Search for light sterile neutrinos with the
Double Chooz experiment

Von der Fakultat fiir Mathematik, Informatik und Naturwissenschaften der RWTH
Aachen University zur Erlangung des akademischen Grades einer Doktorin der
Naturwissenschafen genehmigte Dissertation

vorgelegt von

M. Sc.
Denise Hellwig
aus
Moers

Berichter:
Universitéatsprofessor Dr. rer. nat. Christopher Wiebusch
Universitéatsprofessor Dr. rer. nat. Achim Stahl

Tag der miindlichen Priifung: 02.03.2020

Diese Dissertation ist auf den Internetseiten der Universitéatsbibliothek verfiigbar.



ii

RWTH Aachen



Abstract

The Double Chooz (DC) experiment is a reactor antineutrino disappearance experiment
located in Chooz, France. It was designed to measure the neutrino mixing angle 613.
The experiment is composed of two liquid scintillator detectors of almost identical design
that were able to identify electron antineutrinos from the two Chooz B reactor cores by the
unique signal of the inverse beta decay (IBD). The far detector (FD) at an average baseline
of 1050 m from the two reactor cores was in operation from April 2011 to the beginning of
2018. The near detector (ND) at an average baseline of 400 m has been operating from
the beginning of 2015 to the beginning of 2018. A neutrino oscillation analysis can be
setup independently from any theoretical model of the reactor neutrino flux utilizing the
different baselines of near and far detector relying only on the comparison of near and far
detector data. In doing so, all correlated systematics cancel and the analysis is protected
against potential bias due to a mismatch of reactor neutrino prediction and data.

Apart from its original design goal to measure 613, Double Chooz is sensitive to so called
light sterile neutrinos. Sterile neutrinos are neutrino states that do not take part in the
weak interaction but may lead to additional disappearance of the known neutrino states,
if they mix with the latter. That mixing is described by additional neutrino squared mass
differences and mixing angles. The 3+1 model assumes one additional sterile state. Here,
Double Chooz is sensitive to the new mixing angle 014 depending on the new squared mass
difference Am?, if it is in the range of 0.003eV? < Am?2, < 0.3eV?. This work presents the
analysis of Double Chooz data with respect to sterile neutrinos. A Poissonian likelihood
fit approach not relying on reactor model predictions is used. It is found that the Double
Chooz data is with a p-value of 24.7% =+ 2.2% consistent with the no-sterile (i.e. 614 = 0)
hypothesis. The upper limit on sin® 2614 at 95% confidence level is given as a function of
Am?,.
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Zusammenfassung

Das Double Chooz Experiment ist ein Reaktor-Antineutrinoexperiment zur prézisen Mes-
sung des Neutrinomischungswinkels 613. Es befindet sich in Chooz, einem kleinem Dorf
in Frankreich, auf dem Geldnde des dortigen Kernkraftwerkes Chooz-B. Das Experiment
besteht aus zwei nahezu identischen Detektoren, welche bis 2018 den Elektronantineutri-
nofluss der beiden Reaktorblocke B1 und B2 gemessen haben. Der Nahdetektor wurde
in einem mittleren Abstand von 400m zu den Reaktorblocken positioniert und war
zwischen Anfang 2015 und Anfang 2018 in Betrieb, wéhrend der Ferndetektor in einem
mittleren Abstand von 1050 m zu den Reaktorblécken zwischen April 2011 und Anfang
2018 betrieben wurde.

Diese Arbeit prisentiert die Analyse der Double Chooz Daten in Hinblick auf sogenannte
leichte sterile Neutrinos. Leichte sterile Neutrinos sind Neutrinos, die nicht an der schwa-
chen Wechselwirkung teilnehmen, und eine Masse im Elektronenvoltbereich oder darun-
ter aufweisen. Sie wurden bisher nicht zweifelsfrei nachgewiesen. Falls sterile Neutrinos
mit den bekannten Neutrinosorten mischen, besteht die Moglichkeit sie indirekt iiber Os-
zillationseffekte der bekannten Sorten nachzuweisen. Das 341 Modell sieht die Einfiih-
rung einer zusétzlichen sterilen Neutrinosorte vor. Dadurch ergeben sich neue Neutrinomi-
schungswinkels und Massenquartsdifferenzen. Double Chooz ist fiir Massenquartsdifferen-
zen 0.003eV?2 < Am?, < 0.3eV? auf den neuen Neutrinomischungsparameter sin? 2614. Die
in dieser Arbeit vorgestellte Analyse beruht auf einem Likelihood-Anpassungsverfahren,
das possionische Statistik annimmt und auf dem Vergleich der Daten der beiden Detekto-
ren basiert. Es ist daher nahezu vollstandig unabhéngig von Vorhersagemodellen fiir die
Neutrinoproduktion in den Reaktoren. Auch andere systematische Unsicherheiten kiirzen
sich heraus, sofern sie zwischen den beiden Detektoren maximal korreliert sind. Es zeigt
sich, dass die Double Chooz Daten mit einer Wahrscheinlichkeit von 24.7% + 2.2% mit der
Hypothese sin® 2014 = 0 kompatibel sind. Es wird die mit 95% Wahrscheinlichkeit obere
Grenze fiir sin? 2014 als Funktion von Am3; gezeigt.
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vi

RWTH Aachen



Contents

Abstract iii
Zusammenfassung v
List of figures Xiv
List of tables XV
Glossary xvi
1 Motivation 1
1.1 History of neutrinos . . . . . . . . . . ... 1
1.2 Neutrino oscillations . . . . . . . . . .. oo 2
1.3 Neutrino masses . . . . . . . . . . . e 6
1.4 Anomalies . . . . . . . .. 8
1.4.1 Reactor antineutrino anomaly . . . . . . .. ... ... ... ... 8

1.4.2  Gallium anomaly . . . . . . . . ... L o 9

1.4.3 LSND and MiniBooNe anomaly . . . . . ... ... ... ... .... 9

1.4.4 Spectral distortion . . . . . . . ... 9

2 The Double Chooz experimental setup 11
2.1 OVerview . . . ... 11
2.2 Neutrino source . . . . . . . . . . e e 13
2.3 Neutrino detection . . . . . . . . .. 16
2.3.1 Detection principle . . . . . . ... 16

2.3.2 Detector . . . . . .. 19

2.4 Calibration . . . . . . .. . .. 21
2.4.1 Inner veto light injection system . . . . . ... ... ... ... ... 21

2.4.2 Inner detector light injection system . . . .. ... ... ... .... 22

2.4.3 Guide tube system . . . . ... Lo 22

244 Z-axissystem . . . ... 22

2.5 Backgrounds . . . . . ... 22
2.5.1 Correlated background . . . . . .. .. ... oo oL 22

2.5.2  Uncorrelated background . . . . . ... ... ... ... ... 25

3 Datasets 29
3.1 Overview . . . .. 29
3.2 Event vertex reconstruction . . . . . .. ... Lo 30
3.3 Emergy calibration . . . . .. ... ... 30
3.3.1 Linearized PE calibration . . . . ... .. ... ... ... ...... 30

3.3.2  Uniformity calibration . . . . . ... ... .. ... ... .. ..... 31

Denise Hellwig vii



Contents

3.3.3 Energy scale calibration . . . . .. ... ... .. ..
3.3.4 Stability calibration . . . . ... ... ... ... ..
3.3.5 Non-linearity calibrations . . . .. .. .. ... ...
3.4 Reactor neutrino prediction . . . . . ... ... L.
3.5 Neutrino candidate selection . . . . . . .. .. ... ... ..
3.5.1 Single event selection . . . . . ... ... L.
3.5.2 Inverse beta decy event selection . . ... ... ...
3.6 Efficiencies . . .. .. .. ... ...
3.6.1 Inverse beta decay candidate selection . . . . . . ..
3.6.2 Spilling . ... ... ...
3.6.3 Boundary effects . . . ... ... ... L.
3.6.4 Background rejection inefficiency . . . . . .. .. ..
3.7 Background estimation . . . . . ... ...
3.7.1 Accidental background . . . . .. ... ... L.
3.7.2 Lithium background . . . . . ... ... ... ....

3.7.3 Fast neutron and stopping muon background

4 Sterile oscillation analysis

4.1 General concept . . . . .. ..o
4.1.1 Statistical method . . . . . .. ... ... ... ...
42 Inputmodel . . . . . . . ...
4.2.1 Correlation handling . . . . .. ... ... ... ...
422 Emnergy . .. ...
4.2.3 Oscillation model . . . . . .. ... ... ... ...
4.2.4 Neutrino flux model . . . . . . ... ...
4.2.5 Background model . . . . .. .. o000
426 Reactor Off . . . . .. .. ... ..
4.2.7 Detection efficiency . . . . . ... ...
4.2.8 List of parameters . . . . ... ... ... ... ...
4.3 Validation of the algorithm . . . . .. ... ... ... ...
4.3.1 Crosschecking with non-sterile fit . . . . . . ... ..
4.3.2 Wilks’ theorem . . . . .. .. ... ... ... ...
4.3.3 Sterile Asimov-Wilks sensitivity . . . . . . . ... ..
4.3.4 Datachallenges . . . . . ... ... ... ...
4.3.5 Spectral distortion bias testing . . . ... .. .. ..
4.3.6 Systematics breakdown . . . ... ... L.
4.4 Test statistics and sensitivity . . . . . ... ... ... .
4.4.1 No-sterile test statistics . . . . ... ... ... ...
4.4.2 Sensitivity . . . . ..o
5 Results
51 P-value . . ... . ...
5.2 Fit validation . . . .. ... ... L oo
5.3 Frequentist upper limit . . . . . .. ... ..o
5.4 Comparison to RENO and Daya Bay . . . . . ... ... ..
5.5 Transfer to 3+2model . . . . . . . .. ...

6 Summary

A Backgrounds

viii

RWTH Aachen



Contents

B Input model 137
B.1 Oscillation probability . . . . . . . .. .. ... 137
B.2 Energy and reactor flux . . . . ... ... oo 138

C Validation of the algorithm 141
C.1 Datachallenges . . . . . . . . . . . . 144

D Results of the sterile analysis 153
D.1 Asimov dataset for sterile best fit parameters . . . . . .. .. ... ... .. 153
D.2 Residuen . . . . . . . . . . 154

E 3-+2 model 157
E.1 Calculation of the electron antineutrino survival probability . . . . . . . .. 157
E.2 Additional plots . . . . . . ... 158

Bibliography 1

Acknowledgments IX

Denise Hellwig X



RWTH Aachen



List of figures

1.1
1.2

2.1

2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

2.10
2.11
2.12

2.13
2.14
2.15
2.16
2.17

3.1
3.2

3.3
3.4
3.5
3.6
3.7
3.8
3.9

3.10

[lustration of possible neutrino mass orderings in the 3+1 model . . . . . . 7
Spectral distortion seen by Daya Bay, RENO, NEOS and Double Chooz . . 10
Mlustration of the site of the Chooz-B nuclear power plant including the

Double Chooz detectors . . . . . . . . . . . ... 12
Experimental configuration of the Double Chooz experiment . . . . . . . .. 12
Ilustration of the fission chain reaction of 25U . . . . . ... ... ... .. 14
Ilustration of the 23?Pu creation in a nuclear reactor . . . . . .. ... ... 14
Near detector neutrino candidate rate versus time . . . . . . . .. ... ... 15
Far detector neutrino candidate rate versus time . . . . ... ... ... .. 16
Ilustration of the inverse beta decay [78]. . . . .. .. ... ... ... ... 17
Feynman diagram of the inverse beta decay . . . . . . ... ... ... ... 17
[lustration of the reactor neutrino spectrum versus (visible) neutrino energy

as a product of detection cross section and reactor flux [99]. . . . ... .. 18
Schematic illustration of the Double Chooz detectors . . . . . . ... .. .. 20
Schematic illustration of the calibration systems in the Double Chooz detectors 21

Schematic illustration of the fast neutron and stopping muon background
PTOCESS . . o v v v vt e e e e e e 23
Schematic illustration of the cosmogenic isotope background process . . .. 24
Relevant branching ratios of the 8-n decaying isotope °Li . . . . . ... .. 24
Relevant branching ratios of the 8-n decaying isotope 8He . . . . . . . . .. 25
Schematic illustration of the accidental background process . . . .. .. .. 26
Basic schematic illustration of the Light Noise background process . . . . . 27
Mlustration of the approaches for the IBD candidate selection . . . . . . .. 34
[llustration of the inverse beta decay selection conditions that have to be
fulfilled by the prompt delayed coincidence. . . . . . . . .. ... ... ... 36
Mlustration of several examples for accepted and rejected prompt-delayed
coincidences . . . . . . . . ..o 37
AR distribution of the FD2 dataset . . . . . . . . . ... ... ... ..... 40
AT distribution of the FD2 dataset . . . . . . . . ... ... ... ... ... 41
Visible delayed energy distribution of the FD2 dataset. . . . . . . . ... .. 42
Visible energy distributions of the prompt events in the final inverse beta
decay datasets . . . . . . ... 46
Entries versus visible energy for the data sample of the accidental back-
ground in the near detector . . . . . . . ... .o 47
Entries versus visible energy for the FD1 accidental background data sample
obtained with the offtime method . . . . . . . .. .. .. ... 48
Entries versus visible energy for the FD2 accidental background data sample
obtained with the offtime . . . . . .. ... ... ..o 48

Denise Hellwig xi



List of figures

3.11

3.12

3.13

3.14
3.15

3.16

4.1
4.2
4.3
4.4
4.5
4.6
4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

4.17

4.18

4.19

4.20

4.21

Covariance matrix for the FD2 accidental background obtained with the
offtime method . . . . . . . . .. ... 49
Entries versus visible prompt energy for near detector lithium background
datasample . . . . . .. 50
Entries versus visible prompt energy for the FD2 lithium background data
sample . . ..o 50
Covariance matrix for cosmogenic isotopes . . . . . . . .. ... ... 51
ND fast neutron and stopping muon background data sample obtained from
inner veto tagged events . . . . .. ... L 51
FD2 fast neutron and stopping muon background data sample obtained from
inner veto tagged events . . . . .. ... 52

Mlustration of the general fit idea following a so-called forward folding approach 54
Mlustration of the general fit idea following a so-called forward folding approach 55

[lustration of the different coordinate systems used in this work for two
example variables . . . . . .. L oL 61
Example 7, neutrino survival probability versus true neutrino energy in MeV
for baselines of 400 m and 1050m . . . . . . . . ... ... ... 63
Comparison of oscillation formula approximation used in this work to the
full four flavor oscillation for example parameters . . . . . . . . . . ... .. 65
Comparison of oscillation formula approximation used in this work to the
full four flavor oscillation for example parameters . . . . . . . . .. .. ... 66
Comparison of oscillation formula approximation used in this work to the
full four flavor oscillation for example parameter . . . . . . .. .. ... .. 67
Asimov IBD candidate predictions without background relative to the no-

oscillation model prediction versus visible prompt energy for example signal
parameters in the sensitivity region. . . . . . .. ..o 68
Asimov IBD candidate predictions without background relative to the no-
oscillation model prediction versus visible prompt energy for example signal
parameters with a large [Am3,| . . . . .. ... L 69

Asimov IBD candidate predictions without background relative to the no-
oscillation model prediction versus visible prompt energy for example signal
parameters with a small [Am3,| . . . . . .. ... oo 70
Covariance matrix of the reactor flux parameters for the ND dataset . . .. 71
Comparison of the LLH-FF fit and Data-to-Data Chi-square fit (Thiago) for
a breakdown of the systematics for sin? 20,3 from the Stat+1 test. . . . . . 79
Comparison of the likelihood D2MC fit and D2MC Chi-square fit (Thiago)
for a breakdown of the systematics for sin? 20,3 from the Stat+1 test . . . . 80
Definition of the Asimov-Wilks sensitivity . . . . . . . ... ... ... ... 83
AW sensitivity at 95% confidence level with the LLH-FF approach . . . . . 84
Comparison of the AW sensitivity at 95% confidence level between MC-Data
approach and LLH-FF approach . . . . ... .. ... ... ... ...... 86
Two dimensional scan of —2In(L) of Asimov data and AW sensitivity as-
suming that all neutrinos come from B2 . . . . .. ... ... ... . .... 87
Two dimensional scan of —2In(£) in sin®260;4 and Am2, of Asimov data
with sin® 2614 = 0.05 and Am?, =0.01eVZ. . . . . ... ... ... ... .. 88
Two dimensional scan of —2In(£) in sin®260;4 and Am2, of Asimov data
with sin® 2614 = 0.05 and Am?, =0.01eV>. . . . . ... ... ... ... .. 89
Two dimensional scan of —21n(£) in sin® 2614 and Am?2; of the third Asimov
data sample . . . . . . .. 91
AW sensitivity at 95% confidence level with the LLH-FF approach . . . . . 92

xii

RWTH Aachen



List of figures

4.22

4.23

4.24

4.25

4.26
4.27
4.28
4.29
4.30

4.31

4.32
4.33
4.34
4.35
4.36

4.37

4.38

5.1
5.2
5.3

5.4
5.5
5.6
5.7
5.8
5.9
5.10

5.11
5.12

5.13

5.14

Al

FD1-On Asimov data with the spectral distortion used to test the 63 fit

and the sterile fit . . . . . . . .. . ... 93
FD2 Asimov data with the spectral distortion used to test the 63 fit and

the sterile fit . . . . . . . .. 93
ND Asimov data with the spectral distortion used to test the 613 fit and the

sterile fit . . . . L 94
Two dimensional scan of —21n(L) in sin? 2014 and Am?,; of the Asimov data

shown in figures 4.22, 4.23 and 4.24 . . . . . . . . ... 95
AW sensitivity with spectral distortion and nominal AW sensitivity . . . . . 96
Sterile Stat+1 test . . . . . . . .. 97
Sketch on the definition of the background test statistics . . . . . . . .. .. 99
Probability density function of the test statistics distribution . . . . .. .. 101
Pdf of minima from random numbers from more than one Chi-square dis-

tribution (cf. equation (4.41)) . . . . . . ... 102
Probability density function of the test statistics for fixed Am?,, T'S1p (cf.

equation (4.37)) . . . . L 104
Sensitivity calculation sketches . . . . . . . ... ... .. ... ... .. 105
lo and 20 area from a Gaussian distribution. . . . . . . ... .. ... ... 106
Example pdfs of best fit sin? 2614 from no-sterile pseudo experiments . . . . 107
Sketches on the definition of the uncertainty of the sensitivity . . . . . . .. 108
Median, ®(1) and ®(2) quantile of the best fit sin? 2014 distribution from

null hypothesis pseudo experiments . . . . . . . . ... ... ... ... ... 109
Spline interpolation to describe T'Sg(sin? 2014) for the sensitivity calculation

for example Am3; . . . .. 110
Sensitivity to sin® 2604 as a function of Am3,/eV2. . . ... ... 111
Scan of —2AIn(L) for experimental data in sin? 2614 and Am3,/eV? . . . . 114
Sketch on p-value definition . . . . . . . ... ... oL, 114
Probability density function of the test statistics distribution with value

from experimental data . . . . . . ... ... ... 116
Sensitivity to sin? 2614 (x-axis) as a function of Am?,/eVZ . . .. ... .. 117
Sterile and no-sterile best fit inverse beta decay spectra . . . . . . . .. .. 119
Residuen of no-sterile best fit compared to sterile best fit . . . . . . . .. .. 120
Sterile and no-sterile best fit x? - sign(residuum) versus visible energy for

ND and FDIEPFD2 . . . . . . . .. 121
Upper limit calculation sketches . . . . . . . .. .. ... ... ........ 123
Best fit sin® 26014 from experimental data as a function of Am?u ....... 124
Spline interpolation to describe T'S(sin? 2614) for the upper limit calculation

for example Am3; . . . .. 125
Upper limit at 95% confidence level on sin® 2014 as a function of Am?%, . . . 126
Comparison of upper limits at 95% confidence level provided by Double

Chooz, Daya Bay and RENO . . . . ... ... ... ... .......... 128

Comparison between reactor power, target mass and total statistics of Dou-
ble Chooz, Daya Bay and RENO experimental setups used for sterile analysis 129

Far detector neutrino events in 3+2 model and 3+1 model relative to no-
sterile model versus visible energy (sin?2614 = 0.043, Am32, = 0.029eV?,
sin? 2015 = 0.047, Am2, = 0.038eV?, sin? 261, = 0.091) . . . ... .. ... 130
Covariance matrix for the FD1 accidental background obtained with the
offtime method . . . . . . . . . . ... 133

Denise Hellwig xiil



List of figures

A.2 Covariance matrix for accidental background in the near detector obtained

with the offtime method . . . . . . .. ... ... ... 134
A.3 Entries versus visible prompt energy for the FD1 lithium background data

sample . ..o 134
A.4 FD1 fast neutron and stopping muon background data sample obtained from

inner veto tagged events . . . . .. ..o L 135

B.1 Comparison of oscillation formula approximation used in this work to the

full four flavor oscillation for example parameters . . . . . . . . .. .. ... 138
B.2 Covariance matrix of the reactor flux parameters for the FD1-On dataset . . 139
B.3 Covariance matrix of the reactor flux parameters for the FD2 dataset . . . . 140

C.1 Comparison of the LLH-FF fit and D2D Chi-square fit (Thiago) for a break-

down of the systematics for sin? 2613 from the N-1 test . . . . . . ... ... 142
C.2 sin®26;3 post fit correlation matrix for energy and correlated reactor flux
parameters . . . ..o L. L Lo e 143
C.3 Two dimensional scan of —21In (L) in sin?26;4 and Am?, of the first toy
dataset from table 4.12 . . . . . . . . ... 144
C.4 Two dimensional scan of —21In (L) in sin?26;4 and Am?, of the first toy
dataset from table 4.12 . . . . . . . . ... 145
C.5 Two dimensional scan of —21n (£) in sin® 2014 and Am?, of the second toy
dataset from table 4.12 . . . . . . . . ... 146
C.6 Two dimensional scan of —21n (L) in sin® 2014 and Am?, of the second toy
dataset from table 4.12 . . . . . . . ... 147
C.7 Two dimensional scan of —21In (£) in sin?2614 and Am?; of the third toy
dataset from table 4.12 . . . . . . . ... 148
C.8 Two dimensional scan of —21n (£) in sin® 2014 and Am?; of the fourth toy
dataset from table 4.12 . . . . . . . ... 149
C.9 Two dimensional scan of —21n (£) in sin® 2614 and Am?; of the fourth toy
dataset from table 4.12 . . . . . . . .. L 150
C.10 Two dimensional scan of —2In(£) in sin? 26,4 and Amil of the fifth toy
dataset from table 4.12 . . . . . . . .. .. 151
C.11 Two dimensional scan of —21In (£) in sin?2614 and Am?2, of the fifth toy
dataset from table 4.12 . . . . . . . .. .. Lo 152
D.1 Scan of —21In(L) for Asimov dataset with best fit sin? 2614 and Am32; . . . . 153
D.2 Residuen of no-sterile best fit compared to sterile best fit . . . . . . . . . .. 154
D.3 Residuen of sterile best fit compared to no-sterile best fit . . . . . . . . ... 155
D.4 Residuen of sterile best fit compared to no-sterile best fit . . . . . .. .. .. 156

E.1 Near detector neutrino events in 3+2 model and 3+1 model relative to no-
sterile model versus visible energy (sin?2614 = 0.043, Am3, = 0.029eV?,
sin? 2015 = 0.047, Am2, = 0.038eV?, sin?261, = 0.091) . . ... ... ... 158
E.2 Far detector neutrino events in 3+2 model and 341 model relative to no-
sterile model versus visible energy (sin?2614 = 0.043, Am32, = 0.029eV?,
sin? 2015 = 0.047, Am2, = 0.2eV?, sin?26014, = 0.091) . . . . ... ... ... 159

Xiv RWTH Aachen



List of tables

1.1

3.1
3.2
3.3

4.1
4.2
4.3
4.4
4.5
4.6

4.7
4.8
4.9
4.10
4.11

4.12
4.13

5.1

5.2

B.1
B.2

Global best fit values of the standard neutrino mixing parameters [120] . . . 6
Data taking period summary table [50] [44] . . . ... ... ... ... ... 30
Summary of veto conditions for the IBD selection . . . . . . ... ... ... 43
Percentage of neutrino events surviving each background rejection cut . . . 45
Binning of the visible prompt energy spectrum . . . . . .. ... ... ... 57
Values of the energy calibration parameters a’, b’ and ¢’ in the final fit . . . 62
Correlations of the energy calibration parameters a’, b’ and ¢’ in the final fit 62
Correlations of the reactor lux . . . . . .. .. ... ... ... ....... 66
Values of the background parameters . . . . . . . .. ... ... ... .... 73
Covariance matrix of the fast neutron and stopping muon background pa-

TAMEters . . . . . ... 73
Values and correlations of the MC-data correction factor . . . . . . . .. .. 74
List of parameters used in the fit . . . . ... ... ... ... ... ..... 74
Comparison of the sin? 26,3 systematic breakdown between the LLH-FF fit

approach used in this work and the D2D Chi-square fit . . . . . .. ... .. 78
sin? 2613 systematic breakdown comparison between the LLH-D2MC fit ap-

proach and the D2MC Chi-square it . . . . . . . .. .. .. ... ... ... 78
Comparison of final fit results on experimental data between the three fits

that are based on near-far comparison. . . . . . .. ... 81
Summary of the blind data challenge . . . . . ... ... . ... ... .... 90
One dimensional systematics breakdown in sin® 20,4 for sin® 26014 = 0.1 and

several Am3, . .. 98
P-value of Double Chooz experimental data to be consistent with the no-

sterile hypothesis from different methods . . . . . . ... .. ... ... .. 115
Sterile and nominal best fit parameter values . . . . .. ... .. ... ... 118

Correlations of energy calibration parameters in terms terms of physical cause139
Energy calibration parameters and uncertainties in terms of physical cause.
All parameters are identical to the parameters in the 63 fit [44]. . . . . .. 139

Denise Hellwig XV



XVi RWTH Aachen



Glossary

AGS Alternating Gradient Synchrotron............... .. .. 1
ANN Artificial Neural Network.. ... ... s 38
AW sensitivity Asimov-Wilks sensitivity...... ... i 83
BEST Baksan Experiment on Sterile Transitions .............. .. ... ... oL, 9
CL  confidence level

CPS chimney-pulse-shape ....... ... 38
CPU central processing Unit ........... ... 98
D2D Data-to-Data . ... ... 32
D2MC Data-to-Monte Carlo. ... ... 75
Daya Bay Daya Bay Reactor Neutrino Experiment ................................... 8
DC  Double ChoOZ . . ...t e iii
dof degree(s) of freedom ........ ... i 83
DONUT Direct Observation of the NU Tau ..., 1
DUC digital unit of charge ............ 33
EDF Electricité de France . ....... ..o 11
EDM estimated distance to minimum. .......... .. i 53
FD  far detector . ... iii
FD1 far detector in one detector phase (including Off-Off dataset)................... 29
FD1-On far detector in one detector phase (excluding Off-Off dataset)............... 29
FD1-Off-Off reactor off data collected in the one detector phase..................... 29
FD2 far detector in double detector phase......... ... .. .. i i 29
Fermilab Fermi National Accelerator Laboratory .............. .. ...t 1
FIN  fast neutron .. ... 23
FNSM fast neutron and Stopping muon. ..., 72
FV  Functional Value. ... ... 30
GALLEX Gallium Experiment ....... ... i 9
GC  gamma-catCher . ... 19
Gd  gadolinium. .. ... 17
Gd++ gadolinium and hydrogen combined selection................. ... ... ... ... 33
H Ry drogen . ... 17

Denise Hellwig xvii



Glossary

IBD inverse beta decay...... ..o iii
ID  inner detector. ... ..o 19
IDLI inner detector light injection ......... ... i, 22

I0OIO inverted mass order standard neutrinos, inverted mass order sterile neutrinos....6

IONO inverted mass order standard neutrinos, normal mass order sterile neutrinos....6

IV dnmner veto. ..o 19
IVLI inner veto light injection ......... ... i i 21
LED light-emitting diode. ... ... ... 21
LEP Large Electron—Positron Collider.......... ... i i 1
Li LEhitm . oo 38
LLH likelihood . .. ... 30
LLH-FF Likelihood Flux Free .. ... ... e 75
LN Light NoiSe . ..o 26
LNL light non-linearity . ... ... 31
linearised PE calibration linearised photo electron calibration..................... 30
LSND Liquid Scintillator Neutrino Detector ......... ... ... ... i 9
MC Monte Carlo . ....oooii 15
ND  near detector. ... ..o iii
NEOS NEutrino Oscillation at Short baseline.............. ... ... ... ... .. ... 8

NOIO normal mass ordering standard neutrinos, inverted mass order sterile neutrinos. 6

NONO normal mass ordering standard neutrinos, normal mass order sterile neutrinos. 6

NT  neutrino target. ... ... e 19
OV 0ubter VEBO . oo 20
par. parameter

pdf probability density function......... ... . . 99
PMNS matrix Pontecorvo-Maki-Nakagawa-Sakata matrix............................ 3
PMT photomultiplier tube. .. ... . 19
PWR pressurized water 1eactor. . ..... ... 13
QNL charge non-linearity . ... ... 31
RENO Reactor Experiment for Neutrino Oscillation .................................. 9
RMS Root Mean Square. .. .......oun e e 34
SAGE Soviet—American Gallium Experiment ....... ... .. ... ... ... ... ... ... ... 9
SM  SEOPPING TUOIL . . ..t ot ettt ettt et e e e e et 25
SNO Sudbury Neutrino ObServatory .. ....... ..ot 2
TS test statistics .. ..ot 82

xviil RWTH Aachen



Chapter 1

Motivation

This chapter describes the basics of neutrino oscillation physics and neutrino properties.
Note that I (Denise Hellwig) have written an Double Chooz Collaboration internal pass-
word protected non-public single authored technical note on this analysis [74] in order to
get blessing from the collaboration. The content of this chapter may be partially identical
to content of this document. The same applies to chapter 4. I have made a draft version
of this thesis available for Double Chooz Collaboration internal reviewers via the internal
documentation system! which is password protected and non-public. In the early phase
of my PhD studies I have written a proceeding [76]. The proceeding was written by me
alone. It is multi-authored for political reasons. However, my sterile analysis has entirely
changed after [76] was written.

1.1 History of neutrinos

The existence of neutrinos was theoretically postulated in 1930 by Wolfgang Pauli in order
to fulfill the conservation laws in the beta decay [110]. The experimental confirmation was
done by utilizing the inverse beta decay and published in 1956 by C. L. Cowan, F. Reines,
F. B. Harrison, H.W. Kruse, and A. D. McGuire [46]. Frederick Reines won the 1995 Nobel
Prize for "for the detection of the neutrino” [97]. A second neutrino type (muon neutrino
and muon antineutrino) was detected by studying pion decay at the Alternating Gradient
Synchrotron (AGS) and published in 1962 [48]. Leon Lederman, Melvin Schwartz and
Jack Steinberger were awarded with the 1988 Nobel Price for the “for the neutrino beam
method and the demonstration of the doublet structure of the leptons through the discovery
of the muon neutrino® [96]. Finally, the "Observation of tau neutrino interactions® was
published in 2001 using the Direct Observation of the NU Tau (DONUT) experiment at
Fermi National Accelerator Laboratory (Fermilab) [84]. The existence of further neutrino
states has not been proven so far. In contrast, limits on the number of neutrino states
have been set. The number of light neutrino states that take part in the weak interaction
may be investigated from the Z production in electron positron collisions. A combination
of all four Large Electron-Positron Collider (LEP) experiments yields [100] [121]

N, =2.9841 +£0.0083 . (1.1)

'Double Chooz Document Database 7503
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Chapter 1. Motivation

However, this does not constrain the total number of neutrinos but only the number of

weakly interacting neutrinos with masses m, < "%, where mz is the mass of the Z boson.

Cosmology can set limits on the number of light neutrino states as well, since light neutrinos
contribute to the radiation component of the universe; if they interact weakly or not.
Taking together Planck and other astrophysical observations gives [108]

Neg = 2.99+0.17 . (1.2)

where Ng is the effective number of relativistic degrees of freedom [12]. The three known
neutrino states result in Neg = 3.046 [86]. Any value Nog # 3.046 would be a result of
non standard neutrino properties, additional neutrino states or other particles (i.e. not
photons and not neutrinos) contributing to the radiation density in the early universe [86]
. Note that one additional sterile neutrino state does not necessarily lead to an increase in
Neg of exactly one. Instead, this is only the case if the state is in thermal equilibrium with
the known neutrino states [87]. Indeed, thermal equilibrium of weakly interacting and not
weakly interaction neutrino types is not necessarily given and could be suppressed by for
instance an initial lepton asymmetry [87] [72] or by a self-interaction of the sterile states
[71] [28].

Laboratory limits on the number of neutrino states only apply for the weakly interacting
species and cosmological limits eventually can be avoided [87] [72] [71] [28]. Thus, the
existence of additional neutrino types is not fully excluded as long as they do not take
part in the weak interaction. In contrast, experimental anomalies have been observed that
could be explained by such additional neutrino types that do not interact weakly. Those
are called sterile neutrino. These anomalies will be summarized in section 1.4 after the
theory of the phenomena of neutrino oscillation has been explained in the next section,
section 1.2. A model containing m sterile neutrino mass states in addition to the three
know states will be referred to as 3+m model, where this work focuses on the 3+1 model.

1.2 Neutrino oscillations

The first hint towards neutrino oscillations was a discrepancy between the predicted neu-
trino rate and the measured neutrino rate from the Sun [33|. This effect named solar
neutrino problem was first reported by the Homestake experiment in 1968 [49| and later
confirmed by several experiments [33]. The solar neutrino problem [111] is solved by neu-
trino oscillations which were experimentally confirmed in 2001 by the Sudbury Neutrino
Observatory (SNO) experiment [17]. Evidence for muon neutrino oscillations was firstly
reported by the Super-Kamikande collaboration in 1998 [82]. Neutrino oscillations require
neutrinos to have a non vanishing mass which was not foreseen in the original standard
model. Thus, Takaaki Kajita from the Super-Kamikande collaboration and Arthur B.
McDonald from the SNO collaboration were awarded with the 2015 Nobel Prize "for the
discovery of neutrino oscillations, which shows that neutrinos have mass." |98].

Neutrino oscillations arise because the neutrino flavor eigenstates are not identical to the
mass eigenstates. Instead, the flavor eigenstates are a linear combination of the mass
eigenstates [106]:

|Vflavor) = U* |Vmass) which means in components |v,) = Z Ug;lvi) - (1.3)
J
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1.2. Neutrino oscillations

This is called neutrino mixing. In the 341 model it is a convention to write flavor and

mass states as: Y .
e 1
|Vﬁavor> = <Z¢> and |Vrnass> = <Z§> . (14)

Vs

In the nominal model, the last row of the vectors does not exist; in a model with more
than one sterile state the additional states are added below the others. The matrix U is
an element of the special unitary group SU(N). U is called Pontecorvo-Maki-Nakagawa-
Sakata matrix (PMNS matrix). This matrix will be explained in detail later. The equation
of motion is

.d
i V(@) =H|r@) (1.5)

assuming 7 = ¢ = 1. H is the Hamiltonian and diagonal in basis of the mass eigenstates

Hij = 6;5Hii = 045 B = 5ij\/m (1.6)

where E;, m; and p; are energy, mass and momentum of v;. p; = p; = p, follows from
pi >> m,; as light neutrinos are relativistic. Therefore, H from equation (1.6) can be
simplified to

2 2
m; my;
Hii ~ D; — = 1.7
Pit g mPE (1.7)
With equation (1.7), equation (1.5) can be rewritten as
. d Ay
O lv(t)) = ie () (1.8)

The global phase e~ in equation (1.8) is not relevant for observable probabilities
| (v(t = 0)|v(t =t')) |>. Hence, it is conventionally dropped. With this convention, z = c-t,
p ~ E and equation (1.6) the equation of motion (equation (1.5)) is given by

) 1

d
Z% |Vmass> = ﬁ -M |Vmass> (19)

in the basis of the mass eigenstates. Here, M is a diagonal matrix of the squared masses:

As shown above, adding constants to M has no impact on | (v(t = 0)|v(t = ¢')) |>. There-
fore, M may be for instance defined as

Myj = &5 - (m} —m7) (1.11)
equivalently. The notation
Am?j =m? — m? (1.12)

is common and will be used in the following.
Equation (1.9) is solved by
lvj) = ‘Vj(6)> eIk (1.13)

which implies due to equation (1.3)

va) =D UL,
J

uj(6)> emimIiL/2E (1.14)
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Chapter 1. Motivation

The so called appearance probability P(a — ) to tag a neutrino which was in flavor state
« at the starting point as flavor 8 later at point & is calculated using:

2

Pla— B) = ‘<ya(6)‘uﬁ(f)>‘2 = |(va®@)|vs(D) (1.15)

where the start point has w.l.o.g. been set to 0 and L is the travel distance i.e. L = |Z].
With equation (1.14) [64]

2
Pla— f) = |3 UL, Ugjemik/2E (1.16)

J

follows, which can be rewritten as [68]:

P(a — ﬂ) = 504,3 —4 Z Re(UinganjU}}j) Sin2 (AZ]) +2 Z Im(UZaUBzUa]U%]) sin (QAZ])

i>j i>j
(1.17)
where
A Am?jL . 27A'm?j [eV?]L[km] 18
YT o4p T 4E[GeV] ' (1.18)

For antineutrinos, all matrix elements in equation (1.17) have to be replaced by the
their complex conjugate, in other words, the last term changes it sign [64] [68]. Now,
for numerical calculations of equation (1.16) the parametrization of the PMNS matrix
U is important. As already mentioned, U is part of the SU(N) which is defined by
SU(N) = {U € CV*N)| U .Ul = U. U*T = 1 (Unitarity) A det(U) = 1}. This means

(N-1) N(N+1)
2 2

that U can be parameterized by N free real parameters and phases. In case

(N-1)(N-2)
2

neutrinos are Dirac particles, only of these phases are physically relevant; in

case neutrinos are Majorana particles w + (N —1) are [100]. From equation (1.16)
follows that CP-violating phases do not enter P(a — ) if & = 3. Thus, both Majorana
and Dirac CP-violating phases are unobservable for disappearance experiments, because
UZiUﬂanjUEj = U, UaiUa; Uy = |U0n-|2 ]Uaj|2 for « = B in equation (1.17). The real
parameters are usually referred to as mixing angles ¢;; because U can be parameterized as
a product of rotation matrices R;;:

1 k=INk#i,j
cos(6;;) E=IN(k=iVEk=j)
(Rij(eij))kl =4q — sin(&ij)e*‘s k=jANl=1 (1.19)
sin(6;;)e’ k=iNl=j
0 else

The order of the multiplication is relevant, because rotation matrices do not commute in
general.
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1.2. Neutrino oscillations

Conventionally, in the standard no sterile scenario

Uel Ue? Ue3 . .
U=| Uu Uu Uu | =Ros(623,0) - Riz(613,0) - Rig(612,0) - V(e 0721, g0 50s1)
UTI UT2 U’T3
1 0 0 C13 0 81361'6
= 0 C23 S923 0 1 0
0 —s23 ca23 —s13¢7° 0 ci3
ci2 si2 0 1 0 0
—S12 C12 0 0 6ia21/2 0
0 0 1 0 0 @ elos/2
c12€13 512€13 s13e” % 1 0 0
= | —s12c03 — c12593513€"  c1aca3 — s12593513¢°  sa3C13 0 elo21/2 0
12823 — C12C23513€"°  —C12893 — S12C23513€"  ca3c13 0 0 elos/2
(1.20)
is used, where [106]
sij =sin(f;;) and ¢;; = cos(6;;) . (1.21)

In models with N>3 neutrino states U gets extended to NxN dimensions. In doing so,
U has to transform in the nominal convention if additional mixing angles are set to zero
-otherwise the physical meaning of the mixing angles may change. Usually

U = R34R24R23R14R13R12 = R34R24R14R23R13R12 (1.22)
is used in the 3+1 model. With this definition the elements of U are! [104]

Ue1 = cos 14 cos 013 cos b1
Ues = cos B4 cos B3 sin f15
Ueg = COS 914 sin (913

Ue4 = sin 914

where all CP-violating phases have been set to zero, because the focus of this work is on
electron antineutrino disappearance and disappearance experiments can not observe any
CP-violation a already mentioned (cf. equation (1.16)). With equations (1.23) to (1.26)
and equation (1.17) the electron (anti-) neutrino survival probability is:

P.. =1 — ¢],5358in? 2013 sin® Azg — ¢ ,¢35 sin? 2013 sin? A3y (1.27a)
— ¢1,¢l5sin? 2615 sin? Ay (1.27b)

— 8%3 sin? 2614 sin? Ays — 0%33%2 sin? 26014 sin? Ao — cfgc%Q sin? 26014 sin®? Ay
(1.27¢)

Using Am3, << |m2,| and cos?(x) + sin?(z) = 1Vx € C equation (1.27) simplifies to:
P =1 — ¢],595sin? 2013 sin Azy — c}4c3o sin? 2013 sin® Agy (1.28a)
— 3%3 sin? 2014 sin®? Ayg — 0%33%2 sin® 2614 sin® Ayy — 0%3(:%2 sin® 26014 sin® Ay (1.28b)

=1- 0%4 sin? 2615 sin® Agq — 5%3 sin? 2614 sin® Ays — 0%3 sin? 26014 sin? Ay (1.28¢)

I'This has been confirmed with Maple.
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Chapter 1. Motivation

Table 1.1: Global best fit values of the standard neutrino mixing parameters [107]|. For
the CP-violating phase ¢ no global best fit value is provided in [107].

parameter value £+ 1o
AmZ2,/107%eV? 7.53 +£0.18
—2.53+0.05
2 —3 72
Amzy[1072eVE | o 444+ 0.034
sin 019 0.307 +0.013
sin? 03 0.0218 £ 0.0007
sin? fa3 0.536 "0 038
which may be further approximated to:
P~ 1 — ¢} sin® 20,3 sin® Az — sin® 2614 sin? Ay (1.29)
or
P.~1-— 01114 sin? 20,3 sin® A, — sin® 2014 sin® Ayp (1.30)
where ) ) )
Am? L AmZ, [eV?] L[km]
Ay i= —2 ~1.27 ce 1.31
« 4F 4F[GeV] (1.31)
and
Am?2, := cos?(012) Am3; + sin®(f12) Am3, . (1.32)

The current global best fit values for Am2,, Am2,, sin? 612, sin? 613 and sin? fp3 are sum-
marized in table 1.1.

1.3 Neutrino masses

Solar oscillation experiments proofed that the solar mass squared difference Am3; is pos-
itive. However, the sign of Am%Q is not known yet; experiments to answer this question
are currently under construction [20]. Sterile neutrinos could be lighter or heavier than
the know states i.e. Am32; > 0 or Am3%, < 0 is both possible - as long as all masses
are positive. Figure 1.1 illustrates all possible mass orderings in the 3+1 model; a) is
referred to as normal mass ordering standard neutrinos, normal mass order sterile neu-
trinos (NONO), b) as inverted mass order standard neutrinos, normal mass order sterile
neutrinos (IONO), c) as inverted mass order standard neutrinos, inverted mass order sterile
neutrinos (IOIO) and d) as normal mass ordering standard neutrinos, inverted mass order
sterile neutrinos (NOIO).

Neutrino oscillations may only occur if neutrinos have a non zero mass. Therefore, neutrino
oscillations are not foreseen in the original standard model physics because neutrinos have
no mass in it. However, only squared mass differences are relevant for neutrino oscillations.
The only requirement is that all masses have to be positive. This results in an upper limit

of:
min(m,) > 1/ Am3, — Am3, (IH) (1.33)
min(m,) > /Am3, + Am3, (NH) (1.34)
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1.3. Neutrino masses
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Figure 1.1: Illustration of possible neutrino mass orderings in the 3+1 model: a) is referred
to as normal mass ordering standard neutrinos, normal mass order sterile neutrinos, b) as
inverted mass order standard neutrinos, normal mass order sterile neutrinos, c) as inverted
mass order standard neutrinos, inverted mass order sterile neutrinos and d) as normal mass
ordering standard neutrinos, inverted mass order sterile neutrinos.

Laboratory experiments set a limit on the mass of the electron antineutrino m,;, by mea-
suring the electron S-decay spectrum at its end point. The most precise laboratory mea-
surement is from the Troitsk experiment and obtained an upper limit [100] [29]:

my, < 2.05eV (95% CL) . (1.35)

Cosmology yields even more stringent limits; An upper limit on the sum of neutrino masses

>, m; of
Y mi < 0.12eV (95% CL) (1.36)

is found by the Planck collaboration by combining their results with other cosmological
measurements [108] (see [108] for details).
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Chapter 1. Motivation

1.4 Anomalies

Several anomalies hint to or allegedly hint to the existence of further neutrino states. These
anomalies are summarized briefly in the following. However, while sterile neutrinos are able
to explain some of the anomalies individually the do not manage to describe all of them
consistently.

1.4.1 Reactor antineutrino anomaly

The neutrino rate normalization observed by reactor neutrino experiments used be con-
sistent with predictions. However, in 2011, the predictions were recalculated resulting in
an increase by about 3.5% [93]. At the same time, the cross section of the inverse beta
decay has been corrected down. Suddenly, all reactor neutrino experiments observed a
neutrino rate normalization smaller than predicted [91]. This mismatch is named reactor
antineutrino anomaly.

On the one hand, the oscillation signature observed by reactor neutrino experiments washes
out when the oscillation signature becomes smaller than the energy resolution. Therefore,
the mismatch could be explained by a sterile neutrino with a mass squared difference in the
eV range [91]. Indeed, this is one of the motivations to induce sterile neutrino. However, it
can not be excluded that the mismatch is due to a wrong prediction of the initial oscillated
reactor flux.

Daya Bay Reactor Neutrino Ezperiment (Daya Bay) is a 013 experiment similar to Double
Chooz. The collaboration has analyzed the reactor antineutrino rate deficit as a function
of fuel composition. Daya Bay data indicates that an incorrect antineutrino prediction
related to the isotope uranium-235 might be the main source of the reactor antineutrino
anomaly. An explanation by a sterile neutrino only is disfavored by 2.60 [23].

Several dedicated experiments have been designed to investigate the reactor antineutrino
anomaly measuring the spectral shape of the reactor antineutrino flux at various base-
lines of O(10m) [19][30][38]. The best fit of sin?f14, Am2, from the reactor antineutrino
anomaly [91] is excluded by more than 95% C.L. by each of the experiments DANSS
[19], PROSPECT [30] and STEREO [38]. Also, the NEutrino Oscillation at Short base-
line (NEOS) experiment disfavors the best fit from the reactor antineutrino anomaly by
more that 90% C.L. [83]. Moreover, these experiments exclude significant amounts of the
allowed regions from the reactor antineutrino anomaly [91]. However, the reason for the
mismatch could not be ascertained without doubt so far.

The global deficit observed with Double Chooz is ~ 8.6% [101]. A oscillation analysis
with Double Chooz data is not able to solve the question whether this is due to washed
out oscillations related to a sterile neutrino. Therefore, the predicted global reactor flux

normalization is not used in this analysis'!.

M The Double Chooz experiment in general has small handle to distinguish if the mismatch between
predicted and observed global reactor flux normalization is due to the reactor. However, note that by
plotting the global reactor flux normalization versus uranium-235 fraction in the reactor (which changes
during the reactor circle (cf. section 2.2)) a dependence on the reactor composition could be detected in
general. Unfortunately, only in case of an observed dependence conclusions could be drawn. Additionally,
the expected sensitivity for such an analysis is not enough to finally solve the question.
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1.4.2 Gallium anomaly

The solar neutrino experiments Gallium Ezperiment (GALLEX) and Soviet-American
Gallium Ezperiment (SAGE) used gallium target detectors to identify electron neutrinos
by the inverse beta decay reaction v, + "'Ga — e 4+ "'Ge. Both experiments investigated
radioactive °'Cr sources placed inside the detectors [1, 25, 70]. Moreover, the SAGE
collaboration investigated a 37Ar source [2]. The measured rates from the sources were
smaller than expected with a combined significance of 3.0c [2]. This mismatch could
be explained by a sterile neutrino with Am?2;, > 0.35eV?, sin?26;4 > 0.07 at 99% CL
[67]. However, short baseline reactor experiments have excluded significant amounts of the
allowed region from the combined fit of gallium and reactor antineutrino anomaly [19, 30,
38]. Recent recalculations of cross sections based on shell models reduce the significance of
the gallium anomaly to 2.30 [85]. The gallium experiment Baksan Experiment on Sterile
Transitions (BEST) is going to further investigate the gallium anomaly [34].

1.4.3 LSND and MiniBooNe anomaly

The Liquid Scintillator Neutrino Detector (LSND) at the Los Alamos Meson Physics
Facility measured v, — v, oscillations utilizing v, beam from 7+ decay in flight and
Uy — e oscillations from pt decay at rest. The v, appearance was detected by the
reaction v, + C' — e~ + X while the 7, appearance was detected by the inverse beta decay
Ue+p — e~ +n. The data measured in both channels could not be explained by oscillations
among the three known neutrino states [32] [31].

MiniBooNe is a neutrino oscillation experiment at Fermi National Accelerator Laboratory
(Fermilab) build to investigate the v, — v. and 7, — 7, oscillations. Historically, the
experiment was build to revise the LSND results [15]. The results for both the v, — v,
and 7, — U, show an excess of electron (anti-)neutrinos [16]. The excess is consistent with
the results from LSND. Combination of data from both experiments yield a significance
of 6.0c0 [16]. The LSND and MiniBooNe data can be explained in the 341 model [27].
However, this explanation is rejected by measurements from disappearance experiments
[52]. The experiment MicroBooNE is intended to further investigate the excess observed
with MiniBooNe [27].

1.4.4 Spectral distortion

The Double Chooz Collaboration has observed a mismatch of the reactor neutrino pre-
diction and their measured data in the visible energy region around 5-6 MeV [7]. The
mismatch has been confirmed by the Daya Bay Reactor Neutrino Ezperiment (Daya Bay)
[22], the Reactor Ezperiment for Neutrino Oscillation (RENO) [114] and the NEutrino
Oscillation at Short baseline (NEOS) [83]. All these experiments have different baselines
to the reactor cores. Moreover, Daya Bay, RENO and Double Chooz even have more than
one detector and see the distortion with all of their detectors. Figure 1.2 illustrates the
data-MC ratio seen by Daya Bay, RENO, NEOS and Double Chooz (near detector) [50].
One may come to the conclusion that the 4-6 MeV region is remarkably spotty. However,
data has been normalized [50] and the region of best agreement depends on that normal-
ization. The distortion can hardly be explained by sterile neutrinos since those would not
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Figure 1.2: Data-MC ratio for neutrino events as a function of visible energy from
Daya Bay (blue squares) [24], RENO (red triangles) [18], NEOS (green triangles) [83]
and Double Chooz (near detector, black circles) [50]. The normalization from RENO and
NEOS has been modified w.r.t. the publications of this experiments. This plot has been
taken from [50] .

cause the same pattern at different baselines. Furthermore, the Double Chooz collabora-
tion obtained indication that the distortion is proportional to the thermal power of the
reactors [43|. Currently, the spectral distortion seems likely to originate from an imprecise
reactor flux prediction. Although there is no indication that it is due to sterile neutrino,
the setup of this analysis should avoid any potential bias by the spectral distortion. There-
fore, this analysis does not rely on reactor flux prediction but only compares data to other
data. More on this is explained in the following chapters.
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Chapter 2

The Double Chooz experimental
setup

This chapter describes the experimental setup of the Double Chooz Experiment.

2.1 Overview

The Double Chooz experiment is a reactor antineutrino disappearance experiment designed
in order to measure the neutrino mixing angle 613. The experiment is located in a small
French city in the Ardennes named Chooz. The Double Chooz experiment has measured
the neutrino flux from the two nuclear reactors Bl and B2 until 2018. The Chooz-B
nuclear power plant site is located at the Nucléaire de Chooz operated by Electricité de
France (EDF) with two almost identical liquid scintillator detectors. The near detector
located at a distance of about 400 m to the nuclear reactors was operating from January
2015 until the beginning of 2018, the far detector located at a distance of about 1050 m to
the nuclear reactors was operating between April 2009 until the beginning of 2018. The
Chooz-B power plant site and the position of the detectors are shown in figure 2.1. The
detailed distances are given in figure 2.2. Importantly, the detectors are almost located at
the isoflux curve i.e. at the curve where both detectors measure the same fraction of events
from B1 and B2. The far detector is installed under an rock overburden of around 300 m
water equivalent [3], the near detector is installed under an rock overburden of around
120 m water equivalent [78].
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N

DISTANT DETECTOR

Figure 2.1: [llustration of the site of the Chooz-B nuclear power plant including the Double
Chooz detectors [60]. The insert in the lower left shows the location of Chooz in France.
The map has been taken from [126] and been modified.

Figure 2.2: Experimental configuration of the Double Chooz experiment. The dashed
blue line indicates the far detector isoflux curve i.e. positions at which the ratio of events
from both reactors is constant. Altitude differences are not shown in this plot. The far
detector is about 31 m below the altitude level of the reactors and the near detector is
about 42 m below the altitude level of the reactors. The noted distances between detectors
and reactors account for the differences in altitude. Therefore, they do not correspond
exactly to the length of the particular line in this plot. The iso-flux curve was calculated
assuming all reactors and detectors were at the same altitude. Distances have been taken
from [122]. Own illustration.

12 RWTH Aachen



2.2. Neutrino source

2.2 Neutrino source

Chooz B1 and B2 are N4 type pressurized water reactor (PWR) cores yielding a nominal
power output of 4.25 GWy;, each [4]. The main process in the reactor cores is the controlled
exothermic fission chain reaction:

n+ 23U 52U 5 AX 4+ 8Y4+Con, A+B+C=236,4,B,CeN . (21

A neutron is captured by an uranium-235 atom, which transforms into an exited
uranium-236 atom. Then it breakes into two other atoms X and Y plus neutrons as
illustrated in figure 2.3. Exemplary for this is [88]:

n+ 25U — BOU* 5 M0Xe + 98y + 21 4 200 MeV . (2.2)

The resulting neutrons may induce other interactions of this type. The fission fragments
X and Y produce anti electron neutrinos by undergoing a series of beta minus decays since
they are unstable due to a large number of neutrons compared to the number of proton in
these atoms [88]. For example, in equation (2.2) the decays lines are [88]:

10y, & 1400 B 140g, B 140, B 14000 apq gy & 9y B 94z (2.3)

In fact, the total neutrino flux results from decay and fissions of more than 1000 daughter
isotopes [62].

The number of neutrinos produced by a nuclear reactor is roughly proportional to its
thermal power. Nuclear reactors usually produce an anti electron neutrino rate of about
[91]

Ry, ~ 10?°s7 per GW thermal power . (2.4)

Three isotopes other than 23U contribute significantly to this number: 238U, 239Pu and
241py [91]. The reason for these isotopes being present in the reactor is explained in the
following. Typical reactor fuel mostly consists of uranium, where the 23U abundance has
been increased artificially to a few percent. The rest of the uranium is almost entirely
238U. The fraction of 23U in the reactor decreases during operation (since it is used for the
controlled fission chain reaction) and the reactor accumulates ?3°Pu due to the reaction
|88]:

n+ 280 — 2399y LA ZBINp 5 239py (2.5)

The 239Pu may capture an other neutron and become 2*°Pu if it is not fissioned. 24Pu
is again able to capture a neutron and become 2#'Pu [88]. This is illustrated in figure
2.4. The burned 2?°U must be refilled. Therefore, each reactor is powered off after about
one year of operation for several weeks in order to exchange about one third of the fuel
[4]. Thus, Double Chooz has taken data with both reactors on but also with only one
reactor on. The fuel exchange in a reactor core is usually done while the other reactor
core is running. Figures 2.5 and 2.6 show the neutrino candidate rate versus time for near
and far detector. The expected rate being roughly proportional to the reactor power (cf.
equation (2.4)) is shown in red. It was calculated assuming no-oscillation. The observed
rate is shown in blue (near detector) and black (far detector). The plots show that the
observed rate is proportional to the reactor power as well as the expected rate and that
expected and observed rate are proportional to each other. The bottom plots presents the
ratio 2(MC - Data)/(Data + MC) versus time where Data is the experimental data and
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Figure 2.3: Illustration of the fission chain reaction of 23°U (cf. equation (2.1)) [103]. As
shown here, the uranium may produce several different fission fragments. An example is
given in equation (2.2). Note, that if the fission chain reaction is controlled, usually not all
of the neutrons induce other fissions. Instead, if for instance the reaction rate is intended
to be constant, exactly one neutron on average induces an other fission.
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Figure 2.4: [llustration of the 2?Pu creation in a nuclear reactor (see equation (2.5)).
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Figure 2.5: Rate of neutrino candidates in the near detector rate versus time. The expected
rate is shown in red while the observed rate is shown in blue. The bottom plot presents
2(MC - Data)/(Data + MC) versus time. Here, Data means the experimental data and
MC means the expected rate from Monte Carlo without oscillation [58] (modified).

MC is the expected rate from Monte Carlo (MC) simulations without oscillation. Since
oscillation was not included in the expected rate, the ratio 2(MC - Data)/(Data + MC) is
smaller than 1 in particular in the far detector. More precisely there is a deficit of ~ 0.9
due to the oscillation effects related to sin® 26;3.
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2.3 Neutrino detection

Section 2.3.1 introduces the physical process utilized for the neutrino detection. After that
section 2.3.2 goes more into detail abut the Double Chooz detectors.

2.3.1 Detection principle

The neutrino detection is done by inverse beta decay (IBD):
Ue+p—n+et . (2.6)

The energy threshold for the inverse beta decay process is m, —m;, +m, = 1.8 MeV. The
reaction of the inverse beta decay is illustrated in figure 2.7, the corresponding Feynman
diagram is shown in figure 2.8. The antineutrino exchanges a W~ boson with a proton
producing a neutron and a positron (cf. figure 2.7, figure 2.8). Inverse beta decay produces
a characteristic prompt delayed coincidence in the detector as explained in the following.

Prompt signal The positron promptly annihilates with an electron producing two pho-
tons. Importantly, the energy deposit of this prompt event depends on the neutrino energy
E,. The positron energy E.+ is approximately [123]:

E.+ =E, — (my —myp) —O(E,/my) (2.7)
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Figure 2.7: Illustration of the
inverse beta decay [78]. Figure 2.8: Feynman diagram of the inverse beta de-
cay. Time axis is the x-axis. Own illustration.

where m,, and m,, are the rest masses of the neutron and the positron. The visible energy
deposited by the photons in the detector Eiis is the sum of the total positron energy plus
the rest mass of the electron m,-:

Eyis = Ee+ +m- = E, — (mn - mp) M- . (2'8>
Thus, the energy of the antineutrino can be calculated from the visible energy by
E, =~ Eyis — (my, —mp) +me- . (2.9)

As illustrated in figure 2.9, the final reactor neutrino spectrum is a product of the neutrino
flux from the reactors (solid line) and the cross section of the inverse beta decay (dashed
line). The resulting spectrum is indicated by the light blue area. It reaches from 1.8 MeV
to ~ 8 MeV where the maximum is around 4 MeV (cf. figure 2.9).

Delayed signal The delayed signal is produced when the neutron has been thermalized
and is captured by either a gadolinium (Gd) or a hydrogen (H) nucleus afterwards. The
neutron capture results in a characteristic energy deposit of 8.0 MeV for gadolinium [128|
respectively 2.2 MeV [37] for hydrogen. The delayed event is named after the delay due to
the required thermalization process. The precise delay time depends on the fluid in which
the interaction occurs, namely on its thermalization properties and its neutron capture
cross section. The characteristic energy of the delayed event and the delay time allow a
reliable identification of inverse beta decay events. The hydrogen capture energy is closure
to typical energy deposit of background reactions caused by natural radioactivity which
usually deposit relatively small amounts of energy. Thus, the selection of inverse beta decay
events on hydrogen capture suffers more from natural radioactivity induced background
than the selection of inverse beta decay events on gadolinium capture. A small fraction of
neutrons is also captured by carbon atoms where the characteristic energy deposit is about
5MeV [50]. Further details on backgrounds and the neutrino candidate selection can be
found in section 2.5 and 3.5.
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Figure 2.9: Illustration of the reactor neutrino spectrum versus (visible) neutrino energy
as a product of detection cross section and reactor flux [99].
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2.3.2 Detector

Figure 2.10 shows a schematic illustration of the Double Chooz detectors. The Double
Chooz detectors are liquid scintillator detectors made of four con-centric cylindrical vessels
inside each other (onion structure). These four vessels hold the neutrino target (NT), the
gamma-catcher (GC), the buffer and the inner veto (IV) (from inside to outside). All of
these volumes will be explained in the following. The outer vessel holding the inner veto
volume has a diameter and a height of 7 m.

Inner detector

Neutrino target, gamma-catcher and buffer form the inner detector (ID). The buffer fluid
is contained in a stainless steel tank holding 390 10-inch photomultiplier tubes (PMTs)
while neutrino target and gamma-catcher and buffer are separated by transparent acrylic
vessels. The term inner detector includes these PMTs [4].

Neutrino target The neutrino target is the innermost volume inside the inner trans-
parent acrylic vessel filled with 10.3m? liquid scintillator. It is doped with 1g Gd /liter
corresponding to a gadolinium fraction of 0.123% by weight[4]. The neutrino target is the
only volume in which neutron captures on gadolinium capture are possible, because the
other volumes do not contain gadolinium. Further information about all liquid scintillators
used in the experiment can be found in [11] and [10].

Gamma-catcher As mentioned in the previous section, the prompt event consists of
two photons produced by annihilation of the positron from the inverse beta decay with
an electron inside the detector. In order to obtain the energy of the prompt event it
is essential to detect both photons. Therefore, the neutrino target is surrounded by the
gamma-catcher a 55 cm thick liquid scintillator layer inside the outer transparent acrylic
vessel. The gamma-catcher volume is 22.5 m3 [4].

Buffer In order to shield against photons from PMTs and the surrounding rock, Neu-
trino target and gamma-catcher are surrounded by a 105 cm thick layer of non-scintillating
mineral oil, the buffer. The 110 m?3 of buffer mineral oil are filled into a stainless steel tank
equipped 390 10-inch Hamamatsu R7081 PMTs [35] [4].

Veto-systems

Inner veto The inner detector is surrounded by the inner veto, a 50 cm thick layer of
liquid scintillator with 78 8-inch PMT's mounted in the 15 cm thick steal shielding around it;
24 PMTs are mounted in the top, 12 in the side walls and 42 on the bottom [4]. In addition
to being an active veto for cosmic ray muons the IV also works as a shield, in particular
against external fast neutrons. The steal shielding further protects against photons from
the outside.

Denise Hellwig 19



Chapter 2. The Double Chooz experimental setup

glove box (GB)

= W _ : - 2 == —outer veto (OV)

O /inner veto (IV)

—buffer (B)

stainless steel vessel
holding 390 PMTs

——

Tm

oa@@mm@@@g

sl e “\nj»{\

lj m ok = P }ﬂ " -target (NT)

LK_L"_M_A.L_____._ _.__u_hkl..-_ _J_h —

gamma catcher (GC)

acrylic vessels

steel shielding

T m

Figure 2.10: Schematic illustration of the Double Chooz detectors |7]. This is the far
detector, in the near detector the outer shielding is realized by 1 m of water instead of steel
[50].

Outer veto The outer veto (OV) covers the top of the detector. The lower outer veto
directly above the steel shielding veto consists of plastic scintillator strips mounted in two
layers oriented vertically to each other. In the far detector it covers a region of 91 m?
around the chimney except for 10cm x 30 cm directly around it [4]. In the near detector
the covered area is 47m? [113].

Chimney

The volumes of neutrino target and gamma-catcher are not completely closed in order to
allow placing calibration sources in the detector. A vertical shaft called chimney in the
center of the detector and a glove box installed at its upper end allow to locate a source
in these volumes. There is a clean room around the glove box to avoid contamination.
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Figure 2.11: Schematic illustration of the calibration systems for deployment of radioactive
sources in the Double Chooz detectors, the z-axis system and the guide tube system [89].

2.4 Calibration

In order to reconstruct the neutrino energy a conversion function between charge deposit
in the PMTs and visible energy is needed. This conversion function is not constant due
to degeneration of detector hardware caused by power cycles or time evolution. Therefore,
calibration systems allowing to obtain and to monitor the conversion function over time
have been installed in the Double Chooz detectors. They are schematically illustrated in
figure 2.11 and described in the following,.

2.4.1 Inner veto light injection system

The inner veto light injection (IVLI) system was installed in order to monitor the properties
of the inner veto PMT and the liquid scintillator. For this purpose, light-emitting diodes
(LEDs) illuminate optical quartz fibers that are attached to the inner veto PMTs (at least
one fiber per PMT) and therefore guide the light into the inner veto. Six of the in total
96 LEDs are ultra violet (365nm wavelength), 78 of them are blue (475nm). All of the
LEDs are placed on one compact board mounted outside the detector on the wall of the
laboratories. With this setup, single PMTs can be illuminated. It allows to measure gain
and number of p.e. of the PMTs as well as the light yield of the liquid scintillator [61].
Further details can be found in [61].

Denise Hellwig 21



Chapter 2. The Double Chooz experimental setup

2.4.2 Inner detector light injection system

The inner detector light injection (IDLI) system is very similar to the inner veto light
injection system, except that it monitors the inner detector instead of the inner veto. The
inner detector light injection system consists of optical quartz fibers attached to LEDs.
These LEDs have wavelength of 385, 425 and 470nm. In contrast to the IVLI system,
the IDLI system can not illuminate single PMTs. Instead, diffuse beams in 32 different
configurations or focused beams in 14 different configurations beams through the detector.
In doing so, PMTs an scintillator properties may be measured [124|. Further details can
be found in [124].

2.4.3 Guide tube system

The guide tube system allows the deployment of radioactive sources in the gamma-catcher.
It can be accessed through the chimney and consists of a steel tube loop and a wire being
able to guide sources through the tube since it is connected to a computer controlled stepper
motor. Thereby, the position of the source along the tube is known to 1 cm precision.

2.4.4 Z-axis system

The z-axis system is used to deploy sources along the central symmetry axis of the detector
(z-axis) in the neutrino target volume. Similar to the guide tube system, the z-axis system
is accessed through the chimney and the lowering of the source into the neutrino target
volume is guided by a wire connected to a computer controlled step motor. The position
on the z-axis is known to 1 mm precision.

2.5 Backgrounds

There are several background processes that create a signal similar to the IBD event. All
unneglatible types of background processes are explained in the following.

2.5.1 Correlated background

The correlated backgrounds mimic both the prompt and the delayed event. Correlated
backgrounds are due to atmospheric muon, i.e. muons that are produced in cosmic ray air
showers. These atmospheric muons may enter the detector or the nearby rock. Although
through going muons themselves are easily identified by their huge energy deposit atmo-
spheric muons may cause different processes that mimic an inverse beta decay signal as
described in the following.
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Figure 2.12: Schematic illustration of the fast neutron and stopping muon background
process. Muon p causes fast neutrons, muon ps is a stopping muon. Detector illustration
has been taken from [78] and background process illustrations have been added.

Fast neutron background

Muon p; in figure 2.12 sketches the fast neutron (FN) background process. Spallation
of carbon atoms in the rock around the detector by atmospheric muons may produce
fast neutrons which can enter the detector due to there large interaction length. Proton
recoils by a fast neutrons inside the detector may produce an apparently prompt signal
followed by the delayed capture of that neutron which got decelerated due to the recoil
and thermalization or capture of a different neutron.

Cosmogenic isotope background

Organic liquid scintillators as used in Double Chooz are by definition vulnerable to spalla-
tion of carbon atoms by atmospheric muons because of their carbon fraction. The cosmo-
genic isotope background process is illustrated in figure 2.13. Spallation processes inside
the detector induced by cosmogenic muons entering the detector produce several spalla-
tion products, in particular °Li and 8He. °Li and ®He undergo $-n decay, i.e. beta decay
followed by neutron emission. Figure 2.14 illustrates the decay chain and the relevant
branching ratios for ?Li, figure 2.15 for ®He. S-n decay can not be distinguished from an
inverse beta decay because the Double Chooz detector is not able to distinguish an electron
from a positron. Additionally, the ?Li and 8He is challenging because of the long live times
of 257 ms respectively 172ms which do not allow for vetoing on the primary muon event

[4] 9]
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Figure 2.13: Schematic illustration of the cosmogenic isotope background process. The
muon at the left handside creates ?Li by spallation. This ?Li decays via 8 — n decay after
257 ms and causes a fake inverse beta decay signal as illustrated at the right handside.
Detector illustration has been taken from [78|.
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Figure 2.14: Relevant branching ratios of the B-n decaying isotope Li (normalized to
100%) [116].
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Figure 2.15: Relevant branching ratios of the S-n decaying isotope ®He (normalized to
100%) [116].

Stopping muon background

The stopping muon (SM) background process is illustrated by muon pg in figure 2.12.
Muons entering the detector with relatively high energy can easily be identified by their
large energy deposit but muons entering the detector with less energy can not. Those
muons with few energy usually enter through the chimney and stop inside the detector.
In this case, the short muon track and the following Michel electron can be mistaken as
prompt delayed coincidence.

2.5.2 Uncorrelated background

The uncorrelated backgrounds produce only one signal. Nevertheless, this signal can be
misinterpreted as inverse beta decay event if there is a random coincidence with an other
background event.

Accidental background

Accidental background is caused by random coincidence that satisfy the selection criteria.
The main source is random association of two energy deposits caused by natural radioac-
tivity or random association of an energy deposit caused by natural radioactivity and a
background signal of different type. The mainly responsible isotopes are 4°K, 69Co, 232Th,
238U (potassium-40, cobalt-60, thorium-232, uranium-238) and their decay products [105].
In particular the long half-lifetimes of “°K, 232Th and ?*®U of more than 10%years [63] [36]
[112] cause a small unavoidable concentration of them in the detector - mainly in the non-
fluid detector components like PMTs, vessels and shielding. Moreover, there is some small
amount of natural radioactivity in the rock around the detectors. A schematic illustration
can be found in figure 2.16. The energy deposit of radioactive decays is typically below
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Figure 2.16: Schematic illustration of the accidental background process. Detector illus-
tration has been taken from [78].

3MeV. Thus, the accidental background is mainly present at low prompt energies and the
contamination of neutron captures on hydrogen is bigger than on gadolinium [9].

Light Noise background

Unexpectedly, a high rate >100 Hz of spontaneous light emission by the PMTs themselves
was detected during the commissioning of the far detector as illustrated in figure 2.17. This
background was named Light Noise (LN) and turned out to be connected to the epoxy used
to cover the PMT bases. A possible explanation is that it is caused by discharge of gas in
bubbles in the epoxy used to cover the PMT bases [8]. Fortunately, for Light Noise events
most of the light is firstly seen by the PMT producing the light, and secondly by the nearby
PMTs. In contrast, for an inverse beta decay event the light is more broadly distributed
in the inner detector. Furthermore, Light Noise events consist of relatively long sequences
of pulses emitted by the PMT base producing a wide range of photon arrival times, while
for a single inverse beta decay signal all photons have comparable arrival times. Hence,
Light Noise can be efficiently rejected by the charge and arrival time distributions [8|. The
PMTs bases in the near detector were masked with a black radiopure polyester film [8] in
order to reduce Light Noise. This black film was indeed suppressing the PMT Light Noise
successfully.
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Figure 2.17: Basic schematic illustration of the Light Noise background process. Detector
illustration has been taken from [78|.
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Chapter 3

Datasets

This chapter describes the dataset used in this work. After an introduction in section 3.1
the energy calibration is described in section 3.3. Next, the reactor neutrino prediction is
explained in section 3.4. Finally, the selection is described in section 3.5. The dataset is
identical to the dataset in [50].

3.1 Overview

The dataset is divided into the following subdatasets:

FD1-On: Far detector in single detector phase with at least one reactor on

FD1-Off-Off: Far detector in single detector phase with no reactor on
e FDI1: union of FD1-On and FD1-Off-Off
FD2 (also: FD-II, FDII): Far detector in two detector phase

ND (also: ND-I): Near detector in two detector phase (i.e. all near detector data)

The most remarkable change in the experimental was the start of data taking with the
near detector in 2015 (cf. chapter 2). Thus, the far detector data is divided into data
taken in parallel with the near detector and not taken in parallel with the near detector
called F'D2 and FD1 data. The flux observed with both detectors is almost fully correlated
only in the parallel data taking period. There are 7.16 days of lifetime with all reactors
off taken in 2011 and 2012 during the FD1 period. This so called FD1-Off-Off data is
mostly background dominated (although a small number of residual reactor neutrinos is
expected). The FD1-On data consists of 455.21 days of lifetime [50] [44] collected between
April 2011 and January 2013, the FD2 and ND datasets have 362.97 respectively 257.96
days of lifetime taken from January 2015 until April 2016 [50] [44]. Table 3.1 summarizes
this information about the datasets.

"Runtime and lifetime are not identical due to a dead-time after muon events of 1.25 us (s. section 3.5)
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Table 3.1: Data taking period summary table [50] [44]

dataset [ FD1-On | FDI-Off-Off | FD2 \ ND
period single det. single det. two det. two det.
when taken || 04/2011-01/2013 | 2011+2012 | 01/2015-04/2016 | 01/2015-04/2016
lifetime/days 455.21 7.16 362.97 257.96
meas. IBD 48147 68 42660 210480

3.2 Event vertex reconstruction

The vertex of the events is reconstructed by applying a likelihood (LLH) fit approach
which uses charge and time information of all PMTs and assumes that events are point
like. Consequently, the likelihood £(%) of the event vertex being at & = (x,y, z,t, ¢) in the
five dimensional space of the three spatial coordinates x, ¥, z, time ¢ and light intensity per
unit solid angle ¢ is given as [7]:

II

1 PMTs with ¢;=0

L(Z)

= fq(Qi,qg(f))

II

j PMTs with ¢;>0

fo (@5, 45(®)) - fo (t5,85(F)) (3.1)

Here, the index i runs over all inner detector PMTs that did not see a charge while j runs
over all of them which did. ¢; and ¢; are the charge and the arrival time being seen by
PMT j. Correspondingly, q;- (Z) and t;- (Z) are charge and time expected to be seen by PMT
j for an event at Z [7]. The algorithm minimizes the negative log likelihood function for &
where the value of the negative log likelihood function at the best fit position 7 is called
Functional Value (FV)

sz—m@ﬁﬁ (3.2)

3.3 Enmergy calibration

Before any neutrino candidate selection, oscillation analysis or other high level analysis can
be done, the raw data must be processed. First, the low level electronic readout must be
processed, i.e. the PMT signal has to be digitized and processed. In particular, the PMT
charge signal is obtained. This is a non-trivial process, which is further described in [6].
Second, the PMT charge signal is converted into information about visible energy. This
process referred to as energy calibration includes several steps described in the following.

3.3.1 Linearized PE calibration

The term linearised photo electron calibration (linearised PE calibration) refers to the con-
version of the integrated waveform charges of the PMTs to the number of photo electrons

Npe |7):
M-y

i

qi
where the index m denotes either Monte Carlo or experimental data. g; is the integrated
waveform charge of PMT i and g¢;(q;, t) is its gain, i.e. the conversion factor between charge

(3.3)
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and number of photo electrons. g; is a function of time t!' [7] [53]. Moreover, the gain
depends on the charge (g; = ¢i(q;,t)) due to limited sampling effects for small charges [7]
[53]:

gz(q“ t) — gZ + Z((:I’L CZ) Q’L CZ , (34)
9i % > Ci

where the parameters g;, [; and ¢; are obtained from measured calibration data with con-
stant light yield obtained from the inner detector light injection system [53]. Further details
on the linearised PE calibration can be found in [53].

3.3.2 Uniformity calibration

The number of observed photo electrons for an event with given energy depends on the
position of the corresponding vertex in the detector. More precisely, it depends on its
coordinates in a cylindrical coordinate system (p and z) because of the geometry of the
detectors. The uniformity calibration f,(p, z) corrects on this position dependence. f,(p, 2)
is derived utilizing neutron captures from hydrogen which provide a sharp peak at 2.2 MeV
[7]. Apart from the precisely known energy deposit, neutron captures on hydrogen provide
high statistics all over the detector because all liquids in the detector contain hydrogen.

3.3.3 Energy scale calibration

The energy scale calibration translates the number of photo electrons into an absolute
energy information. A 2°2Cf neutron source is deployed in the center of the detector for
this purpose and provides neutron captures on hydrogen with high statistics. The energy
scale can be obtained by the position of the narrow peak since the energy deposit of this
reaction is almost fixed [7].

3.3.4 Stability calibration

The visible energy information obtained from linearised PE calibration, uniformity cali-
bration and energy scale calibration is corrected for time variation by the so called stability
calibration. The stability calibration function is obtained from neutron captures of neu-
trons from muon-induced spallations on gadolinium and hydrogen and a-decay data from
212Po deployment during calibration campaigns [7].

3.3.5 Non-linearity calibrations

The energy of Monte Carlo generated events has to be corrected for discrepancies between
real data and simulation. This correction function is non-linear and therefore referred
to as emergy non-linearity. By definition, it is applied to the Monte Carlo events only.
Energy non-linearity may be further decomposed into charge non-linearity (QNL) and
light non-linearity (LNL) which will be explained hereinafter.

in particular due to power cycling of the hardware, cf. section 2.4
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Charge non-linearity

The charge non-linearity (QNL) is due to limited accuracy of the simulation of the readout
system and charge integration algorithm. Hence, it is applied to the visible energies of
Monte Carlo events of any type. Calibration data taken during deployment of a 252Cf
neutron source at the center of the detector is used in order to measure the charge non-
linearity correction [7].

Light non-linearity

The light non-linearity (LNL) is caused by the modeling of the scintillator properties
or more precisely of light yield and quenching. The light yield depends on the ratio of
Cherenkov light emission to scintillation light emission. Thus, the LNL correction is particle
type depended in contrast to the charge non-linearity correction. Therefore it is not applied
to all particles during the common energy calibration but only to the prompt Monte Carlo
signals [7]. This is done during the final fit analysis in order to allow for handling the
light non-linearity correction parameters as nuisance parameters. For estimation of the
light non-linearity correction, simulation parameters quantifying the quenching effects are
varied (in particular Birks’ constant that allows to calculate the light yield using Birks’
formula [41] [7]). The light yield in the Double Chooz detector including its measurement
is described in more detail in [11] and [10].

3.4 Reactor neutrino prediction

The expected number of neutrinos in dataset d = FD1-On, FD2 or ND is given by [4]:

exp,d Z 1 d Pth
NP = Nieq——(0¢r) (3.5)
e r=B1,B2 AnL? ;" " (Eyy) Ir

where L, 4 is the distance between the detector corresponding to dataset d and reactor
r, Np is the number of protons in the fiducial volume for dataset d, €; is the detection
efficiency for dataset d and P! is the thermal power of reactor r.

(Efp) = ans(Ep)k (3.6)
k

is the mean energy per fission. It is the sum of the (Fy), where (Ef); is the mean energy
per fission for the mother isotope k present in the reactor and ay, , is the number of fissions
originating from the mother isotope k relative to the total number of fissions in reactor 7.
The index k runs over all mother isotopes present in the reactor.

(Ope) =D o / h Si(E)op(E)dE (3.7)
3 0

is the mean cross section per fission in reactor r where Sy(E) is the reference spectrum of
isotope k, opp(E) is the cross section of the inverse beta decay and F the neutrino energy.

The sterile analysis is based on a Data-to-Data (D2D) fit, i.e. a priori information about
the reactor is not used. Therefore, the calculation of the reactor neutrino flux prediction is
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not of major importance here. The Double Chooz Collaboration used to use the results of
the Bugey4 rate measurement [51] in order to normalize the reactor neutrino predictions
[4]. This normalization is referred to as Bugey/ anchor point. However, the data from
the Bugey4 experiment is not used for the prediction used in the sterile analysis. That
is because the measurement of the Bugey4 experiment itself would have been affected by
sterile neutrino oscillation.

3.5 Neutrino candidate selection

Historically, the data selection used to only aim on selecting inverse beta decay events with
the neutron captured by a gadolinium atom. Natively, neutrons can only be captured by
Gd-atoms in volumes that contain gadolinium - which is the neutrino target only. The
active volume of this so called Gd selection is sketched in green on the left in figure 3.1.
However, the neutron produced in the inverse beta decay interaction may also be captured
by a hydrogen- atom. Using these events significantly increases the statistics, as inverse
beta decay events on hydrogen capture may not only occur in the neutrino target but also
in the gamma-catcher. Thus, nowadays the Double Chooz Collaboration selects inverse
beta decay-events on hydrogen and on gadolinium capture in both neutrino target and
gamma-catcher. IBD-events on carbon capture are selected as well, but the contribution
is negigable. This selection is used for the dataset used in this work and referred to as
Gd-++ selection. Its active volume is sketched in green in figure 3.1 on the right. The
Gd++ selection results in an increase of the statistics by a factor of 2.5 compared to the
Gd selection.

The approximate neutrino rate expected for the far detector is about 130/day and for the
near detector is about 800/day (cf. figure 2.5, figure 2.6). The trigger rate in the far
detector is more than several hundred Hertz with the Gd++ selection. Thus, a neutrino
candidate selection with a low background rate is necessary.

3.5.1 Single event selection

The coincidence of prompt and delayed signal from an inverse beta decay event is the
characteristic signal caused by a neutrino in the Double Chooz detector (cf. section 2.3.1).
However, before prompt delayed coincidences can be identified raw data cleaning is re-
quired. The cuts used for raw data cleaning are described in the following [79].

e The trigger system identifies low energetic background triggers and high energy back-
ground online by requiring 0.3 MeV < Eyis < 100 MeV.

e Muons are tagged by an energy deposit of Ejis>100MeV in the inner detector or an
inner veto deposit of Qry > 30 000 digital unit of charge (DUC) in the FD1, Qrv >
50 000 DUC in the FD2 and Qv > 30 000 DUC in the ND.

e A lot of backgrounds is reduced by rejecting all events less than AT),= 1.25ms after
a muon since muons induce fast neutrons and long lived cosmogenic isotopes (cf.
section 2.5.1).
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Figure 3.1: Illustration of the approaches for the inverse beta decay candidate selection
utilizing a very simple sketch of the detector and highlighting the effective target volume
in green. The classical gadolinium selection illustrated on the right aims on inverse beta
decay candidates with the neutron captured by gadolinium only. These events only occur
in the only volume that contains gadolinium, the neutrino target. Therefore, the effective
target volume is the neutrino target as indicated by the green box. In contrast, the Gd-++
selection aims on inverse beta decay candidates with the neutron captured by gadolinium,
hydrogen or carbon, as illustrated on the left. Consequently, the effective target volume
consists of neutrino target and buffer as again indicated by the green box.

e As discussed in section 2.5.2 there is a large background contamination of several
hundred Hertz due to undesired light emission by the PMTs themselves, the Light
Noise. Light Noise can be identified by inhomogeneous light distribution in the detec-
tor, since the light emitting PMT observes most of the light. This is done requiring
%;‘at" < 0.12 for FD1 and %‘““x < 0.20 for FD2 and ND where Qax is the maximum
integrated charge observed by a single PMT. Qo is the sum of all integrated charges
in the inner detector. For further quantification of the homogeneity of the charge
distribution in the detector the quantity Qg;g is introduced. It is defined as the Root
Mean Square (RMS) of the charges observed by the PMTs within a sphere S with a

radius of 1 m around the PMT which saw the maximum charge:

Quit = ~— Z(Qi_QmaX)Q (3.8)

N, 2
PMT,S £ Q;

where Npyt,s denotes the number of PMTs inside the 1m radius square around
the PMT having seen the maximum charge, (); the integrated charge observed by
PMT i and Qmax the maximum integrated charge observed by a single PMT. Qg <
30000 DUC respectively Qgig< 100000 DUC is demanded for FD1 respectively FD2
and ND. Finally, there is a third cut making use of the smoothness of the charge
distribution. In this case the RMS of the charge distribution (@) is exploited as
quantifier. Moreover, the RMS of the pulse start times ¢(7%s) is utilized, since Light
Noise is characterized by a rather big spread of start times (cf. section 2.5.2 and [8]).
¢(Ts)/ns < 36 or RMS(Q) < 464 - 8¢(Ts)/ns is claimed for FD1, ¢(Ts) < 36ns or
¢(Q) < 1680 - 28¢(Ts)/ns is claimed for FD2 and ND.

All event that satisfy these conditions (cf. above text: not a muon, AT,= 1.25ms, not a
Light Noise event, 0.3 MeV< Eys < 100 MeV) and are not a random trigger are kept as
valid single triggers.
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3.5.2 Inverse beta decy event selection

After the raw data has been reduced to the valid single triggers, the selection of inverse
beta decay candidates i.e. pairs of prompt - delayed signal candidates can be done.

First, there is a cut on the visible energies: For prompt event candidates a visible energy
FEyis between 1.0 and 20.0 MeV is required. For delayed event candidates a visible energy
Eyis satisfying 1.3 MeV < Egelayed,vis < 10 MeV is required [50].

Next, there are cuts on the relation between prompt and delayed candidate which are listed
in the following.

e The time difference between prompt and delayed signal AT has to meet the condition
0.5 us <AT < 800 us.

e There is a cut on the distance between the vertex positions AR forcing AR < 1.2m
[50]. Tt reduces accidental background since the distance between a the vertexes of a
prompt-delayed signal pair is shorter than for two random coincided signals.

e Muons induce plenty of neutrons rather than single neutrons. Therefore, fast neutron
background is considerably suppressed by not allowing for any other valid trigger
within 800 us before the prompt candidate and no valid trigger within 0.5 us to 900 us
after the prompt candidate except the delayed candidate. These background rejection
conditions are referred to as unicity conditions and the corresponding cut is referred
to as multiplicity cut or unicity cut. These selection conditions are illustrated in figure
3.2. Figure 3.3 provides some examples for accepted and rejected coincidences.

Moreover several vetos are applied [79]. They are explained in the following and summa-
rized in table 3.2.

e Prompt candidates are rejected if there is a coincidence with an outer veto signal
within 224 ns reducing the fast neutron and stopping muon background. The outer
vetos do not always take good data. Therefore the outer veto veto condition is only
applied for data for which good outer veto data exists.

e Inner Veto veto conditions are slightly different for prompt respectively delayed
candidates. Events with an inner veto PMT multiplicity >1 are vetoed (i.e. at least
two PMTs must observe a signal to trigger the veto) if the total charge in the inner
veto is bigger than 400 DUC (FD1) resp. 300 DUC (FD2 and ND) and if the distance
between inner veto and inner detector vertex is <3.7m. For prompt candidates the
veto only applies if the time difference AT satisfy -100ns < AT < -10ns (FD1) resp.
-40ns < AT < 70ns (FD2 and ND). For delayed candidates -100ns < AT < -30ns
(-30ns < AT < 60ns) is required in the FD1 (FD2 and ND) phase to meet the veto
conditions. Additionally, delayed events are only rejected, if the visible energy in the
inner detector is smaller than 3 MeV.

e The so called Functional Value veto mainly suppresses the stopping muon back-
ground but also Light Noise background not rejected by the Light Noise cut. For
that purpose, the Functional Value veto investigates the negative log-likelihood value
of the vertex reconstruction algorithm for its best fit hypothesis called Functional
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Figure 3.2: Illustration of the inverse beta decay selection conditions that have to be
fulfilled by the prompt delayed coincidence.
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Figure 3.3: Illustration of several examples for accepted and rejected prompt-delayed
coincidences. Examples a) - d) are accepted while e) - i) are rejected for the following
reasons. e) is rejected because there is no delayed candidate. f) and g) are rejected because
the multiplicity cut is not passed, h) is rejected because the prompt candidate comes to
shortly after a muon and i) is rejected because the time difference between delayed and
prompt candidate is to big.
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Value (cf. section 3.2). Large Functional Values, indicating bad reconstruction, oc-
cur for non point like events (typically stopping muons) since the algorithm assumes
point like events. Thus, stopping muons usually have large Functional Values. The
Functional Value cut is a function of the visible energy Fyis as the quality of the ver-
tex reconstruction depends on the energy deposit: E\yis/MeV > 0.36 - exp(FV/2.4)
and FEyis/MeV > 0.06 - exp(FV/1.2) is required for all delayed candidates in the
FD1 dataset, Eyis/MeV > 0.2 - exp(FV/1.8) and Ey;s/MeV > 0.05 - exp(FV/1.2)
is required for all delayed candidates in the FD2 dataset and Eys/MeV > 0.32 -
exp(FV/2.1) and Eyis/MeV > 0.07 - exp(FV/1.2) is required for all delayed candi-
dates in the ND dataset.

The lithium (Li) veto rejects background from cosmogenic -n isotopes. The lithium
likelihood quantifies the probability of each event to be a (-n decay background
event. It takes into account the distance between signal vertex position to the next
muon track and the number of neutron candidates within 1ms after this muon.
The probability density function for evaluating the lithium likelihood are obtained
from 2B because ?B yields more statistics than ?Li. Agreement of the probability
denisty functions from lithium and boron has been confirmed |7]. Prompt candidates
are rejected if the maximum lithium likelihood L1; w.r.t. all preceding muons within
700 ms meets the condition L1; > 0.4. Further details on the lithium likelihood can
be found in [45].

The so called ANN is a multivariate analysis grounded on an Artificial Neural Net-
work (ANN) intending for accidental background rejection. Input variables are the
distance between the event vertexes AR, the time between the events AT and the vis-
ible delayed energy FEyis delayed- Although preselective cuts have already been applied
to this variables, the combination of them allows for major accidental background
reduction. The ANN was trained with a Monte Carlo data sample of inverse beta
decay events and an accidental background candidate sample obtained from data
using the offtime method (cf. section 3.7.1) [9]. The implementation of the ANN cut
increased the signal to accidental background ratio by more than a factor of seven
from publication [5] to [9] while the detection efficiency only decreased by around six
percent [9)].

The chimney-pulse-shape (CPS) veto is aiming on further reducing the contami-
nation with stopping muons. The pulse shape of stopping muons is usually distorted
due to poor vertex reconstruction. Those events are very often reconstructed more
or less in the middle of the upper part of the inner detector, although in reality the
muon was decaying in the chimney. For those events, the pulse shape does not get
significantly worse if the originally reconstructed vertex is replaced by the position
of the chimney [92]. Thus, the stopping muon background can be suppressed be
comparing the negative log likelihood of the pulse shape with vertex in the chimney
Lchimney to the likelihood of the pulse shape with the originally reconstructed ver-
tex Lyertex and requiring Lehimney/Lvertex > 0.95. The chimney-pulse-shape veto is
explained in detail in [92].

The ABJ — FV™* cut is a cut aiming on stopping muons utilizing the usually unsta-
ble vertex reconstruction of these events. As mentioned in [77]| there are two vertex
reconstruction algorithms: RecoBAMA and RecoJapan. Both algorithms agree well
for most of the events. However, for stopping muons the position of the reconstructed
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vertex tents to differ "', Hence, the variable ABJ = Zjp — Zgama is defined where
Zyp and Zpama are the z-coordinates of the vertex from RecoJapan and RecoBAMA
respectively. The rejection power of ABJ can be improved further if combined with
the so called Functional Value Time Likelihood (F'V;). The FV;y is the negative
log likelihood of the RecoBAMA vertex reconstruction where only the hit time infor-
mation is used V. High energetic events are easier to reconstruct due to more light
emission. Hence, F'Vjj is smaller than for low energetic events. Therefore, F'Vyy is
corrected for the energy depended effect by defining [77]:

0.110 - Eyis/MeV  (FD1)
FV* = FVy 4 { 0.120 - Eyi,/MeV  (FD2) . (3.9)
0.097 - Eyis/MeV  (ND)

The cut was finally optimized to

(FV*=400)* | (ABJ+0.03) - 4o (FD1)

(9]F‘142 5 0.212 5
FVige > 4.3 A ¢ U000 (BBI00U7 > 52 (pD2) (3.10)
(FV*—4.00)2 | (ABJ—0.01)2 2
0.142 0.192 2 5 (ND)

Several distributions before and after cuts are exemplary presented in the following. Figure
3.4 shows the AR distribution of the FD2 dataset. One can see that the selected events are
characterized by a smaller AR. For the rejected events the distribution is mostly given by
the detector geometry. This is due to the large contamination with accidental background
before cuts. Figure 3.5 shows the distribution of the time difference between prompt and
delayed event AT. One can take from the plot, that the rejected events are basically
given by two groups. First, there is a concentration of rejected events at small AT. These
are mostly fast neutron background events. The second group is characterized by a flat
AT distribution [54]. These are accidental background events. There is no preferred time
difference since they are just random coincidence.

MThis is because in contrast to RecoBAMA, RecoJapan does not force vertices inside the detector.
Moreover, the pull term strategy differs [77].

Vndeed, FViyx yields a better rejection power than the Functional Value using charge information as
well [77].
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Figure 3.4: AR distribution of the FD2 dataset where AR is the distance between prompt
and delayed vertex in 3 dimensional space. Black dots are used to show the data after all
cuts have been applied, all data before cuts is shown as black solid line. The rejected
events are shown as red line [54].
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Figure 3.5: AT distribution of the FD2 dataset where AT is the time between prompt
and delayed trigger. Black dots are used to show the data after all cuts have been applied,
all data before cuts is shown as black solid line. The rejected events are shown as red line
[54].
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Figure 3.6: Visible delayed energy distribution of the FD2 dataset. Black dots are used
to show the data after all cuts have been applied, all data before cuts is shown as black
solid line. The rejected events are shown as red line. The accumulation of events around
2.2 MeV arises from neutron captures on hydrogen while the accumulation of events around
8 MeV arises from neutron captures on gadolinium [54].
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Table 3.2: Summary of veto conditions for the inverse beta decay selection [79]. Events
meeting any of the listed criteria are rejected. If more than one condition is listed in one
field and they are not separated by a dashed line all of them have to be fulfilled in order
to veto the event. More details can be found in the text.

name | target FD1 FD2 ND
Evis p Evis < 1.0 MeV
7777777777777777 Fus > 200 MeV
Evis d Evis S 1.3 MeV
7777777777777777 Eys > 10.0MevV
AT p+d AT < 0.5pus
77777777777777777 AT >80pus
AR p+d AR>12m
AT, p+d AT, <1.25ms
wIV | p+d | Qv >30000DUC [ Qv > 50000DUC | Qry > 30000 DUC
Trigger-Word (TW) = "IV-muon"
u-1D p+d Eyis > 100 MeV
LN ptd | Qmax/Qior >0.12 | Qmax/Qrot > 020
Qag > 30000DUC Qg > 100000DUC
| ¢(Ty)>36ns | ¢(Ty)>36ns
29~ 464 — gL <9 > 1680 — 2852
unicity p+d valid trigger within 800 us before prompt cand.
| valid trigger 0.5 us to 900 us after prompt cand. (except delayed cand.)
ANN p ANN<0.86 \ ANN<0.85
v d IV PMT multiplicity >1
distance IV-ID vertex <3.7m
Eis<3MeV
Q>300DUC Q>400DUQ
-30ns < AT < 60ns -100ns < AT < -30ns
v p IV PMT multiplicity >1
distance IV-ID vertex <3.7m
Q>300 DUC and Q>400DUC
-40ns < AT < 70ns -100ns < AT < -10ns
oV p OV coincidence within 224 ns (if good OV data exists)
Li p L1; > 0.4
FV d Bre < 0.36eV/24) | Bee < 0.20e(V/18) | Bute . 32¢(FV/2D)
e < 0.06eFV/12) | e < 0.05e(FV/12) | Bvis < 0.07eV/12)
ABJ d FVix > 4.3
vs. FVt (FVSI;LZ).O(:)Z (FVSI:Q.O(:)Z’ (Fvo,;fiog)Z
+(AB61.-2§—102.03) > 42 n (AB(;J';1()2.01) > 52 n (ABél'Ié)z.Ol) > 52
CPS d Lchimney/Lvertex S 0.95
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3.6 Efficiencies

The Double Chooz data acquisition system is background free and the trigger efficiency
is 100% with negligible uncertainty at 0.5MeV [7]. Thus, the detection efficiency for the
prompt event is almost 100%. In contrast, for the delayed event there are several physics
aspects that lead to a smaller detection efficiency.

3.6.1 Inverse beta decay candidate selection

The efficiency of the inverse beta decay selection is defined as [94]:

#IBD N ANN > £k {k‘ =0.85 FDI, FD2 (3.11)

‘e = ZIBDAANN > 0.1 | k = 0.86 ND

Here, #IBD is the number of inverse beta decay candidates fulfilling the criteria

prompt energy Eprompt fulfilling 1 MeV < Eprompt < 8.5 MeV

time between prompt and delayed event AT fulfilling 0.5 us < AT < 800 us

delayed energy Egelayed fulfilling 1.3 MeV < Egelayea < 10.0 MeV

space distance AR between prompt and delayed event fulfilling 0.0m < AR < 1.2m
passing all other vetos except for the ANN cut

Monte Carlo data studies have been investigating if a small gadolinium contamination in
the buffer changes the neutron detection efficiency. For that purpose, four different near
detector Monte Carlo datasets with four different gadolinium concentrations of 2.40, 1.55,
1.00 and 0.00 ug/cm? (standard) in the buffer have been used. The detection efficiencies
for near detector Monte Carlo datasets are in agreement [94].

Calibration data with the 252-Cf source located at different positions along the central
z-axis is used to measure the inverse beta decay selection efficiency.

3.6.2 Spilling

Neutrons produced in inverse beta decay processes in the buffer might propagate into the
neutrino target and neutrons produced in inverse beta decay processes in the neutrino
target might propagate into the buffer. This effects are referred to as spill in and spill out.
Since in the classical gadolinium analysis the fiducial volume is only the neutrino target,
spilling is an important systematical effect in that analysis. In contrast, in the Gd++
analysis the fiducial volume is given by neutrino target and buffer. Thus, spilling is almost
irrelevant, as it is only a propagation of the signal inside the fiducial volume.

3.6.3 Boundary effects

The neutron occupancy is almost the same for the flat top respectively bottom lid of the
cylindrical vessel and the curved lateral walls of the cylindrical vessel.
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Table 3.3: Percentage of neutrino events surviving each background rejection cut for the
inverse beta decay selection|79].

name target FD1 FD2 ND

AT, p+d 94.57+ < 0.01 74.48+ < 0.01
LN p+d | 99.99+ < 0.01 | 100.00+ < 0.01 | 100.00+£ < 0.01
unicity d+p | 97.29+£ < 0.01 | 96.20£ < 0.01 | 96.86+ < 0.01

v d 99.94 £+ 0.01 99.95 + 0.01 99.93 £0.01
v p 100.00£ < 0.01 | 100.00+ < 0.01 | 99.99+ < 0.01
ov p 99.94+ < 0.01 | 99.94+ < 0.01 | 99.99+ < 0.01
Li p 99.48+ < 0.01 99.47 +0.01 99.88+ < 0.01
CPS d 99.99+ < 0.01 99.85 + 0.01 99.93+ < 0.01

ABJ vs. FVt d 99.87 4+ 0.02 99.90 + 0.02 99.97 £0.01

FV d 99.95 £ 0.01 99.92 + 0.02 99.96 £ 0.01

3.6.4 Background rejection inefficiency

Although background rejection cuts aim on background reduction they might also reject
some small amount of real neutrino events. This is referred to as background rejection
inefficiency. Table 3.3 presents the percentage of neutrino events surviving each background
rejection cut [79]. Values typically range from sin 99.5% — 100.0% except for the unicity
conditions (~ 96% — 97%) and the AT}, cut. The AT}, cut reduces the livetime in the near
detector more significantly than in the far detector due to less overburden (cf. section 2.1,
table 3.1).

3.7 Background estimation

The background rejection cuts (cf. section 3.5) reject through going muon events and
Light Noise events with almost hundred percent efficiency. However, a rest contamination
with accidental, lithium, fast neutron and stopping muon background events can not be
avoidedY. The top plot in figure 3.7 shows the number of inverse beta decay candidates
as a function of the visible energy of the prompt event for the near detector dataset with
blue triangles. The red line indicates the prediction from reactor models assuming no
oscillation and background templates. Background templates are plotted as shaded areas.
The middle and bottom plot in figure 3.7 display the save distributions for the FD1-On
respectively FD2 dataset. The signal to background ratio is ~ 10 in the far detector and
~ 20 in the near detector. This section describes how the background templates that are
shown in figure 3.7 are obtained.

3.7.1 Accidental background

The accidental background is estimated with the offtime method |7]: The original time
difference of 0.5 us <AT < 800 us in the selection is replaced by a time window in which
no delayed events are expected while other section criteria remain unchanged. Therefore,

VLight Noise events passing all cuts are automatically accounted for by the accidental background
estimation as described in the next subsection (section 3.7.1).
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Figure 3.7: Visible energy distributions of the prompt events in the final inverse beta
decay dataset. Entries versus visible energy are shown. The experimental data from the
near detector is plotted in the top plot with blue diamonds. The distributions for the FD2
and the FD1-On experimental dataset are displayed the middle and bottom plot (black
squares). The red line indicates the prediction from reactor models assuming no oscillation
background templates. Those are represented by the shaded areas where green indicates
the lithium background template, blue the accidental background template and gray the
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fast neutron and stopping muon background template [55] (modified).
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Figure 3.8: Data sample of the accidental background in the near detector obtained with
the offtime method as explained in the text[56|. Entries versus visible energy are shown.

the remaining events in that time window are mostly accidental background events. In that
way, the accidental background rate is measured using 200 consecutive time slots where
the first one begins 1s after the prompt candidate. Moreover, an accidental background
sample is obtained by putting all of the 200 time slots in a row. Figure 3.8 shows the
accidental background sample for the near detector in dependence of the visible energy in
the detector. Figure 3.9 and 3.10 show it for the far detector. The accidental background is
characterized by small energies (cf. figure 3.8, figure 3.9 and figure 3.10). The distributions
for FD1 and FD2 are not a priory assumed to be the same since there have been changes
in the data readout system from the FD1 to the FD2 period. However, the shapes are
comparable and the order of magnitude is the same (see figure FD1, cf. figure FD2).

Figure 3.11 presents the covariance matrix of the data sample for the FD2 accidental
background obtained with the offtime method. The corresponding plots for near detector
and FD1 data sample can be found in figure A.2 and figure A.1.

3.7.2 Lithium background

The shape of the lithium background is measured with a lithium background sample. This
sample contains events passing all selection criteria except for having a lithium likelihood
Lr; > 04 (cf. section 3.5.2). The lithium background dataset is complementary to the
final inverse beta decay candidate dataset because the final inverse beta decay candidate
dataset only contains events with £r; < 0.4 (cf. section 3.5.2). Furthermore, there is a
Monte Carlo simulation of the lithium background taking into account feasible branches
considering « and neutron emissions as well [7] [116]. Monte Carlo simulation and real
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Figure 3.9: Data sample of the accidental background for the FD1 dataset obtained with
the offtime method as explained in the text [56]. Entries versus visible energy are shown.
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Figure 3.10: Data sample of the accidental background for the FD2 dataset obtained with
the offtime method as explained in the text [56] (modified). Entries versus visible energy
are shown.
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Figure 3.11: Covariance matrix for the FD2 accidental background obtained with the
offtime method as explained in the text.

background data energy distributions agree within the uncertainty [116]. Figures 3.12,
3.13 and A.3 show the energy distributions of the lithium data samples used in this work
for ND, FD2 and FD1. The absolute lithium rate is a free parameter in the final fit.
However, an independent estimate can be done by fitting the time difference of the inverse
beta decay-candidates to the previous muons AT}, since random coincidence of muons and
inverse beta decay candidates yield a flat distribution while the lithium contamination is
falling with AT),. In doing so, time and space distance to the previous muons and the
visible energy of these muons is taken into account. The results of this external estimate
from [116] can be found in table 4.5. There is no physical reason to assume a different
lithium background shape between FD2, ND and FD1. This is confirmed by experimental
data (cf. figure 3.12, figure 3.13 and figure A.3). The matrix of the correlations among
bins of the cosmogenic isotope background is displayed in figure 3.14.

3.7.3 Fast neutron and stopping muon background

Most of the correlated fast neutron and stopping muon background can be sorted out
by the inner veto. Thus, events that did not pass the inner veto veto conditions but all
other cuts can be used for a shape measurement of the fast neutron and stopping muon
background. These events are referred to as inner veto tagged events. Figure 3.15 presents
entries versus visible energy exemplary for the FD2 dataset, figure 3.16 and A.4 show it
for FD2 and FD1. The fast neutron and stopping muon background shape is consistent to
be identical in all datasets and parameterized by an empirical function

Jensm(Evis) = po - exp(—p1 - Evis) +p2 - Evis - (3.12)

The fast neutron and stopping muon rate is estimated using the fact that these background
events are dominating at high energies. The rate is higher in the near detector due to
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Figure 3.12: ND lithium background data sample obtained based on the lithium likelihood
as explained in the text [56]. Entries versus visible energy are shown.
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Figure 3.13: FD2 lithium background data sample obtained with the offtime method
based on the lithium likelihood as explained in the text [56] (modified). Entries versus
visible energy are shown.
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Figure 3.14: Covariance matrix for cosmogenic isotopes generated using the cosmogenic
isotope sample obtained as described in the text.
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Figure 3.15: Fast neutron and stopping muon background data sample for the near de-
tector from inner veto tagged events as explained in the text [56]. Entries versus visible
energy are shown.
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Figure 3.16: FD2 fast neutron and stopping muon background data sample obtained from

inner veto tagged events as explained in the text [56] (modified). Entries versus visible
energy are shown.

less overburden (cf. figure 3.15, figure 3.16). It is constraint by the inverse beta decay
candidates passing all selection criteria except for a visible prompt energy between 20 MeV
and 100 MeV. More details about the parameterization of the background are explained in
section 4.2.5 where the values of pg, p1, and po are as well as the rates listed in table 4.5.
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Chapter 4

Sterile oscillation analysis

This chapter describes the oscillation analysis performed in this work.

4.1 General concept

The general concept of this analysis is a Poisson likelihood based approach, which is based
on Stefan Schoppmann’s [113] analysis. Figure 4.1 illustrates the fitting process. The
strategy is not unfolding but one that will be referred to as forward folding in the following.
At first, a hypothetical measurement is constructed from a simulated reactor neutrino flux,
background spectra, detector systematics and oscillation parameters - simultaneously for all
datasets (i.e. ND, FD1, FD2). These hypothetical measurements are then simultaneously
compared to the real measurements. These two steps are repeated for another set of initial
parameters. This is done until the point of best agreement between real and hypothetical
measurement is found. This point is mathematically identified by the smallest negative
logarithmic likelihood. Technically, the algorithm calculates the estimated distance to
minimum (EDM) and aborts the minimization if the EDM is below a threshold (i.e. a fixed
value that depends on the desired accuracy). Figure 4.2 provides an other illustration of
the fit principle.

4.1.1 Statistical method

This section summarizes the statistical method used in this analysis. The analysis is
based on the minimum negative logarithmic likelihood which is equivalent to the maximum
likelihood approach as described in the following.

A set of measurements 77 may consist of N € IN single measurements:
ﬁ:(nl,ng,...,m\r) . (4.1)

The parameters of primary interest (i.e. the oscillation parameters sin® 26;3, sin? 2614 and
Am3,) as well as so called nuisance parameters may be contained in a vector a:

d’:(al,ag,...,aM),ME]N (4.2)
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Pull OffOff

Shape

N Modify
( EDM* < Threshold J—-—O@

EDM = Estimated Distance to Minimum

Figure 4.1: Illustration of the general fit idea following a so-called forward folding approach
which is explained in the text. As illustrated, the likelihood formula consists of a shape
part, an OffOff part and pulls. These parts will be explained in further detail hereinafter
[117].

where nuisance parameters are parameters that are not of primary interest but needed in
order to construct a prediction (the nuisance parameters used in this analysis will be listed
below).

The likelihood to observe the measurements 77 under the assumption that @ contains the
true values is the so called likelihood function L(7i|@). If the measurements in 7 are
uncorrelated, the likelihood function is a product of the probabilities f;(n;|@) to observe
the measurement n; under the condition that @ contains the true values:

N
= fi(rila) . (4.3)
i=1

If L external measurements & = (x1,x2,...,2r) independently from the measurement 7
constrain components of @, this knowledge may be included by extending equation (4.3)
to

—

N L
(i, #a) = [T fitnila) [T gisla) (4.4)
i=1 j=1

Equation (4.4) can be understood as a function of @ if 7 is given:

2

L L
L(7, Z|d) = H fild,n; = const.) Hg] (@,x; = const.) H fi(@ H g;(@) = . (4.5)

i=1 j=1 i=1

Thus, the vector containing the most likely parameters a may be obtained by maximizing
equation (4.5). This is the so called maximum likelihood approach.
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Neutrino flux model

Angz, sin? 20,
sin?20_,,Am?,,

14’
Energy
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Background model

Comparison

meas. |BD candidate

spectrum

Most likely oscillation parameters

Figure 4.2: Illustration of the general fit idea following a so called forward folding approach
which is explained in the text. As illustrated a model for the measured energy distribution
of neutrino events is constructed using oscillation parameter, energy reconstruction and
resolution parameters, detection systematics and the hypothetical initial reactor flux. The
backgrounds are added in the next step. The resulting total model of energy spectrum of
the inverse beta decay candidates is then compared to the data. As pointed out in the
text and illustrated in figure 4.1, after the comparison the model parameters are changed
using the gradient method Minuit2 [80] [26] [81]. The whole process is repeated until the
point of best agreement is found.
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The minimum negative logarithmic likelihood approach is equivalent but includes two

modifications induced for technical reasons. L£(,Z|@) can be replaced by 21n (L(7, Z|@))
as the natural logarithm is a strictly monotonically increasing function:

L£(@) = maz. < 2In (ﬁ(c:i)) = max. (4.6)

By doing so, the product in equation (4.5) transforms into a sum:

N L

L N
(@) = [T i@l 3@ < 2m (£@) =23 (f@) +2) W (@G@) . @0
§=0 i=1

i=1

§=0

In particular the g;(@), which are included in order to account for a priori knowledge of
components of @, usually do not depend on all components of @. Thus, a separation of
variables is usually done by the logarithm. A minimization is technically easier to do than
a maximization. Therefore, In (£(@)) - —2 is minimized instead of maximizing 2In (£(@))
since it is equivalent:

21n (C(c:i)) =max. < —2In (C(c:i)) =min. . (4.8)

If the measurement values are Gaussian distributions,

n pmeas _ p,CXP (= 2
— 21n (£(7)@)) :Z( E— (@) (4.9)

follows. The right side of equation (4.9) is well known as the so called Chi-square [95].

In this work, the measurements are the number of events in visible prompt energy bins for
FD1-On, FD2 and ND. They are assumed to follow a Poisson distribution. For Poisson
distributions

?Xp (d,) n;neas

) U —nS*P(a

7 (2

— 21In (L(7]&)) = —2 (Z nIAS  In (nSP(@)) — nSP (@) — In (n;neaS!)> (4.11)

applies.

The binning in this work consists of 38 bins between 1 and 20 MeV with custom bin sizes.
Only the region up to about 8 MeV is IBD dominated. The bin size is 0.25 MeV in this
region. The fit region has been extended to background dominated energy regions in order
to allow a background constraint in the fit itself. In doing so, more bins have been added.
In order to optimize for the lower statistics in the background dominated regions the bin
size is increasing; in the lithium background dominated region between 8 and 10 MeV the
bin width is 0.5 MeV, followed by two bins from 10-12 MeV with a width of 1.0 MeV each.
Finally, the bin size is 2.0 MeV in the region between 12 and 20 MeV which is dominated
by fast neutron and stopping muon background (cf. figure 3.7). A summary of the binning
can be found in table 4.1.
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Table 4.1: Binning of the visible prompt energy spectrum (identical to the binning used
in the 63 analysis [39]).

characteristics range [MeV]| | bin width [MeV] | number of bins
IBD dominated [1.0, 8.0) 0.25 23
lithium bckgr. dominated [8.0, 10) 0.5 4
intermediate [10.0, 12.0) 1.0 2
FNSM bckgr. dominated | [12.0, 20.0) 2.0 4
total 1.0, 20.0) 0.25 - 2.0 38

Thus, assuming Poisson statistics for the measurement the negative log likelihood function
is given by:

—21n £(@) = (4.12a)

> [ Z pesdIn (nP (@) nf"p’d(a’)] (4.12b)

de{FD1-On, ND, FD2}

+ nofon - In (nggog(@)) ng(f}f)Off(_’) (4.12¢)
N Z {pullcorr( j) Jj vector of correlated par.
J¢ {constraint inpat par. /vectors} pull(y) j single par. (uncorrelated)
(4.12d)
where nmeas’d is the measured number of inverse beta decay-candidates in energy bin ¢ and

dataset d (FD1-On, FD2 or ND). CXp’d(_') is the expected number of IBD candidates in
energy bin ¢ and dataset d under the condition that the input parameters are given by vector
a. nogog 18 the number of measured inverse beta decay-candidates during the reactor off
FD1 period, n(ggoﬁ(c?) is the number of expected reactor off candidates. The parts (4.12b)
and (4.12¢) account for the measurement compared to the expectation assuming Poisson
statistics. The terms in equation (4.12d) are Gaussian priors on those input parameters

which are constraint in the fit. The Gaussian prior is given by:

pull(j) = <“30_ja3)2 (4.13)

for those constraint parameters which are not correlated to others. For those constraint
parameters that are correlated to others, the correlations are accounted for by a correlated
Gaussian prior:

Pl () = (7= 7) V- (7 -7) (114)

where 5 is the vector of parameters that are correlated to each other and V; is the corre-
sponding covariance matrix. The parameters not constraint by a prior are referring to:

e sin% 2014, Am?,- the parameters of major interest
e sin’26;3

It is important to have no constraints on 613 as all values provided by any experiment
were either obtained under the no sterile assumption or in a sterile analysis. It should
be considered that the best fit 013 value can actually be different if 614 # 0 which
does not allow to have a 613 constraint. Also the result of a similar analysis should
not be inserted into this analysis (unless a combination of both analysis is aimed.)
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e correlated reactor flux normalization in all energy bins,
e lithium background rates.

The reactor flux normalization in all energy bins are nuisance parameters. In principle,
they could be constraint in the fit as predictions for the reactor flux exist. However, it
turns out that the currently existing reactor predictions do not describe the observations
by reactor neutrino experiments sufficiently (cf. sections 1.4.1 and 1.4.4). Thus, the rate
and shape of the reactor prediction is not used and a Data-to-Data fit approach is done.

The parameters that are constraint by a prior in the fit are related to:

o Am,
e several background attributes:

— accidental background rates

— spectral shape of the accidental background

spectral shape of the lithium background

— fast neutron and stopping muon background rates

— spectral shape of the fast neutron and stopping muon background

energy reconstruction
detection efficiencies
number of neutrino events during the reactor off period

uncorrelated reactor neutrino flux in all energy bins

Thus, equation (4.12) may be expressed as:

—2InL(d) = (4.15a)

>

de FD1-On, ND, FD2
+ Noitoe - n(Nosion (@) — Nofion (@) (4.15¢)
+ pull(acc. rate FD1) + pull(acc. rate FD2) 4 pull(acc. rate ND) (4.15d)
+ Zpull(speetral acc. bin i FD1) 4+ Z pull(spectral acc. bin i FD2)

] 7

+ Z pull(spectral acc. bin i ND)

(2

(4.15D)

2

2 et (NPPYE) ) - NEP@)
%

(4.15¢)
+ pull(FNSM rate FD) + pull(FNSM rate ND) (4.15f)
+ Z pull(FNSM spectral parameter k) (4.15g)

k

+) " pull(spectral lithium bin i) (4.15h)
+ pull,,,, (uncorr. reactor flux in all energy bins) (4.151)
+ pull,,,, (energy parameters) (4.15j)
+ pull,,,, (detection efficiency parameters) (4.15k)
+ pull(OffOff neutrino rate) (4.151)
+ pull(Am?2,) . (4.15m)
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The treatment of the systematics effects is explained in further detail in the following.

The likelihood function is minimized using the Minuit2 algorithm [80].

4.2 Input model

exp,d

This section describes the input model i.e. how the n;”"%(@) in equation (4.12) are calcu-

lated.

4.2.1 Correlation handling

Several model parameters such as the reactor flux, detection efficiencies, energy parame-
ters and background parameters are correlated among ND, FD1-On and FD2 and/or other
parameters of the same dataset. Minimizer algorithms do not a priori assume correlations
unless this is forced despite that they usually can calculate posterior correlations of pa-
rameters based on the function to be minimized. How correlations are forced in this work
is explained in the following. This section describes the general method of correlation
handling used in this work, while further information about the correlation coefficients can
be found in the following sections.

Covariance matrices (aj;) are always quadratic real symmetric matrices (a;; = aj; € Ri,j =
0,1,..,n). Thus, they always have exactly n eigenvalues and n orthogonal eigenvectors.
Furthermore, all of the eigenvalues are non negative real numbers (i.e. covariance matrices
are positive definite). Correlated variables can not only be expressed in the given coordi-
nate system in which they are correlated but also in the eigenbasis of the covariance matrix
in which they are uncorrelated. Since the parameters used by the minimizing algorithm
are preferrably uncorrelated, they necessarily need to be collinear to the eigenvectors of the
covariance matrix requiring a variable transformation into that eigenbasis. This transfor-
mation of a vector in the eigenbasis of a matrix M (the so called eigenvector decomposition)
can be done with the matrix U defined by:

M = UAUT (4.16)

where A is the n dimensional diagonal matrix with the eigenvalues on the diagonal axis.
Since the eigenvalues are always non-negative equation (4.16) can also be written as

M =LLT with L = UVA . (4.17)

That is the so called Cholesky decomposition [42]. It transforms into a coordinate system
in which the matrix M is the unit matrix. In doing so, multiplication of U with a vector
can be understood as a rotation of the coordinate system while multiplication of v/A with a
vector can be understood as a stretching or shrinking of it. Speaking in terms of correlated
variables, the Cholesky decomposition matrix transforms a vector of correlated variables
into the coordinate system in which the variables are uncorrelated and all variances are
exactly equal to one. Figure 4.3 illustrates the coordinate systems. The eigenbasis of the
covariance matrix (obtained by applying matrix U) is illustrated in the top, the trans-
formation in the scaled eigenbasis in which the covariance matrix (obtained by applying
matrix L) is the unit matrix is shown in the bottom.
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In this work, the Cholesky decomposition is used to substitute correlated variables by their
representation in the coordinate system in which the covariance matrix is the unit matrix.
Namely this is applied to the energy treatment parameters, the reactor flux parameters,
the detection efficiency parameters and background shape parameters.

4.2.2 Energy

The energy reconstruction parameters are correlated among FD1, FD2 and ND.

The light non-linearity correction is applied only to the prompt Monte Carlo events in the
final fit process. All other corrections related to energy are already implemented in the
Monte Carlo simulation. The energy Eyis vc in the final fit is modeled as

Euis mc = s e - fINL - fseyu - foo (4.18)

where fLNL, fsiyu and fonL are correction functions accounting for light non-linearity,
stability plus uniformity respectively charge non-linearity:

a
FINL = 4 br, (4.19a)
vis, MC
fstyu =bst/u (4.19b)
JoNL =bgNL + cqQNL - E",i& MC (4.19¢)

Here, E",i& v is the visible energy of the prompt event from the Monte Carlo simulation.
(4.18) may be written as:

Eyisnc = d' + b - Bl yo + ¢ - (Blig ve)’ (4.20)
where
a’ =arNr - bsyu - boNL (4.21)
b’ =arnr - bsiyu - cQnL + bLNL - bs¢/u - boNL (4.22)
¢! =brr - bsyyu - cQL : (4.23)

a’, b" and ¢ are optimized in the final oscillation analysis instead of arxr, brNL, bst/u, boNL
and cqnr, in order to avoid ambiguity induced by an unnecessary amount of degrees of
freedom. Table B.2 (see section B.2) presents the values of arnr,, bNL, bst /U bonr, and
conL. The correlations between these parameters can be found in table B.1 (see section
B.2). The correlation matrix is assumed to be identical for FD1, FD2 and ND. apni, and
b1, are entirely anti-correlated and the correlation correlation between bgnr, and cqoni, of
the same detector is -0.45 while light non-linearity, charge non-linearity and stability and
uniformity corrections are fully uncorrelated to each other. apny, and byN1, are completely
correlated between FD1, FD2 and ND while bg; /iy, bonL and cqni are not correlated
between FD1, FD2 and ND.

a’, b/ and ¢’ can be calculated to the values presented in table 4.2 with the given information
from table B.2 and the functional dependence from equation (4.21) . The correlations of the
parameters have been calculated using a simulation of 15 000 random Gaussian distributed
values [102]. The results can be found in table 4.3.
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Figure 4.3: Illustration of the different coordinate systems used in this work for two
example variables called FD2 variable x and ND variable x. Note that this is only an
example and the variables could also belong to the same dataset or be different variables
of different datasets. The eigenbasis system of two correlated variable is shown in the top
(blue fine dashed coordinate system), the coordinate system in which the covariance matrix
is the unit matrix is shown in the bottom (red dashed coordinate system). The second
coordinate system can not be obtained from the original coordinate system (black solid)
by a rotation. Additionally, a stretching of the axis is needed. In this work, a variable
substitution from the original coordinate system into the coordinate system in which the
covariance matrix is the unit matrix (bottom plot, red dashed coordinate system) is done.
For further information see text.
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Table 4.2: Values of the energy calibration parameters and their uncertainties in terms of
the parameters a’, b’ and ¢’ used in the final fit. All values are identical to the values used
in the 013 fit [44]

parameter FD1 FD2 ND
a’ 0.009 £ 0.016
b 0.9959 £ 0.0083 0.9959 £ 0.0085 0.9959 £ 0.0093
d 0.00000 = 0.00053 | 0.00000 £ 0.00069 | 0.00000 £ 0.00048

Table 4.3: Correlations of the energy calibration parameters in terms of the parameters
a', b and ¢ used in the final fit. The values are identical to the values used in the 013 fit
[44].

parameter a bV FD1 o FD2 © ND ¢ FD1 ¢ FD2 ¢ ND
a 1 -0.85 -0.83 -0.76 0.00 0.00 0.00
b FD1 -0.85 1 0.71 0.65 -0.07 0.00 0.00
b FD2 -0.83  0.71 1 0.63 0.00 -0.08 0.00
b ND -0.76 0.65 0.63 1 0.00 0.00 -0.05
¢ FD1 0.00  -0.07 0.00 0.00 1 0.00 0.00
d FD2 0.00 0.00 -0.08 0.00 0.00 1 0.00
¢ ND 0.00 0.00 0.00 -0.05 0.00 0.00 1

4.2.3 Oscillation model

The theory of neutrino oscillation has been discussed in chapter 1.2. It was shown that the
survival probability of electron antineutrinos in the range of baselines relevant for Double
Chooz is approximately given by equation (1.30):

Po~1-— 0%4 sin? 26015 sin? A, — sin® 26014 sin? Ay

In this section, oscillation signatures observable with the Double Chooz experiment are
visualized and further discussed in this section.

Majorana and Dirac CP-validating phases are not observable for disappearance experi-
ments such as Double Chooz in general regardless of the number of neutrino states (see
section 1.2, equation (1.17)). Therefore, CP-validating phases are not discussed in the
following.

Figure 4.4 illustrates an example for the v, neutrino survival probability versus true neu-
trino energy in MeV for baselines of 400m (top) and 1050m (bottom) assuming sterile
oscillations. The dotted blue line shows sin® 2614,=0.0, the red dashed line sin?26,,=0.02,
Am?%,=0.1 eV? and the solid green line sin® 20;4,=0.02, Am3,=0.02 eV?. The far detector
has been placed in such a way that the first minimum due to the sin? 26,3 oscillation is in
an observable energy range (cf. sin®261,—0.0, dotted blue line in the lower part of figure
4.4). In contrast, the position of the near detector was chosen such that there is mostly
no oscillation due to sin? 2013 yet (cf. sin?26014=0.0, dotted blue line in the upper part of
figure 4.4). Comparing the dashed dotted blue line to the dashed red and solid green line
one can see that in case of sin? 2014 # 0 there is basically a superposition of the deficits
due to sin” 2013 and sin? 2614 oscillation (given that sin? 2614 << 1 and |Am?,| > |[Am2,]).
The superposition of the deficits due to sin® 2615 and sin? 204 oscillations also follows from
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Figure 4.4: 7, neutrino survival probability versus true neutrino energy in MeV for base-
lines of 400m (top) and 1050 m (bottom). The dotted blue line illustrates sin? 2614,=0.0,
the red dashed line sin? 2014=0.02, Am?ﬂ:O.l eV? and the solid green line sin? 26014=0.02,
Am2,=0.02eV2. 613 = 8.52° (sin? 2013 = 0.086) and Am2,=0.00252 eV? has been used
for all probabilities shown in this figure. All probabilities in this plots were calculated with
NuCraft [125] assuming full four flavor oscillation.
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equation (1.30) since cos® 614 ~ 0. sin? 2614 > 0, |[Am3,| > |Am% | leads to oscillation pat-
terns in both defectors that are different in near and far detector (cf. figure 4.4). More

precisely, the oscillations are around 1050/400 = 2.5 times faster in the far detector. That
2 2

is because the baseline L appears in the nominator of the term sin® W) in

Am3,[eV?]L[km]

W) Hence,

the larger |[Am?,|, the faster the oscillations are, as one can see by comparing the lines for

sin? 2014=0.02, Am?%,=0.02 eV? and sin® 2014=0.02, Am?,=0.10 eV? in figure 4.4. sin? 204

—Am%ﬁ\éz}vﬁ[kmg is multi-

equation (1.30). |Am?,| also appears in the nominator of sin? (

gives the amplitude of the sterile oscillation signature since sin® (

plied by the factor sin? 2014 in equation (1.30).

Neutrinos are oscillated using the approximation (1.30) in the final analysis where Am2, =
(2.484 4 0.036) - 10~3eV? is used where Am?2, the value is from [44] which used the input
from [65] [66]. Figure 4.5 compares the approximation for exemplary sterile parameters of
sin? 2614 = 0.02 and Am?2, = 0.05 eV?2. Hereby, the full four flavor oscillation probability
Am?2, > 0 and a baseline of 1050 m are assumed. By showing the electron antineutrino
survival probability versus true neutrino energy for a far detector baseline of precisely
1050 m, figure 4.6 does the same but assumes Am?2; < 0. The solid blue lines show
the full four flavor oscillation for Am3, > 0 while the dashed green lines show the full
four flavor oscillation for Am%Q < 0 and the dashed red lines show the approximation
from equation (1.30). The lines for Am3, > 0 and Am3, < 0 are very close to each
other and cannot be distinguished experimentally since Double Chooz has no sensitivity
to the mass ordering of the known neutrino states. The oscillation probabilities assuming
full four flavor oscillation have been calculated using NuCraft [125]. One can see that
approximation and full four flavor oscillation probabilities agree to the per-mille level in
all cases. The maximum difference between approximation and full four flavor case is 4.5
per-mill. Figure 4.7 shows electron antineutrino survival probability versus energy for all
possible mass orderings together in one plot. Figure B.1 is identical to figure 4.7 expect
for the sterile mass and shows the same for Am?2, = 0.02eV?.

Figure 4.8 shows an example for so called Asimov! inverse beta decay candidate predictions

without background relative to the no-oscillation model prediction versus visible prompt
energy. Krror bars correspond to three years of gadolinium physics data taking from
the signal region with example parameters of sin®26;3 = 0.085, sin?26014 = 0.100 and
Am?2, = 0.02 eV2. The FD2 plot is shown in the top, FD1-On plot in the middle and
the the ND plot in the bottom. A sterile oscillation pattern is observed in all detectors.
Figure 4.9 shows the same set of plots for a different sterile squared mass difference of
Am?, = 1.0eV2. For such a big value of |Am?,| the oscillations become so fast that they
can not be resolved anymore due to the finite energy resolution of the detectors. Thus, only
a smaller normalization is visible in all detectors to which the analysis will not be sensitive
since it does not compare the correlated reactor flux (i.e. the global normalization in all
energy bins) to the prediction. Therefore, there is no sensitivity to Am2, = O(1.0eV?) or
larger. Examples for Am?2, = 0.0001eV? are shown in figure 4.10. For |Am3,| < |Am?2,|
no significant sterile oscillation happened yet at both near and far detector baselines.
Hence, the sterile analysis will not be sensitive in this mass squared region either.

Tt has been pointed out in [47] that a sensitivity study on many pseudo experiments (i.e. a so-called
ensemble study) can be replaced by a sensitivity study on the expected mean dataset which has infinite
statistics. The sensitivity study on this so-called Asimov Dataset will give the same result as the median
result of the ensemble study. More on this can be found in section 4.3.1
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Figure 4.5: Comparison of the approximation for the electron antineutrino survival prob-
ability used in this work to the full four flavor oscillation for example parameters of
sin?2014 = 0.02 and Am32; = 0.05eV2. The electron antineutrino survival probability
versus true energy is shown. The approximation used in this work is plotted in dashed
red. The full four flavor probability is shown in solid blue for scenario of neutrino mass
ordering NONO, and in dashed green for scenario NOIO. The full four flavor oscillation
probabilities have been calculated using NuCraft [125]. 613 = 8.52° (sin®2613 = 0.086)
and Am3;=0.00252 eV? has been used for all probabilities shown in this figure.

4.2.4 Neutrino flux model

This analysis uses the Data-to-Data fit principle. Thus, it does not depend on any specific
reactor model since the data of far and near detector is not compared to the MC but only
to data of the other detector. The correlation of the reactor flux between ND and FD2 is
assumed to be 99.75%, the correction between FD1-On and FD2 is 93.20% and the corre-
lation between FD1-On and ND is 93.10% [44]|. These correlations are also summarized in
table 4.4. The reactor flux model is only used for corrections to allow for a flux difference
due to uncorrelated reactor flux parts. These effects are very small due to a correlation of
more than 93%. For these small correction the reactor flux covariance matrices produced
without using the Bugey4 anchor point are used (cf. section 3.4) - just as it is done in the
013 Data-to-Data fit. These reactor covariance matrices are displayed in figure 4.11 (ND),
figure B.2 (FD1-On) and figure B.3 (FD2).

Despite this analysis does not rely on any reactor flux prediction model, the algorithm in-
ternally constructs a hypothetical neutrino flux in order to compare it to data as explained
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Figure 4.6: Comparison of the approximation for the electron antineutrino survival prob-
ability used in this work to the full four flavor oscillation for example parameters of
sin? 2614 = 0.02 and Amil = —0.05eV2. The electron antineutrino survival probabil-
ity versus true energy is shown. The approximation used in this work in dashed red.
The full four flavor probability is shown in solid blue for the scenario of neutrino mass
ordering IONO, and in dashed green for scenario IOIO. The full four flavor oscillation
probabilities have been calculated using NuCraft [125]. 613 = 8.52° (sin?26;3 = 0.086)
and Am32,=0.00252 eV? has been used for all probabilities shown in this figure.

Table 4.4: Correlations of the reactor flux used in this work. All correlations are identical
to the correlations used in the 03 fit [44].

correlations | FD1-On | FD2 ND
FD1-On 1 0.932 | 0.931
FD2 0.932 1 0.9975
ND 0.931 0.9975 1

66 RWTH Aachen



4.2. Input model

[ 1AamZ[=0.05 eV, sin® 26,,—0.02 1
0.08} - [sin® 20,3 =0.086, Aing) =2.52:107° eV2 | AN
S |
(@) :
S 0.96f S ITIIEITITE TPTRIIPPIITILS SUMTIR VL)Y /APIIRNPT RS
© :
2 :
> 3
S 0.94 ; : ‘
n : : :
Ny \ full 4 flavor NONO
2 ool Al N ~—- full 4 flavor NOIO |
— full 4 flavor I0IO
3 ---- full 4 flavor IONO
0-90 TR D —— approx. |
2 3 5 6 7 8

E/MeV

Figure 4.7: Comparison of oscillation formula approximation used in this work to the full
four flavor oscillation for example parameters of sin? 2614 = 0.02 and |Am?;| = 0.05eV2.
The electron antineutrino survival probability versus true energy is shown. The approx-
imation used in this work while the full four flavor probability is shown in solid blue for
scenario NONO in dashed magenta for scenario NOIO in solid black for scenario IOIO and
in dashed green for scenario IONO. The full four flavor oscillation probabilities have been
calculated using NuCraft [125]. 613 = 8.52° (sin® 2613 = 0.086) and Am2,=0.00252 eV?
has been used for all probabilities shown in this figure.
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Figure 4.8: Asimov (cf. footnote I) inverse beta decay candidate predictions without
background relative to the no-oscillation model prediction versus visible prompt energy
where error bars correspond to three years of gadolinium physics data taking. The ratio of
the no-sterile prediction to the no-oscillation prediction is shown in dashed red. The FD2
plot is shown in the top, FD1-On plot in the middle and the the ND plot in the bottom.
sin? 2013 = 0.085, sin® 2014 = 0.100 and Am?; = 0.02eV? have been used.
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Figure 4.9: Asimov inverse beta decay candidate predictions without background relative

to the no-oscillation

9
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model prediction versus visible prompt energy where error bars corre-
spond to three years of gadolinium physics data taking. The ratio of the no-sterile predic-
tion to the no-oscillation prediction is shown in dashed red. The FD2 plot is shown in the
top, FD1-On plot in the middle and the the ND plot in the bottom. Here, sin® 26,5 = 0.085,
sin? 2014 = 0.100 and Am?, = 1.00eV? have been used.
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Figure 4.10: Asimov inverse beta decay candidate predictions without background rela-
tive to the no-oscillation model prediction versus visible prompt energy where error bars
correspond to three years of gadolinium physics data taking. The ratio of the no-sterile pre-
diction to the no-oscillation prediction is shown in dashed red. The FD2 plot is shown in the
top, FD1-On plot in the middle and the the ND plot in the bottom. Here, sin” 26;5 = 0.085,
sin? 2014 = 0.100 and Am?; = 0.0001 eV? have been used.
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Figure 4.11: Covariance matrix of the reactor flux parameters for the near detector dataset.
This matrix has been generated without using the Bugey4 anchor point (cf. section 3.4).

in the introduction of this chapter. This hypothetical spectrum does not have to match any
prediction. It is described by 41 reactor flux parameters per detector that are optimized
in the fit. These parameters are correlated among the datasets with the correlation factors
that can be found in table 2.2. The correlation is technically implemented by a transfor-
mation in the eigenbasis of the covariance matrix as described in section 4.2.1. The part
that is correlated is efficiently not constraint in the fit, more precisely the Gaussian prior
on these parameters is relaxed by a factor of 20 since a soft prior helps the fit to converge.
In order to center this weak prior as good as possible, the internally constructed model
is re-weighted on number of events w.r.t. the measurement assuming the latest Double
Chooz 613 result of sin? 2613 = 0.119 [43].

More precisely, the reactor flux parameters do not refer directly to the absolute reactor
flux but to the relative deviation in units of the reactor flux uncertainty from the reference
Monte Carlo which is in particular arbitrary. This is useful since for the conversion from
true neutrino energy to visible prompt energy a Monte Carlo simulation must be used.
For the baseline distribution, a Monte Carlo simulation is necessary as well. The already
existing Monte Carlo, which was used for the MC-Data 613 fit [57], is used in order to
do the conversion and for the baseline distribution. The true neutrino energy distribution
in that Monte Carlo is arbitrary as long as the near - far ratio in the Monte Carlo is
conserved. The Monte Carlo which was used for the MC-Data 613 fit was chosen because
it is the only existing Monte Carlo. Moreover, it is helpful to use a Monte Carlo which
has the most statistics at a reasonable position and is not by several orders of magnitude
away from the measurement. Technically, for instance a Monte Carlo having a flat energy
distribution could also be used, but this would require much more computing time a large
human effort to produce it. By using the Monte Carlo as a reference point for comparison
expected differences between near detector and far detector are automatically accounted
for. Such expected differences are for instance the different baseline distributions or small
non-iso flux corrections in terms of thermal power or fuel composition.
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How the construction of the hypothetical neutrino flux is done and why it is independent
from the energy shape of the Monte Carlo is explained in further detail in the following.

1. The algorithm iterates over all events in the Monte Carlo and first oscillates them
using equation (1.30), true baseline and true energy from the Monte Carlo. Next,
it fills them in a histogram according to their visible prompt energy information
provided in the Monte Carlo. That histogram covers the energy range of 0-20 MeV
with 80 bins of 0.25MeV width each. The bins are smaller because this allows for
more precise energy corrections which are explained in the next steps.

2. The histogram is re-weighted by the reactor flux shift parameters.
3. The histogram from step 2 is interpolated using a linear spline.

4. The linear spline from step 3 is shifted using the energy parameters a’, b, ¢’ for the
corresponding dataset.

5. The shifted linear spline is converted to a histogram of equidistant 80 bins from
0-20 MeV again by analytic integration.

As mentioned in section 1.4.1 the Double Chooz Experiment observes a global deficit of
the total neutrino rate with both near and far detector to the prediction which can not be
explained by oscillation. Therefore, the Monte Carlo prediction for the neutrino events is
divided by the empirical factor describing the deficit of 8.6% [101].

4.2.5 Background model

Lithium background The lithium background shape is assumed to be the same in FD1,
FD2 and ND (i.e. it is fully correlated). It is modeled with 38 shape parameters. The
lithium rate is fully correlated between FD1 and FD2 while the FD1 and FD2 lithium
rate is not correlated to the lithium rate in the near detector. Therefore, there are two
parameters for the lithium rate in total. As mentioned above, the lithium rates are not
constrained in the fit.

Fast neutron and stopping muon background The fast neutron and stopping muon
(FNSM) background shape is parameterized by the empirical function

fFNSM (Evis) =DPo - eXP(—pl : Evis) + D2 - Evis (424)

where F.s is the visible prompt inverse beta decay candidate energy. The values of the
parameters pg , p1 and py can be found in table 4.5 and are fully correlated among FD1-On,
FD2 and ND. The correlations between pg, p1 and ps can be found in table 4.6. Equation
(4.24) is normalized on integral to one and scaled with the rate parameters. The fast
neutron and stopping muon rate is fully correlated between FD1 and FD2 but uncorrelated
between far and near detector (i.e. there are two parameters for the fast neutron and
stopping muon rates in total).
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Table 4.5: Values of the background rate parameters and the shape parameters for the
fast neutron and stopping muon background used in the fit in 1/day [44].

parameter FD1 FD2 ND
acc. bckgr. rate 3.930 £+ 0.010 | 4.320 4+ 0.020 | 3.110 &+ 0.004
Li bckgr. rate 2.57 £ 0.61 12.32 £ 2.01
FNSM bckgr. rate 2.54 £ 0.07 20.77 &£ 0.43
FNSM bckgr. par. p0 180.723 + 3.911
FNSM bckgr. par. pl 0.0153251 + 0.00102562
FNSM bckgr. par. p2 -0.296282 4+ 0.041220

Table 4.6: Covariance matrix of the fast neutron and stopping muon background param-
eters used in the fit in l/dayQ. The matrix is identical to the matrix used in the 63 fit
[44].

parameter pO pl . p2
p0 1.52951-101  3.21573-107°  0.103868
pl 3.21573-1073  1.05219-1076  4.04599-107°
p2 1.03868-107!  4.04599-10™°  0.00169909

Accidental background Since the readout system has changed, the accidental back-
ground rates and shapes are fully uncorrelated between FD1, FD2 and ND. There is one
rate parameter and 38 shape parameters for each dataset.

A summary of the background rates can be found in table 4.5.

4.2.6 Reactor Off

The expected number of inverse beta decay events with both reactors off is mainly given
by the expected number of background events for that period. However, a small number
of neutrinos from the reactor cores is expected even when they are off. More precisely,
Niior = 4.18 £ 1.25 neutrinos are expected within the 7.16 days of FD1-Off-Off lifetime
with both reactors off resulting in a rate of 0.58 4+ 0.17/day. These neutrinos undergo
neutrino oscillation with the same neutrino oscillation parameters as neutrinos produced
when reactors are running. These neutrinos are oscillated using their mean energy of
2.74 MeV in order to get the off-off expectation. While this is a very good approximation
for the 13 fit since the far detector is in the first oscillation minimum, for a sterile analysis
this is usually not the case. Thus, using the mean energy is less accurate, since it is
not averaged over the energy distribution. As no official energy shape distribution of the
neutrinos exists for the Gd++ analysis, the off-off rate is only priored if it is larger than
the central value since sterile neutrino oscillation can only reduce and not increase the
number of measured electron antineutrinos. Furthermore, only positive rates are allowed
and the neutrinos are oscillated using 614 = 0 in order to avoid an unstable behavior of
the prediction for large Am?; due to fast oscillation.

The background rates are assumed to be independent from the reactor operation. Thus,
they are identical to the rates with reactors running and can be used as a background
measurement. The values can be found in table 4.5.
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Table 4.7: Values and correlations of the MC-data correction factor. All values and
correlations are identical to the values and correlations used in the 63 fit [44].

values FD1 FD2 ND
0.9076 £+ 0.0069 | 0.8944 + 0.0069 | 0.7010 + 0.0049
correlations FD1 FD2 ND
FD1 1 0.808 0.743
FD2 0.809 1 0.742
ND 0.743 0.742 1

Table 4.8: List of parameters used in the fit

number of par. correlation

FD1 | FD2 | ND | FD1-FD2 | FD2-ND | FD1 - ND
detection!! 1 1 1 yes yes yes
energy a 1 yes yes yes
energy b 1 1 1 yes yes yes
energy c 1 1 1 yes yes yes
Off-Off v-rate 1 0 0 no no no
acc-rate 1 1 1 no no no
acc-shape 38 38 38 no no no
Li-rate 1 1 yes no no
Li-shape 38 yes yes yes
FNSM-rate 1 \ 1 yes no no
FNSM-shape 3 yes yes yes
relative shift of reactor v 41 ‘ 41 ‘ 41 yes yes yes
sin® 2613 1 yes yes yes
Am?2, 1 yes yes yes
sin® 2014 1 yes yes yes
Am3, 1 yes yes yes

4.2.7 Detection efficiency

The Monte Carlo generation was using the best measurement value of the proton number
at that time. However, the Monte Carlo generation was not repeated after a more pre-
cise measurement, as it can be rescaled to correct for the difference to the more precise
measurement. The proton number correction is applied simultaneously with other effects
contributing to the detection efficiency. All corrections are merged in a factor called Monte
Carlo data correction factor. Table 4.7 presents the values and correlations used in the fit.
Note that the contribution fully correlated in all detectors is fixed in the fit in order to
avoid ambiguity.

4.2.8 List of parameters

Table 4.8 provides a list of all parameters to summarize the model description in the text
above. For details on the usage of the parameters refer to the corresponding subsection.
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4.3 Validation of the algorithm

4.3.1 Crosschecking with non-sterile fit

The Poisson likelihood approach used for this analysis has also been used for a 613 analysis
[117]. The fit framework and the inputs are identical - except for the electron antineutrino
survival probability which is in the 613 analysis calculated for the specific case 614 = 0.0.
Thus, the sterile fit results with 614 = 0.0 are always identical with the 613 fit results using
the approach developed in Aachen.

The 6013 analysis done with the software and inputs of this analysis has been very carefully
crosschecked. There are three 613 analysis groups in the Double Chooz collaboration and all
of them have been carefully crosschecking each other. Sensitivities as well as the systematics
breakdown have been compared before the experimental data fit has been done.

The Aachen Double Chooz group is one of the groups. The fit approach done in Aachen
for the 03 analysis and the sterile fit is referred to as Likelihood Flux Free (LLH-FF) fit.
The term LLH-D2MC is used for the approach in [117]. It only differs from the LLH-FF
by constraining the reactor flux parameters with adding pulls on the reactor flux using the
reactor covariance matrix (cf. figure 4.11) correlated with the correlation coefficients in
table 4.7.

The two other fit groups have developed Chi-square based fits where each group has a Data-
MC fit and a Data-to-Data fit. The approaches of both groups are similar. Details on the
Chi-square fits can be found in [39]. In the following, the Chi-square fits are referred to by
the names of the people doing the fit for better comparison with Double Chooz internal
documentation, Thiago J.C. Bezerra and Tsunayuki Matsubara.

Before the comparison between the tests is shown, the techniques used to compare the
systematics breakdown are explained.

e General technique The post fit uncertainties are not necessarily symmetric if Pois-
son statistics are assumed. Moreover, correlations between parameters may in general
depend on the values of these parameters themselves. The ROOT framework assumes
that uncertainties are symmetric and the statistics is Gaussian when providing post
fit uncertainties on default (even if the Minos method is used) [81]. Thus, a precise
uncertainty calculation requires a likelihood scan. This is done in the following way:
First, the best fit is obtained. Second, the best fit value fit sin? 2613 is shifted by the
root error estimate in positive and negative direction and fixed. Next, a fit at that po-
sition is done, In(L) is obtained and —2AIn(L) = —2(In(£) — In(Lmax)) is calculated
where Lax is the maximum likelihood value. If 0.99 < | — 2AIn(L)| — 1 < 1.01, the
error estimate is accepted. Otherwise, a two sided parabola is extrapolated (interpo-
lated) to the point —2AIn(£) = 1 and the difference of the corresponding sin? 26,3
to the best fit sin?26;3 is taken as new error estimate. The procedure is repeated
with the new error estimate if 0.95 < | — 2AIn(£)| — 1 < 1.05.

e Asimov approach All sin? 26,3 sensitivities are calculated with the so called
Asimov approach. It has been pointed out in [47] that a sensitivity study on many
pseudo experiments (i.e. an ensemble study) can be replaced by a sensitivity study
on the expected mean dataset which has infinite statistics. The sensitivity study on
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Chapter 4. Sterile oscillation analysis

this so-called Asimov Dataset will give the same result as the median result of the
ensemble study. Using the Asimov dataset for sensitivity calculation is refereed to
as Asimov approach. The Asimov approach usually saves a lot of computing time,
provided that - like in this work - the Asimov dataset can be calculated analytically.
If this is given, the Asimov dataset is simply given by the calculated expectation
without any fluctuations applied.

Statistical (only) sensitivity The statistical (stat.) uncertainty/sensitivity ogtat
is defined as the sensitivity obtained with all nuisance parameters fixed at their best
fit value (which is the central value if the Asimov approach is used). With this, the
systematics sensitivity ogys is defined as

— /52 2
Tsys = \/ Tfot ~ Tstat (4.25)

where ot is the total sensitivity i.e. the sensitivity with the default systematics
setup.

N-1 test The impact of a systematic quantity is investigated in the so called N-1
test. Hereby, the sensitivity assuming that this systematics quantity is known with
infinite precision is calculated and compared to the sensitivity with default setup. A
handle to estimate the impact of the specific variable is

ON-1X = /02 — O’%_X , (4.26)

where on_x is the sensitivity assuming the quantity X is known with infinite precision
and oot is the sensitivity in the default setup. Alternatively the quality

2 _ 2
. O’N_LX Utot UN*X
TN_1X = = : (4.27)
Otot Otot

may be used.

Stat+1 test First of all the statistics only sensitivity is calculated in the so called
Stat+1 test. Second, one particular systematic effect is enabled (i.e. nuisance param-
eters describing this systematics effected are unfixed) and the sensitivity is calculated
in this setup. Next, the nuisance parameters describing the particular systematic ef-
fect are fixed again and the procedure is repeated with the next systematic effect.
An estimate of the impact of the specific variable is

_ 2 2
Ustat+1,X — Ustat-i—X - Ustat (428)

where 04444 x 18 the sensitivity assuming the quantity X is the only systematic effect
to be considered and ogtat is the statistics only sensitivity. This quantity may also
be used relative to the default sensitivity defining:

[ +2 2
g — 0,
Ostat+1.X stat+X stat
stat+ 1.2 — (4.29)

Tstat+1,X ‘= =
Otot Otot

can be used.

The N-1 test provides an estimate on how much the sensitivity can be improved if
a certain variable is known better. However, in this test correlations among sets of
parameters play a role. Therefore, if the intention is to isolate the impact of a certain
variable and to compare it between different fits, the Stat+1 test is better.
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Table 4.9 shows the results of the Stat+1 and N-1 test for the LLH-FF approach and
the D2D Chi-square fit approach. For the LLH-FF fit approach negative, positive and
average sensitivities (o_ , o4 and o) are given. For the D2D Chi-square fit the sensitivity
is symmetric by definition. The quantities on_1x (cf. equation (4.26)), ostat+1,x (cf.
equation (4.28)), rsat+1,x (cf. equation (4.29)) and rn—1x (cf. equation (4.27)) can be
found in the table.

The focus of the discussion will be on the Stat+1 test results since in the N-1 test cor-
relations usually play a bigger role as in the Stat+1 test and correlations are respected
differently in the likelihood fit and the Chi-square fit.

Figure 4.12 provides a visual comparison of the systematics breakdown for LLH-FF and
D2D Chi-square from the Stat+1 test. The top plot shows the N-1 test sensitivity results,
the plot in the middle shows ogtat+1,x (cf. equation (4.28)) and the plot in the bottom
shows rgat+1,x (cf. equation (4.28)). The values can be found in table 4.9. The likelihood
fit is shown in red, the D2D Chi-square fit in light blue. The error bars correspond to a
rounding error of 0.00005 for the Chi-square fit and to 1% of the Stat+1 test results for
the likelihood fit.

The default sensitivity is in good agreement between both fits, the statistics only sensi-
tivity is a bit larger for the likelihood fit. This can be possible to the different statistical
assumptions. Furthermore, the impact of the atmospheric square mass difference and the
background seems consistent. However, the energy seems to be much more important in
the likelihood fit. Also, there is a small difference w.r.t. the impact of detection and
reactor parameters. The results of the N-1 test are consistent with those of the Stat-+1
test. The comparison plot for the N-1 test can be found in figure C.1 in the appendix. A
possible explanation for the difference w.r.t. the impact of detection, energy and reactor
parameters is that the parameters modeling the correlated reactor flux are not fixed in the
likelihood fit for the statistics only sensitivity since they are part of the model. Hypothesis
A states that the difference in the systematics breakdown is due to correlation between the
correlated reactor flux, energy and detection parameters (which seem to be likely).

In order to test hypothesis A, the Stat+1 test has been repeated using the MC-Data
approach for detection, energy and reactor. The outcome is presented in table 4.10 and
figure 4.13. The agreement is now remarkably good verifying hypothesis A. The difference
in the systematics breakdown between Chi-square and likelihood fit was largest for the
energy parameters. Therefore, as an additional test, the post fit correlations of the energy
parameters and the correlated reactor flux parameters have been plotted, That plot is
displayed in figure C.2 and shows correlations up to 0.58 between energy and reactor flux
parameters.

Sin?260,3 fit results

The LLH-FF sin? 26;3 fit has been run on experimental data. Table 4.11 summarizes the
sin? 2613 fit results of the three fits that are based on comparing experimental near and
far detector only. The agreement between Thiago’s fit and the likelihood fit is within a
quarter of the uncertainty and the agreement to Tsunayukis fit is also within a half of the
uncertainty on sin? 26;5. It is remarkable that the LLH-FF fit which has both lithium rates
unconstrained fits a around two sigma larger lithium rate for both near and far detector.
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Table 4.9: Comparison of the systematic breakdown w.r.t. sin? 263 between the LLH-FF
fit approach used in this work and the D2D Chi-square fit approach for sin® 263 = 0.1.
For the LLH-FF fit approach negative, positive and average sensitivity (o_ , o4 and o) are
given. For the D2D Chi-square fit the sensitivity is symmetric by definition. Therefore,
only o is given. ogys denotes ogys in the stat only row, on_1x (cf. equation (4.26)) in
the N-1 test rows and ogtat+1,x(cf. equation (4.28)) in the stat+1 test rows. Similarly, r
either stands for ogys/owot in the stat only row, ry_1x (cf. equation (4.27)) or rstat+1,x
(cf. equation (4.29)). Visualizations of this table can be found in figure C.1 and 4.12.

’ sin® 2613 systematics breakdown ‘

LLH-FF D2D Chi-square [40]
o4 o_ o Tsys r o| ows| T

default 0.0162 | 0.0164 | 0.0163 0.0164
stat only 0.0092 | 0.0092 | 0.0092 | 0.0135 | 0.82 || 0.0084 | 0.0141 | 0.86
N-Detection 0.0137 | 0.0137 | 0.0137 | 0.0089 | 0.55 || 0.0136 | 0.0092 | 0.56
N-BG 0.0155 | 0.0157 | 0.0156 | 0.0047 | 0.29 || 0.0155 | 0.0054 | 0.33
N-Reactor 0.0149 | 0.0150 | 0.0149 | 0.0066 | 0.40 || 0.0138 | 0.0089 | 0.54
N-Energy 0.0129 | 0.0130 | 0.0130 | 0.0099 | 0.61 || 0.0139 | 0.0087 | 0.53
N-Am? 0.0161 | 0.0164 | 0.0163 | 0.0012 | 0.07 || 0.0163 | 0.0018 | 0.11
Stat+Detection 0.0114 | 0.0116 | 0.0115 | 0.0068 | 0.42 || 0.0117 | 0.0081 | 0.50
Stat+BG 0.0096 | 0.0096 | 0.0096 | 0.0026 | 0.16 || 0.0087 | 0.0023 | 0.14
Stat+Reactor 0.0106 | 0.0106 | 0.0106 | 0.0052 | 0.32 || 0.0116 | 0.0080 | 0.49
Stat+Energy 0.0106 | 0.0108 | 0.0107 | 0.0054 | 0.33 || 0.0087 | 0.0023 | 0.14
Stat+Am? 0.0093 | 0.0093 | 0.0093 | 0.0013 | 0.08 || 0.0085 | 0.0013 | 0.08

Stat+En+Reactor | 0.0126 [ 0.0127 | 0.0127 | 0.0087 [ 0.53 || \ \

Table 4.10: Comparison of the systematic breakdown w.r.t. sin® 26,3 between the LLH-
D2MC fit approach and the D2MC Chi-square fit approach for sin?26;3 = 0.1. For the
LLH-D2MC fit approach negative, positive and average sensitivity (o_ , o4 and o) are
given. For the D2MC Chi-square fit the sensitivity is symmetric by definition. Therefore,
only o is given. ogys denotes sgy in the stat only row and ogpat+1,x(cf. equation (4.28))
in the stat+1 test rows. Similarly, r either stands for ogys/otor Or Tstat+1,x (cf. equa-
tion (4.29)).

’ sin? 20,3 MC-data sin” 20,3 systematics breakdown ‘

LLH-D2MC D2MC Chi-square [40]
o4 ‘ o_ ‘ o ‘ Osys ‘ r o ‘ Osys ‘ r

default 0.0136 | 0.0140 | 0.0138 0.0141
stat only 0.0054 | 0.0054 | 0.0054 | 0.0127 | 0.92 | 0.0054 | 0.0130 | 0.92

Stat+Detection || 0.0090 | 0.0091 | 0.0091 | 0.0072 | 0.52 || 0.0091 | 0.0073 | 0.52
Stat+Reactor 0.0098 | 0.0099 | 0.0098 | 0.0082 | 0.59 | 0.0097 | 0.0081 | 0.57
Stat+Energy 0.0057 | 0.0057 | 0.0057 | 0.0017 | 0.12 || 0.0057 | 0.0018 | 0.13
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Figure 4.12: Comparison of the LLH-FF fit and D2D Chi-square fit (Thiago) for a break-
down of the systematics for sin® 2613 from the Stat+1 test. The top plot shows the Stat|1
test sensitivity results, the plot in the middle shows ogtat+1,x (cf. equation (4.28)) and
the plot in the bottom shows 7gtat+1,x (cf. equation (4.29)). The values can be found in
table 4.9. The error bars correspond to a rounding error of 0.00005 for the Chi-square fit
and to 1% of the Stat+1 test results for the likelihood fit. The error bars correspond to a
rounding error of 0.00005 for the Chi-square fit and to 1% of the Stat+1 test results for
the likelihood fit.
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Figure 4.13: Comparison of the likelihood D2MC fit and D2MC Chi-square fit (Thiago) for
a breakdown of the systematics for sin? 263 from the Stat+1 test. The top plot shows the
Stat+1 test sensitivity results, the plot in the middle shows oga+1,x (cf. equation (4.28))
and the plot in the bottom shows 7gar+1,x (cf. equation (4.29)). The values can be found
in table 4.9. The error bars correspond to a rounding error of 0.00005 for the Chi-square
fit and to 1% of the Stat-+1 test results for the likelihood fit. The error bars correspond to
a rounding error of 0.00005 for the Chi-square fit and to 1% of the Stat-+1 test results for
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Table 4.11: Comparison of final fit results on experimental data between the three fits
that are based on near-far comparison. Values for the Chi-square fits have been taken
from [40]. The degrees of freedom given for the likelihood fit are calculated by number of
data points minus number of parameters in the fit that are not constraint with a Gaussian
prior

fit LLH-FF LLH-FF 2 D2D x? D2D
(Li-unconst) | (Li-const) (Thiago) (Tsunayuki)
sin? 2013 0.1075 0.1069 0.1034 0.0987
o4 0.0161 0.0170 0.0164
o_ 0.0172 0.0170 0.0164
x?(Pearson) 78.2
x%(Neyman) 79.1
Li-FD (1/day) || 3.109702%% 3.005 2.6124+0.347 | 2.5884+ 0.315
Li-ND (1/day) || 16.75277508 | 14.865 | 12.558 £1.909 | 13.221 £ 1.797
dof 71 73 37 38

4.3.2 Wilks’ theorem

The so called Wilks’ theorem [127] is useful to compare two different hypothesis and applied
in many physics cases. May Hy be a hypothesis to be compared to another hypothesis H;
given a measurement & with high statistics. Hy (H7) may be that some physics is described
by 6o (61). Correspondingly, sup(L(6o|Z) (sup(L(61|F)) is the supremum of the likelihood
function given hypothesis Hy (H;) described by 6y (61) given the measurements #. In
other words, sup(£(6o|Z) (sup(£(61|Z)) is the likelihood function for hypothesis Hy (H;)
evaluated at the best fit 6y (61).

Hy may be a simple version of hypothesis Hy. This means that H is that one or more
parameters describing H; have a given constant value. In case Hy is true, the theorem

states for the likelihood ratio .
~ 6 7
7) = M (4.30)
sup(L£(6:1]7))
that —2In(A) follows a Chi-square distribution with m —n degrees of freedom, where m
and n are the number of dimension of #; and 6y, i.e.

—2In(\(®) = 2, (4.31)
if optimum estimates of the 6; exist.  The existence of optimum estimates re-

quires that the matrices of the mathematical expectations of the partial derivative

2 eﬂ =
ek = []< ZmEOD) || with & = 1,2 s positive definite [127]. Here, 64 (6j) is
i1O0Ukj

component ¢ (j) of 0. Correspondingly % is the partial derivative with respect to 0xi. i
and j run over all dimensions of 6y and 6;.
In the context of this thesis Hy could be that sin® 2014 and Am?2, have given values:

Hy: {sin?201, = X,Am3; =Y eV}X,Y e R,0< X <1} . (4.32)

The alternative, less simple hypothesis H; could be:

Hi : {0 <sin?26014 < 1,|Am3| > 0eV?} . (4.33)
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These definitions result in the test statistics (TS) [14]:

(4.34)

2 _ 2 _ 2
TSop = —2In A(7) = —2In (supﬁ(sm 2014 = X, Amj; =Y eV :1;))

supL(sin? 2014, Am?,|%)

The hypothesis Hj, : { sin? 26014 = 0V Am?2,; = 0} is particular interesting and is compared
to Hi: {sin?2014 # 0 A Am?, # 0}. In this situation m — n = 2 holds.

Am3; and sin® 20y are degenerate in (Am3, = 0., sin?2614 = 0.). This implies that
Wilks* theorem is not strictly fulfilled [14] but in most of physics cases the later issue is no
problem, in particular as Double Chooz is hardly sensitive to [Am32,| < [Am%|.

The negative logarithmic function is a function of the electron antineutrino survival proba-
bility (cf. equation (4.12)). The survival probability of an electron antineutrino is approx-
imately given by equation (1.30). Nyquist-Shannon sampling theorem says that a signal
with a certain frequency (which is the additional oscillation pattern due to sterile in this

case) can always be described by a series of higher frequencies [115]|. Therefore, —2A In(L)
82 In(L(6:1|7))
OAmilaAmil
be zero at some point in parameter space in between. Thus, the conditions for Wilks’ the-
orem are not given in Am?2,sin? 2614 space i.e. the behavior of —2In(\(¥)) = —2A1In(L)
is a priori unknown and must be obtained from pseudo experiments.

always includes several minima in Am3;. Several minima imply that < > must

However, Wilks’ theorem holds in sin? 2614 space for a fixed specific Am?u in the region in
which Double Chooz is sensitive [14]. Hereby, the simple hypothesis is

Hy : {sin®2014, = X', Am% =Y eVIX Y € R,0< X <1} (4.35)
while the alternative hypothesis Hy is
Hy: {0 <sin?2014 < 1,Am3; =Y’ eV3Y' € R} . (4.36)

Here, H1 and Hj yield the test statistics:

(4.37)

102 - X/ 2 _ Y/ 2| =
PPNV (1 NS VS U

supL(sin? 2014, Am3, = Y’ eV?|7)

T'S1p follows a Chi-square distribution with one degree of freedom if H; is true [127] [14].
Examples are shown in section 4.4.1.

4.3.3 Sterile Asimov-Wilks sensitivity

The so called signal exclusion sensitivity describes the parameter space that is expected
to be excluded assuming that the null hypothesis (i.e. sin?2614 = 0.0) is true. If the
distribution of the TS is known, it can be obtained by utilizing a two dimensional scan of
-21In(£) in sin? 2614 and Am2, on Asimov data (cf. section 4.3.1) with sin® 2014 = 0.0. It
follows a Chi-square distribution if Wilks’ theorem holds. 95% confidence level corresponds
to —2AIn(L) =3.84 for one degree(s) of freedom resp to —2A In(L) =5.99 for two degree(s)
of freedoms concerning a two sided parameter space centered around the central value.
However, Wilks’ theorem does not hold if Am?2, is free (cf. section 4.3.2, cf. [14]) and the
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Figure 4.14: Sketch of scan of —21n(L) for Asimov data with sin? 2014 = 0: —2AIn(L) ver-
sus sin® 2614 where —2A In(£L) is the difference between —21In(L) for the given sin? 2614 and
the minimum of —21In(£). The 1o AW sensitivity is that sin? 2614 for which —2AIn(£) = 1
and the AW sensitivity at 95% confidence level is that sin® 26,4 for which —2A In(L£) = 3.84,
as indicated on the x-axis.

distribution of the test statistics is only known a priori if Am?, is fixed [14]. Nevertheless, it
will be shown later, that the actual sensitivity indeed is proportional to a quantity refereed
to as Asimov- Wilks sensitivity (AW sensitivity) in the following. The AW sensitivity is
defined as that value of sin? 2614 for which a scan of —21In(£) on Asimov data with true
sin? 2014 = 0 yields —2AIn(£) —3.84. Similarly, the term 1o AW sensitivity is used for
that value of sin? 2614 for which an likelihood scan on Asimov data with true sin® 26,4 = 0
yields —2AIn(L£) =1. Both definitions are sketched in figure 4.1411. As the calculation
of the actual sensitivity is too computing expensive to be done for all systematics studies,
the AW sensitivity will be used for validation instead.

Figure 4.15 shows the AW sensitivity at 95% confidence level. The AW sensitivity for one
degree(s) of freedom (dof) is shown in solid black, while the 10 AW sensitivity for one dof
is shown in solid green. The sin® 26,4 steps in the grid used for the scan have a width of

MIThe AW sensitivity is rather a discovery potential with extremely low confidence level than the actual
sensitivity, following the definition by [109]. One can also understand the AW sensitivity as the expected
95% allowed region around the central value sin? 2614 = 0 , which would only make sense to give if the
existence of a sterile neutrino was known from external input. Otherwise an upper limit will be provided
in case the measurement is consistent with the no sterile hypothesis.
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Figure 4.15: AW sensitivity at 95% confidence level with the LLH-FF approach. The
black solid line shows the AW sensitivity for one degree of freedom, the solid green line the
10 AW sensitivity for one degree of freedom (see text, figure 4.14). The color scale shows
—2A1In(L) w.r.t. the minimum —2In(£) from this plot. Gray shaded areas mark missing
data®.

“Isolated missing data points are due to technical not fit related computing issues (such as that the
machine on which a fit was running got switched off). The number of fits that did not converge due to
EDM above max is around 0.3% and clustered at large sin? 26,4 and small Am?;.
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0.002. The color scale represents —2AIn(£) w.r.t. the minimum —2In(£) from this plot.
Gray shaded areas mark missing datalV

The lack of sensitivity around Am3, ~ m2, is due to ambiguity between sin 2926041 and
sin® 263, below Double Chooz is not benbltlve because the oscillation baselines are to large
for both detectors (cf. section 4.2.3). For high AmZ, > 0.3eV? the fast oscillations get
washed out by limited energy resolution in both detectors. Thus, Double Chooz is not
sensitive here. It is clearly not intended to apply the MC-Data fit to the sterile analysis in
the near or intermediate future due to the reactor neutrino anomaly (cf. section 1.4.1) and
the spectral distortion (cf. section 1.4.4). The AW sensitivity for the MC-Data fit approach
is plotted with a solid red line in figure 4.16. It is compared to the AW sensitivity for the
MC-Data fit approach (solid black line). Omne can see that the AW sensitivity for the
MC-Data fit approach is always better than for the LLH-FF approach. That is because
the MC-Data fit approach has the ability to compare the predicted neutrino rate in near
and far detector to the measurements. Therefore, the LLH-FF approach does not provide
any sensitivity for large Am?2; > 0.3 eV? since the sterile signature is only a global deficit
in all detectors (cf. section 4.2.3). In contrast, the MC-Data approach has the ability
to compare that constant global deficit to the prediction. Hence, it provides a constant
sensitivity for Am32; > 0.3eV?. Both approaches are not sensitive for Am?%, ~ |Am2,| due
to the ambiguity between sin® 2605 and sin? 2614.

It was shown in [73]| that the shape of the AW sensitivity is well understood by the cross
correlation correposs(614, Amil) between near and far detector defined as

> i ANxD,i (014, Am3,) - ANpp (014, Am3,)

COITcross (014, Am41 (4.38)
\/Z [ANND,i (014, Am3, )] \/Z [ANgD (614, Am3y)]?
where 7 runs over all energy bins and
ANJD7Z‘<9147 Amil) = NJD,Z‘ (014, Amil) — NJD7i(914 = 0., Amil) (439)

and Nyp (614, Am3;),J = N, F is the mean expected number of inverse beta decay candi-
dates in energy bin ¢ [73]. This cross correlation may be identified as a quantity related
to the inner product of to vectors & and ¢. For the angle between those two vectors

cos(¢) = |§H37 applies.

In order to identify the systematics due to interference of the two reactor baselines, the
AW sensitivity was calculated where the baseline of all neutrinos detected in the near (far)
detector from reactor B1 was changed to the near (far) detector B2 baseline in the oscilla-
tion progress of pseudo data generation and fit. Total number of neutrinos and unoscillated
neutrino energy spectrum were not modified. Figure 4.17 shows the corresponding scan
of —2In(L) and the AW sensitivity. Compared to the nominal AW sensitivity the dip
around Am3; ~ 0.05 eV? is not present anymore (see figure 4.17, cf. figure 4.15). The
overall AW sensitivity is better in this hypothetical situation. However, this does not mean
that the overall sensitivity would be better if there was only one reactor at Chooz power
plant since that would also reduce the overall statistics in the usual dataset but probably
also increase the statistics in the Off-Off dataset.

Vef. footnote a for text in caption of figure 4.15
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Figure 4.16: Comparison of AW sensitivity at 95% CL between MC-Data approach and
LLH-FF approach. Amil is plotted versus sin®2614. The black solid line shows the
AW sensitivity for the LLH-FF approach, the red line for the LLH MC-Data approach.
Note that no fit of experimental data with the MC-Data fit is planned.
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Figure 4.17: Two dimensional scan of —2In(£) in sin? 2014 (x-axis) and Am?, (y-axis)
on Asimov data where the baseline of neutrinos from B1 was changed to the B2 base-
line (i.e. the measured number of neutrinos in near and far detector was conserved (see
text)). The color scale shows the —2A In(£) w.r.t. to the minimum of —2AIn(£). The 1o
AW sensitivity is solid green line. The solid black line marks the AW sensitivity at 95%
confidence level. Gray shaded areas mark missing data.
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Figure 4.18: Two dimensional scan of —2In(£) in sin? 204(x-axis) and Am?,(y-axis) of
Asimov data with sin?2614 = 0.05 and Am?2, = 0.01eV2. —2AIn(L) is represented by
the color bar where Aln(L) = In(£) — In(Lmax) is the difference of the natural logarithm
of the likelihood to the natural logarithm of the maximum likelihood. Gray shaded areas
mark missing data. Figure 4.19 shows the same data with a different color scale such that
the minimum is more obvious.

4.3.4 Data challenges

A so called data challenge is a method to test the full chain of analysis in a representative
computer experiment. For a data challenge pseudo data is calculated using known input
values. This pseudo data is inserted in the fit algorithm in order to test if the algorithm
can recover the inserted values. Instead of mock data Asimov data may be inserted as well.
The fit should recover the inserted values exactly except for a negligible deviation due to
limited numerical accuracy.

Figure 4.18 shows an example of such a data challenge with Asimov data. Here, Asimov
data with sin? 2614 = 0.05 and Am2, = 0.01 eV? has been generated. Figure 4.19 displays
the same scan on —2In(L) with different scaling of the z-axis. Figures 4.18 and 4.19
illustrate that the inserted values are recovered. Moreover, it can be seen in figure 4.18
that there are several local minima. Indeed, due to the Nyquist-Shannon sampling theorem
there are always local minima in the signal region [115] (cf. section 4.3.2).

The data challenge presented above has two disadvantages: First, the Asimov data is
calculated by the same software that does the fit. Second, the person running the fit
knows the true value. Thus, a blind data challenge has been done, i.e. the datasets were
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Figure 4.19: Two dimensional scan of —2In(£) in sin? 204(x-axis) and Am?,(y-axis) of
Asimov data with sin? 264 = 0.05 and Am2, = 0.01eV2. —2AIn(L) is represented by

the color bar where Aln(£) = In(£)

— In(Lax) is the difference of the natural logarithm

of the likelihood to the natural logarithm of the maximum likelihood. Gray shaded areas
indicate missing data. Figure 4.18 shows the same data with a different color scale.
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Table 4.12: Summary of the blind data challenge. The first column indicates the number
of the dataset, the second the indicates which figures show the result of the corresponding
—21In(£L) scan, the third one the best fit value of sin? 13, the fifth the bin width in sin? 613,
the sixth one the fitted Am?, /eV? and the last one the true Am?2, /eVZ.

‘ # H plots H sin? 014 st ‘ bin width | sin® 014 true H A??”Liﬁte\/’2 ‘ A??@%LtmeeV2
1 C4,C3 0.0394 0.0010 0.040 0.050 0.0500
2 C.6,C5h 0.0808 0.0010 0.080 0.16 0.1600
3 || 420,C7 0.0807 0.0010 0.080 0.012 0.0120
4 C.9, C38 0.0285 0.0020 0.030 0.0055 0.0055
5 | C.11, C.10 0.0806 0.0010 0.080 0.045 0.0450

provided by another personY without letting the analyzing person know which values were
inserted. This has been done with an algorithm which is independent from the likelihood
fit in this work (i.e. the datasets are not generated in the same way as they are produced).
Five Asimov datasets with unknown parameters have been provided. Two dimensional
scans of —2In(L) have been performed on these Asimov datasets since there is usually
more than one local minimum (cf. previous paragraph).

Here, dataset 3 is taken as an example. A first scan was used to identify local minima
(cf. figure C.7), second a scan with a finer binning has been done around the deepest
local minimum and is shown in figure 4.20. sin?26y4 is on the x-axis, Am32, on the y-
axis the difference in 2In(L) is shown by the color scale. The minimum was found at
sin? 2014 = 0.0807 with a bin width of 0.0010 and Am?2, = 0.012eV? and is marked with a
green star. The true inserted values were sin? 2614 = 0.080 and Am32, = 0.012eV?. Thus,
they have been recovered. All true values used in the blind data challenge are indicated by
a star in figure 4.21 and numbered. All of these points have been recovered as summarized
in table 4.12. The corresponding plots of the scans of —21In(L) can be found in figures C.4,
C.3, C.6, C.5,4.20, C.7, C.9, C.8, C.11 and C.10. Table 4.12 indicates which plots belong
to which dataset.

4.3.5 Spectral distortion bias testing

As mentioned in section 1.4.4, the shape of the reactor flux observed with reactor flux
experiments does not meet the theoretical prediction very well.

In order to test the independence of the fit result from the original reactor Monte Carlo,
Asimov data with artificial distortions have been created. Next, a two dimensional raster
scan in sin? 2014 and Am?, has been done with those datasets.

The modeled spectral distortion was officially used in order to probe the stability of the
sin? 263 fits. It was modeled by fitting two Gaussians to the spectral distortion observed
by Daya Bay. The datasets were provided by Tsunayuki Matsubara. Figures 4.22, 4.23
and 4.24 show the distorted Asimov datasets for FD1-On, FD2 and ND.

Figure 4.25 shows the result of the two dimensional raster scan of these datasets, where
sin? 2614 is on the x-axis, Am?, is on the y-axis and —2AIn(£) = 2- (In(£) — In(Lmay)) is

VThiago J.C. Bezerra
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Figure 4.20: Two dimensional scan of —2A In(£) in sin? 2614 (x-axis) and Am?2; (y-axis) of
the third Asimov data sample. where —2A In(L) is represented by the color bar. Aln(L) =
In(£) — In(Lmax) is the difference of the natural logarithm of the likelihood to the natural
logarithm of the maximum likelihood. The 1o (20) region for the local (sin® 2614, Am?))
range in which Wilks‘ theorem holds is marked by the light blue (black) line.
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Figure 4.21: AW sensitivity at 95% confidence level with the LLH-FF approach. The
black solid line shows the one degree of freedom case, the dashed line the two degree of
freedom case. The Daya Bay 95% C.L. exclusion limit from [21] is shown in light blue for
comparison. The true values inserted in the blind data challenge are marked with starts
and numbered. The results of the blind data challenge are summarized in table 4.12.
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Figure 4.22: FD1-On Asimov data with the spectral distortion used to test the 613 fit and
the sterile fit. The nominal background subtracted number of inverse beta decay candidates
in this dataset is shown relative to the nominal prediction (without neutrino oscillation
and spectral distortion) versus visible energy of the prompt event by the data points. The
red line indicates the nominal model assuming sin® 2014 = 0 and sin? 26,35 = 0.119.
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Figure 4.23: FD2 Asimov data with the spectral distortion used to test the 613 fit and the
sterile fit. The nominal background subtracted number of inverse beta decay candidates in
this dataset is shown relative to the nominal prediction (without neutrino oscillation and
spectral distortion) versus visible energy of the prompt event by the data points. The red
line indicates the nominal model assuming sin® 26,4 = 0 and sin® 26,5 = 0.119.
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Figure 4.24: ND Asimov data with the spectral distortion used to test the 613 fit and the
sterile fit. The nominal background subtracted number of inverse beta decay candidates in
this dataset is shown relative to the nominal prediction (without neutrino oscillation and
spectral distortion) versus visible energy of the prompt event by the data points. The red
line indicates the nominal model assuming sin® 2014 = 0 and sin? 26,35 = 0.119.

represented by the color bar. Here, £ is the likelihood value at the specific (Sin2 2014, Am?u)
position and L.« is the maximum likelihood value. One can see that the fit does not a
minimum for sin? 264 # 0. Figure 4.26 compares the 95 % confidence level AW sensitivities
(1 dof) obtained from the datasets with (dashed green) and without distortion (solid blue)
to each other. Both AW sensitivitys match well except for a small difference due to the
statistics being slightly different.

4.3.6 Systematics breakdown

Figure 4.27 shows the two dimensional Stat+1 test AW sensitivity at 95% confidence
level (1 dof), where Am?; is on the y-axis and sin® 264 is on the x-axis. Default (solid
black), statistics only (solid blue), stat-+detection (dashed red), stat+reactor (dashed
dotted violet), stat-+energy (dashed dotted cyan) and stat+6;3 (dashed green) 95% CL
AW sensitivity (1 dof) AW sensitivity are plotted.

It can be seen that the statistics only AW sensitivity is very close to the default
AW sensitivity in most of the Am3; region.

The statistics only AW sensitivity assumes that 613 is known to infinite precision. This
is a hypothetical assumption since the Double Chooz experiment cannot measure 613 and
014 independently. Therefore, a sterile analysis should always do a simultaneous fit of 63
and 014. However, only for Am3, ~ Am3, the difference between Stat+6;3 and Stat. only
sensitivity is significant. The difference between stat only AW sensitivity and Stat-+reactor
and Stat+detection AW sensitivity is not significant for any Am3,. The energy has some

94 RWTH Aachen



4.3. Validation of the algorithm

— 10
95% CL 1dof
95% CL 2dof 19
DB 95%CL excl. 8
arXiv:1607.01174 1
107 =
~47
e 1° =
Q
. s =
3 4
< |

=
o
]

0.00 0.02 0.04 0.06 0.08 0.10

. 2
sin” 26,

Figure 4.25: Two dimensional scan of —21In(£) in sin® 2614 (x-axis) and Am3, (y-axis) of
the Asimov data shown in figures 4.22, 4.23 and 4.24 where —2A In(L) is represented by
the color bar. Aln(£) = In(£) — In(Lmax) is the difference of the natural logarithm of the
likelihood to the natural logarithm of the maximum likelihood. The 95% CL AW sensitivity
for 1 dof (solid) and 2 dof (dashed) is drawn as well as the Daya Bay 95% C.L. exclusion
limit from [21] (solid light blue). Gray shaded areas mark missing data.
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Figure 4.26: AW sensitivity with spectral distortion (dashed green) and nominal
AW sensitivity (solid blue). The corresponding Asimov data with distortion is shown
in figures 4.22, 4.23 and 4.24. The colored regions indicate the accuracy of the calculation.
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Figure 4.27: Sterile systematics breakdown: Comparison of default (solid black), statis-
tics only (solid blue), stat+detection (dashed red), stat+ reactor (dashed dotted violet),
stat+energy (dashed dotted cyan) and stat+ 613 (dashed green) AW sensitivity (1 dof) at
95% confidence level. Plotted is Am?, versus sin? 2014.

impact for Am?2, < 0.01eV? which can be understood by the correlation between param-
eters modeling the reactor flux and energy as pointed out in section 4.3.1.

In addition to the two dimensional Stat+1 test, one dimensional Stat+1 and N-1 tests
have been done for specific Am3; (0.1000, 0.0500, 0.0300, 0.0200, 0.0100 and 0.0073 eV?).
The results are summarized in table 4.13. The calculation of the systematical uncertainties
(cf. equation (4.25), table 4.13) shows that the fit uncertainty is statistically dominated
for Am2; > 0.01eVZ.

In addition to the two dimension stat+1 test, one dimensional stat+1 and N-1 tests have
been done for some Amil / eV?2 where sin? 2614 = 0.1. The results are presented in table
4.13. Note that the values have an uncertainty of around two percent. One can take
from the table that for Am?, > 0.01eV? the statistical uncertainty is dominant. This
is a direct consequence from the fact, that Double Chooz was optimized for the mass
squared difference Am2, ~ 0.0025eV2. The one dimensional systematics breakdown also
demonstrates that background and Am?, have almost no impact.
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Table 4.13: One dimensional systematics breakdown in sin? 26,4 for sin? 2614 = 0.1 and
several Am?;. The values have a uncertainty of around 2%.

’ sin? 2014 AW sensitivity (for sin® 2614 = 0.1) ‘
| AmZ, /eV? [0.1000] r [0.0500]  [0.0300] r [0.0200] r [0.0100] r [0.0073]r |

1. Default [0.0240(1.00{0.0314{1.00{0.0182{1.00{0.0169{1.00{0.0121{1.00{0.0140{1.00
2. Stat. 0.0237]0.99]0.0305|0.97]0.0161|0.88|0.0143|0.85|0.0085|0.70]0.0077|0.55
3. Sys. : 0.0038(0.16]0.0075|0.24]0.0085|0.47{0.0090|0.53|0.0087|0.71|0.0117|0.84

4. N-1

4.1 Det. 0.0240 0.0314 0.0182 0.0169 0.0120 0.0139
4.2 Reactor|0.0238 0.0313 0.0180 0.0168 0.0120 0.0138
4.3 BG 0.0239 0.0314 0.0181 0.0169 0.0121 0.0139
4.4 Energy [0.0238 0.0311 0.0172 0.0156 0.0115 0.0105

4.6 013 0.0240 0.0314 0.0181 0.0168 0.0110 0.0135
4.7 Am2,., 10.0240 0.0315 0.0182 0.0169 0.0121 0.0140

atm

4.8 Am3; [0.0240 0.0324 0.0181 0.0169 0.0121 0.0140

5. Stat+1

5.1 Det. 0.0237 0.0306 0.0166 0.0144 0.0094 0.0077
5.2 Reactor |0.0237 0.0308 0.0167 0.0145 0.0093 0.0079
5.2 BG 0.0237 0.0308 0.0163 0.0145 0.0086 0.0078
5.3 Energy |0.0238 0.0311 0.0170 0.0167 0.0093 0.0132
5.5 613 0.0237 0.0305 0.0164 0.0148 0.0111 0.0091
5.6 Am2, |0.0237 0.0306 0.0161 0.0143 0.0086 0.0077

atm

5.7 Am3; ]0.0237 0.0306 0.0161 0.0143 0.0086 0.0077

4.4 Test statistics and sensitivity

This section describes the sensitivity calculation. In order to do so, first the test statistic
used to quantify the agreement with the no-sterile hypothesis is discussed. Next, the test
statistics with sterile signal is introduced. Finally, the sensitivity calculation is presented.

4.4.1 No-sterile test statistics

As mentioned in section 4.3.2, Wilks’ theorem does not hold for the sterile analysis with
free parameters sin® 2614 and Am?, in general. This means that the distribution of the
test statistics of type T'Sop (cf. equation (4.34)) is a priori unknown [14]. In principle, this
problem can be solved by Monte Carlo simulations (cf. section 4.3.2). Unfortunately, for
each pseudo experiment, a full scan would need to be done while one scan takes at least
100 — 200 central processing unit (CPU)-hours which means that a solution via Monte
Carlo simulations becomes practically impossible.
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Figure 4.28: Sketch of the definition of the background test statistics from equa-
tion (4.40a): —2In(L) versus sin®2014 in arbitrary units for a given dataset. Here,
721n(£(sin2 2914)) = Insup(L(sin?fy4 > 0) i.e. all parameters except sin®2014 are op-
timized. sin® 2014 best 1labels the best fitting sin® 26,4 for this dataset.

In order to quantify the agreement with the no-sterile hypothesis, the test statistics TSy
is defined as a special case of T'Sop (cf. equation (4.34) ):

20 2
TSp: = —2In(A\) = —2In < sup(ﬁ‘(szn b1a = 0., Ami, ) > (4.40a)
sup(L(sin” 614 > 0, Am2; > 0))
= —21Insup(L(sin? f14 = 0)) + 2Insup(L(sin? 14 > 0)) (4.40Db)
= min(—21n £(sin? 14 = 0)) — min(—21n L(sin? 14 > 0)) (4.40c)

This definition is illustrated in figure 4.28. TSy will be referred to as background test
statistics.

The background test statistics was obtained from 390 pseudo experiments. Thereby, Am3,
was scanned with 100 grid points in order to find the best fit while sin® 2614 was a free
parameter in the fitVl.

The resulting probability density function (pdf) of the background test statistics from equa-
tion (4.40a) is plotted in solid blue in figure 4.29. It does neither follow a x? distribution
with dof=1 which is plotted in dashed dotted black, nor a y? distribution with dof=2 shown
in dashed red. Strikingly, zero is not the most likely value of the TS and values close to
zero are extremely unlikely. but This is a mathematical feature of the likelihood-function:

Vlexcept that it was required 0 < sin? 2614 < 1
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Any fluctuation of the data will always be described better by a sterile oscillation with free
amplitude and frequency than by no a non-sterile oscillation. Mathematically this can be
explained as follows:

e There is always more than one minimum of —21n(£) (cf. section 4.3.2)
e Close to each of this local minima —2In(L) follows a Chi-square distribution

e Dicing random numbers from more than one Chi-square distribution and taking the
minimum of this numbers does not yield in a Chi-square distribution

One may understand this being similar to the look elsewhere effect [69][90][14]. There are
always multiple minima and only the deepest minimum is selected. For further confirmation
and illustration a simple test has been done by dicing random numbers from Chi-square
distributions with given number of dofs ngos and selecting the minimum, i.e. producing a

distribution of
M times

Q($7M7 ndof) = min XQ(ZE,TZdOf),XZ(.’E,ndOf),.. (441)

where X2(ndof) is a Chi-square distribution with ng. of freedom. The resulting pdf for
100000 pseudo experiments is displayed in figure 4.30. The dashed dotted black line shows
the pdf for Q(M = 6, nqot), the solid blue line shows the average pdf of Q(M = 3, ngor) and
Q(M = 9,n40f) and the dashed red line shows the average probability density function for
Q(M = 3,n40f), Q(M = 4,n40f),-.,Q(M = 9,n40¢). These three pdfs are not identical and
neither of them matches a Chi-square distribution with ngof=2 which is shown in cyan.

Q(M,nqof) can be written down as

T (M-1)
Q(x, M, ngor) = M - x2(ngof, ) - </ X2(ndofay)dy> : (4.42)
0

The fit of equation (4.42) with free parameters ( M, nqor) to the T'Sy probability density
function is shown in figure 4.29. It yields ngor = 1.79 & 0.44, M = 7.52 £ 3.02 with a
X2/d0f of 1.23 i.e. is consistent with ngor = 2 and 20 consistent with ngor = 1. Fits
with fixed ngof = 2 (ngof = 1) are shown in dashed cyan (dashed green). The fit with
ngof = 2 describes the probability density function quite good and returns M = 6.22+0.34,
x%/dof = 1.15 while the fit with nq. = 1 is worse than the two other fits. Thus, taken
together, the degrees of freedom seem to be close to two.

4.4.2 Sensitivity

By definition the median 95% confidence level sensitivity sin® 2055 is that value of sin? 2614
for which in 95% of cases pseudo experiments will result in a larger best fit background
test statistics than the median best fit background test statistics for pseudo experiments
with true value sin® 2014 = 0 (called sin? 26%°4). This definition is sketched in figure 4.32
a). Unfortunately, the behavior of the test statistics in two dimensions is not a priori
known (cf. section 4.3.2) and fitting a sufficient number of pseudo experiments in every
point of (sin? 2614, Am?2,) requires an undoable amount of computing time. this work, the
sensitivity is given as a function of Amj,.
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Figure 4.29: Probability density function of the test statistics distribution (cf. equation
(4.40a)) for no sterile signal. Plotted are fraction of occurrence versus TS value (cf. equa-
tion (4.40a)). The obtained pseudo data is illustrated by the solid blue histogram. The fit
of a Q(M,ngof) (cf. equation (4.41)) with nger as an unconstrained fit parameter is shown
in solid black, with nger=1 (nqot=2) in dashed dotted green (dashed cyan). For compari-
son Chi-square distributions with 1 (2) dof are shown in dashed dotted black (dashed red).
This plot includes 388 pseudo experiments.
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Figure 4.30: Pdf of dicing random numbers from equation (4.41). The dashed dotted
black line shows the pdf for Q(M = 6,n4of), the solid blue line shows the average pdf
of Q(M = 3,ng4ot) and Q(M = 9,n4.f) and the dashed red line shows the average pdf
for Q(M = 3,n40t), QM = 4,n40f),-,Q(M = 9,n40f). A Chi-square distribution with
Ndof = 2 is shown in cyan for comparison.
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Accordingly, by definition the median 95% confidence level sensitivity sin?2655" for a

Am?, is that value of sin? 2014 for that Am?, which in 95% of cases pseudo experiments
will result in a larger best fit sin? 2614 for that Am?2, than the median best fit sin? 20754
for that Am?2,. For reasons of readability the dependence on Am? is not written outVI.

sin? 29ﬂed is obtained from pseudo experiments. In detail, 390 pseudo experiments with
true sin® 2614 = 0 were generated and sin® 20,4 was fitted for 100 Am?n grid points. These
pseudo experiments are identical to those used for the background test statistics calculation
(cf. section 4.4.1). sin? 2074 is the median fit result and was identified for all 100 Am?2,
grid point independently.

For the sterile distribution, pseudo experiments are not needed as Wilks‘ theorem holds as
long as Am3?, is fixed.

The red histogram in figure 4.31 displays the probability density function of the test statis-
tics T'S1p (cf. equation (4.37)) from 1999 pseudo experiments with sin? 2614 = 0.000 for
constant Am?, = 0.080 eV?2. The black histogram shows the probability density function
of the test statistics from 1999 pseudo experiments with sin® 2614 = 0.072 for constant
Am?, = 0.280eV?2. Both histograms match well with the chi-square distribution for one
degree of freedom indicated with the dashed blue line.

The test statistics

(4.43)

= | ain 2 ogmed 2
rostami -2 LB )

L(z4] sin? 20055 Am3,)

=—2In (L’(m}] sin? 29?}16(1, Am?n))
~ (2] s 205, Amdy)))

is defined as illustrated in sketch 4.32 b). Here, sin® 200§ is the best fit sin® 2014 for the
Asimov dataset @, (i.e. @ is a pseudo dataset with infinite statistics, cf. section 4.3.1)
and L is the likelihood function (cf. equation (4.12)). sin? 2014 pest 1s identical to the true
sin® 2614 used to produce the dataset as the statistics is infinite and the fit is unbiased.
While the dependence on Am?u is explicitly mentioned in equation (4.43) it will not be
explicitly written out in the following. The median sensitivity sin® 2014 sens according to
Wilks’ theorem is that true value of sin? 2614 for which T'Sg = 2.71 [100] [127]. This is
illustrated in figure 4.32 c). Thus, T'Sg is obtained for reasonable sin? 2614 > sin? 29ﬂed
and a spline is used to describe the inverse of the relation T'Sg(sin?2614) (cf. figure 4.32
d)). That spline evaluated at T'Sg = 2.71 yields the median sensitivity.

The uncertainty on the sensitivity is calculated similarly. The 1o area is defined as the area
in which 68.2% of experiments should be, where values are added to the area according
to their likeliness. This yields an area centered around the median in case of a Gaussian
distribution (cf. figure 4.33). However, 1o and 20 area might be asymmetric or even share
an edge if the probability distribution is not symmetric. Moreover, that edge can even be
identical to the median if the probability distribution contains a delta distribution at that
edge.

Figure 4.34 shows the pdfs of best fit sin?260;4 from pseudo experiments with true
sin? 2614 = 0 exemplary for for Am32, = 0.007eV? (dashed blue line), Am?2, = 0.017eV?

scns,Amil mcd,A'm‘ZL1

Vi e. one could also use sin? 2675 , sin® 207 as symbols
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Figure 4.31: Probability density function of the test statistics T'S1p (cf. equation (4.37))
with fixed Am3, from pseudo experiments. The red histogram shows the probability
density function from 1999 pseudo experiments with sin? 264 = 0.000 for constant Am?2, =
0.080eV2. The red histogram displays the probability density function from 1997 pseudo

experiments with sin? 2614 = 0.072 for constant Am3; = 0.280eV?2. The dashed blue line
indicates a Chi-square distribution with one degree of freedom.
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Figure 4.32: Sketches on the sensitivity calculation: Am3; is assumed to have the same
fixed value in all subplots. sin® 2655 names the sin? 2614 sensitivity (which is to be calcu-
lated) and sin? 2074 the median best fit sin? 2014 for pseudo experiments with no signal
for that given Am?2, ¢
a) Definition of the sensitivity [90]: The probability is sketched versus sin? 2614 in arbitrary
units. The solid blue line shows the probability density function of best fit sin®26;4 for
pseudo experiment with true value sin? 2614 = 0.0. The dashed blue line marks the median
of this distribution, called sin? 20754, The black dashed dotted line sketches the pdf for
pseudo experiments with true value sin® 2614 = sin® 29?}16(1 (i.e. at the sensitivity value).
The gray shaded area covers the 95% upper tail of the later distribution.
b) Definition of T'Sg from equation (4.43); —2In L for pseudo data with median best fit
value sin? 200§ is plotted versus sin® 2014 in arbitrary units. The definition of the test
statistics is marked on the y-axis..
c) Illustration of how the sensitivity is connected to T'Sg (cf. equation (4.43)); T'Sg versus
sin? 2614 in arbitrary units, sin? 2655 is marked on the x-axis (for more see text).
d) Sketch on the calculation of the sensitivity. T'Sg (y-axis) is obtained for various sin® 264
(x-axis, sketched in arbitrary units). A spline is used to describe the inverse function
(sin? 2614 as a function of T'Sg) and its value for T'Sg = 2.71 is given as sin® 2655". For
efficiency reasons and the make the function unique not the whole range of sin? 6q4 is
med sens

scanned but only reasonable values > sin? 2074 as sin? 2655" is larger than > sin® 2¢1ed
by definition.

%.e. sin? 2055 and sin? 205 are a functions of Am2; which are evaluated at the same fixed point
here, for reasons of readability the dependence on Am?2; is not written out.
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Figure 4.33: 1 (a)) and 2 (b)) o area from a Gaussian distribution. The 1o area covers
~68.2%, the 20 area ~ 95.4%.

(solid cyan line), Am?2, = 0.040eV? (dashed dotted green line), Am?2, = 0.096 eV? (dotted
black line) and Am?, = 0.230eV? (dashed red line). In all fits sin?26;4 was free while
Am?ﬂ was fixed. Each histogram contains around 390 pseudo experiments. Those pseudo
experiments are identical to the pseudo experiments used to obtain T'Sy (cf. section 4.4.1).
One can see that the probability density functions are maximal in the first bin (i.e. for
sin?260 = 0, cf. figure 4.34). This means that as long as Am?, is fixed to the inserted
value, sin® 2614 = 0 is the most likely best fit result for true inserted sin? 2014 = 0. In the
specific situation given here, the 1o area is identical to the 68.2% quantile and the 20 area
is identical to the 95.4% quantile since sin? 2614 < 0. is not allowed.

Figure 4.35 illustrates the definition of the upper edge of the sensitivity uncertainty band
following fro that for 1 and 20 range.

The rest of the calculation works entirely analogy to the calculation of the median sensi-
tivity. Just that sin? 2614 meq is exchanged for the 1o (20) quantile sin? 29%}0 (sin? 2«9(112‘7).

Figure 4.36 presents median(solid black), ®(68.2%) quantile(solid red) and ®(95.4%) quan-
tile (dashed blue) of the best fit sin® 2614 pdf from null hypothesis pseudo experiments.
The median is very close to zero for all Am?2,. This is expected as the inserted true value
was sin? 264 = 0.0VAmil unless fluctuations into the sin? 264 < 0. region fit better to
sin® 26014 > 0. than to sin® 26014 = 0.. Here, this is not given as Amil is fixedVEL, The 1o
AW sensitivity (cf. section 4.3.3) is represented by the dotted black line in figure 4.36. It
matches the 68.2% quantile (solid red line) by construction.

The final step for sensitivity calculation is to describe the inverse function T'S(sin? 20;4)
by a spline and evaluate it at TS=2.71 like it is sketched in figure 4.32 d). This spline
interpolation is presented exemplary for several Am3; in figure 4.37.

VI Otherwise (if Amil was not fixed), the median best fit sin? 2014 value would be a non-zero and a
positive number
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Figure 4.34: Example probability density functions of best fit sin? 2614 from pseudo
experiments with true sin?2614 = 0.0. The plot shows the probability density p versus
best fit sin? 2014 for Am?, = 0.007eV? (dashed blue line), Am3, = 0.017eV? (solid cyan
line), Am?2, = 0.040eV? (dashed dotted green line), Am3%, = 0.096 eV? (dotted black line)
and Am32, = 0.230eV? (dashed red line). Each histogram contains around 390 pseudo
experiments. Those pseudo experiments are identical to the pseudo experiments used to
obtain 7Sy from equation (4.40a) (cf. section 4.4.1).
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Figure 4.35: Sketches on the definition of the uncertainty of the sensitivity: Am?2, is
assumed to have the same fixed value in all subplots.

a) Definition of the upper 1o edge of the sensitivity uncertainty error band. The solid blue
line shows probability versus best fit sin? 2014 for the probability density function of best
fit sin? 2604 for pseudo experiments with true value sin® 2614 = 0.0. The dashed blue line
marks the 1o quantile of this distribution, called sin?20%° @ The black dashed dotted
line represents the probability density function for pseudo experiments with true value
sin? 2014 = sin? 2017%°" (i.e. at the 1o edge of the sensitivity uncertainty band). The gray
shaded area covers the 95% upper tail of the later distribution.

b) Definition of the upper edge of the 20 sensitivity uncertainty error band. The solid
blue line shows pdf of best fit sin® 264 for pseudo with true value sin® 2614 = 0. in terms
of probability versus best fit sin? 2614 and the dashed blue line marks the 20 quantile
of this distribution, called sin? 29(1:‘20 b The solid black line sketches the pdf for pseudo
experiments with true value sin® 2614 = sin® 26275" (i.e. at the 20 edge of the sensitivity
uncertainty band). The gray shaded area covers the 95% upper tail of the later distribution.

“The no-sterile pdf actually almost contains a delta distribution at sin? 2614 = 0 and thus does not look
like sketched here.

*The no-sterile pdf actually almost contains a delta distribution at sin? 2014 = 0 and thus does not look
like sketched here.
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Figure 4.36: Various quantiles of the sin? 2614 best fit distribution from null hypoth-
esis pseudo experiments; Am?, versus sin?20;4. The median is shown in solid black,
the ®(68.2%) quantile in solid red and the ®(95.4%) quantile in dashed blue. The lo
AW sensitivity (cf. section 4.3.3) is shown in dotted black and matches the ®(1) quantile
by construction.
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Figure 4.37: T'Sg from equation (4.43) (illustrated in figure 4.32 b)) versus sin? 2614 for
Asimov data with true value sin? 2614 and various Am?, (see legend) as sketched in figure
4.32 d). The spline interpolation is indicated by the solid lines.

Figure 4.38 displays the final median sensitivity to sin® 264 as a function of Am?2, /eV?
(y-axis). Its lo (20) uncertainty area is shaded in green (yellow). As the pdf of best fit
sin? 2644 for no sterile pseudo experiments has its global maximum at sin® 2014 = 0 and
is zero for sin® 2614 = 0 values left to the left 1o uncertainty edge are not possible. The
median sensitivity is almost identical to the later. Therefore, best fits on experimental
data to the right of the median sensitivity are more likely than to its left since being to
the left is not even possible for most of Am?,. The AW sensitivity (cf. figure 4.14, section
4.3.3) is indicated with a dashed blue line in figure 4.38. It is almost parallel to the median
sensitivity and in the middle of the 1o area. Thus, all systematical studies done with the
AW sensitivity can be transferred to the actual median sensitivity.
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Figure 4.38: Sensitivity to sin®26;4 (x-axis) as a function of Am?,/eV? (y-axis). The

median sensitivity is plotted in solid green, the 1o area is indicated in green and the 2o
area in yellow. The AW sensitivity (cf. figure 4.14, section 4.3.3) is plotted with a dashed

blue line.
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Chapter 5

Results

This chapter presents the results of the experimental data fit, the fit validation and the
upper limit calculation.

Figure 5.1 shows the results of a two dimensional likelihood scan in sin® 2014 (x-axis) and
Am?,/eV? (y-axis) on experimental data. The color scale shows —2A In(£) which is minus
two times the difference between the natural logarithm of the likelihood at the grid point
and the minimum of In(£). The green star marks the global best fit. It was found that
—2AIn(L(sin* 2014 = 0V Am3, = 0)) = 6.15. The main tasks of the sterile analysis are
testing whether —2A1n(/l(sin2 2014 =0V Amﬁl = 0)) = 6.15 is consistent with no-sterile
signal and giving a p-value.

These two tasks will be discussed in section 5.1. The definition of the p-value is sketched
in figure 5.2.
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Figure 5.1: Scan of —2A In(L) for experimental data in sin® 204 (x-axis) and Am?2, /eV?(y-
axis).—2AIn(L) is represented in the color bar where Aln(£) = In(£) — In(Lmax) is the
difference of the natural logarithm of the likelihood to the natural logarithm of the maxi-
mum likelihood from this scan. The green star marks the best fit point (i.e. the minimum
of —2A1In(L)). Grey shaded areas mark missing data.
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e [ p-value
} =
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Figure 5.2: Sketch on p-value definition: Probability density function of TSy (defined
in equation (4.40a), cf. section 4.4.1) for pseudo experiments without sterile signal. The
p-value corresponds to the shaded area i.e. to the integral of the pdf from the T'Sy found
in actual data, T'Syo, to infinity.
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5.1 P-value

Figure 5.3 displays test statistics for the null hypothesis (see also figure 4.29). The value
of the test statistics from experimental data is indicated by the dashed black vertical line.
One can see that the experimental data result is well within the expectation from pseudo
experiments. K = 96 of the N = 388 pseudo experiments of the null hypothesis for figure
5.3 have a test statistics value of T'Sy > 6.15. This corresponds to a p-value of 0.247.
Assuming a Poisson uncertainty on K results in an uncertainty of 0.025. However, the
distribution of the pseudo experiments is a binomial distribution. Therefore giving

K(1— K/N
Op—value = ( ¥ N 0022 (5.1)

as uncertainty is more accurate.

As explained in section 4.4.1 the test statistics distribution for no-sterile signal has been
fitted with an extreme value function Q(M, nqof) cf. equation (4.41). Q(M,ngof) math-
ematically describes the superposition of M Chi-square functions with ngos degrees of
freedom. The best fit of Q(x, M, ngof) yields M = 7.52 + 3.02. There are O(10) local
minima of —2A1In(£) visible in the scan of experimental data. This is consistent with
M =7.52+ 3.02. Also one can see in figure 5.1 that the minima are horizontal, i.e. there
is only one minimum per Am?;. The p-value may also be calculated via

[e.e]
p-value = Q(z, M, ngot)dx (5.2)

6.15
The p-values for best fit parameters can be found in table 5.1. All of them are consistent
with 0.247 £ 0.025 and do not depend on the details on the parametrization of the test
statistics. Even more importantly, all values are significantly larger than 5%. Taking
all p-values together confirms that the experimental data is consistent with the no-sterile

hypothesis.

Thus, giving allowed regions under the signal hypothesis is not meaningful and an upper
limit is given. The global best fit is compared to the sensitivity in figure 5.4. One can
see that is just outside the 1o area. This is indeed expected, as fluctuations in a range in
which Double Chooz is not sensitive would not be recognized by the fit.

As already mentioned, the best fit was found to be consistent with the no-sterile hypothesis.
Thus, it was decided not to give uncertainties under the signal hypothesis. Also, giving
uncertainties even on nuisance parameters would require an uneffortable computing effort

Table 5.1: P-values of the no-sterile hypothesis w.r.t. Double Chooz experimental data.
Values were obtained from fitting Q(M, nqor) (cf. equation (4.41)) to the test statistics
distribution for no sterile signal (cf. equation (5.2)) and from counting pseudo experiments
assuming a binomial distribution respectively.

Method \ M \ Ndof \ p value \
counting pseudo experiments 0.247 £+ 0.022
equation (5.2) 7.52 | 1.79 0.248
equation (5.2) 6.22 2 0.255
equation (5.2) 18.82 1 0.220
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Figure 5.3: Probability density function of the test statistics distribution (cf. equation
(4.40a)) for no sterile signal. Plotted are fraction of occurrence versus test statistics value
TSy (cf. equation (4.40a)). The obtained pseudo data is illustrated by the solid blue
histogram. The fit of a Q(M, nqof) (cf. equation (4.41)) with ngof as an unconstrained fit
parameter is shown in solid black, with nger=1 (ngof=2) in dashed dotted green (dashed
cyan). For comparison Chi-square distributions with 1 (2) dof are shown in dashed dot-
ted black (dashed red). This plot is identical to figure 4.29 except that the value from
experimental data is indicated by the dashed black vertical line. It includes 388 pseudo
experiments.
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Figure 5.4: Sensitivity to sin?2614 (x-axis) as a function of Am?,/eV? (y-axis). The
median sensitivity is plotted in solid green, the 1o area is indicated in green and the 2o
area in yellow. The AW sensitivity (cf. figure 4.14, section 4.3.3) is plotted with a dashed
blue line. The global best fit from experimental data is marked with a blue star.
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Table 5.2: Sterile and nominal best fit parameter values. For the sterile best fit uncertain-
ties are not provided.

‘ ‘ sterile best fit ‘ nominal best fit ‘

Sin2 914 0.043 -

Am3, /eV? 0.028 -
sin? 013 0.1077 0.10750015%
Li-ND/(1/day) 3.14 3.11 £ 0.29
Li-FD/(1/day) 17.17 16.75 + 1.85

since requiring a scan of —21n(L) for each parameter where every point would again require
ascan in Am?,, sin? 2014. However, it has been checked that all nuisance parameters stay in
the o allowed range. Table 5.2 summarizes best fit values of the main important parameters
for sterile and nominal best fit.

5.2 Fit validation

The next paragraph describes the validation of the data fit. After that, the upper limit
and its calculation is explained in section 5.3.

Figure 5.5 shows the best fit spectra of inverse beta decay candidates normalized to the
nominal expectation oscillated with sin? 2013 = 0.086 [13]. The sterile best fit spectrum is
plotted in solid blue, the no-sterile best fit in dashed black and the data with red points.
Note that the dof are significantly less than N=(number of data points-2) since (among
others) the reactor flux parameters are free in the fit.

To highlight the difference between the sterile and the no-sterile best fit the Chi-square
per energy bin 7 following the definition by Neyman [95] is used:

. (nl ni,meas)2
() = £ , (5.3)
i7C

where n, - is the number of inverse beta decay candidates in bin ¢ expected for the model

parameters set 5 . Mj meas 15 the number of inverse beta decay candidates measured in bin 4.
x?(¢) will be labeled ngf ; if ¢ is given by the outcome of the sterile best fit and Xﬁsbf ; if

—

¢ is given by the outcome of the no-sterile best fit. The difference between both quantities
will be called:

AX? = X?lsbf,z’ - Xzbf,i . (5.4)

Figure 5.6 shows the residuum for the no-sterile best fit normalized to the no-sterile best
fit as a function of visible energy. The sterile best fit is indicated by the solid blue line.
The color scale shows the Ax? (cf. equation (5.4)) between sterile and no-sterile best fit
for each energy bin. For red points (positive values) the sterile fit fits better while for blue
points (negative values) the no-sterile best fit matches data better. The ND is shown in
the top, the FD1-On in the middle and FD2 in the bottom. Indeed, the sterile best fit
seams to fit better. One can identify that the points around 2, 4 and 6 MeV have the
largest impact on the fit.
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Figure 5.5: Sterile (solid blue) and no-sterile (dashed black) best fit inverse beta decay
spectra. FD1-On (top), FD2 (middle) and ND (bottom) number of inverse beta decay
candidates normalized to the nominal expectation oscillated with sin®26;3 = 0.086 [13]
versus visible energy. The experimental data is plotted with red circles.
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Figure 5.6: Residuum of no-sterile best fit normalized to the no-sterile best fit versus
visible energy compared to sterile best fit (blue line) for the ND(top), FD1 (middle) and
FD2 (bottom) dataset. The color scale shows the Ax? (cf. equation (5.4)) between sterile
and no-sterile best fit for each energy bin.
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Figure 5.7: Sterile (blue dots) and no-sterile (red squared) best fit x? - sign(residuum)
versus visible energy for ND(top) and FD1@FD2(bottom). FD1FD2 simply means that
the terms for FDl(X?,FDl) and FDQ(X?,FDQ) are added to each other: X?,FDI @XZ‘Q,FD2 =

2 P
Xirp1 T XiFp2-

The fit should be rather driven by the combination of FD1 and FD2 period together than
any single one of them, i.e. a fluctuation in either of the FD datasets should not be
matched by a sterile oscillation. Thus, the quantile X?FDl &b XZZ FD2 = X?FDl + X? FD2 has
been plotted as a function of visible energy in the bottom plot of figure 5.7. The 1cop plot
shows X?,ND' In both detectors, one can see the points around 2, 4 and 6 MeV for which
the sterile fit is better. One can estimate from figure 5.6, that the Chi-square difference
between near and far detector is around six.

Despite the observed sterile best fit is fully consistent with the null hypothesis the Asimov
dataset with best fit sin?2614 and Am3, has been produced andn scan of —2In(L) for
this dataset is displayed in figure D.1. It does not qualitatively differ much from the
experimental data scan.

Taken together, the fit seams robust and no indication for a technical failure of the fit was
found.
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5.3 Frequentist upper limit

This section focuses on the upper limit as the experimental data fit result was found to be
consistent with the no-sterile hypothesis (cf. to the beginning of this chapter). First, the
definition and calculation are explained before the result is given later in this section.

The classical frequentist upper limit is defined as that point in parameter space for which
one would in 95% of cases observe an effect (i.e. test statistics) larger than actually seen
in data [90].

As explained in section 4.3.2, Wilks’ theorem does not hold in (sin? 2614, Am?,) space.
Therefore, the behavior of the test statistics is a priori unknown. In order to get access
to it, pseudo experiments in every point of the (sin? 2614, Am?ﬂ) area are needed, which
again need to be scanned with a grid. This is due to the fact that the landscape of the
negative logarithmic likelihood always has more than one local minimum in Am?,. Taking
together giving limits in two dimensions includes enormous computing effort and makes
giving two dimensional limits technically impossible at current point in time.

As pointed out in section 4.3.2, Wilks’ theorem is not violated if Am3; is fixed. Hence, the
test statistics is known to follow a Chi-square distribution with one degree of freedom and
pseudo experiments in every point are not needed. Therefore, the upper limit on sin? 26,4
is given in one dimension as a function of Am32,. Thus, the upper limit at 95% confidence
level for a given Am?, is defined as that sin® 2614 for which in 95% cases one would observe
a larger sin® 2014 (for that Am?,) than seen in experimental data (for that Am?,). This
definition in sketched in figure 5.8 a).

The following paragraph describes how the upper limit is technically obtained. In doing
so, the Asimov approach (cf. section 4.3.1) is used, as the —21In(£) landscape is known to
have only one minimum in sin? 2614 and Wilks’ theorem holds. Using the Asimov approach
is significantly faster than using pseudo experiments and gives a more precise result as the
statistics of pseudo experiments would be highly constrained by computing time. The
calculation works analogy to the calculation of the sensitivity (cf. section 4.4.2) just that
instead of sin? 2014,med the best fit found in experimental data sin? 2014 bfd-

More in detail, first, the test statistics is defined as

TS(Am3,) = — (—2In(L(7] sin® 2014 pa, A3y ))) (5.5)
—2In (E(J:_;L| sin? 2014 true, Amil))

where L(a7]| sin? 29147bfd7Am4211) is the likelihood of Asimov data with parameters
(sin® 2014 true, Am3, (77,) evaluated at the experimental data best fit sin®260;4 for that
Am?2,. This definition is sketched in figure 5.8 b). The upper limit sin? 201401, is
that sin? 26014 for which TS=2.71 as illustrated in figure 5.8 c¢). The test statistics (cf.
equation 5.5) is calculated for a set of Asimov datasets with sin? 2014 > sin® 2014 vta as
sin? 2014 > sin? 2014 pta by definition. A spline interpolation between these (TS, sin? 2614)
is performed to extract sin?2614(TS = 2.71) as sketched in figure 5.8 d).

Figure 5.9 presents the scan of 2In(£) for experimental data in sin®26;4 (x-axis) and
Am3,/eV? (y-axis). The best fit sin?264 from experimental data for each Am?,
sin? 201415 is indicated by the solid black line. The green star marks the global best
fit from experimental data.
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Figure 5.8: Sketches on the calculation of the upper limits: Am3, is assumed to have
the same fixed value in all subplots. sin? 2014,u1, names the upper limit on sin? 2614 and
sin® 2014,pfa the best fit sin? 2014 on experimental data for that given Am3 e

a) Definition of the upper limit on sin®2614[90]: Sketch of the pdf of best fit sin® 2614 for
pseudo with true value sin® 2014,u1,; probability versus sin® 2614 in arbitrary units. The
grey shaded area covers 95% of probability and the dashed blue line marks the 5% quantile
which matches best fit sin? 2614 from experimental data sin? 2014, bta-

b) On the definition of the test statistics from equation (5.5): —21In L is plotted versus
sin? 2614 in arbitrary units for pseudo data with median best fit value sin? 2014 pest- The
definition of the test statistics is marked on the y-axis.

c¢) Hlustration of how the upper limit can be obtained from the relation test statistics versus
sin? 2014 (in arbitrary units); sin? 2614,u1, is marked on the x-axis (see text).

d) Sketch on the final upper limit calculation. The test statistics TS (y-axis) is obtained
for various sin?260y4 (x-axis, sketched in arbitrary units). A spline is used to describe
the inverse function (sin®264 as a function of TS) and its value for TS=2.71 is given as
sin? 2014,u1,. For efficiency reasons and to make the function unique not the whole range of
sin® 614 is scanned but only reasonable values > sin® 2014,med as sin® 20141, is larger than
> sin® 2014,pta by definition.

%.e. sin? 2614,u1, and sin? 26014,bta are a functions of Am?2, which are evaluated at the same fixed point
here. For reasons of readability the dependence on Am3, is not written out.
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Figure 5.9: Scan of —2A In(L) for experimental data in sin? 264 (x-axis) and Am?, /eV?(y-
axis). —2AlIn(L) is represented in the color bar where Aln(£) = In(£) — In(Lmax) is
the difference of the natural logarithm of the likelihood to the natural logarithm of the
maximum likelihood from this scan. The green star marks the best fit point (i.e. the
minimum of —2AIn(£)). The solid black line marks the experimental data best fit sin? 2614
as a function of Am3,.
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Figure 5.10: T'S from equation (5.5)(illustrated in figure 5.8 b)) versus sin? 2614 for Asimov
data with true value sin® 2614 and various Am3, (see legend) as sketched in figure 5.8 d).
The spline interpolation is indicated by the solid lines.

Figure 5.10 demonstrates the spline interpolation to describe the test statistics (cf. equation
(5.5)) as a function of sin® 2614 (as illustrated in figure 5.8 d)) exemplary for a set of Am?,
values (see legend). The markers identify the points that have been calculated and the
solid lines the spline interpolation. As explained already in figure 5.8 for a given Am?; the
sin? 2614 for which TS=2.71 is the upper limit on sin® 26,4, sin? 2014, ur,. The upper limit
calculated with this procedure has been confirmed with pseudo experiments for three data
points |75].

Figure 5.11 presents the upper limit on sin? 2014 as a function of Am?,. The upper limit
at 95% confidence level is plotted with a solid black line. For comparison the median
sensitivity is shown in solid green and its 1o (20) uncertainty band is indicated in green
(yellow) (cf. figure 4.38). The global best fit of experimental data is indicated with a blue
diamond. As expected and natural for the approach used in this work, the upper limit is
not better than the expected sensitivity (cf. section 4.4.2). Also, the upper limit is mostly
in the 1o and 20 range of the sensitivity uncertainty and worst in the area around the
global best fit.
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Figure 5.11: Upper limit at 95% confidence level on sin? 2014(x-axis) as a function of
Am3, (y-axis). The upper limit at 95% confidence level is indicated by the solid black
line. The median sensitivity (also shown in figure 4.38) is plotted with a green solid line
for comparison. Its 1o uncertainty is shaded in green and its 20 uncertainty is shaded in
yellow. The best fit from experimental data is indicated with a blue diamond.
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5.4 Comparison to RENO and Daya Bay

There are two other big reactor experiments designed to measure sin? 20;3 that are similar
to Double Chooz: RENO and Daya Bay. Both collaborations have published limits on
(Am3,, sin?2614) [129] [21]. These limits are two dimensional limits on the combination
of (Am?,, sin®2614) while the limits in this work are limits on sin? 2614 if Am?, is given.
In other words, Double Chooz does not provide a statement about likeliness of any Am?;.
RENO and Daya Bay give information about likeliness of values for Am?; in combination
with sin? 26;4. This means that one can check the 95% excluded sin? 26,4 for an external
value of Am?, directly from figure 5.11 but not directly from the plots provided by RENO
and Daya Bay since the likeliness of Am3; itself is included. Mathematically it means that
95% coverage corresponds to the two dimensional (Am3,, sin?2614) area for RENO and
Daya Bay while it corresponds to one dimension (sin?2614) for Double Chooz. Methodi-
cally, it means that Double Chooz uses a test statistics of general type T'S1p (cf. equation
(4.37)) while RENO and Daya Bay use a test statistics of general type T'Sop (cf. equation
(4.34) [129] [21].

Therefore, the limits from RENO, Daya Bay and Double Chooz do not have the identical
physical meaning. However, the limited comparison of the provided by RENO, Daya Bay
and Double Chooz is presented in figure 5.12. The upper limit from this work is plotted
with a solid black line the upper limit from Daya Bay(|21], full configuration, gadolinium
selection) with a light grey line and from RENO(]|129], 500 days of lifetime, gadolinium
selection) with a light green line. In most of the Am3, area, the Daya Bay constraints are
stronger than from Double Chooz which is expected to be due to the fact that Daya Bay
detectors have a larger total target mass volume, their reactors provide more thermal
power and that they collected more statistics (cf. figure 5.13). However, the Double Chooz
constraints are in most of the Am3, range stronger than RENO’s. Adding inverse beta
decay candidates in all detectors the RENO datasets used for their sterile analysis contains
slightly more inverse beta decay candidates than the Double Chooz datasets together (cf.
figure 5.13). In this work, it was decided to not calculate limits for Am3; < Am2, as
for Am?, = Am?2, the limits of sin?20;3 and sin? 2014 would be identical and for smaller
Am3, Double Chooz is barely sensitive. In contrast, RENO and Daya Bay analysis differ
in terms of sin? 2013 handling, put constraints on it and published limits in Am3; < Am2,
region. The nonexistence of constraints on sin? 26,3 is an aspect for which limits provided
in this work are more conservative. This effect is large for Am?2, ~ Am?2, and small for
Am?2, > Am?, (cf. section 4.3.6).
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Figure 5.12: Upper limits at 95% confidence level provided by Double Chooz (this work),
Daya Bay [21] and RENO [129] plotted Am?, versus sin?2614. The upper limit from
Daya Bay is plotted with a dotted blue line, the upper limit from RENO with a dashed
grey line and the upper limit from this work with a solid black line. The upper limit
provided by Daya Bay and RENO are two dimensional limits, i.e. putting constraints on
the combination of Am?2, versus sin? 2614. In contrast, the upper limit provided in this
work is a one dimensional limit on sin? 2614 as a function of Am3,. Thus, the limits by
Daya Bay and RENO do not have the identical physical meaning (see text for details).
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Figure 5.13: a) reactor power/ GWyy, (y-axis) available for Double Chooz (DC, left stack),
Daya Bay (DB, middle stack) and RENO (right stack) experiments b) target mass/t (y-
axis) of Double Chooz(left stack), Daya Bay(middle stack) and RENO (right stack) ex-
perimental setups used for sterile analyses c¢) total number of ibd candidates (y-axis) in
datasets used for sterile analysis by Double Chooz (DC, left stack), DayaBay (DB, middle
stack) and RENO (right stack).

5.5 Transfer to 3+2 model
Seven additional neutrino mixing angles exist in the 3+2 model (cf. section 1.2), namely
914, 924, 934, 915, 925, 935, 945. The PMNS-Matrix may be defined as

U = RusR3sR34R25R24R23R 15R14R13R12 = RusR3sRasRisR3aR24R14R23R13R12 (5.6)

in the 342 model, yielding

U,1 = cos 815 cos 014 cos 013 cos 019 (5.7)
U.o = cos 815 cos 014 cos 013 sin 012 (5.8)
U.3 = cos 815 cos 014 sin 013 (5.9)
Ueq = cos 05 sin 014 (5.10)
Ues =sinfys . (5.11)

Thus, with equation (1.17), the only non-standard mixing angles entering the anti-electron-
neutrino survival probability are 614 and #15. It is approximately given by:

P.. ~ 1 —sin®20;3sin?(Asz;) — sin? 2014 sin?(Ay1) — sin? 2615 sin?(As:) (5.12)

(see section E ). Equation (5.12) tells that two sterile states with similar mass would
be indistinguishable. Also, interference between oscillations related to both sterile states
could occur depending on m3, m2. Figure 5.14 shows the far detectors neutrino events
in 342 model and 341 model relative to the no-sterile model as a function of visible
energy for (sin?26014 = 0.043, Am?2, = 0.029eV?, sin? 2614 = 0.047, AmZ, = 0.038eV?,
sin?26014 = 0.091). The same plot for the near detector may be found in figure E.1. One
can see that the survival probability in the 342 model looks similar to a typical 3+1
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Figure 5.14: Far detector neutrino events in 3-+2 model and 3+1 model relative to no-
sterile model versus visible energy (sin? 2614 = 0.043, Am?2, = 0.029eV?, sin? 2614 = 0.047,
Am?, = 0.038eV?, sin?20;4, = 0.091) [119]. This plot has been taken from [119] and
modified.

model survival probability just with different Am3,. Interference occurs in particular if
(0] (‘AmZID =0 (’Am%l‘) where the signature will depend in detail on the two mass
squared differences. As Double Chooz basically covers the sensitivity 0.005eV? < Am? <
0.2eV? (i.e. one order of magnitude) this makes giving limits in the 3-+2 model even more
non trivial and would require far too much computing effort at the current point in time. If
Am?, << Am2; > 0.3eV? oscillation signatures due to the fifth neutrino state get washed
out and only lead to a smaller normalization in all detectors. An example is shown in
figure E.2. Thus, the limits obtained in this work hold for models with Am2; > 0.3eV?2.
More details on oscillation signatures in the 3+2 model can be found in [119].
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Chapter 6

Summary

The search for so called light sterile neutrino with the Double Chooz reactor neutrino
experiment was done for the first time in this work. Oscillation effects in the 3+1 model
can be described by only two new parameters in very good approximation: 14 and Am3,
(cf. chapter 1.2) where Double Chooz is sensitive to the new mixing angle 614. In contrast to
earlier 13, data from both neutron capture on gadolinium and hydrogen has been selected
to increase statistics. This is the current standard data selection applied in Double Chooz
(see chapter 3 for details). A new Poisson likelihood fit technique, virtually relying only
on the comparison of near and far detector data (i.e. independent from any reactor flux
model), was used. The concept of this approach was developed in this work and based
on the work by Stefan Schoppmann and described in detail in chapter 4. This work was
done in close cooperation with Philipp Soldin who focused on the technical part and on
the 613 fit. In order to ensure consistency with the 613 fit and as much crosschecking
as possible, #13 and sterile fit use the same software which was fully validated. Inter
alia, by crosschecks with two other fit approaches doing the 613 fit which were developed
in the United States of America respectively Japan (cf. section 4.3.1). Moreover, data
challenges have been done and systematics effects have been studied where it is found that
the analysis is limited by statistics in most of the range where Double Chooz is sensitive
(around 0.004eV? < Am32, > 0.2eV?). Also, it is demonstrated that the fit is indeed
independent from the reactor flux model by adding artificial distortions (cf. section 4.3.4
and following). A huge challenge for this analysis is that there are always multiple solutions
w.r.t. Am3; and that any statistical fluctuation in data induces a best fit with sin? 26,4 > 0.
Therefore, Wilks* theorem [127]| does not hold and pseudo experiments are needed to obtain
p-value, sensitivity and allowed regions. Each pseudo experiment needs to be scanned w.r.t.
Am?, to avoid problems due to local minima (see section 4.3.2). Finally, the analysis of
the experimental data showed a p-value of 24.7% + 2.2% i.e. fully consistence with the
no-sterile hypothesis. Upper limits on sin? 264 are given as a function of Am?2, after
the best fit result has been carefully validated (cf. chapter 5). That is because two
dimensional limits in (Am?2,, sin?260;4) space are computationally impossible at current
point in time. The limits on sin?264 are presented in figure 5.11 and cover the region
0.004eV? < Am3; 2> 0.2eV2 As there is effort ongoing to further improve computation
time, future analysis may be able to give limits in two dimensional space. Future analysis
will be able to get higher statistics by running on the final Double Chooz dataset containing
three years of exposure time with two detectors instead of the 18 month used in this work.
Also, the final dataset will include around 25 exposure days of reactor off data including
reactor off measurements for the near detector [50]. Analysis of this data is expected to
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improve background constraints remarkably. Moreover, systematical limitations may be
reduced by precise measurement of the detector volume during reconstruction suppressing
dominant systematical uncertainty due to the so called proton number significantly.
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Appendix A

Backgrounds

This chapter collects plots referring to the background processes mentioned in section 3.7.
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Figure A.1: Covariance matrix for the FD1 accidental background obtained with the
offtime method as explained in section 3.7.1.

Denise Hellwig 133



Appendix A. Backgrounds

bin

- 0.04
35—
= 0.035
30—
= 0.03
25—
- 0.025
20—
= —0.02
15—
= —10.015
10:— —0.01
5— —0.005
0: | | | | ‘ | | | | ‘ | | | | ‘ | | | | ‘ | | | | ‘ | | | | ‘ | | | | ‘ | | 70
0 5 10 15 20 25 30 35

bin

Figure A.2: Covariance matrix for accidental background in the near detector obtained
with the offtime method as explained in section 3.7.1.
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Figure A.3: FD1 lithium background data sample obtained based on the lithium likelihood
as explained in the text [56|. Entries versus visible energy are shown.
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Figure A.4: FD1 fast neutron and stopping muon background data sample obtained from

inner veto tagged events as explained in the text [56]. Entries versus visible energy are
shown.
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Appendix B

Input model

This chapter collects additional plots and tables referred to in section 4.2.

B.1 Oscillation probability

Figure B.1 provides comparison of oscillation formula approximation used in this work to
the full four flavor oscillation for example parameters and is similar to figure 4.7.
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Figure B.1: Comparison of the approximation for the electron antineutrino survival prob-
ability used in this work to the full four flavor oscillation for example parameters of
sin? 2014 = 0.02 and |Am?,| = 0.02eV?. The electron antineutrino survival probability
versus true energy is shown. The approximation used in this work is plotted in dashed
red. The full four flavor probability is shown in solid blue for scenario NONO, in dashed
magenta for scenario NOIO in solid black, for scenario IOIO and in dashed green for sce-
nario IONO. 613 = 8.52° (sin? 2613 = 0.086) and Am§1:0.00252 eV? has been used for all
probabilities shown in this figure.

B.2 Energy and reactor flux

Table B.1 provides the correlations coefficients between energy calibration parameters in
terms of physical cause (aLNL, bLNL, bst/u, bonr and cqnr, cf. section 4.2.2). Central values
and uncertainties of these parameters can be found in table B.2. Figures B.2 and B.3 show
the covariance matrix of the reactor flux parameters for the FD1-On(FD2) dataset.
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Table B.1: Correlations coefficients between energy calibration parameters in terms of
physical cause. Correlations are assumed to be identical for FD1-On, FD2 and ND . The
light non linearity parameters arny, and byng, are considered to be fully correlated between
FD1-On, FD2 and ND while bg; JUs bont, and cqnr, are considered to be fully uncorrelated
between FD1, FD2 and ND. All correlations are identical to the correlations used in the
013 fit [44].

parameter | apnr, bLNL  bsy/u bQNL  cQNL
Aa1,NL 1 -1 0 0 0
brNL -1 1 0 0 0
bsi/u 0 0 1 0 0
boNL 0 0 0 1 -0.45
CQNL 0 0 0 -0.45 1

Table B.2: Energy calibration parameters and uncertainties in terms of physical cause.
All parameters are identical to the parameters in the ;3 fit [44].

parameter FD1 FD2 ‘ ND
G1NL 0.0091 £ 0.0157
brNL 0.9959 + 0.0071
bsi /U 1.0000 + 0.0042 1.0000+ 0.0045 1.0000% 0.0060
bon1 1.0000 £ 0.0012 1.0000 £+ 0.0015 1.0000 £ 0.0011
CQNL 0.00000 £ 0.00053 | 0.00000 %= 0.00069 | 0.00000 £ 0.00048
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Figure B.2: Covariance matrix of the reactor flux parameters for the FD1-On dataset.
This matrix has been generated without using the Bugey4 anchor point (cf. section 3.4).
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Figure B.3: Covariance matrix of the reactor flux parameters for the FD2 dataset. This
matrix has been generated without using the Bugey4 anchor point (cf. section 3.4).
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Appendix C

Validation of the algorithm

This section collects additional information regarding section 4.3. Figure C.1 shows a
comparison of the LLH-FF fit and D2D Chi-square fit (Thiago) for a breakdown of the
systematics for sin? 26,3 from the N-1 test. The values can be found in table 4.9. Figure C.2
shows the post fit correlation matrix from the sin? 26,3 fit for energy and correlated reactor
flux parameters. Figure C.2 is intended to demonstrate that the correlations between
reactor flux and energy parameters may significantly differ from zero. Particular values
are not important.
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Figure C.1: Comparison of the LLH-FF fit and D2D Chi-square fit (Thiago) for a break-
down of the systematics for sin® 2613 from the N-1 test. The top plot shows the N-1 test
sensitivity results, the plot in the middle shows on_1 x (cf. equation (4.26)) and the plot
in the bottom shows rn_1 x (cf. equation (4.27)). The values can be found in table 4.9
The error bars correspond to a rounding uncertainty of 0.00005 for the Chi-square fit and
to 1% of the N-1 test results for the likelihood fit.
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Appendix C. Validation of the algorithm

C.1 Data challenges

Figures C.3 - C.11 are two dimensional scan of —21In (£) that were done during the data
challenge described in section 4.3.4 and listed in table 4.12.

Mock dataset 1

,Amfl /eV2
—2Aln(L)

0.00 0.02 0.04 0.06 0.08 0.10

. 2
sin” 26,

Figure C.3: Two dimensional scan of —21n (£) in sin® 2014 (x-axis) and Am3, (y-axis) of
the first toy dataset from table 4.12. where —2AIn(L) is represented by the color bar.
Aln(L) = In(£) — In(Lmax) is the difference of the natural logarithm of the likelihood
to the natural logarithm of the maximum likelihood. The 1o (20) region for the local
(sin? 2614, Am?2,) range in which Wilks‘ theorem holds is marked by the light blue (black)
line. Gray areas indicate missing data. The same plot with an other z-axis (color bar)
scaling is provided in figure C.4.
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C.1. Data challenges

Mock dataset 1
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Figure C.4: Two dimensional scan of —21In (£) in sin® 2614 (x-axis) and Am?, (y-axis) of
the first toy dataset from table 4.12. where —2AIn(L) is represented by the color bar.
Aln(L) = In(£) — In(Lmax) is the difference of the natural logarithm of the likelihood
to the natural logarithm of the maximum likelihood. The 1o (20) region for the local
(sin? 2614, Am?2,) range in which Wilks‘ theorem holds is marked by the light blue (black)
line. Gray areas indicate missing data. The same plot with an other z-axis (color bar)
scaling is provided in figure C.3.
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Appendix C. Validation of the algorithm

Mock dataset 2

Amfl /eV2
—2AlIn(L)

0.00 0.02 0.04 0.06 0.08 0.10

.2
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Figure C.5: Two dimensional scan of —2In(£) in sin?26;4 (x-axis) and Am?, (y-axis)
of the second toy dataset from table 4.12. where —2A1In(L) is represented by the color
bar. Aln(L) = In(£) — In(Lmax) is the difference of the natural logarithm of the likelihood
to the natural logarithm of the maximum likelihood. The 1o (20) region for the local
(sin? 2614, Am?2,) range in which Wilks‘ theorem holds is marked by the light blue (black)
line. Gray areas indicate missing data. The same plot with an other z-axis (color bar)
scaling is provided in figure C.6.

146 RWTH Aachen
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Mock dataset 2

0.30 — 10
1o
18
0.25
17

—2AlIn(L)

0.15

0.10
0.00 001 002 0.03 0.04 005 006 00? 008

sin” 26, ,

Figure C.6: Two dimensional scan of —2In(£) in sin?26;4 (x-axis) and Am?, (y-axis)
of the second toy dataset from table 4.12. where —2A1In(L) is represented by the color
bar. Aln(L) = In(£) — In(Lmax) is the difference of the natural logarithm of the likelihood
to the natural logarithm of the maximum likelihood. The 1o (20) region for the local
(sin? 2614, Am?2,) range in which Wilks‘ theorem holds is marked by the light blue (black)
line. Gray areas indicate missing data. The same plot with an other z-axis (color bar)
scaling is provided in figure C.5.
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Mock dataset 3

— 50

145

/_\.mfl /eV2

0.00 0.02 0.04 0.06 0.08 0.10
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Figure C.7: Two dimensional scan of —21In (£) in sin® 2614 (x-axis) and Am?, (y-axis) of
the third toy dataset from table 4.12. where —2A1In(L) is represented by the color bar.
Aln(L) = In(L) — In(Lmax) is the difference of the natural logarithm of the likelihood
to the natural logarithm of the maximum likelihood. The 1o (20) region for the local
(sin? 2614, Am?2,) range in which Wilks‘ theorem holds is marked by the light blue (black)
line. Gray areas indicate missing data. The same plot with an other z-axis (color bar)
scaling is provided in figure 4.20.
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C.1. Data challenges

Mock dataset 4
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Figure C.8: Two dimensional scan of —2In(£) in sin?26;4 (x-axis) and Am?, (y-axis)
of the fourth toy dataset from table 4.12. where —2AIn(L) is represented by the color
bar. Aln(L) = In(£) — In(Lmax) is the difference of the natural logarithm of the likelihood
to the natural logarithm of the maximum likelihood. The 1o (20) region for the local
(sin? 2614, Am?2,) range in which Wilks‘ theorem holds is marked by the light blue (black)
line. Gray areas indicate missing data. The same plot with an other z-axis (color bar)
scaling is provided in figure C.9.
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Mock dataset 4
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Figure C.9: Two dimensional scan of —2In(£) in sin?26;4 (x-axis) and Am?, (y-axis)
of the fourth toy dataset from table 4.12. where —2A1In(L) is represented by the color
bar. Aln(£) = In(L) — In(Lmax) is the difference of the natural logarithm of the likelihood
to the natural logarithm of the maximum likelihood. The 1o (20) region for the local
(sin? 2614, Am?2,) range in which Wilks‘ theorem holds is marked by the light blue (black)
line. Gray areas indicate missing data. The same plot with an other z-axis (color bar)
scaling is provided in figure C.8.
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C.1. Data challenges

Mock dataset 5

Amfl /eV2
—2AlIn(L)

0.00 0.02 0.04 0.06 0.08 0.10

sin” 26, ,

Figure C.10: Two dimensional scan of —21n (£) in sin® 204 (x-axis) and Am?, (y-axis)
of the fifth toy dataset from table 4.12. where —2AIn(L) is represented by the color bar.
Aln(L) = In(L) — In(Lmax) is the difference of the natural logarithm of the likelihood
to the natural logarithm of the maximum likelihood. The 1o (20) region for the local
(sin? 2614, Am?2,) range in which Wilks‘ theorem holds is marked by the light blue (black)
line. Gray areas indicate missing data. The same plot with an other z-axis (color bar)
scaling is provided in figure C.11.
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Figure C.11: Two dimensional scan of —21n (£) in sin? 204 (x-axis) and Am?, (y-axis)
of the fifth toy dataset from table 4.12. where —2AIn(L) is represented by the color bar.
Aln(L) = In(£) — In(Lmax) is the difference of the natural logarithm of the likelihood
to the natural logarithm of the maximum likelihood. The 1o (20) region for the local
(sin? 2614, Am?2,) range in which Wilks‘ theorem holds is marked by the light blue (black)
line. Gray areas indicate missing data. The same plot with an other z-axis (color bar)
scaling is provided in figure C.10.
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Appendix D

Results of the sterile analysis

D.1 Asimov dataset for sterile best fit parameters

Figure D.1 shows a scan of —21In(£) for Asimov dataset with sterile best fit sin? 2674 and

2
Amy,

10t

Amfl /eV2

102

Asimov sen. for best fit mixing parameters

[T

s "l"-..|. "L'I_.I:""":I-1.1J|_

S
[

— DB 95% (FC) " "‘ I.IJ.
}{ 1 sigma I.

— -'—'"—'—-—-—._. 1

— 95%CL —— -—

— 99% CL

0.00 O.(I]Z 0.ll)4 0.06 O.II]B 0.0
-2

sin” 20,

— 10

—2Aln(L)

Figure D.1: Scan of —21n (L) for Asimov dataset with best fit sin® 2614 and Am3; found
in experimental data as a function of sin® 2014 (x-axis) and Am?2,/eV?(y-axis). The color
scale shows the —2AIn(L).
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Appendix D. Results of the sterile analysis

D.2 Residuen

Figures D.2- D.4 are additional plots of the residuen of sterile and no-sterile best fit for

experimental data.
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Figure D.2: Residuum of no-sterile best fit normalized to the no-sterile best fit versus
visible energy compared to sterile best fit (blue line) for the ND(top), FD1 (middle) and
FD2 (bottom) datasets. The color scale shows the x? for each energy bin multiplied with
the signum of the residuum.
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Figure D.3: Residuum of sterile best fit normalized to the sterile best fit versus visible
energy compared to no-sterile best fit (blue line) for the ND (top), FD1 (middle) and FD2
(bottom) datasets. The color scale shows the x? for each energy bin multiplied with the
signum of the residuum.
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Appendix D. Results of the sterile analysis
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Figure D.4: Residuum of sterile best fit normalized to the sterile best fit versus visible
energy compared to no-sterile best fit (blue line) for the ND(top), FD1-On(middle) and
FD2 (bottom) datasets. The color scale shows the Ax? (cf. equation (5.4)) between sterile
and no-sterile best fit for each energy bin.
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Appendix E

3-+-2 model

Addition information related to chapter 5.5 is provided in the following.

E.1 Calculation of the electron antineutrino survival proba-
bility

This section provided more details on the calculation of the anti electron neutrino survival
probability in the 3+2 model which is given in section 5.5 by equation (5.12). The matrix
elements of the PMNS-matrix are given in equation (5.7) to (5.11). Several products of
these matrix elements need to be calculated in order to use (1.17). These products are
with equation (5.7) to (5.11):

4 4 SinQ 2&12 sin2 Aglzo

22 4 i 2 ~
UeerergUeg S1n Agl = C14€15C13 4 S Agl =~ 0 (El)
22 4 A 202
sin“ 2643 cigscis~1 sin“ 2643
Uc1Ue1UesUes = 6411401150%2T ~ C%QT (EQ)
a2 4 102
sin® 2014 cis=1 sin“ 2614
elVUelUeqUeq = C15C13C10———— =~ C13C1o—— .
UetUaUesUes = cisclycly——— ~ clscly— B3
2
sin” 2615
Uc1Ue1UesUes = 6%46%30%2T (E4>
i a2 4 A4 102
sin® 2013 cigcis~l sin” 2643
Ue2Ue2Ue3Ues = 6411401155%2T ~ S%QT (E5)
22 4 2
sin” 2614 cis=1 sin“ 2614
UeoUeoUeyUpy = 01156%38%2T =~ C%SS%QT (EG)
22
sin 2915
Ue2Ue2UesUes = 0%40%38%2T (E.7)
sin? 2014 cis~1 sin? 2014 5%3%<<1
UezUe3UeqUes = 641153%3T ~ S%ST ~ 0 (E8)
.2
<2 2 sin“ 2015
sin“ 2015 13— = <<1
UeaUe3UesUes = C%zﬁ%gT ~ 0 (Eg)
L2
2 2 sin” 26015
sin® 2015 sta— 2 - <<1
UeaUesUesUes = 3%47 ~ 0 (ElO)
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Appendix E. 342 model

were
sij = sin(f;;) and ¢ = cos(6;j) (E.11)
and ) ) )
Am2.L Amz [eV®]Lkm
Aij = — Y . l][ ] [ ] (E12)
4F 4E[GeV]
is  used. Moreover, reasonable approximations have been done using
sin® 2613, sin® 26014, sin® 2615 << 1, 33,3y, 3s << 1 and sin® Agy ~ 0.
Inserting equations (E.1) to (E.10) into equation (1.17) yields
P.~1-— 0%2 sin® 265 sin2(A31) — 0%30%2 sin? 2614 sin2(A41)
— 2,253, sin? 2015 8in? (Asy) — 57 sin? 20,3 sin?(Agy)
— (24575510 2014 sin? (Ago) — c14c355755 sin? 2015 sin? (As) (E.13)
~ 1 — sin® 26,3 sin?(Az1) — sin® 2614 sin?(Ay;) — sin? 20,5 sin?(As;) (E.14)

E.2 Additional plots

Figure E.1 and E.2 show additional examples for near detector neutrino events in 342
model and 341 model relative to no-sterile model. They are mentioned in section 5.5.
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Figure E.1: Neutrino events in the near detector for the 3+2 model and the 3+1 model
relative to no-sterile model versus visible energy (sin®26;4 = 0.043, Am32, = 0.029 eV?2,
sin? 2614 = 0.047, Am2, = 0.038eV?, sin? 26014 = 0.091) [119]. This plot has been taken
from [119] and modified.
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E.2. Additional plots
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Figure E.2: Neutrino events in the far detector for the 3+2 model and the 3+1 model
relative to no-sterile model versus visible energy (sin?2614 = 0.043, Am32, = 0.029eV?,
sin? 2614 = 0.047, Am%l = 0.2eV?, sin? 2614 = 0.091) [119]. This plot has been taken from
[119] and modified.
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