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P H Y S I C S

Computational capacity of life in relation to 
the universe
Philip Kurian*

As physical systems, all life in the universe processes information according to physical laws. Estimates for the 
computational capacity of living systems generally assume that the fundamental information-processing unit is 
the Hodgkin-Huxley neuron, thereby excluding aneural organisms. Assuming the laws of quantum mechanics, the 
relativistic speed limit set by light, a universe at critical mass-energy density, and a recent experimental demon-
stration of single-photon superradiance in cytoskeletal protein fibers at thermal equilibrium, it is conjectured that 
the number of elementary logical operations that can have been performed by all eukaryotic life in the history of 
Earth, which is shown to be approximately equal to the ratio of the age of the universe to the Planck time, is about 
the square root of the number by the entire observable universe from the beginning. The existence of ultraviolet-
excited ∣W ⟩ states in these protein fibers, operating within two orders of magnitude of the Margolus-Levitin speed 
limit, motivates state-of-the-art performance comparisons with contemporary quantum computers.

INTRODUCTION
All physical systems process information and can therefore be 
considered as performing computations. The universe and all organ-
isms within it are physical systems, having physical attributes. Thus, 
they can be considered as performing computations. Physical systems 
performing computations obey physical laws. Here, we assume (a) 
the laws of quantum mechanics, (b) the relativistic speed limit set by 
light, (c) a matter-dominated universe at critical mass-energy density, 
and (d) a recent experimental confirmation from the author’s group 
and coworkers (1), demonstrating the existence of stable superradi-
ant states in protein systems at thermal equilibrium. By applying 
the Margolus-Levitin theorem (2) derived from (a), revisiting pre-
vious arguments (3) using (b) and (c), and bringing insights from 
experiment via (d), this article conjectures that the number of ele-
mentary logical operations that can have been performed by the 
universe 

(
tΩ∕tP

)2
≈ 10120 is approximately the square of the num-

ber of operations that can have been performed by all kingdoms of 
life on Earth in the entire existence of our planet tΩ ∕ tP ≈ 1060, a 
drastically revised update for the computational capacity of life (
tΩ∕tP

)2∕3
≈ 1040 calculated assuming a maximum information-

processing speed set by all Hodgkin-Huxley neurons in animals firing 
at millisecond timescale. Here, tΩ = 13.8 × 109 years = 4.352 × 1017 s is 
the age of the universe, and tP =

√
Gℏ∕c5 = 5.391 × 10−44 s is the 

Planck time.
The calculations made here thus relate the amount of computa-

tion that can have been performed by all carbon-based life in the 
history of the Earth, to the amount of computation that can have 
been performed by the part of the universe with which we are 
causally connected (i.e., the part within our observable horizon, 
from the time of the big bang to tΩ). Comparisons are also made to 
classical digital computers and future quantum computers, deriv-
ing distinct estimates for the times to singularity when the num-
ber of elementary logical operations performed by the machines 
equals tΩ ∕ tP.

Life and the universe as physical computing systems
Quantum speed limits on computation
Margolus and Levitin (2) proved that physical systems have a mini-
mum time required to evolve between two orthogonal states (e.g., 
∣0⟩ and ∣1⟩). According to Heisenberg, pairs of noncommuting ob-
servables will have the product of their uncertainties bounded from 
below by a value proportional to their commutator. The product of 
momentum and position has the same units as the product of ener-
gy and time, which naively implies the existence of an energy-time 
uncertainty relation given by

where Δ signifies the variance of the quantity. However, the time 
variable t  in Eq. 1 shows up as a continuous parameter in the 
Schrödinger equation, not as an operator with commutation rela-
tions, and so this energy-time uncertainty has been the subject of 
considerable debate since early works by Aharonov and Bohm (4, 5).

By evolving a quantum state ∣ψ(0)⟩ = ∑
ncn ∣En ⟩ into ∣ψ(t)⟩ = ∑

n
c
n
exp( − iE

n
t ∕ℏ) ∣E

n
⟩ and considering the inner product ⟨ψ(0) ∣ 

ψ(t)⟩= ∑
n
∣ c

n
∣2 exp(− iE

n
t∕ℏ)

!
= 0 for the smallest value of t , one 

can prove the Margolus-Levitin theorem (2). See the Methods for a 
complete proof and for its application to macroscopic systems. This 
theorem provides a strict lower bound on the time required to dis-
tinguish two orthogonal states and is given by

where ⟨⟩ is the average energy, the expectation value of a time-
independent Hamiltonian where the ground-state energy is set to 
zero. Similar bounds have been demonstrated to hold in classical 
systems, systems that operate on nonbinary or continuous variables, 
and across the quantum-to-classical transition (6, 7). It is thus im-
portant to stress that such “quantum” speed limits are not derived 
from operator noncommutativity but rather from dynamical prop-
erties of systems in Hilbert space, even when applied to the classical 
Liouville equation or the stochastic Fokker-Planck equation (7).

ΔEΔt ≥ ℏ∕2 (1)

τ ≥
πℏ

2⟨⟩ (2)
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The maximum number of operations per unit time that can be per-
formed by such a physical system, according to Eq. 2, is then given by

where ρ is the rest mass-energy density and V  is the volume of the 
system. Of course, for most physical computing systems, the major-
ity of their energy is locked up in mass for reliability and redun-
dancy, leaving only a tiny fraction available for performing logic. 
For example, billions of electrons (many redundant degrees of free-
dom) are used in silicon-based computers to register one single bit. 
Available energy thus limits the information-processing rate of a 
physical computing system. However, the laws of physics do not re-
quire redundancy to perform logical operations (3, 8), so the present 
discussion is focused on the maximum allowable speed limits for 
various computing substrates (observable universe, living systems, 
and human-made machines) obeying the Margolus-Levitin bound. 
Similarly, while the maximum entropy of a physical system deter-
mines the amount of information it can process in principle, control-
lable degrees of freedom limit the number of logical bits a physical 
computer can register in practice.
Upper bound on the number of operations in the  
matter-dominated universe
For the matter-dominated universe as a whole, this discussion follows 
the work of Lloyd (3, 8) and neglects the effects of physical degrees of 
freedom outside 3 + 1 dimensions, beyond the observable horizon of 
our present universe, beneath the Planck scale, and involving dark mat-
ter and dark energy. A critical density ρc =

3

8π
H2 ∕G ≈ 9 × 10−27 kg/

m3 can be derived from cosmic microwave background data, assuming 
that a galaxy near our observable horizon at a distance R moves away 
with speed HR, where H is the Hubble constant, and that the galaxy’s 
kinetic energy mH2R2 ∕2 and gravitational energy Gmρc4πR

3 ∕3R are 
equal. In the ensuing analysis, all factors of 2, 4/3, π, etc., will be dropped 
for clarity of exposition, as the arguments will be made at the approxi-
mate (≈) order-of-magnitude scale. As a result, recent debates about the 
so-called “Hubble tension” (9, 10)—a discrepancy between measure-
ments of the Hubble constant from the Planck satellite (H = 67.4 km/s/
Mpc) and those from the Hubble Space Telescope supported by the 
Dark Energy Spectroscopic Instrument (H = 76.5 km/s/Mpc)—will 
not affect the discussion below, given that this 13.5% increase cannot 
alter the order of magnitude of tΩ = 1∕H. A brief remark on how the 
Hubble tension affects other quantities is provided in the “Conjecture 
relating life’s computational capacity to the universe’s” section.

Because the age of our observable universe tΩ = R∕v = R∕HR = 
1∕H, we find

With the volume of the observable universe given by VΩ ≈
(
ctΩ

)3, 
and using Eqs. 3 and 4, we obtain the maximum number of opera-
tions that can have been performed in the history of the open, 
matter-dominated universe

This formula gives us the maximum number of ops for the uni-
verse in terms of its age and the fundamental physical constants 
c,G,ℏ. We can rewrite Eq. 5 as

where tP =
√
Gℏ∕c5 ≈ 10−43 s is the Planck time, , 

and �P = ctP ≈ 10−35 m is the Planck length. The suggestive notation of 
Eq. 6 hints at a holographic principle (11) for the boundary of the uni-
verse, and per the Bekenstein bound (12–14) attained by black holes 
and other objects with event horizons. We thus arrive at a value of 
∼10120 to 10123 [dependent on inclusion of (1) numerical factors] for 
the total operations that can have been performed in the history of the 
entire matter-dominated universe. Per the rightmost equality in Eq. 6, 
this value is also the maximum number of bits registered by the universe 
using matter, energy, and gravitational degrees of freedom (3). This value 
also exceeds the number of protons in the universe by a factor of ∼1040, 
which is consistent with extra degrees of freedom added by the fields.

Our universe is close to its critical mass-energy density, but a 
matter-dominated universe whose density is higher than the critical 
density would be closed: spatially finite, expanding to a maximum 
length scale over a time T, and temporally finite, recontracting to a 
singularity over a time 2T. The total number of operations that can 
be performed over the entire history of such a closed, matter-dominated 
universe is given by

which is comparable in form to Eq. 6 for an open, forever expanding 
universe. The formula in Eq. 6 can be shown to hold also in the 
radiation-dominated and inflationary universes (3, 15), though the 
degrees of freedom for computation will be contained in vastly differ-
ent forms. In particular, the radiation-dominated universe is a hostile 
environment for the formation of the delicate structures and processes 
of life, while the inflationary universe primarily produces from a high-
ly ordered initial state large quantities of spatial volume, to generate 
bits for future computation.

The amount of information in bits that can be registered by a 
physical system is

where S() is the thermodynamic entropy of a system with expectation 
value of the energy, ⟨⟩. For a black hole of mass m at the Schwarzschild 
radius RS = 2Gm∕c2, the amount of information that can be stored is 
given by the Bekenstein-Hawking entropy, S = kBA∕4 �

2

P
, such that

where mP =
√
ℏc∕G = 2.176 × 10−8 kg is the Planck mass, and the 

quadratic scaling of m∕mP mirrors that for the maximum number of 
ops for the open universe in terms of tΩ ∕ tP, given in Eq. 6, or for the 
closed universe in terms of T ∕ tP, given in Eq. 7. Using Margolus-
Levitin for the number of ops that can be performed per second, we 
see that when it is using all its memory, the maximum number of ops 
per bit per second that a physical computing system can perform is

Nmax =
�
τmin

�−1
=

2⟨⟩
πℏ

=
2ρc2 × V

πℏ
(3)

ρc ≈ H2 ∕G =
(
Gt2

Ω

)−1 (4)

NΩtΩ ≈
ρcc

2 ×
(
ctΩ

)3

ℏ
tΩ =

c5t2
Ω

Gℏ
(5)

NΩtΩ ≈

(
tΩ
tP

)2

=
AΩ

�
2

P

(6)

Mc2

ℏ
× 2T =

8πc5T2

3Gℏ
≈

(
T

tP

)2

(7)

I =
S()

k
B
ln2

(8)

IBH =
4πGm2

ℏcln2
≈

(
m

mP

)2

(9)

Nmax ∕ I =
2⟨⟩kBln2

πℏS
∝

kBT

ℏ
(10)
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where integrating the relationship 1∕T = �S∕ � over  gives the 
proportionality in Eq. 10 for the temperature of the system in a max-
imum entropy state. Thus, while the entropy S in Eqs. 8 and 9 governs 
the amount of information the system can register, the temperature T 
governs the number of ops per bit per second that it can perform. Put 
succinctly: Entropy limits memory, and energy limits speed.

It has been shown (16) that an upper bound ν on the speed of 
sound in condensed phases and elemental solids can be derived in 
terms of these fundamental constants (see the “Conjecture relating 
life’s computational capacity to the universe’s” section) and features 
in several of their thermodynamic properties. For example, the 
low-temperature entropy per volume is given in terms of this upper 

bound by S∕V =
2π2

15
kB

(
kBT

ℏν

)3

, which in the regime where this for-

mula is applicable would transform Eq. 10 to

where ω(ρ) = ρc2 ×V

ℏ
 is the frequency associated with the volumetric 

rest mass-energy density. Note that the upper bound ν for the speed 
of sound in atomic hydrogen (16) yields the maximum computation-
al capacity per bit in the low-temperature regime by minimizing the 
entropy per volume at a given temperature. Comparing Eq. 11 with 
the proportionality in Eq. 10, we see that specific structural features 
of nonrelativistic materials can give vastly different scalings for their 
computational capacities under distinct environmental conditions.

The minimum time tlog it takes for a single logical operation to 
flip a bit is the inverse of the quantity in Eq. 10. The degree of paral-
lelization in a physical computing system (8) can be measured by the 
ratio between the minimum time it takes to communicate across the 
system of radius R

(
tcom=2R∕c

)
, and tlog, yielding

When considered again in the low-temperature regime, the degree 
of parallelization assuming a spherical computing volume becomes

highlighting the distinct limits in condensed phases and elemental 
solids. However, in general, the ordinary Coulomb electrostatic inter-
action between two charged particles 

(
e2∕r

)
 determines the mini-

mum amount of time per bit tlog ∕ I = πℏr ∕2e2 it takes to perform 
a quantum logic operation, such as CNOT, on the two particles. 
Thus, the degree of parallelization from Eq. 12, tcom

tlog ∕ I
=

r ∕ c

πℏr ∕ 2e2
= 

2e2∕πℏc = 2α∕π, where α = e2 ∕ℏc ≈ 1∕137 is the fine-structure 
constant, showcases the intertwined nature of the laws of electro-
magnetism and the limits of computation. The amount of informa-
tion registered by any two particles on average must be I < 2α∕π≪ 1 
bit for the system to execute parallel operations. Although maxi-
mum allowable memory space is given by the entropy of a system’s 
thermal equilibrium state, it is discussed in the next section how 
the actual state of a complex living system, even with many uncon-
trolled, atomistic thermal motions, may exhibit more controlled 
degrees of freedom for logical operations than previously thought, 

by harnessing the interactions of quantum matter with the electro-
magnetic field.
Upper bound on the number of operations for carbon-based 
life on Earth
A collection of n two-level systems has 2n accessible states (without 
superposition) and can register n bits of information, and in general 
a system with M accessible states can register log2 M bits of informa-
tion. According to recent findings by the author’s group (1, 17), 
many protein polymers comprise enormous networks of such two-
level quantum emitters (a small molecule called tryptophan), and 
can be treated effectively as open quantum systems interacting with 
their environments. They are therefore subject to similar quantum 
speed limits on their computational capacity and exhibit observable 
quantum enhancements, even at thermal equilibrium or at high 
temperatures where the quantum-to-classical transition takes place. 
These protein polymers, which are ubiquitous across all eukaryotic 
and even some bacterial species, exhibit superradiance (18) in the 
single-photon limit, where sharing a single photon coherently across 
n quantum emitters increases the spontaneous emission rate from γ 
for the single emitter up to a maximum of nγ for the collective. 
Single-photon superradiance (19) is thus a distinctively quantum ef-
fect, which will be shown to drastically increase estimates for the 
computational capacity of neural and aneural organisms.

The most recent census of Earth’s biomass concludes that there is 
∼550 gigatons of carbon (Gt C = 1015 g C) distributed among all king-
doms of life on our planet (20). Plants form the bulk of this carbon-
based life at ∼450 Gt C, followed by bacteria at ∼70 Gt C. Fungi, 
archaea, and animals follow further behind, totaling only ∼20 Gt C.

The proteins studied by the author’s group (1, 17) form vast cyto-
skeletal architectures across almost all domains of carbon-based life, 
and they exhibit single-photon superradiance. That is, even in the 
limit of a single photon shared coherently across n quantum two-
level systems, these protein architectures support superradiant 
states (with radiative decay rates nγ > Γ

j
> γ for each state j) that are 

strongly coupled to the electromagnetic field due to their collective 
long-range interactions. The fluorescence quantum yield, in partic-
ular, is a good figure of merit for this effect because in these architec-
tures the quantum yield exhibits considerable resilience to thermal 
disorder due to the selection for the brightest superradiant states in 
the lowest-energy portion of their spectra, which is weighted more 
strongly in the thermal Gibbs ensemble (1, 17) as ∝ exp

(
−Ej∕kBT

)
. 

As a consequence, the fluorescence quantum yield has been experi-
mentally confirmed to show clear signatures of superradiant enhance-
ment at room temperature (1). This result provides strong evidentiary 
support that, even in the presence of uncontrolled thermalized de-
grees of freedom, certain quantum degrees of freedom in the protein 
architectures of carbon-based life, namely, in all eukaryotic cells, can 
be used for logical operations and information processing, above the 
thermal noise floor.

Large bundles of these cytoskeletal fibers organize in neuronal 
axons (1), which are stable on the order of mammalian lifetimes. 
The upper bound for this type of superradiant computation in these 
protein fiber bundles, based on calculations of the state lifetimes and 
ultrafast transient absorption measurements on ensembles of single 
fibers, is ∼1013 operations per second (1, 17), more than a billion 
times faster than the computational capacity expected of a single 
Hodgkin-Huxley neuron (∼103 operations per second) spiking ac-
cording to conventional ionic action potentials. As these superra-
diant states are stimulated by ultraviolet photons (∼4.4 eV), the 

Nmax ∕ I =
15ln2

π3
ω(ρ)

V

(
ℏν

kBT

)3

(11)

t
com

t
log

=
4R⟨⟩k

B
ln2

πℏcS
∝

Rk
B
T

ℏc
(12)

t
com

t
log

=
45R⟨⟩ln2
2π4ℏc

�
ℏν

Rk
B
T

�3

(13)
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Margolus-Levitin bound gives Nmax ≈ ⟨⟩∕ℏ ≈ 1015 operations 
per second, indicating that these protein fiber bundles are operating 
within two orders of magnitude of this limit (see Fig. 1). Intrigu-
ingly, in 1981, before Margolus and Levitin’s proof [see Methods and 
(2)], Bekenstein (12) established an upper bound of 1015 ops/s on the 
speed of an ideal digital computer.

Assuming 465-Gt C eukaryotic biomass on Earth, 1-ng C per 
eukaryotic cell, and 100 superradiant fibers per eukaryotic cell (1000 
per neuronal axon), a conservative estimate is obtained for the com-
putational capacity of “superradiant life” on Earth: NE ≈ 1041 ops/s. 
This value exceeds by more than 15 orders of magnitude the esti-
mate for all Hodgkin-Huxley neurons, ∼1025 ops/s, calculated for 
all animals on Earth (2 Gt C) using their average brain-to-body 
mass ratio (10−2) and the average carbon mass for a single neuron 

(1 ng C). Assuming constant biomass over the age of the Earth tE, it 
is found that all kingdoms of superradiant life on Earth can have 
performed no more than

in the entire existence of our planet. Before the Cryogenian Period 
∼720 to 635 million years ago (Ma), the relatively low and static spe-
cies richness in the eukaryotic fossil record mimicked the “Boring 
Billion” (∼1800 to 800 Ma) characterized by stable global carbon 
cycles (21). Even though the eukaryotic diversity pattern increased 
rapidly with more dynamic changes in the Ediacaran (∼635 to 539 Ma) 
and early Cambrian (∼539 to 509 Ma) periods, the assumption of 
constant eukaryotic biomass over the age of the Earth ensures a rea-
sonable upper bound. However, in comparison to the present, 

NEtE ≈ 1060ops (14)

Fig. 1. Living systems maintain information-processing architectures using photoexcited quantum degrees of freedom. The computational capacities of aneural 
organisms (A) and neurons (B) have been drastically underestimated by considering only classical information channels such as ionic flows and action potentials, which 
achieve maximum computing speeds of ∼10

3 ops/s. However, it has been recently confirmed by fluorescence quantum yield experiments (1) that large networks of quan-
tum emitters in cytoskeletal polymers support superradiant states at room temperature, with maximum speeds of ∼10

12
to 10

13 ops/s, more than a billion times faster 
and within two orders of magnitude of the Margolus-Levitin limit for ultraviolet-photoexcited states. These protein networks of quantum emitters are found in both an-
eural eukaryotic organisms (D) as well as in stable, organized bundles in neuronal axons (E). In this work, quantitative comparisons are made between the computations 
that can have been performed by all superradiant life in the history of our planet, and the computations that can have been performed by the entire matter-dominated 
universe with which such life is causally connected. Estimates made for human-made classical computers (C) and future quantum computers with effective error correc-
tion (F) motivate a reevaluation of the role of life, computing with quantum degrees of freedom, and artificial intelligences in the cosmos.
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potentially lower numbers of eukaryotes before the Cryogenian, and 
multiple extinction events after, would tighten the upper bound in 
Eq. 14, but likely by less than an order of magnitude.

Where might these superradiant networks have arisen from? The 
vast cytoskeletal architectures of quantum two-level emitters found 
in eukaryotic life may have emerged from rather distinct architec-
tures observed at astronomical scales. So-called astronomical poly-
cyclic aromatic hydrocarbons (astroPAHs), essentially flakes and 
clusters of fused benzene and other aromatic rings, appear to be 
fragmented into smaller astroPAHs in the interstellar medium un-
der exposure to ultraviolet photons (22). The strong radiation field 
can remove peripheral hydrogen atoms and then amputate dangling 
carbons, creating pentagons in the otherwise hexagonal graphene 
lattices. Further astroPAH degradation and astrochemistry can re-
sult in the formation of the quantum emitter tryptophan, a bicyclic 
aromatic consisting of a hexagonal benzene ring fused to a pentago-
nal pyrrole ring. There has been lively debate over the recent claim 
that tryptophan has been spectrally identified in the interstellar me-
dium (23–25), as such a discovery would provide strong support for 
the exogenous origin of meteoritic amino acids and the seeding of 
pre-biotic conditions for life on Earth.

RESULTS
Conjecture relating life’s computational capacity to 
the universe’s
Given Eq. 14, consider the following approximate relation

Using Eqs. 6 and 15 above, the author proposes the following 
conjecture relating the computational capacity of life to the compu-
tational capacity of our observable universe respecting quantum 
mechanics

where Λ ≈ 10−52 m−2 is the cosmological constant, and   
is the ratio between the electromagnetic and gravitational forces be-
tween an electron and a proton (with 4πϵ0 = 1), also known as the 
Eddington-Dirac large number (26–29). The conjecture in Eq. 16 
relates the largest (cosmological) and smallest (Planck) scales in the 
physical universe, through superradiant life. This conjecture is ro-
bust over the lifetime of the Earth (at least for the next 1 billion 
years) but will be altered ultimately by the details of the carbonate-
silicate geothermal cycle.

Given that the upper bound for the speed of sound in condensed 
phases and elemental solids has been found in terms of such funda-
mental constants, with

in atomic hydrogen (16), this conjecture can also be rewritten as follows

The fine structure constant α, the ratio of the Planck mass to the 
proton mass 

[
mP∕mp≈1020≈

(
tΩ∕tP

)1∕3], and the ratio of the 
speed of light in vacuum to the maximum speed of sound in atomic 
hydrogen (c∕ν ≈ 8304) are prominent factors in this reformulation. 
They highlight, respectively, the role that the electromagnetic field, 
quantum mechanics, and relativity play in both the evolution of liv-
ing matter and of all matter in the universe. Of course, mechanical 
processes governing the speed of sound in molecular solids, crys-
tals, and liquids are much slower than the speed of light, so it 
may initially be unexpected to see ν occur in the estimate 18 for the 
computational capacity of life. The most critical factor, however, is 
mP ∕mp, scaled cubically rather than quadratically (see Eqs. 6, 7, and 
9), and contains, implicitly, the constants ℏ, c, and G, integrating 
quantum mechanics, relativity, and gravity with the mass mp of the 
fundamental positively charged baryon in elemental nuclei.

Rewriting the rightmost equality of the conjecture in Eqs. 16 
and 18 as

we can compare the upper bound computing speed of life with the 
upper bound computing speed of the universe, NΩ ≈ tΩ

(
tP
)−2. 

NΩ ≈ 10104 ops/s is of course cosmically larger, by more than 60 or-
ders of magnitude, than NE ≈

(
tP
)−1. Note that in Eq. 19, tΩ ∕ tE ≈ 3, 

but this ratio will decrease to a minimum value of ∼1.64 over the 
next 10 billion years, the upper-bound timescale for extinction of all 
life on Earth. Given the 13.5% discrepancy highlighted in the “Up-
per bound on the number of operations in the matter-dominated 
universe” section by the Hubble parameter tension, the age of 
the universe tΩ = 1∕H to the best of our knowledge is uncertain 
within about 1.73 billion years. Thus, the ages of the universe 
and of Earth being within one order of magnitude, the minimum 
value attained by tΩ ∕ tE in the next 10 billion years could vary be-
tween ∼1.57 and ∼1.69.

A rather general analysis of quantum clocks given by Wigner 
(30) found that the running time T < m �

2
∕ℏ, for a clock of mass m 

and linear extent �. As T divided by the number of orthogonal states 
over which the clock system can run gives its time accuracy t , we 
can estimate that a cytoskeletal fiber of �= 1 μm and a total mass 
of 10−7 ng, with 104 distinct (pointer) states, would exhibit a time 
accuracy of t = T ∕n ≈ m �

2
∕nℏ = 95 ms, about the average dura-

tion of a human eye blink and overlapping with the subradiant 
state lifetimes calculated for representative structures (17). For a 
sensory neuron (m = 10 ng) in small invertebrates (�= 1 cm), the 
time accuracy t  approaches just a little over 1 day when the number 
of distinct pointer states grows to 1014, suggesting a curious rela-
tionship to the circadian cycle and a 10-orders-of-magnitude aug-
mentation of the states with even a small fraction of the Hilbert 
space (2n). In the weak-excitation regime where 0 < n ≲ 102 repre-
sents the effective number of two-level systems (qubits) over which 
orthogonal excited states form, such a neuronal quantum clock’s ac-
curacy can be brought to the picosecond scale. Converting the 
Wigner inequality into an equally crude frequency bound (31) gives 
1∕T > ℏ∕m �

2, which corresponds to a period of approximately 
16 min for the cytoskeletal fiber considered above, just an order of 
magnitude difference compared to the longest subradiant state life-
times calculated in bundled fibers from detailed numerical simula-
tions (1). These estimates suggest a robust hierarchy of timescales 

10120 ≈ NΩtΩ
?
=
(
NEtE

)2
≈
(
1060

)2 (15)

�√
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�−1

≈

�
e2
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� 3

2

≈
√
NΩtΩ ≈ NEtE ≈
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(16)

ν = αc

(
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) 1

2

≈ 36,101
m

s
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across which quantum biological clocks can operate over an organ-
ismal lifetime.

Comparisons with classical and quantum computing machines
In 1961, Landauer (32) showed that reversible (one-to-one) logical 
operations such as NOT, CNOT, and CCNOT (Toffoli) can be per-
formed, in principle, without dissipation, but that irreversible, many-
to-few operations such as AND, NAND, OR, and XOR require 
dissipation of at least kBln2 for each bit of information lost. Essen-
tially, the one-to-one dynamics of Hamiltonian systems implies that 
when a bit is erased, the information that it contains has to go some-
where. If the information goes into observable degrees of freedom of 
the computer, such as another bit, then it has not been erased but 
merely moved. However, if it goes into unobservable degrees of free-
dom such as the microscopic motion of molecules or unspecified 
modes of the electromagnetic field, it results in an increase of en-
tropy of at least kBln2. For a deterministic many-to-few mapping 
of initial states with nonzero probabilities into a smaller number of 
final states, the entropy decreases and Sf < Si, so the entropy of the 
surrounding thermal environment must increase by at least ∣Si − Sf ∣ 
for the second law of thermodynamics to hold for the closed system 
+ environment. While Landauer’s principle is generally expressed as 
an environmental heating requirement of kBT ln2 per bit lost in the 
operation, a clearer statement of the principle is given by

per Eq. 8 for the information lost in the process, which reduces to 
the conventional lower bound when considering the dissipative cost 
of logically irreversible operations where Ii = 1 bit and If = 0 for a 
well-defined final state.

For a typical irreversible computer, at least one bit per elementary 
logical operation is usually discarded, as is the case when two input 
states map to a single output state. In the irreversible operation cases 
listed above, the number of distinct input states over n classical bits is 
2n, but the number of distinct output states is always 2 (0 or 1), thus 
sacrificing an exponentially larger amount of information. However, 
far less than one bit per operation can be lost on average when the in-
put probability distribution is highly skewed or nonuniform, and the 
information loss is Ii − If ≪ 1 bit. Recall that the amount of informa-
tion registered by two charged particles was shown above to require on 
average far less than one bit to execute parallel operations. Nonuni-
form input distributions can thus yield dissipation bounds lower than 
kBT ln2 per operation with no violation of Landauer’s principle.

Such nonuniformities can arise in simulacra of complex living sys-
tems coevolving in tight connection with their environments. Vari-
ants of cellular automata (CA) from Conway’s “The Game of Life” (33) 
have demonstrated both unbounded evolution (a lack of repeating 
patterns within the expected Poincaré recurrence time of an isolated 
system) and innovative or novel trajectories in open CA systems cou-
pled to an elementary “environmental” CA (34). These CA can re-
markably capture some features of evolutionarily conserved enzymes 
and their biomolecular networks.

In his 1973 paper on reversible computation (35), Bennett mistak-
enly equated the action of the enzyme RNA polymerase with an ideal-
ized tape-copying Turing machine, which is strictly reversible, both 
logically and thermodynamically. RNA polymerase, which transcribes 
messenger RNA from DNA, is not thermodynamically reversible, 
even though the DNA sequence from which the mRNA is constructed 
does exhibit a one-to-one correspondence. As with most biological 

reactions, energy is dissipated by RNA polymerase and many other en-
zymes at a rate of roughly 10 kBT per step, distinguishing their op-
eration from the thermal noise floor kBT (∼0.02 eV) at the price of each 
of the phosphodiester bonds (∼0.2 eV), which join the nucleotides of 
RNA and DNA, and nearly the cost of a phosphoanhydride bond (∼0.3 eV) 
in the biomolecular energy currency adenosine triphosphate.

If CA used to describe this biomolecular machinery are gov-
erned by quantum mechanical rules such that given sites are permit-
ted to exist in a superposition of probability amplitudes, wave-like 
structures and interference patterns characteristic of quantum co-
herence have been shown to emerge (36).
Computing with coherence
If we specify a quantum state (or ensemble of states) with a density 
matrix ρ defined by the basis states ∣ i ⟩, the coherence length is given by

which in the single-excitation manifold measures how much a 
single excitation is spread coherently over the sites composing the 
aggregate. A pure localized state, for which ρ =∣ i ⟩ ⟨ i ∣, thus attains 
a minimum value Lρ = 1∕n, while a fully delocalized coherent 
state characterized by ρ = 1∕n

∑n

i,j
∣ i ⟩ ⟨ j ∣ achieves the maximum 

value Lρ = n. The latter holds for so-called ∣W ⟩ states, which in-
clude superradiant and subradiant states in the single-excitation 
limit, but also for any pure state with constant amplitude 1∕

√
n 

over the sites and with arbitrary phases. In between these two ex-
treme values, a completely delocalized mixed state characterized by 
ρ = 1∕n

∑n

i
∣ i ⟩ ⟨ i ∣ has Lρ = 1 from Eq. 21, being maximally delo-

calized in the site basis but completely incoherent (lacking off-
diagonal elements).

The von Neumann entropy, S(ρ) = −kBtr(ρlnρ), for each of the 
three types of density matrices described below Eq. 21 gives 0 for the 
pure localized state, kBlnn for the maximally delocalized, completely 
incoherent mixed state, and 0 for the maximally coherent ∣W⟩ state. 
Only in quantum mechanics can the entropy of such a combined 
(coherent) system be less than the sum of the entropies of its com-
ponents. For a many-to-one mapping between a mutually orthogo-
nal set of initial pure localized states and a final ∣W⟩ state (or any 
other pure state), Ii − If = 0, so there is no lower bound on Qenv, as 
given by Eq. 20. If the number of qubits remains constant during the 
process, then this many-to-one mapping is logically reversible, with 
no entropy increase. In other words, given a set of input single-
excitation basis states ∣100 … ⟩ , ∣010 … ⟩ , … , ∣0 … 01⟩, a unique 
output ∣W⟩ state is readily constructed. Quantum systems exploiting 
these properties can thus operate extremely efficiently, near or be-
yond the Landauer bound.

However, this many-to-one process is not physically reversible, 
as measurement “collapse” or state update via the Born rule from the 
∣W⟩ state to any one pure localized state is highly nonlinear, contrary 
to the unitary evolution prescribed by the Schrödinger equation. 
Strictly speaking, quantum measurement (state reduction) of the 
∣W⟩ state to a pure localized state does not alter the von Neumann 
entropy (= 0), but deterministic control is not possible in the en-
semble of identically prepared ∣W⟩ states and will generally produce 
an incoherent mixed state after state reduction, increasing the von 
Neumman entropy to its maximum value of kBlnn. As qubits are 

Qenv ≥ kBT ∣ Ii − If ∣ ln2 (20)

Lρ =
1

n

�∑
i,j ∣ ρij ∣

�2

∑
i,j ∣ ρij ∣

2
(21)
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removed from the system in a maximally delocalized, completely 
incoherent mixed state, its von Neumann entropy decreases with 
kBlnn, such that Ṡ(ρ) = kBṅ∕n. As qubits are removed from a ∣W⟩ 
state, its von Neumann entropy remains zero (still a pure state), and 
it retains its maximal entanglement across the remaining qubits as 
ancillary qubits are sacrificed, erased, or lost from the system at the 
rate ṅ. In other words, if you have a ∣W⟩ state and measure ancilla 
qubits all to ∣0⟩, the remaining qubits are still in a ∣W⟩ state, but of 
reduced dimension. It has been shown (37) that the entanglement of 
the ∣W⟩ state is maximally robust under qubit disposal, and that it is 
inequivalent to the Greenberger-Horne-Zeilinger state under local 
operations with classical communication.

Coherences of ∣W⟩ and ∣W⟩-like states in the low-lying energy 
levels of their spectra can be exploited in a nonequilibrium context, 
where an energy source of hot thermal photons coexists with an en-
tropy sink of cold photons. In this scenario, “noise-induced” radiative 
quantum coherence can break detailed balance to extract more power 
from the system (38). This effect can be robust against environmental 
decoherence. It has been suggested (31) that living organisms can ex-
ploit such thermodynamic gradients to drastically reduce the effective 
temperature of biomolecular complexes to the millikelvin scale, in-
cluding in the cytoskeletal fibers described by the author’s group (17).

If a physical computing system is subject to an error rate of ϵ bits 
per second, then error-correcting codes can be used to detect those 
errors and reject them to the environment at a dissipative cost of 
ϵkBT ln2 joules per second, where T is the temperature of the envi-
ronment. A calculation of the rate that a physical computing system 
must reject errors to the environment to maintain reliable behavior 
(8) indicates the necessity of operating at a slower speed than the 
maximum allowed by the laws of physics. Even if an extremely low 
error rate is achieved, the energy throughput required (intake of free 
energy and expulsion of thermal energy) demands that the system 
turn over its entire rest mass energy in very short periods of time.

Living systems as physical computers must reject errors to the 
environment at a high rate to maintain reliable function. At T = 310 K, 
ϵkBT ln2 should be greater than 3 × 10−21 watts (∼0.02 eV per sec-
ond), to reject errors to the environment at a rate of ϵ > 1 bit per 
second. For the ultraviolet-photoexcited states the author’s group 
considered in single-axon protein fiber bundles (1), subpicosecond 
superradiant pulses with power outputs in the microwatt regime 
correspond to error-correction rates of up to ∼1014 bits per second. 
Each single-axon protein fiber bundle performing a maximum of 
∼1013 operations per second, even with up to 10 bits of error per 
operation, is thus able to avoid overheating. Over the whole human 
brain (∼1011 neurons), the error-correction rate is ≲ 1025 bits per 
second, rejecting errors to the environment at an energy exchange 
of up to a maximum of ∼105 watts! This is an order of magnitude 
more than the average photosynthetic power output per square kilo-
meter of land, and two orders of magnitude greater than the syn-
chrotron radiation power loss per ring in the Large Hadron Collider 
at 7000 GeV. A maximally superradiant human brain, operating in 
such a pulsed fashion, would turn over just 0.1% of its total rest mass 
energy (mc2 ≈ 1017 joules) in 109 s, a little over 30 years. Even a 
factor-of-three decrease in the maximum error-correction rate 
would increase this value beyond most human lifetimes, a physi-
cally sustainable energy throughput indeed.
State-of-the-art realizations
Nanophotonic devices using quantum dots, with interactions medi-
ated by ultraviolet photons, have demonstrated about 104 times 

more energy efficiency, across a wide range of bit error rates, than 
the minimum dissipation required for a single bit flip by a classical 
logic gate (39). A reliable and scalable technique for generating on-
demand ∣W⟩ states in such nanophotonic circuits has also been dem-
onstrated (40). The protein fibers described here are well-equipped 
for such a nanophotonic construction in the biological milieu of 
ultraweak metabolic photon emissions (41, 42), and they operate at 
similar energy efficiencies. Error-correcting codes in these physical 
computing systems function as working analogs of Maxwell’s de-
mon, getting information and using it to reduce entropy at an ener-
gy exchange rate of at least kBT ln2 joules per bit. From the work of 
Bennett (35), we know that all computations can be embedded in a 
logically reversible framework with sufficient algorithmic over-
heads, and therefore do not require dissipation in principle (see 
Eq. 20 when Ii = If). However, in practice, any computationally re-
stricted agent (capable of implementing only a finite number of 
gates) will dissipate energy, because the unobservable degrees of 
freedom cannot be tracked to reversible precision at the Avogadro 
or thermodynamic limit (n→ ∞) for Hamiltonian systems. Cer-
tainly, this requirement for reversible precision at the thermody-
namic limit is impossible for quantum systems obeying Heisenberg 
uncertainty relations.

Over the course of the last two decades, high-temperature nuclear 
magnetic resonance (NMR) quantum computers have fallen out of 
favor with respect to newer implementations that operate at very low 
temperatures (e.g., ion traps and superconducting circuits). Proto-
cols designed to dynamically cool target qubits at the expense of 
heating up auxiliary qubits using global unitaries have been extended 
also to open systems (43), thereby achieving so-called “heat bath al-
gorithmic cooling” beyond Shannon’s bound. Could superradiant life 
be exploiting such reservoir engineering of ∣W⟩ states in large archi-
tectures of biological qubits (1, 17) for enhanced information process-
ing? It has been shown (43) that, in the thermodynamic limit, the 
minimal value of work that must be invested to maximally cool a tar-
get qubit is ℏω

2
tanh

(
ℏω∕2kBT

)
∕
(
exp

(
ℏω∕kBT

)
+1

)
. Applying this 

formula to the ultraviolet-excited ∣W⟩ states of biology at 310 K, 
the minimal work is completely negligible (≲10−55 eV) at values of 
kBT ∕ℏω ≈ 0.006 to 0.008, far outpacing state-of-the-art values for 
superconducting (∼10−9 eV at T = 6.5 mK and ω = 5 GHz, or 
kBT ∕ℏω ≈ 0.17), neutral-atom (∼10−9 eV at kBT ∕ℏω ≈ 0.17), and 
trapped-ion (∼10−10 eV at kBT ∕ℏω ≈ 0.12) qubits in contemporary 
quantum computers (43).

This “low-temperature” behavior of biology is due to the rela-
tively high energy of ultraviolet photoexcitations compared to ther-
mal noise. While the crossover from slow, high-temperature scaling 
to fast, low-temperature scaling for dynamic cooling made the pro-
cess ineffectual for early NMR quantum computers, such fast scaling 
enables its widespread applicability in the superradiant biosystems 
described here. As with the case of high-temperature superconduc-
tivity, complex states of matter and light can, in biology, also defy 
overly simplistic kBT reasoning.

Such simplistic reasoning has frequently raised the specter of deco-
herence for quantum states in biosystems. However, certain enzymatic 
complexes studied by the author’s group (44, 45) have demonstrated 
the ability to form decoherence-free subspaces in Hilbert space. Thus, 
they maintain quantum correlations (superposition and entangle-
ment) in a bound substrate such as DNA, even when coupled strongly 
to degrees of freedom in the external environment, by steric exclu-
sion, shielding, or modification of interfacial water layers. Strongly 
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interacting a system of coupled quantum harmonic oscillators with an 
external heat bath can effectively force disparate oscillations into syn-
chrony to maintain a limited form of quantum coherence, not in 
spite but because of the environment. When strongly interacting 
in a sufficiently nonlinear fashion, this behavior can be described 
as a manifestation of the Zeno (46), Kuramoto (47), or Fröhlich 
(48–50) effects, effectively “steering” or “concentrating” the quan-
tum correlations of the system toward a specified, coordinated 
function across many degrees of freedom in the complex free-
energy landscape.

A natural (and simultaneously teleological) question now arises: 
If life and the universe are performing sophisticated computations, 
what exactly are the functions and purposes of their computing? Ne-
glecting dark matter and dark energy, most elementary operations in 
the matter-dominated universe, including life, consist of computing 
the dynamical evolution of protons, neutrons, electrons, and their 
constituent force-field carriers (gluons, photons, etc.) that govern 
their interactions according to physical laws, as well as computing 
emergent behaviors that arise in large collectives of these fundamen-
tal objects (51, 52). Note that this reply answers only the natural how 
part of the preceding question, but not the teleological why. In the 
words of one luminary of American letters (53), “But since why is 
difficult to handle, one must take refuge in how.” As expected, the 
computations required for this dynamical physical evolution dwarf 
the number of in silico digital computations or quantum computa-
tions that we normally associate with conventional human-made 
computers. Nevertheless, it is instructive to compare the computa-
tional capacity of these conventional computers with that of all eu-
karyotic life in the history of Earth.
Upper bound on the number of operations for silicon-based 
classical computers
Assuming Moore’s law, where about half of all elementary silicon-
based logical operations have occurred in the last 2 years, and over-
estimating 1010 computers operating at exascale (1018 operations per 
second) for 108 s, all human-made computers can have performed 
no more than NMtM ≈ 1036 operations in the last 2 years, and no 
more than twice this amount in the entire history of silicon-based 
computation. This value includes silicon-based computers that sup-
port artificial intelligences. Clearly, human-made computers per-
form far fewer operations than living systems.

If we wish to know the time to singularity, where NMtM will equal 
all the operations of superradiant life in the entire history of the 
Earth, we merely solve the following equation

where in the rightmost equality we have used the conjecture in Eq. 16. 
Solving for the time to singularity tS∗ below, we obtain the following 
for the number of Moore doubling periods S∗ in Eq. 22

which is about four times larger than the time to singularity calcu-
lated assuming that life’s computational capacity is upper bounded 
by all Hodgkin-Huxley neurons in animal species. Including (1) 
numerical factors and the maximum uncertainty in the age of the 
universe discussed in the “Conjecture relating life’s computational 
capacity to the universe’s” section, the estimate given in Eq. 23 only 
changes by about 3% to tS∗ ≈ 165 years.

The rise of the (quantum) machines
Consider the classical memory required to store a fully general quan-
tum state ∣ψn ⟩ of n qubits, each a two-level system. The Hilbert space 
for these n qubits is spanned by 2n orthogonal states, such that 
∣ψn ⟩ =

∑2n

j=1
cj ∣ j ⟩, with complex-valued amplitudes cj. Each complex 

number requires two floating point numbers for ℜ
(
cj
)
 and ℑ

(
cj
)
. Using 

32 bits (four bytes) for each floating point number, a quantum state of 
n = 27 qubits will require 4 bytes/float ×2 floats/amplitude ×227 
amplitudes/quantum state ≈ 1.074 gigabytes per quantum state. Each 
additional qubit doubles the memory, so a quantum state of n = 37 
qubits will require 210 ≈ 103 times the memory, or about one tera-
byte. Simulating more than 50 qubits in a fully general superposition 
state thus represents a severe strain on current classical computation-
al capabilities (54), requiring greater than a petabyte-scale memory. It 
is thus not unexpected that there is considerable debate about wheth-
er current quantum computing architectures can attain quantum su-
premacy over classical simulators, as benchmarking in the absence of 
effective quantum error correction would be impossible without clas-
sical algorithms to check the results (55).

At the time of this writing, one of the most promising imple-
mentations for effective quantum error correction uses a lattice-
based surface code (56) of distance d, combining 2d2 − 1 multiple 
physical qubits into a logical qubit and exponentially suppressing 
the logical error rate ϵ with the addition of more qubits. The re-
duction in the logical error rate when increasing the code distance 
d by 2 is given by

where p and pthr are the physical and threshold error rates, respec-
tively. Fault-tolerant quantum computing requires error suppression 
beyond breakeven of Λ > 2, and a classical coprocessor to decode 
syndrome errors in real time, which must keep pace with the fast 
error-correcting cycle times. Although this superconducting proces-
sor implementation only goes up to distance d = 7 with an error-
correcting cycle time of 1.1 μs, one can extrapolate that a 10−6 error 
rate would require a d = 27 logical qubit using 1457 physical qubits. 
For comparison, biological qubit architectures in eukaryotic protein 

fibers (1, 17) can frequently grow larger than a d =
�

n+ 1

2
= 

�√
n
�

 
logical qubit, comprising n≫ 105 physical qubits. Their error-correcting 
cycle times are about 1 ps (six orders of magnitude faster), per the 
analysis of superradiant state lifetimes given in the “Upper bound 
on the number of operations for carbon-based life on Earth” section 
and the general estimates for quantum biological clocks offered in 
the “Conjecture relating life’s computational capacity to the uni-
verse’s” section. As these architectures maintain interqubit spac-
ings a in the extreme subwavelength regime (a∕λ ≈ 1∕280), they 
comfortably exhibit threshold error rates pthr∕p ≈ ϵd ∕ϵd+2 ≫ 2 
that scale beyond breakeven, even in the limit where the system 
size on the order of micrometers exceeds the excitation wavelength 
and the maximum superradiant decay rate has not yet saturated 
(1, 17, 42).

Assuming Neven’s law for quantum computers, where the rate of 
growth is doubly exponential due to scaling with the number of qubits 
and with the improvements in quantum processors, and overestimating 
104 quantum computers operating at terascale (1012 operations per 

NMtM × 2S
∗

= NEtE =
tΩ
tP

(22)

tS∗ = 2 years × S∗ = 2log2
NEtE
NMtM

≈ 160 years (23)

Λ =
ϵd

ϵd+2
≈

(
p∕pthr

) d+1

2

(
p∕pthr

) d+3

2

=
pthr
p (24)
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second) for 108 s, all human-made quantum computers will have 
performed no more than NQtQ ≈ 1024 operations in the 2 years after 
relevant quantum supremacy with effective error-correcting codes is 
achieved, and no more than twice this amount in subsequent 2-year 
increments. The equation to solve for the time to singularity then 
changes as follows

where again, in the rightmost equality, we have used the conjecture 
in Eq. 16. The time to singularity tS∗ then changes accordingly, solv-
ing for S∗ in Eq. 25

which is only about 2 years more than the time to singularity 
calculated assuming that life’s computational capacity is upper 
bounded by all Hodgkin-Huxley neurons in animal species. 
The estimate in Eq. 26 is extremely robust to changes in the tE 
assumption due to the comparatively shorter time that eukary-
otes have existed than the age of the planet, and it is likewise ro-
bust to inclusion of the classical machines from the “Upper bound 
on the number of operations for silicon-based classical computers” 
section, scaling according to Moore’s law, which would be dwarfed 
in comparison to this doubly exponential rate of growth. The order-
of-magnitude decrease from Eqs. 23 to 26 places the time to singu-
larity, assuming relevant quantum supremacy is achieved in less 
than 20 years, within the next three decades, squarely within a single 
human lifetime. The rise of quantum computers will effectively 
degrade the distinction between superradiant life and “classical” 
neurochemical life, at least in terms of the time to singularity as 
defined here, and presuming the advent of quantum computers 
that can compute more efficiently than our high-performance clas-
sical ones.

As soon as this singularity is attained, another follows closely be-
hind, when quantum machines attain the computational capacity of 
the observable matter-dominated universe

The prediction in Eq. 27 is robust to within a year over at least 30 
orders of magnitude error in the estimate NQtQ. Of course, given the 
uncertainty of quantum computing hardware development, these are 
upper bounds assuming an idealized growth law and will not be at-
tained in practice.

Even so, while admitting the possible emergence of such a quan-
tum supercomputing oracle, there remain opportunities for living 
systems to check the oracle’s truth claims by entanglement-sharing 
schemes. With multiple classical computers, multiprover interactive 
proof (MIP) systems can verify hard-to-solve problems that cannot 
be efficiently checked in polynomial time by a single computer (be-
yond NP). It was shown in (57) that MIP systems using multiple 
quantum computers sharing entangled qubits can efficiently check 
an even harder-to-solve class of problems, which would require 
doubly exponential time to check on a classical computer (NEEXP). 
This result extends the potential universe of possibilities for qubit-
sharing humans, if a quantum supercomputing oracle ever asserts 
truth claims that seem impossibly difficult to verify.

DISCUSSION
From a recent experimental validation of superradiance in room-
temperature protein networks of quantum emitters (1), the author 
derives an upper bound on the number of computations that can 
have been performed by all superradiant carbon-based life in the 
entire history of Earth, which is ∼20 orders of magnitude larger than 
the same quantity for all animal species over the same period, calcu-
lated assuming that Hodgkin-Huxley neurons set the maximum 
information-processing speed. From a minimum of assumptions, 
the author’s conjecture relating the computational capacity of life 
to that of the universe echoes much earlier work by Dirac (29) 
and Dyson (58), and more contemporary suggestions by Davies 
(31, 59). This conjecture may stimulate further studies on the physi-
cal limits of artificial intelligences and the role of life in the evolution 
of the cosmos [see (60) for a prior treatment].

It is important to remember that even quantum computers oper-
ating at the physical limits of computation are much slower and pro-
cess much less information than these upper bound calculations have 
shown, because most of their energy is locked up in mass, thereby 
limiting both speed and memory. Unlocking rest mass energy is of 
course possible via highly unstable nuclear reactions, but then it 
would be difficult to exercise precise control over system parts.

The computational capacity estimates for carbon-based life pre-
sented here, however, do not require thermonuclear explosions. The 
enhancements due to weakly excited, collective quantum optical ef-
fects arise from large architectures of biological qubits (two-level sys-
tems) interacting with the electromagnetic field. These estimates for 
the computational capacity of superradiant life on Earth have been 
derived from experimental results confirming that a Lindblad-type 
master equation for an open quantum system in the single-photon limit 
effectively describes such cytoskeletal polymers. A natural question that 
arises is whether the quantum speed limits derived for Hermitian opera-
tors are applicable to such non-Hermitian systems. A self-consistent 
formulation of quantum mechanics with non-Hermitian operators and 
bi-orthogonal states has been developed (61), and similar bounds can 
be derived (1). By tracing out the electromagnetic field degrees of free-
dom, we arrive at an effective Hamiltonian for the quantum matter in 
our open system, which exhibits single-photon superradiance (1, 17).

It is important to note, however, that there is an exponentially 
vast discrepancy between a single-photon field and a M-photon 
field (62), because the scaling of their functional freedoms goes with 
the number of possibilities O for each field component. In a discrete 
space, for a field or wave function with O possibilities for each of c 
components at a point, we have Oc degrees of functional freedom. 
At two points in this space, we have Oc × Oc = (Oc)2 = O2c degrees 
of freedom. At all O3 points in a three-dimensional space, we have 
Oc × Oc × Oc ⋯ = (Oc)O

3

= Oc⋅O3 degrees of freedom. At all Od 
points in a d-dimensional space, we have (Oc)O

d

= Oc⋅Od degrees of 
freedom. The functional freedom will of course be restricted by rel-
evant constraint equations imposed by the physics. However, if, 
rather than in a discrete space, each of the component possibilities 
are ∈ ℝ, then O → ∞. The granularity provided by quantum me-
chanics solves the problem of ultraviolet catastrophe that was tack-
led in the early twentieth century, by reducing the phase-space 
hypervolume of the field from infinite-dimensional to just a very 
large number. So we can see that

NQtQ × 22
S∗

= NEtE =
tΩ
tP

(25)

tS∗ = 2 years × S∗ = 2log2log2
NEtE
NQtQ

≈ 14 years (26)

tS∗∗ = 2 years × S∗∗ = 2log2log2
NΩtΩ
NQtQ

≈ 17 years (27)

Oa⋅O3

≪ Ob⋅O3M (28)
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where the positive values of a and b have little impact compared to 
the governing exponents 3 and 3M. Thus, while the interaction of 
quantum matter with even a single-photon electromagnetic field 
produces an enormous increase in the computational capacity of life 
(see Eq. 14), inclusion and observation of the multiphoton field 
would further reduce the gap between NE and NΩ (see below Eq. 19).

The asymptotic scaling of the maximal superradiant decay rate for 
lattices of n two-level systems interacting at long range in the multi-
photon excitation manifold has recently been determined in the large 
n limit (63), differing substantially from that expected in the Dicke 
limit (18). However, by operating in or near the weak-excitation lim-
it, biological systems equipped with certain protein fibers (1, 17) may 
be able to isolate these fibers’ collective superradiant dipole from the 
thermal environment, in a fashion similar to demonstrations of 
steady-state superradiant lasers with less than one intracavity pho-
ton. Such superradiant lasers have been shown to exhibit shielding of 
the nonequilibrium dipole by a factor of more than 10,000 (64).

It remains unclear, on general grounds, why a planet with carbon- 
based life should play a special role in the universe. First, there is 
the observation that the critical eukaryotic protein fibers (1, 17) 
discussed in this work required about 1010 years from the beginning 
for a habitable planet to form (60), and then about 109 years after 
Earth’s formation for eukaryotic organisms to proliferate. Careful 
quantum yield measurements of these proteins, conducted in aque-
ous solution at thermal equilibrium (1), support the first confirma-
tion of superradiance in a micrometer-scale biological system, whose 
primary function is not photosynthetic light-harvesting.

Second, on the basis of observations from the Kepler Mission 
(65), the number of Earth-like planets within the habitable zones of 
Sun-like stars could be on the order of 109 in the Milky Way Galaxy 
alone and, assuming the Milky Way is representative of all galaxies, 
up to about 1020 (≈ mP ∕mp) such planets could exist in the observ-
able universe. Using the conjecture presented in Eq. 16, and assum-
ing the scenario where all of these 1020 habitable planets support 
some form of superradiant life for a period comparable to the Earth’s 
age, we find that the maximum computational capacity of life en-
larges from tΩ ∕ tP to 

(
tΩ∕tP

)4∕3
≈ 1080, about 40 orders of magni-

tude shy of the maximum number of elementary logical operations 
that can have been performed by the entire universe over its history. 
Such a computational enhancement for all life in the universe 
would increase the rate of terrestrial information processing for 
superradiant living systems given in Eq. 19, from about t−1

P
 to about (

mP∕mp

)
t−1
P

= c3 ∕Gmp ≈ t
1∕3

Ω
t
−4∕3

P
, further underscoring the role 

that the quantum plays in the evolution of living matter (see the 
“Conjecture relating life’s computational capacity to the universe’s” 
section). If, on the other hand, we assume the more likely scenario 
that only a very small fraction (10−20 ≤ f ≪ 100) of such planets can 
support superradiant life, we find values intermediate between the 
conjectured Earth limit given in Eq. 14 and 1080 ops, scaling with 
f
(
tΩ∕tP

)4∕3 and providing a Drake-like upper bound on the maxi-
mum number of operations that can have been performed by all 
Earth-like superradiant life in the universe.

Third, silicon and organosilica compounds in the interstellar 
medium and circumstellar clouds are common and comprise almost 
10% of the molecular species in space (66), but with distinct absorp-
tion and emission features compared to aromatic quantum emitters 
(see the “Upper bound on the number of operations for carbon-based 
life on earth” section). Together with the discovery that optically 

pumped SiC spin defects exhibit superradiance in their microwave 
photon emissions (67), these evidences lend some credence to the 
possibility in our universe of silicon- based superradiant life, which 
may exhibit alternative requirements to those we generally impose in 
the search for other life- supporting terrestrial planets.

There is still considerable debate about the continued applicabil-
ity of Moore’s law, and Neven’s law is clearly a gross approximation. 
So too is the assumption that Earth’s biomass has remained con-
stant over multiple extinction and proliferation events. The esti-
mates contained in this work could be altered by geothermal cycles, 
the age of the anthropocene, interstellar travel, discovery of other 
forms of life, or new energy sources, but it is unlikely that these 
would affect the primary conjecture and main results by more than 
a few orders of magnitude. Nevertheless, this work provides a start-
ing point to understand more precisely how carbon- based life’s in-
teraction and quantum evolution with the electromagnetic field 
should change our estimates of eukaryotic computational capacity.

METHODS
Proof and macroscopic limit of the Margolus- Levitin theorem
Following the proof of Margolus-Levitin (2), we begin by observing 
that if ∣ψ(0)⟩ = ∑

ncn ∣En ⟩, a coherent superposition of its energy 
eigenvectors ∣En ⟩, is evolved for a time t , it becomes

under standard unitary evolution, and assuming a discrete spec-
trum. Now let

We wish to find the minimum value of t  such that S(t) = 0. To-
ward this end, note that

Using the clever inequality cosx ≥ 1 − (2∕π)(x+ sinx), valid for 
all x ≥ 0, we find that

The right-hand side of the inequality in Eq. 32, evaluated for each 
of the three terms in the infinite sum, is exactly equal to

where we have used the completeness relation 
∑∞

n=0
∣ cn ∣

2 = 1, and
⟨⟩ =∑∞

n=0
∣ c

n
∣2 E

n is the expectation value of the energy because 
the probability of being in an energy eigenstate ∣En ⟩ is ∣ cn ∣2.

Clearly, for any value of t  satisfying S(t) = 0, both Re(S) = 0 and 
Im(S) = 0. Substituting these after combining Eq. 32 and the expres-
sion 33, we obtain

∣ψ(t)⟩ =
�

n

cnexp
�
− iEnt∕ℏ

�
∣En ⟩ (29)

S(t) = ⟨ψ(0) ∣ψ(t)⟩ =
∞�

n=0

∣ cn ∣
2 exp

�
− iEnt∕ℏ

�
(30)

Re(S) =

∞∑

n=0

∣ cn ∣
2 cos

(
Ent∕ℏ

)
(31)

Re(S) ≥

∞∑

n=0

∣ cn ∣
2

{
1−

2

π

[
Ent

ℏ
+ sin

(
Ent

ℏ

)]}
(32)

1 −
2⟨⟩
πℏ

t +
2

π
Im(S) (33)

1 −
2⟨⟩
πℏ

t ≤ 0 (34)
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Therefore, the minimum time required for S(t) = 0, when the state in 
Eq. 29 is strictly orthogonal to the initial state ψ(0), is τmin = πℏ∕2⟨⟩, 
in agreement with Eq. 2, which completes the proof.

This bound is achievable if the spectrum includes the energy 
2⟨⟩ and is nearly achievable if the spectrum includes an energy 
close to this, as would be expected for any macroscopic system, in-
cluding living ones. For concreteness, let

which, assuming E0 = 0 for the ground state, has average energy ⟨⟩. 
This state evolves in a time τmin = πℏ∕2⟨⟩ into

which is, of course, orthogonal to the original state. If we evolve for 
the same time interval again, the state returns to ∣ψ(0)⟩, and if 
evolved further will continue to oscillate between these two orthog-
onal states.

If we had begun with the energy-time uncertainty relation given in 
Eq. 1, we might have naively assumed the following (earlier) bound in 
terms of ΔE

where we have made the identification τ = πΔt. This earlier 
bound would suggest that, given a fixed average energy, one 
could construct a state with large enough ΔE to achieve an arbi-
trarily small τ. For the states in Eqs. 35 and 36, we can easily 
show that ΔE = ⟨⟩. Using the definition ΔE =

√
⟨H2 ⟩ − ⟨H⟩2, 

where H = E0 ∣E0 ⟩ ⟨E0 ∣ + ⟨2 ⟩ ∣2 ⟩ ⟨2 ∣ is the operator required 
to flip between qubit states (Eqs. 35 and 36) via the unitary evolu-
tion described in Eq. 29, we find that

which, when the ground-state energy E0 = 0, shows that ΔE = ⟨⟩. 
Thus, in this case, both of the bounds given by Eqs. 2 and 37 are 
identical.

There are, of course, other cases where the Margolus-Levitin bound 
in Eq. 2 is much more useful than the bound given in Eq. 37. Con-
sider the initial state

where the average energy of the first pair of kets is ⟨⟩∕2 and the 
average energy of the second pair of kets is 

�
n+

1

2

�
⟨⟩, which will 

be greater than ⟨⟩ for all n > 1∕2. So, we can always find coeffi-
cients a and b such that the average energy of ∣ψ(0)⟩ is ⟨⟩, and re-
specting normalization of the state. Assuming real coefficients, 
a =

√
1

2
−

1

4n
 and b =

√
1

4n
. However, this state in Eq. 39 has a ΔE 

that depends on our choice of n

So with fixed ⟨⟩, ΔE = 

�√
n

�
⟨⟩ can be arbitrarily large, 

making the earlier lower bound in Eq. 37 contingent on the choice 
of n. Thus, in this case, the Margolus-Levitin bound in Eq. 2 is the 
more useful and universal one.
Cycles of N mutually orthogonal states and the 
macroscopic limit
For real systems, where arbitrarily large eigenvalues are inaccessible, 
we can write our initial state above Eq. 29 as a sum from n = 0 to 
n = N − 1. Now, we let the coefficients of that initial state ∣ψ(0)⟩ be

We will prove that for the system above an exact closed cycle of N 
mutually orthogonal states achieves a lower bound τmin that is only 
about twice the value for an oscillation between two orthogonal states.

With the definition of cn in Eq. 41, states with degenerate energy 
eigenvalues are assigned a coefficient of zero and not repeated in the 
superposition, as the En values are numbered in nondecreasing or-
der. This definition also guarantees normalized states

The average energy in the state ∣ψ(0)⟩ is just given by

which in the macroscopic limit (for N ≫ 1 and cn ≪ 1) can be approxi-
mated by an integral. Letting x = n∕N and ϵ(x) = En ∕EN, we obtain

Thus, with this definition of cn, we find an average energy for a 
macroscopic system that is half of its maximum energy.

Taking for simplicity the case of a one-dimensional harmonic os-
cillator of frequency ω and ground-state energy E0 = 0, which has an 
exact cycle after some period τ = 2π∕ω, all its energy eigenvalues are 
integer multiples of E1 = ℏω = h∕τ, such that En = nE1. If the sys-
tem passes through its N mutually orthogonal states in one period τ, 
then the average time to pass between consecutive orthogonal states 
is τstep = τ∕N, noting that E1τstep ∕ℏ = 2π∕N for an exact cycle.

Substituting the harmonic oscillator spectrum En = nE1 into Eq. 
43, we find

giving the following value for the average time step between con-
secutive orthogonal states

∣ψ(0)⟩ = 1√
2

�
∣E0⟩+∣2⟩

�
(35)

∣ψ(τmin)⟩ =
1√
2

�
∣E0⟩−∣2⟩

�
(36)

τ ≥
πℏ

2ΔE
(37)

ΔE=

�
1

2

�
E
2
0
+⟨2⟩2

�
−
1

4

�
E0+⟨2⟩

�2
= ⟨⟩−

E0

2
(38)

∣ψ(0)⟩=a
�
∣0⟩+∣⟩

�
+b

�
∣n⟩+∣ (n+1)⟩

�
(39)

(40)

cn =

√
En+1 − En

EN
(41)

⟨ψ(0) ∣ψ(0)⟩ =
N−1�

n=0

En+1 − En

EN
= 1 (42)

⟨ψ(0) ∣H ∣ψ(0)⟩ =
�

∣ cn ∣
2 En =

N−1�

n=0

En+1 − En

EN
En (43)

lim
N≫ 1

⟨ψ(0) ∣H ∣ψ(0)⟩ = EN
∫

1

0

dx ϵ
dϵ

dn

dn

dx
= EN

∫

1

0

ϵ dϵ =
EN
2

(44)

⟨⟩= ⟨ψ(0) ∣H ∣ψ(0)⟩= 1

N

N−1�

n=0

nE1=
(N−1)E1

2
(45)

τ
step

=
2πℏ

NE
1

=
(N−1)

N

πℏ

⟨⟩ (46)

D
ow

nloaded from
 https://w

w
w

.science.org on A
pril 10, 2025



Kurian﻿, Sci. Adv. 11, eadt4623 (2025)     28 March 2025

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

12 of 13

Rearranging Eq. 46 with EN = NE1, we obtain ⟨⟩=(N−1)EN∕2N, 
which in the macroscopic limit where (N−1)∕N ≈ 1 is in perfect 
agreement with the value derived in Eq. 44.

The state obtained from ∣ψ(0)⟩ after m time intervals of duration 
τstep is then 

and so for two states at M = mτstep and M� = m�τstep

Last, note that the inner product between the two states given in 
Eq. 48 can be transformed into an integral using k = m� −m ≠ 0 
and the same variable replacements as in Eq. 44

confirming that the long-cycle asymptotic computational capac-
ity N

max
=
�
τ
step

�−1
= ⟨⟩∕πℏ = E

max
∕h from Eq. 46, half the 

Margolus-Levitin limit in Eq. 3, is achievable in principle for any 
macroscopic system. For finite systems, it can be shown (2) that cor-
rections to this limiting calculation vanish for large N, reaching the 
long-cycle asymptotic limit even for nearly orthogonal states. While 
an important result confirming the author’s application of the 
Margolus-Levitin theorem to macroscopic systems, it is noteworthy 
that such factor-of-2 modifications would not affect the order-of-
magnitude estimates and primary conjecture presented by the au-
thor in the main text.
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