

## Estimate of (n, p) Cross-section for Unstable Nuclide $^{53}\text{Mn}$

Bhawna Pandey<sup>1\*</sup>, Vishal Desai<sup>2</sup>, Jyoti Pandey<sup>3</sup>, Asha Panghal<sup>1</sup>, Mayank Rajput<sup>1</sup>,  
 G.Vaitheeswaran<sup>4</sup>, S.V.Suryanarayana<sup>2</sup>, B.K.Nayak<sup>2</sup>, A. Saxena<sup>2</sup>, CVS Rao<sup>1</sup>,  
 T.K. Basu<sup>1</sup>, H.M. Agrawal<sup>3</sup>

<sup>1</sup>*Fusion Neutronics Laboratory, Institute for Plasma Research, Bhat, Gandhinagar – 382 428, India*

<sup>2</sup>*Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai - 400 085, India*

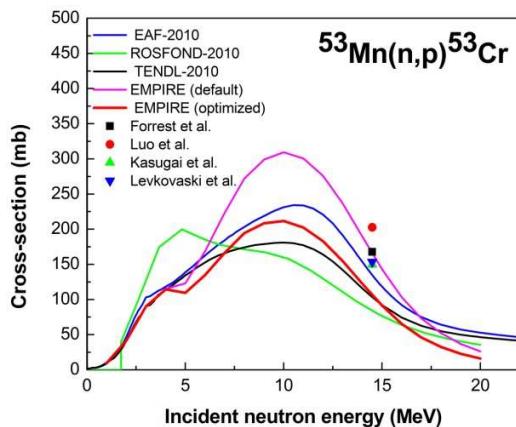
<sup>3</sup>*Department of Physics, G.B. Pant University of Ag. & Technology, Pantnagar- 263 145, India*

<sup>4</sup>*Department of Nuclear Energy, Pandit Deendayal Petroleum University, Gandhinagar - 382 007, India*

[\\*bhawna.16p@gmail.com](mailto:bhawna.16p@gmail.com)

### Introduction

$^{53}\text{Mn}$  is one of the long-lived radionuclides (decay by electron capture) having half life of  $3.74 \times 10^6$  year, produced inside the fusion reactor, due to transmutation of stable isotopes of Stainless Steel (SS) present in the structural materials [1,2]. Due to its longer half life and as primary nuclide (isotopes having percentage contribution  $\geq 50\%$ ) it interacts with neutrons inside the reactor and give rise to different nuclear reactions depending on the neutron energy and reaction Q values. Neutrons emitted in a D-T fusion reactor ( $\text{D}+\text{T} \rightarrow \text{n}+\alpha+17.6 \text{ MeV}$ ) are of 14.1 MeV energy, however inside the fusion reactor the energy of the neutrons degrades due to interactions with various reactor materials resulting in a neutron spectrum with energy from eV to MeV range. From neutronics point of view, it is therefore important to study the nuclear reactions such as  $^{53}\text{Mn}(\text{n},\text{p})$ ,  $^{53}\text{Mn}(\text{n},\alpha)$ ,  $^{53}\text{Mn}(\text{n},\text{d})$  and  $^{53}\text{Mn}(\text{n},\text{t})$ . The  $(\text{n},\text{p})$  ( $\text{n},\alpha$ ) and  $(\text{n},\text{d})$  reactions can cause the production of hydrogen, helium and deuterium gases while  $(\text{n},\text{t})$  is important for production of tritium ( $^3\text{H}$ ;  $T_{1/2}=12.33$  year) inside the fusion reactor [3]. The  $(\text{n},\text{p})$  and  $(\text{n},\alpha)$  reactions are more critical because He/H deposit at different locations inside the reactor can degrade the integrity of the materials.


$^{55}\text{Mn}$  is the only one stable isotope found in nature with abundance 100%.  $^{53}\text{Mn}$  is radioactive and is produced during the operation of the fusion reactor through different pathways given by  $^{54}\text{Fe}(\text{n},\text{np})$ ,  $^{54}\text{Fe}(\text{n},2\text{n})$ ,  $^{53}\text{Fe}(\beta^+)$ ,  $^{54}\text{Fe}(\text{n},\text{d})$  [4]. Neutron induced cross-section measurements by direct neutron activation method is not feasible because  $^{53}\text{Mn}$  target cannot be made and

therefore, one needs indirect methods to estimate these cross sections.

### Experimental Details

Recently measurement of  $^{55}\text{Fe}(\text{n},\text{p})$  reaction cross-section has been carried out using surrogate technique. In this method, the transfer reaction  $^{52}\text{Cr}(\text{d},\text{n})^{56}\text{Fe}^*$  is measured which is the surrogate of the desired reaction  $^{55}\text{Fe}(\text{n},\text{p})$  [5] leading to same compound system  $^{56}\text{Fe}^*$ . In the experiment, the deuteron (PLF) was detected in coincidence with protons coming as evaporation from  $^{56}\text{Fe}^*$ . It is observed that in the same experiment, another PLF  $\alpha$ -channel is also present given by transfer reaction  $^{52}\text{Cr}(\text{d},\alpha)^{54}\text{Mn}^*$ . This is the surrogate of the  $^{53}\text{Mn}(\text{n},\text{p})$  reaction. In this paper, this surrogate reaction has been studied to measure  $^{53}\text{Mn}(\text{n},\text{p})$  reaction cross-section by using nuclear reaction modular codes EMPIRE and TALYS [6] and compare the values with systematics [7], and evaluated data libraries [8]. Table-1 shows the calculation for all isotopes of Fe and Mn. Comparison of the calculated cross-sections with available evaluated data libraries and systematics has been shown in Fig.1 for  $^{53}\text{Mn}(\text{n},\text{p})$ . The experimental data is under analysis to determine the  $^{53}\text{Mn}(\text{n},\text{p})$  reaction cross-section data by measuring the alpha (PLF) in singles and alpha and proton (evaporation from  $^{54}\text{Mn}^*$ ) in coincidence. Transfer reaction  $^{45}\text{Sc}(\text{d},\alpha)^{47}\text{Ti}^*$  has been chosen as surrogate of the known (for which experimental data is available)  $^{46}\text{Ti}(\text{n},\text{p})$  reaction, which is the reference reaction for both the above desired reaction ( i.e.  $^{55}\text{Fe}(\text{n},\text{p})$  and  $^{53}\text{Mn}(\text{n},\text{p})$  ) to be used in the surrogate ratio method. All the detailed information about three

reactions,  ${}^6\text{Li}+{}^{52}\text{Cr}\rightarrow\text{d}+{}^{56}\text{Fe}^*$  [surrogate of  ${}^{55}\text{Fe}(\text{n},\text{p})$ ],  ${}^6\text{Li}+{}^{52}\text{Cr}\rightarrow\alpha+{}^{54}\text{Mn}^*$  [surrogate of  ${}^{53}\text{Mn}(\text{n},\text{p})$ ] and  ${}^6\text{Li}+{}^{45}\text{Sc}\rightarrow\alpha+{}^{47}\text{Ti}^*$  [surrogate of  ${}^{46}\text{Ti}(\text{n},\text{p})$ , also known as reference reaction in the present experiment] will be presented.



**Fig.1** (color online) Comparison of calculated excitation function of  ${}^{53}\text{Mn}(\text{n},\text{p})$  with systematics and evaluated data files.

## References

- [1] H.Iida et al., Nuclear Analysis Report (NAR) ITER, G73 DDD2 W0.2, July (2004).
- [2] A. Wallner et al., Journal of the Korean Physical Society **59** 1378- 1381 (2011).
- [3] R.A. Forrest, Fus.Eng.Des. **81**, 2143-2156 (2006).
- [4] R.A Forrest et al., UKAEA FUS 552, EURATOM/UKAEA Fusion, March, (2009).
- [5] Bhawna Pandey et al., Submitted in PRC, Rapid Communication.
- [6] <http://www.nndc.bnl.gov/nndcscr/model-codes/modlibs/>
- [7] R.A ForrestAERE- R 12419, Harwell Laboratory, ( December 1986).
- [8] V.N.Levkovski., Zh. Eksp. Teor. Fiz.45, 305-311 (1963).
- [9] Luo, J. et al., Nuclear Instruments and Methods in Physics Research B 266,4862-4868(2008).
- [10] Kasugai, Y. in: JAERI-Conf.95-008, (1995).
- [11]<https://www-nds.iaea.org/exfor/endf.htm>

**TABLE 1-** Comparison of Nuclear model calculations and semi-empirical formula (Forrest, 1986) for Fe and Mn cross-section at 14.5 MeV

| Reaction                                                | Model Calculations (mb) |            | Semi-emp.[7] formul a (S) (mb) | Exp. data [11] (E) (mb)        | Deviation   |             |            |
|---------------------------------------------------------|-------------------------|------------|--------------------------------|--------------------------------|-------------|-------------|------------|
|                                                         | EMPIRE (C1)             | TALYS (C2) |                                |                                | (C1- E) / E | (C2- E) / E | (S- E) / E |
| ${}^{54}\text{Fe}(\text{n},\text{p})$                   | 301                     | 295        | 355                            | $315\pm 10$                    | -0.044      | -0.063      | 0.126      |
| ${}^{55}\text{Fe}(\text{n},\text{p})$<br>our experiment | 217                     | 198        | 190                            | $189\pm 15$<br>our measurement | 0.148       | .047        | .0052      |
| ${}^{56}\text{Fe}(\text{n},\text{p})$                   | 106                     | 112        | 101                            | $108\pm 3$                     | -0.019      | 0.037       | -0.065     |
| ${}^{57}\text{Fe}(\text{n},\text{p})$                   | 58                      | 61         | 54                             | $80\pm 10$                     | -0.275      | 0.238       | 0.325      |
| ${}^{53}\text{Mn}(\text{n},\text{p})$                   | 106.57                  | 103.31     | 167.79                         | Exp.data analysis in progress  |             |             |            |
| ${}^{55}\text{Mn}(\text{n},\text{p})$                   | 34.79                   | 26.91      | 45.30                          | 63                             | -0.447      | -0.573      | -0.280     |