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0.1 Abstract (English)

The origin of the late-time accelerated expansion of the universe is still a

great mystery. Numerous cosmological models have been proposed to explain

this phenomenon. Modern days' technology and equipment have allowed

scientists to successfully execute many observations in cosmology and as-

trophysics: space missions, large ground-based telescopes and gravitational-

wave antennas have led to important discoveries and ruled out many models.

The Lambda-Cold Dark Matter, ΛCDM model provides a coherent and satis-

factory framework to accommodate all fundamental observations. Therefore

it is called the �standard model of cosmology�. Despite its many successes,

ΛCDM requires the introduction of dark energy in the form of an unnaturally

small cosmological constant and is plagued by �ne-tuning problems (�why do

dark energy, dark matter and baryons have comparable energy densities to-

day?�). The elementary particle candidates which are assumed to form the

cold dark matter component have never been directly detected. These facts

can be taken as possible indications of a potential crisis. This has motivated

the introduction of various alternative models, among which a novel class of

modi�ed gravity theories, called �mimetic gravity� or �mimetic dark matter-

theory�, which aims at explaining both the dark energy and (at least part

of) the dark matter components as consequences of a suitable modi�cation

of the gravitational theory w.r.t. Einstein General Relativity. (Chapter 1

and 2)

In this PhD thesis, we propose the `generalized mimetic gravity theory',

which arises in full generality by means of a non-invertible disformal trans-

formation of the most general single scalar �eld scalar-tensor theory of grav-

ity and implemented our idea for Horndeski and beyond-Horndeski models.



This novel class of models is a generalization of the so-called mimetic dark

matter theory recently introduced by Chamseddine and Mukhanov, as dis-

cussed in Chapters 2 and 3. It can source the background evolution of the

universe by mimicking any perfect �uid, including radiation, dark matter,

and dark energy. In this chapter, we also show that very general single-

scalar-�eld scalar-tensor theories of gravity are generically invariant under

invertible disformal transformations.

In Chapter 4 we analyze linear scalar perturbations around a �at Friedmann-

Lemaître-Robertson-Walker (FLRW) background in mimetic Horndeski grav-

ity and show that the sound speed is zero on all backgrounds and therefore

the system does not have any wave-like scalar degrees of freedom.

Further, we present mimetic vector-tensor theories. In particular, we es-

tablish that the non-invertible disformal transformation at the origin of the

normalization constraint term in the Einstein-Aether theory, i.e., that the

Einstein-Aether theory is also in the class of mimetic theories. We shall also

show that an Einstein-Maxwell system sourced by dust can be recovered in

the weak limit of a minimal Einstein-Aether theory and that vector �eld

becomes rotation and acceleration free in such a limit (Chapter 5).

Finally, in the concluding Chapter 6, we wind up the thesis by discussing

some applications and future research directions in mimetic theories of grav-

ity.

The Chapters 3 and 4 are based on our published papers [2, 3] and Chapter

5 is based on the material which will appear in a forthcoming paper (P.

Karmakar, T. Koivisto, D. Mota and S. Mukohyama.)[4].



0.2 Sommario (Italiano)

L'origine dell' accelerazione con cui attualmente l' universo si sta espandendo

è ancora uno dei più grandi misteri della cosmologia. Diversi modelli cos-

mologici sono stati proposti per spiegare questo fenomeno. Le tecnologie e

gli strumenti di misura moderni hanno permesso agli scienziati di eseguire

con successo molte osservazioni in cosmologia e astro�sica: missioni spaziali,

grandi telescopi terrestri e antenne per misurare le onde gravitazionali hanno

portato a importanti scoperte ed escluso molti modelli. Il modello cosmo-

logico cosiddetto ' Lambda-Cold Dark Matter ' (ΛCDM) e` il modello che

meglio spiega in un quadro coerente e soddisfacente tutte le osservazioni fon-

damentali. Per questo è chiamato il modello "standard della cosmologia".

Nonostante i suoi numerosi successi, il modello Λ CDM richiede l'introduzione

della cosiddetta energia oscura sotto forma di un' innaturale piccola costante

cosmologica ed è a�itto da problemi di '�ne-tuning ('perchè l' energia oscura,

la materia oscura e i barioni hanno densità di energia paragonabili oggi?').

I candidati di particelle elementari che si presume possano formare la com-

ponente di materia oscura fredda non sono mai stati rilevati direttamente.

Questi fatti possono essere presi come possibili indicazioni di una potenziale

crisi. Ciò ha portato all'introduzione di vari modelli alternativi, tra cui una

nuova classe di teorie di gravità modi�cata, detta `gravità mimetica' o `teo-

ria della materia oscura mimetica', che mira a spiegare sia l'energia oscura

e (almeno parte de) i componenti di materia oscura come conseguenza di

un' opportuna modi�ca della teoria della gravità rispetto alla Teoria della

Relatività Generale di Einstein. (Capitolo 1 e 2)

In questa tesi di dottorato, proponiamo la teoria della `gravità mimetica gen-

eralizzata' , che emerge in piena generalità per mezzo di una trasformazione



disforme non-invertibile della teoria scalare-tensoriale della gravita` a sin-

golo campo scalare piu` generale possibile, implementandola poi al caso dei

modelli di Horndeski e di modelli che vanno oltre Horndeski. Questa nuova

classe di modelli è una generalizzazione della cosiddetta teoria della materia

oscura `mimetica', recentemente introdotta da Chamseddine e Mukhanov,

come discusso nei capitoli 2 e 3. Essa può far da sorgente all'evoluzione di

background dell'universo mimando qualsiasi �uido perfetto, tra cui un �uido

di radiazione, di materia oscura e l'energia oscura. In questi capitoli mostri-

amo anche che teorie scalari-tensoriali della gravita` molto generali a singolo

campo scalare sono genericamente invarianti per trasformazioni disformi in-

vertibili.

Nel Capitolo 4 analizziamo le perturbazioni scalari lineari intorno ad un back-

ground di Friedmann-Lemaître-Robertson-Walker (FLRW) spazialmente pi-

atto nell'ambito della gravità mimetica di Horndeski e dimostriamo che la

velocità del suono e` nulla su qualsiasi background e pertanto il sistema non

dispone di eventuali gradi di libertà scalari che si propagano.

Inoltre, discutiamo teorie mimetiche vettoriali-tensoriali. In particolare, si

stabilisce che la condizione di non-nvertibilità della trasformazione disforme

è all'origine del termine di vincolo di normalizzazione nella teoria di Einstein-

Aether, ovvero che la teoria di Einstein-Aether rientra anch'essa nella classe

di teorie mimetiche. Si mostrerà anche che un sistema di Einstein-Maxwell

con polvere può essere recuperato nel limite debole di una teoria minimale di

Einstein-Ather e che il campo vettoriale di questa teoria diventa irrotazionale

e senza accelerazione in tale limite (capitolo 5).

In�ne, nel Capitolo conclusivo 6, �niamo la tesi discutendo alcune appli-

cazioni e le direzioni future della ricerca in teorie di gravità mimetica.

I capitoli 3 e 4 si basano sulle nostre pubblicazioni [2, 3] e il Capitolo 5 si



basa sul materiale che apparirà in un prossimo articolo (P. Karmakar, T.

Koivisto, D. Mota e S. Mukohyama.)[4].
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Chapter 1

Introduction

1.1 Content of the expanding universe

Galaxies, along with planets, stars, clouds of gas and dust etc., in fact every-

thing that we can see, is just the tip of a cosmic iceberg, a small percentage

of the mass and energy of the whole universe. Considering the standard

model of cosmology, ΛCDM, the recent successful Planck mission con�rms

that our 13.8 billion years old universe is composed of 68.3% dark energy,

26.8% dark matter, and 4.9% ordinary matter [5, 1]. Brie�y put, dark en-

ergy or cosmological constant repels, causing the accelerated expansion of

the universe, and dark matter attracts, a feature which plays an important

role in the structure formation, galaxy formation, and the cosmic microwave

background (CMB) anisotropy [5, 1].

In fact we do not know what is the fundamental nature of those two dark

components. Dark energy, dark matter (and quantum gravity) are not only

three of the biggest problems with regards to Gravitation and Cosmology,

but have also secured their place in the top ten of science problems in this

century. We explain some of the main issues related to dark energy and dark
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1.1. ENERGY BUDGET CHAPTER 1. INTRODUCTION

matter in Section 1.2.2 and 1.3.

It is well established today that our universe is expanding. A function, a,

dubbed scale factor is introduced to describe the relative expansion between

two points in the universe. Therefore this scale factor is a function of cosmic

time, t, which explains the expansion rate of the universe in the di�erent

eras of the evolution of the universe. After the Big Bang, the early uni-

verse has expanded very fast, according to the in�ationary extension of the

ΛCDM model, in the �rst few fractions of a second, which is called in�ation.

The expansion rate became relatively slower after in�ation. The scale factor

dependence was a ∝ t1/2 during this radiation dominated era. The dark

matter dominated the expansion in the subsequent period, and the expan-

sion became a ∝ t2/3. Currently the accelerated expansion is dominated by a

mysterious new form of energy source, with a negative pressure, called dark

energy. The expansion is characterized by the Hubble parameter H,

H =
da/dt

a
. (1.1)

According to GR, H is sourced as,

H2 =

(
ȧ

a

)2

=
ρ

3
− K

a2
, (1.2)

which is called Friedmann equation.

The spatial geometry of the universe can be closed, �at or open, which cor-

responds, respectively, to K = +1, K = 0 or K = −1 or equivalently Ω > 1,

Ω = 1 or Ω < 1 respectively (see, e.g., [6]). K sets the spatial curvature

and Ω is the density parameter of the Friedmann universe. The density pa-

rameter is the ratio of the observed density, ρ to the critical density, ρcrit.

This density parameter is responsible for the curvature of the universe. The

20



CHAPTER 1. INTRODUCTION 1.1. ENERGY BUDGET

relation between K and Ω is given by

K

H2a2
= Ωm(a) + Ωr(a) + Ωv − 1, (1.3)

where Ωm, Ωr and Ωv refer, respectively, to matter, radiation and vacuum

density parameter. One can also de�ne a curvature density parameter, ΩK =

− K
H2a2

.

Observations suggest to us that �at spatial geometry is a good approxima-

tion, ΩK = 0.000±0.005 (95%, Planck TT+lowP+lensing+BAO)[1]. There-

fore the spatial curvature, K, can be neglected.

Using the continuity equation of the barotropic perfect �uid with constant

equation of state w [7], the energy density is

ρ = ρ0a
−3(1+w), (1.4)

where today's energy density is ρ0 and scale factor is a0 = 1.

Radiation-dominated era ρ ∝ a−4 a ∝ t1/2

Matter-dominated era ρ ∝ a−3 a ∝ t2/3

Dark energy dominated era ρ = const. a ∝ eHt

In this thesis, we will mainly concentrate on the expansion of the universe,

proposing a promising model which may explain the above-mentioned ex-

pansion history and we will analyze this model in order to confront it with

observations.

In this chapter, we will �rst explain brie�y General Relativity and afterwards

some of the challenges that it faces. Then we shall move on to a possible

modi�cation to GR in order to confront it to observations. After that we will

explain the standard model of cosmology, its consequences and di�culties

within the standard model.

21



1.2. GENERAL RELATIVITY CHAPTER 1. INTRODUCTION

1.2 General Relativity

Einstein's description of gravity as a geometric property of spacetime is

known as General Relativity (GR) [8]. In his theory, spacetime is quanti-

�ed as a metric tensor, which is also called metric. This metric tensor is a

symmetric tensor of rank two and represents the gravitational potential in

the weak �eld approximation. All the geometric properties of spacetime are

encoded in the metric gµν . The distance between two points in curved space-

time is given by the line element constructed by the metric, ds2 = gµνdx
µdxν

The trajectory of a particle in curved space time is described by the geodesic

equation which is constructed by the metric. In this thesis, we use the metric

signature (−,+,+,+).

In Riemannian geometry, the curvature of the manifold is given by the Rie-

mann tensor, Rµνρσ and the volume of a small wedge of a geodesic ball is

given by the contraction of the Riemann tensor by a metric, Rµν = Rρ
µρν

and the curvature invariant in curved space time is given by the Ricci scalar,

R = gµνRµν .

The �eld equation of General Relativity given by Einstein in terms of the

metric, the derivative of the metric up to second order, and the matter sector

is

Gµν = Tµν , (1.5)

where the Einstein tensor, is Gµν = Rµν − 1
2
gµνR and the energy momentum

tensor, Tµν which includes the matter sector of the universe. We set the speed

of light,c, the geometrical unit, 8πG, and the Planck mass, Mpl to unity, i.e.,

c = Mpl = 8πG = 1. This GR �eld equation can also be derived from the

22
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Einstein-Hilbert action,

S =

∫
d4x
√
−g
[

1

2
R (gµν) + Lm (gµν , ...)

]
, (1.6)

= SEH + Sm, (1.7)

where Lm is the matter Lagrangian and corresponding matter action is Sm.

The properties of the Einstein equation are

1. The Einstein tensor Gµν is a tensor by de�nition.

2. The Einstein tensor contains up to second order derivatives in the met-

ric.

3. Gµν and Tµν are symmetric tensors.

4. The Bianchi identity ensures the conservation of Einstein's tensor,

∇νGµν = 0, which also forces the four-divergence of the energy mo-

mentum tensor to zero, ∇νTµν = 0.

5. In the weak �eld limit, the time-time component of the Einstein equa-

tion must be converted to ∂2g00 = T00. This will lead to the relation,

G00 = ∂2g00.

The matter action Sm, which is made of the Lagrangian, Lm is determined

by particle physics.

1.2.1 Successes of General Relativity

General Relativity successfully explains phenomena such as the perihelion

precession of Mercury, the de�ection of light by massive objects like the Sun,

the gravitational redshift of light, and energy loss from binary pulsars by

emission of gravitational waves. In modern cosmology, General Relativity is
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1.2. GENERAL RELATIVITY CHAPTER 1. INTRODUCTION

well tested and established on small scales, the solar system scales as well as

down to the micrometer ranges. Recently, the LIGO directly detected grav-

itational waves from the merger of a pair of black holes [9], thus con�rming

the predictions of General Relativity and enhancing its acceptability.

1.2.2 Challenges in General Relativity

Gravity is everywhere and has to be tested everywhere. The acceleration of

the universe was con�rmed by the high redshift type Ia supernovae in 1998

and upheld by a few other subsequent observations [10, 11]. The accelerating

expansion and the age of the universe puts a strong challenge to the General

Relativity. On the other hand, General Relativity is not renormalizable,

which limits its ability to be used as a quantum theory of gravity and suggests

a need to upgrade it to a UV complete theory.

Despite being the simple and elegant theory, due to the aforementioned rea-

sons General Relativity is not the �nal result. One may, of course, think

to propose an entirely new theory which may explain all the phenomena of

the universe but, due to the huge success of General Relativity, it might be

smarter to try to modify the General Relativity theory, which may help to

provide explanations of large scale phenomena while preserving the behav-

ior of General Relativity in the small scale cases. One possibility would be

to introduce the modi�cation in the gravity sector, the spacetime geometry,

which is called modi�ed gravity (�modi�ed gravity� as in the modi�cation

of General Relativity). A mysterious form of a new �uid or �eld, which is

known as dark energy approach, might be an alternative choice of explana-

tion. However, such energy sources have not been directly detected yet.

By relaxing the property number (5) of the Einstein �eld equation mentioned

previously in Section 1.2, we are also allowed to introduce a pure metric term

24



CHAPTER 1. INTRODUCTION 1.2. GENERAL RELATIVITY

multiplied by a constant, −Λgµµ in the Eq. (1.5) and the equivalent term,∫
d4x
√
−g 1

2
(2Λ) should be added in the action, Eq. (2.2). Λ is called the

cosmological constant. We shall discuss this in more detail in the following

section.

Researchers have tried to modify the gravitational sector by replacing R by

a function of R, f(R) [12, 13]. We are allowed to extend GR by replacing the

cosmological constant by a scalar �eld, or a function of the scalar �eld. Since

the proposal of the Brans-Dicke theory [14], several such modi�cations have

been proposed. These general classes of modi�cations of gravity are called

scalar-tensor theory.

The majority of the modi�cations to General Relativity inevitably introduce

additional degrees of freedom (often scalar), and these generally mediate

a �fth force [15]. The strength of the coupling between this new degree of

freedom to the baryonic �eld is very tightly constrained by searches for a �fth

force and violations of the weak equivalence principle. The strength of the

scalar mediated interaction is required to be orders of magnitude weaker than

gravity. Tuning this coupling to very small magnitudes introduces additional

naturalness problems. We need to �nd a mechanism, or screening, which

can suppress the �fth force mediated by the new degree of freedom, without

destroying modi�cation on all scales [16, 17, 18]. Plenty of other observational

results also put a tight constraint on many of those [19].

Over the next decade a signi�cant amount of research time, energy, and

money will be invested in understanding dark energy: searching for the

nature of dark energy lies at the heart of the European Space Agency's

PLANCK mission[20] and of the planned EUCLID mission [21, 22], as well

as of both SNAP[23] and JDEM[24] of NASA's Beyond Einstein program.

EUCLID is of particular interest, as it will be able to constrain a large number
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of dark energy and modi�ed gravity models with high precision and accuracy.

1.3 Standard model of cosmology, ΛCDM

Numerous cosmological models have been proposed to explain the acceler-

ation of the universe since its discovery, that was made by observing su-

pernovae type Ia in 1998. Thanks to the modern observations, such as the

WMAP and Planck missions, many of those proposed models have now been

ruled out.

The so-called Lambda-Cold Dark Matter (ΛCDM) model of cosmology has

been very successful at explaining all cosmological observations with a min-

imal set of six cosmological parameters. These six parameters have recently

been measured to an unprecedented accuracy with the Planck satellite [5, 1].

Several deviations from this simple model have been constrained to be rel-

atively small [5, 1, 25, 26, 27, 28]. This model represents what we call the

standard model of cosmology.

The values of the six cosmological parameters given by the latest Planck

observation are given [1],

where rs is the sound horizon and DA(z∗) is the comoving angular diameter

distance to last scattering.

The ΛCDM model has two components, Λ, which is known as the cosmolog-

ical constant (introduced in the previous section 1.2.2) and CDM, which is

known as cold dark matter. The presence of the later component has been

con�rmed by di�erent cosmological and astrophysical observations, and pos-

sible explanations are based on ideas from particle physics and astrophysical

observations.
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Parameter Symbol Value
Physical baryon density parameter Ωbh

2 0.02230± 0.00014
Physical dark matter density parameter Ωch

2 0.1188± 0.0010
100x approximation to rs/DA (Cos-
moMC)

100θMC 1.04093± 0.00030

Reionization optical depth τ 0.066± 0.012
Log power of the primordial curvature
perturbations (k0 = 0.05) Mpc−1

ln(1010As) 3.064± 0.023

Scalar spectral index ns 0.9667± 0.0040

Table 1.1: Parameter 68% con�dence limits for the base ΛCDM
model from Planck CMB power spectra, in combination with
TT,TE,EE+lowP+lensing+ext [1].

1.3.1 Cosmological constant problem

There is a huge discrepancy between the theoretical predictions and the cal-

culated value from the observations of the cosmological constant, which is

known as the �cosmological constant problem�.

The old and the new cosmological constant problem

This problem is classi�ed into two categories. The strong or �old� cosmologi-

cal constant (CC) problem is why the vacuum energy density, ρvac (or ρΛ) is

small and positive, and the weak, or �new� CC problem is why Λ is non-zero

and exists at all [29].

As per the latest Planck satellite measurement, [1], the dark energy density

parameter is ΩΛ = 0.6911 ± 0.0062 and the Hubble constant today is H0 =

67.74 ± 0.46kmMpc−1s−1. We know that the critical density (in natural

units), ρcrit = 3H2
0 ' 8.62 × 10−27kg/m3. Therefore, the observed energy

density of Λ is given by
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ρobsvac = ΩΛρcrit , (1.8)

≈ 5.96× 10−27kg/m3 or 8.16× 10−47GeV 4. (1.9)

In quantum �eld theory, the vacuum energy density or zero point energy

depends on the frequency interval of the �eld modes (see for example [30]),

and is given by,

ρQMvac =
E

V
=

1

V

∑
k

1
2
~ωk ≈

~
2π2c3

∫ ωmax

0

ω3dω =
~

8π2c3
ω4
max, (1.10)

where ωmax is the maximum frequency of the considered frequency interval.

For example, if we consider the electroweak scale, then the approximated

vacuum energy density is ρEWvac ∼ 108GeV 4, which is ∼ 1055 times larger

than the observed value, and if we consider the Planck energy scale, then

the approximated vacuum energy density is ρPlanckvac ∼ 1076GeV 4, which is

approximately 10123 times larger than the observed value given in Eq. (1.9)

[31, 32, 33]. Therefore, there is a huge discrepancy between the observed

value of the CC and its order of magnitude theoretical estimate.

Of course, if we manage to understand the �rst issue, why it is so small, then

we will be likely to comprehend its value partially.

Coincidence problem

Another problem related to the CC is why this CC appears to be dominating

the evolution today (why �now�?) [29, 34]. The ρvac and ρmatter evolve very

di�erently with a, however they have comparable value �today�. It raises the

question on the dynamics of Λ.
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Classical problems with CC

While there exists the aforementioned quantum problem of CC, there are

also some serious unanswered classical questions [29]. If we introduce the

cosmological constant in the GR equations, then is there any geometrical

meaning of it? Also, the relation of the cosmological constant, Λ, with New-

ton's constant, G, is also unclear.

1.3.2 Cold dark matter (CDM)

The dominant dark matter component in ΛCDM is referred to the cold dark

matter (CDM). We can describe well all cosmological observations by includ-

ing CDM in our standard model of cosmology, which is unexplainable without

CDM. The pressure of such cold dark matter is negligibly small. This dark

matter component is assumed to be cold, collisionless and does not inter-

act with the other particles of the standard model of particle physics except

gravitationally. It amounts to about one quarter of the total energy density

budget of the current universe [1]. Such hypothetical non-baryonic, almost

pressureless, clustered �uid is necessary to explain the observed structure

formation of the universe, galaxy clustering and acoustic oscillation in the

CMB, large scale structure etc.

Regardless the success of the ΛCDM model to explain observations, dark

energy and dark matter are the two major unknown ingredients of this model.

As a consequence of introducing dark energy, the well-known, unavoidable

cosmological constant problem and the �ne tuning problem emerge. On the

other hand, no cold dark matter particles have been experimentally found

either on earth or in space [35, 36]. These reasons motivated us to modify

the laws of gravitation without introducing new energy sources, which might
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be a possible alternative to the ΛCDM model.
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Chapter 2

Alternative theories of gravity:

the mimetic gravity scenario

2.1 Motivation of mimetic dark matter

The indications of a crisis with regards to appropriate cosmological models

and the presence of unknown energy components, as explained in the previous

chapter, have motivated many studies that try to explain the phenomena that

they give rise to, by modifying the law of gravitation without introducing new

energy sources, see e.g. [37, 38]. In this chapter, we will explain an alternative

model to the ΛCDM model, called mimetic gravity, and its major ingredient,

disformal transformations.

In 2013, Chamseddine and Mukhanov introduced a modi�cation to General

Relativity, called �mimetic dark matter�, reformulating it in terms of an aux-

iliary metric which is conformally related to the original �physical� metric,

where the conformal factor is a certain function of the new metric and the

�rst derivative of a scalar �eld [39] (the term �conformal� is explained in the

next section, 2.2). In these new variables, the conformal degree of freedom
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becomes dynamical even in the absence of matter. This mimics the phe-

nomenon of cold dark matter. In their subsequent article [40], they showed

that, with an additional potential for the new scalar �eld, the scalar �eld can

mimic the gravitational behavior of any form of matter (see also [41]). Those

results are valid for the general disformal transformation too [42] (the term

�disformal� is explained in section 2.3).

In the next chapter, we shall explain the �generalized mimetic gravity�.

The name �mimetic� was given because this model explains and �mimics�

the cold dark matter evolution of the universe in the background. In our

�generalized mimetic gravity�, the �generalized� term came about because it

is the generalization of the �mimetic dark matter� model, which can source

the background evolution of the universe by mimicking any perfect �uid, in-

cluding radiation, dark matter, and dark energy. We generalized the Einstein

action by considering the most general scalar-tensor theory and extended the

conformal transformation by considering general disformal transformations.

2.2 Simple model of mimetic dark matter

In a conformal transformations, the �physical metric�, gµν , is proportional to

the �auxiliary metric�, `µν , by a function, f(x) as given below,

gµν = f(x)`µν , (2.1)

where f(x) is some speci�ed function of the spacetime coordinates.

In Ref. [39], the authors performed a particular conformal transformation

with f(x) = −w on the Einstein-Hilbert (EH) action,

S =

∫
d4x
√
−g
[

1

2
R (gµν) + Lm (gµν , ...)

]
, (2.2)
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w = `αβ∂αϕ∂βϕ, (2.3)

where ϕ is a scalar �eld.

One may compute the alternative identity of that conformal transformation,

gµν∂µϕ∂νϕ = −1. (2.4)

The above identity can be incorporated into the original EH action by the

Lagrange multiplier method,

S =

∫
d4x
√
−g
[

1

2
R (gµν) + Lm (gµν , ...) + λ (−gµν∂µϕ∂νϕ− 1)

]
. (2.5)

One may derive the EOM of the new metric �eld, `µν ,

(Gµν − T µν ) + (G− T ) gµαgνβ∂αϕ∂βϕ = 0 . (2.6)

G and T are the trace of the Gµν and T µν .

In these new variables, gµν and ϕ, the theory becomes invariant under the

Weyl rescaling of the new metric, `µν , and therefore provides traceless equa-

tions of motion.

The extra contribution from the gravitational sector as the modi�ed energy

momentum tensor, can be rede�ned as, T̃ µν , so that the Eq. (2.6) can be

written in terms of two di�erent energy momentum tensors,

Gµν = T µν + T̃ µν , (2.7)

where

T̃ µν = − (G− T ) gµαgνβ∂αϕ∂βϕ. (2.8)

33



2.2. SIMPLE MODEL CHAPTER 2. MIMETIC DM

Comparing it with the expression of a pressure-less perfect �uid, the energy

density, ε and normalized four velocity uµ are,

ε = G− T, (2.9)

uµ = gµρ∂ρϕ, (2.10)

respectively. Using the conservation of the energy momentum tensor, one

can show that,

∇µ [(G− T )∂µϕ] = 0. (2.11)

The cosmological solution of Eq. (2.6) for a �at Friedmann-Lemaître-Robertson-

Walker (FLRW) background (in the synchronous gauge) is,

G− T ∝ 1

a3
, (2.12)

where a is the scale factor.

Therefore, the scale factor behaves as in the dark matter dominated era in

the background without �dark matter.� This switches on a new conformal

degree of freedom of gravity, which behaves as an irrotational pressureless

perfect �uid, i.e. it can mimic a cold dark matter component. In this model,

the observed cold dark matter energy density would, in general, be the sum

of two unknown amounts of energy density contributions, one coming from

hypothetical dark matter particles and the other from the �mimetic" dark

matter, which is only a gravitational e�ect. In a subsequent work [40] it

was shown that by introducing a potential for the new scalar �eld, one can

mimic the gravitational behavior of almost any form of matter (see also [41]

for earlier work).
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Refs. [40, 43, 44] considered the e�ects of higher-derivative interactions on

the cosmology of the �mimetic" dark matter model. In [43], the authors

showed that the energy-momentum tensor of the mimetic theory with higher-

derivatives is actually of the imperfect �uid type and the theory can support

vorticity. Ref. [44] argues that these higher-derivative interactions could

possibly help to solve the small-scale problems of the cold dark matter model.

Ref. [45] proposed an alternative conformal extension of General Relativity,

using a vector �eld, that can also support rotational �ows for the mimetic

dark matter.

The stability of the �mimetic" dark matter model was analyzed in [45], where

it was shown that the positiveness of the energy density of the �uid is a

su�cient condition for the absence of ghost instabilities. The puzzle of why

a simple reparametrization of variables can lead to new additional solutions

of the equations of motion was also explained in [45]. The point is that we

have additional solutions because we are doing a non-invertible conformal

transformation.

2.3 Disformal transformation

The conformal relation was quite popular in many research �elds including

the Brans-Dicke theory and string theory. In 1993, Bekenstein noticed that

the relation between physical and gravitational geometry can be generalized

by adding the derivative of the scalar �eld.

The disformal transformation is expressed as the sum of a conformal function

times the auxiliary metric and a disformal function times a term involving
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the �rst derivative of a scalar �eld [46].

gµν = A(ϕ,w)`µν +B(ϕ,w)∂µϕ∂νϕ, (2.13)

where w is de�ned as

w ≡ `ρσ∂ρϕ∂σϕ. (2.14)

A and B are conformal and, respectively, disformal functions of two variables.

gµν is the original metric and `µν is an auxiliary new metric. ϕ is a scalar

�eld that de�nes the transformation.

2.3.1 Properties of disformal transformation and func-

tion

The transformation given in Eq. (2.13) will be called pure conformal if the

disformal function, B = 0, and pure disformal if the conformal function is

unit and the disformal function is arbitrary general, i.e., A = 1 and B =

B(ϕ,w).

The properties and conditions of the free functions were explained in detail

in Ref. [47].

The transformation should preserve the Lorentzian signature. The time-time

component of the Eq. (2.13)

g00 = A(ϕ,w)`00 +B(ϕ,w)∂0ϕ∂0ϕ < 0 . (2.15)

The above relation should hold for any value of �elds and derivatives. So B

can also take zero value. The above relation would be true if A > 0, which

also holds in scalar-tensor theory.

Contraction of Eq. (2.15) with g00 (which is negative as per our signature
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convention) will lead to

A(ϕ,w) +B(ϕ,w)w > 0 . (2.16)

Therefore, one of the functions should always have the kinetic dependency

when the disformal function B is non-zero [48]. However author argued in

[49] that, consistent models can avoid violating it without explicit kinetic

dependence of the disformal function(s).

To have causal behavior, the line element must be less than zero [50].

The inverse disformal transformation of Eq. (2.13) is

gµν =
1

A(ϕ,w)
`µν +

B(ϕ,w)/A(ϕ,w)

A(ϕ,w) + 2wB(ϕ,w)
∂µϕ∂νϕ . (2.17)

The transformation for the inverse metric and the volume element should be

non-singular. However, this condition will not impose any new constraint

besides the aforementioned constraints.

2.4 Disformal transformation behind mimetic

gravity

In [42], the issue of why new extra solutions in the mimetic dark matter are in-

troduced by a reparametrization of variables by Chamseddine and Mukhanov

was revisited from a di�erent viewpoint. They performed the full disformal

transformation of the type, Eq. (2.13) on the EH action Eq. (2.2). The Ja-

cobian of the system can be derived from the set of the equations of motion
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in the new frame under such di�eomorphism,

det = w2A
∂

∂w

(
B +

A

w

)
. (2.18)

The Einstein equation, Gµν = Tµν can be recovered when the determinant

is non-zero (generic case). It is established in a clear and elegant way that

Einstein's theory of General Relativity is invariant under generic disformal

transformations. See also for example, [51] and references therein.

However, there exists a particular subset (when the determinant of the system

is zero) of the previous general case, such that the resulting equations of

motion are no longer the general relativistic equations, but instead one �nds

the equations of motion of the so-called �mimetic� dark matter model (also

called �mimetic gravity�) [39]. They also showed that the transformation used

in the Chamseddine and Mukhanov's article is a special type of disformal

transformation with A ≡ w and B = 0.

Therefore, the disformal transformation plays a crucial role in mimetic dark

matter.

In [52] (see also [45, 40]), it was shown that the equations of motion of mimetic

gravity can be derived by extremizing, with respect to gµν , the Einstein-

Hilbert action with the addition of the term
∫
d4x
√
−gλ(gµν∂µϕ∂νϕ − 1),

where λ is a new �eld playing the role of a Lagrange multiplier.

The invariance of cosmological perturbations under disformal transforma-

tions has been recently studied in, for example, [53, 54, 55, 56, 57, 58] and

mimetic theories of modi�ed gravity have been considered in [59] and refer-

ences therein.

Disformal transformations became of recent interest in other related areas of

cosmology.

The authors of Ref. [47] showed that the Horndeski �structure� would be
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invariant under the disformal transformation (the action will remain in Horn-

deski structure after �eld rede�nition), if the arbitrary functions in the dis-

formal transformation are only restricted to be functions of the scalar �eld,

i.e., A ≡ A(ϕ) and B ≡ B(ϕ). In other words, if we perform such a restricted

disformal transformation on the full Horndeski action, we will be still able

to ensure the second order equations of motion.

However, the authors of Ref. [60, 61] extended the Horndeski theory to

beyond Horndeski by applying a disformal transformation with A ≡ A(ϕ)

and B ≡ B(ϕ,w) partially on the Horndeski action such that the equations

of motion will be second order, i.e., free of Ostrogradski instabilities.

In GR the scalar �eld may strongly couple with gravity by disformal transfor-

mation; this is called disformal coupling. In Ref. [62], the authors recovered

GR in the range of solar system scales, when the scalar �eld is static and

smooth. This is called a disformal screening mechanism.
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Chapter 3

The two faces of mimetic

Horndeski gravity

3.1 Introduction

In this chapter, we will generalize some results of [52, 45, 42] to a very general

scalar-tensor theory of gravity. Our results will be valid for a very general

theory, however, for concreteness one may think of the scalar-tensor theory as

being the most general second-order theory known as the Horndeski model

[63], which is free from Ostrogradski instability (see also [64] for a recent

rederivation and [65] for another proof of equivalence with the original for-

mulation of Horndeski). One may also extend our formalism to the recently

proposed extensions of the Horndeski model, the so-called G3 theories [60, 61]

or even their extensions [66].

This chapter is organized as follows. First we shall explain the general Horn-

deski action. In the next section, we will show under which conditions the

previous disformal transformation is non-invertible. Then we will show that

very general scalar-tensor theories of gravity are invariant under generic dis-
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formal transformations. For a particular special subset of those generic dis-

formal transformations the invariance is broken and one �nds new equations

of motion which are a generalization of the so-called �mimetic" dark matter

theory. We will show that the invariance is broken exactly for transformations

that satisfy the non-invertibility condition. In section 3.4, we will demon-

strate that the new mimetic general scalar-tensor theory equations of motion

can also be derived by the use of a Lagrange multiplier as in the General

Relativity case. We also brie�y comment on the higher-derivative nature of

the resulting equations. In section 3.5, we shall present some applications of

our results. For instance we will show that the simplest mimetic scalar-tensor

model is able to mimic the cosmological background of a �at FLRW model

with a barotropic perfect �uid with an arbitrary equation of state. Finally,

section 4.5 is devoted to the conclusions.

3.2 Galileon and Horndeski actions

A generalization of the 4D e�ective action of Dvali, Gabadadze, and Porrati

(DGP) [67] was introduced to explain the accelerated expansion of the Uni-

verse without introducing any dark energy nor cosmological constant, which

is called the galileon theory [68]. It was claimed that this infrared modi�-

cation of gravity su�ers from ghost instability on the �self-accelerated� de

Sitter branch. This theory has an internal �Galilean� invariance, or a shift

symmetry,

ϕ(x)→ ϕ(x) + bµx
µ + c. (3.1)

In the e�ective theory, under this constant shift, c, to the scalar �eld, ϕ

represents a Goldstone boson, the vectorial parameter, bµ, corresponds to a

constant shift of the gradient of the scalar �eld, ∂µϕ.
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The Galilean Lagrangian term is given as [68],

LGn+1 = (T µ1...µnν1...νn∂µ1ϕ∂ν1ϕ)∂ν2∂µ2ϕ . . . ∂νn∂µnϕ , (3.2)

where T µ1...µnν1...νn is the antisymmetric tensor over µi ↔ νi and n ≤ 5 for

four dimensions.

The �at space Galilean theory guarantees the second order derivatives in the

equation of motion, hence free from the Ostrogradski instability. This theory

is unitary and stable under quantum corrections.

Although the Galilean Lagrangian was originally introduced in Minkowski

space, it can be extended to general curved spacetime by replacing the partial

derivatives to covariant derivatives. Although, the simplest covariantization

(∂ → ∇) led to higher than second order derivatives (third order) in the �eld

equations of the scalar �eld. However, the authors in Ref. [69, 70] showed

that one could eliminate these higher derivatives by introducing suitable

nonminimal, curvature, couplings. Although that lead to breaking of shift

symmetry. However, shift symmetry is not meaningful because we cannot

de�ne (covariantly) a constant vector in a curved spacetime. The explicit

form of the covariant Galilean Lagrangian is [70, 71, 26],

S =

∫
d4x
√
−g

[
1

2
R +

3∑
n=0

Ln

]
. (3.3)
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The four Lagrangian densities for the scalar �eld are:

LG0 = c2X, (3.4)

LG1 = −2(c3/Λ
3)X�ϕ, (3.5)

LG2 = 2(c4/Λ
6)X

[
(�ϕ)2 − (∇µ∇νϕ)2]+ (c4/Λ

6)X2R, (3.6)

LG3 = −2(c5/Λ
9)X

[
(�ϕ)3 − 3�ϕ (∇µ∇νϕ)2 + 2 (∇µ∇νϕ)3]

+6(c5/Λ
9)X2Gµν∇µ∇νϕ . (3.7)

where X = −1
2
∇µ∇µϕ. Λ is a constant with the dimension of mass. The

coupling coe�cients cn may also includes the potential term.

One may generalize the above action, replacing the model parameters, ci by

general function of ϕ and its kinetic energy and simplifying it by integration

by parts, which lead to an action the so called Horndeski model [64].

The most general class of 4D local scalar-tensor theories that contains second-

order equations of motion and that can be derived from an action is known

as the Horndeski theory [63]. Its action is

SH =

∫
d4x
√
−gLH =

∫
d4x
√
−g

3∑
n=0

Ln, (3.8)

where

L0 = K (X,ϕ) , (3.9)

L1 = −G3 (X,ϕ)�ϕ, (3.10)

L2 = G4,X (X,ϕ)
[
(�ϕ)2 − (∇µ∇νϕ)2]+RG4 (X,ϕ) , (3.11)

L3 = −1

6
G5,X (X,ϕ)

[
(�ϕ)3 − 3�ϕ (∇µ∇νϕ)2 + 2 (∇µ∇νϕ)3]

+Gµν∇µ∇νϕG5 (X,ϕ) .

(3.12)
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The functions K(X,ϕ), G3(X,ϕ), G4(X,ϕ) and G5(X,ϕ) are free functions

of their two variables and de�ne a particular theory in the Horndeski class.

The subscript ,X denotes derivative with respect to X.

The above action has been considered as the most general single scalar �eld

action which is free from Ostrogradski ghosts. However recent studies in

[60, 66, 72] say that there can be a possibility to extend the Horndeski action

without introducing the ghosts. The questions of which action should be the

�most general� single scalar-tensor theory is still an open question up to date.

3.3 Mimetic gravity from a disformal transfor-

mation

In this section, we will consider disformal transformations of very general

scalar-tensor theories of gravity. We will show that these theories are invari-

ant under generic disformal transformations. However for a special subset of

non-invertible disformal transformations the theory is modi�ed resulting in

new equations of motion which may possess novel solutions.

3.3.1 Non-invertibility condition of a disformal trans-

formation

In this �rst subsection we will derive what is the condition for non-invertibility

of a disformal transformation of the type

gµν = A(ϕ,w)`µν +B(ϕ,w)∂µϕ∂νϕ, (3.13)

where w is de�ned as

w ≡ `ρσ∂ρϕ∂σϕ. (3.14)
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A and B are arbitrary functions (see footnote 1) of two variables. gµν is the

original metric and `µν is an auxiliary new metric. ϕ is a scalar �eld that de-

�nes the transformation. In this section, we assume that ϕ is the same scalar

�eld that is present in the action of the scalar-tensor theory. In appendix

A.1 we will consider the case when the disformal transformation introduces

a di�erent new �eld. The issue of the non-invertibility for a conformal trans-

formation in the context of �mimetic" gravity was �rst discussed in [45] and

here we will generalize their arguments to disformal transformation in scalar-

tensor theories. The conditions under which disformally coupled theories can

be re-written in the so-called Jordan frame were studied in [51].

The inverse of gµν can be written as

gµν =
1

A(ϕ,w)
`µν +

B(ϕ,w)

B(ϕ,w)gρσ∂ρϕ∂σϕ− 1
gµαgνβ∂αϕ∂βϕ, (3.15)

where B(ϕ,w)gρσ∂ρϕ∂σϕ − 1 6= 0 for obvious reasons. Using the previous

equation one �nds `µα`
αν = δνµ.

Eq. (3.13) is a convolved transformation law for gµν in terms of `µν because

`µν enters in w. In order words, for a �xed ϕ in Eq. (3.13), one can see that

in order to write `µν is terms of gµν one needs to solve w in terms of gµν . Here

we are assuming that ϕ is not a new variable (i.e. it is already present in the

action). Despite this assumption, in the following subsection we will show

that the condition we �nd here for non-invertibility of the transformation

is the same as the condition found in the next subsection for the system

of equations of motion to be indeterminate. This later condition is valid

independently of the assumption that ϕ is a �eld already present in the

action.
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Using Eq. (3.15) one can show that

w =
A(ϕ,w)gµν∂µϕ∂νϕ

1−B(ϕ,w)gαβ∂αϕ∂βϕ
. (3.16)

The previous equation can be written as

G(ϕ,w) = gµν∂µϕ∂νϕ, (3.17)

where the function G(ϕ,w) is de�ned as

G(ϕ,w) ≡
w
(
1−B(ϕ,w)gαβ∂αϕ∂βϕ

)
A(ϕ,w)

. (3.18)

For a �xed given ϕ and using the inverse function theorem, if dG(ϕ,w)
dw
|w=w∗ 6= 0

then the inverse function G−1 exists in a neighborhood of w∗ so one can write

w as a function of gµν only as w = G−1(gµν∂µϕ∂νϕ). Finally one can use Eq.

(3.13) (or Eq. (3.15)) to write `µν as a function of gµν . This completes the

proof that the inverse transformation, i.e. `µν(gαβ), exists. Furthermore, the

non-existence of G−1 implies that dG(ϕ,w)
dw
|w=w∗ = 0. One can solve this as

G(ϕ,w) = 1/b(ϕ), (3.19)

where in the right-hand-side we wrote 1/b(ϕ) to use the same conventions of

notation as in the literature.

If we are in the exceptional case of the previous equation then the trans-

formation from gµν to `µν cannot be inverted even implicitly and from Eq.

(3.17) one can �nd that

b(ϕ) =
1

gµν∂µϕ∂νϕ
. (3.20)

47



3.3. NON-INVERTIBILITY CHAPTER 3. MIMETIC HORNDESKI

The previous equation can be used with Eq. (3.16) to �nd

B(ϕ,w) = −A(ϕ,w)

w
+ b(ϕ). (3.21)

This condition for having a non-invertible transformation is the same as the

condition that Deruelle and Rua [42] found for the system of equations of

motion of mimetic dark matter to be indeterminate. We will generalize their

analysis in the next subsection. Note that here we never assumed any explicit

scalar-tensor theory so this result is very general. Eq. (3.20) is a kinematical

constraint valid independently of the dynamics. Furthermore, the results of

this subsection also explain why it is not so surprising that the transformed

scalar-tensor theory, i.e. mimetic gravity, may contain new solutions with

respect to the original theory. The reason is that we are performing a non-

invertible change of variables.

3.3.2 Disformal transformation method

In this subsection, we will perform a disformal transformation of the type

(3.13) on a very general scalar-tensor theory and compute the equations of

motion that result. This is a generalization of the results in Deruelle and

Rua [42]. The further generalization for the case when the transformation

�eld is di�erent from the scalar �eld in the action is discussed in Appendix

A.1. This is the case in the �mimetic" dark matter model [39].

We start with a very general local action of the type

S =

∫
d4x
√
−gL[gµν , ∂λ1gµν , . . . , ∂λ1 . . . ∂λpgµν , ϕ, ∂λ1ϕ, . . . , ∂λ1 . . . ∂λqϕ]

+Sm[gµν , φm], (3.22)
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where the integers p, q ≥ 2, L is the Lagrangian density which is a functional

of the metric, the scalar �eld and their derivatives. Sm is the action for the

matter �eld φm which we assume to be uncoupled with ϕ. For the sake of

concreteness, the Lagrangian L may be thought of as being the Lagrangian

of Horndeski's theory [63] or one of its recently proposed healthy extensions

[60, 61, 66].

The variation of the action with respect to the fundamental �elds, ϕ, gµν and

φm, is given by,

δS =
1

2

∫
d4x
√
−g(Eµν + T µν)δgµν +

∫
d4x Ωϕδϕ+

∫
d4x Ωmδφm, (3.23)

where

Ωϕ =
δ (
√
−gL)

δϕ
=
∂(
√
−gL)

∂ϕ
+

q∑
h=1

(−1)h
d

dxλ1
. . .

d

dxλh
∂(
√
−gL)

∂ (∂λ1 . . . ∂λhϕ)
,

(3.24)

Eµν =
2√
−g

δ(
√
−gL)

δgµν

=
2√
−g

(
∂(
√
−gL)

∂gµν
+

p∑
h=1

(−1)h
d

dxλ1
. . .

d

dxλh
∂(
√
−gL)

∂ (∂λ1 . . . ∂λhgµν)

)
,

(3.25)

T µν =
2√
−g

δ(
√
−gLm)

δgµν
, Ωm =

δ(
√
−gLm)

δφm
, (3.26)

where Sm[gµν ] =

∫
d4x
√
−gLm[gµν , φm].

Lm is the matter Lagrangian density and T µν is the matter energy-momentum

tensor. In the case of General Relativity, the tensor Eµν is Eµν = −Gµν ,

where Gµν is the Einstein tensor.

We consider a disformal transformation of the type (3.13) from where one
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can obtain its variation as

δgµν = Aδ`µν −
(
`µν

∂A

∂w
+ ∂µϕ∂νϕ

∂B

∂w

)[
(`αρ∂αϕ) (`βσ∂βϕ) δ`ρσ

−2`ρσ(∂ρϕ) (∂σδϕ)
]

+

(
`µν

∂A

∂ϕ
+ ∂µϕ∂νϕ

∂B

∂ϕ

)
δϕ

+B [(∂µϕ)(∂νδϕ) + (∂νϕ)(∂µδϕ)] . (3.27)

Inserting Eq. (3.27) into Eq. (3.23), the generalized Einstein equations of

motion, δS/δ`µν = 0, are

A(Eµν + T µν) =

(
α1
∂A

∂w
+ α2

∂B

∂w

)
(`µρ∂ρϕ) (`νσ∂σϕ), (3.28)

and the generalized Klein-Gordon equation, δS/δϕ = 0, is,

1√
−g

∂ρ

{√
−g ∂σϕ

[
B(Eρσ + T ρσ) +

(
α1
∂A

∂w
+ α2

∂B

∂w

)
`ρσ
]}

− Ωϕ√
−g

=
1

2

(
α1
∂A

∂ϕ
+ α2

∂B

∂ϕ

)
, (3.29)

where we have de�ned two new quantities as

α1 ≡ (Eρσ + T ρσ)`ρσ and α2 ≡ (Eρσ + T ρσ)∂ρϕ∂σϕ. (3.30)

In addition, the equation of motion for the matter �eld is Ωm = 0.

By contracting the metric equations of motion (3.28) with `µν and with

∂µϕ∂νϕ, we �nd

α1

(
A− w∂A

∂w

)
− α2w

∂B

∂w
= 0, α1w

2∂A

∂w
− α2

(
A− w2∂B

∂w

)
= 0.

(3.31)

These two equations form a two-dimensional linear system of algebraic equa-

tions for α1 and α2. The solutions of the system are di�erent depending on
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whether its determinant is zero or non-zero. In the next two subsections we

study these two cases separately.

Generic case

We may write the system of equations (3.31) in matrix form, as

M

α1

α2

 = 0, where M =


A− w ∂A

∂w
−w ∂B

∂w

w2 ∂A
∂w

−A+ w2 ∂B
∂w

 . (3.32)

The determinant of the system is

det(M) = w2A
∂

∂w

(
B +

A

w

)
. (3.33)

If det(M) 6= 0 then the only solution is α1 = α2 = 0. For this generic case

the equations of motion, Eqs. (3.28) and (3.29), reduce to

Eµν + T µν = 0, (3.34)

Ωϕ = 0. (3.35)

When written in terms of the metric gµν , these two equations in addition to

Ωm = 0 are the same equations as in the original theory before doing any dis-

formal transformation. In other words, by taking the variation with respect

to the original metric gµν or with respect to `µν and ϕ we get, in the end,

the same equations of motion. This shows that generically (i.e. det(M) 6= 0)

the theory (physics) is invariant under disformal transformations of the type

(3.13), which only act here as �eld rede�nitions. This generalizes the results

of [42] (obtained for Einstein gravity) to a very general scalar-tensor theory
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of the kind (3.22). This result is less surprising if one recalls that all one is

doing is a well-behaved invertible change of variables.

Mimetic gravity

If the determinant of the system is zero then one can solve the di�erential

equation (3.33) to �nd that the free function B(ϕ,w) has to be of the form

B(ϕ,w) = −A(ϕ,w)

w
+ b(ϕ), (3.36)

where b(ϕ) is an integration constant (it does not depend on w but it may

depends on ϕ) and we assume it is non-zero for all ϕ. This solution was

previously found in [42] for the case when the starting action in Eq. (3.22)

is simply the Einstein-Hilbert action. Here we show that solution (3.36) is

still valid for a general action of the form (3.22), irrespective of whether the

scalar �eld in the action is the same or di�erent than the scalar �eld involved

in the transformation, as shown in Appendix A.1. This is a consequence of

the fact that the determinant of the system, Eq. (3.33), does not depend on

the form of the starting action (3.22) and it is the same as the determinant

found in [42]. Substituting solution (3.36) into the system (3.31) gives us

α2 = wα1. Hence, the equations of motion (3.28) and (3.29) become

Eµν + T µν =
α1

w
(`µρ∂ρϕ) (`νσ∂σϕ),

1√
−g

∂ρ
(√
−g b α1 `

ρσ∂σϕ
)
− Ωϕ√
−g

=
1

2
α1w

db

dϕ
. (3.37)

Now, the disformal transformation is of the particular type

gµν = A(ϕ,w) `µν + ∂µϕ∂νϕ

(
b(ϕ)− A(ϕ,w)

w

)
. (3.38)
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The inverse metric transforms (recall we assume b 6= 0) as

gµν =
`µν

A
+
A− w b
A bw2

(`µρ∂ρϕ) (`νσ∂σϕ), (3.39)

and these equations can be used to write (3.37) in terms of gµν (explicitly)

only. Similarly to [42], we have `µρ∂ρϕ = bw∂µϕ and α1 = (E+T )/(bw) where

∂µϕ ≡ gµρ∂ρϕ and E+T ≡ gρσ(Eρσ +T ρσ). By contracting `µρ∂ρϕ = bw∂µϕ

with ∂µϕ and using the de�nition of w one can also �nd that

b(ϕ)gµν∂µϕ∂νϕ = 1. (3.40)

So the equations of motion (3.37) simplify to

Eµν+Tµν = (E+T ) b ∂µϕ∂νϕ, ∇ρ [(E + T )b ∂ρϕ]− Ωϕ√
−g

=
1

2
(E+T )

1

b

db

dϕ
,

(3.41)

where ∇ρ denotes the covariant derivative with respect to gµν . In order to

have the full system of equations of motion, to these equations one should

add the matter equation, Ωm = 0. As it can be seen these equations of mo-

tion are in general di�erent from the equations of motion that result from

varying the action (3.22) with respect to the original metric gµν . We will

call this new theory �mimetic" gravity and the transformation will be called

mimetic disformal transformation. Note that the condition for the determi-

nant of the system to be zero leads to exactly the same particular disformal

transformation, Eq. (3.38), as the non-invertibility condition of the previous

subsection.
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3.4 Mimetic gravity from a Lagrange multiplier

In this section, we will show that the mimetic equations of motion that result

after transforming the theory (3.22) via a mimetic disformal transformation

(3.38) can also be obtained by variation of an action without performing any

disformal transformation or introducing an auxiliary metric `µν . For the case

in which the original theory (3.22) is General Relativity and for conformal

transformations this was �rst achieved in [52, 45].

Let us start with the very general action of the previous section where we

add an additional term as

Sλ =

∫
d4x
√
−gL[gµν , ∂λ1gµν , . . . , ∂λ1 . . . ∂λpgµν , ϕ, ∂λ1ϕ, . . . , ∂λ1 . . . ∂λqϕ]

+Sm[gµν , φm] +

∫
d4x
√
−gλ (b(ϕ)gµν∂µϕ∂νϕ− 1) , (3.42)

where λ is a Lagrange multiplier �eld which enforces the kinematical con-

straint. b(ϕ) is a known potential function that de�nes the theory. The

equations of motion that result from varying the action with respect to λ, ϕ,

gµν and φm are respectively (after some simpli�cation)

b(ϕ)gµν∂µϕ∂νϕ− 1 = 0, (3.43)

Ωϕ +
√
−g λ

b(ϕ)

db(ϕ)

dϕ
− 2∂µ

(√
−gλb(ϕ)gµν∂νϕ

)
= 0, (3.44)

Eµν + T µν − 2λb(ϕ)∂µϕ∂νϕ = 0, (3.45)

Ωm = 0, (3.46)

with the same de�nitions of Section 3.3. Taking the trace of Eq. (3.45) and
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after using Eq. (3.43), one obtains

2λ = E + T, (3.47)

where E = gµνE
µν and T = gµνT

µν . One can see that the Lagrange multiplier

is given by the traces E and T and this can be used to eliminate λ from the

equations of motion to obtain

b(ϕ)gµν∂µϕ∂νϕ− 1 = 0, (3.48)

∇µ [(E + T )b(ϕ)∂µϕ]− Ωϕ√
−g

=
E + T

2

1

b(ϕ)

db(ϕ)

dϕ
, (3.49)

Eµν + T µν = (E + T )b(ϕ)∂µϕ∂νϕ, (3.50)

Ωm = 0. (3.51)

These equations of motion are the same as the mimetic equations of motion

in Subsection 3.3.2, i.e. (3.40), (3.41) and the matter equation. This shows

that mimetic gravity can be formulated by action (3.42). The price to pay in

this formulation is that one needs to introduce an additional scalar �eld, the

Lagrange multiplier λ. It would be interesting to determine if it is possible

to derive mimetic gravity from an action with no additional scalar �elds like

λ. We leave this for future work.

Let us take the covariant derivative of Eq. (3.50) and use ∇µT
µν = 01 to

obtain

∇µE
µν = ∇µ [(E + T )b(ϕ)∂µϕ] ∂νϕ+ (E + T )b(ϕ)∂µϕ∇µ∂

νϕ

= ∂νϕ

[
∇ν [(E + T )b(ϕ)∂µϕ]− 1

2

1

b(ϕ)

db(ϕ)

dϕ
(E + T )

]
,(3.52)

1The conservation of the energy-momentum tensor is a consequence of assuming that
the action Sm can be written as a functional of the matter �eld and the metric gµν and by
using the Horndeski identity, Eq. (3.53), applied to the matter action together with the
equation of motion (3.51).
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where in the second line we have used that b(ϕ)∂µϕ∂µϕ = 1 and that from

its covariant derivative one obtains b(ϕ)∇µ∇νϕ∂µϕ = −1
2
db(ϕ)
dϕ
∇νϕ∂µϕ∂

µϕ.

It was shown by Horndeski [63] (see also references therein) that

√
−g∇µE

µν = Ωϕ∇νϕ. (3.53)

Using this and the fact that ∂νϕ 6= 0 at least for one index ν we can simplify

Eq. (3.52) to

∇µ [(E + T )b(ϕ)∂µϕ]− Ωϕ√
−g

=
E + T

2

1

b(ϕ)

db(ϕ)

dϕ
. (3.54)

This is exactly the same equation as (3.49). So we have managed to show

that Eq. (3.49) results from taking the covariant derivative of Eq. (3.50)

and use ∇µT
µν = 0 and Eqs. (3.48) and (3.51). This proof is independent of

using the Lagrange multiplier method or not and shows that in order to solve

the dynamics of the system it is su�cient to consider Eqs. (3.48), (3.50) and

(3.51). These three equations, when written in terms of the metric gµν , do not

contain any more higher-order derivatives than the equations of motion that

result from the non-mimetic theory de�ned by the Lagrangian L. It is also

worth noting that the action (3.42) does not contain any more higher-order

derivatives than L. However, the new theory (3.42) does contain a new �eld,

the Lagrange multiplier λ. The three independent equations of motion when

written in terms of the new metric `µν may contain higher-order derivatives.

For concreteness, we can think of L as being the Horndeski Lagrangian [63]2

and we would be considering the �mimetic" Horndeski theory.

2One can also consider healthy extensions of Horndeski's theory, like for instance the
so-called G3 theories [60, 61] or even their extensions [66].
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3.5 Non-trivial examples of cosmology in the

�mimetic� Horndeski model

As an application of the results of the preceding sections, in this section, we

will present three simple examples of non-trivial cosmological solutions that

arise in very simple �mimetic� Horndeski models.

In the next three subsections the actions of the models considered will be

Eq. (3.42) with L = LH but with di�erent choices for the free functions in

each subsection.

Notice that for a general mimetic Horndeski model, the free function b(ϕ) in

the second term of Eq. (3.42) can be reabsorbed by de�ning a new �eld Φ

as dΦ =
√
|b|dϕ. Because the Horndeski Lagrangian is form invariant under

�eld rede�nitions of this type, this transformation just amounts to consider

a di�erent starting Horndeski Lagrangian LH .

3.5.1 A very simple example

In our �rst simple example we will consider the mimetic theory of a canonical

kinetic term scalar �eld with no potential coupled to Einstein's gravity theory.

The action of this model is Eq. (3.42) with L = LH , Sm = 0 and with the

choice

K(X,ϕ) = c2X, G3(X,ϕ) = 0,

G4(X,ϕ) = 1/2, G5(X,ϕ) = 0, (3.55)

where c2 is a constant which may have either sign. In the non-mimetic theory,

if c2 is negative it is well known that the scalar �eld has the wrong sign in
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the kinetic term and is a ghost. In the present mimetic model it would be

interesting to study perturbations and determine what are the conditions for

the absence of ghost and other instabilities. We leave this work for the near

future. With the same notation of the previous section and for a �at FLRW

background, the objects that appear there are

E00 = −3H2 +
1

2
c2ϕ̇

2, (3.56)

Exx = Eyy = Ezz = a2(3H2 + 2Ḣ +
1

2
c2ϕ̇

2), (3.57)

E = 12H2 + 6Ḣ + c2ϕ̇
2, (3.58)

Ωϕ = a3 (−3c2Hϕ̇− c2ϕ̈) , (3.59)

where a is the scale factor, H = ȧ/a and dot denotes derivative with respect

to cosmic time. x, y, z denote the comoving spatial coordinates. The equa-

tions of motion for this simple mimetic model, i.e. Eq. (3.48), the time and

spatial components of Eq. (3.50) and Eq. (3.49), are respectively

b(ϕ)ϕ̇2 + 1 = 0, (3.60)

3H2 =
ϕ̇2

2

[
c2 − 2b(ϕ)

(
12H2 + 6Ḣ + c2ϕ̇

2
)]
, (3.61)

6H2 + 4Ḣ + c2ϕ̇
2 = 0, (3.62)

b(ϕ)
[
−6H(6H2ϕ̇+ 7ϕ̇Ḣ + 2Hϕ̈)− 6Ḣϕ̈− 6ϕ̇Ḧ − 3c2ϕ̇

2(Hϕ̇+ ϕ̈)
]

+c2(3Hϕ̇+ ϕ̈) + b′(ϕ)

(
1

b(ϕ)
+ 2ϕ̇2

)[
−6H2 − 3Ḣ − c2

2
ϕ̇2
]

= 0,(3.63)

where prime denotes derivative with respect to the �eld ϕ. Eqs. (3.61) and

(3.63) are not independent from Eqs. (3.60) and (3.62) because they can be

derived from them.
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It is easy to check that Eqs. (3.60) and (3.62) admit the following solution

a(t) = t
2

3(1+ω) , ϕ(t) = ±
√
− α
c2

log
t

t0
,

b(ϕ) = − 1

ϕ̇2
=
c2

α
t2 =

c2

α
t20e
±2
√
− c2
α
ϕ, (3.64)

where t0 is an integration constant, the parameter α is α = − 8ω
3(1+ω)2

, where

ω is a constant parameter. This expansion law is the same as the one given

by a perfect �uid universe with a constant equation of state ω. If c2 is

positive then the equation of state ω has to be positive too. This shows that

this simple mimetic scalar �eld model can mimic the background evolution

of a perfect �uid universe with a constant equation of state. For di�erent

ω the value of α changes but the functional form of b(ϕ) does not change.

It is obvious that this new solution is not a solution of the Einstein plus

Klein-Gordon (with zero potential) �eld theory. There ω is necessarily unity.

By adjusting the function b(ϕ) accordingly (note that b(ϕ) < 0 for a time-like

scalar velocity), this simple model can mimic the expansion history of almost

any model. To be concrete, we can mimic the expansion history of a perfect

�uid model with a �xed sign of the pressure. In that case, 6H2 + 4Ḣ = −2p,

where p is the pressure of the perfect �uid. So from the independent equation

of motion (3.62) one can see that the pressure cannot change sign. The fact

that one can have almost any expansion history desired is somewhat similar

to the minimal extension of the original mimetic dark matter model proposed

in [40]. See also [41] for an earlier work where models similar to our present

one were considered.
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3.5.2 Mimetic cubic Galileon

In this subsection, we will consider the mimetic cubic Galileon model as a

further example of a simple mimetic Horndeski model. The mimetic cubic

Galileon model with c2 = 0 (and also including the other Galileon interac-

tions) was previously studied in [73] but for the case of a constant b(ϕ). Here

we allow the function b to depend on ϕ. The action of the model is Eq. (3.42)

with L = LH , Sm = 0 and with the free functions chosen as

K(X,ϕ) = c2X, G3(X,ϕ) = 2c3/Λ̃
3X,

G4(X,ϕ) = 1/2, G5(X,ϕ) = 0, (3.65)

where from now on we will set the cuto� scale Λ̃ to be Λ̃ = 1 and c3 is a new

model parameter.

Analogously to the previous subsection, there are only two independent equa-

tions of motion, they can be chosen to be Eq. (3.48) and the spatial compo-

nent of Eq. (3.50). They are respectively

b(ϕ)ϕ̇2 + 1 = 0, (3.66)

6H2 + 4Ḣ + ϕ̇2(c2 − 4c3ϕ̈) = 0. (3.67)

As in the preceding section by suitably choosing a function b(ϕ) one can

have almost any expansion history desired. Let us for instance concentrate

on the expansion history of a universe �lled with dark matter and a positive

cosmological constant Λ. The scale factor solution for that universe is

a = a? sinh
2
3 (Ct), (3.68)
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where C =
√

3Λ/4. Eq. (3.67) can be integrated once to �nd

4c3

c2

[
− arctan

(
±
√

3c2

8C2
ϕ̇

)
±
√

3c2

8C2
ϕ̇

]
= t. (3.69)

In Fig. 3.1 we plot the time evolution of the scale factor a(t), the time

derivative of ϕ and by using Eq. (3.66) one can �nd the function b(t). For

illustration purposes we choose the model parameters as C = c2 = c3 =

a? = 1. For this choice, the matter-dominated era ends around t = O(1)

and after that the universe becomes dominated by the energy density of the

cosmological constant. For Ct� 1, the time derivative of ϕ is ϕ̇ ∝ t while for

Ct� 1 it becomes ϕ̇ ∝ t1/3. The previous equations can be easily integrated

to �nd the function b(ϕ) as b(ϕ) ∝ −ϕ−1/2 for Ct� 1 and b(ϕ) ∝ −ϕ−1 for

Ct � 1. By choosing a function b(ϕ) with these asymptotic limits one can

approximately reproduce the expansion history of a Λ-dark matter universe.

aHtL

Ψ
 
HtL

-bHtL
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Figure 3.1: Plot of the scale factor a(t) (solid line), the time derivative of
�eld ϕ̇(t) (dashed line) and the function −b(t) (dotted line) as functions of
time t (in suitable units) for the parameter choice C = c2 = c3 = a? = 1.
This choice was made for illustration purposes only.
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3.5.3 The case of minimal coupling to `µν

The third example of non-trivial cosmological solutions that arises in the con-

text of mimetic Horndeski models that we are going to present now involves

promoting the auxiliary metric `µν to the physical metric. Say for instance,

usual matter, like baryons, are minimally coupled with `µν instead of the

more interesting case of minimal coupling with gµν . The gravitational part

of the action of this model is Eq. (3.22) with Sm = 0, where the fundamen-

tal metric variable is the metric `µν , which is related to the metric gµν by a

mimetic disformal transformation, i.e. a disformal transformation of the type

(3.13) with the function B given by (3.21). Then we choose to minimally

couple this gravitational theory for `µν and ϕ with (baryon) matter �elds.

In the following discussion, we will restrict the mimetic disformal transfor-

mation to a particular type (see Eq. (3.71) below) so that we have a Weyl

symmetry, that is, the gravitational part of the action will be invariant un-

der a Weyl rescaling of the type `µν → Ω2(x)`µν , where Ω(x) is a non-zero

function. It is worth mentioning that in the case of a mimetic disformal

transformation with B(ϕ,w) = 0 (the transformation is conformal) this im-

plies that A(ϕ,w) = b(ϕ)w. It is then easy to see that the theory also has

a Weyl symmetry which allows us to choose the gauge so that gµν = `µν as

it was done in [45]. Indeed, in [39, 40, 45], the authors used B(ϕ,w) = 0,

b(ϕ) = −1 which leads to A(ϕ,w) = −w.

If the function A(ϕ,w) is

A(ϕ,w) = (b(ϕ)− f(ϕ))w, (3.70)
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then the mimetic disformal transformation is

gµν = (b(ϕ)− f(ϕ))w`µν + f(ϕ)∂µϕ∂νϕ, (3.71)

and the inverse metric transformation is

gµν =
`µν

(b(ϕ)− f(ϕ))w
− f(ϕ)

w2b(ϕ)(b(ϕ)− f(ϕ))
`µρ∂ρϕ`

νσ∂σϕ, (3.72)

where one can easily see that they have the desired property of being invariant

under a Weyl transformation `µν → Ω2(x)`µν . For simplicity, we assume that

the original scalar-tensor theory is actually just Einstein's General Relativity

and in the following we also assume that the contribution of the baryons to

the expansion can be neglected. The equations of motion of this model, Eqs.

(3.40) and (3.41), are then

Gµν = Gb(ϕ)∂µϕ∂νϕ, 2∇ρ (Gb∂ρϕ) = G
1

b(ϕ)

db(ϕ)

dϕ
,

b(ϕ)gµν∂µϕ∂νϕ = 1, (3.73)

where G denotes the trace of the Einstein tensor Gµν as G = gµνGµν . We

will look for cosmological solutions by setting the metric `µν to be equal to

a �at FLRW metric and ϕ to be a function of time only. This implies that

the non-zero components of the metric gµν (there is isotropy so the y and z

component are equal to the x component) are

gtt = bϕ̇2, gtt = 1/(bϕ̇2), gxx = a2A, gxx = 1/(a2A). (3.74)

The tt and xx components of the previous generalized Einstein equations are

63



3.5. EXAMPLES CHAPTER 3. MIMETIC HORNDESKI

equal to each other and equal to

4bA
[
A(3H2 + 2Ḣ)ϕ̇− 2AHϕ̈+ ϕ̇2(A,ϕϕ − 4A,ϕwϕ̈+ 4A,wwϕ̈

2)

+ϕ̇2(3HA,ϕ − 2A,w(
...
ϕ + 3Hϕ̈))

]
− 2Aϕ̇2 (2AH + ϕ̇(A,ϕ − 2A,wϕ̈)) b′

= bϕ̇3(A,ϕ − 2A,wϕ̈)2, (3.75)

where prime means derivative with respect to ϕ and A,ϕ, A,w and so on

denote derivatives of A with respect to ϕ and w respectively. Eq. (3.75)

contains higher-derivatives for ϕ and they disappear if A does not depend

on w. Note that from the kinematical constraint in (3.73) we do not get

any equation of motion if it is written in terms of the metric `µν . One can

also show that by combining Eq. (3.75) with its derivative one can �nd the

equation of motion for ϕ.

Now let us consider a particular mimetic disformal transformation of the type

(3.70), (3.71) and (3.72). In this case we have Weyl invariance and we can

choose to �x the gauge as

A(ϕ,w) = (b(ϕ)− f(ϕ))w = 1. (3.76)

In this new gauge, the independent generalized Einstein equation is

(3H2 + 2Ḣ)ϕ̇− 2Hϕ̈ = Hϕ̇2 b
′

b
. (3.77)

By doing a change of variables as

dΦ

dϕ
=
√
|b|, (3.78)
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one can simplify the equation to

(3H2 + 2Ḣ)Φ̇− 2HΦ̈ = 0. (3.79)

The equation of motion (3.79) can be written as d(ln φ̇)
dt

= 3
2
d(ln a)
dt

+ d(lnH)
dt

. So

one can integrate it once to �nd Φ̇(t) = const a(t)
3
2H(t), where const denotes

a constant of integration. And integrating once more to �nd

Φ(t) = const1a(t)
3
2 + const2, (3.80)

where consti with i = 1, 2, 3, 4 denote constants of integration. Using Eq.

(3.74), the change of variables (3.78) and our gauge choice A = 1, the gµν

metric components can be written as

gtt(t) = Sign(b)Φ̇(t)2, gxx(t) = a2(t). (3.81)

By doing a change of time variable as

√
−gtt(t)dt = dt̃ (3.82)

one can �nd that

a(t(t̃)) = (const3t̃+ const4)
2
3 , (3.83)

which is a matter dominated universe for the gµν metric. This is always

the case for any `µν , b(ϕ) or f(ϕ). This result is consistent with the orig-

inal �ndings of [39] that one only gets a matter universe as a solution for

the metric gµν having started from mimetic General Relativity by doing a

conformal transformation3. This result is expected in light of the �ndings

3If f = 0 then the disformal transformation Eq. (3.71) becomes simply a conformal
transformation. Furthermore, the gauge condition Eq. (3.76) implies that gµν = `µν and
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of [42] that showed that the mimetic dark matter equations of motion, Eqs.

(3.73), when written in terms of gµν are the same for any mimetic disformal

transformation. However now in our case the physical metric is `µν so from

Eq. (3.80) one can see that in this model we can have any expansion history

desired. For a given scale factor solution `xx = a2(t) the scalar �eld Φ adjusts

according to Eq. (3.80) in order for this to be a solution of the equation of

motion Eq. (3.79). The solution for the original �eld ϕ can be found once

we specify the function b(ϕ) by using Eq. (3.78). Finally the function f(ϕ)

is found by using the gauge condition, Eq. (3.76), which in the background

can be written as 1 = −ϕ̇2(b−f) = −Φ̇2(Sign(b)−f/|b|). In other words, by

choosing a speci�c function f one can obtain the desired scale factor solution.

For instance, de Sitter spacetime is a solution of (3.79) for Φ(t) ∝ e3H/2t. A

matter universe solution results from taking Φ̇ = constant. The expansion

history of a universe �lled with a barotropic perfect �uid with a constant

equations of state ω and a cosmological constant Λ is a = a? sinh
2

3(1+ω) (Ct),

where C =
√

3Λ/4(1 + ω). The solution for Φ is Φ(t) = C2 +C1 sinh
1

1+ω (Ct),

where C1 and C2 are integration constants.

3.6 Conclusions

In this chapter, we showed that a very general scalar-tensor theory of the

type (3.22) is generically invariant under a disformal tansformation of the

kind (3.13), irrespective of whether the scalar �eld in the action is the same or

di�erent than the scalar �eld involved in the transformation. We also showed

that there is a special subset of those disformal transformations for which

the previous result is not valid. We call those special disformal transforma-

that Φ̇ is a constant. This singles out the matter-dominated universe solution from the set
of all possible solutions of Eq. (3.80). This case is nothing more than the result of [39].
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tions as mimetic disformal transformations because they give origin to a new

scalar-tensor theory of gravity that is a generalization of the �mimetic" dark

matter proposal [39]. These mimetic disformal transformations are given by

Eq. (3.36). They basically are a subset of (3.13) where the two free func-

tions A(ϕ,X) and B(ϕ,X) are related as (3.36). These results generalize the

�ndings of [42] that were obtained for Einstein's General Relativity. We also

showed that the reason why a simple change of variables as in a mimetic dis-

formal transformation leads to a new physical theory is because we are doing

a non-invertible change of variables. If the change of variables is invertible

then the physical theory does not change as expected. The derived non-

invertibility or mimetic condition is the same for any general scalar-tensor

theory, as it is the property of the disformal tansformation of the kind of

Eq. (3.13). We have shown that the mimetic equations of motion of the

new scalar-tensor theory can be derived from an action containing an extra

scalar �eld playing the role of a Lagrange multiplier that imposes the kine-

matical constraint (3.20) to be satis�ed throughout the dynamics. Again this

generalizes some results in [52, 45] to a general scalar-tensor theory context.

As an application of some of our �ndings, we have presented a simple toy

model of the mimetic Horndeski theory where a canonically normalized scalar

�eld with no potential (in the original theory) can be used to mimic the back-

ground expansion history of a universe �lled with a barotropic perfect �uid

with a constant equations of state. Actually, we showed that in this simple

scalar-tensor model one can have almost any (the restriction is that the e�ec-

tive pressure cannot change sign) desired background expansion history by

suitably choosing the �potential� function b(ϕ) in the action (3.42). We have

generalized the previous simple model to include a cubic Galileon interaction

and as an example we showed that this model can easily mimic the back-
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ground expansion history of a universe �lled with dark matter and a positive

cosmological constant.

We also presented an example where instead of minimally coupling baryons

with gµν we coupled them minimally with the new metric `µν . In this case,

for the original theory, we took simply the disformally transformed Einstein-

Hilbert action. We again found that, for a cosmological background, the

metric `µν can have any expansion history desired by suitably choosing the

free functions b(ϕ) and f(ϕ) in the mimetic disformal transformation (3.71).

Finally, we also showed that the mimetic theory, when written in terms of

the metric gµν , does not contain any more derivatives than the scalar-tensor

theory that originated it. This may not be the case for the mimetic theory

when written in terms of the new metric `µν .
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Chapter 4

Cosmological perturbations in

mimetic Horndeski gravity

4.1 Introduction

In the previous Chapter 3 (Ref.[2]), we have shown that such general the-

ories are invariant under generalised disformal transformations. However,

for a small subset of those transformations, when they are not invertible,

the resulting theory is a generalisation of the original mimetic gravity the-

ory. We have proposed two simple toy models within the mimetic Horndeski

class and showed that they possess interesting cosmological solutions. For

instance, the simplest mimetic model is able to mimic the cosmological back-

ground evolution of a �at FLRW model with a barotropic perfect �uid with

any constant equation of state (see also [41] for an earlier work). Actually

by appropriately choosing the function b(ϕ) in the transformation one can

mimic almost any desired expansion history.

The stability of mimetic gravity against negative energy states, i.e. ghosts,

was studied in [45], where it was shown that ghosts are absent if the energy
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density of the e�ective �uid is positive. Ref. [52] (see also [45] and [40])

showed that the original mimetic gravity can be derived from an action with

a constraint imposed by a Lagrange multiplier without the need to invoke a

disformal transformation. In this chapter we will follow this complementary

approach of using a Lagrange multiplier.

In the original mimetic model [39] and its generalisation to include a potential

[40], it was shown that the sound speed of scalar perturbations is exactly zero

(independently of the desired expansion history) and consequently this model

cannot describe a successful in�ationary model because quantum �uctuations

cannot be de�ned as usual. To circumvent this problem, it was proposed to

introduce higher-derivatives terms in the action [40]. In this way a non-

zero sound speed can be generated. These higher-derivative terms help to

suppress power for large momentum and it has been argued that this can be

relevant for the small-scale problems of cold dark matter [44].

The main purposes of this work are to study linear scalar perturbations in

mimetic Horndeski gravity and to determine the corresponding value of the

sound speed. These results will determine the growth of structure in mimetic

Horndeski models.

In the meantime, there have been many works studying di�erent aspects of

the original mimetic theory and generalisations. For example, the Hamil-

tonian analysis was performed in [74, 75], cosmological perturbations were

further analyzed in [76], extensions to f(R) type models were presented in

[77, 59], [78] studied the energy conditions and a generalization, a mimetic

theory including a vector �eld was proposed in [45], cosmology in mimetic

Galileon models studied in [73, 79], and the imperfect �uid nature induced

by higher-derivative terms was further discussed in [43].

This chapter is organised as follows. In the next section, we introduce the
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model and some notation. We also show the independence of general equa-

tions of motion of scalar-tensor mimetic gravity. In section 4.3, we discuss

linear scalar perturbations of mimetic Horndeski in the Poisson gauge ex-

cluding other matter �elds. We will compute the background equations of

motion, then the �rst-order equations of motion for the Newtonian poten-

tial which we solve for the two toy models introduced in [2]. Section 4.4 is

devoted to the initial value formulation of the problem and to the discus-

sion on the sound speed in general cosmological backgrounds. Section 4.5

presents the conclusions of the chapter. The chapter has 4 appendices. In

appendix B.1 we present the explicit expressions for the background equa-

tions of motion. Appendix B.2 contains the expressions for the functions

de�ned in the main text and that enter the �rst-order equations of motion.

In appendix B.3, we present the background and linear equations of motion

for the mimetic Horndeski model including matter in the form of a �uid that

may have anisotropic stress. Finally in appendix B.4, we compute the sound

speed in a theory beyond mimetic Horndeski. We call this theory mimetic

G3 theory as it is the mimetic version of the so-called G3 theory [60, 61].

4.2 The model and notation

In this section we will start by using the EOM of a very general mimetic

scalar-tensor theory of gravity including a term with a Lagrange multiplier,

which was derived in Chapter-3 (or in [2]). In the following sections, where

we will present explicit results for linear cosmological perturbations, we will

restrict the very general mimetic scalar-tensor theory to the mimetic Horn-

deski theory. Horndeski's theory [63] is the most general 4D covariant the-

ory of scalar-tensor gravity that is derived from an action and gives rise to
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second-order equations of motion (in all gauges and in any background) for

both the metric and the scalar �eld. This useful property guarantees that

the mimetic theory is free from higher-derivative ghosts because, as shown

in [2], if the original theory is free from these ghosts then also the mimetic

theory that it originates is free from them. However, we might have to put

the right constraint over the free parameters in order to guarantee positive

kinetic energy.

The set of equations, Eq. (3.48), (3.49), (3.50) and (3.51) are the equations

of motion for the very general action for scalar-tensor mimetic gravity (3.42).

However not all the equations in the set are independent from each other.

As shown in [2], Eq. (3.49) can be derived from the other equations. Also as

we will now show, the 0 − 0 component of Eqs. (3.50) can be derived from

Eq. (3.43) and the remaining components of Eqs. (3.50).

Let us start with the constraint equation

b(ϕ)gµν∂µϕ∂νϕ = b(ϕ)g00(ϕ′)2 + 2b(ϕ)g0i(ϕ′)∂iϕ+ b(ϕ)gij∂iϕ∂jϕ

= 1, (4.1)

where ′ denotes the derivative with respect to the time coordinate (which in

the next section we choose to be conformal time). Multiply both sides of the

previous equation by E + T to obtain

(E + T )b(ϕ)g00(ϕ′)2 + 2(E + T )b(ϕ)g0i(ϕ′)∂iϕ+ (E + T )b(ϕ)gij∂iϕ∂jϕ

= g00(E00 + T00) + 2g0i(E0i + T0i) + gij(Eij + Tij), (4.2)

where Latin indexes run from one to three only. By using the other compo-
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nents of Eqs. (3.50), i.e.

Eij + Tij = (E + T )b(ϕ)∂iϕ∂jϕ, E0i + T0i = (E + T )b(ϕ)ϕ′∂iϕ, (4.3)

one can show that Eq. (4.2) simpli�es to

(E + T )b(ϕ)g00(ϕ′)2 = g00(E00 + T00). (4.4)

Because g00 6= 0 we have the desired result that Eqs. (4.3) together with the

constraint equation imply

E00 + T00 = (E + T )b(ϕ)(ϕ′)2. (4.5)

This is a non-perturbative result and it will be important when counting the

number of perturbation variables and their equations in the next section.

We will only consider a particular subset of theories of the form (3.42) known

as mimetic Horndeski theory. We refer to the Section 3.2 and Section 3.4 for

the action of Horndeski and, respectively, mimetic Horndeski gravity.

4.3 Linear scalar perturbations

This section is devoted to the study of cosmological linear scalar perturba-

tions in the mimetic Horndeski gravity. Here we will assume that there is no

matter in the model, i.e. Sm = 0. We expect this to be a good approximation

during the time when the e�ective energy density of the mimetic scalar �eld

is much larger than the other usual components of the total energy density

like radiation or cold dark matter. In appendix B.3 we present the equations

of motion of the mimetic Horndeski model including a matter source in the
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form of a �uid which may have anisotropic stress as it would be the case for

free-streaming neutrinos. Before that, in the next subsection we will present

well-known (see for instance [65, 48]) results for linear scalar perturbations

in Horndeski gravity, as a warm up.

We will work in the Poisson gauge. Because we are only interested in scalar

perturbations, we will neglect vector and tensor perturbations. At linear

order and in the �at FLRW background that we will assume, these di�erent

type of perturbations are all decoupled.

The metric is perturbed as

g00 = −a2(τ) (1 + 2Φ) , g0i = 0, gij = a2(τ) (1− 2Ψ) δij, (4.6)

where a is the FLRW scale factor that depends on the conformal time τ , Φ

denotes the generalised Newtonian (Bardeen) potential and Ψ the curvature

perturbation. The inverse metric is

g00 = −a−2(τ) (1− 2Φ) , g0i = 0, gij = a−2(τ) (1 + 2Ψ) δij. (4.7)

The scalar �eld is expanded as ϕ(τ,x) = ϕ0(τ) + δϕ(τ,x), where ϕ0 denotes

the background �eld value and δϕ is the �eld perturbation.

4.3.1 Linear scalar perturbations in Horndeski

We will study linear perturbations of Horndeski gravity only in this subsec-

tion. The theory is de�ned by the action (3.8). The tensor Eµν introduced

in the previous section will be the same for both Horndeski and mimetic

Horndeski gravity as it is clear from its de�nition.

Because we assume that there are no matter sources and the equation of

motion for ϕ is not independent from the metric equations of motion as it is
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well-known1, the equations of motion are simply

Eµν = 0. (4.8)

At the background level they reduce to E
(0)
µν = 0, where the superscript (0)

denotes background quantities and the explicit expressions for E
(0)
µν in terms

of the Horndeski functions and their derivatives can be found in appendix

B.1.

At �rst order (denoted by the superscript (1)) the tensor Eµν can be written

as

E
(1)
00 = f1Ψ′ + f2δϕ

′ + f3Φ + f4δϕ+ f5∂
2Ψ + f6∂

2δϕ, (4.9)

E
(1)
ij = ∂i∂j (f7Ψ + f8δϕ+ f9Φ) + δij

(
− f7∂

2Ψ− f8∂
2δϕ− f9∂

2Φ

+f10Ψ′′ + f11δϕ
′′ + f12Ψ′ + f13δϕ

′ + f14Φ′ + f15Ψ + f16δϕ+ f17Φ
)
,

(4.10)

E
(1)
0i = ∂i (f18Ψ′ + f19δϕ

′ + f20δϕ+ f21Φ) , (4.11)

where ′ denotes derivative with respect to conformal time, the functions fi,

i = 1, ..., 21 are linear functions of K,G3, G4, G5 and their derivatives eval-

uated on the background, therefore the fi are functions of time only. Their

explicit expressions are given in appendix B.2. These functions are not all

independent from each other and they obey certain relations also given in

appendix B.2.

1This well-known fact can be simply understood to be a consequence of Horndeski's
identity [63] (see also references therein), i.e.,

√
−g∇µEµν = Ωϕ∇νϕ. For a general scalar-

tensor theory de�ned by the �rst line of Eq. (3.42), which includes Horndeski's theory
as a particular case, the equation of motion for the scalar �eld is Ωϕ = 0, which implies,
by using the previous identity, ∇µEµν = 0. The previous equation is the generalization
of the usual equation for the conservation of the energy-momentum tensor. Eq. (4.8)
automatically implies that the equation of motion for the scalar �eld is satis�ed.
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For a standard kinetic term scalar �eld coupled to Einstein gravity, at �rst

order, it is well known that Eqs. (4.8) are not all independent. By taking

the time derivative of the E
(1)
0i = 0 equation and using it again together with

the background equations it is possible to obtain the evolution part of the

E
(1)
ij = 0 equation (which corresponds to the second line of Eq. (4.10)). In

Horndeski theory, something similar should also happen as we will discuss

below. By taking the traceless part of E
(1)
ij = 0 one can see that the �rst line

of E
(1)
ij vanishes. In other words the traceless part of E

(1)
ij = 0 implies that

f7Ψ + f8δϕ+ f9Φ = 0. (4.12)

The physical implications of the previous equation are that the anisotropic

stress is in general not zero and also that at least one of the �elds is not a

new dynamical degree of freedom. This equation will also be valid in the

mimetic Horndeski case.

Let us now count the number of variables and equations of motion. We have

three variables, δϕ, Φ and Ψ to be determined by the equations of motion,

E
(1)
µν = 0 which can be written as

f1Ψ′ + f2δϕ
′ + f3Φ + f4δϕ+ f5∂

2Ψ + f6∂
2δϕ = 0, (4.13)

f7Ψ + f8δϕ+ f9Φ = 0, (4.14)

f10Ψ′′ + f11δϕ
′′ + f12Ψ′ + f13δϕ

′ + f14Φ′ + f15Ψ + f16δϕ+ f17Φ = 0, (4.15)

f18Ψ′ + f19δϕ
′ + f20δϕ+ f21Φ = 0.(4.16)

Naively one has three variables and four equations, however, one can show

that there are only three independent equations, as expected. Eq. (4.15) can

be derived from Eqs. (4.14) and (4.16) and by using some of the identities
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in appendix B.2 2.

4.3.2 Linear scalar perturbations in mimetic Horndeski

We now turn to the main goal of this chapter, i.e., to study linear scalar

perturbations in mimetic Horndeski gravity. As we have explained in Sec. 4.2

the independent equations of motion for the model reduce to (assuming that

there is no matter; see appendix B.3 for the case when matter is present)

b(ϕ)gµν∂µϕ∂νϕ− 1 = 0, Eµi = Eb(ϕ)∂µϕ∂iϕ. (4.17)

At zeroth order on a �at FLRW background, they simplify to

−a−2b0(ϕ′0)2 = 1, (4.18)

E
(0)
ij = 0, (4.19)

where b0 denotes b(ϕ0).

The �rst-order equations of motion are

2b0δϕ
′ + ϕ′0b,ϕδϕ− 2b0ϕ

′
0Φ = 0, (4.20)

E
(1)
ij = 0, (4.21)

E
(1)
0i = E(0)b0ϕ

′
0∂iδϕ, (4.22)

2One can follow a brute force procedure: use Eq. (4.14) to write Ψ in terms of the
other variables. Use Eq. (4.16) and solve it for Φ′. Take the time derivative of Eq. (4.16)
and sum to it a term T × Φ′ and then subtract from it the same term T × Φ′ but where
now Φ′ is replaced with the previously found expression and T = 4Hf29 /f7, where H is
de�ned as H = a′/a. The equation obtained di�ers from Eq. (4.15) in terms proportional
to Φ and δϕ only. However, by using the identities in appendix B.2 one can show that
actually the coe�cients of Φ and δϕ terms are exactly the ones in Eq. (4.15).
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where E(0) denotes the zeroth-order trace of Eµν , b,ϕ = b,ϕ(ϕ0) and the

subscript , ϕ denotes derivative with respect to the �eld ϕ. As mentioned

in the previous subsection the Eµν tensor is equal to the one de�ned for the

Horndeski's theory whose explicit expressions are given by Eqs. (4.9)-(4.11).

Eq. (4.21) implies

f7Ψ + f8δϕ+ f9Φ = 0, (4.23)

f10Ψ′′ + f11δϕ
′′ + f12Ψ′ + f13δϕ

′ + f14Φ′ + f15Ψ + f16δϕ+ f17Φ = 0,

(4.24)

and Eq. (4.22) implies

f18Ψ′ + f19δϕ
′ +

(
f20 +

a2E(0)

ϕ′0

)
δϕ+ f21Φ = 0, (4.25)

where we have used the zeroth-order constraint. As before, Eq. (4.23) can

be used for example to eliminate Ψ from all the equations in favor of the pair

δϕ,Φ. In other words, Ψ is not a new degree of freedom with respect to the

pair δϕ,Φ. One can also see that in general Ψ 6= Φ for mimetic Horndeski

(i.e., there is some non-zero e�ective anisotropic stress).

It is important to note that because Horndeski's theory is form-invariant

under a �eld rede�nition one can without loss of generality set b(ϕ) = −1 in

mimetic Horndeski. In that case, b,ϕ = 0 and then the �rst-order constraint

implies Φ = δϕ′

ϕ′0
.

At this point, we have four equations of motion, Eqs. (4.20), (4.23), (4.24)

and (4.25), and only three variables, Ψ, Φ and δϕ. However, following a

similar procedure to the one in the previous subsection one can show that

(4.24) can be derived from the other two equations, i.e., Eqs. (4.23) and

(4.25), where this time to complete the proof one also needs to use Eq.
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(4.20). In summary, the independent �rst-order equations of motion for the

mimetic Horndeski model that we will use from now on are

2b0δϕ
′ + ϕ′0b,ϕδϕ− 2b0ϕ

′
0Φ = 0, (4.26)

f7Ψ + f8δϕ+ f9Φ = 0, (4.27)

f18Ψ′ + f19δϕ
′ +

(
f20 +

a2E(0)

ϕ′0

)
δϕ+ f21Φ = 0. (4.28)

Because in this system of equations there are no spatial derivatives one can

anticipate that the sound speed for the dynamical scalar degree of freedom

will be exactly zero.

Indeed, from the previous three equations one can �nd an evolution equation

for the Newtonian potential Φ as

Φ′′ +

(
B2

B3

+

(
ln
B3

B1

)′
+H− ϕ′′0

ϕ′0

)
Φ′

+

(
B1

B3

ϕ′0 +
B1

B3

(
B2

B1

)′
+
B2

B3

(
H− ϕ′′0

ϕ′0

))
Φ = 0, (4.29)

where the Bi functions are de�ned as

B1 = f20 +
f10f8f

′
7

f 2
7

+ f11

(
−H +

ϕ′′0
ϕ′0

)
−f10

f7

(
f ′8 + f8

(
−H +

ϕ′′0
ϕ′0

))
+ a2E

(0)

ϕ′0
, (4.30)

B2 = f14 +
f10f9f

′
7

f 2
7

+ f11ϕ
′
0 −

f10(f ′9 + f8ϕ
′
0)

f7

, (4.31)

B3 = 2
f 2

9

f7

. (4.32)

There is no spatial Laplacian term so this means that the sound speed of

the perturbations is exactly zero as anticipated. In appendix B.4, we show

that the conclusion that the sound speed is exactly zero also applies to a
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scalar-tensor theory more general than mimetic Horndeski, the one which

is built starting from G3 theories [60, 61]. Notice also that in Eq. (4.29)

there is no source term on the right-hand side, which is usually associated

to the presence of entropy perturbation modes, see, e.g., [80]. This will be

also con�rmed below when deriving the equation of motion for the comoving

curvature perturbation. After solving Eq. (4.29) for Φ one can use the

constraint equation, Eq. (4.26), for a given function b(ϕ), to solve for δϕ.

Finally to �nd Ψ one can solve

δϕ =

(
−2Hf8 + f11ϕ

′
0

b,ϕ
2b0

− f20 −
a2E(0)

ϕ′0

)−1

(f10Ψ′ + 2Hf7Ψ) . (4.33)

It is convenient to introduce a new variable, the comoving curvature pertur-

bation ζ (the comoving gauge is de�ned by δϕ = 0 and in that gauge ζ is

related (to �rst order) to the 3D curvature as R(3) = −4a−2∂2ζ), which is

de�ned as

−ζ = Ψ +
H
ϕ′0
δϕ. (4.34)

One can show that the set of equations of motion of the model, Eqs. (4.26)-

(4.28), is equivalent to (using the background equations of motion)

2b0δϕ
′ + ϕ′0b,ϕδϕ− 2b0ϕ

′
0Φ = 0, (4.35)

−f7ζ +

(
f8 −

H
ϕ′0
f7

)
δϕ+ f9Φ = 0, (4.36)

ζ ′ = 0. (4.37)

Note that the comoving curvature perturbation ζ has a �rst-order equation

of motion with solution ζ = constant on all scales (and vanishing intrinsic

entropy perturbations, see, e.g. [81]).

For the particular case when G4(X,ϕ) = 1/2 and G5(X,ϕ) = 0 (and the
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other functions of the Horndeski theory, i.e. K and G3, are kept general) we

were able to simplify the evolution equation, Eq. (4.29), to obtain

Φ′′ + Φ′
(

3H + Γ̃
)

+ Φ
(
H2 + 2H′ + Γ̃H

)
= 0, (4.38)

where the variable Γ̃ is de�ned as

Γ̃ =
−H′′ +HH′ +H3

H′ −H2
. (4.39)

The quantity Γ̃ can be seen as a correction to the perturbation equation

of standard pressureless dust that arises in these mimetic models. This

equation was �rst derived and solved in [41] for the case when the func-

tion G3(X,ϕ) was zero. What we found is that this equation is still valid

even if G3(X,ϕ) 6= 0. Let us note that the particular mimetic models for

which Eq. (4.38) is valid include the two models studied in [2] that showed

very interesting cosmological behaviour (e.g. they can reproduce exactly the

ΛCDM background expansion). It is important to note that the quantity

Γ̃ is written in a geometrical way and that it exactly vanishes for a ΛCDM

expansion history. Indeed, the di�erential equation Γ̃ = 0 has the three so-

lutions: a(t) ∝ expCt, a(t) ∝ t2/3 and a(t) ∝ sinh
2
3 (Ct). In the limit of a

ΛCDM background expansion history, corresponding to the latter solution,

the perturbations in these particular mimetic Horndeski models will behave

exactly in the same way as the perturbations in a ΛCDM universe. For the

particular case when G4(X,ϕ) = 1/2 and G5(X,ϕ) = 0, the relation between

ζ and Φ is

ζ = −2H2 −H′

H2 −H′
Φ− H

H2 −H′
Φ′, (4.40)

and Ψ = Φ.
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To �nd the solutions of Eq. (4.38) let us use the results of [41]. By using the

number of e-folds, N = ln a, as the time variable and using a new variable

as

Q =

√
a

−H,N

Φ, (4.41)

where the subscript , N denotes derivative with respect to N , the Hubble

rate is de�ned as H = da/(adt), where t denotes cosmic time, one can write

the evolution equation, Eq. (4.38), as

Q,NN −
Θ,NN

Θ
Q = 0, (4.42)

where the variable Θ is de�ned as

Θ =
H√
−aH,N

. (4.43)

It is immediate to show that Q ∝ Θ is a solution of Eq. (4.42). The other

solution can be found using the Wronskian method and is

Q ∝
√

a
−H,N

(
1− H

a

∫
da
H

)
. This implies that the two solutions for the New-

tonian potential are

Φ1 =
H

a
, Φ2 = 1− H

a

∫
da

H
. (4.44)

The general solution for Φ is a linear combination of Φ1 and Φ2, with C1(x)

and C2(x) being the integration constants, as

Φ(τ,x) = C1(x) +
H

a
C2(x)− C1(x)

H

a

∫
da

H
. (4.45)

The same solutions were found in [41] for a model with G4(X,ϕ) = 1/2 and

G3(X,ϕ) = G5(X,ϕ) = 0. Here we show that the form of the solutions is the
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same even if G3(X,ϕ) 6= 0. The solution Φ1 corresponds to ζ = 0 while the

solution Φ2 corresponds to ζ = constant 6= 0. If the scale factor is a ∝ t
2

3(1+w) ,

where w is the equation of state, then H/a ∝ a
−5−3w

2 which decays for an

expanding universe if w > −5/3 and therefore Φ1 is the decaying mode in

that case (Φ2 is constant).

4.4 The Cauchy problem and the sound speed

In this section, we will follow the method of [41] to show that, without

assuming any background but for a non-dynamical (�external�) metric, the

sound speed is exactly zero in a general mimetic Horndeski theory (without

additional matter �elds). We will assume that the four-velocity is time-like

because we have cosmology applications in mind.

The constraint equation, Eq. (3.48), which is the equation of motion for the

Lagrange multiplier, implies that

b(ϕ)X = −1

2
, (4.46)

where we assume that b(ϕ) < 0. For a mimetic Horndeski theory, one can

rede�ne the scalar �eld as to absorb b(ϕ), or in other words, one can choose

b(ϕ) = −1 without losing generality [2]. From now on in this section we will

set b(ϕ) = −1. The constraint then implies X = 1/2. One can de�ne the

four-velocity as

uν =
∇νϕ√

2X
= ∇νϕ, (4.47)

which satis�es the constraint uνu
ν = −1 and in the last equality we have used

the constraintX = 1/2. In this section we will use the notation ˙( ) = uν∇ν( )

to denote the derivative along uν . It is easy to see that the four-acceleration,
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aν , is always zero, i.e.

aν = u̇ν = uµ∇µu
ν = 0, (4.48)

because of the constraint equation, Eq. (4.46). This means the �ow is always

geodesic. The constraint equation becomes very simple, it reads

ϕ̇ = −1. (4.49)

Let us decompose the covariant derivative of uν in its symmetric and skew-

symmetric parts as

∇µuν = θµν + ωµν , (4.50)

where

θµν = ∇(µuν), ωµν = ∇[µuν], θµν = θ(µν) =
1

2
(θµν + θνµ) ,

ωµν = ω[µν] =
1

2
(ωµν − ωνµ) . (4.51)

The tensor θµν is called the expansion tensor and the tensor ωµν is called the

vorticity tensor. These satisfy θµνu
µ = ωµνu

µ = 0. In the present case of a

mimetic scalar �eld, the vorticity tensor is zero because ∇µuν = ∇νuµ. Let

us further decompose the expansion tensor in its trace and trace-free parts

as

θµν = σµν +
1

3
θhµν , (4.52)

where hµν is de�ned as hµν = gµν + uµuν . θ is called the volume expansion

and σµν is called the shear tensor. These satisfy σµνu
µ = σνν = 0 where
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σνν = gµνσµν and σ(µν) = σµν . One can then �nd

θ = gµνθµν = ∇νu
ν , σµν = ∇µuν −

1

3
θ (gµν + uµuν) . (4.53)

θ satis�es the well-known Landau-Raychaudhuri equation

θ̇ = −σµνσµν −
θ2

3
−Rµνu

µuν . (4.54)

The evolution equation for the shear tensor is

σ̇µν = −σλµσλν −
2

3
θσµν −

1

3
hµν

(
θ̇ +

1

3
θ2

)
−Rαλβρu

λuρ. (4.55)

In deriving the previous two equations we have used several times Eq. (4.48),

(∇α∇β−∇β∇α)V µ = Rµ
ναβV

ν for a vector V µ, Rµν = Rλ
µλν and the general

properties of the Riemann tensor Rµναβ.

The equation of motion for the �eld ϕ can be written as

2λ̇+ 2θλ+
Ωϕ√
−g

= 0, (4.56)

where λ is the Lagrange multiplier �eld introduced in Eq. (3.42), Ωϕ, de�ned

in Eq. (3.24), can be written as Ωϕ =
√
−g
∑5

i=2

(
P

(i)
ϕ −∇µJ

(i)
µ

)
and the

explicit (long) expressions of P
(i)
ϕ and J

(i)
µ can be found in Appendix B of

[65]. For the mimetic Horndeski theory that we are interested in, those

expressions can be written as

P (2)
ϕ −∇µJ (2)

µ = K,ϕ − (K,Xϕ −K,Xθ) , (4.57)

P (3)
ϕ −∇µJ (3)

µ = −G3,ϕϕ −
[
−2G3,ϕϕ + (2G3,ϕ −G3,Xϕ) θ +G3,X

(
θ2 + θ̇

)]
,

(4.58)
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P (4)
ϕ −∇µJ (4)

µ = G4,ϕR +G4,Xϕ

(
2

3
θ2 − σµνσµν

)
−

[
G4,X

(
−Rθ + 2Rµν

(
σµν +

1

3
θhµν

))
−G4,XX

(
4

3
θθ̇ − 2σµν σ̇

µν +

(
2

3
θ2 − σµνσµν

)
θ

)
+G4,Xϕ

(
R + 2uµuνRµν − 2θ̇ − 2θ2

)
+G4,XXϕ

(
2

3
θ2 − σµνσµν

)
+ 2G4,Xϕϕθ

]
, (4.59)

P (5)
ϕ −∇µJ (5)

µ = −G5,ϕϕu
µuνGµν −

1

6
G5,Xϕ

(
2σµνσ

νλσµλ − θσµνσ
µν +

2

9
θ3

)
−

[(
1

2
G5,Xϕ

(
2

3
θ2 − σµνσµν

)
+

1

6
G5,XX

(
2σµνσ

νλσµλ − θσµνσ
µν +

2

9
θ3
))�

+
1

6
G5,XXθ

(
2σµνσ

νλσµλ − θσµνσ
µν +

2

9
θ3

)
−G5,ϕ

(
2Rµνσ

µν − 1

3
Rθ +

2

3
θuµuµRµν

)
−G5,Xϕ

(
−Rµνσ

µν +
1

6
θR +

1

3
θuµuνRµν − uµuνRνλσ

λ
µ

−uµuνσαβRαµβν −
1

3
θ3 +

1

2
σµνσ

µνθ
)

−G5,X

(
Rµν σ̇

µν − 1

6

(
θ̇ +

1

3
θ2

)
R

+
1

3
Rµν

(
2θσµν +

(
θ2 + θ̇

)
uµuν

)
−Rµνσ

µλσνλ

−σαβRαµβν

(
σµν +

2

3
θuµuν

)
−RµνR

µ
λu

νuλ

−uνuλRαµβνR
µβαλ

)
−G5,ϕϕ (2uµuνRµν +R)

]
, (4.60)

where to obtain the previous equations we have used the Bianchi identity,

∇µG
µν = 0 and the second Bianchi identity∇λRαβµν+∇µRαβνλ+∇νRαβλµ =
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0. Using the previous expressions and Eqs. (4.54) and (4.55), one can see that

Eq. (4.56) does not contain derivatives higher than two in both the metric

and the scalar �eld ϕ as expected. This is because the mimetic theory does

not change the number of derivatives of the original theory [2] and in the

previous case the original theory was Horndeski's theory whose solution is

well-known to contain no derivatives higher than two in the equations of

motion. Note also that the equations of motion for λ and ϕ, Eqs. (4.49) and

(4.56) respectively, are �rst-order ordinary di�erential equations. Following

[41] one can argue that the Cauchy problem has a unique solution locally

that depends only on the two initial conditions for ϕ and λ. Furthermore

from Eqs. (4.49) and (4.56) one can see that the solutions evolve along time-

like geodesics and neighbouring space points do not �communicate" with

each other, this implies that the sound speed is identically zero (for any

cosmological background but with a non-dynamical metric) as we wanted

to show. The Cauchy problem may become ill-de�ned for some time in the

future for initial condition that give origin to caustics. This would be a

problem for this model which is beyond the scope of this chapter. Caustics

are known to appear in other theories with non-canonical scalar �elds, see

for example [82, 83].

4.5 Conclusions

In this chapter we have studied linear scalar perturbations around a �at

FLRW background in mimetic Horndeski gravity. This work is an important

�rst step in the study of the evolution of cosmological perturbations in this

very general class of mimetic models. We have found that, in the absence of

matter, the �rst-order equations of motion take a simple form given by Eqs.
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(4.26)-(4.28) for the Bardeen potentials or equivalently Eqs. (4.35)-(4.37)

using the comoving curvature perturbation. Just like in Horndeski's theory,

in mimetic Horndeski gravity there is an e�ective anisotropic stress even in

the absence of matter.

The (generalised) Newtonian potential was shown to satisfy a second-order

ordinary di�erential equation with no spatial derivatives which implies that

the sound speed for scalar perturbations is exactly zero for a �at FLRW

background. We have explicitly solved this equation for mimetic Horndeski

models which include the so-called cubic Galileon term. This case includes

the cosmological models proposed in our previous work [2], where we showed

that simple mimetic models can essentially mimic any desired expansion

history. For this particular case, the form of the solutions that we found is

the same as in the so-called λϕ �uids [41] which are a generalisation of the

mimetic dark matter scenario [39, 40]. We have shown that in these models,

if the background expansion history is exactly equal to the ΛCDM expansion

history then also the perturbations will evolve in exactly the same way.

The equation of motion for the comoving curvature perturbation is a �rst

order ordinary di�erential equation which can be easily solved to �nd that

the comoving curvature perturbation in general mimetic Horndeski gravity

is exactly constant on all scales.

These results show that in these models there are no wave-like propagating

scalar degrees of freedom.

We have shown that the conclusion that the sound speed of scalar perturba-

tions is exactly zero around a �at FLRW background also applies to a mimetic

theory beyond mimetic Horndeski, i.e. mimetic G3 theories. (Mimetic) G3

theories are interesting because they contain only one extra scalar degree of

freedom in addition to the usual two polarizations of the graviton. On the
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other hand it is well-known that if one starts with a theory with higher-

derivative equations of motion and which contains additional scalar degrees

of freedom then the mimetic theory may have a non-zero sound speed [40].

These results indicate that there might be a relation between the value of

the scalar sound speed and the number of degrees of freedom of the original

theory. We leave the detailed investigation of this relation for future work.

Finally, for a non-dynamical metric, we have shown that the scalar sound

speed is exactly zero for all cosmological backgrounds.

For future work, we leave the study of the Hamiltonian formulation of mimetic

Horndeski gravity and the issue of whether caustics will develop or not and

if so how one can interpret them.
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Chapter 5

Vector mimetic gravity theory

5.1 Introduction

In the previous chapters, we have discussed properties and applications of

scalar disformal transformations in the mimetic gravity scenario. Sanders [84]

suggested to replace the derivative of the scalar �eld by a vector �eld in the

disformal transformation to explain the degree of light de�ection observed

in distant clusters of galaxies by the dynamical e�ect of dark matter. He

proposed the relation of the metrics,

gµν = e−2ϕ`µν − 2 sinh(2ϕ)VµVν . (5.1)

The Vµ is a priori a non-dynamical vector �eld, gµνVµVν = −1. Bekenstein

has further explored this particular type of disformal transformation in his

TeVeS article [85]. It is interesting to notice that, in the above disformal

transformation, the physical metric is related to the auxiliary metric by a

vector �eld as well by a scalar �eld. The conformal and disformal factors are

only functions of the scalar �eld.
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Jacobson and Mattingly proposed a covariant model in which local Lorentz

invariance is broken by a dynamical unit timelike vector, called �aether�, Vµ

[86, 87]. This theory has been further generalized by them in the subsequent

articles and is known as Einstein-Aether (EA) gravity theory [88, 89]. The

two-derivative action for Einstein-Aether-theory has the form

S =
1

2

∫
d4x
√
−g(R + L), (5.2)

where, L = (c1L1 + c2L2 + c3L3 + c4L4) + λ(−VµV µ − 1), where the ci's are

dimensionless coupling constants, and

L1 = (∇µVν)(∇µV ν), (5.3)

L2 = (∇µV
µ)2, (5.4)

L3 = (∇µVν)(∇νV µ), (5.5)

L4 = (V µ∇µV
α)(V ν∇νVα). (5.6)

The Lagrange multiplier incorporates the timelike constraint of aether.

The Lagrangian can also be rewritten as,

L1 + L2 + L3 + L4 =
1

3
cθθ

2 + cσσ
2 + cωω

2 + caa
2, (5.7)

where, θ, σµν , ωµν and aµ are expansion, shear, twist and acceleration. They

are de�ned by,

θ = ∇µV
µ, σαβ = hµ(αh

ν
β)(∇µVν −

1

3
θhµν),

ωαβ = hµ[αh
ν
β]∇µVν , aν = V µ∇µVν . (5.8)

where hµν is de�ned as gµν = VµVν −hµν , [90, 89] and the coupling constants
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are

cθ = c1 + c3 + 3c2,

cσ = c1 + c3,

cω = c1 − c3,

ca = c1 + c4. (5.9)

The particular type (mixture of a scalar and a vector �eld) of the disformal

transformation in Eq. (5.1) was used in Einstein-Aether theory. In [34, 91],

the authors have shown that TeVeS (akin to Einstein-Aether theories) can be

written as a single metric theory with a timelike vector �eld of un�xed norm

by using the aforementioned disformal transformation. A generalization of

TeVeS theory, g-TeVeS was studied in Ref. [92], where the authors also

have recovered General Relativity from g-TeVeS by using a Galileon induced

Vainshtein mechanism. A scalar version of Einstein-Aether theory and its

Newtonian limit was studied in Ref. [93], where the vector �eld was replaced

by the derivative of a scalar �eld.

In the twist-free limit, Einstein-Aether theory becomes the Ho°ava-Lifshitz

gravity [90]. On the other hand, the IR limit of Ho°ava-Lifshitz gravity can

mimic general relativity plus cold dark matter [94], which has been explored

later and called �dust of dark energy� [41].

However, the complete vector �eld disformal transformation given in Eq.

(5.12) where the conformal and disformal functions are also functions of the

vector �eld, have not been studied so far in the literature. A generic vector

can be split into two parts, a pure vector �eld and the derivative of a scalar
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�eld,

Vµ = Ṽµ + ∂µϕ, (5.10)

Vµ(k) = (Vµ(k))t + (Vµ(k))l, (5.11)

where k represents the momentum space. Ṽµ is the pure vector, i.e., solenoidal

part. This is a divergence-free component, which is also called transverse

component. ∂µϕ is called irrotational part. This is a curl-free component of

a vector �eld, which is also called longitudinal component.

In this chapter, we will introduce the non-invertibility condition of the vector

disformal transformation. Then we shall apply it to vector Einstein-Aether

action with non-zero acceleration and rotation and show that vector Einstein-

Aether theory is a class of mimetic gravity theories. After that, we shall study

the system that can be recovered in the weak coupling limit. In the next

section, we shall apply the non-invertible vector disformal transformation on

the generalized ghost-free vector �eld action and formulate the generalized

mimetic vector �eld gravity.

5.2 Non-invertibility condition of a vector dis-

formal transformation

We consider the following vector disformal transformation,

gµν = A(w)`µν +B(w)VµVν . (5.12)

A and B are arbitrary functions of the vector �eld, w = `µνVµVν correspond-

ing to the vector �eld Vµ that de�nes the transformation. gµν is the original
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metric, and `µν is an auxiliary new metric.

We shall apply such a disformal transformation on a particular type of vector

�eld action,

S =
1

16πG0

∫
d4x
√
−g(R + L), (5.13)

where, L = (c1L1 + c2L2 + c3L3 + c4L4) and L1, L2, L3 and L4 are given in

Eq. (5.3), (5.4), (5.5) and (5.6).

Similar to Section 3.3.1, one can show that the Jacobian of the transformation

of the disformal transformation of type Eq. (5.12) is

4 = w2A
∂

∂w

(
B +

A

w

)
. (5.14)

The transformation, Eq. (5.12), is non-invertible, if the Jacobian, 4 = 0.

Therefore we obtain,

B = −A
w

+ b, (5.15)

where b is an integration constant. One could also derive the same constraint

by the similar alternative method used in Section 3.3.2, where we applied the

disformal transformation directly on the action (here Eq. (5.13)) and found

the non-invertibility condition. The alternative form of the above equation,

Eq. (5.15) would be,

bgµνVµVν = 1, (5.16)

which we may apply as a constraint on the action via a Lagrange multiplier,

λ. Therefore, the above action, Eq. (5.13) will be

S =
1

2

∫
d4x
√
−g(R + L) +

∫
d4x
√
−gλ(bgµνVµVν − 1). (5.17)
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The above action is known as vector Einstein-Aether action if we set the inte-

gration constant b = −1, i.e., we may absorb b into the vector �eld by a vector

rede�nition. Therefore we recover the vector Einstein-Aether action from the

non-invertible vector disformal transformation of the particular vector �eld

action.

5.3 Weak coupling limit

In this section, we will consider a minimal Einstein-Aether theory as a toy

model [86], where L = F 2 = F µνFµν in Eq. (5.17). One can derive the

equations of motion of the system as,

bgµνVµVν − 1 = 0, (5.18)

2∇νF
νµ +

1

2κ
(G− κT )bgµνVν = 0, (5.19)

− 1

2κ
(Gµν − κT µν)− 2(F νρF µ

ρ −
1

4
F 2gµν) +

1

2κ
(G− κT )bV µV ν = 0.

(5.20)

In this section we shall study the weak coupling limit on the system, i.e.,
√
b → 0. On the other hand, the

√
b → ∞ limit corresponds to in�nite

strong coupling. In this limit, nonlinear terms would become important and

the perturbative expansion would break down. Quantum correction would

also dominate over the classical action.

For simplicity, we replace
√
b = ε for taking the weak coupling limit. In the
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new rede�nition, Eq. (5.18 to 5.20) will look like

ε2gµνVµVν − 1 = 0, (5.21)

2∇νFνµ +
1

2κ
(G− κT )ε2gµνV

ν = 0 (5.22)

− 1

2κ
(Gµν − κTµν)− 2(FνρFµ

ρ − 1

4
F 2gµν) +

1

2κ
(G− κT )ε2VµVν = 0.

(5.23)

One may expand the metric and vector �eld for small ε as,

gµν = ḡµν + εδg(1)
µν + ε2 1

2
δg(2)

µν + ε3
1

6
δg(3)

µν , (5.24)

Vµ =
1

ε
V (−1)
µ + V̄µ + εV (1)

µ . (5.25)

The bar represents the zeroth order and the number in the superscript rep-

resent the particular order of the �eld expansions. The contravariant form

of those quantities are

gµν = ḡµν − εδg(1)µν + ε2 1
2
(2δg(1)ν

α δg(1)µα − δg(2)µν)

+ ε3
1

6
(−6δg(1)β

α δg
(1)ν
β δg(1)µα + 3δg(1)µνδg(2)ν

γ + 3δg(1)ν
ρ δg(2)µρ − δg(3)µν) ,

(5.26)

V µ = gµνVν

=
1

ε
V (−1)
ν ḡµν + (ḡµνV̄ν − δg(1)µνV (−1)

µ )

+ε
(
ḡµνV (1)

ν − δg(1)µνV̄ν + V (−1)
ν

(
2δg(1)ν

α δg(1)µα − 2g(2)µν
))
. (5.27)

We expand Eq. (5.21), (5.22) and (5.23) for small b, then neglect O(ε2) and

set O(ε)→ 0. ε0 or lower order will survive.
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Eq. (5.21) will be turned into,

ḡµνδV (−1)
µ δV (−1)

ν − 1 = 0. (5.28)

Eq. (5.22) will be turned into,

1

ε
ḡνρ∇ρF

(−1)
µν +

[
ḡνρ∇ρF̄µν + δg(1)νρ∇ρF

(1)
µν

]
= 0 , (5.29)

where F
(order)
µν = ∂µV

(order)
ν − ∂νV (order)

µ .

After contraction with ḡνρ,

1

ε
∇̄νF (−1)

µν +
[
∇̄νF̄µν + δg(1)νρ∇ρF

(−1)
µν

]
= 0. (5.30)

Eq. (5.23) will be turned into,

− 1

2κ
(Ḡµν − κT̄µν) +

1

2κ
(Ḡ− κT̄ )V (−1)

µ V (−1)
ν

−2

(( 1

ε2
ḡρσF (−1)

νρ F (−1)
µσ +

1

ε

[
ḡρσ

(
F (−1)
νρ F̄µσ + F̄νρF

(−1)
µσ

)
− δg(1)ρσF (−1)

νρ F (−1)
µσ

]
+ε0

[
ḡρσ

(
F̄νρF̄µσ + F (−1)

νρ F (1)
µσ + F (1)

νρ F
(−1)
µσ

)
− δg(1)ρσ

(
F (−1)
νρ F̄µσ + F̄νρF

(−1)
µσ

)
+ 1

2 (2δg(1)σα g(1)ρα − g(2)ρσ)F (−1)
νρ F (−1)

µσ

])
−1

4

( 1

ε2
ḡµν ḡ

ραḡσβF (−1)
ρσ F

(−1)
αβ +

1

ε

[
ḡµν ḡ

ραḡσβ
(
F (−1)
ρσ F̄αβ + F̄ρσF

(−1)
αβ

)
+
(
δg(1)µν ḡ

ραḡσβ − ḡµνδg(1)ραḡσβ − ḡµν ḡραδg(1)σβ
)
F (−1)
ρσ F

(−1)
αβ

]
+ε0

[
ḡµν ḡ

ραḡσβ
(
F̄ρσF̄αβ + F (−1)

ρσ F
(1)
αβ + F (1)

ρσ F
(−1)
αβ

)
+
(
δg(1)µν ḡ

ραḡσβ − ḡµνδg(1)ραḡσβ − ḡµν ḡραδg(1)σβ
)(

F (−1)
ρσ F̄αβ + F̄ρσF

(−1)
αβ

)
+
(
ḡµνδg

(1)ραδg(1)σβ − δg(1)µν δg(1)ραḡσβ − δg(1)µν ḡραδg(1)σβ + ḡµνδg
(1)ραδg(1)σγδg(1)βγ

+ḡµνδg
(1)ργδg(1)σβδg(1)αγ + 1

2 ḡ
(2)
µν ḡ

ραḡσβ − 1
2 ḡµν ḡ

(2)ραḡσβ

− 1
2 ḡµν ḡ

ραḡ(2)σβF (−1)
ρσ F

(−1)
αβ

)
F (−1)
ρσ F

(−1)
αβ

]))
= 0. (5.31)

At this point it is worth listing the following comments:
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1. The 1/ε2 order of Eq. (5.31) shows that,

ḡρσF (−1)
νρ F (−1)

µσ − 1

4
ḡµν ḡ

ραḡσβF (−1)
ρσ F

(−1)
αβ = 0. (5.32)

According to the Einstein's equivalence principle, there is always a

frame where there is no curvature, i.e., the metric is Minkowski. So we

can replace gµν by ηµν in the electromagnetic stress-energy tensor. In

Minkowski, the energy density, T00 = −1
2
(E2 +B2). This quantity will

be zero only when E = B = 0. Therefore F
(−1)
µν = 0. If F

(−1)
µν vanishes

in Minkowski space, then it will vanish in every coordinate system, as

we can always transform F
(−1)
µν like a tensor.

Therefore, vanishing Maxwell stress-energy tensor (or energy-momentum

tensor) also implies vanishing curvature F
(−1)
µν , i.e., V

(−1)
µ is rotation-

free.

2. If we apply F
(−1)
µν = 0, Eq. (5.31) (contracted by ḡµν) reduces to,

− 1

2κ
(Ḡµν − κT̄µν) +

1

2κ
(Ḡ− κT̄ )V (−1)

µ V (−1)
ν

−2

(
F̄νρF̄

ρ
µ −

1

4
ḡµνF̄ρσF̄

ρσ

)
= 0 .

(5.33)

That represents the Einstein equation for ḡµν sourced by the Maxwell

�eld V̄µ and the dust V
(−1)
µ .

3. If we apply F
(−1)
µν = 0, Eq. (5.29) reduces to ḡνρ∇ρF̄µν = ∇̄νF̄µν = 0 :

Maxwell equation for V̄µ.

4. The zeroth order of Eq. (5.28) implies that V
(−1)
µ has a unit norm.
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The gradient of Eq. (5.28) give us

V µ(∇µVν) = V µFµν . (5.34)

By using the de�nition given in Eq. (5.8), the acceleration of time like

vector �eld, Vµ, is aν = V µFµν . Therefore, the right hand side of the

Eq. (5.34) represents the acceleration for any order of the vector �eld,

Vµ. Considering, F
(−1)
µν = 0, the acceleration of the V

(−1)
µ is

a(−1)
ν = V (−1)µF (−1)

µν , (5.35)

= 0. (5.36)

Therefore, V
(−1)
µ is acceleration-free.

Of course, the full Vµ is not acceleration-free because the full Fµν is not

zero at all orders.

In summary, we showed that in the weak limit, the above vector mimetic ac-

tion becomes rotation and acceleration-free and behaves as the scalar mimetic

theory, and the sound speed will be the same as a scalar �eld mimetic theory

as explained in the previous chapter. However, away from this limit, the

sound speed squared will be positive.

5.4 Mimetic generalized Proca theories

In Ref. [95], authors described the generalized Proca theories, which is

claimed to provide second-order equations of motion in curved space-time. If

we perform the non-invertible vector disformal transformation of type, Eq.

(5.17) on this action, it will leave the same constraint as Eq. 5.16. The
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Mimetic of the generalized Proca theories is

S =

∫
d4x
√
−g (L+ LM) +

∫
d4x
√
−gλ(bgµνVµVν − 1) , (5.37)

with L = LF +
5∑
i=2

Li , (5.38)

where L represents the generalized Proca action and LM is the matter La-

grangian, and

LF = −1

4
FµνF

µν , (5.39)

L2 = G2(X) , (5.40)

L3 = G3(X)∇µV
µ , (5.41)

L4 = G4(X)R +G4,X(X)
[
(∇µV

µ)2 + c2∇ρVσ∇ρV σ

−(1 + c2)∇ρVσ∇σV ρ
]
, (5.42)

L5 = G5(X)Gµν∇µV ν − 1

6
G5,X(X)

[
(∇µV

µ)3 − 3d2∇µV
µ∇ρVσ∇ρV σ

−3(1− d2)∇µV
µ∇ρVσ∇σV ρ + (2− 3d2)∇ρVσ∇γV ρ∇σVγ

+3d2∇ρVσ∇γV ρ∇γV
σ
]
. (5.43)

Here, Vµ is a vector �eld with Fµν = ∇µVν − ∇νVµ; ∇µ is the covariant

derivative operator. c2, d2 are constants, G2,3,4,5 are arbitrary functions of

X = −1
2
VµV

µ and Gi,X = ∂Gi/∂X.

The propagating degrees of freedom up to three with second-order equations

of motion for the de�ned Lagrangians L2,3,4,5. There are two transverse po-

larizations for the vector �eld, like in the standard massless Maxwell theory.

The choice of the functions, G2(X) = m2X with G3,4,5 = 0 will correspond to

the Proca theory, in which case the introduction of the mass term m breaks

the U(1) gauge symmetry. This gives rise to an additional degree of freedom

101



5.4. MIMETIC PROCA CHAPTER 5. VECTOR MIMETIC

in the longitudinal direction.

We leave the cosmological implications of this mimetic vector gravity for our

ongoing project.
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Chapter 6

Conclusions and future outlook

Since mimetic dark matter [39], a modi�cation of General Relativity (GR)

leading to a scalar-tensor type theory, has attracted considerable attention

in the cosmology community. The main reason is that the theory possesses

some very attractive features. For example, it was shown that the original

theory [39] contains an extra scalar mode (of gravitational origin) which can

mimic the behaviour of cold dark matter even in the absence of any form of

matter. Soon after it was realised that, with a small generalisation of the

original theory, the scalar mode could be used to mimic the behaviour of

almost any type of matter and in this way one can have almost any desired

expansion history of the universe [40].

The mimetic scalar �eld was introduced in GR by doing a non-invertible

conformal transformation in the Einstein-Hilbert action of the type gµν =

−w`µν , where the physical metric is gµν , the auxiliary metric is `µν , w is

de�ned in terms of a scalar �eld ϕ as w = `µν∂µϕ∂νϕ [39, 40, 45]. Soon

after it was realized [42] that the type of metric transformation that leads to

mimetic gravity can be further generalised from the previous transformation

to include also a disformal term [46], as gµν = A(ϕ,w)`µν +B(ϕ,w)∂µϕ∂νϕ,
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where A and B are free functions of two variables and they must obey some

conditions (see [47], [51] and also Section 2.3.1, where the conditions for

disformally coupled theories to have a so-called Jordan frame were discussed),

so that the Lorentzian signature is preserved, the transformation is causal

and regular, gµν exists and A and B are related as B = −A/w+ b, where b is

an arbitrary function of ϕ only, and it should not cross zero. If A and B are

arbitrary functions and do not obey the previous relation then the equations

of motion that one obtains are just Einstein's equations [42].

In this thesis, we have proposed and explored the �generalized mimetic grav-

ity�, as an alternative to the ΛCDM model.

In Chapter 3, we applied a full disformal transformation to very general

single scalar-tensor theory of gravity [2]. We have shown that the very gen-

eral scalar-tensor theories of gravity are generically invariant under disfor-

mal transformations. However, there exists a special subset, which is non-

invertible under the transformation which yields generalized �mimetic� grav-

ity theories, i.e., the scalar �eld mimics almost any desired expansion history

(including Dark Energy and Dark Matter dominated universes). We call it

�generalized mimetic gravity�.

The generalized mimetic equation of motion (EOM) can also be derived using

the Lagrange multiplier method. The general mimetic scalar-tensor theory

has the same number of derivatives in the EOM as the original scalar-tensor

theory. As an application, the simplest model of the mimetic Horndeski the-

ory was built, where a canonically normalized scalar �eld with no potential

(in the original theory) is able to mimic the cosmological background expan-

sion history of a �at FLRW model �lled with a barotropic perfect �uid with

any (constant) equation of state.

In Chapter 4, we studied linear scalar perturbations around a �at FLRW
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background in mimetic Horndeski gravity [3]. In the absence of matter, we

have shown that the Newtonian potential satis�es a second-order di�erential

equation with no spatial derivatives. The sound speed is zero for all back-

grounds and, therefore, the system does not have any wave-like scalar degrees

of freedom.

In Chapter 5, we have also shown and explained how the vector Einstein-

Aether theory is also a type of mimetic gravity theories. In that context, we

have shown that the non-invertibility condition of a vector disformal trans-

formation leads to the Einstein-Aether theory. In the weak limit, the vector

Einstein-Aether theory becomes irrotational and acceleration-free and be-

haves as the scalar �eld mimetic theory. Furthermore, we have proposed a

generalized vector mimetic gravity action. This is an ongoing project. We

leave the analysis and cosmological implications to the near future.

Interestingly, the simple mimetic matter scenario with a higher-derivative

term arises as a particular (IR) limit [96] of projectable Ho°ava-Lifshitz grav-

ity, which have been shown to be renormalizable [97] and a candidate for the

theory of quantum gravity.

As part of the work leading up to my Master's thesis, I have attempted to

solve the cosmological constant problem by breaking general covariance in

the unimodular theory of gravity [98], and have explored the cosmological

implementation in a consecutive paper [99]. Unimodular gravity tries to solve

the CC problem by breaking general covariance in the form of a constraint on

the metric determinant. In the present case of mimetic gravity a constraint is

applied to the scalar �eld instead and the theory was proposed as a possible

solution to the dark matter problem. If we impose both constraints at the

same time, then the theory that one obtains is called unimodular-mimetic

gravity, and it could solve both the DE and DM problems [100, 101].
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After having the background and perturbation check of the model �general-

ized mimetic gravity� [2, 3], it would be appropriate to test, constrain and

analyze to con�rm this novel hypothesis by using the existing data and fu-

ture upcoming high-quality data. EUCLID is of particular interest, as it

will allow to constrain a large number of dark energy and modi�ed gravity

models with high precision and accuracy, and much of this proposal's tests

are dedicated to preparing the model for confronting future EUCLID data.

Given the proliferation of high-precision and pertinent experimental data,

�mimetic gravity� and other theories of modi�ed gravity are highly relevant

in the coming decade.

The model may contain a build-in screening mechanism that may imply that

e�ectively GR is recovered on small scales in which we do experiments (e.g.

table-top laboratory experiments) or astronomical observations in the solar

system. This is an interesting possibility which deserves further study and

I leave it for future work. It would also be interesting to simulate and test

the nonlinear evolution of the mimetic scalar �eld up to galaxy and cluster

scales. We leave these works for our near future.
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Appendix A

Appendix-Mimetic Horndeski

A.1 Disformal transformation with a new scalar

�eld

In Section 3.3 of the main text we have considered the theory that results

from performing a disformal transformation on a very general scalar-tensor

theory where the scalar �eld in the action was the same as the scalar �eld

involved in the transformation. In this Appendix, we consider the case when

the scalar �eld in the transformation is not the same as the scalar �eld present

in the action of the theory.

The action of the model is Eq. (3.22). The disformal transformation that we

are considering is

gµν = A(Φ, Y ) `µν +B(Φ, Y ) ∂µΦ∂νΦ, where Y ≡ `ρσ∂ρΦ∂σΦ, (A.1)

and, as before, the arbitrary disformal functions, A and B, depends on both

the scalar �eld Φ and its kinetic term Y . Using Eq. (A.1) one can �nd the
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variation of gµν as

δgµν = Aδ`µν −
(
`µν

∂A

∂Y
+ ∂µΦ∂νΦ

∂B

∂Y

)
[
(`αρ∂αΦ) (`βσ∂βΦ) δ`ρσ − 2`ρσ(∂ρΦ) (∂σδΦ)

]
+

(
`µν

∂A

∂Φ
+ ∂µΦ∂νΦ

∂B

∂Φ

)
δΦ

+B [(∂µΦ)(∂νδΦ) + (∂νΦ)(∂µδΦ)] . (A.2)

The modi�ed Einstein equations of motion, δS/δ`µν = 0, are

A(Eµν + T µν) =

(
α1
∂A

∂Y
+ α3

∂B

∂Y

)
(`µρ∂ρΦ) (`νσ∂σΦ). (A.3)

The equation of motion for the scalar �eld Φ, δS/δΦ = 0, is

1√
−g

∂ρ

{√
−g ∂σΦ

[
B(Eρσ + T ρσ) +

(
α1
∂A

∂Y
+ α3

∂B

∂Y

)
`ρσ
]}

=
1

2

(
α1
∂A

∂Φ
+ α3

∂B

∂Φ

)
, (A.4)

where we have de�ned the new quantities α1 and α3 as

α1 ≡ (Eρσ + T ρσ)`ρσ, α3 ≡ (Eρσ + T ρσ)∂ρΦ ∂σΦ, (A.5)

and the equation for the scalar �eld Ψ, δS/δΨ = 0, is ΩΨ = 0. For the

matter �eld we have the same equation of motion as before, i.e. δS/δφm = 0

or Ωm = 0. It is important to note that the modi�ed Einstein equations

of motion, Eq. (A.3), have the same structure as in subsection 3.3.2 of the

main text. Following the same procedure as before one can �nd di�erent

solutions for the resulting system depending on its determinant being zero

or not. We will now consider these two cases separately and show that they

lead to di�erent physical theories exactly as in the case studied in the main

text.
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The generic case

If the determinant of the system of linear equations that results from con-

tracting Eq. (A.3) with `µν and ∂µΦ∂νΦ is non-zero then the only solution

is α1 = α3 = 0. Hence, Eqs. (A.3) and (A.4) imply

A(Eµν + T µν) = 0, (A.6)

∂ρ
[√
−g ∂σΦB(Eρσ + T ρσ)

]
= 0. (A.7)

Eq. (A.7) is empty after considering the modi�ed Einstein equation (A.6).

Therefore the full equations of motion of this theory are

Eµν + T µν = 0, ΩΨ = 0, Ωm = 0. (A.8)

In terms of the original metric gµν , these equations are exactly the same as

the equations of motion for the theory (3.22) if we take the variation with

respect to the original �elds gµν , Ψ and φm instead of taking the variation

with respect to the new �elds `µν , Φ, Ψ and φm as we did to arrive at Eqs.

(A.8). This shows that a very general scalar-tensor theory of the type (3.22)

is invariant under a generic disformal transformation of the type (A.1) even

if the scalar �eld de�ning the transformation in not the same as the scalar

�eld in the action.

Mimetic gravity

If the determinant of the system in zero, as we showed in the main text, it

implies that the transformation functions A and B should be related as

B(Φ, Y ) = −A(Φ, Y )

Y
+ b(Φ), (A.9)
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where b(Φ) again arises as an integration constant in Y which we assume to

be non-zero. Inserting this expression in Eqs. (A.3) and (A.4) one obtains

Eµν + Tµν = (E + T ) b ∂µΦ ∂νΦ, ∇ρ [(E + T )b ∂ρΦ] =
1

2
(E + T )

1

b

db

dΦ
.

(A.10)

Following [42], one can rede�ne the scalar �eld Φ in terms of a new scalar

�eld Θ as dΘ/dΦ =
√
|b| in order to eliminate the function b(Φ) from the

equations of motion to �nally obtain

Eµν + Tµν = ε(E + T )∂µΘ ∂νΘ, ∇ρ [(E + T )∂ρΘ] = 0, (A.11)

where ε = Sign(b) = ±1 depending on the sign of the norm of ∂µΦ, i.e.

gµν∂µ Θ∂νΘ = ε. The full set of equations of motion includes in addition to

the previous two equations also the equations of motion for Ψ and the matter

�eld φm. They are

ΩΨ = 0, Ωm = 0. (A.12)
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Appendix-Sound speed

B.1 The background equations of motion

In this appendix, we provide the expressions for the tensor Eµν on a �at

FLRW background. The same expressions can be used for the Horndeski

and mimetic Horndeski models. The non-zero components read

E
(0)
00 = −a2K − 6G4H2 − 6G4,ϕHϕ′0

+ (ϕ′0)
2

(
12G4,XH2 − 9G5,ϕH2

a2
−G3,ϕ +K,X

)
+ (ϕ′0)

3

(
5G5,XH3

a4
+

3G3,XH− 6G4,XϕH
a2

)
+ (ϕ′0)

4 (6G4,XXH2 − 3G5,XϕH2)

a4

+ (ϕ′0)
5 G5,XXH3

a6
,
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E
(0)
ij = δij

[
a2K + 2G4H2 + 4G4H′

+ϕ′0

(
4G5,ϕHϕ′′0 − 4G4,XHϕ′′0

a2
+ 2G4,ϕH

)
+ (ϕ′0)

2

(
−G3,ϕ + 2G4,ϕϕ −

3G5,XH2ϕ′′0
a4

)
+ (ϕ′0)

2

(
−G3,Xϕ

′′
0 + 2G4,X(H2 − 2H′) + 2G4,Xϕϕ

′′
0 +G5,ϕ(2H′ − 3H2)

a2

)
+ (ϕ′0)

3

(
−4G4,XXHϕ′′0 + 2G5,XϕHϕ′′0 + 3G5,XH3 − 2G5,XHH′

a4

)
+ (ϕ′0)

3

(
G3,XH− 6G4,XϕH + 2G5,ϕϕH

a2

)
+ (ϕ′0)

4

(
− G5,XXH2ϕ′′0

a6
+

4G4,XXH2 − 3G5,XϕH2

a4

)
+
G5,XXH3 (ϕ′0)5

a6
+ 2G4,ϕϕ

′′
0

]
. (B.1)

The zeroth-order trace E(0) can be easily computed from the previous equa-

tions by using E(0) = −a−2E
(0)
00 + a−2δijE

(0)
ij .

B.2 The explicit expressions of the fi functions

In this appendix, we give the explicit expressions for the functions fi, i =

1, ..., 21 de�ned in the main text. These expressions can be used for both the

Horndeski and mimetic Horndeski models because no equations of motion

were used.

They read

f1 = 12G4H + 6G4,ϕϕ
′
0

+
(18G5,ϕH− 24G4,XH)

a2
(ϕ′0)

2

+ (ϕ′0)
3

(
6G4,Xϕ − 3G3,X

a2
− 15G5,XH2

a4

)
+

(6G5,XϕH− 12G4,XXH)

a4
(ϕ′0)

4 − 3G5,XXH2

a6
(ϕ′0)

5
,
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f2 = −6G4,ϕH + ϕ′0

(
18G4,XH2 − 18G5,ϕH2

a2
− 2G3,ϕ +K,X

)
+ (ϕ′0)

2

(
15G5,XH3

a4
+

9G3,XH− 24G4,XϕH
a2

)
+ (ϕ′0)

3

(
36G4,XXH2 − 21G5,XϕH2

a4
+
K,XX −G3,Xϕ

a2

)
+ (ϕ′0)

4

(
10G5,XXH3

a6
+

3G3,XXH− 6G4,XXϕH
a4

)
+

(6G4,XXXH2 − 3G5,XXϕH2)

a6
(ϕ′0)

5
+
G5,XXXH3

a8
(ϕ′0)

6
,

f3 = −2a2K + (ϕ′0)
2

(
18G5,ϕH2 − 18G4,XH2

a2
+K,X

)
+ (ϕ′0)

3

(
18G4,XϕH− 6G3,XH

a2
− 20G5,XH3

a4

)
+ (ϕ′0)

4

(
21G5,XϕH2 − 36G4,XXH2

a4
+
G3,Xϕ −K,XX

a2

)
+ (ϕ′0)

5

(
6G4,XXϕH− 3G3XXH

a4
− 11G5,XXH3

a6

)
+ (ϕ′0)

6 (3G5,XXϕH2 − 6G4,XXXH2)

a6
− G5,XXXH3 (ϕ′0)7

a8
,

f4 = −a2K,ϕ − 6G4,ϕH2 − 6G4,ϕϕHϕ′0

+ (ϕ′0)
2

(
12G4,XϕH2 − 9G5,ϕϕH2

a2
−G3,ϕϕ +K,Xϕ

)
+ (ϕ′0)

3

(
5G5,XϕH3

a4
+

3G3,XϕH− 6G4,XϕϕH
a2

)
+

(6G4,XXϕH2 − 3G5,XϕϕH2)

a4
(ϕ′0)

4
+
G5,XXϕH3

a6
(ϕ′0)

5
,

f5 = −4G4 +
(4G4,X − 2G5,ϕ) (ϕ′0)2

a2
+

2G5,XH (ϕ′0)3

a4
,
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f6 = 2G4,ϕ +
ϕ′0(4G5,ϕH− 4G4,XH)

a2

+ (ϕ′0)
2

(
2G4,Xϕ −G3,X

a2
− 3G5,XH2

a4

)
+

(2G5,XϕH− 4G4,XXH)

a4
(ϕ′0)

3

−G5,XXH2 (ϕ′0)4

a6
,

f7 = −2G4 + (ϕ′0)
2

(
G5,Xϕ

′′
0

a4
+
G5,ϕ

a2

)
− G5,XH

a4
(ϕ′0)

3
,

f8 = 2G4,ϕ

+ (ϕ′0)
2

(
(G5,Xϕ − 2G4,XX)ϕ′′0

a4
+

2G5,XH2 −G5,XH′

a4
+
G5,ϕϕ − 2G4,Xϕ

a2

)
+ (ϕ′0)

3

(
2G4,XXH− 2G5,XϕH

a4
− G5,XXHϕ′′0

a6

)
+
G5,XXH2

a6
(ϕ′0)

4 − 2G5,XH
a4

ϕ′0ϕ
′′
0 +

(2G5,ϕ − 2G4,X)

a2
ϕ′′0,

f9 = 2G4 +
(G5,ϕ − 2G4,X)

a2
(ϕ′0)

2 − G5,XH
a4

(ϕ′0)
3
,

f11 = 2G4,ϕ +
(4G5,ϕH− 4G4,XH)

a2
ϕ′0

+

(
2G4,Xϕ −G3,X

a2
− 3G5,XH2

a4

)
(ϕ′0)

2

+
(2G5,XϕH− 4G4,XXH)

a4
(ϕ′0)

3 − G5,XXH2 (ϕ′0)4

a6
, (B.2)

f12 = −8G4H + ϕ′0

(
(4G4,X − 4G5,ϕ)ϕ′′0

a2
− 4G4,ϕ

)
+ (ϕ′0)

2

(
6G5,XHϕ′′0

a4
+

4G4,XH
a2

)
+ (ϕ′0)

3

(
(4G4,XX − 2G5,Xϕ)ϕ′′0

a4
+

2G5,XH′ − 4G5,XH2

a4
+

4G4,Xϕ − 2G5,ϕϕ

a2

)
+ (ϕ′0)

4

(
2G5,XXHϕ′′0

a6
+

4G5,XϕH− 4G4,XXH
a4

)
− 2G5,XXH2

a6
(ϕ′0)

5
,
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f13 = 2G4,ϕH

+ϕ′0

(
2G4,X(3H2 − 2H′)− 2G5,ϕ(3H2 − 2H′)

a2

)
+

ϕ′0

(
ϕ′′0

(
6G4,Xϕ − 2G3,X

a2
− 6G5,XH2

a4

)
− 2G3,ϕ + 4G4,ϕϕ +K,X

)
+ (ϕ′0)

2

(
ϕ′′0(10G5,XϕH− 16G4,XXH)

a4
+

9G5,XH3 − 6G5,XHH′

a4

)
+

(ϕ′0)
2

(
3G3,XH− 16G4,XϕH + 6G5,ϕϕH

a2

)
+ (ϕ′0)

3

(
18G4,XXH2 − 4G4,XXH′ − 15G5,XϕH2 + 2G5,XϕH′

a4

)
+

(ϕ′0)
3

(
2G4,Xϕϕ −G3,Xϕ

a2
+ ϕ′′0

(
2G4,XXϕ −G3,XX

a4
− 7G5,XXH2

a6

))
+ (ϕ′0)

4

(
ϕ′′0(2G5,XXϕH− 4G4,XXXH)

a6
+

8G5,XXH3 − 2G5,XXHH′

a6

)
+

(ϕ′0)
4

(
G3,XXH− 6G4,XXϕH + 2G5,XϕϕH

a4

)
+ (ϕ′0)

5

(
4G4,XXXH2 − 3G5,XXϕH2

a6
− G5,XXXH2ϕ′′0

a8

)
+
G5,XXXH3 (ϕ′0)6

a8
+
ϕ′′0(4G5,ϕH− 4G4,XH)

a2
,

f14 = −4G4H− 2G4,ϕϕ
′
0 + (ϕ′0)

2 (8G4,XH− 6G5,ϕH)

a2

+ (ϕ′0)
3

(
5G5,XH2

a4
+
G3,X − 2G4,Xϕ

a2

)
+ (ϕ′0)

4 (4G4,XXH− 2G5,XϕH)

a4
+
G5,XXH2 (ϕ′0)5

a6
,
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f16 = a2K,ϕ + 2G4,ϕH2 + 4G4,ϕH′ + ϕ′0

(
ϕ′′0(4G5,ϕϕH− 4G4,XϕH)

a2
+ 2G4,ϕϕH

)
+ (ϕ′0)

2

(
2G4,Xϕ(H2 − 2H′) +G5,ϕϕ(2H′ − 3H2)

a2

)
+

(ϕ′0)
2

(
ϕ′′0

(
2G4,Xϕϕ −G3,Xϕ

a2
− 3G5,XϕH2

a4

)
−G3,ϕϕ + 2G4,ϕϕϕ

)
+ (ϕ′0)

3

(
ϕ′′0(2G5,XϕϕH− 4G4,XXϕH)

a4
+

3G5,XϕH3 − 2G5,XϕHH′

a4

)
+

(ϕ′0)
3

(
G3,XϕH− 6G4,XϕϕH + 2G5,ϕϕϕH

a2

)
+ (ϕ′0)

4

(
4G4,XXϕH2 − 3G5,XϕϕH2

a4
− G5,XXϕH2ϕ′′0

a6

)
+

G5,XXϕH3 (ϕ′0)5

a6
+ 2G4,ϕϕϕ

′′
0,
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f17 = −4G4H2 − 8G4H′ + ϕ′0

(
ϕ′′0(16G4,XH− 16G5,ϕH)

a2
− 4G4,ϕH

)
+ (ϕ′0)

2

(
+ 2G3,ϕ − 4G4,ϕϕ −K,X +

−10G4,XH2 + 12G4,XH′ + 12G5,ϕH2 − 8G5,ϕH′

a2

+ϕ′′0

(
18G5,XH2

a4
+

4G3,X − 10G4,Xϕ

a2

))
+ (ϕ′0)

3

(
ϕ′′0(28G4,XXH− 16G5,XϕH)

a4
+

12G5,XHH′ − 18G5,XH3

a4

)
+

(ϕ′0)
3

(
−4G3,XH + 22G4,XϕH− 8G5,ϕϕH

a2

)
+ (ϕ′0)

4

(
−26G4,XXH2 + 4G4,XXH′ + 21G5,XϕH2 − 2G5,XϕH′

a4
+

G3,Xϕ − 2G4,Xϕϕ

a2
+ ϕ′′0

(
11G5,XXH2

a6
+
G3,XX − 2G4,XXϕ

a4

))
+ (ϕ′0)

5

(
ϕ′′0(4G4,XXXH− 2G5,XXϕH)

a6
+

2G5,XXHH′ − 11G5,XXH3

a6

)
+

(ϕ′0)
5

(
−G3,XXH + 6G4,XXϕH− 2G5,XϕϕH

a4

)
+ (ϕ′0)

6

(
G5,XXXH2ϕ′′0

a8
+

3G5,XXϕH2 − 4G4,XXXH2

a6

)
−G5,XXXH3

a8
(ϕ′0)

7 − 4G4,ϕϕ
′′
0,

f20 = −2G4,ϕH +

(
6G4,XH2 − 6G5,ϕH2

a2
− 2G3,ϕ + 2G4,ϕϕ +K,X

)
ϕ′0

+

(
3G5,XH3

a4
+

3G3,XH− 10G4,XϕH + 2G5,ϕϕH
a2

)
(ϕ′0)

2

+
(6G4,XXH2 − 4G5,XϕH2)

a4
(ϕ′0)

3
+
G5,XXH3

a6
(ϕ′0)

4
.

(B.3)

The functions fi obey the following identities:

f10 = f18, f11 = f19, f21 = f14, f9 = −f10

2
,

f ′10 − f12

f10

= −2H, (B.4)
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f11(f ′10 − f12) + f10(f13 − f20 − f ′11) = 0,

f14 −Hf10 + ϕ′0f11 = 0, (B.5)

f17 −
f15f9

f7

− f14

f10

(f12 − f ′10)− f ′14 + 3E
(0)
ij + E

(0)
00 + αE

(0)
ij = 0, (B.6)(

f16 −
f8f15

f7

− f20

f10

(f12 − f ′10)− f ′20

)
ϕ′0 +

E
(0)′

00 +H(3E
(0)
ij + E

(0)
00 ) + βE

(0)
ij = 0, (B.7)(

H
ϕ′0

)′
f10 +

(
ϕ′′0

(ϕ′0)2
− H
ϕ′0

)
f14 − f20 − a2E

(0)

ϕ′0
− 4

E
(0)
ij

ϕ′0
= 0,

2E
(0)
ij = −f15, (B.8)

where

α = −2− 2
f9

f7

= −2(ϕ′0)2G4,X
a2G4

+

1

a2G4

(
2a4G4 − a2G5,ϕ(ϕ′0)2 +G5,X(ϕ′0)2 (Hϕ′0 − ϕ′′0)

) ×
2(ϕ′0)2

( (
a2G5,ϕ −HG5,Xϕ

′
0

) (
2a2G4 −G4,X(ϕ′0)2

)
+G5,X

(
a2G4 −G4,X(ϕ′0)2

)
ϕ′′0

)
,

(B.9)
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and

β = −2ϕ′0
f8

f7

=
2ϕ′0

(
a4G4,ϕ +G4,XX(ϕ′0)2 (Hϕ′0 − ϕ′′0)− a2

(
G4,Xϕ(ϕ′0)2 +G4,Xϕ

′′
0

))
a4G4

+
2ϕ′0

a4G4

(
2a4G4 − a2G5,ϕ(ϕ′0)2 +G5,X(ϕ′0)2 (Hϕ′0 − ϕ′′0)

)
×

[
−G4,XXG5,X(ϕ′0)4 (−Hϕ′0 + ϕ′′0)

2
+

a6
( (
G4,ϕG5,ϕ +G4G5ϕϕ

)
(ϕ′0)2 + 2G4G5,ϕϕ

′′
0

)
+ a2(ϕ′0)2 (Hϕ′0 − ϕ′′0)(

G4HG5,XXϕ
′
0 +

(
G4,XϕG5,X +G4,XXG5,ϕ

)
(ϕ′0)2 +G4,XG5,Xϕ

′′
0

)
+

a4ϕ′0

(
ϕ′0

(
G4G5,X

(
2H2 −H′

)
−H

(
G4,ϕG5,X + 2G4G5,Xϕ

)
ϕ′0

−G4,XϕG5,ϕ(ϕ′0)2
)

+
(
− 2G4HG5,X +

(
G4,ϕG5,X +G4G5,Xϕ −G4,XG5,ϕ

)
ϕ′0

)
ϕ′′0

)]
,

(B.10)

where E
(0)
ij in the previous equations denotes the coe�cient of δij in E

(0)
ij (i.e.

the expression inside square brackets in Eq. (B.1)). The explicit expressions

for the fi functions with i = 10, 15, 18, 19, 21 can be found easily from the

previous identities and the provided expressions for the other fi functions.

B.3 Linear equations of motion in mimetic Horn-

deski gravity coupled to matter

In this appendix we brie�y summarize well-known expressions for the linear

scalar perturbations of the energy-momentum tensor in the Poisson gauge,

see for example the review [102], and then we present the linear equations
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of motion in mimetic Horndeski gravity coupled to �uid matter. We assume

a general energy-momentum tensor of matter than may contain anisotropic

stress. We also assume that there is no direct coupling between this matter

�uid and the mimetic scalar �eld ϕ.

The energy-momentum tensor of the �uid that we consider has the form

Tµν = (ρ+ P )uµuν + Pgµν + πµν , (B.11)

where ρ is the energy density, P the pressure and πµν is the anisotropic

stress tensor. πµν vanishes for a perfect �uid or a minimally coupled scalar

�eld, however it is non-zero for a non-minimally coupled scalar �eld and free-

streaming neutrinos (or radiation). uµ is the 4-velocity and note that the 4-

velocity in this appendix is not related with the 4-velocity introduced in Sec.

4.4. πµν obeys πµνu
µ = 0 and πµµ = 0. We assume that the anisotropic stress

is a �rst-order quantity and that the 4-velocity is de�ned so that π00 = π0i = 0

[103, 6] (this is the so-called energy frame), while the spatial part of πµν can

be decomposed as

πij = a2

(
∂i∂jΠ−

1

3
δij∂

2Π +
1

2
(∂iΠj + ∂jΠi) + Πij

)
, (B.12)

where the vector Πi obeys ∂
iΠi = 0 and the tensor Πij obeys Πi

i = ∂iΠij = 0

(where the indices are raised with δij). From now on we will neglect the

vector and tensor parts of the anisotropic stress tensor. The 4-velocity obeys

the constraint uµu
µ = −1 and can be expanded as

u0 = a−1(1− Φ), ui = a−1vi, (B.13)

where the velocity vi, a �rst-order quantity, can be decomposed in a scalar

and intrinsic vector parts as vi = δij∂jv + vivec, where ∂iv
i
vec = 0. From now

on we will also neglect vivec. The zeroth-order components of the energy-

momentum tensor are

T
(0)
00 = a2ρ0, T

(0)
0i = 0, T

(0)
ij = a2P0δij, (B.14)
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where ρ0 and P0 denote the zeroth-order energy density and pressure respec-

tively. The trace is T (0) = −ρ0 + 3P0. At �rst order we have

T
(1)
00 = a2 (δρ+ 2ρ0Φ) , T

(1)
0i = −a2 (ρ0 + P0) ∂iv,

T
(1)
ij = a2

(
(δP − 2P0Ψ)δij + ∂i∂jΠ−

1

3
δij∂

2Π

)
, (B.15)

where δρ and δP denote the energy density and pressure perturbations re-

spectively. The trace is T (1) = −δρ + 3δP . The conservation of the energy-

momentum tensor, ∇µTµν = 0 implies at zeroth order

ρ′0 + 3H(ρ0 + P0) = 0, (B.16)

and at �rst order

δρ′ + 3H(δρ+ δP )− 3(ρ0 + P0)Ψ′ + (ρ0 + P0)∂2v = 0, (B.17)

((ρ0 + P0)v)′ + δP +
2

3
∂2Π + 4H(ρ0 + P0)v + (ρ0 + P0)Φ = 0. (B.18)

The previous results are all well-known in the literature and now we will

present the equations of motion of mimetic Horndeski gravity coupled with

this �uid.

The equations of motion of the mimetic Horndeski model including mat-

ter are Eqs. (3.51) where the Eµν tensor is computed from the Horndeski

Lagrangian. They read

b(ϕ)gµν∂µϕ∂νϕ− 1 = 0, (B.19)

Eµν + T µν = (E + T )b(ϕ)∂µϕ∂νϕ, (B.20)

∇µT
µν = 0, (B.21)

where we dropped the �eld equation because it is redundant and replaced

the equation Ωm = 0 with the equivalent equation ∇µT
µν = 0. As shown in

section 4.2, the �time-time" component of the generalized Einstein equations

is also redundant. In the background the previous equations of motion reduce
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to

−a−2b(ϕ0)(ϕ′0)2 = 1, E
(0)
ij = −a2P0δij, ρ′0+3H(ρ0+P0) = 0. (B.22)

At �rst order they are

2b0δϕ
′ + ϕ′0b,ϕδϕ− 2b0ϕ

′
0Φ = 0, (B.23)

f7Ψ + f8δϕ+ f9Φ + a2Π = 0, (B.24)

f10Ψ′′ + f11δϕ
′′ + f12Ψ′ + f13δϕ

′ + f14Φ′ + f15Ψ +

f16δϕ+ f17Φ +
2

3
a2∂2Π + a2 (δP − 2P0Ψ) = 0, (B.25)

f10Ψ′ + f11δϕ
′ +

(
f20 +

a2(E(0) + T (0))

ϕ′0

)
δϕ+ f14Φ

−a2 (ρ0 + P0) v = 0, (B.26)

δρ′ + 3H(δρ+ δP )− 3(ρ0 + P0)Ψ′ + (ρ0 + P0)∂2v = 0, (B.27)

((ρ0 + P0)v)′ + δP +
2

3
∂2Π + 4H(ρ0 + P0)v

+(ρ0 + P0)Φ = 0. (B.28)

Similarly to the case discussed in the main text, one can show that the third

equation of the previous set can be derived from the other equations (one does

not need to use the �fth equation to show that) and using the background

equations of motion. In conclusion the set of independent equations of motion

in mimetic gravity with matter is given by Eqs. (B.23), (B.24), (B.26), (B.27)

and (B.28). Using the variable ζ de�ned in subsection 4.3.2 one can write

Eq. (B.26) in the previous set as

ζ ′ = a2ρ0 + P0

f10

(
δϕ

ϕ′0
− v
)
. (B.29)

B.4 The sound speed in the mimetic G3 theory

Horndeski's theory is the most general 4D covariant scalar-tensor theory that

can be derived from an action and contains only second order equations of
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motion. However it is known [60, 61, 66] that there are theories that include

Horndeski's theory, can be derived from an action and are more general

than Horndeski's theory. In some cases, these theories have been shown to

propagate exactly the same number of degrees of freedom as Horndeski's

theory and therefore are free from higher-derivative ghosts despite having

covariant higher-order equations of motion. The theories presented in [60, 61]

are also known as G3 theories.

In this appendix we show that even in a mimetic G3 theory (without matter)

at �rst order around a �at FLRW background, the speed of sound of scalar

perturbations is still exactly zero. The beyond Horndeski theory of [60, 61]

is de�ned by adding to the Horndeski action the following action

SG3 =

∫
d4x
√
−g

[
A1(X,ϕ)

(
− 2X

(
(�ϕ)2 −∇µ∇νϕ∇µ∇νϕ

)
−2
(
∇µϕ∇νϕ∇µ∇νϕ�ϕ−∇µϕ∇µ∇νϕ∇λϕ∇λ∇νϕ

))

+A2(X,ϕ)

(
− 2X

(
(�ϕ)3 − 3�ϕ∇µ∇νϕ∇µ∇νϕ

+2∇µ∇νϕ∇ν∇ρϕ∇µ∇ρϕ
)
− 3
(
(�ϕ)2∇µϕ∇µ∇νϕ∇νϕ

−2�ϕ∇µϕ∇µ∇νϕ∇ν∇ρϕ∇ρϕ−∇µ∇νϕ∇µ∇νϕ∇ρϕ∇ρ∇λϕ∇λϕ

+2∇µϕ∇µ∇νϕ∇ν∇ρϕ∇ρ∇λϕ∇λϕ
))]

, (B.30)

where the functions A1 and A2 are free functions of their two arguments and

together with the four free functions present in an Horndeski theory they

de�ne the G3 theory.

The �rst-order components of the new Eµν tensor coming from the previous
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action are of the form

Ẽ
(1)
00 = g1Ψ′ + g2δϕ

′ + g3δϕ+ g4Φ + g5∂
2δϕ, (B.31)

Ẽ
(1)
ij = ∂i∂j (g6δϕ

′ + g7δϕ) + δij

(
− g6∂

2δϕ′ − g7∂
2δϕ

+g8Ψ′′ + g9δϕ
′′ + g10Ψ′ + g11δϕ

′ + g12Φ′

+g13Ψ + g14δϕ+ g15Φ
)
, (B.32)

Ẽ
(1)
0i = ∂i (g16Ψ′ + g17δϕ

′ + g18δϕ+ g19Φ) , (B.33)

where the gi with i = 1, . . . , 19 are functions of A1, A2 and their derivatives.

We do not write the explicit expressions for these functions because they are

rather long and they are not important for our discussion regarding the value

of the sound speed.

The �rst-order equations of motion for the mimetic G3 model are determined

only by Ẽ
(1)
ij and Ẽ

(1)
0i and their counterparts for the remaining Horndeski

terms. In the absence of matter, the i − j equation of motion is simply

E
(1)
ij + Ẽ

(1)
ij = 0. This implies two equations as

f7Ψ + (f8 + g7)δϕ+ f9Φ + g6δϕ
′ = 0, (B.34)

(f10 + g8)Ψ′′ + (f11 + g9)δϕ′′ + (f12 + g10)Ψ′ + (f13 + g11)δϕ′

+(f14 + g12)Φ′ + (f15 + g13)Ψ + (f16 + g14)δϕ+ (f17 + g15)Φ = 0. (B.35)

In a general mimetic theory (and in particular also for mimetic G3) the

equation E
(1)
00 + Ẽ

(1)
00 = 0 is replaced by the mimetic constraint, Eq. (4.26),

which at �rst order does not contain any spatial derivatives. Because also

Eqs. (B.34) and (B.35) do not contain spatial derivatives, the sound speed of

the mimetic G3 model has to be zero as in the mimetic Horndeski model.
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