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Abstract
In this article we demonstrate that dynamical quantum phase transitions (DQPTs) occur for an
exemplary higher order topological insulator, the Benalcazar–Bernevig–Hughes model,
following quenches across a topological phase boundary. A dynamical bulk boundary
correspondence is also seen both in the eigenvalues of the Loschmidt overlap matrix and the
boundary return rate. The latter is found from a finite size scaling analysis for which the relative
simplicity of the model is crucial. Contrary to the usual two dimensional case the DQPTs in this
model show up as cusps in the return rate, as for a one dimensional model, rather than as cusps
in its derivative as would be typical for a two dimensional model. We explain the origin of this
behaviour.
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1. Introduction

In the last ten years an analogue of quantum phase trans-
itions which can occur in time following sudden quenches
has been developed. These dynamical quantum phase trans-
itions (DQPTs) [1–3] have become one method for systemat-
ically studying the non-equilibrium behaviour of a wide vari-
ety of quantum systems. Although initial studies suggested
a close connection between the equilibrium phase diagram
and DQPTs, interestingly in general no such connection
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holds [4–12] allowing DQPTs to be a window into genu-
inely non-equilibrium phenomena. Following the introduction
of the concept a large amount of theoretical work has fol-
lowed [1, 13–21, 23–44], along with several experiments on
ion trap, cold atom, and quantum simulator platforms [45–
51]. Amongst other developments extensions to finite temper-
atures and open or dissipative systems have been made [22,
52–61]. Many studies remain focused on spin chains and one
dimension, though multi-band models [11, 30, 43, 62, 63], and
to higher dimensional systems [6, 43, 64–67] have also been
considered. Connections have also been considered between
DQPTs and other phenomena, for example the entanglement
entropy [22], string order parameters [68], the characteristic
function of work [55, 69], crossovers in the quasiparticle spec-
tra [20], and out of time ordered correlators [70–73].

DQPTs have been shown to occur in many different
examples of topological matter [6, 9, 23, 30, 43, 74–78]
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which is also a recent growth industry [79–81]. One of the
interesting phenomena seen in topological materials is the
relation between the bulk topology and protected edge states
of one dimension lower [82], this is referred to as the bulk-
boundary correspondence. In a higher order topological insu-
lator the edge modes have a dimension lower than the bulk
by more than one [83–94]. Dynamical order parameters for
DQPTs have been found [53, 54, 95, 96] and a dynamical bulk
boundary correspondence has also been seen [22, 30], includ-
ing in higher order topological matter [43].

In this work we focus on a paradigmatic example of
a two dimensional higher order topological insulator: the
Benalcazar–Bernevig–Hughes (BBH) model [86, 87]. This
allows us to derive expressions which determine the DQPTs
analytically, and obtain numerical solutions sufficient for per-
forming a finite sized scaling analysis. We show that this two
dimensional model can also exhibit behaviour characteristic
of one dimensional DQPTs.

In section 2 we introduce the concept of DQPTs and the
methods for calculations, and in section 3 we introduce the
BBH model, describing its symmetry properties, spectra, and
topological phase diagram. Section 2 contains the results on
DQPTs and the dynamical bulk-boundary correspondence,
following which we conclude.

2. Dynamical quantum phase transitions

DQPTs are defined using the overlap between an initial state
|Ψ0⟩ and this state time evolved by a Hamiltonian Ĥ1. This
overlap is called the Loschmidt echo [1]

L(t) = ⟨Ψ0|e−iĤ1t|Ψ0⟩ . (1)

For complex t the boundary part of L(t) at Im(t)→∞ is equi-
valent to the standard partition function. This corresponds to
a quench scenario where one can consider the initial state
as the ground state of a Hamiltonian Ĥ0 which is then sud-
denly changed and the system is time evolved with a different
Hamiltonian Ĥ1. Properties of the time evolution can therefore
be related to the properties of Ĥ0 and Ĥ1.

One can then define a ‘free energy’ called the return rate

l0 (t) = lim
N→∞

lN (t) =− lim
N→∞

1
N
ln |L(t)| , (2)

which has non-analyticities at zeroes of the Loschmidt echo.
Here N is the total number of sites in the system. In analogy
to a standard quantum phase transition these non-analyticities
are referred to as DQPTs. In one dimensional systems the non-
analyticities occur at critical times when the zeroes of L(t) in
the complex plane cross the real time axis [1], known as Fisher
zeroes. In the bulk the line of Fisher zeroes can be paramet-
erised bymomenta. At a critical momenta the line can cross the
real axis and a DQPT occurs. In two dimensions the situation
is more complicated as the Fisher zeroes now form a plane
and the critical region which crosses the real axis is extended
over a finite range of time [6]. In that case where the density
of these zeroes diverges a cusp forms in the derivative of the
return rate.

For our purposes a convenient representation for the
Loschmidt echo is [23, 97–99]

L(t) = det
[
I−C+ CeiH

1t
]

︸ ︷︷ ︸
≡M(t)

(3)

where I the identity matrix, C is the correlation matrix with
Cij = ⟨Ψ0|c†i cj|Ψ0⟩ for some complete basis set of creation
operators {c†j }, andH1 is the Hamiltonian density of Ĥ1 writ-
ten in the same basis. In terms of the eigenvalues λi(t) of the
matrixM(t) one finds

L(t) =
∏
i

λi (t) , (4)

and

lN (t) =− 1
N

∑
i

ln |λi (t)| . (5)

We also define the required derivative

dN (t)≡ l̇N (t) =− 1
N

∑
i

∣∣∣∣∣ λ̇i (t)λi (t)

∣∣∣∣∣ , (6)

which in terms of the Loschmidt matrix is

dN (t)≡ l̇N (t) =− 1
N
Re

(
tr
[
Ṁ(t)M−1 (t)

])
. (7)

In the thermodynamic limit we write d0(t) = limN→∞ dN(t).
In equilibrium the bulk-boundary correspondence relates

the bulk topology to the existence of edge modes [82]. For
DQPTs a dynamical bulk boundary correspondence has been
discovered which relates the change in topology between the
initial state and the time evolving Hamiltonian to boundary
contributions to the return rate [23, 30, 43]. The boundary
return rate in one dimension, l1DB (t), can be found from

l1DN (t)∼ l1D0 (t)+
l1DB (t)
N

. (8)

In the simplest scenario a quench from the topologically non-
trivial to the topologically trivial case results in periodically
appearing and vanishing plateaus in l1DB (t) between critical
times. These plateaus can be directly related to zero eigen-
values of the Loschmidt matrix which become pinned to
zero between alternating critical times, when the spectrum of
the Loschmidt matrix becomes gapless, thus demonstrating
the close analogy to the equilibrium bulk-boundary corres-
pondence. Indeed the number of zero eigenvalues is related
to the topological indices of the initial and time evolving
Hamiltonians, though this connection is not necessarily that
direct when larger topological indices are involved [23] or for
cases where DQPTs can occur for quenches within a topolo-
gically non-trivial phase [30].

In two dimensions a similar dynamical bulk boundary cor-
respondence has been seen in intrinsic and extrinsic higher
order topological insulators [43]. In that case the critical times
become extended into regions of finite duration, but pinned
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zero modes of the Loschmidt matrix can still be seen between
successive critical regions. In principle one would expect
also plateaus in an appropriately defined boundary return rate
would also occur. However the models previously studied
were too complex for good enough data to be produced to
determine this. One principle goal of this work is to fill this
gap by focusing on a minimal model of a higher order topo-
logical insulator. If N is the total number of atoms in the two
dimensional lattice then we may expect scaling of the form

lN (t)∼ l0 (t)+
lB (t)√
N

. (9)

The boundary contribution at a definite system size can be dir-
ectly compared to the contribution from the ñ eigenvalues λi(t)
which become pinned to zero:

lN (t)− l0 (t)≈− 1
N

ñ−1∑
n=0

ln |λn (t)| . (10)

For the model we will focus on here the topological regime
contains four corner states and we find that ñ= 4.

3. The Benalcazar–Bernevig–Hughes model

The BBH model is a minimal four band model given by

Hm = JΓ⃗ · d⃗m
k⃗
, (11)

where Γ⃗ is a vector containing four 4× 4 matrices. The
matrices are given by Γk =−τ2σk for k= 1,2,3, and by
Γ4 = τ1σ0. The momentum dependent vector defining the
Hamiltonian is

d⃗m
k⃗
=


sinky

m+ cosky
sinkx

m+ coskx

 . (12)

J is an overall energy scale of the hopping terms andwewill set
everywhere J= 1 and h̄= 1. This is an intrinsic higher order
topological insulator with four corner modes, see figure 1 for
the spectrum as a function of m. The bulk eigenenergies are
two-fold degenerate and are given by

±ϵmkx,ky =±
√
2
√
1+m2 +m(coskx+ cosky) . (13)

This model has several symmetries. First a global particle
hole symmetry C = τ3 ×σ0K̂ satisfying {C,Hm}= 0 and C2 =
1. There is also a ‘time-reversal’ symmetry T = τ0 ×σ0K̂
which satisfies {T ,Hm}= 0 and T 2 = 1, with K̂ being charge
conjugation. Finally there are also crystalline symmetries
present, such as the mirror symmetries [87, 93]

UyHm (−kx,ky)U†
y =Hm (kx,ky) (14)

and

UxHm (kx,−ky)U†
x =Hm (kx,ky) . (15)

Figure 1. The spectrum of the BBH model as a function of m.
Shown are the lowest 6 eigenenergies for the square lattice with
open boundary conditions (circles) for N= 602. The bulk gap is
shown as a shaded orange region, and the gapped one dimensional
edge modes on the edge of the square lattice are shown as the purple
shaded region.

Here Uy = τ1σ3 and Ux = τ1σ1. The other crystalline sym-
metry is a four fold rotational symmetry

U4Hm (−ky,kx)U†
4 =Hm (kx,ky) (16)

with

U4 =


0 0 1 0
0 0 0 1
0 −1 0 0
1 0 0 0

 (17)

and U4
4 =−1. The crystalline symmetries become broken at

the edges of the model, gapping the one dimensional edge
modes and resulting in the corner modes. Due to the four fold
rotational symmetry it is clear that there must be four corner
modes for this model.

For all examples shown throughout this article we choose
m= 0.5 for the topologically non-trivial phase andm= 1.5 for
the topologically trivial phase. No results depend qualitatively
on the exact values used. For ease of reference we label the
topologically non-trivial phase by an invariant ν= 1 and the
topologically trivial phase by an invariant ν= 0.

4. Results

From equation (3) one can readily derive the bulk expression
for the Loschmidt matrix for the system with periodic bound-
ary conditions, for more details see appendix A. For a quench
from H0 =Hm to H1 =Hm ′ this results in the Loschmidt
amplitude:

L(t) =
∏
k⃗

[
cos

(
ϵm

′

k⃗
t
)
+ icosδϕ⃗k sin

(
ϵm

′

k⃗
t
)]2

, (18)

where

cosδϕ⃗k =−
d⃗m
k⃗
· d⃗m ′

k⃗

ϵm
k⃗
ϵm

′

k⃗

. (19)
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This is closely related to the standard expression for a two band
topological insulator [6], but we note is not a general expres-
sion for a four band model [30, 43].

The first condition for the critical times to occur is for
cosδϕ⃗k = 0 which happens for the critical momenta satisfying

cosk∗x + cosk∗y =−2
1+mm ′

m+m ′ . (20)

This can be solved for real momenta only if

m(1−m ′)> (1−m ′) . (21)

Hence for m ′ > 1 one needs m< 1 and vice versa. These are
precisely those quenches which cross the equilibrium phase
boundary, as one would expect for a simple two band topo-
logical insulator [6]. The critical times are then, for n=
0,1,2, . . ., given by

tc =
π (2n+ 1)

2ϵm ′
k∗x ,k

∗
y

=
π (2n+ 1)

2
√
2

√
m+m ′(

m ′2 − 1
)
(m ′ −m)

. (22)

In this case, because the condition for the momenta (20)
appears as it does in the energy, the plane of Fisher zeroes
collapses to a line, and there is a single critical time as in one
dimension. From (22) it is clear that the Fisher zeroes will only
cross the real axis when either m ′ > 1 and m ′ > m, or when
m ′ < 1 and m ′ < m, assuming that both m′ and m are positive.

The Fisher zeroes themselves can also be easily found
from (18):

Re [t] =
π (2n+ 1)

2ϵm ′

k⃗

, (23)

Im [t] =
arctanh

[
cosδϕ⃗k

]
ϵm

′

k⃗

, (24)

see figures 2 for examples. If the condition (21) is not met
then the Fisher zeroes do not cross the real time axis. Here we
show exemplary quenches which cross the equilibrium phase
boundary in the two different directions.

For the derivative of the return rate we expect a sudden jump
at the critical times, which can be seen in figures 3 and 4 for
the quenches from topologically trivial to non-trivial and vice
versa. This corresponds to a cusp in the return rate itself as is
seen in one dimensional models. As the entire area of Fisher
zeroes is collapsed onto a single curve for the BBH model this
is to be expected. For the bulk there is no qualitative difference
between these two possible quench scenarios, though specific
details do of course change.

4.1. The dynamical bulk-boundary correspondence

We now turn to the boundary contributions. In figure 5 we
show the boundary return rate lB extracted from a finite scal-
ing analysis for system sizes

√
N ∈ {30,35,40,45,50,55,60},

see equation (9). As we know l0(t) we can extract the bound-
ary term lB(t) by a normal fitting procedure, see appendix B.

Figure 2. The Fisher zeroes in the complex t plane for quenches
across the equilibrium topological phase boundary. Critical times
when the zeroes cross the real axis are clearly visible. In this case
each line is parameterised by both kx and ky and so there are many
zeroes at each point. The quench ν : 0→ 1 is for m= 1.5 and
m ′ = 0.5. The quench ν : 1→ 0 is for m= 0.5 and m ′ = 1.5.

Figure 3. The return rate and its derivative for a quench from the
topologically trivial to the topologically non-trivial phase. A jump
in d0(t) at tc is clearly visible, as well as a cusp in the return rate
itself. The lower panels show a zoom in for the first critical time,
demonstrating the cusp in the return rate and the discontinuity in its
derivative. The quench parameters are m= 1.5 and m ′ = 0.5.

N= 602 is the largest system size we were able to reach, pla-
cing some limitations on the scaling analysis. We recall that
in a one-dimensional topological system the dynamical bulk-
boundary effect corresponds to a plateau forming for quenches
into the topologically non-trivial phase [23, 30]. This plateau
appears and disappears between successive critical times. For
the opposite quench direction only small fluctuations in lB(t)
occur. Similarly here we find only relatively small fluctuations
in lB(t) for the quench from ν : 1→ 0, see figure 5. For the
quench from ν : 0→ 1 a larger plateau-like structure can be
seen to form between the first two critical times. However
between the next critical times it is slow to decay, and already
after the third critical time it is less clear, though lB(t) remains
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Figure 4. The return rate and its derivative for a quench from the
topologically non-trivial to the topologically trivial phase. A jump
in d0(t) at tc is clearly visible, as well as a cusp in the return rate
itself. The lower panels show a zoom in for the first critical time,
demonstrating the cusp in the return rate and the discontinuity in its
derivative. The quench parameters are m= 0.5 and m ′ = 1.5.

Figure 5. The boundary return rate lB(t) extracted from a finite size
scaling analysis for system sizes

√
N ∈ {30,35,40,45,50,55,60},

see equation (9). As expected from the dynamical bulk-boundary
correspondence the quench into the non-trivial phase shows large
features between successive critical times. For a detailed discussion
see the main text.

larger for the quench to the topologically non-trivial phase
compared to the quench into the trivial phase as predicted.
The origin of the plateau can be traced to the Loschmidt mat-
rix eigenvalues, it is caused by zero eigenvalues which appear
and disappear between successive critical times when the gap
in the Loschmidt matrix spectrum closes [22, 30]. It is this
behaviour which is referred to as the dynamical bulk-boundary
correspondence. To clarify the situation here we now turn to
the eigenvalues of the Loschmidt matrix.

In figure 6 the lowest eigenvalues of the Loschmidt mat-
rix are shown for the two quenches considered and for sys-
tems with both open and periodic boundary conditions. As

Figure 6. The eigenvalues of the Loschmidt matrix, see
equations (3) and (4). Shown is the lowest eigenvalue for a bulk
system of size N= 2002 implemented using periodic boundary
conditions, and the results for an open system using open boundary
conditions (OBC) of size N= 602. The shaded region is the region
in which bulk eigenvalues exist. The upper panel shows the quench
form the non-trivial to the trivial phase and no zero eigenvalues
occur. The lower panel shows the quench from the trivial to the
non-trivial phase and four eigenvalues become pinned to zero
between successive critical times tc, in agreement with the
dynamical bulk-boundary correspondence.

predicted by the dynamical bulk-boundary correspondence
four zero eigenvalues occur between alternate critical times,
but only for the quench into the non-trivial phase. The slow
decay of the boundary return rate for the quench ν : 0→ 1
is explained by the slow increase in the absolute value of
the eigenvalues which were zero for tc < t< 3tc. The discrep-
ancy between the lowest eigenvalues for the open and peri-
odic systems is caused by the existence of gapped one dimen-
sional edge states which exist on the boundary of the open sys-
tem, but which naturally do not occur for periodic boundary
conditions.

We can compare the contribution to the return rate of just
the lowest eigenvalues for the quench ν : 0→ 1 to the bound-
ary return rate. According to the dynamical bulk-boundary
correspondence

lB (t)≈
√
N(lN (t)− l0 (t))≈− 1√

N

3∑
i=0

ln |λi (t)| . (25)

In figure 7 we compare these two quantities. Some qualitative
agreement is visible, though at the system sizes we can achieve
there is no quantitative agreement possible.
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Figure 7. A comparison of the boundary contribution to the return
rate extracted directly from lN(t) for N= 602 and from the lowest
Loschmidt eigenvalues, see equation (25).

5. Discussion and conclusions

In this work we investigated DQPTs and the dynamical bulk-
boundary correspondence for an exemplary two dimensional
higher order topological insulator. The relative simplicity of
this model allows us to obtain higher quality data than has pre-
viously been obtained for DQPTs in more complicated higher
order topological insulators. This simplicity also leads to a col-
lapse of the area of Fisher zeroes onto lines of Fisher zeroes in
the complex time plane, leading to DQPT behaviour which is
characteristic of one dimensional rather than two dimensional
topological models. Correspondingly we find that cusps occur
in the return rate, and discontinuities occur in its derivative, at
periodic critical times for quenches across a topological phase
boundary.

We also see clear evidence of a dynamical bulk-boundary
correspondence in the behaviour of the eigenvalues of the
Loschmidt matrix. At critical times the spectrum of the
Loschmidt matrix becomes gapless, and between alternate
critical times there are ‘in-gap’ eigenvalues pinned to zero, but
only for quenches into the topologically non-trivial regime.
These zeroes give rise to alternating plateaus in the bound-
ary contribution to the return rate which we try to extract
from a scaling analysis, comparing this to the boundary con-
tribution at a specific system size and to the contribution
form the zero eigenvalues. Here agreement is not perfect due
to finite size errors. A systematic study of the dynamical
bulk-boundary correspondence for different models and for
quenches between a wider range of topological phases, and
also of the origin of the Loschmidt zero eigenvalues, are inter-
esting avenues to follow up.

Data availability statement
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available at the following URL/DOI: https://zenodo.org/
records/10571375 [100].
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Appendix A. Further details of the calculations

Here we give the Hamiltonian in real space, which follows
from a standard Fourier transform of equation (11). The lattice
is square, and the subspace could be, for example, a combina-
tion of spin and orbital spaces. The Hamiltonian is

H=
∑
l

Ψ†
l Γ⃗ · d⃗mΨl+

∑
⟨l,l ′⟩

Ψ†
l Γ⃗ · d⃗l,l ′Ψl ′ (A1)

withΨ†
n = (c†l1,c

†
l2,c

†
l3,c

†
l4) and c

†
lj is a fermionic creation oper-

ator at site l with a subspace label j. ⟨l, l ′⟩ refers to pairs of
nearest neighbours on a square lattice. The vectors are

d⃗m = m(0,1,0,1) ,and (A2)

d⃗l,l ′ =
1
2
(i yl,l ′ , |yl,l ′ |, i xl,l ′ , |xl,l ′ |) , (A3)

where xl,l ′ = x̂ · [⃗rl ′ − r⃗l] and yl,l ′ = ŷ · [⃗rl ′ − r⃗l]with r⃗l the pos-
ition of site l.

For periodic boundary conditions the Loschmidt amplitude
can be found analytically. In this case after a Fourier transform
one finds the matrixM(t) is block diagonal resulting with each
block labelled by a momentum k⃗. By working in the basis used
for (11) one can calculate the eigenstates of H0 from which
we can write C. For a quench fromH0 =Hm toH1 =Hm ′ we
require the following matrices labelled by momenta:

C⃗k =
1
2


1 0 −m+ei kx

ϵm
k⃗

−m+ei ky
ϵm
k⃗

0 1 m+e−i ky

ϵm
k⃗

−m+e−i kx

ϵm
k⃗

−m+e−i kx

ϵm
k⃗

m+ei ky
ϵm
k⃗

1 0

−m+e−i ky

ϵm
k⃗

−m+ei kx
ϵm
k⃗

0 1

 ,

(A4)
and

eiH
1
k⃗
t =


cos

(
ϵm

′

k⃗
t
)

0 i γ⃗k (kx) i γ⃗k (ky)

0 cos
(
ϵm

′

k⃗
t
)

−i γ⃗k (−ky) i γ⃗k (−kx)

i γ⃗k (−kx) −i γ⃗k (ky) cos
(
ϵm

′

k⃗
t
)

0

i γ⃗k (−ky) i γ⃗k (kx) 0 cos
(
ϵm

′

k⃗
t
)


(A5)

where γ⃗k(q) = (m ′ + ei q)sin(ϵm
′

k⃗
t)/ϵm

′

k⃗
. Then C is the block

diagonal matrix with C⃗k as the diagonal blocks, and similarly

for eiH
1t.

Appendix B. Finite size scaling

To find the boundary return rate lB we perform a finite scaling
analysis for system sizes

√
N ∈ {30,35,40,45,50,55,60}. We

fit our data for lN(t) to

lfit (t) = l0 (t)+
lB (t)√
N

+
A(t)
N

(B1)

where for l0(t)we use our bulk result, lB(t) is the term we want
to find, and A(t) is the next order term and is an additional
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Figure 8. An example of the scaling of lN(t) for
√
N ∈ {30,35,40,

45,50,55,60} compared to lfit(t) (dashed line), see equation (B1).

fitting parameter which improves the fits at the system sizes
we can reach. This is performed for each quench at each time
step. An example of lfit(t) compared to lN(t) at a particular time
is shown in figure 8.
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