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The static and dynamical properties of a one-dimensional quantum system described by a non-
Hermitian Hamiltonian of the so-called Hatano-Nelson type; a tight-binding model with asymmetric
(or non-reciprocal) hopping, are studied. The static properties of the model have been much studied;
the complex spectrum, skin effect and its topological interpretation, etc. Effects of disorder and inter-
particle interaction, especially, when they coexist, may be less understood. Here, we will also focus
on its dynamical properties and reveal some unique features in the wave-packet and entanglement
(entropy) dynamics. For that some latest (original) results based on improved numerics (with this a
system of larger system size L becomes accessible) are shown.

KEYWORDS: non-Hermitian, localization, topological, entanglement

1. Introduction

Quantum mechanics described by a non-Hermitian Hamiltonian attracts much attention recently,
showing relevance, especially to low temperature physics. An open quantum system is a typical sys-
tem described by a non-Hermitian Hamiltonian. Here, we consider the Hatano-Nelson type non-
Hermitian Hamiltonian with asymmetric (or non-reciprocal) hopping [see, Eq. (1)]. The original
Hatano-Nelson model with onsite random (uncorrelated) potential disorder W j ∈ [−W/2,W/2] shows
in spite of the one dimensionality of the model [1] a localization-delocalization transition at a finite
critical disorder strength W = Wc [2]. Its spectrum under the periodic boundary condition (PBC)
shows a complex-real transition also at W = Wc. Naturally, the existence of generally a finite imag-
inary part in its eigenvalues is the hallmark of a non-Hermitian Hamiltonian. The weak disorder
regime of the Hatano-Nelson model under the PBC indeed falls on this category, while under the
open boundary condition (OBC) the spectrum becomes real. Such a sensitivity to the boundary con-
dition is another peculiarity of a non-Hermitian Hamiltonian, already pointed out in the original work
of Hatano and Nelson. The behavior of the corresponding eigen wave functions is also peculiar,
showing the so-called non-Hermitian skin effect under the OBC. [3]

Here, in this paper we report on some specific consequences of such peculiar features of a non-
Hermitian system in its dynamics, taking also into account the effects of inter-particle interaction.
2. Model and its static properties

Let us consider the following variant of the Hatano-Nelson model:

H =
∑

j

[−(egĉ†j ĉ j+1 + e−gĉ†j+1ĉ j) + Vn̂ jn̂ j+1 +W jn̂ j], (1)

where ĉ†j (ĉ j) creates (annihilates) an electron at site j, and n̂ j = ĉ†j ĉ j. g is a measure of asymmetry
in hopping, while V represents the strength of inter-particle (here, nearest-neighbor) interaction. The
last term represents onsite potential disorder at site j, which here, we choose to be quasi-periodic; cf.
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Aubry-André model [4]:
W j = W cos(2πθ j + θ0), (2)

where θ is an irrational constant and chosen as θ = (
√

5 − 1)/2, and θ0 is an free parameter to
take disorder average. Note that for this type of (correlated) disorder, localization transition occurs at
W = Wc = 2eg in the non-interacting case: V = 0, which (in contrast to the original Hatano-Nelson
model with uncorrelated disorder) remains finite even in the Hermitian limit: g = 0.

(a) (c)(b) (d)

Fig. 1. A quartet of phase transitions (single-particle case): (a) IPR under OBC, (b) winding number ν, (c)
IPR under PBC (d) Im ratio fim in the space of parameters (W, g).

Under the PBC, the model exhibits a complex-real transition of the eigenenergy at W = Wc =

2eg; here, we switch off the inter-particle interaction: V = 0 for the moment. Concomitantly, the
corresponding wave function shows a delocalization-localization transition at the same value of W =
Wc. Under the OBC, the eigen wave functions shows a peculiar damping, or an exponential decay in
the regime of weak disorder (Fig. 1 (a)); this is often called non-Hermitian skin effect. Under the PBC,
the same parameter region corresponds to the regime of complex energy (Fig. 1 (d)) and delocalized
wave function (Fig. 1 (c)). To quantify these issues, we have here considered the inverse participation
ratio (IPR): IPR =

∑
j |ψ j|4 as a measure of the localizability of the wave function ψ j. Note that for

a delocalized wave function IPR ≃ 0 (vanishes as ≃ 1/L, with L being the size of the system), while
for a localized wave function IPR ≃ 1; this includes the case of a wave function susceptible to the
skin effect . Fig. 1 (a) shows the IPR under OBC in the space of parameters (W, g). For a given g
one can observe that IPR ≃ 1 (skin effect is effective) in the regime of weak disorder, then it once
diminishes (IPR ≃ 0) in the critical regime W ∼ Wc, while in the regime of strong disorder: W > Wc
IPR increases again and takes a value ≃ 1. Fig. 1 (c) shows the corresponding behavior of IPR under
PBC, in which IPR ≃ 0, i.e., the wave function is delocalized in the regime of weak disorder: W < Wc.
Fig. 1 (d) shows the variation of the ratio fim = ND/L, where ND is the number of the eigenenergy
which has Im(|ϵ|) > 10−13 in the same space of parameters (W, g). In the delocalized phase, most of
the eigenenergies are complex: in contrast, in the localized phase, eigenenergies become real, i.e., the
delocalization-localization transition accompanies the complex-real transition.

In Fig. 1 (b) a topological interpretation [5] is given to the skin effect. For that a winding number
ν that counts how many times the (complex) spectrum under PBC winds arounds the origin in the
complex energy plane as the crystal momentum k once goes around the Brillouin zone. In the presence
of disorder (quasi-periodic potential), or in case of the broken translational symmetry, we introduce
a flux Φ that twists the periodic boundary condition and plays the role of k in this case; the winding
number ν is then given as

ν =

∫ 2π

0

1
2πi

dΦ∂Φ log det[H(Φ) − E0], (3)

where E0 is the base energy, which we choose here as E0 = 0. In the practical calculation, we
also employ a finite difference instead of the differential in Eq. 3; ν is calculated by collecting finite
differences of H(Φ) in 201 points (dΦ = 2π

201 ). Fig. 1 (b) the distribution of ν in the parameter space
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(W, g) is shown and compared with the behavior of other indices: panels (a), (c), (d). They all suggest
that the transition occurs at W = Wc = 2eg.

(a) (b) (c) (d)

Fig. 2. Static properties (many-particle case): (a) local density ⟨n j⟩ under OBC and PBC, (b) IPR as a
function of the disorder strength W, (c) the winding number ν as a function of W. 50 disorder realizations. All
eigenstates averaged. Inset of the panel (c) shows dH(Φ) as a function ofΦwith W=0.5 and θ0 = 0. The shaded
region indicate the crossover regime; Wc is now renormalized by V . (d) Charge density-wave order parameter
ODW of ground state (under OBC) as a function V . The red dashed line locates V = 2. Inset shows the winding
number ν as a function of V with W=0 and θ0 = 0.

In the case of a single particle we have seen so far all the eigenstates under the OBC tend to be
localized exponentially toward an end of the system, and perhaps in an extreme case, localized to a
single site at the boundary. Four panels of Fig. 2 show that the above single-particle scenario holds
also true in the many-particle case; here we consider the case of N = L/2 particles (half-filling). Fig. 2
(a) shows the distribution of the local density ⟨n j⟩ = ⟨µ|n j|µ⟩ for L = 8, 12, where the label µ specifies
a many-body eigenstate. Under the OBC, ⟨n j⟩ exhibits an asymmetric density profile; particles are
predominantly located on the left half of the system. In this “many-body skin effect” [6], particles are
only moderately localized to one end of the system as a consequence of the competition between the
asymmetry in hopping and the Pauli exclusion principle that prohibits all skin modes located at the
same site. The corresponding value of the many-body IPR [Fig. 2 (b)], defined as IPR = ∑{n} |c{n}|4,
is indeed smaller than the one for the single-particle skin effect [cf. Fig. 1 (a)]; |µ⟩ = ∑{n} c{n}|{n}⟩,
and |{n}⟩ represents a computational basis. IPR measures a localization tendency in the many-body
Fock-space. Fig. 2 (b) reveals a different behavior of IPR under PBC vs. OBC. With the increase
of disorder strength W IPR shows under the OBC a dip in the critical regime: W ∼ Wc, before it
turns to increase in the MBL regime. Under the PBC, IPR stays ≃ 0 until it surges after a critical
disorder strength W = Wc. This is consistent with the behavior of the many-body winding number ν
[Fig. 2 (c)], defined as Eq. 3 (inset shows typical behavior of dH(Φ)). Non-zero ν corresponds to the
appearance of many-body skin modes [7]. Note that ν is not the number of skin mode.

Here, our main focus is on the excited states of the Hatano-Nelson model, but it is also interesting
to investigate the properties of the ground state; we assume the OBC case with real eigen-energies.
Fig.2 (d) shows the change of charge density-wave order parameter ODW =

1
L |
∑

i(−1)i⟨ni⟩| in the
ground state (W = 0) as a function of the inter-particle interaction V. ODW sharply increases at V = 2,
i.e., many-body skin mode disappears and the CDW order emerges. Recently, Ref. 8 has reported
that a strong interaction prohibits quantum states to thermalize, realizing a feature of Fock-space
fragmentation. It is indeed interesting to study how many-body skin modes are suppressed by the
inter-particle interaction V . In the inset of the Fig. 2(d) we show that (the change of) the behavior of
ODW is concomitant with the vanishing of a finite winding number ν.
3. Dynamical properties

Let us turn our eyes to the dynamics of the system, and follow how an initial wave packet in
our system evolves in time. The motivation to study the dynamics in a system described by a non-
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600

(b) W=0.0, OBC

(d) W=5.4, OBC

Fig. 3. Single-particle dynamics. Evolution of a wave packet initially located at j = j0 = 580. Comparison
of different boundary conditions: PBC vs. OBC. (a), (b): clean limit (W = 0). (c), (d): critical disorder regime
(W = 5.4 ∼ Wc). M = 15, δt = 0.2; see sec. 3.3 for details.

Hermitian Hamiltonian such as the one given in Eq. (1) may be two-fold. On one hand, a system
effectively well described by such a non-Hermitian Hamiltonian emerges dynamically, i.e., as a non-
equilibrium situation, e.g., realized in an open quantum system. On the other hand, to study the
quantum dynamics resulting from a non-Hermitian Hamiltonian with the peculiar properties outlined
in the previous subsection, such as the complex spectrum, the wave function showing skin effect, etc.
is per se of much interest, resulting in a number of insightful findings.

3.1 The wave-packet dynamics: single-particle case
We choose the initial wave packet to be the one localized at site j = j0: |ψ(t = 0)⟩ = | j0⟩. At time

t, the wave packet may evolve as

|ψ(t)⟩ =
∑

j

ψ j(t)| j⟩ =
∑

n

cne−iϵnt|n⟩, (4)

where |n⟩ represents the nth single-particle eigenstate of the Hamiltonian (1) with an eigenenergy ϵn;
i.e., H|n⟩ = ϵn|n⟩, while cn = ⟨⟨n|ψ(t = 0)⟩. Here, ⟨⟨n| represents the left eigenstate corresponding to
the eigenenergy ϵn: ⟨⟨n|H = ϵn⟨⟨n| and not |n⟩†; ⟨⟨n| , |n⟩†. Note that the left and right eigenstates
satisfy the biorthogonal condition, ⟨⟨n|m⟩ = δn,m. This biorthogonality is another peculiarity of the
non-Hermitian system.

We have seen in the last section that in case of g , 0 ϵn becomes complex under the PBC in the
regime of weak W. Eq. (4) implies that those eigenstate with large Im ϵn becomes dominant in the
time evolution, and eventually |ψ(t)⟩ converges to an eigenstate with the maximal Im ϵn. This makes
the time evolution non-unitary. In the simulation shown below, we, therefore, renormalize |ψ(t)⟩ as
|ψ(t)⟩ → |ψ̃(t)⟩ = |ψ(t)⟩/

√
⟨ψ(t)|ψ(t)⟩. In the Hermitian case (g = 0) an equal superposition of different

eigenstates and their quantum interference in the time evolution leads to spreading of the wave packet.
Here, in case of g , 0 such quantum interference of the eigen wave function is strongly suppressed.
As a result, the wave-packet dynamics becomes pseudo-classical, and the probability density |ψ j(t)|2
obeys effectively the classical diffusion equation, at least, as in the non-Hermitian case [9] (Fig. 3 (a)).
Instead, the wave packet simply slides , reflecting the uni-directionality of the model (asymmetry of
the hopping); in this sense this is a natural result. Under the OBC, ϵn is no longer complex but real.
Still, the behavior of the time evolution is indistinguishable from the case of PBC (Fig. 3 (b)), until
the wave packet reaches the boundary; in case of OBC, a mechanism different from the one for PBC
is responsible for the apparently same time evolution. From the outset, it is rather natural that a local
dynamics of a wave packet, here, in question, is insensitive to the boundary condition.

Effects of disorder (case of W , 0) is also very different from the Hermitian case. In the Hermitian
case, disorder suppresses spreading of the wave packet, since it weakens the quantum interference.
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Here, in case of g , 0, disorder, on the contrary, enhances spreading of the wave packet (Fig. 3 (c)). In
the critical regime W ≃ Wc, a cascade-like enhancement of the wave packet spreading is conspicuous
(Fig. 3 (c) and (d)).

3.2 Many-particle case: density and entanglement dynamics
Here, we extend the analysis in the previous subsection on the wave-packet dynamics in the

single-particle case to many-particle systems. We have studied an entanglement entropy S EE defined
as S EE(t) = −Tr ρR ln ρR, where ρR = TrL |Ψ(t)⟩⟨Ψ(t)| = ∑L,R1,R2 ψL,R1ψ

∗
L,R2
|L,R1⟩⟨L,R2| is a reduced

density matrix (L and Ri define left and right half of system in the real space, respectively) calculated
by traceing out the left half of the system. Here, we consider the case of N = L/2 particles in a system
of size L (half-filling), and choose the initial state to be the following domain wall state:

|Ψ(t = 0)⟩ = |00 · · · 011 · · · 1⟩, (5)

i.e., the last L/2 sites are occupied.
Four panels of Fig. 4 show some typical examples of the dynamics for the initial state (5) for

g = 0.5 and for different values of disorder strength W. The dynamics of the density n j(t) is shown in
the insets. In the regime of weak disorder (Fig. 4 (a) and 4 (b)) the system is in the delocalized phase,
so that the initial domain wall structure tends to dissolve into a uniform distribution in the case of PBC
(Fig. 4 (a), inset). Correspondingly, the entanglement entropy S EE(t) increases as t increases, while
in the regime of long time scale t ∼ 101, it turns to decrease, resulting in a non-monotonic evolution
of S EE(t). Recall that an initial quantum state is generally a superposition of the eigenstates with an
individual phase factor, as time passes by, they tend to behave like a random vector; thus increasing
the entanglement entropy S EE(t) [10]. However, in this regime, the eigenenergies are complex, so that
as time evolves, such a superposition tends to be lost, i.e., |Ψ(t)⟩ converges to eigenstate with maximal
imaginary eigenenergy (here we name the eigenstate as |Rmax⟩), and the entanglement entropy S EE(t)
turns to decrease. Such a convergence process appears as a plateaux of the S EE(t) after certain time.

(a) (c)

Fig. 4. Typical entanglement dynamics: (a) delocalized phase with PBC, (b) delocalized phase with OBC,
(c) localized phase with PBC, (d) localized phase with OBC. Inset of the each panel show time-evolution of
the density pattern. M = 25, δt = 0.05 − 0.2; see sec. 3.3 for details. 5 disorder realizations. L = 18, N = 8,
and V = 2.0.

Under the OBC [Fig. 4 (b)], |Ψ(t)⟩ does not converge to |Rmax⟩ by complex spectrum because
eigenenergy is real spectrum but realizing dynamics is still non-unitary due to non-orthogonality of
the eigenvector (⟨Rν|Rµ⟩ , δνµ), and |Ψ(t)⟩ converges to |Rν⟩, i.e., many-body skin mode. Interestingly,
entanglement entropy S EE(t) still shows a non-monotonic evolution even though eigenenergies are
real in this case. This occurs in a dynamical process of the many-body skin effect; here, starting with
the initial configuration (5), particles tend to slide to the preferred direction, and after certain time
they are relocated to their “right” positions prescribed by the many-body skin effect.
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In the delocalized regime, both under PBC and OBC [Fig. 4 (a) and (b)], the S EE(t) increases with
the increase of disorder strength W. This is due to the increase of scattering amplitudes by the quasi-
periodic/disorder potential (2), which scatters a quasiparticle with crystal momentum k to k ± 2πθ.
As seen in the single-particle case, such the scattering gradually makes uni-directional dynamics
cascade-like which leads quasiparticles to be more correlated with each other than free particle case;
therefore, S EE(t) increases.

In the regime of strong disorder [Fig. 4 (c) and (d)] the density profile shows a clear localized fea-
ture, while the S EE(t) shows a logarithmic growth [11] . Practically, no dependence on the boundary
condition : PBC vs. OBC.

3.3 Remarks on numerics
Here, to deal with a system of larger size than the ones in Ref. 9, we have employed the Krylov

subspace method for non-Hermitian systems [12]. Since we focus on the time-evolution driven by a
non-Hermitian Hamiltonian, we use the Arnoldi method instead of the Lanczos method to generate an
orthonormal Krylov space VM from the Krylov space KM = span(|Ψ(t)⟩,H|Ψ(t)⟩, · · · ,HM−1|Ψ(t)⟩).
Using VM, a unit vector |e1⟩ = (1, 0, · · · , 0)T and H̃ = V†MHVM, the time evolution of the quantum
state is written as

|Ψ(t + δt)⟩ ∼ VMe−iδtH̃V†M |Ψ(t)⟩ = VMe−iδtH̃ |e1⟩. (6)

The advantage of this method is that the computational complexity of diagonalizing the Hamiltonian
is reduced to that of diagonalizing a smaller M × M matrix H̃.

In the numerical calculation, we have employed QuSpin [13] for creating the non-Hermitian
matrix such as the one given in Eq. (1).

4. Concluding remarks

We have studied the static and dynamical properties of a non-Hermitian system, here, taking the
Hatano-Nelson type model as a concrete example. Unlike the static properties sensitive to the bound-
ary condition; e.g., complex vs. real spectrum, skin effect, etc., the dynamical properties are shown
to be, apart from the effect of particle reaching the boundary, not particularly sensitive or insensitive
to the boundary condition. We have observed the non-monotonic time evolution of the S EE(t) and
its enhancement by disorder both under PBC and OBC. They have been interpreted as an interplay
of disorder and non-Hermicity. There, such features as skin effect and the imaginary eigenenergy
specific to the non-Hermitian system played a crucial role. In a future work, we will attempt a more
systematic description of such unique entanglement dynamics in non-Hermitian systems.

Finally, T.O. is supported by JST SPRING: Grant Number JPMJSP2132, and K.-I.I by JSPS
KAKENHI: 21H01005, 20K03788, and 18H03683.
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