
based testing whether a particle is within a cone-shaped ROI or not. In the former
method, the position e+

2 is considered inside the cone, as the condition |ηpos − η0| ≤ ∆R
is fulfilled. In the latter case, the same position is outside the cone-shaped ROI, as the
condition is not fulfilled with |η2 − η0| � ∆R.

Due to the complex implications of dynamic routing rules, the ISF routing algorithm
does not support dynamic routing rules. However, a possible extension to the ISF routing
algorithm, that will also support dynamic routing rules, is discussed in Section 6.2.3.

6.2 The ISF Routing Chain

This section discusses the details of the ISF routing algorithm, the ISF routing chain,
and its implications. Subsections 6.2.1 and 6.2.2 cover the specifics of static and semi-
dynamic routing rules within the ISF routing chain, respectively. A possible extension
to the current routing algorithm, in order to support dynamic routing rules, is discussed
in Subsection 6.2.3. A detailed documentation about the routing chain’s implementation
can be found in a later section, Section A.3.

64

ISF Particle Routing

The ISF routing algorithm was built, based upon these fundamental design decisions:

Order independent : The routing decisions taken by the ISF routing algorithm
must be independent of the order in which the particles are read-in and processed
by the framework. This requirement becomes particularly critical in the light of
concurrent processing of particles within the simulators and within the simulation
framework in the near future. In addition, the simulator decisions must not depend
on the order in which any secondary particles may be returned from the simulators.

Supported classes of routing rules : Due to the complex implications of dynamic
routing rules, the ISF routing algorithm was designed to support only two classes
of routing rules: static and semi-dynamic routing rules.

Routing rule prioritization : The ISF routing algorithm requires that routing rules
are prioritized with respect to each other, such that two routing rules can not have
the same priority within one detector simulation job.

Separate set of routing rules per sub-detector : Due to the completely different
simulation approaches for the individual ATLAS sub-detectors, one set of routing
rules is to be defined per ATLAS sub-detector. The routing rules though, can be
identical for different sub-detectors.

One evaluation per sub-detector : The simulator for any given particle will be
determined only once per ATLAS sub-detector. This is to avoid the significant
computational overhead of re-evaluating each particle’s routing decision in each
individual simulation step. Consequently, the routing rules are only evaluated
once per sub-detector for a given particle. This comes at the price, that a particle
might leave an ROI of a static or semi-dynamic routing rule and its routing decision
will not be updated.

The implementation resulting from the list of requirements above, is designed as a
chain of routing rules which are evaluated in order. Each routing rule i in the chain has
a condition Ci and a simulator Si (see Figure 6.6). In the context of the ISF, a routing
rule is also called a SimulationSelector, as this is the class name of the C++ interface
and implementation (Section A.3.1). A chain of routing rules has to be defined for each
ATLAS sub-detector individually. Though, in some cases, the individual chains might
be equivalent or contain the same routing rules.

The process of identifying a simulator S for a given particle P is the following:

1. The ISF determines the applicable routing chain, based on the position of the
particle. Each ATLAS region or sub-detector has a separate routing chain.

2. The ISF evaluates the routing rules according to their priority. It starts with
the routing rule that has the highest priority and moves towards rules with lower
priority. In Figure 6.6 the rules are evaluated from the left to the right.

65

ISF Particle Routing

Particle Collection

ISF Routing Chain

if true

if false

Routing Rule 1

SimulationSelector 1

if true

if false

Routing Rule 2

SimulationSelector 2

if true

is last in chain

if false

Routing Rule 3

SimulationSelector 3

Figure 6.6: The ISF routing chain. Each routing rule i is associated with a condi-
tion Ci and simulator Si. In the context of the ISF, a routing rule is also called a
SimulationSelector. The individual routing rules are arranged in a prioritized order.
To determine the simulator for a given particle, the conditions Ci are evaluated in the
order of the prioritization. The simulator for a given particle is set to Si, where i is such
that Ci is the first condition in the chain that is fulfilled by the given particle.

3. In this process of stepping through the routing rules, the first condition Ci that
is fulfilled by the particle P determines that the simulator for this particle will be
set to Si. After this, no further routing rule evaluations will be carried out for the
given particle.

4. The routing rule with the lowest priority in the chain will accept any particle. If
a particle was not selected by any prior routing rule, it will be assigned to the
simulator of the last routing rule. This behaviour guarantees that every particle
will be assigned to a well defined simulator.

6.2.1 Static Routing Rules in the Routing Chain

Static routing rules (Section 6.1.1) are the least complex and most basic class of routing
rules that are supported by the ISF routing algorithm. By definition, the conditions
Ci of static routing rules will not change throughout the execution of the ISF detector
simulation. However, static routing rules are still flexible enough such that all traditional
ATLAS simulation setups (full Geant4, ATLFASTII and ATLFASTIIF) can be formed
by a set of static routing rules.

6.2.2 Semi-Dynamic Routing Rules in the Routing Chain

Semi-dynamic routing rules (Section 6.1.2 are a class of routing rules which can incorpo-
rate properties of the initial event (i.e. the event generator output) into the conditions
Ci.

At the same time as the ISF is preparing the simulation input for a given event, each
semi-dynamic routing rule is updated with the initial list of particles in this event (Figure
6.7a). The ISF does not request a routing decision for these particles at this point, but
the individual semi-dynamic routing rules will adjust their conditions Ci according to
the properties of the initial list of particles. After the semi-dynamic routing rules were

66

ISF Particle Routing

updated in this way, the conditions Ci remain unchanged (they are ”locked”) throughout
the simulation of the current event. The actual particle routing algorithm, as discussed
in Section 6.2, will use these updated routing rules to determine a simulator for each
particle (Figure 6.7b). Already the routing of the initial list of particles will be done
using the updated routing rules.

Particle Collection

ISF Routing Chain

Routing Rule 1

SimulationSelector 1

Routing Rule 2

SimulationSelector 2

Routing Rule 3

SimulationSelector 3

(a)

Particle Collection

ISF Routing Chain

if true

if false

Routing Rule 1

SimulationSelector 1

if true

if false

Routing Rule 2

SimulationSelector 2

if true

is last in chain

if false

Routing Rule 3

SimulationSelector 3

(b)

Figure 6.7: The ISF routing chain supports semi-dynamic routing rules: (a) At the
beginning of each event, the semi-dynamic routing rules are updated according to the
particles in the initial particle list. (b) After this, the conditions Ci are be locked and
will not change throughout the rest of the current event simulation. These updated
conditions will be used to find particle routing decisions for all particles in the event.

6.2.3 Dynamic Routing Rules in the Routing Chain

Due to the complex implications, dynamic routing rules (Section 6.1.3) are not supported
by the current implementation of the ISF routing algorithm. This section discusses a
possible extension of the ISF routing chain, which emerged in the design phase of the
ISF.

The main challenge to solve, is the possible inconsistency between previously made
simulator decisions and continuously updated dynamic routing rules. This inconsistency
can arise if the condition Ci of a dynamic routing rule is updated, such that a simulator
decision might change for a particle that has already been simulated. As discussed
previously, this inconsistency can be minimized, if dynamic routing rules are provided

67

ISF Particle Routing

as part of a set of prioritized routing rules. The aim of this set of routing rules is, to
simulate as many of the particles that could potentially change the conditions Ci of the
dynamic routing rules, as early as possible in the event. Based on the principles of this
method, a routing chain design with an incremental locking of the routing rules emerged
(Figure 6.8). The incremental locking is currently not implemented into the ISF routing
chain. Therefore, this section only discusses the theoretical concept and implications of
such an algorithm.

The routing chain with incremental locking is an extension of the algorithm described
in the previous Section 6.2:

1. The conditions Ci of all dynamic routing rules are updated according to the initial
list of particles in the event (Figure 6.8a).

2. After all routing rules were updated in this way, the condition C1 of the first
routing rule is locked (Figure 6.8b). This means that the condition of this routing
rule will stay constant until the end of the current event simulation. Subsequently,
all particles that are selected by the first routing rule are simulated through S1.
The first routing rule is also evaluated for all secondary particles, regardless of
their generation number. Particles that are selected by the first routing rule will
be sent to the assigned simulator right away. At the same time, the conditions Ci
of all unlocked routing rules are updated with the secondary particles produced
by S1. The particles which are not selected by the first routing rule are put aside
(”put on hold”) for later processing.

3. Once the first routing rule does not select any more particles, i.e. there are no more
particles to be simulate by S1, the second routing rule is locked (Figure 6.8c). At
this point, all particles are in the ”on hold” collection after the first routing rule.
The second routing rule is now evaluated for these particles that were put aside in
the previous step. As before, all locked routing rules in the chain will be evaluated
(in order) for the secondary particles, regardless of their generation number. All
particles that are selected by either the first or the second routing rule are simulated
right away in simulator S1 or S2, respectively. Particles that are selected by neither
of the two, are put aside for later processing.

4. This scheme continues until the last routing rule in the chain is locked. At this
point, all conditions Ci will be locked and all routing rules are evaluated (in order)
for the particles in the simulation framework.

5. The detector simulation ends, if all particles (including all secondaries) have been
completely processed by the simulators Si and no more particles need to be sent
to any simulator.

The algorithm discussed above, guarantees that the dynamic routing rules are up-
dated (i.e. stay unlocked) as long as possible throughout the simulation of an event. The
conditions Ci of the dynamic routing rules will take into account all particles (including
secondaries) that were present until the routing rule is evaluated for the first time. The

68

Particle Collection

ISF Routing Chain

Routing Rule 1

SimulationSelector 1

Routing Rule 2

SimulationSelector 2

Routing Rule 3

SimulationSelector 3

(a)

Particle Collection

ISF Routing Chain

Particles on Hold

if true

if false

Routing Rule 1

SimulationSelector 1

(b)

Particle Collection

ISF Routing Chain

if true

if false

Routing Rule 1

SimulationSelector 1

Particles on Holdprocessing

if true

if false

Routing Rule 2

SimulationSelector 2

(c)

Particle Collection

ISF Routing Chain

if true

if false

Routing Rule 1

SimulationSelector 1

if true

if false

Routing Rule 2

SimulationSelector 2

processing

if true

is last in chain

if false

Routing Rule 3

SimulationSelector 3

(d)

Figure 6.8: A concept for an ISF routing chain that supports dynamic routing rules. (a)
All dynamic routing rules are updated with the particles in the initial particle list. (b)
Subsequently, the condition C1 of the first routing rule is locked. All particles (including
all secondaries) that are selected by the first routing rule are simulated through simulator
S1. All unlocked dynamic routing rules are updated with the secondary particles. (c)
The second routing rule is locked and all particles (including all secondaries), that are
selected by either the first or the second routing rule, are simulated through S1 or S2,
respectively. (d) This scheme continues until the last routing role is locked. At this point,
all remaining particles (and secondaries) will be simulated and all of the conditions Ci
are locked.

ISF Particle Routing

rules need to be locked, however, as soon as they are used to assign simulators to par-
ticles. This locking guarantees that the decisions taken by a dynamic routing rule will
not change until the end of the current event simulation. If a dynamic routing rule were
used to assign a simulator to a particle, and this routing rule can change later on as a
result of the ongoing event simulation, the decisions that have already been taken by the
routing rule might become inconsistent. That is to say, the updated condition Ci of such
a routing rule, may give different results for the particles that were already selected by
this rule prior to the update. If one were to look at the condition Ci of such a routing
rule at the end of the event simulation, it would not be possible to determine which par-
ticles were selected by the routing rule during the simulation of the event. Even more
importantly, the locking of dynamic routing rules guarantees that the routing algorithm
as a whole is order independent. Assuming a dynamic routing rule with a condition
Ci that varies throughout the simulation of an event, is used to determine a simulator
for a particle. The decisions taken by this dynamic routing rule would be different, if
the particles which update the routing rule were provided in a different order. Thus
the evaluation of unlocked dynamic routing rules in the routing algorithm, causes the
simulator decisions to be dependent on the order in which the particles are processed.
This would violate one of the fundamental requirements to any ISF routing algorithm
(Section 6.2).

70

Chapter 7

ISF Components

The requirements of the Integrated Simulation Framework (as covered in Chapter 5)
arise from years of experience using various ATLAS detector simulation approaches.
To guarantee a swift integration of the ISF into the existing Monte Carlo simulation
infrastructure, the framework is designed as a drop-in replacement for existing ATLAS
detector simulation setups. New features, such as advanced particle routing algorithms
(Chapter 6), are transparent to subsequent steps in the ATLAS Monte Carlo production
chain (Section 4.2). The input and output data formats are compatible with the ATLAS
detector simulation technologies preceding the ISF. Some components within the ISF are
therefore adaptations of already existing algorithms (examples are Monte Carlo truth
recording and particle barcode generation), which guarantees a high level of compatibility
with the existing MC production chain. In many cases, these algorithms were previously
simulator-specific implementations, whereas they are now centrally handled by the ISF
and used for any ATLAS detector simulation setup.

The main components of the ISF are the individual detector simulators (Section 7.1),
which process the particles through the ATLAS detector volume and ultimately gener-
ate the corresponding particle energy depositions, detector signals or measurements. As
each simulator implements a different algorithm to do so, the various detector simulators
are implemented in independent components. The simulators retrieve the particles for
simulation from the framework, which uses the newly developed particle routing algo-
rithm to identify an appropriate simulator for each particle in the event (Section 7.2).
At the beginning of each simulated event, the framework uses the routing algorithm
to determine the according simulator for each particle in the input. Depending on the
specific configuration, the routing algorithm may be used to determine the appropriate
simulators for secondary particles which are created during the detector simulation as
well. As the particle routing algorithm uses different sets of routing rules for different
regions in the detector, a precise definition of ATLAS regions and sub-detectors inside
the detector simulation is a fundamental part of the ISF (Section 7.3). A Monte Carlo
truth representation of the particles involved and the interactions occurring during the
detector simulation is essential for subsequent performance studies or physics analyses
(Section 7.4). Hence, the ISF implements a central MC truth service which records a

71

ISF Components

representation of the particles simulated through the detector in the HepMC data for-
mat. Contrary to previous implementations, the algorithms and rules concerning the
recording of Monte Carlo truth inside the ISF are independent from the particular simu-
lators involved in the detector simulation. The ISF MC truth components are centrally
configured and the same level of MC truth information is recorded for all simulators,
provided the respective simulators are able to generate the required particle-level truth
information in the first place. The ISF generates and assigns barcodes to the individual
particles involved in the detector simulation (Section 7.5), as this allows to associate
objects which will later be reconstructed with the underlying Monte Carlo truth object.

The modular design of the ISF allows for multiple implementations of various core
ISF components. The individual components of the core framework can be replaced by
alternative implementations, which must provide the necessary functionality and adhere
to the specific implementation requirements (covered in the implementation appendix
A). The ISF components described in detail in this chapter are the default components,
but alternative implementations may exist and may be used for particular ISF setups or
studies.

7.1 Simulators and SimulationServices

The core components of any ATLAS detector simulation are the algorithms which com-
pute particle energy depositions, detector responses or measurements of particles travers-
ing the ATLAS detector. In order to achieve this, different types of simulation algorithms
exist. Some algorithms compute particle interactions, decays and energy loss of parti-
cles traversing the ATLAS volume. Other algorithms compute the detector response or
particle measurements corresponding to the simulation input. In the context of the ISF,
these algorithms are called simulators, sometimes also referred to as simulation engines
or simulation services. The various full and fast simulation approaches available to the
ATLAS collaboration were described in Section 4.3. This section covers the implications
of using these in the context of the ISF.

Simulators are exchangeable modules in the simulation framework and the ISF does
not distinguish between different types of simulators1. The ISF uses particle routing
algorithms with routing rules to determine the appropriate simulator for each particle
in the event (Section 7.2). Once the simulator is determined, the particle is sent to
it for the generation of the simulation result in the corresponding output data format.
Depending on the simulator type, it is within the simulators responsibility to compute
particle trajectories, particle decays, particle-material interactions, energy deposits in
sensitive detector (SD) elements, detector responses or particle measurements.

1For technical reasons, the ISF can address different simulators through a unique identifier, which is
assigned to each simulator at the beginning of the Athena job.

72

ISF Components

7.1.1 Requirements for Simulators

This section provides a brief summary of the most important requirements a simulator
must fulfill for successful integration into the ISF. A more detailed list, focussing on the
specific requirements of the implementation, is available in the appendix Section A.4.1.

There are no restrictions on the type of simulator to be integrated into the ISF.
Full detector simulation, pre-simulated shower libraries and parameterized simulation
approaches are already successfully integrated into the ISF.

Algorithmic Properties

A simulation service used by the ISF must be a deterministic algorithm and therefore
create reproducible output. Consequently, if the ISF detector simulation is run multiple
times with the exact same input and the same configuration, the output must be bitwise
identical. This is less a requirement by the simulation framework implementation, but a
generic requirement to guarantee efficient development and validation of ATLAS detector
simulations.

In addition, a simulator has to finish processing of particles in finite time. If any one
simulator in the ISF enters an endless loop, the entire ISF simulation process will loop
endlessly. The ISF does not have measures in place, to detect such misbehaviour of a
simulator. Eventually, the Athena framework will trigger a timeout condition and the
process will be terminated. Hence, this requirement must be validated during the design
and development phase of each respective simulator.

Particle Decays or Interactions with Detector Material

Particle interactions and decays computed inside a simulator are converted into a
simulator-independent data format and registered with the ISF TruthService (Section
7.4). From this, the TruthService creates a consistent Monte Carlo truth representation
of the simulated event.

However, simulators in the ISF are not generally required to compute particle decays
or interactions with detector material. For example parametric simulators (such as
FastCaloSim), compute a detector response directly from the simulator input, without
simulating each particle’s interactions with the detector material. Thus, this requirement
only applies to simulators which do compute particle interactions and decays.

Secondary Particles

Secondary particles created by simulators may be returned to the ISF by sending them to
the ISF ParticleBroker (Section 7.2). A common data format (ISFParticle) is used by all
simulators for returning particles to the framework. Any particle (primary or secondary)
crossing a boundary between ATLAS regions or sub-detectors (Section 7.3) within a
simulator must be returned to the ISF ParticleBroker. This allows the framework to re-
evaluate the routing decision for this particle. One exception to this is the full simulation

73

ISF Components

ISF setup, for which Geant4 is the only simulator present in ISF and therefore all particles
remain inside Geant4 throughout the entire ATLAS detector volume (Section 9.1).

Similar to the previous requirement, simulators in the ISF are not generally required
to generate secondary particles. Therefore this requirement only applies to all simulators
which do generate secondary particles.

Sensitive Detector Hits

With the ISF serving as a common framework for different simulator implementations, a
common data format for sensitive detector hits is used by all simulators which generate
SD hits. Simulators are required to add simulated SD hits directly to the various Store-
Gate collections, each representing a different type of sensitive detector. Simulators are
not generally required to generate SD hits, however, if they do they must adhere to the
common SD hit format.

Random Number Streams

Each Monte Carlo simulator must utilize a separate stream of random numbers. This
is to allow testing of simulators independently, in particular ISF setups where a mix of
different simulators is used.

7.2 Particle Routing and the ParticleBroker

The ISF particle routing is the most innovative and essential part of the simulation
framework. A ParticleBroker identifies an appropriate simulator for each particle in the
event. The ParticleBroker implements the ISF routing chain algorithm (Section 6.2)
and allows for static and semi-dynamic routing rules. The ISF particle routing identifies
the simulator for primary particles present in the EVNT input, as well as for secondary
particles which are returned by the simulators to the ISF at any point during the event
simulation.

As different simulations are capable of simulating different parts of the ATLAS de-
tector, the ParticleBroker holds one routing chain per ATLAS region or sub-detector
(Section 7.3). This enables the user to configure the particle routing in accordance with
the simulators that are available for the individual regions. Due to this, cross-checks
to determine whether a particle is within a valid region for a given simulator are not
necessary. For example, FastCaloSim is only capable of simulating particles in the AT-
LAS calorimeter, thus this simulator may only be configured in the routing chain for the
calorimeter region.

Routing Rules and SimulationSelectors

The routing rules in the context of the ISF ParticleBroker are called SimulationSelectors.
Each SimulationSelector i is associated with a simulator Si and a condition Ci. Static
SimulationSelectors base their decision on the information present about a given particle.

74

ISF Components

Semi-dynamic SimulationSelectors also take into account the particles present in the
EVNT simulation input, in order to decide whether or not they select a given particle.
Thus, the condition Ci of semi-dynamic SimulationSelectors is updated for each event.

The routing chain for each ATLAS detector region is formed by a list of Simulation-
Selectors which are provided in a prioritized order. To determine the simulator for a
given ISFParticle, the ParticleBroker iterates through the list of SimulationSelectors of
the ATLAS detector region the particle is in. The simulator for the particle is defined
as the simulator Si which is attached to the first SimulationSelector in the chain that
selects the particle. Thus, not all routing rules may be evaluated for a given particle in
order to determine its simulator.

Re-Evaluating Routing Decisions

Once the simulator for a given particle is determined, the particle is temporarily stored
in the ParticleBroker until the ISF program flow determines that the particle will be
sent to the assigned simulator for detector simulation (Chapter 8). A re-evaluation
of the simulator decision is not required before reaching the boundary of the current
ATLAS region or sub-detector. Thus, the simulator may process the particle until this
boundary, but must return it at the boundary. Since the ParticleBroker stores separate
routing chains for each ATLAS region, it will consult a different routing chain for this
particle when it crosses a boundary and thus the simulator decision is re-evaluated.
At any time, simulators may return secondary particles that are created during the
event simulation to the ParticleBroker. Upon receiving a particle from a simulator, the
ParticleBroker informs the EntryLayerTool (Section 7.4.1) about the particle to ensure
that the corresponding MC truth records in the EntryLayer collections are created, if
applicable.

7.3 ATLAS Detector Regions

Essential for ISF particle routing is a precise definition of the individual ATLAS detector
regions or sub-detectors. Based on the layout of the physical ATLAS sub-detectors, the
ATLAS detector volume in ISF is divided into the following regions:

• ATLAS inner detector

• ATLAS forward or beam pipe

• ATLAS calorimeter

• ATLAS muon spectrometer

• ATLAS cavern

Figure 7.1 illustrates the size of the individual regions as defined in the ISF. There
are no gaps between the regions, as the particle routing would not be able to determine
a unique routing solution inside such gaps. The ATLAS cavern region extents from the

75

ISF Components

muon spectrometer and forward region onwards and differs in size for the simulation of
collision events and cosmic ray events, respectively.

The ATLAS regions are mirror symmetric in the x−y plane and rotational symmetric
around the z axis. Thus, each region is fully defined by a list of points in (r, |z|) space
which describe its boundary surface.

Figure 7.1: The ATLAS detector regions in ISF as defined in release
17.7.5.4. The naming convention corresponds to the respective entries in the
AtlasDetDescr::AtlasRegion. The drawing shows the maximum extension (in mm)
for the individual regions. Not shown is the ATLAS cavern region.

Due to particle routing considerations, the ATLAS region definitions in the ISF differ
from the ATLAS region definitions used inside ATLAS Geant4 simulation. In the ATLAS
Geant4 definition, gaps are required between many of the envelope boundaries. This is
implemented for technical reasons, resulting in a higher ATLAS Geant4 simulation speed.
In addition, in the Geant4 definition the inner detector region surrounds the central part
of the beam pipe, which is part of the beam pipe region. In the ISF definition, this
central part of the beam pipe is contained in the inner detector region and the beam
pipe region extends outwards (to higher |z|) from the most forward boundary of the
inner detector region. This modification is to minimize the computational costs and
configuration complexity of the particle routing algorithms implemented in the ISF. As
mentioned before, the ISF routing algorithm requires a routing chain definition for each
ATLAS detector region, respectively. For the simulation of collision events, the ATLAS

76

ISF Components

inner detector volume is the first crucial volume that particles traverse. Though, in the
ATLAS detector, particles first traverse the central beam pipe volume, a separate routing
configuration in this part of the beam pipe is not required. With the central beam pipe
volume being part of the inner detector region, it is guaranteed that the same routing
rules will be applied throughout the region, including this central part of the beam pipe
volume. This minimizes the chance of misconfiguration. In addition it increases the
computing performance of the simulation framework, as simulators are required to hand
back all particles at region boundaries. With the modified inner detector region, the
collision point lies within the inner detector region. Thus, particles emerging from the
collision point will traverse the central part of the beam pipe and the rest of the inner
detector region before reaching the first region boundary. At this point the particles are
returned to the ISF ParticleBroker by their simulator for the first time.

7.3.1 Identifying ATLAS Detector Regions with the GeoIDService

The knowledge of the ATLAS region that simulated particles are located in or are going
to enter next in the process of the detector simulation is vital to ISF detector simulation.
The GeoIDService is capable of solving the following three tasks based on position and
momentum information, all of which are covered in detail in this section:

1. Identifying the ATLAS region within which the given position or particle is located
in.

2. Predicting the ATLAS region a particle will be simulated in for the next simulation
step.

3. Determining whether the given position or particle is located on a boundary surface
between two ATLAS regions.

Identifying ATLAS region of a given position

The GeoIDService resolves the ATLAS detector region or sub-detector that a particle
resides in based on its position. Due to its critical role and frequent use in the ISF
ParticleBroker and in the Geant4 simulation, the GeoIDService is optimized for high
execution speed.

The GeoIDService maps the entire ATLAS region definition (Figure 7.1) onto a
map of rectangular-shaped areas (or bins) in (r, |z|) space. Each bin is associated to
one ATLAS region and represents a (hollow) cylinder volume in the ATLAS detector.
Figure 7.2 illustrates the (r, |z|) map constructed by the GeoIDService.

The global coordinate system used in ATLAS detector simulation is a Cartesian
coordinate system centred at the nominal collision point. The GeoIDService converts
this into the corresponding (r, |z|) coordinate before resolving the ATLAS region for a
given position (x, y, z). Subsequently, the GeoIDService identifies the bin which contains
the coordinate and returns an identifier (AtlasDetDescr::AtlasRegion enum) of the
ATLAS region stored in this bin.

77

ISF Components

Figure 7.2: The ATLAS region map in (r, |z|) space constructed by the GeoIDService (|z|
horizontal, r vertical). Each rectangular-shaped area (bin) is associated to one ATLAS
region. To resolve the ATLAS region of a given position, the GeoIDService identifies the
bin this position lies within and returns the ATLAS region identifier of this bin.

Geant4 uses the GeoIDService to determine, whether the region a particle is in has
changed with the previous simulation step of this particle (Section 9.1). If this is the
case, Geant4 returns the particle to the ISF ParticleBroker. This is crucial, as simulators
in ISF are required to return particles to the ParticleBroker when crossing a region
boundary.

Predicting next ATLAS region for a particle

In addition to resolving the ATLAS region corresponding to a (particle) position, the
GeoIDService can predict the region within a particle will be simulated in the next
simulation step. This information is crucial for the ISF particle routing, as simulators
return particles on region boundaries and the ParticleBroker needs to determine which
region the particle will enter after leaving the boundary surface. The ParticleBroker
uses this information to consult the appropriate routing chain to find a routing decision.

The GeoIDService applies a straight-line extrapolation to determine the next ATLAS
region for a given particle. For a particle with position X = (x, y, z), the GeoIDService
resolves the ATLAS region of an extrapolated particle position X ′, which is shifted away

78

ISF Components

from X along the particle’s momentum p by a distance of µ (default 10−5 mm):

X ′ = X + µ
p

‖p‖
(7.1)

This straight-line extrapolation is fast, but approximative. The accuracy can be
adjusted with the parameter µ, which is therefore also called tolerance. Even with
a magnetic field present, the straight line extrapolation over short distances provides
sufficient accuracy for the purpose of the particle routing. Errors in predicting the
next ATLAS region may occur for charged particles with very low momenta, as their
real trajectory in the magnetic field might deviate from the estimated straight line
extrapolation. However, the occurrence of these particles at a boundary between two
regions is rare and particles with very low momenta are often close to minimum energy
thresholds of simulators. Thus this effect can be neglected.

Determining whether position is on boundary between two regions

In addition to the functionalities described above, the GeoIDService is capable of deter-
mining whether or not a given position is on a boundary surface between two ATLAS
regions. This functionality is essential for creating the EntryLayer track record collec-
tions, which store MC truth information of simulated particles traversing ATLAS region
or sub-detector boundaries (Section 7.4.1).

Each particle returned from a simulator to the simulation framework is tested through
the GeoIDService. If it resides on one of the relevant boundary surfaces, the particle is
added to the corresponding EntryLayer track record collection.

The GeoIDService applies a fast and approximative method to test if given a position
is between to ATLAS regions: First, two positions Xfwd and Xaft near the original
position X = (x, y, z) are computed. Next, the GeoIDService uses the method described
above, to identify the ATLAS region within which each of the positions is located in:

d =

dxdy
dz

 =

1
1
1

 (7.2)

Xfwd = X + µ
d

‖d‖
(7.3)

Xaft = X − µ d

‖d‖
(7.4)

Xfwd and Xaft are each within a distance of µ (tolerance) of the original position X.
The new positions are linear extrapolations of the original position X in the direction
d and −d. The direction d must fulfill the condition that a position X which is close
to a boundary will cross this boundary if linearly extrapolated along d or −d. Thus, d
must not be parallel to any ATLAS region boundary. The numerical values chosen for
d are arbitrary, but fulfill this condition. The GeoIDService uses the method described
above to identify the ATLAS region corresponding to each of the two new positions.
Two different outcomes are possible:

79

ISF Components

Xfwd and Xaft are in the same ATLAS region : In this case the position X is
not located on the boundary of an ATLAS region. Instead the position X is well
within the region which is determined for both, Xfwd and Xaft.

Xfwd and Xaft are in different ATLAS regions : In this case the position X is
located on the boundary between the two different regions.

7.4 Monte Carlo Truth Recording with the TruthService

The Monte Carlo truth representation is an essential part of the simulation output for any
ATLAS detector simulation. The MC truth representation allows performance studies
or physics analyses to associate reconstructed objects with the underlying simulated
object(s).

The ISF TruthService’s main responsibility is to generate a consistent representation
of the most important particle interactions and decays that occur within different simu-
lators inside ISF. Due to the great number of interactions and decays that are computed
by the simulators, only a subset can be recorded persistently in order to not exceed disk
space requirements. In general, interactions are only recorded if the particles involved
are above predefined transverse-momentum or energy thresholds, as low energy interac-
tions are not relevant for subsequent analyses. The MC truth representation generated
by the ISF TruthService is in the HepMC format [63, 64] and is stored in the TruthEvent
StoreGate collection.

Simulators in the ISF update the central ISF TruthService with so-called TruthInci-
dents about all particle interactions and decays that occur within them. TruthIncidents
are a simulator-independent data format, which allows the TruthService to access details
about the interaction or decay, independent of the data format used in the underlying
simulator. TruthIncidents can be seen as wrappers for the ISF TruthService to access
information which is otherwise simulator-specific.

TruthStrategies are an essential part of the ISF TruthService for determining the
subset of all TruthIncidents which is to be recorded persistently. Due to different levels
of accuracy required in the MC truth representation for different parts of the ATLAS
detector, separate sets of TruthStrategies are defined per ATLAS detector region. For
example, due to the high rate of particle interactions in the ATLAS calorimeter, a lower
level of detail in the MC truth representation is recorded in this part of the detector.
If this were not implemented, the recorded MC truth representation would exceed disk
space requirements.

Upon receiving a TruthIncident from a simulator, the TruthService calls all Truth-
Strategies which are registered in the region the TruthIncident is located in. If any
one TruthStrategy in this region tags the given TruthIncident for persistent storage, the
TruthService will convert the information in the TruthIncident to the HepMC format
and attach it to the MC truth tree structure stored in the TruthEvent StoreGate col-
lection. It follows that, adding a new TruthIncident to any set of TruthIncidents may
only add entries to the persistent MC truth record for a given simulated event. Thus, if

80

ISF Components

a particular interaction process is of interest for subsequent analyses, a new dedicated
TruthStrategy can be implemented and added to the existing set of TruthStrategies in
the respective detector region of the respective ISF setup.

7.4.1 Track Records at ATLAS Region Boundaries trough the Entry-
LayerTool

An important part of the ISF MC truth output are the EntryLayer track record collec-
tions. EntryLayer collections contain detailed information about simulated particles at
the crossing point between certain ATLAS regions (Section 7.3).

The EntryLayers enable subsequent analyses to identify the particles that entered or
left certain parts of the ATLAS detector during the detector simulation. This is used
to study the detector responses in these regions independently from the other regions a
particle might have traversed before or after.

Due to disk space requirements of the detector simulation output, only a subset of
all particles traversing ATLAS region boundaries are recorded to respective EntryLayer
collections. Particles must be represented in the TruthEvent MC truth collection in
order to be added to any EntryLayer collection. Thus, changes in the TruthStrategies
can indirectly affect the contents of the EntryLayer collections.

The following StoreGate collections contain the EntryLayer records of the respective
ATLAS region boundaries:

The CaloEntryLayer contains records of particles which are crossing the boundary sur-
face shared between the ATLAS inner detector region and the calorimeter region.

The MuonEntryLayer contains records of particles which are crossing the boundary
surface shared between the ATLAS calorimeter region and the muon spectrometer
region.

The MuonExitLayer contains records of particles which are crossing the boundary sur-
face of the ATLAS muon spectrometer region that is not shared with the calorime-
ter region boundary.

The same criteria apply for the simulation of cosmic ray events and for collision
events. The direction in which a particle traverses any of the surfaces mentioned above,
is not taken into account when recording the respective EntryLayer collections.

In ISF, the EntryLayerTool fills the various EntryLayer collections according to the
criteria mentioned above. It uses the GeoIDService (Section 7.3.1) to determine whether
a given particle is located on a boundary surface, and if so, which boundary surface this
is.

7.5 Particle Barcodes with the BarcodeService

Particle barcodes are used to associate each simulated sensitive detector hit (or simulated
detector response or simulated measurement) with the underlying simulated particle.

81

ISF Components

The simulated sensitive detector hits created by ATLAS detector simulators contain the
barcode of the particle that is causing the hit. Particle barcodes are represented by
integer numbers. For a given particle, identical integer values are used to identify this
particle in the MC truth representation of the simulated event and in the simulated SD
hit. The HepMC format of the MC truth representation requires all particle barcodes
to be unique within a given event. Since both, the barcode information in the SD hits
and the MC truth representation are propagated through all subsequent Monte Carlo
production steps, the barcodes can be used in performance or physics studies to uniquely
associate reconstructed objects with MC truth objects.

Particle barcodes in the ISF are computed by a central BarcodeService, which is
independent of the ATLAS detector simulation codebase.

The ISF uses the BarcodeService also to generate vertex barcodes, which are unique
within a given event. These barcodes are assigned to the vertices representing the particle
interactions or decays in the MC truth representation. The vertices connect incoming
and outgoing particles for each recorded interaction.

Prior to the ISF, particle barcodes were generated only for particles which are rep-
resented in the MC truth. Though, this allows to associate individual detector hits with
the particles in the MC truth representation, not all particles in the event may be rep-
resented in the MC truth event in the first place. For example, secondary particles with
low energies may not be recorded in the MC truth event, but still create SD detector hits.
Thus, not all SD hits in the simulation output may be associated with the simulated
particle.

For backwards compatibility, the ISF is capable of reproducing the same barcode
scheme as generated by non-ISF full Geant4 and ATLFASTII detector simulation, which
is described in the previous paragraph. This is referred to as the legacy barcode scheme
in this work. However, the ISF also supports a new barcode scheme. In this new scheme,
the ISF uses the BarcodeService to compute particle barcodes for all simulated particles,
independent of whether or not they are represented in the MC truth. This removes the
requirement that all particle barcodes must be unique within the current event. In this
new scheme, the ISF creates unique barcodes for all particles which are represented in the
MC truth and shared particle barcodes for particles which are created in an interaction
that is not recorded in the MC truth. The shared barcodes contain encoded information
about the primary particle (from the EVNT file) or the last particle present in the MC
truth leading up to the creation of the shared barcode particle. Same as for unique
particle barcodes, the ISF uses the BarcodeService also to generate the shared particle
barcodes. Thus, the amount of information encoded in the shared particle barcodes
depends on the specific implementation of the BarcodeService. Figure 7.3 illustrates the
difference between the legacy and various shared particle barcode schemes.

Shared particle barcodes do not allow for unique identification of the simulated par-
ticle which directly created a given SD hit from the simulation output. However, they
do contain information which allows to uniquely identify the particle in the MC truth
representation which indirectly causes the SD hit. A particle indirectly causes a SD
hit if either one of its daughter particles or a higher order daughter particle (daughter

82

ISF Components

of a daughter ...) creates the SD hit. In many cases, the association between the pri-
mary particles in the EVNT file and the respective SD hits is sufficient – independent
of whether the hit was created directly or indirectly. Figure 7.4 illustrates the difference
between the legacy and the ISF shared particle barcode scheme, with respect to the
sensitive detector hits.

The stand-alone design of the BarcodeService allows for a dual use of one service
implementation:

• The BarcodeService encodes information into particle and vertex barcodes during
the ATLAS detector simulation step.

• The BarcodeService decodes information from a given particle or vertex barcode
at any stage. This allows analyses to use the BarcodeService to read and interpret
barcodes which were generated in a preceding ATLAS detector simulation step.

Different barcode schemes are applied by using a dedicated BarcodeService implementa-
tion for each scheme. To guarantee consistency between barcode encoding and decoding,
the same BarcodeService implementation must be used in the detector simulation step
and in any subsequent analysis.

83

ISF Components

Figure 7.3: A comparison of the legacy particle barcode scheme and different ISF shared
particle barcode schemes. The ISF schemes are examples to illustrate the capability of
the framework, thus the list is not exhaustive. The legacy barcode scheme (upper left)
generates barcodes only for particles which are represented in the MC truth (black and
green lines). The ISF shared particle barcode scheme also encodes information in sec-
ondary particles which are not represented in the MC truth (red lines). Scheme A (upper
right) links secondary particles to the last particle present in the MC truth. Scheme B
(lower left) links secondary particles to the primary particle. Scheme C (lower right)
same as scheme B but it additionally encodes the generation number of the secondary
particle.

84

ISF Components

Figure 7.4: The legacy particle barcode scheme (left) compared to the ISF shared particle
barcode scheme (right). With the same amount of MC truth information (black and
green lines), the ISF uses shared particle barcodes (numbers #41 and #51) to store
additional information in sensitive detector hits. The shared barcodes associate sensitive
detector hits with the root particle that causing the hit (directly or indirectly).

85

Chapter 8

ISF Program Flow

The individual components of the Integrated Simulation Framework form independent
modules with clearly defined functionalities and requirements. Each component in itself
was described in the previous chapter. This chapter, on the other hand, describes the
interaction between the components and how this forms the entire ATLAS Integrated
Simulation Framework.

Prior to processing particles through the ATLAS detector volume, the simulation
input is read in and prepared for ISF detector simulation (Section 8.1). Once the simu-
lation input is prepared, the particle loop manages the particle flow until all particles in
the event are simulated (Section 8.2). The creation of a consistent Monte Carlo truth
representation is an essential component of the ISF detector simulation output (Section
8.3).

8.1 Simulation Input Processing

The simulation input is provided in the EVNT file format (Section 4.2) which contains
a tree structure of the particles created by the event generator in the HepMC data
format. In many cases, the EVNT file contains a mix of intermediate and final state
particles. In such cases, only a subset of the particles in the EVNT file will be simulated
through the ATLAS detector. The ISF input processing algorithms identify this subset
of particles and convert the data type into an ISF-internal data format, the ISFParticle.
In addition to filtering the simulation input, the ISF input processing algorithms set
the primary vertex position in accordance with the beam conditions as defined in the
detector simulation configuration.

In the default ISF setup, the StackFiller tool manages the tasks described above.
The StackFiller tool is called at the beginning of each Athena event. It executes the
following tasks in the same order for each Athena event:

1. The StackFiller tool copies the GEN EVENT StoreGate collection from the EVNT
input file into the TruthEvent StoreGate collection in the HITS output file. Both
collections have the exact same contents at this point.

87

ISF Program Flow

2. The StackFiller tool calls a set of Athena tools (GenEventManipulators), which
position the primary vertex in the TruthEvent collection in accordance with the
beam conditions defined in the simulation configuration. In the same step, a simple
sanity check is performed to verify the consistency and validity of the TruthEvent

at this stage, i.e. vertex coordinates must be finite numbers.

3. For each particle in the TruthEvent, a GenParticleFilter tool determines whether
or not the particle will be simulated by the ISF detector simulation. Details about
the conditions and requirements of the input particle filtering are covered in the
following Section 8.1.1. If a particle passes the filter criteria, it is converted into
the ISFParticle data format.

The particles which passed the filter criteria in the last step are present in the ISF-
Particle data format. The ISFParticles are sent to the ParticleBroker, which determines
the corresponding simulator for each particle, by using the routing chains that are de-
fined in the simulation configuration. Once the simulator is determined for each input
particle, the particle loop starts (following Section 8.2).

8.1.1 Input Particle Filtering with GenParticleFilters

Three individual filter steps are applied to all input particles, before they are simulated
by any of the ATLAS detector simulators in ISF. A particle must pass all filters, otherwise
it is discarded from the ISF detector simulation. The filter decisions do not affect the
contents or structure of the TruthEvent StoreGate collection. The filters decide which
subset of the particles that are present in the TruthEvent at this stage, will subsequently
be converted into ISFParticles and simulated by the ISF.

A final state filter discards all particles which are connected to an end vertex (e.g. in-
termediate generator particles) and which are of a type that will not interact with
the detector material (e.g. neutrions).

A particle position filter only lets particles pass if they are within the ATLAS inner
detector region. This filter is disabled for the detector simulation of cosmic ray
events.

A pseudorapidity filter requires particles to have a momentum vector with a pseu-
dorapidity of η < 6.0 in order to be simulated by the ISF. This filter is disabled
for the detector simulation of cosmic ray events and for certain upgrade studies.

8.2 The Particle Loop

Inside the particle loop, individual particles are sent to the corresponding simulators for
detector simulation. The particle loop ends when neither of the simulators is processing
any particles and there are no more particles to be simulated in the current Athena
event.

88

ISF Program Flow

In the ISF, the SimulationKernel (or SimKernel) implements the particle loop. The
SimulationKernel is the only Athena algorithm (AthAlgorithm) implemented in the ISF.
In the particle loop, the SimulationKernel requests particles (ISFParticle data type) from
the ParticleBroker and sends them to the corresponding simulator. The ISFParticles
that the SimulationKernel receives from the ParticleBroker, are particles for which the
ParticleBroker has previously determined the simulator, in accordance with the routing
chain configuration. Figure 8.1 illustrates the central role of the SimulationKernel and
the information flow between the central ISF components.

Figure 8.1: The ISF program flow. The initial list of particles is read in from the
EVNT file and provided to the ParticleBroker. The ParticleBroker uses routing chains
with SimulationSelectors to determine the simulator for each particle in the event. The
SimulationKernel sends the particles to the corresponding, previously determined, sim-
ulator. The simulators may return secondary particles to the ParticleBroker, for which
the simulator is determined in the same manner as for the initial particles. The detector
simulation ends when all particles are completely processed through the simulators and
no more particles are to be simulated in the current event.

Secondary particles created by a simulator are returned to the ISF ParticleBroker.
The latter will determine the appropriate simulator for each particle by applying the
routing chain algorithm, based on the SimulationSelectors configured in the simulation
setup. Once the simulator is identified, the ParticleBroker temporarily stores the particle
in an internal particle collection. Particles are removed from this particle collection and
returned to the SimulationKernel upon requests of the latter. The SimulationKernel
requests particles when the simulation of the previous set of particles has finished within

89

ISF Program Flow

the respective simulator. All particles which are to be sent to the same simulator, and
that are in the same detector region, are returned within one set of ISFParticles from the
ParticleBroker to the SimulationKernel. The SimulationKernel will send the entire set of
particles to the corresponding simulator at one time. This allows for a more efficient data
flow into the simulators which support processing of sets of particles, rather than single
particles individually. For instance, this method reduces the computational overhead in
the (time critical) Geant4 full detector simulation setup.

If the ParticleBroker does not store any more particles which are to be simulated
through the detector, the SimulationKernel receives an empty set of particles. At this
point, the detector simulation of all particles in the current event is completed and thus
the particle loop ends. The SimulationKernel informs the simulators and the Particle-
Broker about the completion of the currently simulated event and the SimulationKernel
AthAlgorithm execution ends for the current Athena event.

Athena will subsequently finalize the processing of the current event and prepare the
input of the next event. Following that, the ISF begins with processing and preparing
the simulation input (Section 8.1).

The current ISF SimulationKernel implementation relies on a serial data flow be-
tween the SimulationKernel, the simulators and the ParticleBroker. As such, the Simu-
lationKernel does not support concurrent processing and requires the simulators to be
executed in the same thread as the SimulationKernel and the ParticleBroker. Due to the
modular design of the ISF, a separate SimulationKernel implementation for concurrent
processing may be implemented and configured when required, instead of the default
SimulationKernel implementation.

8.3 Monte Carlo Truth Recording

The Monte Carlo truth record created by the ISF contains the simulation input as well as
the most significant secondary particles that were generated by the detector simulation.
The ISF MC truth representation is recorded into the TruthEvent StoreGate collection
using the HepMC data format.

Figure 8.2 illustrates the flow of information regarding the generation of the MC
truth representation by the ISF. In the beginning of each Athena event, the ISF input
is read from the GEN EVENT StoreGate collection, which is generated by Monte Carlo
event generators, in a step prior to detector simulation. The StackFiller tool (Section
8.1) prepares the simulation input from the contents of the GEN EVENT collection. With
the primary vertex position in the GEN EVENT collection located at the origin, the ISF
needs to reposition the contents of the GEN EVENT collection to the actual beam position
as defined in the simulation configuration. A modified copy of the GEN EVENT with
the primary vertex position set in accordance with the beam conditions, is stored into
the TruthEvent collection at the beginning of each event simulation. The TruthEvent

contains the actual simulation input particles, which form the first important part of the
MC truth representation.

Once the input is converted into the ISF-internal ISFParticle data format, this format

90

ISF Program Flow

is used to exchange particle information between the individual ISF components (Stack-
Filler, ParticleBroker, SimulationKernel and the simulators). The individual simulators
may compute particle decays or interactions which potentially need to be recorded to
the MC truth representation in the TruthEvent collection. A simulator-independent
data format, the TruthIncident (or ITruthIncident interface), is used to allow a cen-
tral TruthService to access details about the interactions occurring inside simulators.
The TruthService receives TruthIncidents for all interaction processes occurring in all
simulators within the ISF (Figure 8.3). The TruthService uses TruthStrategies to de-
termine which of the TruthIncidents will be recorded into the MC truth representation.
If the TruthStrategies determine that a TruthIncident will be recorded persistently, the
TruthService converts the TruthIncident information into the HepMC data format. Sub-
sequently, this HepMC-formatted TruthIncident is added to the TruthEvent collection.

The TruthService uses a BarcodeService to compute vertex and particle barcodes
for particles that are generated in the interaction or decay process (Section 7.5). Since
particle and vertex barcodes are intrinsically supported (in fact required) by the HepMC
format, the barcodes computed by the ISF BarcodeService are stored in the MC truth
representation.

In addition to writing the MC truth representation, the TruthService updates the
TruthIncidents with the respective newly computed particle barcodes. The TruthInci-
dent implementation then forwards this information to the simulator. In the simulator,
the particle barcodes are recorded with each sensitive detector hit a particle causes.
The particle barcode information in SD hits allows for subsequent association of recon-
structed and simulated objects. Thus, it is crucial that new particle barcodes generated
by the BarcodeService are updated in the simulator for the corresponding particle.

91

ISF Program Flow

Figure 8.2: The Monte Carlo truth information in the Integrated Simulation Framework
has its origin in the GEN EVENT collection created by the MC event generators. The
StackFiller copies the GEN EVENT collection into the TruthEvent collection and modifies
the primary vertex position in the latter in accordance with the beam conditions of the
detector simulation setup. The final state particles are converted into ISFParticles and
will further be routed through the ParticleBroker and the SimulationKernel, where they
get sent to the corresponding simulator. The simulators will compute secondary particles
and particle-material interactions. This information is provided to the TruthService in
the form of TruthIncidents. The TruthService uses TruthStrategies in order to filter
out a subset of the truth information that is recorded into the TruthEvent collection.
The input GEN EVENT collection and the output TruthEvent collection are both in the
HepMC format.

92

ISF Program Flow

Figure 8.3: The flow of information if a particle-material interaction (or decay) occurs
inside a simulator. The primary and secondary particles involved in the interaction are
wrapped into a TruthIncident by the simulator. This truth incident is subsequently
registered with the central ISF TruthService. The TruthService uses TruthStrategies
to determine whether the interaction will be permanently stored into the TruthEvent

StoreGate collection. A barcode service is used to compute barcodes for the new sec-
ondary particles and the interaction vertex. The TruthService updates the particle
barcode information in the TruthIncident, which in turn updates the particle barcode
used inside the simulator. Some simulators may return the secondary particles to the
ISF ParticleBroker for subsequent processing.

93

Chapter 9

Simulator Integration into the
Integrated Simulation Framework

With the core components and new functionalities of the ISF covered in the previous
chapters, this chapter describes how the individual simulators are integrated into the
ISF. As described in Section 4.3, different full and fast detector simulators are in use by
the ATLAS collaboration. Most of the simulators covered in this thesis were developed
prior to the ISF and needed to be adopted to function within the framework.

The integration of the Geant4 simulator into the ISF is covered in Section 9.1. The
Fatras simulator was re-implemented for the ISF and is discussed in Section 9.2. Section
9.3 covers the integration of FastCaloSim into the ISF, which also enables a new way
of combining FastCaloSim with inner detector simulation. The integration of the new
”particle killer” simulator is covered in Section 9.4.

The combined detector simulation setups ATLFASTII and ATLFASTIIF make use
of the simulators described above. They are covered in Section 9.5.

9.1 Geant4

Due to Geant4 being the most accurate simulator for the ATLAS detector, it is one of
the most critical simulators within the ISF. In particular so, as it may be used for signal
particle simulation in advanced particle routing concepts (for example in Chapter 12).

Geant4 also offers the capability to execute fast simulation methods in dedicated
regions of the detector. Since the ISF serves as a central framework which steers different
types of ATLAS detector simulation, it was decided to integrate Geant4 as a simulator
among others in the framework. Geant4 fast simulation methods have not been used in
official ATLAS MC production so far, thus the following approach is to be tested in the
future. If Geant4 fast simulation techniques were used within the ISF, the decision for
a particle to be simulated by this fast method will be taken by the central ISF routing
algorithm. In this case, one Geant4 instance may be registered as two separate Geant4
simulators to the ISF: one for full simulation and one for fast simulation. The difference
between both simulators being the conversion of the ISF particle information into the

95

Simulator Integration into the Integrated Simulation Framework

respective Geant4 types. The particles will be processed by the Geant4 instance common
to both.

The Geant4 simulation toolkit is configured through the FADS (Framework for AT-
LAS Detector Simulation) for ATLAS detector simulation. The use of the FADS by
the ATLAS collaboration predates the Athena framework and consequently also the
ISF. For ISF detector simulation, where Geant4 is one of potentially many simulators
processing particles within an event, the FADS is used to configure solely the Geant4
simulator. Very minor modification to the FADS were required to integrate the Geant4
configuration into the ISF.

New routines are implemented to enable the use of Geant4 within ISF. The Geant4
TransportTool and the Geant4 SimService implementation are essential Athena tools
and services for passing information between the ISF core framework and the Geant4
simulation toolkit. During the initialization phase of the detector simulation job, the
Geant4 TransportTool triggers the initialization of the following Geant4 items:

Geant4 RunManager : The ATLAS-specific implementation of Geant4 RunManager
(G4AtlasRunManager) is the first component of Geant4 which needs to be instanti-
ated and initialized to integrate the Geant4 simulation toolkit into ISF. No modifi-
cations to the G4AtlasRunManager from stand-alone Geant4 ATLAS detector sim-
ulation setup were required for its integration into ISF. The Geant4 TransportTool
uses a G4RunManagerHelper to retrieve and initialize the G4AtlasRunManager.
The helper avoids double-initialization of the ATLAS Geant4 RunManager. This
is required as other components in the ISF (such as the Fatras hadronic interaction
processor) can trigger the instantiation and initialization of the Geant4 RunMan-
ager as well within the same ISF simulation process.

ATLAS detector geometry (GeoModel) : The Geant4 SimService coordinates the
initialization of the ATLAS detector geometry with the GeoModelService Athena
service.

Magnetic field : The Geant4 TransportTool controls the magnetic field initialization
of the Geant4 simulation toolkit.

Geant4 random number stream : In the ISF, each simulator must utilize a separate
random number stream. Thus, a dedicated Geant4 random number stream is
configured in the initialization phase of the TransportTool.

FADS user actions : The FADS implements all Geant4 user action types, that
is: EventAction, StackingAction, SteppingAction and TrackingAction. The FADS
user actions are registered with Geant4 at the beginning of the Athena job and they
are configured specifically for ISF Geant4 detector simulation. To integrate Geant4
into the ISF, two new FADS TrackingAction are implemented and used by Geant4
(see Section 9.1.1): the MCTruthUserAction and the TrackProcessorUserAction.

Particles in the ISF which are to be simulated by Geant4, are sent to the Geant4 Sim-
Service by the ISF SimulationKernel from inside the particle loop. Upon receiving a set

96

Simulator Integration into the Integrated Simulation Framework

of ISFParticles, the Geant4 SimService calls the Geant4 TransportTool, which instanti-
ates a new G4Event and converts each respective ISFParticle into a G4PrimaryParticle
representation. The G4PrimaryParticles are added to the G4Event and the Geant4
RunManager is instructed to process the G4Event.

Once the event processing in the Geant4 RunManager terminates, the Geant4 Trans-
portTool and the Geant4 SimService return control to the particle loop inside the ISF
SimulationKernel.

9.1.1 FADS User Actions for ISF Integration

Due to the specific requirements of the ISF to the simulators (Section 7.1.1), two new
FADS user actions are implemented and used by Geant4 inside the ISF.

MCTruthUserAction

The MCTruthUserAction monitors in each Geant4 simulation step, whether secondary
particles were generated by Geant4. If so, the MCTruthUserAction wraps the infor-
mation regarding this interaction into the TruthIncident data format and registers this
TruthIncident with the central ISF TruthService. The ISF TruthService will subse-
quently determine whether the interaction is recorded persistently or not (Section 8.3).

TrackProcessorUserAction

The TrackProcessorUserAction determines in each Geant4 simulation step, whether the
currently simulated particle has left the current ATLAS region. A main requirement by
the ISF particle routing algorithm is, that simulators return all particles (primary and
secondary) on boundaries between ATLAS detector regions. This is necessary as the
particle routing decision must be re-evaluated for each particle in each ATLAS detector
region, since separate routing chains exist for each respective ATLAS region.

The TrackProcessorUserAction uses the fast GeoIDService implementation (Section
7.3.1) to identify the ATLAS region of each particle in every Geant4 simulation step. If
the ATLAS region of a particle changes compared to its previous step, the simulation
of the particle inside Geant4 ends, the particle is converted into the ISFParticle data
format and returned to the ISF ParticleBroker.

There are two cases, where particles traversing an ATLAS region boundary are not
returned to the ISF ParticleBroker:

1. To lower the computational costs of sending high numbers of (less significant)
particles with low energies from Geant4 to ISF, particles must have at least
50 keV of kinetic energy to be sent to the ISF ParticleBroker when traversing
an ATLAS region boundary in Geant4. If this energy threshold is not met, the
particle will remain inside Geant4 until its end.

2. To lower the computational costs of the full Geant4 simulation setup in ISF,
particles crossing an ATLAS region boundary in this simulation setup are not

97

Simulator Integration into the Integrated Simulation Framework

returned to the ISF routing algorithms. Their simulation continues within Geant4
until the end of each individual particle. For the creation of a consistent MC
truth representation, it is required that the ISF ParticleBroker is informed about
particles crossing an ATLAS region boundary. However, the particle is not removed
from Geant4 simulation at that point.

9.2 Fatras

Fatras was re-implemented for the ISF and thus its implementation is driven by the
requirements of the simulation framework. Fatras uses the track reconstruction tools to
simulate particles through the ATLAS detector volume. The reconstruction geometry
serves as the ATLAS detector description.

The ISF SimulationKernel sends particles to the FatrasSimService (also Fa-
trasSimSvc) for Fatras detector simulation. The FatrasSimService calls the Fatras Trans-
portTool, which converts the ISFParticle format into the corresponding data type of
the track reconstruction project (CurvilinearParameters). The TransportTool uses the
TimedExtrapolator implementation to simulate the particle through the ATLAS detec-
tor material.

The TimedExtrapolator is configured to call Fatras-specific Athena tools in order
to compute particle decays and interactions within the detector material. Parameter-
ized models are used to accurately simulate electromagnetic particle-matter interactions
in Fatras. Hadronic interactions are simulated either through a parameterized model
or through Geant4 hadronic interaction modules. In the latter case, Fatras uses a
G4RunManagerHelper to coordinate the initialization of the Geant4 RunManager with
the ISF Geant4 implementation. If the Geant4 hadronic interaction module is used,
Fatras converts the material description of the detector layer (from the reconstruction
geometry) that is currently traversed by a particle, into a Geant4 material description
and executes the corresponding Geant4 interaction routines. To simulate particle de-
cays, Fatras accesses the Geant4 particle decay table and determines the path lengths
of unstable particles in the detector simulation.

Due to the lack of a Fatras-internal particle loop, any secondary particle that is cre-
ated during the Fatras detector simulation is sent to the ISF ParticleBroker. The Parti-
cleBroker applies the routing chain algorithm to determine the simulator for these par-
ticles and caches them until the SimulationKernel requests them for detector simulation
in the respective simulator. If Fatras computes and interaction process where secondary
particles are created but the primary particle is not consumed (e.g. bremsstrahlung), the
updated primary particle will remain within Fatras and only the secondary particles are
returned to the ISF ParticleBroker.

To allow for the creation of a consistent MC truth representation, any particle inter-
action computed by Fatras which creates secondary particles is registered to the central
ISF TruthService.

The sizes of the ATLAS regions in the TrackingGeometry that is used by Fatras,
coincide with the ISF definition of the ATLAS regions (Section 7.3). This enables the

98

Simulator Integration into the Integrated Simulation Framework

TimedExtrapolator to terminate particle extrapolation at region boundaries and subse-
quently allows Fatras to return all particles to the ISF ParticleBroker when they leave
an ATLAS region.

9.3 FastCaloSim

To integrate FastCaloSim into the ISF, a wrapper Athena service is implemented which
calls the same core FastCaloSim implementation which is used for ATLFASTII detector
simulation outside the ISF. This Athena service is called FastCaloSimSvc and it receives
particles from the ISF SimulationKernel if they are to be simulated by the FastCaloSim.

The FastCaloSimSvc implementation allows for two different modes of operation.
In the legacy mode, FastCaloSim uses the MC truth representation at the end of each
simulated event to compute the calorimeter response. This mode is the standard mode
in the traditional ATLFASTII setup and is covered in more detail in Section 9.3.1. In
the ISF mode (or non-legacy mode), FastCaloSim computes the calorimeter response
individually for each particle that it receives from the ISF SimulationKernel. This mode
is covered in more detail in Section 9.3.2.

In either mode, FastCaloSim generates a calorimeter response in a reconstruction-
level data format, the CaloCellContainer. This CaloCellContainer is not recorded persis-
tently and remains in transient storage within StoreGate until the end of each respective
Athena event. For compatibility reasons, the CaloCellContainer is converted into the a
hits-level data format, which is the same format that Geant4 detector simulation gen-
erates. This conversion is triggered by the FastCaloSimSvc at the end of each Athena
event. This renders the specific ISF simulation setup transparent to subsequent digiti-
zation and reconstruction steps. That is to say, the same digitization and reconstruction
configuration may be applied on the ISF simulation output, independent of whether or
not FastCaloSim was used.

If enabled in the ISF simulation setup, the FastCaloSimSvc calls the fast calorimeter
punch-through simulation 9.3.3 for each individual particle it receives from the ISF
SimulationKernel.

9.3.1 Legacy Mode

The legacy FastCaloSimSvc mode is the default mode of operation for ATLFASTII
detector simulation within the ISF and outside of the ISF. In this mode, FastCaloSim
computes the full calorimeter response at the end of each Athena event, based on the
preceding ATLAS inner detector simulation output. FastCaloSim must be the only
simulator in this detector setup that computes sensitive detector hits in the calorimeter
– with the exception of muon particles that are passing through the ATLAS calorimeter.

In the legacy mode, FastCaloSim parses the MC truth representation (TruthEvent
StoreGate collection) for input particles in order to compute the calorimeter response.
Using the HepMC tree structure present in the MC truth representation, FastCaloSim
traces secondary particles with lower energies in the inner detector region back to

99

Simulator Integration into the Integrated Simulation Framework

common parent particles with higher energies. The calorimeter response is computed
from the higher energy particles identified in the ATLAS inner detector region. The
FastCaloSim parametrization takes into account the possible loss of energy due to in-
teraction processes which occur to these particles when traversing the ATLAS inner
detector volume.

This approach requires that the MC truth representation in the inner detector region
is complete at the time the calorimeter response is computed by FastCaloSim. This is
requirement is fulfilled, if the simulation of all particles in all ATLAS regions (except for
the calorimeter energy deposits) is complete at the time FastCaloSim is called. Thus, in
the legacy mode the FastCaloSim energy deposits are computed after the particle loop in
the ISF SimulationKernel has ended. At this point, the simulation of all particles in the
event is completed (except for FastCaloSim) and the contents of MC truth representation
is unchanged until the end of the Athena event.

The simulation output of FastCaloSim in the legacy mode is most accurate with the
MC truth representation generated by the Geant4 inner detector simulation (Section
11.1).

9.3.2 ISF Mode (Non-Legacy Mode)

The ISF mode (or non-legacy mode) the FastCaloSimSvc computes the fast calorimeter
response for each particle individually when it is received by the FastCaloSimSvc from
the ISF SimulationKernel. This allows for other calorimeter simulators to be present in
the same detector simulation setup besides FastCaloSim. Thus, ISF simulation setups
with advanced routing rules (e.g. regions of interests) with different types of simulators
for the calorimeter region are required to use the ISF mode of the FastCaloSimSvc.

The particles received by the FastCaloSimSvc are typically positioned on the bound-
ary between the ATLAS inner detector and the calorimeter region. This is due to the
ISF requirement that all particles are to be returned to the ISF ParticleBroker at ATLAS
region boundaries. At this point the particle routing algorithm determines the simulator
of the particle in the next region.

In ISF mode, the FastCaloSimSvc converts each incoming ISFParticle data type into
the corresponding HepMC type before computing the calorimeter response. This is re-
quired as the same core FastCaloSim implementation is used to compute the calorimeter
response in the ISF mode and the legacy mode. In the legacy mode, the core FastCaloSim
implementation would read the input from the HepMC-formatted TruthEvent StoreGate
collection. Thus, the core FastCaloSim implementation requires the input to be in the
HepMC data format.

If the ISF mode were used in the ATLFASTII detector setup and compared to the
legacy mode, the overall FastCaloSim calorimeter response would consist of a higher
number of individual calorimeter responses for particles with lower energies on average.

100

Simulator Integration into the Integrated Simulation Framework

9.3.3 Fast Calorimeter Punch-Through Simulation

A parameterized calorimeter punch-through simulator [88] is integrated into the
FastCaloSimSvc. If enabled, the punch-through simulator evaluates punch-through prob-
abilities and computes calorimeter punch-through particles for each individual particle
that is received by the FastCaloSimSvc. The ISFParticle data format serves directly as
input to the punch-through simulator, thus a type conversion is not required.

In the current implementation, the punch-through simulation output is not corre-
lated with the calorimeter response that is computed by FastCaloSim. However, current
developments regarding a re-parametrization of FastCaloSim will lead to a newly pa-
rameterized punch-through simulation which will be correlated with FastCaloSim.

9.4 Particle Killer Simulator

The ”particle killer” simulator enhances the capabilities of the ISF and allows for the use
advanced routing configurations within the framework. Upon receiving a particle from
the ISF SimulationKernel, this simulator removes the particle from the ISF detector
simulation at this point. Thus, the ”particle killer” simulator does not create sensitive
detector hits nor does it generate secondary particles.

This simulator is implemented in the ParticleKillerSimSvc Athena service.

The ParticleKillerSimSvc is used in the ATLFASTII and ATLFASTIIF ISF setups
to remove particles which are outside the parameter space relevant for fast detector
simulation (i.e. particles with a high pseudorapidity).

9.5 Combined ATLAS Detector Simulation Setups

A main requirement for the design of the ISF the implementation of all simulation setups
that are in use by the ATLAS collaboration. As such, the ISF is required to support
combined ATLAS detector simulation setups, such as ATLFASTII (Section 9.5.1) and
ATLFASTIIF (Section 9.5.2).

The combined simulation setups make use of the integration of the individual simu-
lators which are covered in the previous sections.

9.5.1 ATLFASTII

The ATLFASTII simulation setup (Section 4.4.1) is an essential component of fast Monte
Carlo production for the ATLAS collaboration. ATLFASTII consists of Geant4 inner
detector simulation, Geant4 simulation for muon particles throughout the entire detector
and FastCaloSim to compute the calorimeter response.

The ATLFASTII configuration in ISF consists of the following routing rules in each
detector region:

• Forward region

101

Simulator Integration into the Integrated Simulation Framework

1. Simulate all particles with Geant4.

• Inner detector region

1. Simulate all particles with Geant4.

• Calorimeter region

1. Simulate all muon particles with Geant4.

2. Destroy particles if they have a momentum vector of |η| > 5, i.e. simulate
these particles with the ParticleKillerSimSvc.

3. Simulate all particles with FastCaloSim (legacy mode).

• Muon spectrometer region

1. Simulate all particles with Geant4.

• Cavern region

1. Destroy all particles, i.e. simulate all particles with the ParticleKillerSimSvc.

Due to FastCaloSim being optimized for the legacy mode in the ATLFASTII setup
outside of ISF, this mode also provides the most accurate simulation results inside ISF
(Section 11.1). Thus, the FastCaloSim legacy mode was chosen for ATLFASTII detector
simulation within the ISF.

9.5.2 ATLFASTIIF

The ATLFASTIIF simulation setup (Section 4.4.2) forms a fast ATLAS detector simu-
lation by combining the Fatras and FastCaloSim simulators. The ATLFASTIIF setup
is almost identical to the ATLFASTII setup if the Geant4 simulator is replaced by the
Fatras simulator:

• Forward region

1. Destroy all particles, i.e. simulate all particles with the ParticleKillerSimSvc.

• Inner detector region

1. Simulate all particles with Fatras.

• Calorimeter region

1. Simulate all muon particles with Fatras.

2. Destroy particles if they have a momentum vector of |η| > 5, i.e. simulate
these particles with the ParticleKillerSimSvc.

3. Simulate all particles with FastCaloSim (non-legacy mode).

102

Simulator Integration into the Integrated Simulation Framework

• Muon spectrometer region

1. Simulate all particles with Fatras.

• Cavern region

1. Destroy all particles, i.e. simulate all particles with the ParticleKillerSimSvc.

Due to the increased systematic error of combining the FastCaloSim legacy mode
with Fatras inner detector simulation (Section 11.2), the ISF mode of FastCaloSim is
applied in the ATLFASTIIF detector simulation setup.

103

Part III

ISF Fast Simulation Results and
Performance Measurements

105

Chapter 10

ISF Computing Performance

The main aim of the Integrated Simulation Framework is to achieve a significant reduc-
tion of the computing time required for the production of ATLAS detector simulation
samples. This is achieved as the ISF allows to combine full and fast detector simulation
technologies for the simulation of individual events. With the ISF serving as the common
detector simulation framework for any ATLAS detector simulation, it is essential that
the computational cost of the components of the framework are kept to a minimum.

This chapter covers the methods used to quantify the computing performance of
the ISF as well as the results obtained for different ISF simulation setups (also called
simulation flavours). The tools that are used to measured the computing performance
of ATLAS offline software algorithms are discussed in Section 10.1. A study comparing
the average simulation time per event for different ISF simulation flavours is presented
in Section 10.2. Detailed CPU profile measurements of different ISF simulation setups
are presented in Section 10.3.

10.1 Performance Analysis Tools

Fundamental to any performance analysis are the tools used to quantify the computing
performance of the tested algorithm(s). The two tools presented in this section are
integrated into the ATLAS Athena software framework and are used to measure the
performance of the ISF: PerfMon [89, 90] and GPerftools [90, 91]

10.1.1 PerfMon

PerfMon is a lightweight performance monitoring tool, developed by the ATLAS collab-
oration specifically for the Athena software framework. It measures CPU and memory
consumption of Athena processes at the level of individual Athena algorithms, tools
and services. The computational overhead introduced by PerfMon is less than 0.1%
additional CPU time for production-type jobs (simulation, digitization, reconstruction).

The PerfMonSD (semi-detailed) mode is enabled for all ATLAS production jobs in
order to provide data for performance monitoring and performance analysis. In the fi-

107

ISF Computing Performance

nalization phase of an Athena process, PerfMonSD provides the measured average CPU
time required to process one event and the memory allocation of the current job. The
performance analyses presented in sections 10.2 and 12.5.2 are based on these measure-
ments.

10.1.2 GPerftools

GPerftools (or gperftools, formerly Google Performance Tools) is a lightweight perfor-
mance analysis tool. It provides a C++ API to enable CPU and heap profiling in
user-implemented applications. GPerftools records a program’s stack trace at regular
time intervals (default: 100 stack traces recorded per second) to provide CPU profiling
information. After the program has terminated, GPerftools performs an analysis of the
recorded stack traces and provides the results in various data formats (callgrind, plain
text, PDF, etc.). Computationally demanding functions will appear more often in the
stack traces compared to functions which need only little time to complete execution.
Thus, the number of appearances of a function in the stack traces indicates the com-
putational costs of this function as well as the time spent inside this function during
program execution.

GPerftools is integrated into the ATLAS software framework to allow profiling of
Athena-based programs. The GPT::ProfilerService (with the GPT::IProfilerSvc

interface) is an AthService implementation which accesses the GPerftools API to steer
CPU profiling of Athena-based programs. Figure 10.1 illustrates the UML class diagram
of the GPT::ProfilerService implementation. To avoid profiling the initialization and
finalization stage of Athena-based programs, the GPT::ProfilerService is usually con-
figured to activate CPU profiling only during the execution stage of Athena programs.

Figure 10.1: The UML class diagram of the GPT::IProfilerSvc interface and
GPT::ProfilerService implementation. The latter accesses the GPerftools API to
steer CPU profiling of Athena-based programs.

The gathena command line tool is implemented as a wrapper to the athena com-
mand. It enables CPU profiling for the provided Athena job.

108

ISF Computing Performance

The current GPT::ProfilerService implementation does not support heap profiling
but this functionality may be added to the Athena service and its interface in the future.

10.2 CPU Time per Simulated Event

A quick and powerful indicator to evaluate simulation performance is the average CPU
time required to simulate one event. This measurement is carried out by the PerfMonSD
tool (Section 10.1.1) for all production-type jobs, and the results are provided at the
end of the respective Athena job. Table 10.1 shows the required CPU time per event
to simulate tt̄ events with differently configured ISF simulation setups. A significant
increase in simulation speed is observed when replacing the Geant4 calorimeter simula-
tion with FastCaloSim in ATLFASTII. This is consistent with previous measurements,
which determined that the ATLAS Geant4 detector simulation time is dominated by the
calorimeter sub-system [80]. Additionally replacing Geant4 by Fatras simulation in all
sub-detectors achieves even higher simulation speeds with the so-called ATLFASTIIF
setup. The accuracy of Fatras is studied in [78].

Detector Simulation Setup
CPU time

Speedup w.r.t. full G4
(s/event)

Full Geant4 195± 9 1
ATLFASTII 17.1± 0.3 11

ATLFASTIIF 0.919± 0.003 212

Table 10.1: The average CPU time required to simulate one tt̄ event with differently
configured ISF setups in the ATLAS offline software release 17.7.5.4. The CPU time
is averaged over 50 events simulated in Geant4, 500 events simulated in ATLFASTII
and 8000 events simulated in ATLFASTIIF. The CPU time required to process the
first event is not included in each respective measurement. The individual simulation
processes were executed one at a time and they were the only high-workload processes
on the computer2at the time of the measurement.

10.2.1 Partial Event Simulation

With the implementation of the ISF, new types of very fast ATLAS detector simulation
approaches are now possible. Table 10.2 shows the average CPU time required to simu-
late one ggH → γγ event through the ATLAS detector with differently configured ISF
setups. The fastest setup uses a new technique called partial event simulation. For par-
tial event simulation, only a subset of the particles of the detector simulation input are
processed through the detector. This is enabled due to the implementation of the ISF

2The specifications of the computer on which the measurements are performed: Scientific Linux
CERN 6, 64 GiB memory and 4 Intel® Xeon® E5-2650 v2 @ 2.60 GHz processors.

109

ISF Computing Performance

and has not be possible with previously existing ATLAS detector simulation frameworks.
The ATLFASTIIF partial event simulation presented in this table only simulates parti-
cles in cones around signal photons. Due to this, the majority of particles created by the
event generator are skipped in the detector simulation step, which leads to a significantly
increased execution speed compared to plain ATLFASTIIF. Figure 10.2 illustrates the
cone-shaped region of interest around the signal photons. Fatras and FastCaloSim create
sensitive detector hits only for the particles inside these cones.

Detector Simulation Setup
CPU time

Speedup w.r.t. full G4
(s/event)

Full Geant4 560 1
ATLFASTII 25 ∼ 25

ATLFASTIIF 0.75 ∼ 750
ATLFASTIIF partial event simulation 0.18 ∼ 3000

Table 10.2: The average CPU time required to simulate one ggH → γγ event through
the ATLAS detector with differently configured ISF setups in the ATLAS offline software
release 17.6.0.7. In the ATLFASTIIF partial event simulation setup only the particles
in cones (size ∆R = 0.4) around the signal photons are simulated, the rest of the particles
in the event are discarded from detector simulation. This leads to a significantly faster
detector simulation compared to the plain ATLFASTIIF setup.

110

ISF Computing Performance

Figure 10.2: Event display of ATLFASTIIF partial event simulation for ggH → γγ
events in ATLAS offline software release 17.6.0.7. Cone-shaped regions of interest
(size ∆R = 0.4) are defined around the signal photons. Only the particles inside these
ROIs are simulated by Fatras and FastCaloSim. Particles outside the ROIs are not sim-
ulated through the detector. The green lines are particle trajectories estimated by the
event display, based on the contents of the Monte Carlo truth representation (including
event generator particles). Fatras SD hits are illustrated as dots along charged parti-
cle trajectories. FastCaloSim energy deposits are illustrated as three-dimensional bins
representing the amount of energy deposited in different calorimeter cells.

111

ISF Computing Performance

10.3 ISF CPU Profiling

This section covers the use of CPU profilers to determine the computational cost of
different components within the ISF detector simulation. The GPerftools CPU profiler
(Section 10.1.2) is used to generate the individual measurements. The CPU profiles were
generated one at a time on the same machine3. The profiled processes were the only
high-workload processes scheduled on this computer at the time of the measurement.

10.3.1 ISF Geant4 Detector Simulation

With the Geant4 detector simulation setup being the most accurate detector simulation
available to the ATLAS collaboration, it is of particular importance for many physics
analyses and performance studies. However, the high accuracy comes at the price of high
computational costs (see Section 10.2). Thus, the implementation of the Geant4 simu-
lation setup is highly optimized within the ISF in order to minimize the computational
costs of the individual components and of the entire setup.

Figure 10.3 shows the CPU profile measured for full Geant4 simulation within the
ISF, visualized with KCachegrind [92]. In this image, single computationally demanding
functions appear as large areas filled with a solid colour. Such functions are often the
first candidates for further optimization as they may form a performance bottleneck in
the profiled program. A performance improvement of these functions may result in an
improvement of the overall program performance. The figure reveals that there are no
obvious performance bottlenecks in the full Geant4 setup within the ISF.

The following functions, however, are pronounced in the profile and may become
subject to further performance optimizations:

• master.0.gbmagzsb and bsolinterp are Fortran 90 implementations of the
magnetic field computation inside the ATLAS detector volume. In newer AT-
LAS offline software releases (version 19.0.0 and higher) this implementation is
replaced by a more efficient algorithm written in C++.

• iGeant4::TrackProcessorUserAction::SteppingAction is a Geant4 user action
implementation specifically for ATLAS detector simulation with the ISF. This
function is called for each simulation step that any particle makes within Geant4
in ISF. Even though this function is highly optimized, the fact that it is typically
called millions of times per simulated event, adds up the costs of each individual
function call to a measurable fraction of the overall simulation time.

• LArWheelSolid::search for nearest point and LArWheelCalculator are used
to implement a custom geometrical shape (custom Geant4 solid) that describes
the ATLAS LAr EMEC (liquid argon electromagnetic endcap calorimeter) vol-
ume. Due to the complex accordion-like internal structure of the EMEC, costly

3The specifications of the computer are: Scientific Linux CERN 6, 64 GiB memory and 4 Intel®

Xeon® E5-2650 v2 @ 2.60 GHz processors.

112

ISF Computing Performance

computation is required for the navigation of Geant4 particles through this vol-
ume. An ongoing project is aiming at speeding up the implementation used in the
CPU profile. Significant improvements have been achieved by code refactoring and
more efficient use of costly mathematical functions and branches. The results are
currently being validated for future production use.

• G4VProcess::SubtractNumberOfInteractionLengthLeft,
G4CrossSectionDataStore::GetCrossSection,
G4UniversalFluctuation::SampleFluctuations and other functions of the
Geant4 simulation toolkit (all class names starting with G4) appear as potential
candidates for optimization in the CPU profile. These functions are not specific
to the ATLAS detector simulation and are developed, maintained and optimized
by the Geant4 collaboration.

113

ISF Computing Performance

F
ig

u
re

1
0
.3

:
C

P
U

p
rofi

le
for

G
ea

n
t4

d
etector

sim
u

lation
of

7
tt̄

even
ts

w
ith

th
e

IS
F

in
th

e
A

T
L

A
S

offl
in

e
softw

are
release

1
7
.
7
.
5
.
4
.

T
h

e
p

ro
fi

le
is

reco
rd

ed
w

ith
th

e
G

P
erfto

ols
C

P
U

p
rofi

ler
an

d
v
isu

alized
w

ith
K

C
ach

egrin
d

.

114

ISF Computing Performance

10.3.2 ISF ATLFASTII Detector Simulation

The ATLFASTII simulation setup has been used extensively by physics analyses and
performance studies throughout the previous years. Due to the use of fast simulators
for the calorimeter, the ATLFASTII setup is significantly faster than the full Geant4
detector simulation (Section 10.2). With the high simulation speed achieved due to this
algorithmic changed with respect to full Geant4, less optimization effort was spent to
further improve the computing efficiency of the ATLFASTII implementation. Thus, a
few hot spots are noticeable in the respective CPU profiles.

Figure 10.4 shows the CPU profile obtained with GPerftools for ATLFASTII detector
simulation in the ISF. The most noticeable hot spots in the profile are:

• Similar to the full Geant4 detector simulation, the functions master.0.gbmagzsb
and bsolinterp for the computation of the magnetic field inside the ATLAS
volume, appear as significant hot spots in the CPU profile. Due to the increased
simulation speed of ATLFASTII with respect to full Geant4, the magnetic field
computation accounts for a two to three times higher fraction of the total CPU
costs in the ATLFASTII setup.

• Again, similar to the full Geant4 simulation setup, various functions of
the Geant4 simulation toolkit are noticeable as potential hot spots in
the CPU profile, namely G4UnionSolid::Inside, G4DisplacedSolid::Inside,
G4CrossSectionDataStore::GetCrossSection, etc. However, since Geant4 sim-
ulates particles mainly through the ATLAS inner detector in the ATLFASTII
setup, different functions of the Geant4 simulation toolkit appear as hot spots
compared to the full Geant4 detector simulation setup.

• The iGeant4::TrackProcessorUserAction::SteppingAction function appears
in the profile, with about half of the relative cost compared to the full Geant4
detector simulation setup. This is likely due to Geant4 mainly simulating particles
inside the ATLAS inner detector volume in the ATLFASTII setup. Lower particle
multiplicities and higher average particle energies can be expected for Geant4 inner
detector simulation compared to Geant4 calorimeter simulation. Hence, fewer
simulation steps are being executed by Geant4 in ATLFASTII, which results in
fewer calls to the Geant4 user action.

The CPU profile and call tree in Figure 10.5 reveals that about 94% of the CPU
time in ISF ATLFASTII simulation is spent inside Geant4 and about 4% is spent in-
side FastCaloSim routines. The remaining 2% CPU time is spent inside core Athena
components (e.g. input and output processing, etc.). The ATLFASTII simulation speed
is therefore dominated by the speed of Geant4 detector simulation. Any improvement
in speed or optimization of Geant4 will result in faster execution of both setups, full
Geant4 detector simulation and ATLFASTII detector simulation.

115

ISF Computing Performance

F
ig

u
re

10.4:
C

P
U

p
ro

fi
le

for
A

T
L

F
A

S
T

II
d

etector
sim

u
lation

of
60

tt̄
even

ts
w

ith
th

e
IS

F
in

th
e

A
T

L
A

S
offl

in
e

softw
are

release
1
7
.
7
.
5
.
4

T
h

e
p

rofi
le

is
record

ed
w

ith
th

e
G

P
erfto

ols
C

P
U

p
rofi

ler
an

d
v
isu

alized
w

ith
K

C
ach

egrin
d

.

116

ISF Computing Performance

F
ig

u
re

10
.5

:
C

P
U

p
ro

fi
le

an
d

ca
ll

tr
ee

fo
r

A
T

L
F
A

S
T

II
d

et
ec

to
r

si
m

u
la

ti
on

of
60

tt̄
ev

en
ts

w
it

h
th

e
IS

F
in

th
e

A
T

L
A

S
offl

in
e

so
ft

w
a
re

re
le

as
e
1
7
.
7
.
5
.
4
.

T
h

e
p

ro
fi

le
is

re
co

rd
ed

w
it

h
th

e
G

P
er

ft
o
ol

s
C

P
U

p
ro

fi
le

r
an

d
v
is

u
al

iz
ed

w
it

h
K

C
ac

h
eg

ri
n

d
.

T
h
e

p
er

ce
n
ta

ge
s

sh
ow

n
ar

e
th

e
C

P
U

sp
en

t
in

si
d

e
ea

ch
in

d
iv

id
u

al
fu

n
ct

io
n

w
it

h
re

sp
ec

t
to

th
e

C
P

U
ti

m
e

sp
en

t
in

th
e

en
ti

re
A

th
en

a
al

go
ri

th
m

ex
ec

u
te

st
ep

.
F

u
n

ct
io

n
s

w
it

h
le

ss
th

an
tw

o
p

er
ce

n
t

re
la

ti
ve

C
P

U
co

st
ar

e
n

ot
v
is

u
al

iz
ed

.
T

h
e

p
ro

fi
le

re
ve

a
ls

th
a
t

ab
ou

t
9
4%

of
th

e
C

P
U

ti
m

e
in

th
e

A
T

L
F
A

S
T

II
IS

F
se

tu
p

is
sp

en
t

in
si

d
e

G
ea

n
t4

an
d

ab
ou

t
4%

is
sp

en
t

in
si

d
e

F
a
st

C
al

oS
im

.
A

b
o
u

t
98
.5

%
o
f

th
e

C
P

U
ti

m
e

in
th

e
A

th
en

a
al

go
ri

th
m

ex
ec

u
te

st
ep

ar
e

sp
en

t
in

si
d

e
th

e
IS

F
S

im
u

la
ti

on
K

er
n

el
,

th
e

re
m

ai
n

in
g

1.
5%

a
re

sp
en

t
in

si
d

e
th

e
A

th
en

a
fr

am
ew

or
k
,

e.
g.

in
p

u
t/

ou
tp

u
t

p
ro

ce
ss

in
g.

117

ISF Computing Performance

10.3.3 ISF ATLFASTIIF Detector Simulation

With the implementation of the ISF, the ATLFASTIIF simulation setup can be config-
ured through the same framework as the legacy ATLFASTII and full Geant4 simulation
flavours. As the simulation output of ATLFASTIIF detector simulation is compati-
ble with the existing Monte Carlo production chain a straight-forward integration of
ATLFASTIIF into the chain is guaranteed. Hence, the production of the ATLFASTIIF
simulation samples is expected to grow throughout the following years. Given this sit-
uation, a study of ATLFASTIIF computing performance and computing efficiency is of
great relevance.

With the fast algorithmic approaches implemented in the ATLFASTIIF setup (Fa-
tras and FastCaloSim), this detector simulation is significantly faster than full Geant4
detector simulation and even ATLFASTII (Section 10.2). Thus, further optimization of
the computing efficiency of ATLFASTIIF is less critical than for the other two setups.

Figure 10.6 illustrates the CPU profile of ATLFASTIIF simulation within the ISF,
visualized with KCachegrind. The most noticeable hot spots in the profile are:

• Similar to the two previously discussed simulation setups, the functions
master.0.gbmagzsb and bsolinterp for the computation of the magnetic field
inside the ATLAS volume, appear as significant hot spots in the CPU profile.
Lower particle multiplicities are expected for Fatras inner detector simulation com-
pared to Geant4 inner detector simulation. This results in a lower number of calls
to the magnetic field routing in Fatras simulation. However, due to the much faster
simulation speed of ATLFASTIIF, the relative costs of the magnetic field routines
is about twice that in the full Geant4 setup.

• The exp.A, log.A, atan2, atan2f.A and other functions from the mathematics
library account for a significant fraction of the CPU time costs in the ATLFASTIIF
simulation setup. The Intel® Math Library libimf [90, 93] is used for the compu-
tation of mathematics functions in the ATLAS detector simulation as it provides
highly optimized function implementations. The library is dynamically loaded at
the beginning of the Athena process. Its implementation is maintained by Intel®,
therefore it is not accessible for optimization by the ATLAS collaboration. How-
ever, the relative cost of these functions may be lowered, by decreasing the number
of calls to them in the ATLAS codebase.

• The Trk::RungeKuttaPropagator::rungeKuttaStep and
Trk::STEP Propagator::propagateWithJacobian are implementations of
the Runge-Kutta [94–96] method to compute particle trajectories through the
ATLAS detector volume.

• The Trk::CylinderSurface::straightLineDistanceEstimate and
Trk::DiscSurface::straightLineDistanceEstimate functions are used
for navigation through the ATLAS detector description in the Fatras simulation
(called TrackingGeometry [79]).

118

ISF Computing Performance

• TShape Result::CellIntegralEtaPhi, TShape Result::f 2DSpline and others
(class names starting with T) are functions implemented by the ROOT data analy-
sis framework [71]. In the ATLFASTIIF detector simulation setup, they are called
by the FastCaloSim simulator. The function implementation is maintained by the
ROOT collaboration. The relative cost of these functions within the ATLFASTIIF
setup may be lowered by decreasing the number of calls from within FastCaloSim.

The CPU profile in Figure 10.7 reveals that about 56% of the CPU time is spent inside
Fatras and about 37% is spent inside FastCaloSim routines. The CPU time measurement
is relative to the entire CPU time spent inside the Athena algorithm execute step. Due
to the high execution speed of ATLFASTIIF, the relative costs of the Athena framework
(i.e. input and output processing) are higher in this simulation setup than in other
setups. This is noticeable in the CPU profile as the relative CPU time spent inside
the ISF SimulationKernel is about 94%, which is less than for the other ISF flavours
presented in the previous sections. Consequently, about 6% of the CPU time is spent
inside core components of the Athena framework.

119

ISF Computing Performance

F
ig

u
re

10.6:
C

P
U

p
rofi

le
fo

r
A

T
L

F
A

S
T

IIF
d

etector
sim

u
lation

of
1100

tt̄
even

ts
w

ith
th

e
IS

F
in

A
T

L
A

S
offl

in
e

softw
are

relea
se

1
7
.
7
.
5
.
4

T
h

e
p

ro
fi

le
is

record
ed

w
ith

th
e

G
P

erfto
ols

C
P

U
p
rofi

ler
an

d
v
isu

alized
w

ith
K

C
ach

egrin
d

.

120

ISF Computing Performance

F
ig

u
re

1
0.

7:
C

P
U

p
ro

fi
le

an
d

ca
ll

tr
ee

fo
r

A
T

L
F
A

S
T

II
F

si
m

u
la

ti
on

of
11

00
tt̄

ev
en

ts
w

it
h

th
e

IS
F

in
th

e
A

T
L

A
S

offl
in

e
so

ft
w

a
re

re
le

a
se

1
7
.
7
.
5
.
4
.

T
h

e
C

P
U

p
ro

fi
le

w
as

ge
n

er
at

ed
u

si
n

g
G

P
er

ft
o
ol

s.
T

h
e

p
er

ce
n
ta

ge
va

lu
es

sh
ow

n
in

ea
ch

in
d

iv
id

u
al

fu
n

ct
io

n
a
re

th
e

re
la

ti
ve

C
P

U
ti

m
e

sp
en

t
in

si
d

e
th

is
fu

n
ct

io
n

w
it

h
re

sp
ec

t
to

th
e

C
P

U
ti

m
e

sp
en

t
in

si
d

e
th

e
en

ti
re

A
th

en
a

al
go

ri
th

m
ex

ec
u

te
st

ep
.

A
b

o
u

t
56

%
of

th
e

C
P

U
ti

m
e

is
sp

en
t

in
si

d
e

F
at

ra
s

an
d

37
%

is
sp

en
t

in
si

d
e

F
as

tC
al

oS
im

ro
u

ti
n

es
.

D
u

e
to

th
e

h
ig

h
si

m
u

la
ti

o
n

sp
ee

d
o
f

A
T

L
F
A

S
T

II
F

,
on

ly
ab

ou
t

94
%

of
th

e
C

P
U

ti
m

e
is

sp
en

t
in

si
d

e
th

e
IS

F
S

im
u

la
ti

on
K

er
n

el
,

th
e

re
m

a
in

in
g

6%
a
re

co
n

su
m

ed
b
y

co
re

co
m

p
on

en
ts

of
th

e
A

th
en

a
fr

am
ew

or
k
.

121

ISF Computing Performance

10.3.4 ISF Core Components

One of the main objectives during the development of the ISF was to minimize the
computational cost of all core ISF components. Hence, minimizing the computational
cost of the entire framework. CPU profiling of various ISF simulation setups shows that
each individual component of the ISF use less than 1% of the total CPU time spent in
the Athena algorithm execution step (Table 10.3).

The computational cost of the entire ISF framework is dominated by three of its
components, namely the GeoIDService (Section 7.3.1), the TruthService (Section 7.4)
and the ParticleBroker (Section 7.2). The prior two are called very frequently during
ISF detector simulation. This results in a measurable CPU time consumption of the
GeoIDService and the TruthService, despite their optimization for high execution speed.

Component full Geant4 ATLFASTII ATLFASTIIF

GeoIDService 000.6% 000.3% < 0.1%
TruthService < 0.1% 0.1% 000.5%

ParticleBroker ∼ 0% 000.3% 0.4%

Table 10.3: The CPU time consumption of different core ISF components relative to the
total CPU time spent in the Athena algorithm execution stage, for detector simulation
of tt̄ events in the ATLAS offline software release 17.7.5.4. The dominating components
within each simulation flavour are indicated in bold numbers. GPerftools is used to
generate the CPU profiles for the individual ISF detector simulation setups. Between
108000 and 118000 stack traces are recorded with each setup in order to minimize the
statistical errors of the GPerftools measurement. This corresponds to different numbers
of events being profiled in each simulation: full Geant4 (7 events), ATLFASTII (60
events), ATLFASTIIF (1100 events).

Full Geant4 detector simulation flavour: The GeoIDService is the most expen-
sive ISF component with respect to computing time. Figure 10.8 illustrates the call
graph and cost of the ISF GeoIDService in the full Geant4 detector simulation setup.
The figure shows that the TrackProcessorUserAction (Section 9.1) is the only method
calling the GeoIDService. Though the GeoIDService is optimized for high execution
speed, the TrackProcessorUserAction is called in every simulation step a particle makes
inside the ISF Geant4 simulator. As this typically corresponds to millions of function
calls in the full Geant4 detector simulation, even the costs of fast functions will add up
throughout the execution of the detector simulation job. The TrackProcessorUserAction
uses the GeoIDService to determine whether a particle crossed a boundary between two
ATLAS regions or sub-detectors.

The ParticleBroker is not used during the execution of full Geant4 detector sim-
ulation. After sending primary particles to Geant4, all particles are kept within this
simulator until the end of the detector simulation of the current event.

122

ISF Computing Performance

Figure 10.8: The call graph and CPU cost of the ISF GeoIDService in the full Geant4 de-
tector simulation setup in ATLAS offline software release 17.7.5.4. The GeoIDService
appears in 0.57% of all stack traces recorded by GPerftools during the Athena algorithm
execution stage. This corresponds to about 0.57% of the CPU time spent inside the
GeoIDSvc. In the Geant4 simulator, the GeoIDService is called by the TrackProces-
sorUserAction to determine whether a particle crossed a boundary between two ATLAS
regions or sub-detectors.

ATLFASTII detector simulation flavour : The GeoIDService is called mainly by
the ATLAS Geant4 implementation in order to identify whether particles traversed AT-
LAS sub-detector boundaries. In contrast to full Geant4 simulation, the ParticleBroker
is used more frequently in order to re-route particles at sub-detector boundaries. Hence
it’s relative costs are greater than in full Geant4 simulation. In absolute numbers, the
TruthService is called less frequently per event in the ATLFASTII flavour compared to
full Geant4. However, due to the higher execution speed of ATLFASTII, the cost of the
TruthService increase relative to the CPU time spent inside the entire Athena execution
step.

ATLFASTIIF detector simulation flavour : Given the very high execution speed
of ATLFASTIIF, individual components of the ISF are expected to show greater relative
CPU utilization than in other flavours. The TruthService is called for each inelastic
interaction or decay computed by Fatras. All secondary particles generated by Fatras
will be returned to the ParticleBroker, in addition to all particles traversing sub-detector
boundaries. Hence, the ParticleBroker contributes to the overall simulation time of
ATLFASTIIF. The GeoIDService is called to determine whether particles are entered into
respective EntryLayer collections (Section 7.4.1). As this operation is of low complexity,
the GeoIDService contributes only marginally to the CPU time requirements of the
ATLFASTIIF flavour.

123

Chapter 11

Accuracy of ISF Detector
Simulation

The Integrated Simulation Framework allows for the first time to combine various sim-
ulators for the simulation of any one particle through the ATLAS detector within one
framework. This chapter discusses the consequences of this approach in respect of gen-
erating a high quality simulation.

Every simulation method introduces systematic errors in physics analyses due to im-
perfections in the modelling of the simulated physics processes. A common method for
estimating and minimizing these systematic errors is to derive and apply corresponding
calibrations. The calibrations aim at minimizing the discrepancies between recorded
and simulated data. The most commonly used simulation toolkit for detector simula-
tion in high energy physics experiments is Geant4 (Section 4.3.1). It is considered the
most accurate simulator available for ATLAS detector simulation. Hence, calibrations
for physics analyses are generally derived for Geant4-based simulation of the ATLAS
detector. The aim of combined full and fast detector simulation methods is therefore to
reproduce the results obtained by Geant4 simulation. This allows to apply the same (or
very similar) calibrations without significantly increasing the systematic errors.

The high accuracy of Geant4 simulation is only guaranteed if it is the sole simula-
tor processing particles through the ATLAS detector for a given simulation sample. If
Geant4 were to be combined with any other simulator, the overall accuracy is a com-
bination of the individual accuracies of both simulators. The individual accuracies can
not be considered independently in this setup, as one simulator’s output may serve as
the other simulator’s input. In general, the overall simulation accuracy will decrease
due to combining multiple detector simulators. The accuracy can be increased, however,
if simulators account for the fact that particles are shared with other simulators and
actively correct for this. This can be implemented in the form of tuning parameters
inside the respective simulator. Separate sets of tuning parameters may be used for each
particular simulator combination. In some cases, a sample-specific tuning approach may
be employed in order to achieve an optimal agreement of a combined simulation setup
with Geant4.

125

Accuracy of ISF Detector Simulation

11.1 ATLFASTII

Two FastCaloSim modes are available in the Integrated Simulation Framework. The
first one is the traditional or ”legacy mode” (see Section 9.3.1 for implementation). It
resembles the method with which the parametrization was obtained and hence achieves
the most accurate simulation results with respect to Geant4 simulation. In this mode,
FastCaloSim excludes the use of other calorimeter simulators within the same detector
simulation setup. The second mode is the ”ISF mode” (see Section 9.3.2 for implementa-
tion), where FastCaloSim can be used in combination with other calorimeter simulators.

The parametrization of FastCaloSim was generated using Geant4 detector simulation
of single photon and pion events [80]. The particles were simulated with discrete energies
and their corresponding reconstructed calorimeter response was computed. The HepMC

Monte Carlo truth representation generated during the simulation of the inner detector
(ID), plays an important role in the FastCaloSim parametrization. The parametrization
describes the relationship between the particle states in the MC truth representation
and the reconstructed calorimeter response (including various parameters regarding the
shape and position of the energy distribution).

The effects on the calorimeter measurements due to low energy particle interactions
occurring in the inner detector volume are intrinsically described by the parametriza-
tion, in order to achieve a highly accurate calorimeter simulation. Particles which are
generated in decays, radiation or particle-matter interactions inside the ID volume and
that have energies of less than 500 MeV, are traced back to common parent particles
with energies above this threshold via the MC truth representation. Parent particles are
only considered if they do not have any child particle with an energy above the 500 MeV
threshold. The parametrization describes the relationship between these parent particles
and the respective calorimeter measurements (Figure 11.1). The parametrization also
describes the calorimeter response of particles with energies lower than 500 MeV if they
were to emerge from the interaction point, however, a less accurate simulation result is
expected in this low energy regime. The creation points of the parent particles are within
the inner detector volume and therefore do not describe the actual particle states at the
point of entering the calorimeter volume. The processes occurring to the parent parti-
cles (and their child particles) when travelling from within the ID volume towards the
boundary with the calorimeter volume are intrinsically considered in the FastCaloSim
parametrization. This includes energy loss processes, decays, radiation and any form of
particle-matter interaction. The net effect of these processes is that they lower the total
energy which reaches the boundary between the ID and the calorimeter volume.

In the discussion below, the impact of this parametrization to the accuracy of both
FastCaloSim modes is compared to Geant4 detector simulation.

11.1.1 Legacy Mode

In the legacy mode of FastCaloSim or in the traditional ATLFASTII simulation flavour,
the MC truth representation of the inner detector simulation is used to input the pa-
rameterized calorimeter simulation. The same method of reducing the MC truth rep-

126

Accuracy of ISF Detector Simulation

Figure 11.1: The FastCaloSim parametrization describes the relationship between par-
ticles in the Monte Carlo truth representation and the resulting energy response in
the calorimeter. The parametrization is based on particles which are above an energy
threshold of 500 MeV and whose child particles are all below this threshold. Interaction
processes occurring to this particle and its child particles while traversing the ATLAS
inner detector (ID) are intrinsically described by this parametrization. In this figure
both particles, π1 and π2 have the same energy and they fulfill the above condition.
If provided with a charged pion input particle that has the same energy as π1 or π2,
FastCaloSim will intrinsically account for the processes that occur to the particle while
travelling through the ID towards the calorimeter.

resentation to parent particles with energies just above 500 MeV is applied in order to
compute their calorimeter response. Effectively, the FastCaloSim input is reduced to
the same level of detail that was used to generate the parametrization in the first place.
Consequently, the best agreement with Geant4 simulation is achieved in this mode of
FastCaloSim. The legacy mode of FastCaloSim is therefore used to form the ATLFASTII
simulation flavour within the ISF.

FastCaloSim calibrations with respect to recorded data were derived. This allows
FastCaloSim to reproduce the recorded data more accurately than Geant4 in some cases
(Figure 4.7).

The current FastCaloSim parametrization was generated with ATLAS offline release
14 (in the year 2009). It is based on Geant4 release 4.8 and the ATLAS geometry
description at that time. The FastCaloSim parametrization has not changed since then.
However, the Geant4 software version that is used by the ATLAS collaboration has
changed over the years, as well as the detector description. As a result of continuous
improvements being made to the Geant4 simulation toolkit, changes in the simulation
output are expected between different software versions. The accuracy with which par-

127

Accuracy of ISF Detector Simulation

ticles at high energies are simulated is not expected to change drastically, since the
simulation results for such particles have been validated for many years. The prop-
erties of particles in the low energy spectrum, however, are subject to larger changes
between Geant4 versions. The dependency of the accuracy of FastCaloSim to the chang-
ing Geant4 output is minimized, due to simulating the effects of the high energy particles
(more than 500 MeV) in the inner detector on the calorimeter. This ensures that the
input to FastCaloSim will not change significantly when using different software versions
of Geant4.

Any changes affecting the processes occurring to the particles when travelling
through the ID towards the calorimeter boundary will, however, affect the accuracy
of FastCaloSim in comparison to Geant4. For example, if changes to the detector ma-
terial description were made it would result in a discrepancy between the FastCaloSim
output and Geant4. In order to minimize such a discrepancy, a re-parametrization of
FastCaloSim is required.

11.1.2 ISF Mode

In the ISF, a new mode of FastCaloSim has been implemented, that allows to use the
simulator together with other calorimeter simulators in the same event. This mode
is enabled only due to the implementation of the Integrated Simulation Framework,
hence it is called the ”ISF mode”. In this setup, FastCaloSim computes the calorimeter
response for the individual particles that are traversing the boundary between the inner
detector and the calorimeter region.

The same core FastCaloSim implementation is used to compute the calorimeter re-
sponse in the ISF mode and in the legacy mode. Since FastCaloSim has been parame-
terized for the legacy mode, a greater discrepancy between Geant4 and FastCaloSim is
obtained in the ISF mode (Figure 11.2).

The discrepancy in the ISF mode is due to a double counting of the energy which
is lost due to interaction processes occurring to the particles when traversing the inner
detector volume towards the ID/calorimeter boundary. The impact of these processes to
the calorimeter response is intrinsically described by the FastCaloSim parametrization
(discussion above). In the ISF mode, the impact of these processes has already been
computed by the inner detector simulation and this is represented in the particle states
at the ID/calorimeter boundary. Hence, if the FastCaloSim parametrization is used
to generate a calorimeter response for these particles, the energy which is lost due to
these processes is implicitly removed again and the energy in the calorimeter will be
underestimated.

Two approaches are feasible to increase the accuracy of the FastCaloSim ISF mode:

• Energy scale factors for the particles at the ID/calorimeter boundary can be intro-
duced, in order to correct for the double counting of the energy which is lost due
to interaction processes in the ID volume. This has been applied successfully in
the application of the ISF to the W boson mass measurement, covered in Chapter
12 in this thesis.

128

Accuracy of ISF Detector Simulation

 (GeV)T
truth EΣ - T EΣ

-200 -100 0 100 200 300 400

N
um

be
r

of
 E

ve
nt

s
pe

r
20

 G
eV

0

100

200

300

400

500

600 Geant4
ATLFASTII, FCS input: MC truth
ATLFASTII, FCS input: boundary

Figure 11.2: The difference between the reconstructed and the MC truth scalar sum
of the transverse energy

∑
ET for different ATLFASTII setups compared with Geant4

full detector simulation (green). 2000 tt̄ events were simulated in each respective setup
with ATLAS offline software release 17.7.4.2. ATLFASTII using FastCaloSim in legacy
mode (blue line) is closer to the very accurate Geant4 simulation than ATLFASTII using
FastCaloSim in the ISF mode (red line).

• A currently ongoing project is concerned with the re-parametrization of
FastCaloSim. The ISF mode will be considered within this new parametrization
and hence, an increased accuracy of FastCaloSim with respect to Geant4 is to be
expected.

11.2 ATLFASTIIF

The ATLFASTIIF simulation flavour (Section 4.4.2) combines Fatras inner detector sim-
ulation with FastCaloSim calorimeter simulation. As mentioned in the previous section,
FastCaloSim in the ATLFASTII setup uses the TruthEvent Monte Carlo truth collec-
tion to compute the calorimeter response, as this provides high simulation accuracy. In
the ATLFASTIIF setup, the Monte Carlo truth record reflects the Fatras inner detector
simulation output, whereas in the ATLFASTII setup it reflects the Geant4 inner detec-
tor simulation output. Fatras, being a fast detector simulation, provides a less accurate
description of interaction processes and secondary particles than Geant4 does. Thus, the
Monte Carlo truth record generated by Fatras in ATLFASTIIF, will be different from
the Monte Carlo truth record generated by Geant4 in ATLFASTII.

129

Accuracy of ISF Detector Simulation

The FastCaloSim parametrization was computed based on Geant4 inner detector and
calorimeter simulation. Thus, the accuracy of the calorimeter simulation decreases, if
FastCaloSim uses the MC truth record created by Fatras (Figure 11.3). This discrepancy
can be lowered if FastCaloSim reads the input particles from a well defined geometri-
cal boundary between the inner detector volume and the calorimeter, rather than the
TruthEvent collection. In other words, the compatibility with full simulation increases
if the ISF mode were used in FastCaloSim instead of the legacy mode. A significant
difference between ATLFASTII and ATLFASTIIF still remains with this method.

To lower the discrepancy due to combining Fatras with FastCaloSim even further, a
FastCaloSim tuning approach specifically for the combination with Fatras is discussed
in Section 12.4. In this approach, a set of tuning parameters is used to scale the energy
of particles when handed over from Fatras to FastCaloSim at the boundary between the
inner detector and the calorimeter regions.

 (GeV)T EΣ

100 200 300 400 500 600 700 800 900 1000

N
um

be
r

of
 E

ve
nt

s
pe

r
40

 G
eV

0

50

100

150

200

250

300

350

400
ATLFASTII
ATLFASTIIF, FCS input: MC truth
ATLFASTIIF, FCS input: boundary

Figure 11.3: The scalar sum of the reconstructed transverse energy
∑
ET of different

ATLFASTIIF setups compared with ATLFASTII (green) for 2000 tt̄ events simulated
in ATLAS offline software release 17.7.4.2. A significant discrepancy is introduced in
ATLFASTIIF relative to ATLFASTII, if the input particles to FastCaloSim are read
from the MC truth record, i.e. the legacy mode of FastCaloSim is used (red line). The
discrepancy decreases in the ATLFASTIIF setup, if FastCaloSim uses the particles at the
geometrical boundary between the inner detector volume and the calorimeter as input,
called the ISF mode of FastCaloSim (blue line).

130

Chapter 12

ISF in the Context of the W
Boson Mass Measurement

The measurement of the W boson mass (MW) allows for a stringent test of the Standard
Model (SM) of particle physics. As described in Chapter 2, MW , the top quark mass
(mt) the Higgs boson mass (MH) and other experimentally defined parameters can be
used to form an overconstrained set of parameters in the electroweak sector of the SM.
As the experimental uncertainties of MW and mt are the dominating uncertainties in this
overconstrained model, any reduction of their uncertainties will enable a more stringent
test of the SM.

The overconstrained set of parameters can be used to compute (fit) the W boson
mass. This leads to Mfit

W = 80.358 ± 0.008 GeV [38], which differs by more than one
standard deviation from the experimentally determined (world average) value of MW =
80.385±0.015 GeV [17]. The uncertainty of the experimentally determined value is more
than twice the size of the error in the fitted W boson mass. Hence, it is of particular
interest to measure MW more accurately in order to determine whether the difference
between the computed and the measured W boson mass is caused solely by measurement
uncertainties, or whether this indeed points to an inconsistency in the electroweak sector
of the SM.

The analysis method applied by the ATLAS collaboration (in the following described
in Section 12.1) is expected to achieve a systematic uncertainty of about 7 MeV and a
statistical uncertainty of about 2 MeV for the measurement of MW with 10 fb−1 of
integrated luminosity collected by the detector. This measurement will contribute sig-
nificantly to the world average value of the experimentally determined W boson mass
and hence, enables a more stringent test of the SM. High-statistics simulation samples
are required to study and minimize the experimental uncertainties in the measurement.
Specific requirements to the detector simulation (Section 12.2) allow for a dedicated
configuration of the ISF to generate the required simulated datasets. The flexibility
of the ISF is used to combine highly accurate Geant4 simulation with fast Fatras and
FastCaloSim simulation within individual events (Section 12.3). In order to improve
the accuracy of the fast detector simulation methods, a dedicated FastCaloSim tuning

131

ISF in the Context of the W Boson Mass Measurement

approach was developed and applied (Section 12.4). A significant speed-up in simula-
tion time and a good physics agreement between ISF fast simulation and full Geant4
simulation is obtained with this approach (Section 12.5).

12.1 Analysis Method

The analysis method and the detector calibration methods discussed in this section have
not yet been fully carried out on recorded data. The calibration methods are currently
in the process of being refined and implemented for their use with data collected by the
ATLAS experiment during the LHC Run 1. The finalization of the detector calibration
is a requirement to conducting the W boson mass analysis method described below. The
images presented in this section are based on simulated data (and simulated ”pseudo
data”) only, and serve mainly an illustrative purpose.

The final states of W boson decays which can be measured most accurately by
the ATLAS experiment are eνe and µνµ. In these leptonic decay channels, a significant
fraction of the energy of the W boson is contained in the neutrino, making it particularly
challenging from an experimental aspect. Both decay channels are studied and Monte
Carlo (detector) simulation is used to study and minimize the systematic uncertainty of
each measurement [31, 97, 98].

Specific event selection criteria (Table 12.1) are applied to minimize the amount of
background processes (such as W → τν) in the analysis dataset and to increase accuracy
of the detector measurements. After applying these selection criteria and considering the
corresponding trigger efficiencies, about 47×106 W → eνe decays and 84×106 W → µνµ
decays are expected to be measured per 10 fb−1 of integrated luminosity collected by the
ATLAS detector at the design energy of the LHC. This corresponds to a total efficiency
of about 20% for the W → eνe channel and about 40% for the W → µνµ channel. The
expected statistical precision of the W boson mass measurement is about 2 MeV per
channel (with 10 fb−1 of integrated luminosity).

MW can not be reconstructed directly through ATLAS detector measurements, as
each of the relevant W boson final states contains one neutrino. The observables for the
determination of MW can be measured in the transverse plane of the ATLAS detector,
as the conservation of momentum allows to indirectly determine the transverse momen-
tum of the neutrino through the measurement of the hadronic recoil (Section 12.1.1).
Template distributions of the charged lepton transverse momentum and the transverse
mass of the W boson are generated through detector simulation with different values
of MW (Section 12.1.2). The template distributions are compared to the correspond-
ing distributions recorded by the detector, from which the measured value of MW is
derived. About 109 simulated W → eνe events were required for the generation of the
corresponding template distributions in a comparable measurement of MW with the D0
detector [7]. About 30 times more events are expected to be measured by the ATLAS
detector in this decay channel (given 10 fb−1 of integrated luminosity). Together with
the additionally studied W → µνµ channel, the need for simulation statistics in the
order of multiple billions of simulated events becomes apparent. The generation of the

132

ISF in the Context of the W Boson Mass Measurement

Channel W → eνe W → µνµ Z → ee Z → µµ

Reconstructed Leptons p`T > 20 GeV, |η`| < 2.5

Crack region removed 1.30 < |η`| < 1.60 – 1.30 < |η`| < 1.60 –

Missing Energy ��ET > 20 GeV – –

Events in 10 fb−1 (106) 47 84 2.1 6.7

Table 12.1: The event selection criteria for the W boson decay channels used for the
MW measurement and the Z decay channels for the respective detector calibration.
Electron measurements in regions of the calorimeter with degraded resolution (called
”cracks”) are excluded from the measurement and calibration. The expected selected
number of events per 10 fb−1 of integrated luminosity at the design energy of the LHC
are illustrated. The table is taken from [97], however, slightly updated values are to be
published and are currently available to the ATLAS collaboration in an internal note
[99].

required simulation samples with full Geant4 simulation does not seem feasible, as the
sample size is of the same order of magnitude as entire ATLAS Monte Carlo production
campaigns (Section 1.1). Hence, a fast detector simulation approach is developed.

Detector calibration methods are applied using Z → ee and Z → µµ events (Sec-
tion 12.1.3) in order to minimize the experimental uncertainties of the W boson mass
measurement. Extensive detector simulation is carried out in order to facilitate the com-
putation of corresponding calibration terms. It is estimated that about four times more
simulated events than recorded (and selected) Z → ee and Z → µµ events are required
to determine the calibration. This leads to simulation sample sizes in the order of tens
of million events for 10 fb−1 of integrated luminosity (see Table 12.1). Even with the
detector calibration applied in the measurement, the precision of the MW measurement
is dominated by experimental uncertainties (Table 12.2).

A total systematic uncertainty of about 7 MeV is expected for the measurement of
MW per decay channel (with 10 fb−1 of integrated luminosity).

12.1.1 W and Z Boson Observables in the Transverse Plane

The conservation of momentum in the transverse plane allows to indirectly measure the
transverse momentum of the undetected neutrino and hence allows do derive observables
which are crucial for a precise measurement of MW (discussion below in Section 12.1.2).
This section covers the relationships between various observables in the transverse plane
(illustrated in Figure 12.1) for W → `ν and Z → `` decays (where ` denotes a charged
lepton, either e or µ). The latter is particularly important for detector calibration
(Section 12.1.3).

The production of W and Z bosons in the LHC is dominated by quark-antiquark
annihilation processes. Higher order processes may radiate gluons or quarks which recoil

133

ISF in the Context of the W Boson Mass Measurement

Source Effect
σ (MW)

(
p`T
)

σ (MW)
(
mW

T

)
(MeV) (MeV)

Production Model W width 0.5 1.3
yW distribution 1 1
pWT distribution 3 1
QED radiation < 1 < 1

Lepton measurement Scale, linearity & resolution 4 4
Efficiency 4.5 (e), < 1 (µ) 4.5 (e), < 1 (µ)

Recoil measurement Scale, linearity & resolution – 5

Backgrounds W → τν 2 1.5
Z → `(`) 0.3 0.2
Z → ττ 0.1 0.1
Jet events 0.5 0.4

Total ∼ 7 (e), 6 (µ) ∼ 8 (e), 7 (µ)

Table 12.2: Estimated systematic uncertainties affecting the measurement of the W
boson mass (MW) for 10 fb−1 of integrated luminosity recorded by the ATLAS detector.
The uncertainties for determining MW through fitting the lepton transverse momentum
distribution (σ (MW)

(
p`T
)
) and through fitting the transverse W boson mass distribution

(σ (MW)
(
mW

T

)
) are listed individually. The impact of the detector calibration on the

lepton and recoil measurements is considered in this table, however, the total systematic
uncertainty is still dominated by the experimental uncertainties of these two observables
(source: [39, 97]).

against the produced boson and result in a non-zero boson momentum [100]. Hence, the
W and Z bosons studied in this physics analysis generally have non-zero transverse mo-
menta (~p W

T and ~p Z
T) [100]. The transverse momentum of the Z boson can be computed

through the vector sum of the reconstructed transverse momenta of the two leptons (~p `+

T

and ~p `−
T):

~p Z
T = ~p `+

T + ~p `−
T . (12.1)

The transverse momentum of the W boson is defined through the vector sum of the re-
constructed charged lepton transverse momentum (~p `

T) and the transverse momentum of
the neutrino (~p ν

T), where the latter can be indirectly measured as the missing transverse

energy (��~ET):

~p W
T = ~p `

T + ~p ν
T = ~p `

T + ��~ET . (12.2)

The conservation of momentum in the transverse plane allows for the definition of the
hadronic recoil (~u Z

T and ~u W
T), which balances the transverse momentum of the respec-

tive boson [7, 100, 101]:

0 = ~u
Z/W

T + ~p
Z/W

T . (12.3)

134

ISF in the Context of the W Boson Mass Measurement

W → ℓν

ν

ℓ

px

py

u

∆φℓν

T
W

p
T

p
T

(a)

Z→ ℓℓ

ℓ

px

py

p
T

Z

ZuT

p
T

p
T

ℓ
+

-

(b)

Figure 12.1: (a) W → `ν and (b) Z → `` decays viewed in the transverse plane of the

ATLAS detector. The transverse component of the hadronic recoil (~u
W/Z

T) balances the

transverse of momentum of the respective W or Z boson (~p
Z/W

T) due to the conservation
of momentum in the transverse plane. ~u W

T is used to estimate the transverse momentum
of the undetected neutrino (~p ν

T). The relative azimuthal angle between the lepton and
the neutrino (∆φ`ν = φ` − φν) is used to compute the transverse mass of the W boson
(mW

T). The sizes of the dotted ellipses represent the expected resolution of the respective
reconstructed objects. A high resolution measurement of ~u Z

T is obtained through the
precise measurement of the two charged leptons, a lower resolution indirect measurement
is obtained through the energy depositions in the calorimeter (green) (image: [39]).

The hadronic recoil is the vector sum of all transverse energy which is not associated

with the reconstructed lepton(s) (~E �̀
T) [100, 101]:

~u
Z/W

T =
∑

~E �̀
T . (12.4)

It is measured by computing the vector sum of all transverse energy measurements,
excluding the energy measurements which are within a cone (of size ∆R1 in η-φ space)
around the respective reconstructed charged lepton(s) (`)

~u
Z/W

T =
∑

outside
` cones

~ET =: ~E hr
T . (12.5)

1∆R =
√

(∆η)2 + (∆φ)2

135

ISF in the Context of the W Boson Mass Measurement

For the studies presented in this chapter, a cone size of ∆R = 0.2 was chosen.

Combining Equations 12.1 and 12.3 with Equation 12.5, it follows for the Z boson

~E hr
T = −

(
~p `+

T + ~p `−
T

)
, (12.6)

and for the W boson by combining Equations 12.2 and 12.3 with Equation 12.5

~p ν
T = −

(
~p `

T + ~E hr
T

)
. (12.7)

The indirect measurement of ~p ν
T (through the relationship given in Equation 12.7)

is of particular importance for the determination of the transverse W boson mass which
is used to measure MW (discussed below in Section 12.1.2).

The relationship in Equation 12.6 enables the calibration of the hadronic recoil
through Z → `` decays (discussed below in Section 12.1.3), which consequently enhances
the accuracy of the ~p ν

T measurement.

12.1.2 MW Measurement

Two observables which are sensitive to MW are measured, the first one being the re-
constructed transverse momentum of the charged lepton (p`T). The second observable
is the transverse W boson mass (mW

T), which is computed from p`T and the transverse
momentum of the neutrino (pνT), according to

mW
T =

√
2 p`T pνT (1− cos (φ` − φν)) , (12.8)

where φ` and φν are the measured azimuthal angles of the lepton momentum and
the neutrino momentum in the ATLAS coordinate system, respectively. The event
selection criteria maximize the chance of exactly one neutrino being present in each
(simulated or recorded) event. Hence, the measured missing transverse energy is an
indirect measurement of the transverse momentum of the neutrino.

Figure 12.2 illustrates the shape of the p`T and mW
T distributions after fast detector

simulation and with the event selection criteria applied.

MC event simulation and detector simulation are used to generate template dis-
tributions of mW

T and p`T for different values MW . The detector simulation output is
reconstructed and the same event selection criteria are applied as in the analysis of the
recorded data. A least squares parameter fit [102, 103] is carried out in order to de-
termine the optimal value of MW . χ2 values are computed to quantify the agreement
between each individual template distribution and the corresponding distribution mea-
sured in the ATLAS detector. The particular shape of both distributions (also referred
to as ”Jacobian peak” or ”Jacobian edge”) results in a high sensitivity of the χ2 value to
the level of agreement between the compared histograms. The effect of the (simulated)
ATLAS detector and the reconstruction algorithms to the p`T distribution is illustrated in
Figure 12.3. Due to the altered shape of the distribution, in particular the altered slope
of the distribution in the vicinity of the peak, the detector simulation plays a crucial
role in generating accurate templates for comparison with recorded data. Finally, MW

136

ISF in the Context of the W Boson Mass Measurement

Figure 12.2: Transverse lepton momentum (p`T) and transverse W boson mass (mW
T)

after fast detector simulation and with the event selection criteria applied. The image
illustrates the particular shape (”Jacobian edge” or ”Jacobian peak”) of both distribu-
tions. The steep slope in the distribution results in a high sensitivity of the χ2 value for
the comparison of the simulated and measured distributions (image: [39]).

is determined as the analytic minimum of a parabola which is fitted to the χ2 values as a
function of the simulated values of MW (Figure 12.4). This method allows to determine
MW with a systematic uncertainty of about 7 MeV for 10 fb−1 of integrated luminosity.

The dominating uncertainties for the measurement of MW are the experimental un-
certainties of the lepton and recoil measurements (Table 12.2). Both are affected sig-
nificantly by the respective uncertainties arising from the energy scale, linearity of the
detector response and the detector resolution. The lepton measurement is additionally
affected by the reconstruction efficiency, in particular in the electron channel. Muon par-
ticles traversing the detector can be identified easily via the ATLAS muon spectrometer,
whereas electrons suffer from bremsstrahlung effects that make them particularly prone
to misidentification. ”Tag and probe” methods are used to determine the corresponding
lepton reconstruction efficiencies [39].

In order to minimize the systematic uncertainty of the MW measurement, a precise
calibration of p`T and pνT is required (discussed below in Section 12.1.3).

137

ISF in the Context of the W Boson Mass Measurement

E
nt

rie
s

(n
or

m
al

iz
ed

)
pe

r
1.

6
G

eV

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
 MC Event Generator

ATLAS Detector Simulation
Reconstructed after Geant4

 (GeV)
T
lp

20 30 40 50 60 70

R

ec
./G

en
.

0.8
0.9

1
1.1
1.2

Figure 12.3: A comparison of the lepton transverse momentum (p`T) in simulated Z → ee
events between the MC generator output and the reconstruction output after Geant4
ATLAS detector simulation. The selection criteria for the Z → ee calibration method
were applied on the reconstructed particles. The effect of the detector (simulation) and
the reconstruction algorithms is noticeable through a widening of the distribution in the
vicinity of the peak. Comparable effects are expected for the simulation of W → eν
events.

138

ISF in the Context of the W Boson Mass Measurement

Figure 12.4: The computed χ2 values as a function of the tested value of MW (depicted
as mW). Each dot represents a comparison between the data measured in the ATLAS
detector (simulated ”pseudo data” in this case) and the simulated template distribution
for a given value of MW . The curve is the fitted parabola (image and caption: [39]).

139

ISF in the Context of the W Boson Mass Measurement

12.1.3 Detector Calibration

Z → ee and Z → µµ decays are used to calibrate the ATLAS detector response to
the charged leptons (`) and to calibrate the measurement of the transverse neutrino
momentum (pνT) [39, 104, 105]. The dominating processes generating Z bosons in the
LHC are qq̄ → Z → `` and qg → qZ → q``, which are Drell-Yan processes [106, 107].

Lepton Calibration

With the precise knowledge of the Z boson mass and width [30], the ATLAS detector
response to leptons ` (referring to e or µ) is measured in regions of particle energy and
pseudorapidity η. Due to the relatively similar mass and the similarity of the processes
involved in the creation of the Z boson and the W boson, the resulting leptons ` are
generated in similar energy regimes.

In order to obtain a precise calibration for the electron energy measurement, an
energy scale factor α and an energy resolution parameter a are introduced. Monte Carlo
simulation is carried out to generate Z → ee samples with decalibrated electron energies.
The electron energies are scaled with α and the resulting energy is smeared with the
resolution parameter a, before the particle is simulated through the ATLAS detector.
A histogram of the reconstructed di-electron invariant mass m`` (in the vicinity of the
expected Z mass) is generated for each pair (αi, ai), respectively. χ2 values are computed
to quantify the agreement between each individual histogram obtained by simulation
and the data recorded in the ATLAS detector. This leads to a set of

(
χ2
i , αi, ai

)
values

(Figure 12.5). A paraboloid χ2 = f (α, a) is fitted through this set in the vicinity of the
minimum. The calibration constants α0 and a0 are determined as the analytic minimum
of the fitted paraboloid.

Calibration constants α0 and a0 are determined for different event categories. Indi-
vidual categories are defined within regions of lepton energy and pseudorapidity. This
leads to respective pairs of αj0 and aj0 values in bins of electron energy and pseudorapidity.

Recoil Calibration

pνT is calibrated through using the same simulated and recorded Z → `` decays in the
ATLAS detector which were previously used to obtain the lepton calibration (discussed
above). Accurate transverse momentum measurements of the individual leptons ` are
required in order to derive the calibration for pνT. Hence, the previously obtained lepton
calibration is applied throughout the method described in this section.

The hadronic recoil in Z → `` events is determined accurately through the measure-
ment of the lepton transverse momenta (Equation 12.6). This accurate measurement is
used to calibrate the less accurate hadronic recoil measurement which is computed from
the vector sum of all transverse energy in the calorimeter, excluding the leptons (Equa-
tion 12.5). Corresponding scale (αhr) and resolution (ahr) parameters are derived from
comparing the peak position and spread of the Ehr

T /p
Z
T distribution between recorded

and simulated data [39]. The calibration of the hadronic recoil is then used for the

140

ISF in the Context of the W Boson Mass Measurement

Figure 12.5: χ2 values are computed to quantify the level of agreement between the
simulated Mee histograms with the data recorded in the ATLAS detector. One χ2 value
is obtained for each simulated sample with respective calibration parameters (αi, ai). A
paraboloid is fitted to the set

(
χ2
i , αi, ai

)
in order to determine the point α0 and a0 with

the minimum χ2 (image: [105]).

accurate measurement of the transverse neutrino momentum in W → `ν decays (Equa-
tion 12.7), which is required to compute the transverse mass (mW

T) of the W boson
(Equation 12.8).

12.2 Simulation Requirements

High statistics Monte Carlo simulation samples are required for accurate detector cal-
ibration and for the measurement of W boson mass. The same detector simulation
method is to be used for the generation of both types of samples, as the determined
calibration is specific to the chosen simulation setup. A fast simulation setup within
the Integrated Simulation Framework is currently being validated for the generation of
accurate detector simulation samples for lepton and recoil calibration. The application
of the ISF for W boson signal simulation is foreseen and is to be studied in the future.

The level of agreement between a fast simulation setup and Geant4 is required to be
of a similar magnitude as the observed level of agreement between Geant4 and recorded
data. Small discrepancies between the individual simulators are of little relevance as
the calibration method aims at minimizing the discrepancies between either simulation
method and recorded data.

In order to calibrate the lepton response with Z → ee and Z → µµ decays, a highly
accurate detector simulation of the respective signal electrons and muons is required.
Considering the level of agreement observed between Geant4 and recorded data in Ref-
erences [108, 109], the required level of agreement between a fast simulation setup and
Geant4 is to be within . 1% in the respective lepton observables. Accurate simulation

141

ISF in the Context of the W Boson Mass Measurement

of the hadronic recoil (Ehr
T) observable is required to allow for the calibration of pνT.

A percent-level agreement (. 10) is required between the fast and the full simulation
setups for the hadronic recoil variables. This is based on the level of agreement observed
between Geant4 and recorded data in References [110, 111].

12.3 ISF Simulator Configuration

To fulfill the requirements for a accurate simulation of Z → ee calibration samples
(Section 12.2), a dedicated ISF setup (also referred to as simulation flavour) is put in
place. Geant4 is used to simulate electrons and positrons stemming from Z decays
(including all particles in regions surrounding them), Fatras and FastCaloSim simulate
all other particles in the event. Static and semi-dynamic routing rules (Section 6.1)
are configured through various SimulationSelectors in the ISF routing chain (Section 6.2
and 7.2). A semi-dynamic ISF SimulationSelector defines cone-shaped regions of interest
with a cone size of ∆R = 0.4 in η-φ space (Figure 12.6). These ROIs are defined around
all electrons and positrons in the simulation input which fulfill the following criteria:

• Their parent particle in the HepMC GenEvent structure is a Z boson.

• Their respective transverse momentum in the simulation input is above a threshold
of p`T ≥ 15 GeV/c.

Exactly two such ROIs are expected in each simulated event. All primary particles inside
this ROI are selected for Geant4 simulation.

As shown previously, the simulation accuracy potentially decreases if a particle and
its secondaries are simulated by more than one simulator (Chapter 11). Therefore, the
number of simulators a primary particle and its secondaries are simulated through is
kept to a minimum in this ISF simulation flavour. If a primary particle is selected
for Geant4 simulation, all its secondaries will be simulated by Geant4 throughout the
whole detector (”sticky” Geant4 SimulationSelectors guarantee for that). Geant4 is
exclusively used for primary particles in the ROI and their secondaries – there is no
ROI requirement for these secondaries. All other particles (primary and secondary) in
the ATLAS inner detector (ID) will be simulated by Fatras. Consequently, all secondary
particles arising from Fatras simulation in the inner detector region will also be simulated
in Fatras. FastCaloSim is used exclusively for calorimeter simulation of particles which
were simulated by Fatras through the inner detector. With this simulator configuration,
there are only two combinations of simulators a primary particle and its secondaries will
encounter:

1. Geant4 for the entire simulation of a primary particle and all its secondaries.

2. Fatras for inner detector simulation and FastCaloSim for calorimeter simulation of
a primary particle and all its secondaries.

Due to the low number of simulator combinations which particles encounter in this
setup, only one specific simulator tuning is required to increase overall simulation accu-
racy (discussion below in Section 12.4).

142

ISF in the Context of the W Boson Mass Measurement

Figure 12.6: The ISF simulator configuration for fast and accurate ATLAS detector
simulation of Z → ee events. The initial states of the Z boson decay products (e+ and
e−) are used to define cone-shaped regions of interest in the detector simulation. All
primary particles which are positioned within either of the ROIs will be simulated by
Geant4 (red) throughout the entire detector. Any secondary particle arising from these
primary particles will also be simulated by Geant4. The rest of the particles will be
simulated by Fatras (blue) inside the inner detector and by FastCaloSim (green) inside
the calorimeter.

143

ISF in the Context of the W Boson Mass Measurement

12.4 Simulator Tuning

As described in the previous section, three different simulators are combined to form the
ISF detector simulation setup for Z → ee event simulation. Any exchange of particles
between Geant4 and any of the fast simulators is avoided in this setup. Thus, the
only exchange of particles between simulators takes place between Fatras inner detector
simulation and FastCaloSim calorimeter simulation.

The ATLAS calorimeter simulation using FastCaloSim is most accurate if the simu-
lation input is formed by the MC truth representation generated by a preceding Geant4
inner detector simulation (Section 11.1). The MC truth representation generated by the
Z → ee ISF fast simulation flavour, however, contains particles which are simulated by
Fatras and Geant4 inside the ATLAS inner detector volume. Moreover, the MC truth
representation contains both, particles that are to be simulated by Geant4 and particles
that are to be simulated by FastCaloSim inside the calorimeter volume. Thus, the MC
truth representation is not used as direct input to FastCaloSim calorimeter simulation.
Instead, the individual particle states at the boundary between the inner detector and
the calorimeter volumes are used to input FastCaloSim. This method of providing input
to FastCaloSim is enabled through the implementation of the ISF and thus also called
”ISF mode” of FastCaloSim (Section 11.1.2). It has been shown that the discrepancy
between FastCaloSim and the full Geant4 simulation increases due to this approach in
the ATLFASTIIF setup (Section 11.2). Hence, a specific tuning was developed to im-
prove the agreement between Geant4 and FastCaloSim when using this input method in
combination with Fatras inner detector simulation. The specifics of the tuning process
and implementation are discussed in this section.

In consequence of providing input to FastCaloSim at the detector boundary, rather
than the MC truth representation within the inner detector volume, the energy deposited
in the calorimeter is underestimated by FastCaloSim (covered in Chapter 11). This is
due to the fact that FastCaloSim intrinsically accounts for energy which is lost in interac-
tion processes that occur to the particles when travelling from the inner detector volume
towards the calorimeter. The simulation of this effect is inherent to the parametriza-
tion of FastCaloSim, as the simulated energy in the calorimeter is parameterized with
respect to particle energies present in the inner detector volume. This effect, however,
is already reflected in the particle states (energies) at the boundary between the inner
detector volume and the calorimeter. Hence, the FastCaloSim calorimeter simulation
using particle states at the detector boundary will account for this lost energy twice and
consequently underestimate the energy deposited in the calorimeter.

The use of Fatras for the fast simulation of particles through the ATLAS inner
detector volume results in a discrepancy of the total energy that reaches the boundary
between the ID volume and the calorimeter with respect to Geant4 full simulation. This
is due to higher energy thresholds for the simulation of secondary particles in Fatras.
Consequently, less total energy is expected to reach the ID/calorimeter boundary in the
fast ISF setup compared to full Geant4 simulation.

In agreement with these expectations, it is found that the FastCaloSim simulator in

144

ISF in the Context of the W Boson Mass Measurement

the ISF fast simulation flavour underestimates the energy which is deposited inside the
calorimeter relative to full Geant4 simulation (Section 12.4.1). This discrepancy has a
significant impact on the simulation accuracy of the hadronic recoil observable which is
critical for the calibration of the pνT observable in the W boson mass analysis. A local
linear relationship between the energy deposited by the calorimeter simulation and the
incoming particle energy is assumed. This relationship is assumed to be valid for small
changes of the incoming particle energy only. Hence, energy scale factors are introduced
which are applied to the particle states at the detector boundary in order to correct for
the underestimated calorimeter energy in the FastCaloSim simulator (Section 12.4.2).

12.4.1 Calorimeter Response

To quantify the discrepancy of the energy deposited inside the calorimeter between
Geant4 and the ISF mode of FastCaloSim, two types of calorimeter responses (r and
rcalo) are relevant

r =
Ecalo

Eprimary
, (12.9)

rcalo =
Ecalo

EcaloEntry
. (12.10)

Ecalo is the total deposited energy in the calorimeter as computed by the detector simu-
lation and stored in the HITS file format (Section 4.2). In this study, Ecalo is determined
by either FastCaloSim or Geant4, depending on the specific simulation setup. r is the
simulated response of the calorimeter to a particle with the energy Eprimary when leaving
the interaction point. rcalo is the simulated response of the calorimeter to a particle with
the energy EcaloEntry just before entering the calorimeter sub-system. r combines the
effects of inner detector simulation and calorimeter simulation. Thus, r expresses the
overall response of the ATLAS detector to a given primary particle. rcalo, on the other
hand, is a purely calorimeter-based variable. rcalo is used in this section to compare the
response of calorimeter simulations in different detector simulation setups.

In consequence of using FastCaloSim in the ISF mode, rcalo is expected to be lower
in comparison with Geant4 simulation, due to the double counting of the energy which
is lost due to interactions in the ATLAS inner detector volume by FastCaloSim. A
discrepancy of rcalo corresponds to an inaccurate simulation of the hadronic recoil which
is required for accurate detector calibration.

The primary particle energy Eprimary is obtained from the TruthEvent Monte Carlo
truth collection (Section 7.4). For each event, Ecalo is computed as the sum of the
simulated calorimeter hit energies Ehit divided (or multiplied) by the respective sampling
fraction f :

Ecalo =
∑

LAr hits

ELAr
hit

fLAr
+
∑

tile hits

Etile
hit · f tile . (12.11)

It is important to note that Ecalo is not equal to the energy measured at the detector
readout (after digitization) nor to the reconstructed calorimeter energy. Time thresholds

145

ISF in the Context of the W Boson Mass Measurement

are applied to the simulated calorimeter hits and noise is applied to the detector readout
during the digitization step. Individual sensitive detector hits which were generated by
Geant4 may be discarded in the digitization step if the respective time threshold is not
fulfilled. Hit timing is not simulated by FastCaloSim, hence all sensitive detector hits
generated by this simulator will pass the timing thresholds. Only a small fraction of
Ecalo does not pass the timing thresholds after Geant4 simulation, hence Ecalo is a close
approximation of the calorimeter energy represented in the readout signals. The impact
of the time thresholds is therefore neglected in the following tuning approach. If deemed
necessary, the thresholds might be applied in the computation of Ecalo for an improved
tuning approach in the future.

EcaloEntry is obtained from the CaloEntryLayer StoreGate collection, which con-
tains a Monte Carlo truth record of all particles passing the boundary between the
ATLAS inner detector and the calorimeter volumes (Section 7.4.1). In ATLFASTIIF
and in the Z → ee ISF simulation configuration, the particle information obtained
from the CaloEntryLayer collection is equivalent to the simulation input of the ATLAS
calorimeter simulation.

 (MeV)caloEntryE

310 410 510 610

ca
lo

r

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Calorimeter Response Charged Pions

Geant4

ATLFASTIIF

Calorimeter Response Charged Pions

(a)

 (MeV)caloEntryE

310 410 510 610

ca
lo

r

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Calorimeter Response Electrons

Geant4

ATLFASTIIF

Calorimeter Response Electrons

(b)

Figure 12.7: The simulated calorimeter response rcalo at different particle energies
EcaloEntry (a) of single charged pion events (b) and of single electron/positron events.
The image shows simulated events within which the respective initial particles do not
undergo a significant interaction in the inner detector, i.e. no secondary particles with
more than 50 MeV are generated. Geant4 and ATLFASTIIF detector simulation were
carried out within ISF in the ATLAS offline software release 17.7.5.4.

Figure 12.7 illustrates the calorimeter response rcalo of Geant4 and ATLFASTIIF
simulation for single charged pion (π±) and single electron/positron (e±) events. Event
selection criteria are applied in order to ensure that the simulated calorimeter energy is
directly caused by the primary particle entering the calorimeter volume. Hence, events
with one or more secondary particle (with energy > 50 MeV) in the ID volume are not
considered in the figure and in the following discussion. The ATLFASTIIF simulation

146

ISF in the Context of the W Boson Mass Measurement

flavour is comparable to the ISF setup used for Z → ee simulation, as both utilize the
ISF mode of FastCaloSim. As expected, the figure shows that the calorimeter response
in the ATLFASTIIF setup is lower compared to Geant4 detector simulation. It follows
that less energy is deposited in the calorimeter by FastCaloSim in ATLFASTIIF. This
is a consequence of using FastCaloSim in the ISF mode. The tuning approach discussed
in this section focusses on regaining the lack of deposited energy in the calorimeter due
the ISF mode of FastCaloSim by introducing particle energy scale factors.

12.4.2 FastCaloSim Energy Scale Factors

Particle energy correction (or scale) factors are applied in the ISF Z → ee simulation
flavour, in order to maximize the level of agreement between Geant4 and FastCaloSim
calorimeter simulation. In this ISF setup, all input particles to FastCaloSim are sim-
ulated with Fatras through the ATLAS inner detector volume. The correction factors
are applied to all fast simulation particles, after leaving the inner detector volume and
before entering the calorimeter simulation. The aim is to compensate for the double
counting of the energy which is lost due to interaction processes in the ATLAS inner
detector volume due to the ISF mode of FastCaloSim.

A local linear relationship between the particle energy at the point of entering the
calorimeter and the computed energy deposited inside the calorimeter is assumed. This
allows to compute a scale factor for the incoming particle energy, based on a scaling
required for the deposited calorimeter energy. This method is expected to be valid as
long as the particle energies are scaled by small amounts, otherwise FastCaloSim were
to create significantly different energy distributions inside the calorimeter. This would
result in a non-linear dependency between the scaled particle energy and the simulated
calorimeter energy.

Two types of correction factors are employed. The first type is dependent on the
simulated particle type, energy and pseudorapidity. As the dependency is described in
bins of the respective parameters, it is referred to as the binned energy correction factor.
This scale factor is intended to be independent of the specific sample which is being simu-
lated. The aim of the energy dependency of the scale factors is to divide the entire range
of particle energies simulated by FastCaloSim into local regions within which a linear
response of the calorimeter can be approximated. The η-dependency aims at providing
individual scale factors per ATLAS calorimeter region. The second correction factor is
applied globally to all particles in the fast simulation before entering the calorimeter.
This scale factor is computed specifically for the Z → ee simulation sample, with the
aim of correcting inaccuracies of the Fatras inner detector simulation (e.g. discrepancies
in particle multiplicities and the total energy reaching the ID/calorimeter boundary).

Both types of energy correction factors are discussed below.

Binned FastCaloSim Energy Scale Factor

The binned energy correction factor for FastCaloSim in ISF mode (SF) is computed from
the ratio between the Geant4 calorimeter response (rG4

calo) and the calorimeter response

147

ISF in the Context of the W Boson Mass Measurement

computed by FastCaloSim in ISF mode (rISFFCS
calo) for single particle simulation. The

error is computed under the assumption of independent and uncorrelated variables rG4
calo

and rISFFCS
calo :

SF =
rG4
calo

rISFFCS
calo

, (12.12)

∆SF =

√(
1

rISFFCS
calo

)2 (
∆rG4

calo

)2
+

(
rG4
calo

(rISFFCS
calo)

2

)2 (
∆rISFFCS

calo

)2
. (12.13)

caloEntry

η

00.51
1.52

2.533.54
4.5

5

 (M
eV)

caloEntry

E

310
410

510
610

p
i

S
F

0.8
1

1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

Charged Pion Energy Scale FactorCharged Pion Energy Scale Factor

(a)

caloEntry

η

00.51
1.52

2.533.54
4.5

5

 (M
eV)

caloEntry

E

310
410

510
610

e
S

F

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Electron Energy Scale FactorElectron Energy Scale Factor

(b)

Figure 12.8: The FastCaloSim energy scale factors (a) SFpi and (b) SFe in bins of
EcaloEntry and ηcaloEntry (150 MeV ≤ EcaloEntry < 2 TeV and |ηcaloEntry| < 5). The energy
scale factors are computed using Geant4 and FastCaloSim in ISF mode in ATLAS offline
software release 17.7.5.4.

Charged pion (π±) and electron/positron (e±) single particle events are simulated
with Geant4 and FastCaloSim in ISF mode in order to determine the respective en-
ergy scale factors. The initial particles originate from the nominal interaction point at
(x, y, z) = (0, 0, 0). The initial particle energy (Eprimary) follows a 1/x distribution be-
tween 200 MeV and 2 TeV in the case of π±, and between 50 MeV and 2 TeV in the case
of e±. This distribution is chosen to provide sufficiently high statistics in order to allow
an accurate modelling of the logarithmic dependency of the calorimeter response to the
particle energy (Figure 12.7). Moreover, it approximates the particle energy distribution
in minimum bias events.

The detector material in the inner detector volume was removed for the generation
of the Geant4 and the FastCaloSim samples. This increases the chance of the primary

148

ISF in the Context of the W Boson Mass Measurement

particle reaching the boundary between the inner detector and the calorimeter, without
generating secondary particles due to interactions. In order to measure the response of
the calorimeter simulation to individual particles, it is preferred to study events with only
one particle entering the calorimeter simulation. The material of the ATLAS beam pipe
was not removed in the Geant4 simulation due to technical reasons in the configuration
of Geant4 for ATLAS detector simulation. In order to achieve high simulation statistics
in due time, Fatras was used to extrapolate the particle tracks from the interaction point
to the boundary between the inner detector and the calorimeter for the generation of
the FastCaloSim sample. In both simulation setups, the particles are precisely tracked
in the magnetic field of the ATLAS detector.

500 000 events are simulated for each respective particle type in each respective sim-
ulator. This totals to 2 million events simulated with ISF and Geant, respectively. Due
to the simulation of the beam pipe material in the Geant4 setup, selection criteria are
applied to reject all events with a significant interaction of the primary particle before it
reaches the boundary between the inner detector and the calorimeter volumes. Events
are rejected if the primary particle emits a child particle with a kinetic energy of 50 MeV
or more before reaching the ID/calorimeter boundary. The scale factors SFpi and SFe

are derived from the remaining set of events.
Figure 12.8 illustrates the energy scale factor SF in relation to the pseudora-

pidity ηcaloEntry (of the particle position) and the particle energy EcaloEntry in the
CaloEntryLayer. The precise binning is listed in Table 12.3. A tendency towards higher
scale factor values at lower values of EcaloEntry can be observed. This indicates that these
particles are significantly impacted by the double counting of the energy which is lost
due to interaction processes in the ATLAS inner detector volume, which is inherent to
the FastCaloSim parametrization and triggered by the ISF mode of FastCaloSim. Hence,
the use of energy scale factors is particularly important for the accurate simulation of
particles with low energies. The large scale factors in the region of EcaloEntry < 400 MeV
(lowest energy bin) illustrate the limitations of FastCaloSim. This is of no concern, as
the particle energies are too low to be considered for accurate fast calorimeter simulation.
However, this bin is computed separately, in order to factor out possible inaccuracies of
the simulator into these dedicated bins.

The SFe and the SFpi scale factors are stored in separate ROOT TH2 histograms
within a ROOT file. The file serves as a look-up table for the FastCaloSim detector
simulation (discussed below).

149

ISF in the Context of the W Boson Mass Measurement

Variable Number of bins Bin edges

ηcaloEntry 7 0.0, 0.8, 1.4, 1.8, 2.5, 3.2, 4.0, 5.0

EcaloEntry 11 150 MeV, 400 MeV, 700 MeV, 1 GeV, 1.5 GeV,
2.0 GeV, 4.0 GeV, 8.0 GeV, 20 GeV, 200 GeV,
2 TeV

Table 12.3: Bin edges of the energy scale factor (SF) for FastCaloSim in ISF mode. The
bin positions and sizes for the ηcaloEntry are aimed at separating different calorimeter
regions and technologies into respective bins. The caloEntry bin sizes are aimed at covering
the logarithmic dependency of the calorimeter response (rcalo) on the particle energy.

Global ATLFASTIIF Calorimeter Energy Scale Factor

The use of Fatras to simulate particles in the inner detector volume causes the particles
reaching the boundary between the ID and the calorimeter to have different properties
compared to Geant4 full simulation. In particular a lower number of particles with
low energies is expected to reach the boundary in the fast simulation. This is due to
different energy thresholds for the generation of secondary particles inside the respective
simulators. In general, the minimal energy a (secondary) particle must have in order to
be simulated through the detector, is higher in fast simulations than in full simulations.
This results in a lower number of particles being simulated by the fast2 simulators.
The energy carried by these particles is effectively ”lost” inside fast simulators, as the
energy of the particles that are simulated is modelled accurately. Therefore, less total
energy is expected to arrive at the boundary between the inner detector volume and
the calorimeter volume in the Fatras simulator compared to Geant4 (assuming the same
input). A lack of deposited energy inside the calorimeter is expected as a consequence
of this.

The particles simulated by Fatras trough the ATLAS inner detector volume in the
fast Z → ee ISF simulation flavour are subsequently processed by FastCaloSim for
calorimeter simulation. FastCaloSim only receives input from the Fatras simulator in this
simulation setup. Hence, a (tunable) energy scale factor (SFglobal) inside FastCaloSim
is introduced in order to correct for the expected lack of energy at the ID/calorimeter
boundary. The energy of a particle is scaled by this factor prior to its calorimeter
simulation with FastCaloSim and after its inner detector simulation with Fatras. As the
relative amount of energy which lacks in the fast simulation is expected to be dependent
on the specific simulation sample, the optimal value of SFglobal will depend on specific
type of events which are simulated.

The reconstructed hadronic recoil (Ehr
T) distribution is used to tune SFglobal in the

ISF fast simulation against the Geant4 full simulation reference. The Ehr
T observable

is directly dependent on the simulation performance of the fast simulators in this ISF
simulation flavour. Fast simulators are used to simulate all particles outside the cone-

2After all, this is one reason for the high simulation speed of fast simulators.

150

ISF in the Context of the W Boson Mass Measurement

shaped ROIs, which are defined only around the decay particles of the Z boson. The
particles forming the hadronic recoil are expected to be mainly outside these ROIs and
are therefore simulated by Fatras and FastCaloSim.

ISF fast simulation is carried out with different values of SFglobal, using a Z →
ee EVNT dataset3 as input. The previously computed binned energy scale factors
for FastCaloSim (previous section) are applied in all ISF simulation samples (Sec-
tion 12.4.3 describes how the individual scale factors are combined an applied inside
FastCaloSim). Standard Geant4 full simulation is carried out using the same input
dataset in order to provide a reference for the parameter tuning. 120 000 events are
simulated in the Geant4 reference sample and in each ISF sample with SFglobal ∈
{0.990, 0.995, 1.000, 1.005, 1.010, 1.015}, respectively. 55 000 events are simulated in each
respective ISF simulation sample elsewhere. The complete simulation chain is executed
for each respective detector simulation sample, which includes: detector digitization,
reconstruction and the creation of a flat ROOT n-tuple format called SMWZ D3PD
(details regarding this full chain setup see Section 12.5). The specific event selection
criteria of the W-mass detector calibration are not applied. Hence, the resulting Ehr

T

distributions combine the effects of Fatras and FastCaloSim for the entire input dataset.
A least squares parameter fit is carried out in order to determine the optimal value of

SFglobal. For this, a χ2 value is computed to quantify the level of agreement (of weighted
histograms [71, 112]) between the individual ISF simulation results, each with a corre-
sponding SFglobal value, and the Geant4 simulation reference (Figure 12.9). A quadratic
polynomial function of the variable SFglobal is fitted to this set of

(
SFglobal,i, χ

2
i

)
val-

ues. The analytic minimum of the fitted function is calculated. The corresponding scale
factor at the minimum is SFglobal = 1.002± 0.003.

The global scale factor at the computed minimum differs by less than one percent
from the unscaled value. Moreover, it is compatible with the unscaled value within
one standard deviation. Due to this, and to avoid sample-specific simulator tuning, the
global energy scale factor is set to SFglobal ≡ 1.000 in all studies presented in the results
section of this chapter (Section 12.5). It is found that the tuning with binned energy
scale factors (previous section) significantly enhances the level of agreement between fast
simulation and Geant4 full simulation for the Ehr

T observable in the first place (see also
Figure 12.12 in the results section).

3The EVNT dataset is the same as in the results Section 12.5 in this chapter.

151

ISF in the Context of the W Boson Mass Measurement

globalSF

0.96 0.98 1 1.02 1.04

2 χ

0

50

100

150

200

250

300

Figure 12.9: χ2 values obtained by testing the reconstructed hadronic recoil (Ehr
T) dis-

tribution generated by Geant4 simulation against ISF simulation with different values
of SFglobal. A minimum χ2 is determined in the fitted quadratic polynomial function at
SFglobal = 1.002± 0.003.

12.4.3 Applying Energy Scale Factors in FastCaloSim

The two separate sets of energy scale factors are applied in the FastCaloSim simulation
to all input particles that were simulated by Fatras through the ATLAS inner detector.
For each individual input particle to FastCaloSim, the following procedure is followed:

1. The initial energy scale factor for the given particle is determined with the informa-
tion present in the two-dimensional SF histograms (binned energy scale factors).
A modified nearest-neighbour interpolation method is employed4 to randomly se-
lect either the nearest-neighbouring bin or the second closest bin in each histogram
dimension.

2. The scale factor is randomly ”smeared” within its respective error σ, using a Gaus-
sian probability distribution.

3. The ”smeared” scale factor is multiplied by the global energy scale factor (SFglobal)
to form the combined energy scale factor (SFcomb).

4. The incoming particle energy (E ≡ EcaloEntry) is multiplied by SFcomb. The parti-
cle momentum (p) is re-computed to guarantee the validity of E2 = m2 + p2 with
the original rest mass (m) of the respective particle.

4This method will be replaced by a linear interpolation method in a future implementation.

152

ISF in the Context of the W Boson Mass Measurement

5. The standard FastCaloSim parametrization is used to determine the calorimeter
response to the modified input particle. The same FastCaloSim parametrization
as in the ATLFASTII setup is used. The only difference is that a response is
computed for each respective particle which reaches the boundary between the
inner detector and the calorimeter, rather than for the entire MC truth collection
present after a completed simulation of the ATLAS inner detector volume.

The scale factors are applied to a wider range of particle types than they are obtained
from. The charged pion scale factor is applied to the most common types of hadrons that
FastCaloSim encounters in a typical detector simulation setup. The electron/positron
scale factor is also applied to photons (following the standard procedure of extrapolating
e calibration to γ in the calorimeter) and neutral pions:

• SFe is applied to all following FastCaloSim input particles:

– charged pions (PDG type [113]: ±211)

– protons (PDG type: +2212)

– neutrons (PDG type: +2112)

• SFpi is applied to all following FastCaloSim input particles:

– electrons and positrons (PDG type: ±11)

– photons (PDG type: +22)

– neutral pions (PDG type: +111)

12.5 Results

The fast ISF simulation flavour described in the previous sections is validated for the
detector simulation of Z → ee events5 by comparison with a reference sample which is
simulated entirely by Geant4. The Fatras and FastCaloSim tuning parameters (Section
12.4) are used in the ISF fast simulation flavour in order to increase the accuracy of
the fast simulators. To allow for a better interpretation of the simulation results, an
additional ISF simulation dataset is generated within which the simulator tuning is not
applied.

120 000 events are simulated with either setup. However, the exact number of final
events may differ slightly between the individual samples due to technical reasons. To
allow for a direct comparison between the different detector simulation approaches, the
same digitization and reconstruction steps were performed on either detector simulation
sample. Pile-up effects are not simulated. This provides a cleaner picture of the ISF fast
simulation effects and therefore allows for better interpretation of the results.

The ISF and Geant4 detector simulation were performed in ATLAS offline soft-
ware release 17.7.5.4 (using ATLAS geometry version ATLAS-GEO-20-00-01 and

5The following ATLAS event generator (EVNT) dataset is used as detector simulation input:
mc12 8TeV.129680.PowhegPythia8 AU2CT10 Zee DiLeptonFilter.evgen.EVNT.e1861

153

ISF in the Context of the W Boson Mass Measurement

detector conditions tag OFLCOND-MC12-SIM-00), the HITS file merging6 in release
17.6.51.47, the digitization and reconstruction in release 17.3.12.7 (detector con-
ditions tag OFLCOND-MC12-SDR-06) and the generation of flat ROOT n-tuples in the
SMWZ D3PD format [114] in release 17.3.11.1.38. The analysis algorithms with the
corresponding event selection criteria (Table 12.1) are executed after the D3PD genera-
tion step. The respective D3PD datasets are provided as input to the analysis algorithm.

A correspondence table for the presented observables and the respective variables in
the D3PD or W-mass analysis framework is given at the end of the Section (Table 12.4).

12.5.1 Physics Performance

Global event observables and analysis-specific observables are compared between the ISF
simulation and the Geant4 simulation datasets in order to determine the accuracy of the
ISF Z → ee fast simulation flavour.

Tracking

In the ISF simulation flavour all particles outside the respective ROIs are simulated using
Fatras throughout the ATLAS inner detector volume. The majority of the particles
traversing the inner ATLAS tracking detector (”inner detector”) in the Z → ee events is
therefore simulated by Fatras. Consequently, event-global tracking observables (Figure
12.10) will represent mainly the performance of the Fatras simulation in this ISF setup.

A good overall agreement is observed for tracking variables between ISF and the
Geant4 simulation reference. However, the sum of the transverse momenta of all re-
constructed tracks (

∑
pT) is slightly shifted towards higher energies in ISF. Moreover,

ISF generates slightly less tracks with low energies in the region of 5 GeV/c . pT .
13 GeV/c. The discrepancies are very minor and not critical, thus the precise source
is not yet identified. Possible causes could be discrepancies between Fatras and Geant4
in the modelling of particle energy losses, multiple scattering or particle-matter interac-
tions. Fatras implements a fast and custom-made energy-loss model for particles. This
model is validated and tuned through single particle simulation at discrete energies with
reference to Geant4. The differences in the

∑
pT could be triggered for example due

to Fatras underestimating the energy loss of particles in the ATLAS inner detector.
Other sources could be discrepancies in the scattering angles of the Fatras multiple scat-
tering model or lower rates of hadronic interactions computed by Fatras. Both could

6A ROOT file format conversion is carried out during the HITS merging step. The ATLAS geometry
version ATLAS-GEO-20-00-01 and the conditions tag OFLCOND-MC12-SIM-00 are used for the detector
simulation. The detector simulation output which is generated in ATLAS offline software release 17.7.

is made compatible with the subsequent digitization and reconstruction steps in release 17.3.
7This release has a known issue affecting the size of the MC truth collection in the merged HITS file.

It is not expected that this issue has any impact on the results presented in this section, as all studied
quantities are completely independent of the MC truth representation.

8The following software package versions are used in addition to the ATLAS offline software release
17.3.11.1.3: D3PDMakerConfig-00-03-58-08, McParticleAlgs-00-09-03, HadronicRecoil-00-02-05

and PhysicsD3PDMaker-00-00-68.

154

ISF in the Context of the W Boson Mass Measurement

affect the reconstruction efficiency of particles simulated by Fatras and hence impact the
event-global tracking variables.

No significant impact of the fast simulator tuning (previous sections) to event-global
tracking variables is expected as the tuning only affects the calorimeter simulation. This
is consistent with the results presented in this section.

E
nt

rie
s

(n
or

m
al

iz
ed

)
pe

r
4.

5
G

eV
/c

-510

-410

-310

-210

-110

1 Geant4
 ISF
 ISF untuned

 (GeV/c)
T

p
0 20 40 60 80 100 120 140

IS
F

/G
4

0.6
0.8

1
1.2
1.4

(a)

E
nt

rie
s

(n
or

m
al

iz
ed

)
pe

r
6

G
eV

/c

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09 Geant4
 ISF
 ISF untuned

 (GeV/c)
T

 pΣ
0 50 100 150 200 250 300

IS
F

/G
4

0.6
0.8

1
1.2
1.4

(b)

E
nt

rie
s

(n
or

m
al

iz
ed

)
pe

r
3

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07 Geant4
 ISF
 ISF untuned

tracksn
0 20 40 60 80 100

IS
F

/G
4

0.6
0.8

1
1.2
1.4

(c)

Figure 12.10: Event-global tracking variables in Z → ee events simulated by ISF fast
simulation and Geant4 full detector simulation. Shown are (a) the transverse momentum
distribution of the reconstructed tracks (b) the sum of the transverse momenta of all
reconstructed tracks (c) the number of reconstructed tracks per event. Fatras simulates
most of the tracks in the ATLAS inner detector in this ISF setup, hence, its performance
is crucial for the accuracy of event-global tracking variables.

Vertexing

A comparison of the primary vertex positions in the selected Z → ee events between
the ISF simulation setup and the Geant4 full simulation reference is illustrated in Fig-
ure 12.11. The primary vertex positions are computed by identifying common vertices
from which particle tracks in the ATLAS inner detector originate. As the particles in
the ATLAS inner detector are simulated by Fatras and Geant4 in this ISF setup, the
simulated accuracy of the primary vertex position depends directly on the performance
of these two simulators. A good agreement between ISF and Geant4 is observed.

The vertexing algorithms use the results obtained by tracking algorithms (see above),
hence, no significant impact of the fast simulator tuning is expected. This is consistent
with the results presented in this section.

155

ISF in the Context of the W Boson Mass Measurement

E
nt

rie
s

(n
or

m
al

iz
ed

)
pe

r
0.

00
2

m
m

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
 Geant4
 ISF
 ISF untuned

 (mm)PVx
-0.1 -0.08 -0.06 -0.04 -0.02 0

IS
F

/G
4

0.6
0.8

1
1.2
1.4

(a)

E
nt

rie
s

(n
or

m
al

iz
ed

)
pe

r
0.

00
2

m
m

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07 Geant4
 ISF
 ISF untuned

 (mm)
PV

y
1.02 1.04 1.06 1.08 1.1 1.12

IS
F

/G
4

0.6
0.8

1
1.2
1.4

(b)

E
nt

rie
s

(n
or

m
al

iz
ed

)
pe

r
10

 m
m

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
 Geant4
 ISF
 ISF untuned

 (mm)PVz
-250 -200 -150 -100 -50 0 50 100 150 200 250

IS
F

/G
4

0.6
0.8

1
1.2
1.4

(c)

Figure 12.11: Primary vertex positions in Z → ee events simulated by ISF and Geant4
full detector simulation: (a) vertex position in x (b) vertex position in y and (c) vertex
position in z. In the ISF setup, the performance of both the Fatras and the Geant4
simulator directly impact the accuracy of the illustrated primary vertex positions.

Calorimeter energy and hadronic recoil

In order to calibrate the calorimeter energy response, an accurate simulation of the
deposited energy in the calorimeter is required. A comparison of the total energy simu-
lated in the calorimeter is given by the scalar sum of the reconstructed transverse energy
(
∑
ET) in the selected Z → ee events (Figure 12.12a). The hadronic recoil (Ehr

T) is the
vector sum of all transverse energy measurements, excluding the energy measurements
which are within a cone (of size ∆R = 0.2) around the reconstructed charged lepton(s)
(Figure 12.12b). It plays a crucial role in the calibration of the pνT observable, therefore
a high simulation accuracy is required.

In this fast ISF simulation flavour, the energy deposited in the calorimeter is com-
posed of the energy deposits generated by FastCaloSim and Geant4 together. Geant4
is used to simulate all signal particles (electrons/positrons from Z decays). Each signal
particle represents a significant fraction of the total energy in the event. The particles
provided as input to FastCaloSim were simulated by Fatras through the ATLAS inner
detector volume in the preceding step. Thus, the accuracy of the simulated energy in
the calorimeter depends on the accuracy of all three simulators.

The
∑
ET distribution generated by ISF shows a slight shift towards higher energies.

The mismodelling of energy depositions in the forward calorimeter by FastCaloSim (see
below) is likely to cause this shift. Nevertheless, the fast simulator tuning improved the
agreement with respect to Geant4.

As all particles outside the cone-shaped ROIs are simulated by fast simulators, the ac-
curacy of the Ehr

T observable depends directly on the accuracy of Fatras and FastCaloSim
in the Z → ee fast ISF simulation setup. An indirect dependency on the simulation accu-
racy of the Z boson decay products exists, however, this part of the event is accurately
simulated with Geant4 (see below). The significant improvement of the hadronic re-

156

ISF in the Context of the W Boson Mass Measurement

coil distribution due to the fast simulator tuning underlines the crucial dependency of
this variable on the accuracy of FastCaloSim. This also proves the validity and ro-
bustness of the applied tuning method. It is worth noting that the tuning approach is
derived from single particle simulation and it is therefore not specific to this sample. A
sample-dependency of the tuning was averted by choosing a global energy scale factor
of SFglobal ≡ 1.000 for the combination of Fatras and FastCaloSim (Section 12.4.2).

Even though the simulator tuning significantly increases the accuracy of the Ehr
T

distribution, a discrepancy is observed in the lowest bins of the histogram. This is
likely caused by the mismodelling of the forward calorimeter region in FastCaloSim (see
below).

E
nt

rie
s

(n
or

m
al

iz
ed

)
pe

r
6.

7
G

eV

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
 Geant4
 ISF
 ISF untuned

 (GeV)T EΣ
50 100 150 200 250 300 350 400 450

IS
F

/G
4

0.6
0.8

1
1.2
1.4

(a)

E
nt

rie
s

(n
or

m
al

iz
ed

)
pe

r
5

G
eV

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
 Geant4
 ISF
 ISF untuned

 (GeV)T
hrE

0 50 100 150 200 250 300

IS
F

/G
4

0.6
0.8

1
1.2
1.4

(b)

Figure 12.12: The sum of the reconstructed transverse energies in the calorimeter for
Z → ee events simulated by ISF and full Geant4 detector simulation. The (a) scalar
sum of the entire transverse energy reconstructed in the ATLAS calorimeter and (b) the
computed hadronic recoil are shown. Both quantities are strongly correlated with the
Fatras and FastCaloSim simulator tuning.

Calorimeter energy per region

The simulated energy within the different calorimeter regions depends on the perfor-
mance of all three simulators in the ISF fast simulation flavour.

Even with the FastCaloSim tuning applied in the ISF setup, differences in the recon-
structed transverse energy per calorimeter region can be observed (Figure 12.13). The
most significant discrepancy appears in the forward calorimeter region (3.2 < |η| < 4.9).
This is due to intrinsic limitations of FastCaloSim, which does not provide a dedi-
cated parametrization for the forward calorimeter (FCAL). The fact that the tuning

157

ISF in the Context of the W Boson Mass Measurement

approach fails to mitigate the discrepancy in the forward region, suggests that this is
not caused by a discrepancy of the amount of energy deposited in the calorimeter by
the FastCaloSim simulator. Energy scale factors would need to take reconstruction ef-
fects into account in order to correct for this discrepancy. In the central (|η| < 1.5)
and end-cap (1.5 < |η| < 3.2) regions, the level of disagreement is decreased due to
the FastCaloSim tuning method. However, a discrepancy still remains between ISF and
Geant4, and thus, altered tuning approaches are necessary. The poor simulation accu-
racy within the FCAL region likely causes an underestimation of the global energy scale
factor (SFglobal) during the tuning process and hence causes the differences in the central
and endcap regions. An in-depth interpretation and suggestions on how to improve the
agreement of the calorimeter observables are provided in the discussion Section 12.6.

E
nt

rie
s

(n
or

m
al

iz
ed

)
pe

r
5

G
eV

0

0.01

0.02

0.03

0.04

0.05

0.06
 Geant4
 ISF
 ISF untuned

 (GeV)T
central EΣ

0 50 100 150 200 250 300

IS
F

/G
4

0.6
0.8

1
1.2
1.4

(a)

E
nt

rie
s

(n
or

m
al

iz
ed

)
pe

r
5

G
eV

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07 Geant4
 ISF
 ISF untuned

 (GeV)T
endcap EΣ

0 50 100 150 200 250

IS
F

/G
4

0.6
0.8

1
1.2
1.4

(b)

E
nt

rie
s

(n
or

m
al

iz
ed

)
pe

r
1.

25
 G

eV
-410

-310

-210

-110

 Geant4
 ISF
 ISF untuned

 (GeV)T
forward EΣ

0 5 10 15 20 25 30 35 40 45 50

IS
F

/G
4

0.6
0.8

1
1.2
1.4

(c)

Figure 12.13: The scalar sum of the reconstructed transverse energies in different parts
of the ATLAS calorimeter for Z → ee events simulated by ISF and full Geant4 detector
simulation. The (a) central calorimeter region with |η| < 1.5 (b) the end-cap region with
1.5 < |η| < 3.2 and (c) the forward calorimeter region with 3.2 < |η| < 4.9 are shown.
The discrepancy in (c) is due to internal limitations of FastCaloSim. This might only
be resolved by a re-implementation of FastCaloSim. The applied FastCaloSim tuning
contributes significantly to the accuracy of ISF in (a) and (b).

Lepton properties

A highly accurate simulation of electrons and positrons (`) from Z boson decays is a
requirement to this ISF setup. Hence, these particles are simulated by Geant4 within
the ISF. Figure 12.14 illustrates the reconstructed electron/positron properties for the
ISF simulation setup and the Geant4 full simulation reference. As expected, a high level
of compatibility with the Geant4 full simulation reference is observed.

The fast simulator tuning shows no significant impact on the observables of signal
electrons/positions. This is expected, as the measurements of the leptons from Z boson
decays depend mainly on the simulation performance of Geant4.

158

ISF in the Context of the W Boson Mass Measurement
E

nt
rie

s
(n

or
m

al
iz

ed
)

pe
r

0.
1

0

0.005

0.01

0.015

0.02

0.025

0.03
 Geant4
 ISF
 ISF untuned

l
η

-3 -2 -1 0 1 2 3

IS
F

/G
4

0.6
0.8

1
1.2
1.4

(a)

E
nt

rie
s

(n
or

m
al

iz
ed

)
pe

r
1.

6
G

eV

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
 Geant4
 ISF
 ISF untuned

 (GeV)
T
lp

20 30 40 50 60 70 80 90 100
IS

F
/G

4
0.6
0.8

1
1.2
1.4

(b)

E
nt

rie
s

(n
or

m
al

iz
ed

)
pe

r
11

.7
 G

eV

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16
0.18
0.2

0.22
0.24

 Geant4
 ISF
 ISF untuned

 (GeV)lE
0 50 100 150 200 250 300 350

IS
F

/G
4

0.6
0.8

1
1.2
1.4

(c)

Figure 12.14: Lepton measurements in Z → ee events simulated by ISF and Geant4 full
detector simulation. The signal particles are simulated by Geant4 in this ISF simulation
flavour, thus a good agreement with Geant4 full simulation is expected and observed in
all observables: (a) electron pseudorapidity η` (b) electron transverse momentum p`T (c)
and electron energy E`.

Lepton isolation

The lepton isolation is studied to determine the accuracy of the detector simulation in
the vicinity of the signal electrons/positrons. Two types of lepton isolation variables are
studied: track isolation and calorimeter isolation:

iR = p`,cone40
T /p`T (12.14)

IR = E`,cone40
T /E`,cl

T (12.15)

Here, p`T (E`,cl
T) denotes the measured transverse momentum (transverse energy of

the associated calorimeter cluster) of the selected lepton and p`,cone40
T (E`,cone40

T) denotes
sum of the transverse momenta of all tracks (calorimeter energy measurements) within a
cone of size ∆R = 0.4 around this lepton. The transverse momentum (transverse cluster
energy) of the respective lepton is excluded from this sum. In the ISF setup, these
variables are mainly dependent on the Geant4 simulation, as all initial particles inside
cones (of size ∆R = 0.4) around the signal leptons are simulated by Geant4. However,
particles simulated by Fatras can bend into these cone-shaped ROIs (or come close to
them) and thus impact the lepton isolation measurement.

Figure 12.15 shows a good agreement between ISF and Geant4 simulation. An
noticeable improvement in the accuracy of the calorimeter isolation is observed due
to the fast simulator tuning. This illustrates that particles which are processed by fast
simulators do deposit a noticeable amount of energy within cones of size ∆R = 0.4
around the signal leptons. It is important to note that the cone-shaped ROIs in the
ISF simulation are also of size ∆R = 0.4 around the signal leptons. It is therefore
expected that this effect is less pronounced with smaller isolation cone sizes. This is

159

ISF in the Context of the W Boson Mass Measurement

confirmed in Figure 12.16 which illustrates the track and calorimeter isolation variables
for an isolation cone size of ∆R = 0.2. The impact of the fast simulator tuning is far less
noticeable with the smaller isolation cone size. This indicated that a smaller fraction of
the deposited energy inside the isolation cone is generated by fast simulators.

E
nt

rie
s

(n
or

m
al

iz
ed

)
pe

r
0.

03

-510

-410

-310

-210

-110

1 Geant4
 ISF
 ISF untuned

T
l / p

T
l,cone40p

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

IS
F

/G
4

0.6
0.8

1
1.2
1.4

(a)

E
nt

rie
s

(n
or

m
al

iz
ed

)
pe

r
0.

02

-510

-410

-310

-210

-110
 Geant4
 ISF
 ISF untuned

T
l,cl / ET

l,cone40E
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

IS
F

/G
4

0.6
0.8

1
1.2
1.4

(b)

Figure 12.15: (a) Track isolation and (b) calorimeter isolation of selected leptons in
Z → ee events simulated by ISF and full Geant4 simulation. The level of accuracy
of the isolation variables in cones of size ∆R = 0.4 reflects the performance of the
combination of all three simulators in this ISF setup: Fatras, FastCaloSim and Geant4.
The fast simulator tuning shows a noticeable improvement of the calorimeter isolation
variable for this isolation cone size.

160

ISF in the Context of the W Boson Mass Measurement

E
nt

rie
s

(n
or

m
al

iz
ed

)
pe

r
0.

01
5

-510

-410

-310

-210

-110

1 Geant4
 ISF
 ISF untuned

T
l / p

T
l,cone20p

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

IS
F

/G
4

0.6
0.8

1
1.2
1.4

(a)

E
nt

rie
s

(n
or

m
al

iz
ed

)
pe

r
0.

01

-510

-410

-310

-210

-110
 Geant4
 ISF
 ISF untuned

T
l,cl / ET

l,cone20E
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

IS
F

/G
4

0.6
0.8

1
1.2
1.4

(b)

Figure 12.16: (a) Track isolation and (b) calorimeter isolation of selected leptons in
Z → ee events simulated by ISF and full Geant4 simulation. The level of accuracy
of the isolation variables in cones of size ∆R = 0.2 reflects the performance of the
combination of all three simulators in this ISF setup: Fatras, FastCaloSim and Geant4.

Z boson properties

Finally, the simulation accuracy of the reconstructed Z boson properties is studied (Fig-
ure 12.17). As the signal electrons in the ISF simulation setup are simulated in Geant4,
a high degree of agreement with the full simulation reference is expected and indeed
observed. This holds true for all variables which are directly derived from the electron
measurements. As expected, the fast simulator tuning does not seem to impact the
reconstructed Z boson properties.

161

ISF in the Context of the W Boson Mass Measurement

2
E

nt
rie

s
(n

or
m

al
iz

ed
)

pe
r

2.
75

 G
eV

/c

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14 Geant4
 ISF
 ISF untuned

 (GeV)T
Zm

0 20 40 60 80 100

IS
F

/G
4

0.6
0.8

1
1.2
1.4

(a)

E
nt

rie
s

(n
or

m
al

iz
ed

)
pe

r
2

G
eV

/c

0

0.02

0.04

0.06

0.08

0.1

0.12 Geant4
 ISF
 ISF untuned

 (GeV)
T
Zp

0 10 20 30 40 50 60 70 80 90 100

IS
F

/G
4

0.6
0.8

1
1.2
1.4

(b)

2
E

nt
rie

s
(n

or
m

al
iz

ed
)

pe
r

0.
5

G
eV

/c

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
 Geant4
 ISF
 ISF untuned

 (GeV)llm
80 82 84 86 88 90 92 94 96 98 100

IS
F

/G
4

0.6
0.8

1
1.2
1.4

(c)

Figure 12.17: Z boson measurements in Z → ee sample with ISF and full Geant4 detector
simulation. The signal particles in this ISF setup are simulated with Geant4, thus a very
good agreement between ISF and full Geant4 is expected and observed in all observables
(a) the transverse Z boson mass mZ

T (b) the Z boson transverse momentum pZT (c) and
the invariant mass of the two-electron system m``.

162

ISF in the Context of the W Boson Mass Measurement

Observable SMWZ D3PD variable Analysis framework variable

pT trk pt -∑
pT MET Track sumet -

ntracks trk n -

xPV vxp x -

yPV vxp y -

zPV vxp z -∑
ET MET RefFinal sumet -

EhrT hr corrRecoil 20 sumet -∑
Ecentral

T MET RefFinal sumet CentralReg -∑
Eendcap

T MET RefFinal sumet EndcapRegion -∑
Eforward

T MET RefFinal sumet ForwardReg -

η` - selElec tlv.Eta()

p`T - selElec tlv.Pt()

E` - selElec tlv.E()

p`,cone20
T /p`T el ptcone20[selElec index] / selElec tlv.Pt()

p`,cone40
T /p`T el ptcone40[selElec index] / selElec tlv.Pt()

E`,cone20
T /E`,cl

T el Etcone20[selElec index] / selElec tlv cl.Et()

E`,cone40
T /E`,cl

T el Etcone40[selElec index] / selElec tlv cl.Et()

Table 12.4: Correspondence table for the observables presented in this section and
the respective variables in the ATLAS SMWZ D3PD file format or the W-mass anal-
ysis framework. Two Lorentz vectors (selElec tlv for the track measurement and
selElec tlv cl for the cluster measurement) and the electron index in the D3PD for-
mat (selElec index) are computed by the analysis framework for each selected electron.

163

ISF in the Context of the W Boson Mass Measurement

12.5.2 Computing Performance

The main goal of the dedicated ISF fast simulation flavour for the W boson mass analysis
is to enable the generation of bigger simulation samples within a shorter period of time.
Thus, a detailed study of the computing time spent in each individual step of this ISF
setup is compared to the corresponding step in a full Geant4 setup.

The MC simulation chain is configured according to the description given at the
beginning of Section 12.5 with these two modifications:

• A more recent ATLAS offline software release is used in the HITS file merging
step: 17.6.51.5.

• An updated version of a transient-persistent (TP) converter package is used in
the digitization, reconstruction and SMWZ D3PD creation steps, respectively:
GeneratorObjectsTPCnv-00-06-03-01.

Both modifications are required in order to resolve a known issue in the transient-
persistent conversion of the MC truth representation. The issue affects the size of the
MC truth collection if fast simulators are used for detector simulation. It would distort
all measurements presented in this section. Hence, the measurements are performed
with the issue being resolved in each respective MC production step. The issue is not
expected to impact the physics performance studies presented in Section 12.5.1.

Table 12.5 shows the significant speedup that is achieved with the ISF detector simu-
lation compared to the Geant4 full simulation for the Z → ee samples. As expected, the
speedup is most prominent in the detector simulation step. The measurements reveal
that all subsequent steps in the Monte Carlo production chain (with the exception of ESD
to AOD file format conversion) are sped up by the use of the Fatras and FastCaloSim
fast detector simulators. This is likely due to the higher energy thresholds implemented
in the fast simulators compared to the full Geant4 simulator. Fatras does not simulate
particles with energies below 100 MeV, as they are of little relevance for physics anal-
yses. FastCaloSim uses a parametrization model to compute the deposited energy in
the calorimeter directly from the state of a particle at the boundary between the inner
detector and the calorimeter volumes. It simulates the net effect that a resulting shower
of particles has on the sensitive calorimeter elements, without simulating each particle
in the shower individually. Consequently, the detector simulation output of the fast
simulators contains less sensitive detector hits and a simpler MC truth representation.
This speeds up the processing of all subsequent steps and in addition, generates smaller
output file sizes than full Geant4 simulation (Table 12.6).

The processing time of the detector simulation step in the ISF fast simulation flavour
is found to be dominated by Geant4 detector simulation (Figure 12.18). CPU profiles
obtained with GPerftools reveal that 96.8% of the CPU time required by Athena Algo-
rithm execute step is spent inside Geant4 routines, 0.7% inside Fatras routines and 0.7%

10The specifications of the computer are: Scientific Linux CERN 6, 64 GiB memory and 4 Intel®

Xeon® E5-2650 v2 @ 2.60 GHz processors.

164

ISF in the Context of the W Boson Mass Measurement

MC Production Step
Geant4 Full Simulation ISF Fast Simulation

ISF Speedup
(ms/event) % of total (ms/event) % of total

Detector Simulation 197000± 4000 98 39000± 1000 90 5.0×
HITS Merging 85± 1 0.04 35.8± 0.6 0.08 2.4×

Digitization 930± 10 0.5 686± 6 1.6 1.4×
Reconstruction 2540± 20 1.3 2340± 20 5.3 1.1×
ESD to AOD 98.4± 0.8 0.05 96.5± 0.8 0.2 1.0×

SMWZ D3PD gen. 1360± 20 0.7 1280± 20 2.9 1.1×
Total 202± 4 s/event 44± 1 s/event 4.6×

Table 12.5: The average CPU time (in milliseconds if not otherwise noted) required to
process one Z → ee event in ISF and Geant4 full simulation in different MC production
steps. 500 events are processed in each simulation setup and MC production step re-
spectively. The PerfMonSD service (Section 10.1.1) generates the respective CPU time
measurements. The CPU time required to process the first event is not taken into ac-
count. The measurements were carried out one at a time. The corresponding Athena
processes were the only high-workload processes scheduled on the computer10at the time
of the measurement.

inside FastCaloSim routines. Hence, any improvement to the execution speed of Geant4
will significantly impact the execution speed of the ISF fast simulation flavour.

The execution time of the HITS file merging step is dominated by input-output
operations and as such depends mainly on the size of the events that are being processed.
No computationally demanding algorithms are being executed with the processed data.
Hence, a significantly faster processing speed is observed for the ISF simulation sample.

In the digitization step the individual sensitive detector hits are combined and a
detector response is computed for the different readout channels. A reduction in the
processing time is observed for the ISF sample due to the significantly smaller size of the
detector simulation output, i.e. fewer sensitive detector hits. Detector noise is simulated
during the detector digitization step and stored in the ROD output data format. This
explains why the relative difference of the output files between the ISF and Geant4
simulation samples decreases significantly with the detector digitization step. HITS files
which are about a factor of 2.8 smaller in the ISF sample, are processed into ROD files
which are only about a factor 1.2 smaller.

The reconstruction speed is slightly higher in the ISF sample due to the lower number
of particles that are being simulated by the fast simulators. The resulting lower number
of sensitive detector hits and raw data objects (from detector digitization) correspond
to a smaller input size to the reconstruction algorithms. As a result, a slightly smaller
reconstruction output is generated in the ISF sample

The processing speed of the ESD to AOD file format conversion does not seem
affected by the smaller size of the input ESD file. No significant speedup was expected

165

ISF in the Context of the W Boson Mass Measurement

Format
Geant4 Full Simulation ISF Fast Simulation

G4/ISF
(KB/event) (KB/event)

HITS 674 247 2.7
Merged HITS 675 245 2.8

RDO 1455 1234 1.2
ESD 715 671 1.1
AOD 137 132 1.0

SMWZ D3PD 77 76 1.0

Total 3733 2605 1.4

Total of long-term
889 453 2.0storage formats

(HITS+AOD+D3PD)

Table 12.6: The average disk file size (in kilobytes) per stored event for ISF and Geant4
simulation and for different ATLAS MC production file formats. Considering only the
data formats which are kept for long-term storage on the ATLAS computing grid, a
significant reduction in file size is achieved with ISF fast simulation.

in this step, as it mostly concerned with the filtering and combination of information
already present in various StoreGate collections of the ESD data format. The same
physics objects are expected to be present in the AOD files of both samples. This is
because fast simulators are optimized to generate the same output as Geant4 (or a close
resemblance of it) at the analysis-level.

A slightly higher execution speed is observed during the SMWZ D3PD file format
creation. This is likely caused by a smaller size of the MC truth representation in the
fast simulation.

In both simulation samples, the total processing time is dominated by the respective
detector simulation step. As this step is significantly faster in the ISF fast simulation
flavour (by about a factor of 5.0) the entire ISF fast simulation production chain is
processed significantly faster in consequence (by about a factor of 4.6).

Considering all data formats which are kept for long-term storage by the ATLAS
collaboration (merged HITS + AOD + D3PD) a reduction in file size of about a factor
2.0 is achieved with the ISF fast simulation flavour.

166

ISF in the Context of the W Boson Mass Measurement

Figure 12.18: CPU profile and call tree for ISF Z → ee fast simulation of 40 events
in the ATLAS offline software release 17.7.5.4. The CPU profile was generated using
GPerftools. The percentage values shown in each individual function are the relative
CPU time spent inside this function with respect to the CPU time spent inside the
entire Athena algorithm execute step. About 96.8% of the CPU time is spent inside
Geant4 routines, 0.7% inside Fatras routines and 0.7% inside FastCaloSim routines.
The remaining 1.8% of the CPU time are consumed by core components of the Athena
framework.

12.6 Discussion

A fast ISF simulation approach was implemented for the detector simulation of Z → ee
events. Cone-shaped regions of interest are created around the individual decay products
of the Z boson. Geant4 simulation is used inside these regions, Fatras and FastCaloSim
fast simulators are used elsewhere.

Significantly higher execution speeds are achieved with this ISF simulation flavour
compared to full Geant4 detector simulation. Smaller simulation output files are gener-
ated due to the use of fast simulators. Each individual step in the ATLAS Monte Carlo
production chain (with the exception of ESD to AOD file format conversion) executes
faster when processing ISF fast detector simulation output compared to Geant4 full
detector simulation output. Consequently, the entire ATLAS Monte Carlo production
chain executes faster by about a factor of 4.6. The file size of the data formats which
are kept for long-term storage by the ATLAS collaboration is reduced by about a factor
of 2.0. Both results are outstanding and illustrate that a more efficient use of ATLAS
computing resources is enabled due to the use of the ISF.

The simulation accuracy of the fast ISF simulation setup is tested against a Geant4
full simulation reference. Very good consistency is observed in all quantities related to
the electrons and positrons from Z boson decays. This indicates that the definition of
cone-shaped ROIs (cone size ∆R = 0.4) is sufficient to guarantee an accurate simulation

167

ISF in the Context of the W Boson Mass Measurement

of these signal particles.

A good consistency is observed for all tracking and vertexing variables. This indi-
cates that the Fatras simulator is performing well in comparison with Geant4. Minor
differences are observed, which indicate that the sum of all reconstructed track mo-
menta is higher due to the use of the Fatras simulator. These minute differences are of
no relevance for the percent-level accuracy required in the fast simulation setup.

Some differences are observed concerning the simulated energy depositions in the
calorimeter. The fast simulator tuning method significantly increases the accuracy of
the Fatras and FastCaloSim fast simulators. However, the limitation of FastCaloSim
in the forward calorimeter region (Figure 12.13c) is likely to mask the overall lack of
simulated calorimeter energy arising from combining Fatras with FastCaloSim simulation
(Figure 12.13a and 12.13b). The overestimation of energy in the forward calorimeter
(FCAL) shifts the hadronic recoil distribution (Ehr

T) in the ISF simulation sample towards
higher energies. This distribution is used to tune the global energy scale factor in
the fast simulators (SFglobal). Consequently, the shifted Ehr

T distribution results in an
underestimated energy scale factor and therefore in a lack of energy in the central and
endcap calorimeter regions. Hence, a revised method must be applied to determine an
appropriate value of SFglobal. The aim is to factor out the impact of the mismodelling
in FastCaloSim in the FCAL region.

The following methods are to be studied in order to mitigate this effect:

(a-1) The computation of the global energy scale factor SFglobal is to be based only on
the simulation results of the central and endcap calorimeter regions, excluding the
forward calorimeter. This will increase the simulation accuracy of the central and
endcap regions, but it will not correct the disagreement in the forward region. The
high sensitivity of the Ehr

T distribution to the fast simulator tuning makes this a
perfect test observable for further tuning (Figure 12.12). Additional event selection
criteria must be applied in order to factor out the impact of the mismodelled FCAL
region to this observable. Hence, an upper threshold for the energy content in the
forward calorimeter may be applied in the tuning process, e.g.

∑
Eforward

T < 1
GeV.

(a-2) The global energy scale factor is to be split into individual scale factors for different
calorimeter regions. Preliminary results reveal that the optimal agreement between
ISF fast simulation and Geant4 full simulation is achieved with different values of
SFglobal in different regions of the calorimeter (Figure 12.19). Hence, the

∑
Ecentral

T

and
∑
Eendcap

T variables can be used to identify the optimal energy scale factor
value for each region, respectively.

(b) The simulation of the FCAL volume is to be carried out by Geant4, rather than
FastCaloSim. This approach guarantees the most accurate simulation of this detec-
tor region. However, it will decrease the simulation speed of the fast ISF simulation
flavour. The exact impact on the ISF speedup (Table 12.5) is to be measured.

168

ISF in the Context of the W Boson Mass Measurement

globalSF

0.9 0.95 1 1.05 1.1

2 χ

0

100

200

300

400

500

600

700

 distributionT
central EΣ for 2χ

(a)

globalSF

0.9 0.95 1 1.05 1.1

2 χ

0

20

40

60

80

100

120

140

160

180
 distributionT

endcap
 EΣ for 2χ

(b)

Figure 12.19: First look into χ2 values for comparing the ISF fast simulation output
with full Geant4 simulation in different regions of the detector: (a) scalar sum of the
transverse energy in the central calorimeter region (b) scalar sum of the transverse
energy in the endcap calorimeter region. 50 000 Z → ee events are simulated with ISF
in each respective sample with a corresponding global energy scale factor (SFglobal).
110 000 events are simulated in the Geant4 simulation reference sample. The optimal
agreement between the fast and full simulation is achieved with different values of SFglobal

in different regions of the detector.

A combination of the methods described above may be employed to achieve an opti-
mal trade-off between simulation speed and accuracy. If the current simulation accuracy
in the FCAL volume is determined to be sufficient, only methods (a-1) or (a-2) may
be employed in order to increase the simulation accuracy in the central and endcap
calorimeter regions. Whereas method (a-2) is expected to provide more accurate simu-
lation results than the application of only method (a-1). If a more accurate simulation
of the FCAL is required, a combination of method (b) with (a-1) or (a-2) must be em-
ployed. The most accurate simulation results are expected by an implementation of
both, method (a-2) and (b).

In either case, an implementation of method (a-2) is recommended. Method (b) is
optional and its feasibility is determined by the impact on the detector simulation time,
which is to be measured. Independent of whether (b) is implemented, the calibration of
the lepton response observable (p`T) seems feasible thus far. The next step is the produc-
tion of high-statistics validation samples, in order to provide more accurate validation
results. This will allow to determine whether the simulation accuracy of the ISF setup
is within the required sub-percent level of agreement with respect to full Geant4 simu-
lation for the lepton observables. Without the implementation of (b), a precise detector
calibration of the pνT observable does not seem feasible with the current implementation
of FastCaloSim in the fast ISF simulation flavour. The discrepancies in the order of more
than 10% between ISF simulation and Geant4 simulation for the calorimeter simulation

169

ISF in the Context of the W Boson Mass Measurement

are larger than the required agreement. However, an ongoing project is concerned with
the re-parametrization of FastCaloSim. This new version of FastCaloSim might provide
the accuracy required in the FCAL region.

The cone-shaped regions of interest around leptons from Z boson decays have a size
of ∆R = 0.4 in the current implementation of the ISF fast simulation flavour. A good
accuracy of the lepton isolation variables is achieved with this setting. The impact of
different ROI cone sizes on the simulation time and on the simulation accuracy is to
be measured. It is expected that smaller cone sizes will increase the simulation speed,
but decrease the accuracy of the isolation variables (especially in the calorimeter) and
vice versa. The impact on the simulation speed is to be quantified, however, the speed
of the current implementation is already a significant improvement over the full Geant4
simulation.

170

Part IV

Outlook and Conclusions

171

Chapter 13

Outlook

The Integrated Simulation Framework has proven its success in many ways. It being
used for detector simulation in official ATLAS Monte Carlo production campaigns and it
has been shown that the framework can significantly reduce the cost of ATLAS MC pro-
duction. The framework, however, is under constant development and new features are
continuously added. The most important updates to the framework and its application
in the near future are highlighted in this chapter.

Section 13.1 describes the next steps to be taken in order to further improve the
accuracy of the ISF fast simulation flavour in application of the W boson mass analysis.
Section 13.2 covers the role of the ISF in the context of a fast ATLAS Monte Carlo
production chain which is currently being developed. A prototype for pile-up simulation
in the ISF does exist and will be finalized to allow its use in production (Section 13.3).
The current implementation of the ISF is a serial algorithm, processing one particle at
a time. The modular design of the framework allows to upgrade individual components
to support concurrent processing (Section 13.4). A possible update to the framework
in order to simplify the integration of the individual simulators into the framework, is
covered in Section 13.5.

13.1 Improved ISF Fast Simulation for the W Boson Mass
Analysis

The dedicated ISF fast simulation flavour for the detector simulation of Z → ee events
has shown the full potential of the framework (Chapter 12). Significantly higher simu-
lation speeds are achieved with a simulation accuracy at the same level as full Geant4
simulation for the crucial particles in the even.

However, the accuracy of the fast calorimeter simulation is limited in the forward
calorimeter region (FCAL). This intrinsic limitation of FastCaloSim can be overcome
through various approaches discussed in detail in Section 12.6. In the most accurate
approach, dedicated regions of interest are defined in the detector simulation. These
ROIs will the cover regions in the detector within which the fast simulators are least

173

Outlook

accurate. A functionality intrinsic to the ISF, the routing chain, is used to define these
ROIs. Accurate Geant4 simulation is to be used inside these regions in order to mask
the localized limitations of the fast simulators. The impact of this approach to the
simulation speed and the accuracy is to be measured.

13.2 ISF and the ATLAS Fast Simulation Chain

The current ATLAS Monte Carlo production chain (Section 4.2) requires a number of
steps to be executed for the creation of MC samples. Fast implementations of each
individual step are currently being developed and validated. Fast ATLAS detector sim-
ulation is enabled with the Integrated Simulation Framework. Fast digitization and fast
reconstruction algorithms are about to be deployed for production use. With the increase
in speed of the respective components in the MC chain, the impact of the input and out-
put processing (i.e. disk operations) to the overall execution speed becomes increasingly
significant. Thus, a fast ATLAS MC production chain is currently being developed by
the ATLAS collaboration. The aim is to merge the detector simulation, digitization
and reconstruction steps into one production step (Figure 13.1). The generator output
(EVNT format) serves as input to the fast chain, from which it will directly generate
a ROOT-readable data format (xAOD) as the output. To minimize the computational
cost of initialization and finalization of Athena framework components, the ultimate goal
is to combine all steps into one Athena job or process.

Figure 13.1: The fast ATLAS Monte Carlo production chain. From event generator
output (EVNT) to ROOT-readable analysis formats (xAOD) in one step. (image:
A. Salzburger).

The role of the ISF in the fast MC production chain is to serve as a framework for
fast ATLAS detector simulation. Due to the flexibility of the ISF, fast ATLAS detector
simulators can be combined to form an ATLAS detector simulation setup specifically
for the needs of subsequent studies and physics analyses. In addition to the simulators
currently integrated into the ISF, new fully parameterized simulators may be added.
The very high execution speed of such simulators greatly decreases the simulation time
required by the detector simulation. Thus, a realistic ISF setup to be applied in the fast

174

Outlook

MC chain may consist of a combination of fast and parameterized (very fast) simulators.

The fast simulation chain aims for sufficiently high execution speed in order to allow
for private, medium-size Monte Carlo production by individual working groups or insti-
tutes. It can be used as a tool to improve the respective analyses prior to requesting
high-statistics official Monte Carlo production samples. The resulting requests for offi-
cial MC production may therefore be better targeted and thus result in a more efficient
use of the computing resources.

13.3 ISF Pileup Simulation

Accurate simulation of pile-up effects in the ATLAS detector is essential for physics
analyses. In the current ATLAS Monte Carlo production chain (Section 4.2), pile-
up events are merged into the detector simulation output of the signal event during
the digitization step. The pile-up events are pre-simulated Geant4 detector simulation
samples of minimum bias events, which are available in corresponding datasets on the
ATLAS computing grid.

This pile-up simulation scheme causes a significant amount of data transfer between
grid sites. The datasets must be transferred to all sites on the ATLAS computing
grid, which are involved in ATLAS Monte Carlo production. Thus, for fast detector
simulation, and in particular for the fast simulation chain covered in the previous section,
a faster scheme is to be implemented.

Using the intrinsic flexibility of the ISF particle routing algorithm, the detector
simulation of the signal event and of the pile-up even can be carried out within the same
detector simulation step inside the ISF. For this, the event generator output (EVNT)
of the signal event and the pile-up event(s) are merged into one common simulation
input. ISF routing rules can be implemented to select all pile-up particles in the event
for fast detector simulation. Due to their high execution speed and accuracy, Fatras
and FastCaloSim are ideal simulators for pile-up particles in the ISF. However, not all
components of the ATLAS detector have the same sensitivity to pile-up particles. Thus,
a second (specifically configured) Fatras instance is used to transport particles through
regions in the ATLAS detector which are not sensitive to the respective pile-up particles.
This Fatras instance will not generate sensitive detector hits for the particles it processes.
It is only used to compute the entry point of the particles into regions of the detector
which are sensitive to the respective particles. With this combination of Fatras and
FastCaloSim simulators, all pile-up particles in the simulated event can be processed
through the ATLAS detector and create detector hits in the respective sensitive regions.
The signal event is simulated according to the ISF routing rules which are reflecting
requirements of the particular physics analysis (full simulation, fast simulation or a
combination of both).

A first prototype for pile-up simulation within the ISF is implemented. However, it
is not complete yet and further effort is required to extend the current implementation
and validate it for production use.

175

Outlook

13.4 Concurrent Processing with ISF

Current developments in the CPU market highlight a clear trend towards an increasing
number of processor cores per machine – often referred to as the ”many-core era”. This
fundamental change in the computing architecture requires adaptions to the software
in order to efficiently use these computing resources. The main challenge for complex
applications, like in high energy physics, is the decreasing amount of memory available
per processor core due to this development. Thus, various concurrent processing methods
are currently being studied for their feasibility in high energy physics [115]. Some studies
have resulted in concrete implementations which are used in production.

The ATLAS detector simulation in its current implementation does not directly sup-
port concurrent processing within Athena jobs. Individual simulators, such as Geant4,
may support concurrent processing, however, this functionality is not exploited for AT-
LAS detector simulation so far.

The design of the Integrated Simulation Framework allows for future adaptations of
the ATLAS detector simulation towards concurrent processing. The individual modules
forming the ISF are exchangeable, and specific implementations for concurrent processing
may replace some of the currently used components.

Two different types of concurrent processing are feasible with the ISF:

Event-level parallelism : With this type of parallelism, a number of Athena events
are processed in parallel. This level of concurrency is steered by the Athena frame-
work and thus, at a higher level than the ISF. Therefore the ISF will most likely
not require adaptations for the use of event-level parallelism. A multi-process
Athena framework (AthenaMP) has recently been validated for production use by
the ATLAS collaboration [116].

Particle-level parallelism : With this type of parallelism, multiple particles from
within one event are be processed in parallel. In contrast to the event-level paral-
lelism, the particle-level parallelism is directly enabled due to the ISF but requires
adaptations to the framework and simulators. Two different methods seem feasible
to realize particle-level parallelism within the ISF. In the first method, each simu-
lator will create multiple threads to process the particles which are assigned to it
in parallel. In an alternative approach, the ISF will create multiple threads of each
simulator and send sets of particles to the individual threads. In either case, in
particular core ISF components (such as TruthService and ParticleBroker) require
adaptations in order to accommodate a thread-safe behaviour, as these might be
called by multiple threads simultaneously.

The implementation of either of the two methods described above, will enable ATLAS
detector simulation to efficiently use many-core computing platforms.

176

Outlook

13.5 Simulator Integration and Particle Routing

In the current version of the ISF, a number of interfaces between core ISF components
and the simulators are implemented (Chapters 7, 8 and 9). There are two interfaces con-
cerning the flow of information from the simulators into the core ISF components, which
the simulators must adhere to. The first one concerns the registration of all incidents
where secondary particles are created in a simulator to the central ISF TruthService.
Through the second interface simulators are required to return all particles which are
passing a sub-detector boundary to the ISF ParticleBroker. These two interfaces func-
tion independently, however, a simulator is required to adhere to both, in order for a
consistent particle routing and Monte Carlo truth recording within the ISF.

In order to simplify the requirements to simulators, one interface can be formed,
which combines the two individual interfaces described above. Simulators would be
required to inform the core ISF components through this common interface about in-
cidents where secondary particles are created inside the simulator and when particles
cross a sub-detector boundary. Either of these occurrences will be registered to the
ISF through a ParticleIncident data format. Similar to the TruthIncident data format,
the ParticleIncident format acts a wrapper to allow the core ISF components to access
information which is otherwise only available in a simulator-specific data type.

Upon registration of a ParticleIncident, the ISF first creates a Monte Carlo truth
record if applicable. Second, if the particle(s) in the ParticleIncident are located on
a sub-detector boundary, the ISF will execute the routing algorithm (Chapter 6) to
determine the next simulator for the given particle(s). If the next simulator is determined
to be the same as the current one generating the ParticleIncident, the ParticleIncident
format is used to return information to this simulator, such that the particle ownership
stays within this simulator. This will reduce the computational overhead compared to
the current implementation, in cases where the simulator does not change for a given
particle when crossing from one sub-detector into an other.

Apart from the improved computing efficiency, this implementation will enable new
types of routing decisions and particle handovers between simulators. Each registered
ParticleIncident may be tested whether it contains relevant particles for subsequent
simulators. For instance in the ATLFASTII setup, all ParticleIncidents arising from
inner detector simulation can be checked for potential input particles to subsequent
FastCaloSim calorimeter simulation. If such a particle is identified, it will be registered
for simulation with FastCaloSim and the particle in the ParticleIncident will only be
processed until the next detector boundary. The information present to FastCaloSim
in this example, is the particle state during its inner detector simulation. This enables
energy-level handovers between simulators, in addition to the geometrical handover at
sub-detector boundaries. Studies indicate that the accuracy of ATLFASTII simulation
will potentially increase with the implementation of this method.

177

Chapter 14

Conclusions

Monte Carlo detector simulation is an important tool in high energy physics which is
used extensively by the ATLAS collaboration in many different areas. It is an essential
component to measure and optimize detector performance, improve the significance and
accuracy of physics analyses as well to study and develop detector upgrades. Due to its
importance, the demand for ATLAS Monte Carlo simulation is higher than what can
be generated in a timely manner with the computing resources available through the
ATLAS computing grid (Chapters 1 and 3).

The development of the Integrated Simulation Framework is driven by the aim to
significantly speed up ATLAS detector simulation (Chapter 4), in order to overcome
these limitations and allow for the generation of larger Monte Carlo simulation samples
using the same computing resources.

The ISF design and implementation covered in part II of this thesis reaches and even
exceeds this goal. The ISF is designed to serve as common framework for all ATLAS
detector simulation, while guaranteeing a straight-forward integration into the existing
ATLAS Monte Carlo production chain (Chapter 5). The framework has therefore become
the standard detector simulation framework for official ATLAS Monte Carlo production
campaigns.

The most innovative component of the framework is the ISF routing chain. The
routing chain is a novel particle routing algorithm which forms the very core of the
framework (Chapter 6). It allows to allocate each particle in the detector simulation to
a simulator which is best suited for it. This is enabled due to regions of interest which
can be defined specifically for the requirements of performance and physics analyses.
Different types of routing rules can be used to define such ROIs. Static routing rules
define geometrical ROIs in the ATLAS detector volume or ROIs of kinematic properties
of the particles being processed. Semi-dynamic routing rules can define ROIs depending
on the particles present in the event generator output. The ISF routing chain algorithm
supports either type of routing rules and allows for combinations of both.

Due to the modular design of the framework (Chapters 7 and 8) most of the ATLAS
detector simulators existing today are successfully integrated into the ISF (Chapter 9).
This enables the ISF to support all traditional full and fast ATLAS detector simulation

179

Conclusions

flavors that existed prior to the implementation of the framework: full Geant4, ATL-
FASTII and ATLFASTIIF detector simulation. In particular the setup of ATLFASTII
has become simpler within the common ISF framework, as it removes one step in the
MC production chain which was previously required to execute FastCaloSim.

With the focus on high simulation speed, the ISF core components are designed to
introduce very little computational cost in any detector simulation setup. The mea-
surements and CPU profiles presented in Chapter 10 reveal that the computational cost
of the core ISF components is less than 1% of the job execution time. This overhead
induced due to the framework is negligible compared to the cost of full and even fast
detector simulators. In effect, only the Geant4 full detector simulation time slightly
increased due to the ISF. All other simulation flavours either had complex and time
consuming job setups (ATLFASTII) or were not feasible prior to the implementation of
the ISF.

The power of the ISF arises from its unique routing chain algorithm. It enables
completely new simulation techniques which were not possible in any preceding ATLAS
detector simulation framework. The following new simulation approaches are available
to the ATLAS collaboration due to the introduction of the ISF:

Simulator mixing : Full and fast detector simulators can be mixed on a particle-
level. This technique is used to form dedicated simulation setups for individual
physics analyses with demands for high statistics and high accuracy simulation
samples. Accurate simulators (i.e. Geant4) are applied only in regions of interest
around crucial particles and fast simulators are applied to the rest of the particles.
This increases detector simulation speed significantly, while maintaining the high-
est possible accuracy for the particles which are relevant for a physics analysis.
Chapter 12 of this thesis covers the optimization and validation of this type of ISF
simulation, which is developed specifically for Z → ee detector simulation and the
W boson mass measurement.

Partial event simulation : Following the same principles as the simulator mixing
approach, the ISF can be configured to only simulate the relevant part of an event
and skip all other particles in the detector simulation. This approach provides
greatly improved simulation speed (Chapter 10). However, partial event simulation
must be allowed within the requirements of a physics analysis, as per definition, it
produces strong biases in the simulation output.

The study presented in Chapter 11 indicates that combinations of more than one
simulator in the event can decrease the accuracy of the overall detector simulation. The
accuracy may be increased, however, if simulators take into account the history of a sim-
ulated particle. That is to say, a simulator may process a particle differently, depending
on the preceding simulator(s) this particle has been processed through. The FastCaloSim
detector simulator is designed to process particles which were previously simulated by
Geant4 through the inner detector (ATLFASTII). If the Geant4 inner detector simula-
tion were replaced by Fatras (ATLFASTIIF), the accuracy of the calorimeter simulation

180

Conclusions

increases, if FastCaloSim does not adjust to the new type of input. Simulator tuning
procedures can be applied to increase the accuracy in these cases.

High simulation accuracy and speed is required in an extensive study presented in
Chapter 12 of this thesis. In order to maximize the accuracy of the mass measurement of
the W boson, highly accurate Z → ee detector simulation events are required with high
statistics for detector calibration. The full flexibility of the ISF routing chain is employed
to form a mixed detector simulation setup, using Geant4, Fatras and FastCaloSim.
Semi-dynamic routing rules are used to define cone-shaped regions of interest around
the crucial particles (electron and positron) in each event. All primary particles inside
the ROIs and all their secondaries are simulated with the most accurate simulator,
Geant4. The remaining particles are simulated with the fast simulators Fatras in the
inner detector and FastCaloSim in the calorimeter. A dedicated FastCaloSim tuning
method was developed and applied. It is found that this method significantly increases
the accuracy of the Fatras and FastCaloSim fast simulator combination.

The flexibility of the ISF can be used to further increase the accuracy of the Z → ee
fast simulation flavour. This is achieved by defining ROIs in regions where fast simulators
are known to have deficiencies and replace them locally by the Geant4 simulator (e.g. the
forward calorimeter region).

The results in Chapter 12 show that a 4.6 times faster execution of the entire MC
production chain is possible due to the use of the ISF, while maintaining the same
accuracy as full Geant4 detector simulation for the critical observables in the event. The
output dataset size (of the long-term stored formats) is smaller by a factor of 2.0, which
further reduces the MC production costs for the ISF samples.

Based on these results, the author is confident that the ISF will contribute sig-
nificantly to the high accuracy achieved by future physics analyses with the ATLAS
experiment, in particular the W boson mass measurement.

181

Part V

Appendix

183

Appendix A

ISF Core Implementation

An overview of the functionality of the framework and its components was provided in
previous Chapters 5, 6, 7 and 8. This chapter covers the implementation details of the
various components of the Integrated Simulation Framework. The implementation of the
ISF is constantly being improved and is therefore subject to change. The documentation
provided in this chapter refers to the implementation present in the ATLAS offline
software release 17.7.5.4. Specific details may differ in other releases.

A.1 ISFParticle

Class Summary

Class Name ISF::ISFParticle

Containing Package Simulation/ISF/ISF Core/ISF Event

Class Name ISF::ISFParticleContainer

Containing Package Simulation/ISF/ISF Core/ISF Event

Class Name ISF::ISFParticleOrderedQueue

Containing Package Simulation/ISF/ISF Core/ISF Event

Class Name ISF::ISFParticleVector

Containing Package Simulation/ISF/ISF Core/ISF Event

The ISFParticle is the C++ type used to describe a particle in the ISF. It contains
a set of fundamental properties that are required to describe any physical particle in a
detector simulation, these are: particle type, mass, charge, global position, momentum
vector and a time stamp. In addition, an ISF particle contains information that relates
to particle routing, such as identifiers for the originating, previous and next simulator
and detector region.

This data type is used for any transfer of information regarding particles within
the ISF or between the ISF and a simulator. Particles which are sent to a simulator for
simulation, are provided in the ISFParticle data format. Secondary particles generated

185

ISF Core Implementation

by a simulator and returned to the ISF, are provided in the same format by a simulator
to the ISF ParticleBroker.

Figure A.1: The UML class diagram of the ISFParticle C++ class. The ISFParticle

is the fundamental data type used to transport information regarding physical particles
within the ISF.

A number of predefined STL container [117] data types exist for the ISFParticle

type.

A.2 Simulation Kernel

Class Summary

AthAlgorithm Name ISF::SimKernel

Containing Package Simulation/ISF/ISF Core/ISF Algorithms

The ISF SimulationKernel is the sole AthAlgorithm implementation in the ISF, and
as such, it takes a central role in the operation of the simulation framework. Its re-

186

ISF Core Implementation

sponsibilities range from event initialization, managing the particle loop, performance
measurements to event finalization. Figure 8.1 illustrates that the SimulationKernel acts
as a central hub for receiving particles from the ParticleBroker and sending them to the
individual simulators.

Figure A.2: The UML class diagram of the ISF SimulationKernel including the Athena
tools and Athena services it uses.

Figure A.2 shows the UML class diagram of the ISF SimulationKernel implemen-
tation. Like any Athena algorithm, the ISF::SimKernel implements the three main
AthAlgorithm methods:

initialize() retrieves all AthAlgTools and AthServices that will be used by the ISF
SimulationKernel throughout the execution of the current Athena process. The
kernel will forward the SimulationSelectors (Section A.3.1) to the ParticleBroker
(Section A.3), as the routing chains are configured with the ISF kernel. The number
of simulators present in an ISF job depends on the specific configuration of the
framework. During the initialization phase of the SimulationKernel, each registered
simulator is dynamically assigned with a unique identifier of type ISF::SimSvcID.

187

ISF Core Implementation

Internal to the ISF, each simulator is represented by a unique identifier, which is
valid until the end of the current ISF process.

execute() is the main method in the ISF SimulationKernel. It initializes the Par-
ticleBroker (Section A.3), the Monte Carlo TruthService (Section A.6), and all
simulation services (Section A.4) at the beginning of the event before the event
loop commences. In the event loop, the SimulationKernel queries the ParticleBro-
ker for particles which are to be simulated. The kernel retrieves these particles and
sends them to the corresponding simulators. The simulators may return secondary
particles to the ISF, however, they are not handed back to the SimulationKernel,
these particles are directly sent to the ParticleBroker (Section A.4.1 for simulation
service requirements). The particle loop ends, if the ParticleBroker does not return
any more particles that need to be simulated. At this point, all particles will have
been completely simulated through the ISF and the kernel executes the event final-
ization steps. At this stage, the same services that were previously called for the
event initialization are called for event finalization. In addition, event filter tools
(Section A.2.1) are evaluated, which determine whether or not the output of the
current Athena event will be persistently recorded. For collision event simulation,
usually all events are recorded and no event filters are configured. However, in the
case of cosmic event simulation, the event filter tools will reduce the simulation
output to only a subset of all simulated events which fulfill certain criteria.

finalize() collects and prints performance measurements that are collected through-
out the execution of the ISF simulation job. In particular CPU time per configured
simulator may be of interest to the user.

The ISF::SimKernel implementation is used for all flavours of ATLAS detector
simulation. This includes full and fast simulation approaches, as well as simulation
of cosmic ray events. Each ATLAS detector simulation flavour is simulated with a
specifically configured ISF::SimKernel instance.

The current ISF::SimKernel implementation does not support multi-threaded de-
tector simulation. However, due to the modular design of the ISF, a separate ISF
SimulationKernel implementation may be created if multi-threading approaches are to
be used.

A.2.1 Event Filter Tool

Class Summary

Interface Name ISF::IEventFilterTool

Containing Package Simulation/ISF/ISF Core/ISF Interfaces
Implementation Name ISF::CosmicEventFilterTool

Containing Package Simulation/ISF/ISF Core/ISF Tools

188

ISF Core Implementation

An event filter tool is an AthAlgTool implementation of the ISF::IEventFilterTool

interface. Event filter tools are used to determine whether or not a given Athena event
is to be stored persistently.

Figure A.3 shows the UML class diagram of the event filter tool inter-
face and implementation. The ISF SimulationKernel does not use event filter
tools for collision event simulation. For cosmic event simulation, however, the
ISF::CosmicEventFilterTool is queued by the ISF SimulationKernel in every Athena
event. The ISF::CosmicEventFilterTool determines whether particles entered the re-
gion of the inner detector during the simulation of the current event. This is done by
processing the entries of the CaloEntry TrackRecordCollection (Section A.6.6). If no
entries are present in the CaloEntry collection, the simulation output of the current
Athena event will not be stored persistently.

Figure A.3: The UML class diagram of the event filter tool interface and implementa-
tion. The ISF::CosmicEventFilterTool is used in ISF cosmic simulation to determine
whether the simulation output of a given Athena event will be persistently stored.

A.3 Particle Broker

Class Summary

Interface Name ISF::IParticleBroker

Containing Package Simulation/ISF/ISF Core/ISF Interfaces
Implementation Name ISF::ParticleBrokerDynamicOnReadIn

Containing Package Simulation/ISF/ISF Core/ISF Services

189

ISF Core Implementation

The ISF ParticleBroker is an AthService handling all ISFParticles which are processed
within the simulation framework. It is central to the ISF due to its role in assigning
simulation engines to individual ISFParticles. The ISF ParticleBroker also initiates the
preparation of the simulation input by calling a ISF::IStackFiller::fillStack(..)

method before the execution of the particle loop (Section A.6.1 for a detailed description
of the IStackFiller interface and its implementation).

The ParticleBroker is accessible via the ISF::IParticleBroker interface and cur-
rently the ISF::ParticleBrokerDynamicOnReadIn is the only implementation of this
interface. This ParticleBroker implements the routing algorithm discussed in Section
6.2, which supports static and semi-dynamic routing rules. The ParticleBroker deter-
mines the appropriate simulation engine for each ISFParticle it receives. Simulation
engines may send secondary particles (or particles at sub-detector boundaries) to the
ParticleBroker via the ISF::IParticleBroker::push(..) interface method. Particles
read from the simulation input are also processed through the ParticleBroker. Figure
A.4 shows the class diagram of the ISF ParticleBroker interface and implementation.

In order to determine the simulation engine of a given ISF particle, the
ParticleBrokerDynamicOnReadIn implementation applies a routing chain with semi-
dynamic routing rules (Section 6.1.2). The simulator decision made by the routing chain
is unique, which is a requirement for a reproducible simulation framework behaviour.

The ”joints” in the routing chain correspond to the SimulationSelectors which are
implementations of the ISF::ISimulationSelector interface (see the following sub-
section for more details on the implementation of the SimulationSelectors). The Par-
ticleBroker implementation holds a chain of SimulationSelectors for each ATLAS de-
tector region (i.e. for each sub-detector) respectively. To determine the simulation
engine for a given ISFParticle, the ParticleBroker first uses the GeoIDService (Sec-
tion A.5.2) to determine the AtlasDetDescr::AtlasRegion (Section A.5) within which
the next simulation step for this particle will be performed. Subsequently, it calls
the ISF:ISimulationSelector::selfSelect(..) method of the SimulationSelectors
present in the routing chain for the current sub-detector. The simulation engine is
then determined as the simulation engine attached to the first SimulationSelector in the
corresponding chain which returns true for this call.

The SimulationSelectors implementing semi-dynamic routing rules must be pro-
vided with the list of initial particles in the detector simulation. Hence, the
ParticleBrokerDynamicOnReadIn informs all SimulationSelectors of the particles
present in the input of the current Athena event. This is carried out immediately after
the initial list of ISFParticles is prepared by StackFiller, before the start of the event
loop and even before the simulation engine is determined for these particles. Updating
the SimulationSelectors is carried out by passing each input ISFParticle to each regis-
tered SimulationSelector via the ISF::ISimulationSelector::update(..) method.

Particles that are sent to the ParticleBrokerDynamicOnReadIn via the
IParticleBroker::push(..) method, are processed by the ParticleBroker in the fol-
lowing order:

1. The ISFParticle is registered with the EntryLayer tool by calling

190

ISF Core Implementation

Figure A.4: The UML class diagram of the ISF ParticleBroker interface, its implemen-
tation and the tools and services it uses.

ISF::IEntryLayerTool::registerParticle(..) (Section A.6.6). If the parti-
cle resides on the boundary between two ATLAS sub-detectors, the EntryLayer
tool will generate a record in the respective EntryLayer collection.

2. To determine the ATLAS region of an ISFParticle, the ParticleBroker reads
the region stored in the particle by calling ISFParticle::nextGeoID(). If this
returns an unset region (AtlasDetDescr::fUndefinedAtlasRegion) or if the
particle resides on a boundary between two ATLAS detector regions (deter-
mined by the EntryLayer tool), the ParticleBroker will use an ISF::IGeoIDSvc

implementation to resolve the detector region. This is done by calling
IGeoIDSvc::identifyNextGeoID(..). Thus, if a simulator returns a particle to
the ISF ParticleBroker, and the simulator knows with certainty which detector

191

ISF Core Implementation

region the particle is in, it can the use ISFParticle::setNextGeoID(..) method
to set the ATLAS region that the particle will be simulated in next.

3. The previously determined ATLAS detector region, is used to access the appro-
priate routing chain in the ISF ParticleBroker, since the ParticleBroker holds one
routing chain per ATLAS detector region.

4. To determine the appropriate simulator for the given particle, the ParticleBroker
uses the previously discussed routing algorithm in this routing chain.

5. The ParticleBroker uses a particle ordering tool implementation to set the
ordering number of the given particle. Particle ordering numbers are
equivalent to the priority with which a particle will be simulated in the
single-threaded (sequential) ISF implementation. This is done by calling
IParticleOrderingTool::setOrder(..). The ordering tool must generate the
same ordering numbers for all particles that are assigned to a common simulator.
Upon request by the ISF SimulationKernel, the ParticleBroker will later return all
particles at once which share the highest ordering number. These particles will
subsequently be sent to the same simulator at once.

6. The particle is added to the ISFParticleOrderedQueue which is internal to the
ParticleBroker. The ISFParticleOrderedQueue is a std::priority queue using
the particle ordering number to sort the particles.

A.3.1 Simulation Selector

Class Summary

Interface Name ISF::ISimulationSelector

Containing Package Simulation/ISF/ISF Core/ISF Interfaces
Implementation Name ISF::DefaultSimSelector

Implementation Name ISF::ConeSimSelector

Implementation Name ISF::HistorySimSelector

Implementation Name ISF::KinematicSimSelector

Implementation Name ISF::PileupSimSelector

Implementation Name ISF::RandomSimSelector

Implementation Name ISF::TruthAssocSimSelector

Implementation Name ISF::TruthConeSimSelector

Containing Package Simulation/ISF/ISF SimulationSelectors

SimulationSelectors are the ISF equivalent of routing rules, as discussed in Section
6.1. They are the basic building blocks of the ISF routing algorithm, the ISF rout-
ing chain (Section 6.2). A SimulationSelector is an AthAlgTool which inherits from

192

ISF Core Implementation

the ISimulationSelector interface. Static and semi-dynamic routing rules can be im-
plemented by using the same ISimulationSelector interface. In accordance with the
routing rule definition, two properties are essential to every SimulationSelector:

Condition C : The condition of a SimulationSelector must be implemented in-
side the passSelectorCuts(..) method of the specific ISimulationSelector

implementation. This interfaced method is called when the ISF rout-
ing algorithm evaluates individual SimulationSelectors (i.e. routing rules)
for a given ISFParticle. More specifically, the ISF ParticleBroker
calls the ISimulationSelector::selfSelect(..) method, which calls the
passSelectorCuts(..) method internally. The selfSelect(..) method can op-
tionally invert the Boolean result that is returned by the passSelectorCuts(..)

method. This allows, for example, to invert regions of interest in the Python con-
figuration, without the need to change the underlying C++ implementation of the
SimulationSelector. It is the return value of the selfSelect(..) method, which
is directly used by the ISF routing algorithm to determine whether a given particle
is selected by a SimulationSelector or not. Thus, if the selfSelect(..) method
returns true for a given ISFParticle, this means that the routing rule does select
this particle and it will subsequently be sent to the simulator S that is attached
to the SimulationSelector.

Simulator S : Each SimulationSelector is associated with one simulation service (Sec-
tion A.4). The same simulation service might be associated with multiple Simu-
lationSelectors. The simulator S of a SimulationSelector is usually defined at the
Python configuration stage of the Athena job setup (Section 4.1). The simulator
of a SimulationSelector instance must stay constant throughout the execution of
a detector simulation job. Upon being called by the ISF routing algorithm, if the
selfSelect(..) method of a SimulationSelector instance returns true for a given
ISFParticle, the associated simulator S of this SimulationSelector will be used
for the detector simulation of this particle.

Figure A.5 shows the class diagram of the ISimulationSelector interface and its
current implementations. The most important methods declared in the interface, are:

simulator() returns a ToolHandle to the ISimulationSvc (simulator S) that is as-
sociated with the given SimulationSelector instance.

initializeSelector() is called once by the ISF ParticleBroker at the beginning of
the simulation job.

beginEvent() is called once before the particle loop commences inside the ISF Simu-
lationKernel.

endEvent() is called once, after the particle loop inside the ISF SimulationKernel has
ended. This method is recommended to be used for resetting the condition C in
semi-dynamic routing rules. This is required as no information about the current
event must influence the simulator decisions of the next event.

193

ISF Core Implementation

update(..) is used to update the SimulationSelector with the particles that are in
the initial particle list. This method allows semi-dynamic routing rules to define
the condition C according to the particles that are in the simulation input event.
After the ISF ParticleBroker has prepared the particles from the input file, it will
call the ISimulationSelector::update(..) method of each SimulationSelector
for each particle in the input that will be simulated through the detector.

selfSelect(..) is called by the ISF routing algorithm, to determine whether a Simula-
tionSelector selects a given particle or not. The selfSelect(..) method calls the
passSelectorCuts(..) method internally, but may optionally invert the return
value of the latter.

passSelectorCuts(..) is where the condition C of a routing rule must be implemented
and evaluated for a given particle. Note that the return value can be inverted by
selfSelect(..) method.

There are currently eight implementations of the ISimulationSelector interface:

The DefaultSimSelector is a static routing rule which selects all particles. This
selector is usually applied at the end of routing chains, to set a default simulator
for the ATLAS detector region that the respective chain is defined in.

The ConeSimSelector is a semi-dynamic routing rule, which registers cone-shaped
ROIs around defined types of particles in the simulation input event. It uses the
ConeParticleCuts class to store the cone-shaped ROIs and to evaluate whether
a given particle is within any of the registered cones.

The HistorySimSelector is a static routing rule which bases its decision on the pre-
vious simulator and detector region of the given particle. This selector might be
used to select particles that were previously simulated with a certain simulator in
a given ATLAS region. For example, the SimulationSelector might be configured
to ensure that all particles (and secondaries) that were at some point simulated by
Geant4 will be sent to Geant4 for the remainder of the simulation.

The KinematicSimSelector is a static routing rule which bases its decision on static
and kinematic properties of the given particle. This selector can be used to define
regions of interest, based on a particle’s momentum direction, position, charge and
type. It uses the KinematicParticleCuts class to store and test the condition of
the routing rule.

The PileupSimSelector is a static routing rule which is used in the ISF prototype for
combining the simulation of the hard scatter event and pile-up within the detector
simulation step (Section 13.3). This SimulationSelector is designed to select all
particles from the pile-up part of the event.

The RandomSimSelector is a static routing rule which randomly selects 50% of all par-
ticles it is evaluated for. This selector is generally used for testing and development
purpose.

194

ISF Core Implementation

The TruthAssocSimSelector is a static routing rule which checks whether a given
ISFParticle is linked to a specific particle type in the TruthEvent. The
HepMCHelper class is used to find relatives of the given ISFParticle in the
TruthEvent. The types of relations that are evaluated are a subset of the ele-
ments in the HepMC::IteratorRange enum [64]: parents, family, ancestors and
relatives.

The TruthConeSimSelector is a semi-dynamic routing rule, which registers cone-
shaped ROIs around specific particles in the TruthEvent. This semi-dynamic rout-
ing rule accesses the TruthEvent StoreGate collection inside the beginEvent(..)

method in order to define the condition C. It does not process the particles that
are provided through the ISimulationSelector::update(..) method. This Sim-
ulationSelector is applied in a fast simulation setup relevant for the measurement
of the W boson mass, covered in Chapter 12.

195

ISF Core Implementation

Figure A.5: The UML class diagram of the ISF SimulationSelector interface
ISimulationSelector and its various implementations. Generally, the ISF ParticleBro-
ker has a number of associations with SimulationSelector instances. Each Simulation-
Selector has an association with exactly one simulation service. However, a simulation
service might be associated with a number of different SimulationSelectors.

196

ISF Core Implementation

A.4 Simulation Services

Class Summary

Interface Name ISF::ISimulationSvc

Containing Package Simulation/ISF/ISF Core/ISF Interfaces
Implementation Name ISF::BaseSimulationSvc

Containing Package Simulation/ISF/ISF Core/ISF Interfaces
Implementation Name ISF::ParticleKillerSimSvc

Containing Package Simulation/ISF/ISF Core/ISF Services
Implementation Name iGeant4::Geant4SimSvc

Containing Package Simulation/ISF/ISF Geant4/ISF Geant4Services
Implementation Name iFatras::FatrasSimSvc

Containing Package Simulation/ISF/ISF Fatras/ISF FatrasServices
Implementation Name ISF::FastCaloSimSvc

Containing Package Simulation/ISF/ISF FastCaloSim/ISF FastCaloSimSer-
vices

A simulator algorithm fulfilling the necessary requirements (Section 7.1.1 and A.4.1)
can be integrated into the ISF. Hence, the ISF is not limited to the simulation engines
described in this section.

The following detector simulator implementations are available in the ISF in ATLAS
offline software release 17.7.5.4:

ISF::BaseSimulationSvc is the only implementation of the ISF::ISimulationSvc

interface which does not fulfill the ISF simulator requirements. It adds a number of
commonly used functionalities to the otherwise empty simulation service interface.
The BaseSimulationSvc is meant to be used as the actual base class for most
simulation service implementations.

ISF::ParticleKillerSimSvc is a very simple simulation service. It does not perform
any computation with the particles that are provided to it. Thus, any particle sent
to the ParticleKillerSimSvc will neither produce sensitive detector hits nor sec-
ondary particles, nor will the given particle be returned to the ISF ParticleBroker.
This equates to inhibiting any further detector simulation of this particle. This
service is commonly used if certain detector regions are disabled in the detector
simulation, i.e. the simulation of particles through these regions is not required.

iGeant4::Geant4SimSvc is the ISF simulation service implementation of the Geant4
toolkit. A detailed description of the Geant4 integration into the ISF is given in
Section 9.1.

iFatras::FatrasSimSvc is the ISF simulation service implementation of the Fatras
fast simulation. A detailed description of the Fatras integration into the ISF is
given in Section 9.2.

197

ISF Core Implementation

Figure A.6: The class diagram for the ISF::ISimulationSvc interface and its implemen-
tations. The ISF SimulationKernel accesses the individual simulation engines through
ISF::ISimulationSvc interface methods. All currently implemented simulators inherit
from the generic BaseSimulationSvc which implements basic, commonly used function-
alities.

ISF::FastCaloSimSvc is the ISF simulation service implementation of the FastCaloSim
simulation. A detailed description of the FastCaloSim integration into the ISF is
given in Section 9.3.

A.4.1 Simulation Service Requirements

This section lists the implementation requirements a simulator must fulfill for the inte-
gration into the ISF. This section is an extension of the qualitative list presented earlier
in this thesis (Section 7.1.1). As such, it also provides technical details on many of the
points mentioned earlier.

Simulation Service Interface

A basic requirement of an ISF simulation service implementation is the inheritance
from the ISF::ISimulationSvc interface. This interface defines a number of essential
methods used by the ISF to send information to and receive information from a particular
simulation service implementation:

198

ISF Core Implementation

setParticleBroker(..) is called by the ISF kernel to forward the ParticleBroker
instance in use by the simulation framework to the simulation service implementa-
tion. Since this functionality does generally not depend on the particular simula-
tion service implementation, the BaseSimulationSvc implements a generic version
of it.

simulateVector(..) is called by the ISF kernel to send a set of particles to the
simulator implementation. The argument is of type ConstISFParticleVector

and it contains the ISFParticles to be simulated by the simulation service.
There is no requirement on the order in which the given particles are to be
simulated. Thus, concurrent processing may be used to simulate the particles
in the particle vector. However, as mentioned above, the simulator has to be
deterministic in its behaviour and provide reproducible results if the same sim-
ulation setup is executed multiple times. The simulator must not empty the
given ConstISFParticleVector nor free the memory of any ISFParticle instance
given in the vector. The BaseSimulationSvc implements a simple version of the
simulateVector(..) method. It calls the simulate(..) method (see below) for
each individual ISFParticle instance given in the vector of particles.

simulate(..) is the single-particle equivalent to the simulateVector(..) method
described above. The argument is a reference to an ISFParticle which is to be
processed by the simulation service. This method will not be called by the ISF
kernel. However, the BaseSimulationSvc may call it if no implementation of the
simulateVector(..) method is provided in the simulation service implementa-
tion. Though, this method is the predecessor of the simulateVector(..) method
it is still the sole method through which Fatras and FastCaloSim fast simulations
receive particles for detector simulation. The reason for this being that the under-
lying algorithms in these fast simulations are purely sequential and thus any set of
particles will need to be processed sequentially.

simSvcDescriptor() returns a std::string type with a clear text name of the simu-
lation service. The string is used by the ISF to generate messaging output. Thus,
it should be concise and allow a user to identify the actual simulation service when
encountered in the ISF messaging output. There are no strict requirements for this
string to be unique, though for practical reasons each simulator should provide a
different string. A few examples of simulation service descriptors currently in use
are: ”Geant4”, ”Fatras” and ”FastCaloSim”.

setupEvent() is called by the ISF SimulationKernel immediately before the start of
the particle loop. The ISF kernel calls this method for each simulation service
implementation which is configured in the ISF setup that is being executed. This
method can be used by simulators to execute internal event initialization routines.

releaseEvent() is called by the ISF SimulationKernel immediately after the end of
the particle loop. The ISF kernel calls this method for each simulation service

199

ISF Core Implementation

implementation which is configured in the ISF setup that is being executed. This
method can be used by simulators to execute internal event finalization routines.

assignSimSvcID(..) is called by the ISF SimulationKernel to assign a unique identifier
of type ISF::SimSvcID to each simulation service registered in the current ISF job.
The ID is unique for each simulator within the given ISF process. The very same
simulation service implementation may get different IDs in different configurations
of the ISF. This method will be called during the initialization phase of the Athena
algorithms and it will be called once per simulation service. The simulation service
ID is used for ISF internal purpose (e.g. fast array accesses) and thus it must not
be modified by the simulation service implementation. Due to these requirements,
this method is implemented directly in the ISF::ISimulationSvc interface and
can not be overloaded in an implementation.

simSvcID() is called by core ISF routines to access the identifier of the given simulation
service implementation within the current ISF process.

Particle Interactions, Decays and Monte Carlo Truth

Secondary particles resulting from interactions or decays of particles in the detector vol-
ume can be passed back to the ISF via the ISF::IParticleBroker::push(..) interface
method. However, there is no requirement that secondary particles must be returned to
the simulation framework. If an interaction which generates additional particles occurs
inside a simulator, an ISF::ITruthIncident (Section A.6.2) must be created and regis-
tered to the ISF TruthService via the ISF::ITruthSvc::registerTruthIncident(..)

method (Section A.6.3). The ISF TruthService will determine whether the interaction
will be written into the Monte Carlo truth output and if necessary it will generate this
output.

Figure 8.3 illustrates the information flow if a particle interaction is computed by a
simulation service.

Sub-Detector Boundaries

A simulation engine is required to return all particles passing a sub-detector bound-
ary to the ISF via the ISF::IParticleBroker::push(..) method. This applies to all
primary and secondary particles. When doing so, the affected particles must not be
processed any further within the simulation service. The sub-detector boundaries are
well defined within the simulation framework and can be retrieved as a list of (r, z) co-
ordinate pairs from the ISF::ISFEnvelopeDefSvc (Section A.5.1). In addition, various
ISF::IGeoIDSvc implementations exist to identify the AtlasDetDescr::AtlasRegion

of a given ISFParticle or a point within the ATLAS detector volume (Section A.5.2).
Charged low energy particles can potentially loop along detector boundaries and

may end up being handed back and forth between the ISF and a simulator. Thus, to
improve computing performance, particles with very low energies may not be returned to
the ISF and can be processed further within the respective simulator. A kinetic energy

200

ISF Core Implementation

threshold of 50 keV is applied in the Geant4 simulation service for particles which are
to be returned to the ISF ParticleBroker (Section 9.1).

Sending Particles to the ISF Particle Broker

A simulator may send one or many particles to the ISF ParticleBroker via the
ISF::IParticleBroker::push(..) interface method. Each particle must be instan-
tiated as an ISFParticle type beforehand. If available within the simulator, the cor-
responding parent ISF particle may also be provided to the ParticleBroker interface
method.

If the ATLAS region within which a particle is simulated next is known to a simula-
tor, the simulator may assign the corresponding AtlasDetDescr::AtlasRegion via the
ISFParticle::setNextGeoID(..) method. By default, this entry will only be cross-
checked by the ISF ParticleBroker if the particle resides on a boundary between two
ATLAS sub-detectors. Thus, if the next region is not know with certainty by the sim-
ulator, the ATLAS region must be set to AtlasDetDescr::fUndefinedAtlasRegion.
This is done implicitly by the default ISFParticle constructor or it can be done ex-
plicitly with the ISFParticle::setNextGeoID(..) method. The ParticleBroker will
subsequently determine the corresponding ATLAS region if it receives a particle with an
unset ATLAS region.

Simulation Output and Sensitive Detector Hits

The output data generated by a simulator must be filled into the respective StoreGate
collection directly by the simulator. For example, if a simulator were to generate sensitive
detector hits (i.e. energy deposits), the respective SD hit collection must be accessed and
filled by this simulator. The relevant StoreGate collections are shared among different
simulators. Hence, no one simulator must disallow writing of any one output collection
to any of the other simulators. This is particularly important if different simulators are
generating the same output format within one ISF process.

A.5 Detector Regions

Various different simulation technologies are available for ATLAS detector simulation,
dependent on the particular region of the detector. In particular fast simulation engines
are often tailor-made for certain ATLAS sub-detectors only. Thus, as mentioned in
Section 6.2, the ISF routing algorithm uses independent routing chains for each ATLAS
detector region. These detector regions coincide either with ATLAS sub-detectors, or
with generic parts of the detector that are fundamentally different from others.

The different ATLAS detector regions are defined in the
AtlasDetDescr::AtlasRegion enum. The AtlasDetDescr::AtlasRegion enum is not
specific to ISF simulation. Thus, it is defined in the DetectorDescription/AtlasDetDescr
package in the ATLAS offline software repository. As of ATLAS offline software release
17.7.5.4, the following regions are defined in this enum:

201

ISF Core Implementation

fUndefinedAtlasRegion – undefined region

fAtlasID – ATLAS inner detector

fAtlasForward – ATLAS forward beampipe structure

fAtlasCalo – ATLAS calorimeter

fAtlasMS – ATLAS muon spectrometer

fAtlasCavern – ATLAS cavern

The geometrical definition and extension of the individual regions is shown in Fig-
ure 7.1. The boundaries of the individual ATLAS regions are often called envelopes.
Thus, an envelope definition Athena service provides the numerical values of the region
boundaries to Athena tools, services or algorithms (Section A.5.1).

Most detector simulation setups will simulate particles originating from a point close
to the nominal interaction point in the centre of the ATLAS detector. Thus, particles
emerging from this point will generally traverse parts of the physical ATLAS beam pipe
before entering the ATLAS inner detector. As the ISF has separate routing chains for
each ATLAS detector region, such particles would first encounter the fAtlasForward

routing chain, before entering the fAtlasID region, where a different routing chain
will be used. In addition, simulators in the ISF are required to return all particles
to the ISF, when they pass boundaries between ATLAS regions (Section A.4.1). This
generates unnecessary computational overhead and complexity, since the central beam
pipe region can be considered as a part of the ATLAS inner detector region inside the
simulators. Thus, the boundaries of inner detector (fAtlasID) and the forward beampipe
(fAtlasForward) regions are slightly modified within the ISF. In the ISF, the fAtlasID

region includes the portion of the beam pipe which is fully enclosed by the physical
ATLAS inner detector. Thus, the ISF inner detector region starts at a radius of r = 0
in the cylindrical ATLAS coordinate system. The forward beampipe region is adjusted
accordingly.

A.5.1 Envelope Definition Service

Class Summary

Interface Name IEnvelopeDefSvc

Containing Package AtlasGeometryCommon/SubDetectorEnvelopes
Implementation Name DetDescrDBEnvelopeSvc

Containing Package AtlasGeometryCommon/SubDetectorEnvelopes
Implementation Name ISF::ISFEnvelopeDefSvc

Containing Package Simulation/ISF/ISF Core/ISF Services

The envelope definition service is an AthService which implements the
IEnvelopeDefSvc interface. It returns sets of (r, z) coordinate pairs that de-

202

ISF Core Implementation

fine the boundaries (envelopes) of the individual ATLAS detector regions in the
AtlasDetDescr::AtlasRegion enum. An envelope definition service requires a cylin-
drical symmetry around the z axis for all ATLAS detector regions. A mirror symmetry
in the x − y plane may be intrinsically assumed by some envelope definition service
implementations.

The most important methods defined in the IEnvelopeDefSvc interface are:

getRZBoundary(..) returns a vector of RZPairs (RZPairVector) for a given
AtlasDetDescr::AtlasRegion element. The vector contains an ordered list of
(r, z) coordinates that define the boundary of the given ATLAS region.

getRPositiveZBoundary(..) returns a vector of RZPairs (RZPairVector) for a given
AtlasDetDescr::AtlasRegion element. It differs from getRZBoundary(..) as it
only returns the (r, z) coordinate pairs where z > 0.

getBeamPipeRZBoundary(), getInDetRZBoundary(), getCaloRZBoundary(),
getMuonRZBoundary(), getCavernRZBoundary() are wrapper methods of
the getRZBoundary(..) method for the individual ATLAS regions.

Figure A.7 shows the class diagram of the IEnvelopeDefSvc interface and its im-
plementations. As of ATLAS offline software release 17.7.5.4, two envelope definition
service implementations exist:

DetDescrDBEnvelopeSvc accesses the detector description database (DDDB) [118, 119]
to read the numerical values which define the individual ATLAS region bound-
aries. Alternatively, it can be configured to read these boundary coordinates from
a Python-based configuration. The boundary coordinates in both the DDDB or
Python, must only define points with z > 0. A symmetry in the x−y plane is intrin-
sically assumed for all detector regions. Thus the DetDescrDBEnvelopeSvc auto-
matically generates the necessary points in the z < 0 space. A default (simulation
independent) DetDescrDBEnvelopeSvc configuration exists, and it can be retrieved
through a ConfiguredFactory with the name AtlasGeometry EnvelopeDefSvc.

ISF::ISFEnvelopeDefSvc returns the ISF definition of the ATLAS detec-
tor regions (Section A.5). It reads the global ATLAS region def-
inition from the DetDescrDBEnvelopeSvc and adjusts the inner de-
tector volume (AtlasDetDescr::fAtlasID) and forward beampipe
(AtlasDetDescr::fAtlasForward) accordingly. The ISF retrieves its AT-
LAS detector region definitions directly from this service.

203

ISF Core Implementation

Figure A.7: The UML class diagram of the IEnvelopeDefSvc with the
DetDescrDBEnvelopeSvc and ISF::ISFEnvelopeDefSvc implementations. The
DetDescrDBEnvelopeSvc returns the ATLAS region boundaries as defined in the de-
tector description database or in the Python configuration, both of which are global to
ATLAS and not specific to simulation. The ISF::ISFEnvelopeDefSvc returns ATLAS
region boundaries which are slightly modified from the ATLAS global definition, in order
to lower the computational costs in the ISF detector simulation.

204

ISF Core Implementation

A.5.2 GeoID Service

A GeoID service (or GeoIDService) is an AthService which imple-
ments the ISF::IGeoIDSvc interface. It is mainly used to resolve the
AtlasDetDescr::AtlasRegion corresponding to a given global position in the
ATLAS coordinate system. The name GeoID was used in earlier software ver-
sions to describe regions in the ATLAS detector, which are now defined by the
AtlasDetDescr::AtlasRegion enum. A GeoID service implementation is used by the
ISF routing algorithm (the ParticleBroker), to identify the appropriating routing chain
for each individual particle (Section A.3).

The most important methods defined in the ISF::IGeoIDSvc interface are:

inside(..) returns whether the given position is inside, outside or on the sur-
face of a given AtlasDetDescr::AtlasRegion. The return value is of type
ISF::InsideType.

identifyGeoID(..) returns the AtlasDetDescr::AtlasRegion within which the given
position is located.

identifyNextGeoID(..) predicts the AtlasDetDescr::AtlasRegion within which a
given particle (or combination of position and momentum vector) will be simulated
in the next step. Some implementations approximate this by resolving the ATLAS
region for a point which is linearly extrapolated (by a about a millimeter) from
the given position along the given momentum.

identifyAndRegNextGeoID(..) resolves the next ATLAS region within which the
given ISFParticle will be simulate and updates the ISFParticle::nextGeoID()

entry for the particle accordingly. The ATLAS region is resolved by calling
identifyNextGeoID(..) for the position and momentum direction of the given
particle.

The ISF::IGeoIDSvc interface contains wrapper methods for the methods de-
scribed above, accepting position and momentum variables of various types. Com-
mon types to containing position and momenta information are: Amg::Vector3D,
HepGeom::Point3D<double>, HepGeom::Vector3D<double> or ISFParticle.

Figure A.8 shows the UML class diagram of the ISF::IGeoIDSvc interface an its
implementations. As of ATLAS offline software release 17.7.5.4, two GeoID service
implementations exist:

ISF::GeoIDSvc is a IGeoIDSvc implementation which is optimized for high speed and
minimal computational costs. It is accessed by the ParticleBroker and the Geant4
implementation which is specific to the ISF (Section 9.1). It is used by the prior
to determine whether or not a given particle is positioned on a boundary between
two ATLAS detector regions and which region the given particle will be simulated
in its next step (Section 7.3.1). Approximative methods are used by the GeoIDSvc

205

ISF Core Implementation

Figure A.8: The UML class diagram of the ISF::IGeoIDSvc interface with the
ISF::GeoIDSvc and ISF::G4PolyconeGeoIDSvc implementations. The ISF::GeoIDSvc

is optimized for fast processing speed when resolving the ATLAS region of a given posi-
tion within the ATLAS coordinate system. The slower ISF::G4PolyconeGeoIDSvc uses
Geant4 classes to provide precise results where the ISF::GeoIDSvc uses approximative
methods.

in order to guarantee high execution speed. The ISF-specific Geant4 implementa-
tion uses the GeoIDSvc to determine whether or not a particle has traversed the
boundary of an ATLAS detector region in the previous simulation step.

ISF::G4PolyconeGeoIDSvc uses G4Polycone instances to model the ATLAS detector
regions. It uses methods provided by this Geant4 class to determine the return val-
ues for the individual IGeoIDSvc interface methods. It is slower than the GeoIDSvc
implementation. However, it uses exact methods to determine whether a given po-
sition is on a ATLAS region boundary or not, contrary to the GeoIDSvc. This
implementation was used by the ParticleBroker before the GeoIDSvc was capable
of determining whether particles are on sub-detector boundaries or not.

A.6 Monte Carlo Truth

One important component of ATLAS Monte Carlo simulation is the ability to generate
a representation of the particles and interactions that were computed by the simulation
engines for each simulated event. The ATLAS collaboration uses the HepMC format to

206

ISF Core Implementation

store a tree structure of the particles and interactions simulated in the event generation
and detector simulation step [59, 63, 64].

The event generator output (which serves as the input for the ISF) is stored in the
GEN EVENT collection in the EVNT file format. The ISF copies the GEN EVENT collec-
tion from the input EVNT file into the output HITS file. This GEN EVENT collection
is one of two MC truth collections in the HITS file. The second collection is named
TruthEvent. The TruthEvent collection contains a copy of the GEN EVENT which is
manipulated (moved) according to the given beam spot conditions in the detector sim-
ulation. In addition, the ISF appends secondary particles generated by the detector
simulation to the corresponding event generator particles in the TruthEvent. However,
only a subset of all secondary particles and interactions are stored in the TruthEvent.

Figure 8.2 shows the interplay of the various ISF AthAlgTools, AthServices and
AthAlgorithms involved in the generation of the MC truth representation. The following
subsections describe each component and its functionality within the ISF in more detail.
Section A.6.1 describes the preparation of the simulation input inside the StackFiller.
TruthIncidents (Section A.6.2) are used as wrappers to allow the ISF access to simulator-
specific information regarding the simulated particles and physics process. A central
TruthService (Section A.6.3) determines the level of MC truth information which is
persistently stored in the TruthEvent collection in the simulation output. For this,
the TruthService uses a set of TruthStrategies (Section A.6.4) which define whether
or not a given Truth Incident is significant enough to justify persistent storage. The
BarcodeService (Section A.6.5) is used to assign particle barcodes (integer numbers) to
secondary particles created by a simulator.

A dedicated ATLAS offline software container was set up within the ISF container
to store all packages with dependencies to the (external) HepMC library: Simula-
tion/ISF/ISF HepMC . As most of the ISF MC truth implementation has dependencies
on the HepMC library, the respective classes reside in packages within this container.

207

ISF Core Implementation

A.6.1 Input Processing

Class Summary

Interface Name ISF::IStackFiller

Containing Package Simulation/ISF/ISF Core/ISF Interfaces
Implementation Name ISF::GenEventStackFiller

Containing Package Simulation/ISF/ISF HepMC/ISF HepMC Tools

Interface Name ISF::IGenEventManipulator

Containing Package Simulation/ISF/ISF HepMC/ISF HepMC Interfaces
Implementation Name ISF::GenEventValidityChecker,

ISF::GenEventVertexPositioner

Containing Package Simulation/ISF/ISF HepMC/ISF HepMC Tools

Interface Name ISF::IGenParticleFilter

Containing Package Simulation/ISF/ISF HepMC/ISF HepMC Interfaces
Implementation Name ISF::GenParticleFinalStateFilter,

ISF::GenParticlePositionFilter,
ISF::GenParticleGenericFilter

Containing Package Simulation/ISF/ISF HepMC/ISF HepMC Tools

Interface Name ISF::ILorentzVectorGenerator

Containing Package Simulation/ISF/ISF HepMC/ISF HepMC Interfaces
Implementation Name ISF::VertexBeamCondPositioner,

ISF::LongBeamspotVertexPositioner,
ISF::VertexPositionFromFile

Containing Package Simulation/ISF/ISF HepMC/ISF HepMC Tools

An IStackFiller implementation prepares the simulation input for the ATLAS de-
tector simulation within the ISF. It also initializes the MC truth output collection
TruthEvent. The IStackFiller interface is defined in the Simulation/ISF/ISF -
HepMC/ISF HepMC Interfaces package in ATLAS offline software repository. Figure
A.9 shows a UML class diagram of the implementations and interface classes involved
in ISF input processing. The details of which are discussed in this subsection.

The GenEventStackFiller is the only implementation of the IStackFiller

interface. It resides in the Simulation/ISF/ISF HepMC/ISF HepMC -
Services package in the ATLAS offline software repository. The name
stems from the HepMC::GenEvent data format serving as input to the
GenEventStackFiller. The ParticleBrokerDynamicOnReadIn (Section A.3) calls
the IStackFiller::fillStack(..) method during the event initialization. The
responsibility of the IStackFiller is to fill the empty ISFParticleContainer –
provided by the ParticleBrokerDynamicOnReadIn – with ISFParticles which need to
be simulated through the ATLAS detector. For this, the GenEventStackFiller creates
a new StoreGate collection named TruthEvent. Initially it is filled with an exact copy
of the GEN EVENT collection. After necessary adjustments to its contents it will serve as

208

ISF Core Implementation

the final input collection for the detector simulation. The initial TruthEvent is modified
by IGenEventManipulators which prepare the particles according to the simulation
configuration and beam conditions. Two IGenEventManipulator implementations exist
that can be used by the GenEventStackFiller:

GenEventValidityChecker checks if the numeric values of the input
HepMC::GenVertex coordinates are valid, i.e. smaller than infinite.

GenEventVertexPositioner is used to position all HepMC::GenVertex instances in
the simulation input according to the beam conditions. It calls a set of
VertexShifters (a ToolHandleArray of ILorentzVectorGenerators) to com-
pute 4-vector shifts which will be added in sequence to all vertex positions
(HepMC::GenVertex::position()) in the input.

Three ILorentzVectorGenerator implementations exist that can be used by the
GenEventVertexPositioner:

VertexBeamCondPositioner accesses the ATLAS BeamCondSvc to determine the beam
spot position and beam spot size. It computes a total shift for each event, which is
applied to all input particle vertices equally by the GenEventVertexPositioner.
The position is computed randomly with a three-dimensional Gaussian probability
function around the provided beam spot position and with widths corresponding
to the beam spot widths (in x, y and z coordinates).

LongBeamspotVertexPositioner has the same underlying functionality as
VertexBeamCondPositioner with the extension of generating beam spot
positions for HC-LHC [120] studies.

VertexPositionFromFile reads the vertex shifts from a separate file rather than the
BeamCondSvc.

After the GenEventStackFiller has processed all IGenEventManipulators it
will determine a subset of particles in the TruthEvent collection which are to
be converted into ISFParticles for detector simulation. This is done by call-
ing IGenParticleFilter::pass(..) for each HepMC::GenParticle in the input
HepMC::GenEvent instance. If more than one IGenParticleFilter implementation
is configured, the GenEventStackFiller will loop over all IGenEventManipulators for
each HepMC:GenParticle. A particle will be converted into an ISFParticle (and thus
processed by a detector simulation later on) if all its IGenParticleFilter::pass(..)

calls return true. Three IGenParticleFilter implementations exist that are commonly
used by the GenEventStackFiller:

GenParticleFinalStateFilter determines whether the given particle is a final state
particle or whether it is an intermediate particle produced by the event generator.
Only final state particles will pass this filter. ATLAS simulation TruthHelper

classes are used to determine the whether or not a particle is present in a final
state.

209

ISF Core Implementation

GenParticlePositionFilter determines whether the particle is inside the ATLAS
detector volume.

GenParticleGenericFilter is a very flexible filter that can check a particle’s PDG
type [113] and/or whether a particle’s momentum vector is within specified ranges
of η and φ.

The GenEventStackFiller registers the greatest HepMC::GenParticle barcode ap-
pearing in the TruthEvent with the Barcode::IBarcodeSvc. This information may
be necessary for the Barcode::IBarcodeSvc implementation to determine the lowest
unique secondary particle barcode it can generate for this event.

After filling and returning the ISFParticleContainer from inside the
GenEventStackFiller::fillStack(..) method, the ISF simulation input processing
is completed and the processing continues inside the ParticleBrokerDynamicOnReadIn

implementation.

210

ISF Core Implementation

Figure A.9: The UML class diagram for the ISF StackFiller. The StackFiller reads the
event generator output from the GEN EVENT StoreGate collection. It modifies these input
particles with a set of IGenEventManipulators. The IGenParticleFilters are used
to determine a subset of the input particles which will be converted into ISFParticles

for the detector simulation.

211

ISF Core Implementation

A.6.2 Truth Incident

Class Summary

Interface Name ISF::ITruthIncident

Containing Package Simulation/ISF/ISF Core/ISF Event
Implementation Name ISF::ISFTruthIncident

Containing Package Simulation/ISF/ISF Core/ISF Event
Implementation Name ISF::Geant4TruthIncident

Containing Package Simulation/ISF/ISF Geant4/ISF Geant4Tools

TruthIncidents are interfaces between individual simulators and the ISF. The
ITruthIncident interface class allows the ISF MC truth algorithms to access simulator-
specific information regarding particle-material interaction processes and particle decays.
This layer of abstraction is required as various simulators implement different methods
(many times internal) for accessing the information necessary to generate a common
MC truth output. For example, in the case of ATLAS Geant4 simulation G4Steps are
used to gather all relevant information for a consistent MC truth output. In the case of
Fatras simulation, the information is present in the form of ISFParticles instances and
an identifier for the type of interaction occurring. Thus, individual simulator-specific
implementations of one common ITruthIncident interface minimizes type conversions
and improves performance. ITruthIncident interface methods are also used to pass
information from the ISF back into the simulator.

A ITruthIncident instance is created by a simulator ever time it creates one or many
new secondary particles due interaction or decay processes. The ITruthIncident in-
stance is then provided to the ISF TruthService (Section A.6.3) to determine whether the
given interaction is to be recorded persistently in the TruthEvent StoreGate collection.
For this, the ISF TruthService will gather information about the characteristics of the
interaction by calling one or many of the methods defined in the ITruthIncident inter-
face. Thus, simulator-specific implementations are required to prepare and provide this
information from the objects available within the simulator. The ISF TruthService may
return newly generated particle barcodes (for the secondary particles) to the simulator
via the ITruthIncident interface methods. New particle barcodes are only generated
if the ISF TruthService decides to persistently store the given ITruthIncident.

Type conversions of primary or secondary particles involved in a truth incident into
the HepMC::GenParticles format may be requested by the ISF TruthService. For
this, the ISF TruthService will call the ISF::ITruthIncident::primaryParticle(..)

or ISF::ITruthIncident::secondaryParticle(..) methods. It is required that the
TruthIncident implementation returns the exact same HepMC::GenParticle instance
upon querying the interface methods multiple times for the same physical particle, even
if the particle is queried from within different TruthIncident instances. For example,
a newly created secondary particle in TruthIncident A may undergo an inelastic inter-
action later during the simulation and thus become the primary particle in TruthIn-

212

ISF Core Implementation

cident B. In order to build a consistent MC truth tree structure, it is required that
the call ISF::ITruthIncident::secondaryParticle(..) for this particular particle in
TruthIncident A returns exactly the same HepMC::GenParticle instance as the call
ISF::ITruthIncident::primaryParticle(..) for TruthIncident B. If the TruthSer-
vice determines to persistently store the particles contained in a TruthIncident, it will
set a ”persistency flag” for the respective particles. This information may be required by
the TruthIncident implementation, as the ownership of HepMC::GenParticle instances
which are determined for persistent storage is transferred to the StoreGate service.

The ITruthIncident holds an identifier for the ATLAS detector region or
sub-detector within which the incident occurred. The identifier is of type
AtlasDetDescr::AtlasRegion. The simulator creating a TruthIncident instance is re-
quired to fill this field correctly, as it will be of crucial importance for the proper function
of the service and the consistency of the entire Monte Carlo truth output.

Two ITruthIncident implementations are in use by the ISF (Figure A.10):

The ISFTruthIncident extracts the information relevant for generating the MC
truth output from ISFParticle instances. Fatras is the sole client of the
ISFTruthIncident in the current implementation. This is due to Fatras being
the only simulator that uses ISFParticle types internally for particle process-
ing. Hence, Fatras creates new ISFTruthIncident instances without the need
for excessive type conversions. The ISFTruthIncident class is implemented in
the Simulation/ISF/ISF Core/ISF Event package in the ATLAS offline software
repository.

Geant4TruthIncident instances are created by the Geant4 simulator. It allows
the ISF TruthService to access the information present in a given G4Step in-
stance. A SecondaryTracksHelper instance is used to retrieve all secondary
particles produced by Geant4 in the current step. The TruthHelper has al-
ready been implemented and used prior to the integration of Geant4 into the
ISF. The Geant4TruthIncident class is implemented in the Simulation/ISF/ISF -
Geant4/ISF Geant4Tools package in the ATLAS offline software repository.

213

ISF Core Implementation

Figure A.10: The ITruthIncident interface and its two implementations:
ISFTruthIncident and Geant4TruthIncident. The prior is used by the Fatras simula-
tor and the latter by the Geant4 simulator. Both implementations are fully compatible
with the ITruthIncident interface and thus are used by the central ISF TruthService.
TruthIncidents provide access to simulator-internal information regarding interaction
and decay processes that have occurred during the detector simulation. This informa-
tion is collected by the ISF TruthService which determines whether or not the interaction
will be recorded to the TruthEvent StoreGate collection.

214

ISF Core Implementation

A.6.3 Truth Service

Class Summary

Interface Name ISF::ITruthSvc

Containing Package Simulation/ISF/ISF Core/ISF Interfaces
Implementation Name ISF::HepMC TruthSvc

Containing Package Simulation/ISF/ISF HepMC/ISF HepMC Services

The TruthService generates a consistent Monte Carlo truth representation for each simu-
lated event. It is the central AthService within the ISF which receives all TruthIncidents
that are created by one or more simulators. It uses TruthStrategies (Section A.6.4) to
determine which of the given ITruthIncident instances are to be stored persistently in
the HITS file.

Figure 8.3 illustrates the flow of information when secondary particles are gen-
erated inside a simulator. The simulator wraps the relevant information regard-
ing the interaction into a TruthIncident instance (Section A.6.2). This TruthInci-
dent instance is subsequently registered with the central ISF TruthService by calling
ISF::ITruthSvc::register(..) from within the simulator. The TruthService uses a
Barcode:IBarcodeSvc instance (Section A.6.5) to retrieve particle and vertex barcodes
for newly created secondaries in the given truth instance.

The HepMC TruthSvc is currently the only MC TruthService implementation in
use by the ISF. The implementation resides in the Simulation/ISF/ISF HepMC/ISF -
HepMC Services package in the ATLAS offline software repository. The HepMC TruthSvc

holds an Athena ToolHandleArray of ISF::ITruthStrategies for each ATLAS de-
tector region. The detector regions are defined by the AtlasDetDescr::AtlasRegion

identifier. Upon calling HepMC TruthSvc::registerTruthIncident(...) from within
a simulator, the TruthService will iterate through the TruthStrategies configured
for the detector region within which the truth incident has occurred. If at least
one ISF::ITruthStrategy::pass(..) call returns true, the given TruthIncident will
be recorded to the TruthEvent collection on StoreGate. Different detector regions
will generally be configured with different sets of TruthStrategies. For example the
amount of truth information which is to be recorded in the ATLAS inner detector
(AtlasDetDescr::fAtlasID) is much more detailed than in the calorimeter region
(AtlasDetDescr::fAtlasCalo). Thus, it is necessary that the ISF::ITruthIncident

instance is provided with the correct AtlasDetDescr::AtlasRegion identifier (often
referred to as geoID or GeoID) upon creation inside the simulator.

215

ISF Core Implementation

Figure A.11: The class diagram of the ISF TruthService. The ITruthSvc interface
defines the possible interactions between simulators and the ISF TruthService. The
ITruthSvc::registerTruthIncident(..) is used by a simulator to communicate to
the ISF that an interaction or decay has occurred in which secondary particles are
produced. The ISF TruthService will subsequently determine whether this interaction is
to be stored persistently. The HepMC TruthSvc is the only TruthService implementation
in use by the ISF. It accesses the Barcode::IBarcodeSvc BarcodeService interface to
generate barcodes for secondary vertices and particles.

A.6.4 Truth Strategies

Class Summary

Interface Name ISF::ITruthStrategy

Containing Package Simulation/ISF/ISF HepMC/ISF HepMC Interfaces
Implementation Name ISF::GenericTruthStrategy,

ISF::ValidationTruthStrategy,
ISF::CylinderVolumeTruthStrategy

Containing Package Simulation/ISF/ISF HepMC/ISF HepMC Tools

The ISF TruthStrategies are an essential component of the HepMC TruthSvc ISF Truth-
Service implementation (Section A.6.3). They are required for the creation of a con-
sistent Monte Carlo truth representation of the detector simulation. TruthStrategies
are AthAlgTools implementations which use a common ISF::ITruthStrategy inter-
face. The ITruthStrategy is a very lightweight interface which defines only the

216

ISF Core Implementation

ITruthStrategy::pass(..) public method. Provided with a ITruthIncident instance,
the method returns a Boolean type variable. The return value corresponds to whether
the TruthStrategy considers the given TruthIncident relevant for persistent storage in
the TruthEvent StoreGate collection. As mentioned previously, the HepMC TruthSvc

holds a ToolHandleArray of ISF::ITruthStrategies for each ATLAS detector region.
Only if at least one TruthStrategy from within the ATLAS region returns true (upon
calling the pass(..) method), the TruthIncident is recorded to the TruthEvent Store-
Gate collection. Thus, ISF will usually run with multiple instances of one or many
ITruthStrategy implementations. Figure A.12 shows an overview of the TruthStrategy
interface and its current implementations.

Figure A.12: The class diagram for the ISF::ITruthStrategy interface and its imple-
mentations. Due to its flexibility, the GenericTruthStrategy is the most commonly
used TruthStrategy in various ISF production setups.

Three ITruthStrategy implementations are currently available for use within the
ISF:

The GenericTruthStrategy is currently the most commonly used TruthStrategy im-
plementation by the ISF. It offers a number of particle and vertex cuts that can be
adjusted (even enabled and disabled) via the Athena Python configuration level.
Available cuts are: minimum pT and kinetic energy of the primary and secondary
particles, primary particle PDG type and vertex identifiers. This TruthStrategy
implementation is thus very flexible and more than one instance is generally used
in a production ISF setup.

217

ISF Core Implementation

The ValidationTruthStrategy is a simpler and less flexible version of the
GenericTruthStrategy. It offers only one parameter, a minimum pT cut for the
primary particle. This TruthStrategy is applied when a highly detailed MC truth
output is required, e.g. data samples for simulator validation.

The CylinderVolumeTruthStrategy is used to select TruthIncidents which have a ra-
dial position between a defined inner and outer radius, i.e. rinner < r =

√
x2 + y2 <

router. One application of this strategy is to record TruthIncidents occurring on
specific layers of the ATLAS inner detector geometry.

A.6.5 Barcodes and Barcode Service

Class Summary

Interface Name Barcode::IBarcodeSvc

Containing Package Simulation/Barcode/BarcodeInterfaces
Implementation Name Barcode::GenericBarcodeSvc,

Barcode::GlobalBarcodeSvc,
Barcode::LegacyBarcodeSvc,
Barcode::ValidationBarcodeSvc

Containing Package Simulation/Barcode/BarcodeServices

Particle barcodes play an important role for identifying the simulated particle which
causes a given sensitive detector (SD) hit. Along with other properties, a particle’s
barcode is recorded with each simulated sensitive detector hit it causes. In addition, if
the particle is present in the Monte Carlo truth output (i.e. it passes a TruthStrategy),
it can be identified with its unique barcode within the HepMC::GenEvent. Since the MC
truth representation will be present in any subsequent stage after detector simulation,
simulated particle properties can be obtained if a particle’s barcode is known. However,
the amount of information available is limited to the HepMC::GenParticle data type, as
this is the data format used to represent particles in the MC truth output. In addition,
the MC truth output only contains a subset representation of all the particles that were
actually simulated. Thus, not all particles creating SD hits will be found in the MC truth
output. One approach to storing additional information in sensitive detector hits and
in the MC truth representation is to encode such information into particle and vertex
barcodes. If a particle is not present in the MC truth representation one may identify
its primary particle from decoding the barcode stored in the sensitive detector hit. The
actual simulator (fast or full simulation) which created the particle may be encoded into
the particle barcode as well. Vertex barcodes may contain information about the physics
process of the interaction or decay they represent.

The ISF TruthService (ISF::HepMC TruthSvc) uses a central BarcodeService to gen-
erate particle and truth vertex barcodes for secondary interactions inside the ATLAS
detector. The Barcode::IBarcodeSvc interface introduces a layer of abstraction that
allows different actual BarcodeService implementations to exist. Each implementation

218

ISF Core Implementation

may encode different kinds of information into the particle and vertex barcodes. Though,
only one BarcodeService may be used at one time in an ISF simulation run.

The BarcodeService interface (Barcode::IBarcodeSvc) and implementations are in-
dependent of the ISF and the ATLAS detector simulation in general. This allows for the
use of the very same BarcodeService to encode information into barcodes (during the
detector simulation) and decode this information from a given barcode later on (analysis
of the simulation output). The barcode classes are contained in the Barcode namespace.
Particle barcodes are represented by the Barcode::ParticleBarcode data type, vertex
barcodes are of the Barcode::VertexBarcode data type. Both are typedefs of the
C++ integer data type. The use of the ParticleBarcode and VertexBarcode types
throughout the framework allows to control the actual barcode data type in one central
place – the header file where both types are defined. In case greater numerical ranges
of barcodes are required or an actual C++ class is introduced for barcodes, the existing
source code using barcodes will require minimal to no changes. The BarcodeService
interface is defined in the Barcode::IBarcodeSvc class.

The IBarcodeSvc interface (Figure A.13) declares a number of methods which will
be called by the TruthService to request different types of new barcodes:

newVertex(..) will return a new unique secondary vertex barcode. Optionally the
implementation may use the parent particle barcode and the physics process code
of the interaction to generation the new vertex barcode.

newSecondary(..) will return a new unique secondary particle barcode. Optionally
the implementation may use the parent particle barcode and the physics process
code of the interaction to generation the new secondary barcode.

sharedChildBarcode(..) will return a secondary particle barcode which will be shared
among a number of secondary particles. This functionality is introduced with
the ISF for the first time. Shared secondary barcodes are requested by the
ISF::HepMC TruthSvc if the secondary particles are not represented in the Monte
Carlo truth output. Since unique identification of the particles is not required in
this case, a shared barcode may still be used to store a certain amount of informa-
tion, e.g. regarding the primary particle.

incrementBarcode(..) will return a new unique incremented barcode based on the
given particle barcode. These barcodes are typically requested if a primary particle
does not get consumed by the interaction (e.g. bremsstrahlung) and thus an updated
(incremented) barcode is required.

registerLargestGenEvtParticleBC(..) and registerLargestGenEvtVtxBC(..)

are called during the ISF input processing to inform the BarcodeService imple-
mentation of the range of barcodes already in use by the event input.

hasBitCalculator(..) and getBitCalculator(..) are used to retrieve a ROOT-
based barcode encoding/decoding tool from the BarcodeService.

219

ISF Core Implementation

Figure A.13 shows the class diagram of the Barcode::IBarcodeSvc interface as well
as the four current implementations:

LegacyBarcodeSvc is currently the default BarcodeService in the ISF. It provides par-
ticle and vertex barcode following the same scheme as in the mc12 Monte Carlo
simulation campaign. The secondary particles will be assigned barcodes starting
at 200001 which are incremented by 1 for each newly generated particle barcode.
The secondary vertices will be assigned barcodes starting at −200001 which are
decremented by −1 for each newly generated vertex barcode. Interactions which
do not consume the primary particle will increment the primary particle barcode
by 1000000 after the interaction.

GenericBarcodeSvc is a more generic implementation than the LegacyBarcodeSvc and
it offers many properties which can be configured in the Athena Python level.

GlobalBarcodeSvc is currently in a prototype stage. Its intended use will be for pile-up
simulation within the ISF detector simulation (Section 13.3).

ValidationBarcodeSvc is used in combination with the ValidationTruthStrategy

(Section A.6.4) to generate simulator validation samples with highly detailed truth
information.

220

ISF Core Implementation

Figure A.13: The class diagram for the Barcode::BarcodeSvc interface and its imple-
mentations. The LegacyBarcodeSvc generates particle and vertex barcodes in mc12-like
ISF configurations. The GenericBarcodeSvc will become the default barcode service
for the mc15 production campaign. The other implementations are used in various test
and validation setups, and they are not used in production.

221

ISF Core Implementation

A.6.6 Entry Layer creation with the EntryLayerTool

Class Summary

Interface Name ISF::IEntryLayerTool

Containing Package Simulation/ISF/ISF Core/ISF Interfaces
Implementation Name ISF::EntryLayerTool

Containing Package Simulation/ISF/ISF Geant4/ISF Geant4CommonTools

The EntryLayer records are an important part of the Monte Carlo truth representation
in ATLAS detector simulation. They contain MC truth-level information of particles
traversing the boundaries between individual ATLAS sub-detectors. In general, only a
subset of all particles traversing the sub-detector boundaries are recorded in order to
minimize the file size of the simulation output.

StoreGate collections of type TrackRecordCollection exist for three EntryLayers
respectively: the CaloEntryLayer, the MuonEntryLayer and the MuonExitLayer (Sec-
tion 7.4.1).

The ISF::IEntryLayerTool interface declares the registerParticle(..) method
which requires one argument of type ISFParticle. An implementation of the interface
determines whether the given particle is positioned on an EntryLayer, and if so, it will
create a representation of the particle in the corresponding TrackRecordCollection.
This method is called by the ParticleBroker (ParticleBrokerDynamicOnReadIn imple-
mentation) for all particles which are returned from any simulator to the framework via
the ISF::IParticleBroker::push(..) method.

The ISF::EntryLayerTool is the only implementation of the IEntryLayerTool

interface. It uses a ToolHandleArray of ISF::IParticleFilters to determine
the subset of particles which are to be recorded persistently. By default, a
ISF::GenericBarcodeFilter is configured to reject all particles which are not assigned
a barcode. Consequently, only particles which are represented in the TruthEvent MC
truth collection are also recorded into the respective EntryLayer if they traverse a sub-
detector boundary.

222

ISF Core Implementation

Figure A.14: The class diagram for the ISF::IEntryLayerTool interface and
the ISF::EntryLayerTool implementation. The default configuration of the
ISF::EntryLayerTool uses the ISF::GenericBarcodeFilter to ensure that only par-
ticles which are also present in the TruthEvent MC truth representation are recorded
into the respective EntryLayer collection.

A.7 Framework Configuration

A number of full and fast detector simulation configurations are implemented within the
ISF. Any one configuration can be executed through a corresponding string identifier
provided to the Sim tf.py job transform script (the MC production job transforms are
described in Section 4.2). The entire framework, including all its Athena components, is
configured through this string identifier. The identifier is selected through --simulator

argument of the Sim tf.py job transform.

The Python-level configuration of the ISF is carried out through the Configurable-
Factory (also called ConfiguredFactory or ConfGetter) [83] framework. Each Athena
component (AthAlgorithm, AthAlgTool or AthService) used in the ISF is configured
individually. Each individual configuration of an Athena component is associated with a
respective unique string identifier, called ConfGetter identifier. The --simulator string
identifier provided with the Sim tf.py command line defines the ConfGetter identifier
to be used for the ISF SimulationKernel. The configuration of all Athena components in
this ISF process is uniquely defined through the configuration of the SimulationKernel,
i.e. its ConfGetter identifier.

If an Athena component A accessed another Athena component B (through Athena

223

ISF Core Implementation

ToolHandles), the corresponding ConfGetter identifier of component B is provided in
the configuration of component A. Multiple configurations of component A exist, each
with a respective unique ConfGetter identifier, if it requires differently configured com-
ponents B in various cases.

224

Bibliography

[1] The ATLAS Collaboration. The ATLAS Experiment at the CERN Large Hadron Collider.
Aug 2008.

[2] Lyndon R Evans and Philip Bryant. LHC Machine. J. Instrum., 3:S08001. 164 p, 2008.
This report is an abridged version of the LHC Design Report (CERN-2004-003).

[3] N. Metropolis and S. Ulam. The Monte Carlo Method. J. Amer. Stat. Assoc., 44:335–341,
1949.

[4] N. Metropolis. The Beginning of the Monte Carlo Method. Los Alamos Science, 15:125–
130, 1987.

[5] The ATLAS Collaboration. Observation of a new particle in the search for the Stan-
dard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B,
716(arXiv:1207.7214. CERN-PH-EP-2012-218):1–29. 39 p, Aug 2012. Comments: 24 pages
plus author list (38 pages total), 12 figures, 7 tables, revised author list.

[6] The CMS Collaboration. Observation of a new boson at a mass of 125 GeV with the CMS
experiment at the LHC. Phys. Lett. B, 716(arXiv:1207.7235. CMS-HIG-12-028. CERN-
PH-EP-2012-220):30–61. 59 p, Jul 2012.

[7] The D0 Collaboration. Measurement of the W boson mass with the D0 detector. Phys. Rev.
D, 89(arXiv:1310.8628. FERMILAB-PUB-13-489-E):012005. 46 p, Oct 2013. Comments:
46 pages, 61 figures, submitted to Phys. Rev. D.

[8] J Chapman, W Ehrenfeld, J Ferrando, J Garcia Navarro, C Gwenlan, S Mehlhase, V Tsu-
laia, A Vaniachine, and J Zhong. Challenges of the ATLAS Monte Carlo Production during
Run-I. Sep 2014.

[9] J Chapman, W Ehrenfeld, J E Garcia Navarro, C Gwenlan, S Mehlhase, V Tsulaia, and
J Zhong. Challenges of the ATLAS Monte Carlo production during run 1 and beyond.
Technical Report ATL-SOFT-PROC-2013-045, CERN, Geneva, Nov 2013.

[10] The ATLAS Collaboration. Luminosity Public Results – ATLAS EXPER-
IMENT Public Results. https://twiki.cern.ch/twiki/bin/view/AtlasPublic/

LuminosityPublicResults, October 2014.

[11] ECFA High Luminosity LHC Experiments Workshop: Physics and Technology Challenges.
94th Plenary ECFA meeting. Nov 2013.

225

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LuminosityPublicResults
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LuminosityPublicResults

Bibliography

[12] A Nairz. ATLAS distributed computing: experience and evolution. Technical Report
ATL-SOFT-PROC-2013-006, CERN, Geneva, Oct 2013.

[13] The ATLAS Collaboration. ATLAS dashboard Website. http://dashb-atlas-job.cern.
ch/dashboard/request.py/dailysummary, October 2014.

[14] L Sargsyan, J Andreeva, S Campana, E Karavakis, L Kokoszkiewicz, P Saiz, J Schovancova,
and D Tuckett. ATLAS job monitoring in the Dashboard Framework. Technical Report
ATL-SOFT-PROC-2012-039, CERN, Geneva, May 2012.

[15] Inc Amazon.com. Amazon Elastic Compute Cloud (EC2). https://aws.amazon.com/

ec2/pricing/, October 2014.

[16] Yorikiyo Nagashima. Elementary particle physics. Wiley, Weinheim, 2010.

[17] K.A. Olive et al. (Particle Data Group). The review of particle physics. Chin. Phys. C,
38(090001), 2014.

[18] Yoichiro Nambu. Quasi-particles and gauge invariance in the theory of superconductivity.
Phys. Rev., 117:648–663, Feb 1960.

[19] P W Anderson. Plasmons, gauge invariance, and mass. Phys. Rev., 130:439–442, 1963.

[20] F Englert and R Brout. Broken symmetry and the masses of gauge vector mesons. Phys.
Rev. Lett., 13:321–323, 1964.

[21] Peter Ware Higgs. Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett.,
13:508–509, 1964.

[22] Peter Ware Higgs. Broken symmetries, massless particles and gauge fields. Phys. Lett.,
12:132–133, 1964.

[23] G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble. Global conservation laws and massless
particles. Phys. Rev. Lett., 13:585–587, Nov 1964.

[24] Dirk Dubbers and Michael G Schmidt. The neutron and its role in cosmology and particle
physics. Technical Report arXiv:1105.3694, May 2011. Comments: 91 pages, 30 figures,
accepted by Reviews of Modern Physics.

[25] J David Bowman, L J Broussard, S M Clayton, M S Dewey, N Fomin, K B Grammer,
G L Greene, P R Huffman, A T Holley, G L Jones, C Y Liu, M Makela, M P Mendenhall,
C L Morris, J Mulholland, K M Nollett, R W Pattie, S Penttila, M Ramsey-Musolf, D J
Salvat, A Saunders, S J Seestrom, W M Snow, A Steyerl, F E Wietfeldt, A R Young, and
A T Yue. Determination of the Free Neutron Lifetime. Technical Report arXiv:1410.5311,
Oct 2014.

[26] Wikipedia The Free Encyclopedia. Standard Model. https://en.wikipedia.org/wiki/

Standard_Model, October 2014.

[27] Frank Fiedler. Precision Measurements of the Top Quark Mass.

[28] Carlo Rubbia. Experimental observation of the intermediate vector bosons W+, W-, and
Z0. Rev. Mod. Phys., 57(CERN-OPEN-94-004):699–722, 1994. Nobel lecture.

226

http://dashb-atlas-job.cern.ch/dashboard/request.py/dailysummary
http://dashb-atlas-job.cern.ch/dashboard/request.py/dailysummary
https://aws.amazon.com/ec2/pricing/
https://aws.amazon.com/ec2/pricing/
https://en.wikipedia.org/wiki/Standard_Model
https://en.wikipedia.org/wiki/Standard_Model

Bibliography

[29] A. Sirlin. Radiative corrections in the SU(2)L × U(1) theory: A simple renormalization
framework. Phys. Rev. D, 22:971–981, Aug 1980.

[30] ALEPH Collaboration, DELPHI Collaboration, L3 Collaboration, OPAL Collaboration,
SLD Collaboration, LEP Electroweak Working Group, SLD Electroweak and Heavy
Flavour Groups. Precision Electroweak Measurements on the Z Resonance. Phys. Rep.,
427(hep-ex/0509008. CERN-PH-EP-2005-041. SLAC-R-774. CERN-L3-304):257. 302 p,
Sep 2005.

[31] Studies of theoretical uncertainties on the measurement of the mass of the W boson at the
LHC. Technical Report ATL-PHYS-PUB-2014-015, CERN, Geneva, Oct 2014.

[32] Dimitri Yuri Bardin and Giampiero Passarino. The Standard Model in the Making: Pre-
cision Study of the Electroweak Interactions. Internat. Ser. Mono. Phys. Clarendon Press,
Oxford, 1999.

[33] M Awramik, M Czakon, A Freitas, and Georg Weiglein. Precise Prediction for the W-
Boson Mass in the Standard Model. Phys. Rev. D, 69(hep-ph/0311148. DCPT-2003-146.
DESY-03-184. DESY-2003-184. FERMILAB-Pub-2003-239-T. IPPP-2003-73. 5):053006.
10 p, Nov 2003.

[34] Rym Bouchendira, Pierre Clad, Sada Guellati-Khlifa, Franois Nez, and Franois Biraben.
New determination of the fine structure constant and test of the quantum electrodynamics.
Technical Report arXiv:1012.3627, Dec 2010.

[35] D. B. Chitwood, T. I. Banks, M. J. Barnes, S. Battu, R. M. Carey, S. Cheekatmalla, S. M.
Clayton, J. Crnkovic, K. M. Crowe, P. T. Debevec, S. Dhamija, W. Earle, A. Gafarov,
K. Giovanetti, T. P. Gorringe, F. E. Gray, M. Hance, D. W. Hertzog, M. F. Hare, P. Kam-
mel, B. Kiburg, J. Kunkle, B. Lauss, I. Logashenko, K. R. Lynch, R. McNabb, J. P. Miller,
F. Mulhauser, C. J. G. Onderwater, C. S. Özben, Q. Peng, C. C. Polly, S. Rath, B. L.
Roberts, V. Tishchenko, G. D. Wait, J. Wasserman, D. M. Webber, P. Winter, and P. A.
Żo lnierczuk. Improved measurement of the positive-muon lifetime and determination of
the fermi constant. Phys. Rev. Lett., 99:032001, Jul 2007.

[36] M Baak, M Goebel, J Haller, A Hoecker, D Kennedy, R Kogler, K Moenig, M Schott,
and J Stelzer. The Electroweak Fit of the Standard Model after the Discovery of a New
Boson at the LHC. Eur. Phys. J. C, 72(arXiv:1209.2716. DESY-12-154):2205, Sep 2012.
Comments: 11 pages, 5 figures, to be submitted to EPJ-C.

[37] The Gfitter Group. A Generic Fitter Project for HEP Model Testing. http://gfitter.

desy.de/, October 2014.

[38] Max Baak, Jakub Cuth, Johannes Haller, Andreas Hoecker, Roman Kogler, Klaus Moenig,
Matthias Schott, and Joerg Stelzer. The global electroweak fit at NNLO and prospects for
the LHC and ILC. Technical Report arXiv:1407.3792. DESY-14-124. CERN-OPEN-2014-
038, Jul 2014. Comments: 26 pages, 9 figures.

[39] N Besson, M Boonekamp, E Klinkby, S Mehlhase, and T Petersen. Re-evaluation of the
LHC potential for the measurement of mW . Aug 2007. Accepted as Scientific Note SN-
ATLAS-2008-070.

[40] Aamodt et al. The ALICE experiment at the CERN LHC. A Large Ion Collider Experi-
ment. J. Instrum., 3:S08002. 259 p, 2008. Also published by CERN Geneva in 2010.

227

http://gfitter.desy.de/
http://gfitter.desy.de/

Bibliography

[41] Chatrchyan et at. The CMS experiment at the CERN LHC. The Compact Muon Solenoid
experiment. J. Instrum., 3:S08004. 361 p, 2008. Also published by CERN Geneva in 2010.

[42] Alves et al. The LHCb Detector at the LHC. J. Instrum., 3(LHCb-DP-2008-001. CERN-
LHCb-DP-2008-001):S08005, 2008. Also published by CERN Geneva in 2010.

[43] J. Goodson. Personal Homepage. http://www.jetgoodson.com, February 2014.

[44] The ATLAS Collaboration. Official Website of the ATLAS Experiment. http://www.

atlas.ch/, August 2010.

[45] A Salzburger. Track Simulation and Reconstruction in the ATLAS experiment. Mar 2008.

[46] C.Y. Wong. Introduction to high-energy heavy-ion collisions. World Scientific, 1994.

[47] W W M Allison and P R S Wright. The physics of charged particle identification: dE/dx,
Cerenkov and transition radiation. (OUNP-83-35):42 p, Jul 1983.

[48] Vitalii Lazarevich Ginzburg and Vadim Nikolaevich Tsytovich. Transition radiation and
transition scattering. Perekhodnoe izluchenie i perekhodnoe rasseianie. Adam Hilger series
on plasma physics. Hilger, Bristol, 1990.

[49] The ATLAS Collaboration. Standard Model Results – ATLAS EXPERI-
MENT Public Results. https://twiki.cern.ch/twiki/bin/view/AtlasPublic/

StandardModelPublicResults, December 2014.

[50] D Adams, D Barberis, C P Bee, R Hawkings, S Jarp, R Jones, D Malon, L Poggi-
oli, G Poulard, D Quarrie, and T Wenaus. The ATLAS Computing Model. Technical
Report ATL-SOFT-2004-007. ATL-COM-SOFT-2004-009. CERN-ATL-COM-SOFT-2004-
009. CERN-LHCC-2004-037-G-085, CERN, Geneva, Dec 2004.

[51] WLCG Collaboration. Worldwide LHC Computing Grid Homepage. http://

wlcg-public.web.cern.ch/, May 2014.

[52] Maria Grazia Pia and Georg Weidenspointner. Monte Carlo Simulation for Particle De-
tectors. Technical Report arXiv:1208.0047, Aug 2012. Comments: CERN Council Open
Symposium on European Strategy for Particle Physics, 10 - 12 September 2012, Krakow,
Poland.

[53] ATLAS computing: Technical Design Report. Technical Design Report ATLAS. CERN,
Geneva, 2005. revised version submitted on 2005-06-20 16:33:46.

[54] B Lenzi. The physics analysis tools project for the atlas experiment. Technical Report
ATL-COM-SOFT-2009-020, CERN, Geneva, Oct 2009. 23/10/2009.

[55] G Barrand, I Belyaev, P Binko, M Cattaneo, R Chytracek, G Corti, M Frank, G Gracia,
J Harvey, Eric Van Herwijnen, B Jost, I Last, P Maley, P Mato, S Probst, F Ranjard,
and A Yu Tsaregorodtsev. GAUDI: The software architecture and framework for building
LHCb data processing applications. 2000.

[56] G A Stewart, W B Breaden-Madden, H J Maddocks, T Harenberg, M Sandhoff, and B Sar-
razin. ATLAS Job Transforms. Technical Report ATL-SOFT-PROC-2013-023, CERN,
Geneva, Oct 2013.

228

http://www.jetgoodson.com
http://www.atlas.ch/
http://www.atlas.ch/
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/StandardModelPublicResults
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/StandardModelPublicResults
http://wlcg-public.web.cern.ch/
http://wlcg-public.web.cern.ch/

Bibliography

[57] P Calafiura, C Leggett, D R Quarrie, H Ma, and S Rajagopalan. The storegate: a data
model for the atlas software architecture. Technical Report cs.SE/0306089. ATL-SOFT-
2003-009, Lawrence Berkeley Nat. Lab., Berkeley, CA, Jun 2003.

[58] Jan-Philip Gehrcke. ATLAS Software: How to run The Full Chain. http://http://

gehrcke.de/2009/06/atlas-software-how-to-run-the-full-chain/, July 2011.

[59] The ATLAS Collaboration. The ATLAS Simulation Infrastructure. The European Physical
Journal C - Particles and Fields, 70:823–874, 2010. 10.1140/epjc/s10052-010-1429-9.

[60] The ATLAS Collaboration. ATLAS TWiki. https://twiki.cern.ch/twiki/bin/view/

Atlas/WebHome, July 2011.

[61] A et al. Valassi. Persistency Framework Official TWiki. https://twiki.cern.ch/twiki/
bin/view/Persistency, August 2014.

[62] A Vaniachine. Scalable Database Access Technologies for ATLAS Distributed Computing.
Technical Report ATL-COM-SOFT-2009-011. ANL-HEP-CP-09-085, CERN, Geneva, Jul
2009. October 2, 2009.

[63] M Dobbs and J B Hansen. The HepMC C++ Monte Carlo Event Record for High Energy
Physics. Technical Report ATL-SOFT-2000-001, CERN, Geneva, Jun 2000. revised version
number 1 submitted on 2001-02-27 09:54:32.

[64] M Dobbs, JB Hansen, G Lynn, and L Sonnenschein. HepMC – a C++ Event Record for
Monte Carlo Generators. http://lcgapp.cern.ch/project/simu/HepMC/, August 2014.

[65] T Sjstrand, S Mrenna, and P Z Skands. Pythia 6.4 physics and manual. J. High Energy
Phys., 05(hep-ph/0603175. FERMILAB-Pub-2006-052-CD-T. LU-TP-2006-13):026. 570 p,
Mar 2006.

[66] Torbjrn Sjstrand, Stephen Mrenna, and Peter Skands. A Brief Introduction to PYTHIA
8.1. Comput. Phys. Commun., 178(arXiv:0710.3820. CERN-LCGAPP-2007-04. LU TP
07-28. FERMILAB-PUB-07-512-CD-T):852867. 27 p, Oct 2007.

[67] Gennaro Corcella, I G Knowles, G Marchesini, S Moretti, K Odagiri, Peter Richardson,
Michael H Seymour, and Bryan R Webber. Herwig 6.5 release note. herwig 6.5. Technical
Report hep-ph/0210213. CAVENDISH-HEP-2002-17. CERN-TH-2002-270. DAMTP-2002-
124. IPPP-2002-58, CERN, Geneva, Oct 2002.

[68] A. Sherstnev and R.S. Thorne. Parton distributions for lo generators. The European
Physical Journal C, 55(4):553–575, 2008.

[69] The Geant4 Collaboration. Geant4–a simulation toolkit. Nuclear Instruments and Meth-
ods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment, 506(3):250 – 303, 2003.

[70] S SNYDER, P VAN GEMMEREN, M NOWAK, T EIFERT, A BUCKLEY, M ELSING,
D GILLBERG, E MOYSE, K KOENEKE, and A KRASZNAHORKAY. The Run 2 ATLAS
Analysis Event Data Model. Aug 2014.

[71] The ROOT Team. Official ROOT Website. http://root.cern.ch/, May 2011.

229

http://http://gehrcke.de/2009/06/atlas-software-how-to-run-the-full-chain/
http://http://gehrcke.de/2009/06/atlas-software-how-to-run-the-full-chain/
https://twiki.cern.ch/twiki/bin/view/Atlas/WebHome
https://twiki.cern.ch/twiki/bin/view/Atlas/WebHome
https://twiki.cern.ch/twiki/bin/view/Persistency
https://twiki.cern.ch/twiki/bin/view/Persistency
http://lcgapp.cern.ch/project/simu/HepMC/
http://root.cern.ch/

Bibliography

[72] The ATLAS Collaboration. Charged-particle multiplicities in pp interactions at
√
s = 900

gev measured with the atlas detector at the lhc. Physics Letters B, 688(1):21 – 42, 2010.

[73] Matteo Volpi. Charged particle multiplicities in pp interactions at sqrt(s) = 900 GeV and
sqrt(s) = 7 TeV measured with the ATLAS detector at the LHC.. oai:cds.cern.ch:1331501.
PhD thesis, Barcelona, IFAE, Barcelona, 2010. Presented 16 Dec 2010.

[74] T Yamanaka. The atlas calorimeter simulation fastcalosim. Technical Report ATL-SOFT-
PROC-2011-021, CERN, Geneva, Jan 2011.

[75] Standard Performance Evaluation Corporation. Geant4 Collaboration Website. http:

//geant4.cern.ch/, April 2014.

[76] K Edmonds, S Fleischmann, T Lenz, C Magass, J Mechnich, and A Salzburger. The
Fast ATLAS Track Simulation (FATRAS). Technical Report ATL-SOFT-PUB-2008-001.
ATL-COM-SOFT-2008-002, CERN, Geneva, Mar 2008.

[77] S Hamilton, E Kneringer, W Lukas, E Ritsch, A Salzburger, K Sliwa, S Todorova, J Wetter,
and S Zimmermann. The atlas fast track simulation project. Technical Report ATL-SOFT-
PROC-2011-038, CERN, Geneva, Mar 2011.

[78] Performance of the Fast ATLAS Tracking Simulation (FATRAS) and the ATLAS Fast
Calorimeter Simulation (FastCaloSim) with single particles. Technical Report ATL-SOFT-
PUB-2014-001, CERN, Geneva, Mar 2014.

[79] A Salzburger, S Todorova, and M Wolter. The atlas tracking geometry description. Tech-
nical Report ATL-SOFT-PUB-2007-004. ATL-COM-SOFT-2007-009, CERN, Geneva, Jun
2007.

[80] Michael Duehrssen and Karl Jakobs. Study of Higgs bosons in the WW final state and
development of a fast calorimeter simulation for the ATLAS experiment. PhD thesis,
Freiburg U., Freiburg, 2009. Presented on 21 Dec 2009.

[81] A Arce, M Beckingham, M Duehrssen, E Schmidt, M Shapiro, M Venturi, J Virzi, I Vi-
varelli, M Werner, S Yamamoto, and T Yamanaka. The simulation principle and perfor-
mance of the atlas fast calorimeter simulation fastcalosim. Technical Report ATL-COM-
PHYS-2010-838, CERN, Geneva, Oct 2010.

[82] The ATLAS Collaboration. Data/MC Comparison for Calorimeter Shower Shapes
of High Et Electrons. http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/EGAMMA/

PublicPlots/20111005/ATL-COM-PHYS-2011-1299/index.html, October 2011.

[83] Martin Woudstra. ConfigurableFactory update + a few related topics, ATLAS Soft-
ware & Computing Workshop. https://indico.cern.ch/event/119169/session/17/

contribution/117/material/slides/0.pdf, April 2011.

[84] Roland Jansky, Emmerich Kneringer, and Andreas Salzburger. Truth Seeded Reconstruc-
tion for Fast Simulation in the ATLAS Experiment. PhD thesis, Innsbruck U., 2013.
Presented 30 Sep 2013.

[85] Ritsch E on behalf of the ATLAS Collaboration. Concepts and plans towards fast large
scale monte carlo production for the atlas experiment. Phys.: Conf. Ser., 524(012035
http://dx.doi.org/10.1088/1742-6596/523/1/012035), 2014.

230

http://geant4.cern.ch/
http://geant4.cern.ch/
http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/EGAMMA/PublicPlots/20111005/ATL-COM-PHYS-2011-1299/index.html
http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/EGAMMA/PublicPlots/20111005/ATL-COM-PHYS-2011-1299/index.html
https://indico.cern.ch/event/119169/session/17/contribution/117/material/slides/0.pdf
https://indico.cern.ch/event/119169/session/17/contribution/117/material/slides/0.pdf
http://dx.doi.org/10.1088/1742-6596/523/1/012035

Bibliography

[86] J.H. Hubbell. Electron & positron pair production by photons: A historical overview.
Radiation Physics and Chemistry, 75(6):614 – 623, 2006. Pair Production.

[87] Eberhard Haug and Werner Nakel. The elementary process of Bremsstrahlung. World
Scientific Lecture Notes in Physics. World Scientific, New Jersey, NJ, 2004.

[88] Elmar Ritsch, A Salzburger, and E Kneringer. Fast Calorimeter Punch-Through Simulation
for the ATLAS Experiment. PhD thesis, Innsbruck U., Innsbruck, 2011. Presented 28 Sep
2011.

[89] D Rousseau, G Dimitrov, I Vukotic, O Aidel, RD Schaffer, and S Albrand. Monitoring of
computing resource utilization of the ATLAS experiment. Technical Report ATL-SOFT-
PROC-2012-034, CERN, Geneva, May 2012.

[90] N Chauhan, G Kabra, T Kittelmann, R Langenberg, R Mandrysch, A Salzburger,
R Seuster, E Ritsch, G Stewart, N van Eldik, and R Vitillo. ATLAS Offline Software
Performance Monitoring and Optimization. Technical Report ATL-SOFT-PROC-2013-
040, CERN, Geneva, Oct 2013.

[91] gperftools Homepage. https://code.google.com/p/gperftools/, September 2014.

[92] J Weidendorfer. kcachegrind Homepage. http://kcachegrind.sourceforge.net/,
September 2014.

[93] Intel Corporation. Intel® Math Library Official Webpage. https://software.intel.

com/en-us/node/522653, November 2014.

[94] C. Runge. Ueber die numerische auflösung von differentialgleichungen. Mathematische
Annalen, 46(2):167–178, 1895.

[95] W. Kutta. Beitrag zur naherungsweisen integration von differentialgleichungen. Z. Math.
und Phys., 46:435–453, 1901.

[96] Encyclopedia of Mathematics. Runge Kutta Method. http://www.encyclopediaofmath.
org/index.php/Runge%E2%80%93Kutta_method, November 2014.

[97] Troels Petersen. Measurement of the W mass with the ATLAS detector. Technical Report
ATL-PHYS-PROC-2009-040. ATL-COM-PHYS-2008-198, CERN, Geneva, Oct 2008.

[98] N Besson. W mass measurement in the ATLAS experiment. Technical Report ATL-PHYS-
PROC-2009-134, CERN, Geneva, Nov 2009.

[99] Nansi Andari, Maarten Boonekamp, Jean-Baptiste Blanchard, and Nenad Vranjes. Mea-
surement of mW at 7 TeV: Z-based cross check measurements. Technical Report ATL-
COM-PHYS-2014-1437, CERN, Geneva, Nov 2014.

[100] V M Abazov. A novel method for modeling the recoil in W boson events at hadron collider.
Technical Report arXiv:0907.3713. FERMILAB-PUB-09-363-E, Jul 2009. Comments: 26
pages, 24 figures, submitted to Nuclear Instruments and Method Sect. A.

[101] The D0 Collaboration. Measurement of the W Boson Mass with 1 fb−1 Run II Data.
Technical Report D0 Note 5893-CONF, May 2009.

231

https://code.google.com/p/gperftools/
http://kcachegrind.sourceforge.net/
https://software.intel.com/en-us/node/522653
https://software.intel.com/en-us/node/522653
http://www.encyclopediaofmath.org/index.php/Runge%E2%80%93Kutta_method
http://www.encyclopediaofmath.org/index.php/Runge%E2%80%93Kutta_method

Bibliography

[102] John R Taylor. An Introduction to Error Analysis: The Study of Uncertainties in Physical
Measurements; 2nd ed. Books in physics. University Science Books, Sausalito, CA, 1997.

[103] J Wolberg. Data analysis using the method of least squares: extracting the most information
from experiments. Springer, Heidelberg, 2006.

[104] F Dydak, M W Krasny, and R Voss. The measurement of the W mass at the LHC: shortcuts
revisited. Technical Report CERN-LHCC-2009-014. LHCC-I-017, CERN, Geneva, Sep
2009. This LOI has been submitted as well to the SPSC: CERN-SPSC-2009-028 and
SPSC-I-239.

[105] N Besson and M Boonekamp. Determination of the Absolute Lepton Scale Using Z Boson
Decays: Application to the Measurement of MW. Technical Report ATL-PHYS-PUB-
2006-007. ATL-COM-PHYS-2005-072, CERN, Geneva, Nov 2005.

[106] Matthias Schott. Study of the Z Boson Production at the ATLAS Experiment with First
Data. PhD thesis, Ludwig-Maximilians-Universität München, 2007.

[107] Sidney D. Drell and Tung-Mow Yan. Massive lepton-pair production in hadron-hadron
collisions at high energies. Phys. Rev. Lett., 25:316–320, Aug 1970.

[108] The ATLAS Collaboration. Electron and photon energy calibration with the ATLAS
detector using LHC Run 1 data. Eur. Phys. J. C, (arXiv:1407.5063. CERN-PH-EP-2014-
153):74. 51 p, Jul 2014. Comments: 39 pages plus author list + cover pages (51 pages total),
42 figures, 8 tables, published in EPJC, All figures including auxiliary figures are available
at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/PERF-2013-05/.

[109] J-B Blanchard. Performance of the reconstruction, calibration and identification of elec-
trons and photons with the ATLAS detector, and their impact on the ATLAS physics
results. Technical Report ATL-PHYS-PROC-2014-207, CERN, Geneva, Oct 2014.

[110] Performance of Missing Transverse Momentum Reconstruction in ATLAS with 2011
Proton-Proton Collisions at sqrts = 7 TeV. Technical Report ATLAS-CONF-2012-101,
CERN, Geneva, Jul 2012.

[111] Performance of Missing Transverse Momentum Reconstruction in ATLAS studied in
Proton-Proton Collisions recorded in 2012 at 8 TeV. Technical Report ATLAS-CONF-
2013-082, CERN, Geneva, Aug 2013.

[112] N D Gagunashvili. Comparison of weighted and unweighted histograms. Technical Report
physics/0605123, May 2006.

[113] L Garren, I.G. Knowles, S Navas, P Richardson, T Sjöstrand, and T Trippe. Monte carlo
particle numbering scheme. Technical report, Jun 2006.

[114] W Bhimji, J Cranshaw, P van Gemmeren, D Malon, R D Schaffer, and I Vukotic. The
ATLAS ROOT-based data formats: recent improvements and performance measurements.
Technical Report ATL-SOFT-PROC-2012-020, CERN, Geneva, May 2012.

[115] John Apostolakis, Ren Brun, Federico Carminati, and Andrei Gheata. Rethinking particle
transport in the many-core era towards GEANT 5. J. Phys.: Conf. Ser., 396:022014, 2012.

232

Bibliography

[116] D Crooks, P Calafiura, R Harrington, S Purdie, H Severini, S Skipsey, V Tsulaia,
and A Washbrook. Multi-core job submission and grid resource scheduling for ATLAS
AthenaMP. Technical Report ATL-SOFT-PROC-2012-029, CERN, Geneva, May 2012.

[117] The C++ Resources Network. STL Containers. http://www.cplusplus.com/reference/
stl/, November 2014.

[118] S Spagnolo, K A Assamagan, J Boudreau, S Baranov, V Tsulaia, A Nairz, I Trigger,
C Bourdarios, G Unal, M Lelchuk, B Seligman, J Tth, P Strzenec, D Costanzo, G Gorfine,
T H Kittelmann, Y Hasegawa, D Pomarde, A Vaniachine, and A Zalite. The Description
of the Atlas Detector. 2005.

[119] A Vaniachine, S Eckmann, D Malon, P Nevski, and T Wenaus. Primary Numbers Database
for ATLAS Detector Description Parameters. Technical Report cs.DB/0306103. ANL-
HEP-CP-2003-050, Argonne Nat. Lab., Argonne, IL, Jun 2003.

[120] HL-LHC Project. HL-LHC: High Luminosity Large Hadron Collider. http://hilumilhc.
web.cern.ch, May 2014.

233

http://www.cplusplus.com/reference/stl/
http://www.cplusplus.com/reference/stl/
http://hilumilhc.web.cern.ch
http://hilumilhc.web.cern.ch

	Abstract
	Acknowledgements
	Contents
	I Introduction and Overview
	Introduction and Motivation
	MC Production Computing Resource Usage

	The Standard Model of Particle Physics
	Particles in the Standard Model
	The W Boson Mass

	The ATLAS Experiment
	Coordinate System
	The Inner Detector Subsystem
	The Calorimeter Subsystem
	The Muon Spectrometer Subsystem
	Particle Signatures
	Trigger System
	ATLAS Computing Grid

	ATLAS Monte Carlo Simulation
	The ATLAS Offline Software Framework (Athena)
	Athena Application Flow
	StoreGate

	Monte Carlo Simulation Chain and Persistent Data Formats
	Event Generation (EVNT Format)
	Detector Simulation (HITS Format)
	Digitization (RDO Format)
	Reconstruction (ESD and AOD Formats)

	Full and Fast Detector Simulation
	Geant4
	Fast ATLAS Track Simulation (Fatras)
	FastCaloSim

	Combined ATLAS Detector Simulations
	ATLFASTII
	ATLFASTIIF

	II The Integrated Simulation Framework
	The Vision
	Common Simulation Framework
	Simulation Flavours and Simulator Mixing
	Integration into ATLAS Monte Carlo Production
	Extensibility
	ISF within a Fast ATLAS Monte Carlo Chain

	ISF Particle Routing
	Routing Rules
	Static Routing Rules
	Semi-Dynamic Routing Rules
	Dynamic Routing Rules

	The ISF Routing Chain
	Static Routing Rules in the Routing Chain
	Semi-Dynamic Routing Rules in the Routing Chain
	Dynamic Routing Rules in the Routing Chain

	ISF Components
	Simulators and SimulationServices
	Requirements for Simulators

	Particle Routing and the ParticleBroker
	ATLAS Detector Regions
	Identifying ATLAS Detector Regions with the GeoIDService

	Monte Carlo Truth Recording with the TruthService
	Track Records at ATLAS Region Boundaries trough the EntryLayerTool

	Particle Barcodes with the BarcodeService

	ISF Program Flow
	Simulation Input Processing
	Input Particle Filtering with GenParticleFilters

	The Particle Loop
	Monte Carlo Truth Recording

	Simulator Integration into the Integrated Simulation Framework
	Geant4
	FADS User Actions for ISF Integration

	Fatras
	FastCaloSim
	Legacy Mode
	ISF Mode (Non-Legacy Mode)
	Fast Calorimeter Punch-Through Simulation

	Particle Killer Simulator
	Combined ATLAS Detector Simulation Setups
	ATLFASTII
	ATLFASTIIF

	III ISF Fast Simulation Results and Performance Measurements
	ISF Computing Performance
	Performance Analysis Tools
	PerfMon
	GPerftools

	CPU Time per Simulated Event
	Partial Event Simulation

	ISF CPU Profiling
	ISF Geant4 Detector Simulation
	ISF ATLFASTII Detector Simulation
	ISF ATLFASTIIF Detector Simulation
	ISF Core Components

	Accuracy of ISF Detector Simulation
	ATLFASTII
	Legacy Mode
	ISF Mode

	ATLFASTIIF

	ISF in the Context of the W Boson Mass Measurement
	Analysis Method
	W and Z Boson Observables in the Transverse Plane
	MW Measurement
	Detector Calibration

	Simulation Requirements
	ISF Simulator Configuration
	Simulator Tuning
	Calorimeter Response
	FastCaloSim Energy Scale Factors
	Applying Energy Scale Factors in FastCaloSim

	Results
	Physics Performance
	Computing Performance

	Discussion

	IV Outlook and Conclusions
	Outlook
	Improved ISF Fast Simulation for the W Boson Mass Analysis
	ISF and the ATLAS Fast Simulation Chain
	ISF Pileup Simulation
	Concurrent Processing with ISF
	Simulator Integration and Particle Routing

	Conclusions

	V Appendix
	ISF Core Implementation
	ISFParticle
	Simulation Kernel
	Event Filter Tool

	Particle Broker
	Simulation Selector

	Simulation Services
	Simulation Service Requirements

	Detector Regions
	Envelope Definition Service
	GeoID Service

	Monte Carlo Truth
	Input Processing
	Truth Incident
	Truth Service
	Truth Strategies
	Barcodes and Barcode Service
	Entry Layer creation with the EntryLayerTool

	Framework Configuration

	Bibliography

