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Abstract

The Double Chooz (DC) experiment is a reactor antineutrino disappearance experiment
located in Chooz, France. It was designed to measure the neutrino mixing angle θ13.
The experiment is composed of two liquid scintillator detectors of almost identical design
that were able to identify electron antineutrinos from the two Chooz B reactor cores by the
unique signal of the inverse beta decay (IBD). The far detector (FD) at an average baseline
of 1050 m from the two reactor cores was in operation from April 2011 to the beginning of
2018. The near detector (ND) at an average baseline of 400m has been operating from
the beginning of 2015 to the beginning of 2018. A neutrino oscillation analysis can be
setup independently from any theoretical model of the reactor neutrino flux utilizing the
different baselines of near and far detector relying only on the comparison of near and far
detector data. In doing so, all correlated systematics cancel and the analysis is protected
against potential bias due to a mismatch of reactor neutrino prediction and data.
Apart from its original design goal to measure θ13, Double Chooz is sensitive to so called
light sterile neutrinos. Sterile neutrinos are neutrino states that do not take part in the
weak interaction but may lead to additional disappearance of the known neutrino states,
if they mix with the latter. That mixing is described by additional neutrino squared mass
differences and mixing angles. The 3+1 model assumes one additional sterile state. Here,
Double Chooz is sensitive to the new mixing angle θ14 depending on the new squared mass
difference Δm2

41 if it is in the range of 0.003 eV2 � Δm2
41 � 0.3 eV2. This work presents the

analysis of Double Chooz data with respect to sterile neutrinos. A Poissonian likelihood
fit approach not relying on reactor model predictions is used. It is found that the Double
Chooz data is with a p-value of 24.7% ± 2.2% consistent with the no-sterile (i.e. θ14 = 0)
hypothesis. The upper limit on sin2 2θ14 at 95% confidence level is given as a function of
Δm2

41.
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Zusammenfassung

Das Double Chooz Experiment ist ein Reaktor-Antineutrinoexperiment zur präzisen Mes-
sung des Neutrinomischungswinkels θ13. Es befindet sich in Chooz, einem kleinem Dorf
in Frankreich, auf dem Gelände des dortigen Kernkraftwerkes Chooz-B. Das Experiment
besteht aus zwei nahezu identischen Detektoren, welche bis 2018 den Elektronantineutri-
nofluss der beiden Reaktorblöcke B1 und B2 gemessen haben. Der Nahdetektor wurde
in einem mittleren Abstand von 400 m zu den Reaktorblöcken positioniert und war
zwischen Anfang 2015 und Anfang 2018 in Betrieb, während der Ferndetektor in einem
mittleren Abstand von 1050 m zu den Reaktorblöcken zwischen April 2011 und Anfang
2018 betrieben wurde.

Diese Arbeit präsentiert die Analyse der Double Chooz Daten in Hinblick auf sogenannte
leichte sterile Neutrinos. Leichte sterile Neutrinos sind Neutrinos, die nicht an der schwa-
chen Wechselwirkung teilnehmen, und eine Masse im Elektronenvoltbereich oder darun-
ter aufweisen. Sie wurden bisher nicht zweifelsfrei nachgewiesen. Falls sterile Neutrinos
mit den bekannten Neutrinosorten mischen, besteht die Möglichkeit sie indirekt über Os-
zillationseffekte der bekannten Sorten nachzuweisen. Das 3+1 Modell sieht die Einfüh-
rung einer zusätzlichen sterilen Neutrinosorte vor. Dadurch ergeben sich neue Neutrinomi-
schungswinkels und Massenquartsdifferenzen. Double Chooz ist für Massenquartsdifferen-
zen 0.003 eV2 � Δm2

41 � 0.3 eV2 auf den neuen Neutrinomischungsparameter sin2 2θ14. Die
in dieser Arbeit vorgestellte Analyse beruht auf einem Likelihood-Anpassungsverfahren,
das possionische Statistik annimmt und auf dem Vergleich der Daten der beiden Detekto-
ren basiert. Es ist daher nahezu vollständig unabhängig von Vorhersagemodellen für die
Neutrinoproduktion in den Reaktoren. Auch andere systematische Unsicherheiten kürzen
sich heraus, sofern sie zwischen den beiden Detektoren maximal korreliert sind. Es zeigt
sich, dass die Double Chooz Daten mit einer Wahrscheinlichkeit von 24.7%± 2.2% mit der
Hypothese sin2 2θ14 = 0 kompatibel sind. Es wird die mit 95% Wahrscheinlichkeit obere
Grenze für sin2 2θ14 als Funktion von Δm2

41 gezeigt.

Denise Hellwig v
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Chapter 1

Motivation

This chapter describes the basics of neutrino oscillation physics and neutrino properties.
Note that I (Denise Hellwig) have written an Double Chooz Collaboration internal pass-
word protected non-public single authored technical note on this analysis [74] in order to
get blessing from the collaboration. The content of this chapter may be partially identical
to content of this document. The same applies to chapter 4. I have made a draft version
of this thesis available for Double Chooz Collaboration internal reviewers via the internal
documentation systemI which is password protected and non-public. In the early phase
of my PhD studies I have written a proceeding [76]. The proceeding was written by me
alone. It is multi-authored for political reasons. However, my sterile analysis has entirely
changed after [76] was written.

1.1 History of neutrinos

The existence of neutrinos was theoretically postulated in 1930 by Wolfgang Pauli in order
to fulfill the conservation laws in the beta decay [110]. The experimental confirmation was
done by utilizing the inverse beta decay and published in 1956 by C. L. Cowan, F. Reines,
F. B. Harrison, H.W. Kruse, and A. D. McGuire [46]. Frederick Reines won the 1995 Nobel
Prize for "for the detection of the neutrino" [97]. A second neutrino type (muon neutrino
and muon antineutrino) was detected by studying pion decay at the Alternating Gradient
Synchrotron (AGS) and published in 1962 [48]. Leon Lederman, Melvin Schwartz and
Jack Steinberger were awarded with the 1988 Nobel Price for the “for the neutrino beam
method and the demonstration of the doublet structure of the leptons through the discovery
of the muon neutrino“ [96]. Finally, the ”Observation of tau neutrino interactions“ was
published in 2001 using the Direct Observation of the NU Tau (DONUT) experiment at
Fermi National Accelerator Laboratory (Fermilab) [84]. The existence of further neutrino
states has not been proven so far. In contrast, limits on the number of neutrino states
have been set. The number of light neutrino states that take part in the weak interaction
may be investigated from the Z production in electron positron collisions. A combination
of all four Large Electron–Positron Collider (LEP) experiments yields [100] [121]

Nν = 2.9841± 0.0083 . (1.1)

IDouble Chooz Document Database 7503
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Chapter 1. Motivation

However, this does not constrain the total number of neutrinos but only the number of
weakly interacting neutrinos with masses mν ≤ mZ

2 , where mZ is the mass of the Z boson.
.

Cosmology can set limits on the number of light neutrino states as well, since light neutrinos
contribute to the radiation component of the universe; if they interact weakly or not.
Taking together Planck and other astrophysical observations gives [108]

Neff = 2.99± 0.17 . (1.2)

where Neff is the effective number of relativistic degrees of freedom [12]. The three known
neutrino states result in Neff = 3.046 [86]. Any value Neff �= 3.046 would be a result of
non standard neutrino properties, additional neutrino states or other particles (i.e. not
photons and not neutrinos) contributing to the radiation density in the early universe [86]
. Note that one additional sterile neutrino state does not necessarily lead to an increase in
Neff of exactly one. Instead, this is only the case if the state is in thermal equilibrium with
the known neutrino states [87]. Indeed, thermal equilibrium of weakly interacting and not
weakly interaction neutrino types is not necessarily given and could be suppressed by for
instance an initial lepton asymmetry [87] [72] or by a self-interaction of the sterile states
[71] [28].

Laboratory limits on the number of neutrino states only apply for the weakly interacting
species and cosmological limits eventually can be avoided [87] [72] [71] [28]. Thus, the
existence of additional neutrino types is not fully excluded as long as they do not take
part in the weak interaction. In contrast, experimental anomalies have been observed that
could be explained by such additional neutrino types that do not interact weakly. Those
are called sterile neutrino. These anomalies will be summarized in section 1.4 after the
theory of the phenomena of neutrino oscillation has been explained in the next section,
section 1.2. A model containing m sterile neutrino mass states in addition to the three
know states will be referred to as 3+m model, where this work focuses on the 3+1 model.

1.2 Neutrino oscillations

The first hint towards neutrino oscillations was a discrepancy between the predicted neu-
trino rate and the measured neutrino rate from the Sun [33]. This effect named solar
neutrino problem was first reported by the Homestake experiment in 1968 [49] and later
confirmed by several experiments [33]. The solar neutrino problem [111] is solved by neu-
trino oscillations which were experimentally confirmed in 2001 by the Sudbury Neutrino
Observatory (SNO) experiment [17]. Evidence for muon neutrino oscillations was firstly
reported by the Super-Kamikande collaboration in 1998 [82]. Neutrino oscillations require
neutrinos to have a non vanishing mass which was not foreseen in the original standard
model. Thus, Takaaki Kajita from the Super-Kamikande collaboration and Arthur B.
McDonald from the SNO collaboration were awarded with the 2015 Nobel Prize "for the
discovery of neutrino oscillations, which shows that neutrinos have mass." [98].

Neutrino oscillations arise because the neutrino flavor eigenstates are not identical to the
mass eigenstates. Instead, the flavor eigenstates are a linear combination of the mass
eigenstates [106]:

|νflavor� = U∗ |νmass� which means in components |να� =
�

j

U∗
αj |νj� . (1.3)
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1.2. Neutrino oscillations

This is called neutrino mixing. In the 3+1 model it is a convention to write flavor and
mass states as:

|νflavor� =
� νe

νµ
ντ
νs

�
and |νmass� =

�
ν1
ν2
ν3
ν4

�
. (1.4)

In the nominal model, the last row of the vectors does not exist; in a model with more
than one sterile state the additional states are added below the others. The matrix U is
an element of the special unitary group SU(N). U is called Pontecorvo-Maki-Nakagawa-
Sakata matrix (PMNS matrix). This matrix will be explained in detail later. The equation
of motion is

i
d

dt
|ν(t)� = H |ν(t)� , (1.5)

assuming � = c = 1. H is the Hamiltonian and diagonal in basis of the mass eigenstates

Hij = δijHii = δijEi = δij

�
p2i +m2

i (1.6)

where Ei, mi and pi are energy, mass and momentum of νi. pj ≈ pi ≈ p, follows from
pi >> mi as light neutrinos are relativistic. Therefore, H from equation (1.6) can be
simplified to

Hii ≈ pi +
mi

2

2pi
≈ p+

mi
2

2p
. (1.7)

With equation (1.7), equation (1.5) can be rewritten as

i
d

dt
|ν(t)� = i

d

dt
e−ipt

��ν �(t)
�

. (1.8)

The global phase e−ipt in equation (1.8) is not relevant for observable probabilities
| �ν(t = 0)|ν(t = t�)� |2. Hence, it is conventionally dropped. With this convention, x = c·t,
p ≈ E and equation (1.6) the equation of motion (equation (1.5)) is given by

i
d

dx
|νmass� =

1

2E
·M |νmass� (1.9)

in the basis of the mass eigenstates. Here, M is a diagonal matrix of the squared masses:

Mij = δijMii = δijm
2
i . (1.10)

As shown above, adding constants to M has no impact on | �ν(t = 0)|ν(t = t�)� |2. There-
fore, M may be for instance defined as

Mij = δij · (m2
i −m2

1) (1.11)

equivalently. The notation
Δm2

ij := m2
i −m2

j (1.12)

is common and will be used in the following.

Equation (1.9) is solved by

|νj� =
���νj(�0)

�
e−im2

jL/2E , (1.13)

which implies due to equation (1.3)

|να� =
�

j

U∗
αj

���νj(�0)
�
e−im2

jL/2E . (1.14)
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Chapter 1. Motivation

The so called appearance probability P (α → β) to tag a neutrino which was in flavor state
α at the starting point as flavor β later at point �x is calculated using:

P (α → β) =
���
�
να(�0)

���νβ(�x)
����

2
=

���
�
να(�0)

���νβ(L)
����

2
(1.15)

where the start point has w.l.o.g. been set to �0 and L is the travel distance i.e. L = |�x|.
With equation (1.14) [64]

P (α → β) =

������
�

j

U∗
αjUβje

−im2
jL/2E

������

2

(1.16)

follows, which can be rewritten as [68]:

P (α → β) = δαβ−4
�

i>j

Re(U∗
αiUβiUαjU

∗
βj) sin

2 (Δij) +2
�

i>j

Im(U∗
αiUβiUαjU

∗
βj) sin (2Δij)

(1.17)
where

Δij :=
Δm2

ijL

4E
≈ 1.27

Δm2
ij [eV

2]L[km]

4E[GeV]
. (1.18)

For antineutrinos, all matrix elements in equation (1.17) have to be replaced by the
their complex conjugate, in other words, the last term changes it sign [64] [68]. Now,
for numerical calculations of equation (1.16) the parametrization of the PMNS matrix
U is important. As already mentioned, U is part of the SU(N) which is defined by
SU(N) = {U ∈ C(N×N) |U · U† ≡ U · U∗T = 1 (Unitarity) ∧ det(U) = 1 }. This means
that U can be parameterized by N(N−1)

2 free real parameters and N(N+1)
2 phases. In case

neutrinos are Dirac particles, only (N−1)(N−2)
2 of these phases are physically relevant; in

case neutrinos are Majorana particles (N−1)(N−2)
2 +(N−1) are [100]. From equation (1.16)

follows that CP-violating phases do not enter P (α → β) if α = β. Thus, both Majorana
and Dirac CP-violating phases are unobservable for disappearance experiments, because
U∗

αiUβiUαjU
∗
βj = U∗

αiUαiUαjU
∗
αj = |Uαi|2 |Uαj |2 for α = β in equation (1.17). The real

parameters are usually referred to as mixing angles θij because U can be parameterized as
a product of rotation matrices Rij :

(Rij(θij))kl =





1 k = l ∧ k �= i, j

cos(θij) k = l ∧ (k = i ∨ k = j)

− sin(θij)e
−δ k = j ∧ l = i

sin(θij)e
δ k = i ∧ l = j

0 else

(1.19)

The order of the multiplication is relevant, because rotation matrices do not commute in
general.
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1.2. Neutrino oscillations

Conventionally, in the standard no sterile scenario

U =




Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3


 = R23(θ23, 0) · R13(θ13, δ) · R12(θ12, 0) ·V(ei·0.5·α21 , ei·0.5·α31)

=




1 0 0
0 c23 s23
0 −s23 c23







c13 0 s13e
iδ

0 1 0
−s13e

−iδ 0 c13







c12 s12 0
−s12 c12 0
0 0 1







1 0 0

0 eiα21/2 0

0 0 eiα31/2




=




c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13







1 0 0

0 eiα21/2 0

0 0 eiα31/2




(1.20)

is used, where [106]
sij = sin(θij) and cij = cos(θij) . (1.21)

In models with N>3 neutrino states U gets extended to NxN dimensions. In doing so,
U has to transform in the nominal convention if additional mixing angles are set to zero
-otherwise the physical meaning of the mixing angles may change. Usually

U = R34R24R23R14R13R12 = R34R24R14R23R13R12 (1.22)

is used in the 3+1 model. With this definition the elements of U areII [104]

Ue1 = cos θ14 cos θ13 cos θ12 (1.23)
Ue2 = cos θ14 cos θ13 sin θ12 (1.24)
Ue3 = cos θ14 sin θ13 (1.25)
Ue4 = sin θ14 (1.26)

where all CP-violating phases have been set to zero, because the focus of this work is on
electron antineutrino disappearance and disappearance experiments can not observe any
CP-violation a already mentioned (cf. equation (1.16)). With equations (1.23) to (1.26)
and equation (1.17) the electron (anti-) neutrino survival probability is:

Pee =1− c414s
2
12 sin

2 2θ13 sin
2Δ32 − c414c

2
12 sin

2 2θ13 sin
2Δ31 (1.27a)

− c414c
4
13 sin

2 2θ12 sin
2Δ12 (1.27b)

− s213 sin
2 2θ14 sin

2Δ43 − c213s
2
12 sin

2 2θ14 sin
2Δ42 − c213c

2
12 sin

2 2θ14 sin
2Δ41 .

(1.27c)

Using Δm2
21 << |m2

32| and cos2(x) + sin2(x) = 1 ∀x ∈ C equation (1.27) simplifies to:

Pee ≈1− c414s
2
12 sin

2 2θ13 sin
2Δ31 − c414c

2
12 sin

2 2θ13 sin
2Δ31 (1.28a)

− s213 sin
2 2θ14 sin

2Δ43 − c213s
2
12 sin

2 2θ14 sin
2Δ41 − c213c

2
12 sin

2 2θ14 sin
2Δ41 (1.28b)

=1− c414 sin
2 2θ13 sin

2Δ31 − s213 sin
2 2θ14 sin

2Δ43 − c213 sin
2 2θ14 sin

2Δ41 (1.28c)

IIThis has been confirmed with Maple.
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Chapter 1. Motivation

Table 1.1: Global best fit values of the standard neutrino mixing parameters [107]. For
the CP-violating phase δ no global best fit value is provided in [107].

parameter value ± 1σ

Δm2
21/10

−5 eV2 7.53± 0.18

Δm2
32/10

−3 eV2 −2.53± 0.05
+2.444± 0.034

sin2 θ12 0.307± 0.013
sin2 θ13 0.0218± 0.0007

sin2 θ23 0.536+0.023
−0.028

which may be further approximated to:

Pee ≈ 1− c414 sin
2 2θ13 sin

2Δ31 − sin2 2θ14 sin
2Δ41 (1.29)

or
Pee ≈ 1− c414 sin

2 2θ13 sin
2Δee − sin2 2θ14 sin

2Δ41 , (1.30)

where

Δee :=
Δm2

eeL

4E
≈ 1.27

Δm2
ee[eV

2]L[km]

4E[GeV]
(1.31)

and
Δm2

ee := cos2(θ12)Δm2
31 + sin2(θ12)Δm2

32 . (1.32)

The current global best fit values for Δm2
21, Δm2

32, sin
2 θ12, sin2 θ13 and sin2 θ23 are sum-

marized in table 1.1.

1.3 Neutrino masses

Solar oscillation experiments proofed that the solar mass squared difference Δm2
21 is pos-

itive. However, the sign of Δm2
32 is not known yet; experiments to answer this question

are currently under construction [20]. Sterile neutrinos could be lighter or heavier than
the know states i.e. Δm2

41 > 0 or Δm2
41 < 0 is both possible - as long as all masses

are positive. Figure 1.1 illustrates all possible mass orderings in the 3+1 model; a) is
referred to as normal mass ordering standard neutrinos, normal mass order sterile neu-
trinos (NONO), b) as inverted mass order standard neutrinos, normal mass order sterile
neutrinos (IONO), c) as inverted mass order standard neutrinos, inverted mass order sterile
neutrinos (IOIO) and d) as normal mass ordering standard neutrinos, inverted mass order
sterile neutrinos (NOIO).

Neutrino oscillations may only occur if neutrinos have a non zero mass. Therefore, neutrino
oscillations are not foreseen in the original standard model physics because neutrinos have
no mass in it. However, only squared mass differences are relevant for neutrino oscillations.
The only requirement is that all masses have to be positive. This results in an upper limit
of:

min(mν) >
�
Δm2

32 −Δm2
21 (IH) (1.33)

min(mν) >
�
Δm2

32 +Δm2
21 (NH) (1.34)
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1.3. Neutrino masses

Figure 1.1: Illustration of possible neutrino mass orderings in the 3+1 model: a) is referred
to as normal mass ordering standard neutrinos, normal mass order sterile neutrinos, b) as
inverted mass order standard neutrinos, normal mass order sterile neutrinos, c) as inverted
mass order standard neutrinos, inverted mass order sterile neutrinos and d) as normal mass
ordering standard neutrinos, inverted mass order sterile neutrinos.

Laboratory experiments set a limit on the mass of the electron antineutrino mν̄e by mea-
suring the electron β-decay spectrum at its end point. The most precise laboratory mea-
surement is from the Troitsk experiment and obtained an upper limit [100] [29]:

mν̄e < 2.05 eV (95% CL) . (1.35)

Cosmology yields even more stringent limits; An upper limit on the sum of neutrino masses�
imi of �

i

mi < 0.12 eV (95% CL) (1.36)

is found by the Planck collaboration by combining their results with other cosmological
measurements [108] (see [108] for details).
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Chapter 1. Motivation

1.4 Anomalies

Several anomalies hint to or allegedly hint to the existence of further neutrino states. These
anomalies are summarized briefly in the following. However, while sterile neutrinos are able
to explain some of the anomalies individually the do not manage to describe all of them
consistently.

1.4.1 Reactor antineutrino anomaly

The neutrino rate normalization observed by reactor neutrino experiments used be con-
sistent with predictions. However, in 2011, the predictions were recalculated resulting in
an increase by about 3.5% [93]. At the same time, the cross section of the inverse beta
decay has been corrected down. Suddenly, all reactor neutrino experiments observed a
neutrino rate normalization smaller than predicted [91]. This mismatch is named reactor
antineutrino anomaly.

On the one hand, the oscillation signature observed by reactor neutrino experiments washes
out when the oscillation signature becomes smaller than the energy resolution. Therefore,
the mismatch could be explained by a sterile neutrino with a mass squared difference in the
eV range [91]. Indeed, this is one of the motivations to induce sterile neutrino. However, it
can not be excluded that the mismatch is due to a wrong prediction of the initial oscillated
reactor flux.

Daya Bay Reactor Neutrino Experiment (Daya Bay) is a θ13 experiment similar to Double
Chooz. The collaboration has analyzed the reactor antineutrino rate deficit as a function
of fuel composition. Daya Bay data indicates that an incorrect antineutrino prediction
related to the isotope uranium-235 might be the main source of the reactor antineutrino
anomaly. An explanation by a sterile neutrino only is disfavored by 2.6σ [23].

Several dedicated experiments have been designed to investigate the reactor antineutrino
anomaly measuring the spectral shape of the reactor antineutrino flux at various base-
lines of O(10 m) [19][30][38]. The best fit of sin2 θ14, Δm2

41 from the reactor antineutrino
anomaly [91] is excluded by more than 95% C.L. by each of the experiments DANSS
[19], PROSPECT [30] and STEREO [38]. Also, the NEutrino Oscillation at Short base-
line (NEOS) experiment disfavors the best fit from the reactor antineutrino anomaly by
more that 90% C.L. [83]. Moreover, these experiments exclude significant amounts of the
allowed regions from the reactor antineutrino anomaly [91]. However, the reason for the
mismatch could not be ascertained without doubt so far.

The global deficit observed with Double Chooz is ≈ 8.6% [101]. A oscillation analysis
with Double Chooz data is not able to solve the question whether this is due to washed
out oscillations related to a sterile neutrino. Therefore, the predicted global reactor flux
normalization is not used in this analysisIII.

IIIThe Double Chooz experiment in general has small handle to distinguish if the mismatch between
predicted and observed global reactor flux normalization is due to the reactor. However, note that by
plotting the global reactor flux normalization versus uranium-235 fraction in the reactor (which changes
during the reactor circle (cf. section 2.2)) a dependence on the reactor composition could be detected in
general. Unfortunately, only in case of an observed dependence conclusions could be drawn. Additionally,
the expected sensitivity for such an analysis is not enough to finally solve the question.
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1.4. Anomalies

1.4.2 Gallium anomaly

The solar neutrino experiments Gallium Experiment (GALLEX) and Soviet–American
Gallium Experiment (SAGE) used gallium target detectors to identify electron neutrinos
by the inverse beta decay reaction νe +

71Ga → e + 71Ge. Both experiments investigated
radioactive 51Cr sources placed inside the detectors [1, 25, 70]. Moreover, the SAGE
collaboration investigated a 37Ar source [2]. The measured rates from the sources were
smaller than expected with a combined significance of 3.0σ [2]. This mismatch could
be explained by a sterile neutrino with Δm2

41 > 0.35 eV2, sin2 2θ14 > 0.07 at 99% CL
[67]. However, short baseline reactor experiments have excluded significant amounts of the
allowed region from the combined fit of gallium and reactor antineutrino anomaly [19, 30,
38]. Recent recalculations of cross sections based on shell models reduce the significance of
the gallium anomaly to 2.3σ [85]. The gallium experiment Baksan Experiment on Sterile
Transitions (BEST) is going to further investigate the gallium anomaly [34].

1.4.3 LSND and MiniBooNe anomaly

The Liquid Scintillator Neutrino Detector (LSND) at the Los Alamos Meson Physics
Facility measured νµ → νe oscillations utilizing νµ beam from π+ decay in flight and
ν̄µ → ν̄e oscillations from µ+ decay at rest. The νe appearance was detected by the
reaction νe+C → e−+X while the ν̄e appearance was detected by the inverse beta decay
ν̄e+p → e−+n. The data measured in both channels could not be explained by oscillations
among the three known neutrino states [32] [31].

MiniBooNe is a neutrino oscillation experiment at Fermi National Accelerator Laboratory
(Fermilab) build to investigate the νµ → νe and ν̄µ → ν̄e oscillations. Historically, the
experiment was build to revise the LSND results [15]. The results for both the νµ → νe
and ν̄µ → ν̄e show an excess of electron (anti-)neutrinos [16]. The excess is consistent with
the results from LSND. Combination of data from both experiments yield a significance
of 6.0σ [16]. The LSND and MiniBooNe data can be explained in the 3+1 model [27].
However, this explanation is rejected by measurements from disappearance experiments
[52]. The experiment MicroBooNE is intended to further investigate the excess observed
with MiniBooNe [27].

1.4.4 Spectral distortion

The Double Chooz Collaboration has observed a mismatch of the reactor neutrino pre-
diction and their measured data in the visible energy region around 5-6 MeV [7]. The
mismatch has been confirmed by the Daya Bay Reactor Neutrino Experiment (Daya Bay)
[22], the Reactor Experiment for Neutrino Oscillation (RENO) [114] and the NEutrino
Oscillation at Short baseline (NEOS) [83]. All these experiments have different baselines
to the reactor cores. Moreover, Daya Bay, RENO and Double Chooz even have more than
one detector and see the distortion with all of their detectors. Figure 1.2 illustrates the
data-MC ratio seen by Daya Bay, RENO, NEOS and Double Chooz (near detector) [50].
One may come to the conclusion that the 4-6 MeV region is remarkably spotty. However,
data has been normalized [50] and the region of best agreement depends on that normal-
ization. The distortion can hardly be explained by sterile neutrinos since those would not
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Chapter 1. Motivation

Figure 1.2: Data-MC ratio for neutrino events as a function of visible energy from
Daya Bay (blue squares) [24], RENO (red triangles) [18], NEOS (green triangles) [83]
and Double Chooz (near detector, black circles) [50]. The normalization from RENO and
NEOS has been modified w.r.t. the publications of this experiments. This plot has been
taken from [50] .

cause the same pattern at different baselines. Furthermore, the Double Chooz collabora-
tion obtained indication that the distortion is proportional to the thermal power of the
reactors [43]. Currently, the spectral distortion seems likely to originate from an imprecise
reactor flux prediction. Although there is no indication that it is due to sterile neutrino,
the setup of this analysis should avoid any potential bias by the spectral distortion. There-
fore, this analysis does not rely on reactor flux prediction but only compares data to other
data. More on this is explained in the following chapters.
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Chapter 2

The Double Chooz experimental
setup

This chapter describes the experimental setup of the Double Chooz Experiment.

2.1 Overview

The Double Chooz experiment is a reactor antineutrino disappearance experiment designed
in order to measure the neutrino mixing angle θ13. The experiment is located in a small
French city in the Ardennes named Chooz. The Double Chooz experiment has measured
the neutrino flux from the two nuclear reactors B1 and B2 until 2018. The Chooz-B
nuclear power plant site is located at the Nucléaire de Chooz operated by Electricité de
France (EDF) with two almost identical liquid scintillator detectors. The near detector
located at a distance of about 400 m to the nuclear reactors was operating from January
2015 until the beginning of 2018, the far detector located at a distance of about 1050 m to
the nuclear reactors was operating between April 2009 until the beginning of 2018. The
Chooz-B power plant site and the position of the detectors are shown in figure 2.1. The
detailed distances are given in figure 2.2. Importantly, the detectors are almost located at
the isoflux curve i.e. at the curve where both detectors measure the same fraction of events
from B1 and B2. The far detector is installed under an rock overburden of around 300 m
water equivalent [3], the near detector is installed under an rock overburden of around
120 m water equivalent [78].
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Chapter 2. The Double Chooz experimental setup

Figure 2.1: Illustration of the site of the Chooz-B nuclear power plant including the Double
Chooz detectors [60]. The insert in the lower left shows the location of Chooz in France.
The map has been taken from [126] and been modified.

Figure 2.2: Experimental configuration of the Double Chooz experiment. The dashed
blue line indicates the far detector isoflux curve i.e. positions at which the ratio of events
from both reactors is constant. Altitude differences are not shown in this plot. The far
detector is about 31 m below the altitude level of the reactors and the near detector is
about 42 m below the altitude level of the reactors. The noted distances between detectors
and reactors account for the differences in altitude. Therefore, they do not correspond
exactly to the length of the particular line in this plot. The iso-flux curve was calculated
assuming all reactors and detectors were at the same altitude. Distances have been taken
from [122]. Own illustration.

12 RWTH Aachen



2.2. Neutrino source

2.2 Neutrino source

Chooz B1 and B2 are N4 type pressurized water reactor (PWR) cores yielding a nominal
power output of 4.25 GWth each [4]. The main process in the reactor cores is the controlled
exothermic fission chain reaction:

n+ 235U → 236U∗ → AX+ BY+ C · n , A+B + C = 236, A,B,C ∈ N . (2.1)

A neutron is captured by an uranium-235 atom, which transforms into an exited
uranium-236 atom. Then it breakes into two other atoms X and Y plus neutrons as
illustrated in figure 2.3. Exemplary for this is [88]:

n+ 235U → 236U∗ → 140Xe + 94Sr + 2n+ 200MeV . (2.2)

The resulting neutrons may induce other interactions of this type. The fission fragments
X and Y produce anti electron neutrinos by undergoing a series of beta minus decays since
they are unstable due to a large number of neutrons compared to the number of proton in
these atoms [88]. For example, in equation (2.2) the decays lines are [88]:

140Xe
β→ 140Cs

β→ 140Ba
β→ 140La

β→ 140Ce and 94Sr
β→ 94Y

β→ 94Zr . (2.3)

In fact, the total neutrino flux results from decay and fissions of more than 1000 daughter
isotopes [62].

The number of neutrinos produced by a nuclear reactor is roughly proportional to its
thermal power. Nuclear reactors usually produce an anti electron neutrino rate of about
[91]

Rν̄e ≈ 1020 s−1 per GW thermal power . (2.4)

Three isotopes other than 235U contribute significantly to this number: 238U, 239Pu and
241Pu [91]. The reason for these isotopes being present in the reactor is explained in the
following. Typical reactor fuel mostly consists of uranium, where the 235U abundance has
been increased artificially to a few percent. The rest of the uranium is almost entirely
238U. The fraction of 235U in the reactor decreases during operation (since it is used for the
controlled fission chain reaction) and the reactor accumulates 239Pu due to the reaction
[88]:

n+ 238U → 239U
β→ 239Np

β→ 239Pu . (2.5)

The 239Pu may capture an other neutron and become 240Pu if it is not fissioned. 240Pu
is again able to capture a neutron and become 241Pu [88]. This is illustrated in figure
2.4. The burned 235U must be refilled. Therefore, each reactor is powered off after about
one year of operation for several weeks in order to exchange about one third of the fuel
[4]. Thus, Double Chooz has taken data with both reactors on but also with only one
reactor on. The fuel exchange in a reactor core is usually done while the other reactor
core is running. Figures 2.5 and 2.6 show the neutrino candidate rate versus time for near
and far detector. The expected rate being roughly proportional to the reactor power (cf.
equation (2.4)) is shown in red. It was calculated assuming no-oscillation. The observed
rate is shown in blue (near detector) and black (far detector). The plots show that the
observed rate is proportional to the reactor power as well as the expected rate and that
expected and observed rate are proportional to each other. The bottom plots presents the
ratio 2(MC - Data)/(Data + MC) versus time where Data is the experimental data and
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Figure 2.3: Illustration of the fission chain reaction of 235U (cf. equation (2.1)) [103]. As
shown here, the uranium may produce several different fission fragments. An example is
given in equation (2.2). Note, that if the fission chain reaction is controlled, usually not all
of the neutrons induce other fissions. Instead, if for instance the reaction rate is intended
to be constant, exactly one neutron on average induces an other fission.

Figure 2.4: Illustration of the 239Pu creation in a nuclear reactor (see equation (2.5)).
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2.2. Neutrino source

Figure 2.5: Rate of neutrino candidates in the near detector rate versus time. The expected
rate is shown in red while the observed rate is shown in blue. The bottom plot presents
2(MC - Data)/(Data + MC) versus time. Here, Data means the experimental data and
MC means the expected rate from Monte Carlo without oscillation [58] (modified).

MC is the expected rate from Monte Carlo (MC) simulations without oscillation. Since
oscillation was not included in the expected rate, the ratio 2(MC - Data)/(Data + MC) is
smaller than 1 in particular in the far detector. More precisely there is a deficit of ≈ 0.9
due to the oscillation effects related to sin2 2θ13.
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Figure 2.6: Rate of neutrino candidates in the near detector rate versus time. The expected
rate is shown in red while the observed rate is shown in black. The bottom plot presents
2(MC-Data)/(Data + MC) versus time. Here, Data means the experimental data and MC
means the expected rate from Monte Carlo without oscillation [59] (modified).

2.3 Neutrino detection

Section 2.3.1 introduces the physical process utilized for the neutrino detection. After that
section 2.3.2 goes more into detail abut the Double Chooz detectors.

2.3.1 Detection principle

The neutrino detection is done by inverse beta decay (IBD):

ν̄e + p → n+ e+ . (2.6)

The energy threshold for the inverse beta decay process is mn −mp +me = 1.8MeV. The
reaction of the inverse beta decay is illustrated in figure 2.7, the corresponding Feynman
diagram is shown in figure 2.8. The antineutrino exchanges a W− boson with a proton
producing a neutron and a positron (cf. figure 2.7, figure 2.8). Inverse beta decay produces
a characteristic prompt delayed coincidence in the detector as explained in the following.

Prompt signal The positron promptly annihilates with an electron producing two pho-
tons. Importantly, the energy deposit of this prompt event depends on the neutrino energy
Eν . The positron energy Ee+ is approximately [123]:

Ee+ = Eν − (mn −mp)−O(Eν/mn) , (2.7)
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2.3. Neutrino detection

Figure 2.7: Illustration of the
inverse beta decay [78]. Figure 2.8: Feynman diagram of the inverse beta de-

cay. Time axis is the x-axis. Own illustration.

where mn and mp are the rest masses of the neutron and the positron. The visible energy
deposited by the photons in the detector Evis is the sum of the total positron energy plus
the rest mass of the electron me− :

Evis = Ee+ +me− ≈ Eν − (mn −mp) +me− . (2.8)

Thus, the energy of the antineutrino can be calculated from the visible energy by

Eν ≈ Evis − (mn −mp) +me− . (2.9)

As illustrated in figure 2.9, the final reactor neutrino spectrum is a product of the neutrino
flux from the reactors (solid line) and the cross section of the inverse beta decay (dashed
line). The resulting spectrum is indicated by the light blue area. It reaches from 1.8 MeV
to ≈ 8 MeV where the maximum is around 4 MeV (cf. figure 2.9).

Delayed signal The delayed signal is produced when the neutron has been thermalized
and is captured by either a gadolinium (Gd) or a hydrogen (H) nucleus afterwards. The
neutron capture results in a characteristic energy deposit of 8.0 MeV for gadolinium [128]
respectively 2.2 MeV [37] for hydrogen. The delayed event is named after the delay due to
the required thermalization process. The precise delay time depends on the fluid in which
the interaction occurs, namely on its thermalization properties and its neutron capture
cross section. The characteristic energy of the delayed event and the delay time allow a
reliable identification of inverse beta decay events. The hydrogen capture energy is closure
to typical energy deposit of background reactions caused by natural radioactivity which
usually deposit relatively small amounts of energy. Thus, the selection of inverse beta decay
events on hydrogen capture suffers more from natural radioactivity induced background
than the selection of inverse beta decay events on gadolinium capture. A small fraction of
neutrons is also captured by carbon atoms where the characteristic energy deposit is about
5 MeV [50]. Further details on backgrounds and the neutrino candidate selection can be
found in section 2.5 and 3.5.
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Figure 2.9: Illustration of the reactor neutrino spectrum versus (visible) neutrino energy
as a product of detection cross section and reactor flux [99].
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2.3.2 Detector

Figure 2.10 shows a schematic illustration of the Double Chooz detectors. The Double
Chooz detectors are liquid scintillator detectors made of four con-centric cylindrical vessels
inside each other (onion structure). These four vessels hold the neutrino target (NT), the
gamma-catcher (GC), the buffer and the inner veto (IV) (from inside to outside). All of
these volumes will be explained in the following. The outer vessel holding the inner veto
volume has a diameter and a height of 7 m.

Inner detector

Neutrino target, gamma-catcher and buffer form the inner detector (ID). The buffer fluid
is contained in a stainless steel tank holding 390 10-inch photomultiplier tubes (PMTs)
while neutrino target and gamma-catcher and buffer are separated by transparent acrylic
vessels. The term inner detector includes these PMTs [4].

Neutrino target The neutrino target is the innermost volume inside the inner trans-
parent acrylic vessel filled with 10.3m3 liquid scintillator. It is doped with 1 g Gd /liter
corresponding to a gadolinium fraction of 0.123% by weight[4]. The neutrino target is the
only volume in which neutron captures on gadolinium capture are possible, because the
other volumes do not contain gadolinium. Further information about all liquid scintillators
used in the experiment can be found in [11] and [10].

Gamma-catcher As mentioned in the previous section, the prompt event consists of
two photons produced by annihilation of the positron from the inverse beta decay with
an electron inside the detector. In order to obtain the energy of the prompt event it
is essential to detect both photons. Therefore, the neutrino target is surrounded by the
gamma-catcher a 55 cm thick liquid scintillator layer inside the outer transparent acrylic
vessel. The gamma-catcher volume is 22.5 m3 [4].

Buffer In order to shield against photons from PMTs and the surrounding rock, Neu-
trino target and gamma-catcher are surrounded by a 105 cm thick layer of non-scintillating
mineral oil, the buffer. The 110 m3 of buffer mineral oil are filled into a stainless steel tank
equipped 390 10-inch Hamamatsu R7081 PMTs [35] [4].

Veto-systems

Inner veto The inner detector is surrounded by the inner veto, a 50 cm thick layer of
liquid scintillator with 78 8-inch PMTs mounted in the 15 cm thick steal shielding around it;
24 PMTs are mounted in the top, 12 in the side walls and 42 on the bottom [4]. In addition
to being an active veto for cosmic ray muons the IV also works as a shield, in particular
against external fast neutrons. The steal shielding further protects against photons from
the outside.
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Figure 2.10: Schematic illustration of the Double Chooz detectors [7]. This is the far
detector, in the near detector the outer shielding is realized by 1 m of water instead of steel
[50].

Outer veto The outer veto (OV) covers the top of the detector. The lower outer veto
directly above the steel shielding veto consists of plastic scintillator strips mounted in two
layers oriented vertically to each other. In the far detector it covers a region of 91m2

around the chimney except for 10 cm x 30 cm directly around it [4]. In the near detector
the covered area is 47m2 [113].

Chimney

The volumes of neutrino target and gamma-catcher are not completely closed in order to
allow placing calibration sources in the detector. A vertical shaft called chimney in the
center of the detector and a glove box installed at its upper end allow to locate a source
in these volumes. There is a clean room around the glove box to avoid contamination.
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Figure 2.11: Schematic illustration of the calibration systems for deployment of radioactive
sources in the Double Chooz detectors, the z-axis system and the guide tube system [89].

2.4 Calibration

In order to reconstruct the neutrino energy a conversion function between charge deposit
in the PMTs and visible energy is needed. This conversion function is not constant due
to degeneration of detector hardware caused by power cycles or time evolution. Therefore,
calibration systems allowing to obtain and to monitor the conversion function over time
have been installed in the Double Chooz detectors. They are schematically illustrated in
figure 2.11 and described in the following.

2.4.1 Inner veto light injection system

The inner veto light injection (IVLI) system was installed in order to monitor the properties
of the inner veto PMT and the liquid scintillator. For this purpose, light-emitting diodes
(LEDs) illuminate optical quartz fibers that are attached to the inner veto PMTs (at least
one fiber per PMT) and therefore guide the light into the inner veto. Six of the in total
96 LEDs are ultra violet (365 nm wavelength), 78 of them are blue (475 nm). All of the
LEDs are placed on one compact board mounted outside the detector on the wall of the
laboratories. With this setup, single PMTs can be illuminated. It allows to measure gain
and number of p.e. of the PMTs as well as the light yield of the liquid scintillator [61].
Further details can be found in [61].
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2.4.2 Inner detector light injection system

The inner detector light injection (IDLI) system is very similar to the inner veto light
injection system, except that it monitors the inner detector instead of the inner veto. The
inner detector light injection system consists of optical quartz fibers attached to LEDs.
These LEDs have wavelength of 385, 425 and 470 nm. In contrast to the IVLI system,
the IDLI system can not illuminate single PMTs. Instead, diffuse beams in 32 different
configurations or focused beams in 14 different configurations beams through the detector.
In doing so, PMTs an scintillator properties may be measured [124]. Further details can
be found in [124].

2.4.3 Guide tube system

The guide tube system allows the deployment of radioactive sources in the gamma-catcher.
It can be accessed through the chimney and consists of a steel tube loop and a wire being
able to guide sources through the tube since it is connected to a computer controlled stepper
motor. Thereby, the position of the source along the tube is known to 1 cm precision.

2.4.4 Z-axis system

The z-axis system is used to deploy sources along the central symmetry axis of the detector
(z-axis) in the neutrino target volume. Similar to the guide tube system, the z-axis system
is accessed through the chimney and the lowering of the source into the neutrino target
volume is guided by a wire connected to a computer controlled step motor. The position
on the z-axis is known to 1 mm precision.

2.5 Backgrounds

There are several background processes that create a signal similar to the IBD event. All
unneglatible types of background processes are explained in the following.

2.5.1 Correlated background

The correlated backgrounds mimic both the prompt and the delayed event. Correlated
backgrounds are due to atmospheric muon, i.e. muons that are produced in cosmic ray air
showers. These atmospheric muons may enter the detector or the nearby rock. Although
through going muons themselves are easily identified by their huge energy deposit atmo-
spheric muons may cause different processes that mimic an inverse beta decay signal as
described in the following.
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Figure 2.12: Schematic illustration of the fast neutron and stopping muon background
process. Muon µ1 causes fast neutrons, muon µ2 is a stopping muon. Detector illustration
has been taken from [78] and background process illustrations have been added.

Fast neutron background

Muon µ1 in figure 2.12 sketches the fast neutron (FN) background process. Spallation
of carbon atoms in the rock around the detector by atmospheric muons may produce
fast neutrons which can enter the detector due to there large interaction length. Proton
recoils by a fast neutrons inside the detector may produce an apparently prompt signal
followed by the delayed capture of that neutron which got decelerated due to the recoil
and thermalization or capture of a different neutron.

Cosmogenic isotope background

Organic liquid scintillators as used in Double Chooz are by definition vulnerable to spalla-
tion of carbon atoms by atmospheric muons because of their carbon fraction. The cosmo-
genic isotope background process is illustrated in figure 2.13. Spallation processes inside
the detector induced by cosmogenic muons entering the detector produce several spalla-
tion products, in particular 9Li and 8He. 9Li and 8He undergo β-n decay, i.e. beta decay
followed by neutron emission. Figure 2.14 illustrates the decay chain and the relevant
branching ratios for 9Li, figure 2.15 for 8He. β-n decay can not be distinguished from an
inverse beta decay because the Double Chooz detector is not able to distinguish an electron
from a positron. Additionally, the 9Li and 8He is challenging because of the long live times
of 257 ms respectively 172 ms which do not allow for vetoing on the primary muon event
[4] [9].
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Figure 2.13: Schematic illustration of the cosmogenic isotope background process. The
muon at the left handside creates 9Li by spallation. This 9Li decays via β − n decay after
257 ms and causes a fake inverse beta decay signal as illustrated at the right handside.
Detector illustration has been taken from [78].

Figure 2.14: Relevant branching ratios of the β-n decaying isotope 9Li (normalized to
100%) [116].
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Figure 2.15: Relevant branching ratios of the β-n decaying isotope 8He (normalized to
100%) [116].

Stopping muon background

The stopping muon (SM) background process is illustrated by muon µ2 in figure 2.12.
Muons entering the detector with relatively high energy can easily be identified by their
large energy deposit but muons entering the detector with less energy can not. Those
muons with few energy usually enter through the chimney and stop inside the detector.
In this case, the short muon track and the following Michel electron can be mistaken as
prompt delayed coincidence.

2.5.2 Uncorrelated background

The uncorrelated backgrounds produce only one signal. Nevertheless, this signal can be
misinterpreted as inverse beta decay event if there is a random coincidence with an other
background event.

Accidental background

Accidental background is caused by random coincidence that satisfy the selection criteria.
The main source is random association of two energy deposits caused by natural radioac-
tivity or random association of an energy deposit caused by natural radioactivity and a
background signal of different type. The mainly responsible isotopes are 40K, 60Co, 232Th,
238U (potassium-40, cobalt-60, thorium-232, uranium-238) and their decay products [105].
In particular the long half-lifetimes of 40K, 232Th and 238U of more than 109years [63] [36]
[112] cause a small unavoidable concentration of them in the detector - mainly in the non-
fluid detector components like PMTs, vessels and shielding. Moreover, there is some small
amount of natural radioactivity in the rock around the detectors. A schematic illustration
can be found in figure 2.16. The energy deposit of radioactive decays is typically below
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Figure 2.16: Schematic illustration of the accidental background process. Detector illus-
tration has been taken from [78].

3 MeV. Thus, the accidental background is mainly present at low prompt energies and the
contamination of neutron captures on hydrogen is bigger than on gadolinium [9].

Light Noise background

Unexpectedly, a high rate >100 Hz of spontaneous light emission by the PMTs themselves
was detected during the commissioning of the far detector as illustrated in figure 2.17. This
background was named Light Noise (LN) and turned out to be connected to the epoxy used
to cover the PMT bases. A possible explanation is that it is caused by discharge of gas in
bubbles in the epoxy used to cover the PMT bases [8]. Fortunately, for Light Noise events
most of the light is firstly seen by the PMT producing the light, and secondly by the nearby
PMTs. In contrast, for an inverse beta decay event the light is more broadly distributed
in the inner detector. Furthermore, Light Noise events consist of relatively long sequences
of pulses emitted by the PMT base producing a wide range of photon arrival times, while
for a single inverse beta decay signal all photons have comparable arrival times. Hence,
Light Noise can be efficiently rejected by the charge and arrival time distributions [8]. The
PMTs bases in the near detector were masked with a black radiopure polyester film [8] in
order to reduce Light Noise. This black film was indeed suppressing the PMT Light Noise
successfully.
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Figure 2.17: Basic schematic illustration of the Light Noise background process. Detector
illustration has been taken from [78].
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Chapter 3

Datasets

This chapter describes the dataset used in this work. After an introduction in section 3.1
the energy calibration is described in section 3.3. Next, the reactor neutrino prediction is
explained in section 3.4. Finally, the selection is described in section 3.5. The dataset is
identical to the dataset in [50].

3.1 Overview

The dataset is divided into the following subdatasets:

• FD1-On: Far detector in single detector phase with at least one reactor on

• FD1-Off-Off: Far detector in single detector phase with no reactor on

• FD1: union of FD1-On and FD1-Off-Off

• FD2 (also: FD-II, FDII): Far detector in two detector phase

• ND (also: ND-I): Near detector in two detector phase (i.e. all near detector data)

The most remarkable change in the experimental was the start of data taking with the
near detector in 2015 (cf. chapter 2). Thus, the far detector data is divided into data
taken in parallel with the near detector and not taken in parallel with the near detector
called FD2 and FD1 data. The flux observed with both detectors is almost fully correlated
only in the parallel data taking period. There are 7.16 days of lifetime with all reactors
off taken in 2011 and 2012 during the FD1 period. This so called FD1-Off-Off data is
mostly background dominated (although a small number of residual reactor neutrinos is
expected). The FD1-On data consists of 455.21 days of lifetime [50] [44]I collected between
April 2011 and January 2013, the FD2 and ND datasets have 362.97 respectively 257.96
days of lifetime taken from January 2015 until April 2016 [50] [44]. Table 3.1 summarizes
this information about the datasets.

IRuntime and lifetime are not identical due to a dead-time after muon events of 1.25µs (s. section 3.5)
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Table 3.1: Data taking period summary table [50] [44]

dataset FD1-On FD1-Off-Off FD2 ND
period single det. single det. two det. two det.

when taken 04/2011-01/2013 2011+2012 01/2015-04/2016 01/2015-04/2016
lifetime/days 455.21 7.16 362.97 257.96
meas. IBD 48147 68 42660 210480

3.2 Event vertex reconstruction

The vertex of the events is reconstructed by applying a likelihood (LLH) fit approach
which uses charge and time information of all PMTs and assumes that events are point
like. Consequently, the likelihood L(�x) of the event vertex being at �x = (x, y, z, t,φ) in the
five dimensional space of the three spatial coordinates x, y, z, time t and light intensity per
unit solid angle φ is given as [7]:

L(�x) =
�

iPMTs with qi=0

fq(qi, q
�
i(�x))

�

j PMTs with qj>0

fq
�
qj , q

�
j(�x)

�
· ft

�
tj , t

�
j(�x)

�
. (3.1)

Here, the index i runs over all inner detector PMTs that did not see a charge while j runs
over all of them which did. qj and tj are the charge and the arrival time being seen by
PMT j. Correspondingly, q�j(�x) and t�j(�x) are charge and time expected to be seen by PMT
j for an event at �x [7]. The algorithm minimizes the negative log likelihood function for �x
where the value of the negative log likelihood function at the best fit position �̂x is called
Functional Value (FV)

FV = − ln
�
L(�̂x)

�
. (3.2)

3.3 Energy calibration

Before any neutrino candidate selection, oscillation analysis or other high level analysis can
be done, the raw data must be processed. First, the low level electronic readout must be
processed, i.e. the PMT signal has to be digitized and processed. In particular, the PMT
charge signal is obtained. This is a non-trivial process, which is further described in [6].
Second, the PMT charge signal is converted into information about visible energy. This
process referred to as energy calibration includes several steps described in the following.

3.3.1 Linearized PE calibration

The term linearised photo electron calibration (linearised PE calibration) refers to the con-
version of the integrated waveform charges of the PMTs to the number of photo electrons
Npe [7]:

Nm
pe =

�

i

qi
gmi (qi, t)

, (3.3)

where the index m denotes either Monte Carlo or experimental data. qi is the integrated
waveform charge of PMT i and gi(qi, t) is its gain, i.e. the conversion factor between charge
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and number of photo electrons. gi is a function of time tII [7] [53]. Moreover, the gain
depends on the charge (gi = gi(qi, t)) due to limited sampling effects for small charges [7]
[53]:

gi(qi, t) =

�
gi + li(qi − ci) qi < ci

gi qi ≥ ci
, (3.4)

where the parameters gi, li and ci are obtained from measured calibration data with con-
stant light yield obtained from the inner detector light injection system [53]. Further details
on the linearised PE calibration can be found in [53].

3.3.2 Uniformity calibration

The number of observed photo electrons for an event with given energy depends on the
position of the corresponding vertex in the detector. More precisely, it depends on its
coordinates in a cylindrical coordinate system (ρ and z) because of the geometry of the
detectors. The uniformity calibration fu(ρ, z) corrects on this position dependence. fu(ρ, z)
is derived utilizing neutron captures from hydrogen which provide a sharp peak at 2.2 MeV
[7]. Apart from the precisely known energy deposit, neutron captures on hydrogen provide
high statistics all over the detector because all liquids in the detector contain hydrogen.

3.3.3 Energy scale calibration

The energy scale calibration translates the number of photo electrons into an absolute
energy information. A 252Cf neutron source is deployed in the center of the detector for
this purpose and provides neutron captures on hydrogen with high statistics. The energy
scale can be obtained by the position of the narrow peak since the energy deposit of this
reaction is almost fixed [7].

3.3.4 Stability calibration

The visible energy information obtained from linearised PE calibration, uniformity cali-
bration and energy scale calibration is corrected for time variation by the so called stability
calibration. The stability calibration function is obtained from neutron captures of neu-
trons from muon-induced spallations on gadolinium and hydrogen and α-decay data from
212Po deployment during calibration campaigns [7].

3.3.5 Non-linearity calibrations

The energy of Monte Carlo generated events has to be corrected for discrepancies between
real data and simulation. This correction function is non-linear and therefore referred
to as energy non-linearity. By definition, it is applied to the Monte Carlo events only.
Energy non-linearity may be further decomposed into charge non-linearity (QNL) and
light non-linearity (LNL) which will be explained hereinafter.

IIin particular due to power cycling of the hardware, cf. section 2.4
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Charge non-linearity

The charge non-linearity (QNL) is due to limited accuracy of the simulation of the readout
system and charge integration algorithm. Hence, it is applied to the visible energies of
Monte Carlo events of any type. Calibration data taken during deployment of a 252Cf
neutron source at the center of the detector is used in order to measure the charge non-
linearity correction [7].

Light non-linearity

The light non-linearity (LNL) is caused by the modeling of the scintillator properties
or more precisely of light yield and quenching. The light yield depends on the ratio of
Cherenkov light emission to scintillation light emission. Thus, the LNL correction is particle
type depended in contrast to the charge non-linearity correction. Therefore it is not applied
to all particles during the common energy calibration but only to the prompt Monte Carlo
signals [7]. This is done during the final fit analysis in order to allow for handling the
light non-linearity correction parameters as nuisance parameters. For estimation of the
light non-linearity correction, simulation parameters quantifying the quenching effects are
varied (in particular Birks’ constant that allows to calculate the light yield using Birks’
formula [41] [7]). The light yield in the Double Chooz detector including its measurement
is described in more detail in [11] and [10].

3.4 Reactor neutrino prediction

The expected number of neutrinos in dataset d = FD1-On, FD2 or ND is given by [4]:

N exp,d
ν̄e =

�

r=B1,B2

1

4πL2
r,d

Nd
p �d

P th
r

�Ef,r�
�σf,r� , (3.5)

where Lr,d is the distance between the detector corresponding to dataset d and reactor
r, Np is the number of protons in the fiducial volume for dataset d, �d is the detection
efficiency for dataset d and P th

r is the thermal power of reactor r.

�Ef,r� =
�

k

αk,r�Ef �k (3.6)

is the mean energy per fission. It is the sum of the �Ef �k where �Ef �k is the mean energy
per fission for the mother isotope k present in the reactor and αk,r is the number of fissions
originating from the mother isotope k relative to the total number of fissions in reactor r.
The index k runs over all mother isotopes present in the reactor.

�σf,r� =
�

k

αk,r

� ∞

0
Sk(E)σIBD(E)dE (3.7)

is the mean cross section per fission in reactor r where Sk(E) is the reference spectrum of
isotope k, σIBD(E) is the cross section of the inverse beta decay and E the neutrino energy.

The sterile analysis is based on a Data-to-Data (D2D) fit, i.e. a priori information about
the reactor is not used. Therefore, the calculation of the reactor neutrino flux prediction is
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not of major importance here. The Double Chooz Collaboration used to use the results of
the Bugey4 rate measurement [51] in order to normalize the reactor neutrino predictions
[4]. This normalization is referred to as Bugey4 anchor point. However, the data from
the Bugey4 experiment is not used for the prediction used in the sterile analysis. That
is because the measurement of the Bugey4 experiment itself would have been affected by
sterile neutrino oscillation.

3.5 Neutrino candidate selection

Historically, the data selection used to only aim on selecting inverse beta decay events with
the neutron captured by a gadolinium atom. Natively, neutrons can only be captured by
Gd-atoms in volumes that contain gadolinium - which is the neutrino target only. The
active volume of this so called Gd selection is sketched in green on the left in figure 3.1.
However, the neutron produced in the inverse beta decay interaction may also be captured
by a hydrogen- atom. Using these events significantly increases the statistics, as inverse
beta decay events on hydrogen capture may not only occur in the neutrino target but also
in the gamma-catcher. Thus, nowadays the Double Chooz Collaboration selects inverse
beta decay-events on hydrogen and on gadolinium capture in both neutrino target and
gamma-catcher. IBD-events on carbon capture are selected as well, but the contribution
is negigable. This selection is used for the dataset used in this work and referred to as
Gd++ selection. Its active volume is sketched in green in figure 3.1 on the right. The
Gd++ selection results in an increase of the statistics by a factor of 2.5 compared to the
Gd selection.

The approximate neutrino rate expected for the far detector is about 130/day and for the
near detector is about 800/day (cf. figure 2.5, figure 2.6). The trigger rate in the far
detector is more than several hundred Hertz with the Gd++ selection. Thus, a neutrino
candidate selection with a low background rate is necessary.

3.5.1 Single event selection

The coincidence of prompt and delayed signal from an inverse beta decay event is the
characteristic signal caused by a neutrino in the Double Chooz detector (cf. section 2.3.1).
However, before prompt delayed coincidences can be identified raw data cleaning is re-
quired. The cuts used for raw data cleaning are described in the following [79].

• The trigger system identifies low energetic background triggers and high energy back-
ground online by requiring 0.3 MeV < Evis < 100 MeV.

• Muons are tagged by an energy deposit of Evis>100 MeV in the inner detector or an
inner veto deposit of QIV > 30 000 digital unit of charge (DUC) in the FD1, QIV >
50 000 DUC in the FD2 and QIV > 30 000 DUC in the ND.

• A lot of backgrounds is reduced by rejecting all events less than ΔTµ= 1.25ms after
a muon since muons induce fast neutrons and long lived cosmogenic isotopes (cf.
section 2.5.1).
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Figure 3.1: Illustration of the approaches for the inverse beta decay candidate selection
utilizing a very simple sketch of the detector and highlighting the effective target volume
in green. The classical gadolinium selection illustrated on the right aims on inverse beta
decay candidates with the neutron captured by gadolinium only. These events only occur
in the only volume that contains gadolinium, the neutrino target. Therefore, the effective
target volume is the neutrino target as indicated by the green box. In contrast, the Gd++
selection aims on inverse beta decay candidates with the neutron captured by gadolinium,
hydrogen or carbon, as illustrated on the left. Consequently, the effective target volume
consists of neutrino target and buffer as again indicated by the green box.

• As discussed in section 2.5.2 there is a large background contamination of several
hundred Hertz due to undesired light emission by the PMTs themselves, the Light
Noise. Light Noise can be identified by inhomogeneous light distribution in the detec-
tor, since the light emitting PMT observes most of the light. This is done requiring
Qmax

Qtot
< 0.12 for FD1 and Qmax

Qtot
< 0.20 for FD2 and ND where Qmax is the maximum

integrated charge observed by a single PMT. Qtot is the sum of all integrated charges
in the inner detector. For further quantification of the homogeneity of the charge
distribution in the detector the quantity Qdiff is introduced. It is defined as the Root
Mean Square (RMS) of the charges observed by the PMTs within a sphere S with a
radius of 1 m around the PMT which saw the maximum charge:

Qdiff =
1

NPMT,S

�

i �S

(Qi −Qmax)
2

Q2
i

(3.8)

where NPMT,S denotes the number of PMTs inside the 1 m radius square around
the PMT having seen the maximum charge, Qi the integrated charge observed by
PMT i and Qmax the maximum integrated charge observed by a single PMT. Qdiff <
30000 DUC respectively Qdiff< 100000 DUC is demanded for FD1 respectively FD2
and ND. Finally, there is a third cut making use of the smoothness of the charge
distribution. In this case the RMS of the charge distribution ς(Q) is exploited as
quantifier. Moreover, the RMS of the pulse start times ς(Ts) is utilized, since Light
Noise is characterized by a rather big spread of start times (cf. section 2.5.2 and [8]).
ς(Ts)/ns < 36 or RMS(Q) < 464 - 8ς(Ts)/ns is claimed for FD1, ς(Ts) < 36ns or
ς(Q) < 1680 - 28ς(Ts)/ns is claimed for FD2 and ND.

All event that satisfy these conditions (cf. above text: not a muon, ΔTµ= 1.25ms, not a
Light Noise event, 0.3 MeV< Evis < 100 MeV) and are not a random trigger are kept as
valid single triggers.
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3.5.2 Inverse beta decy event selection

After the raw data has been reduced to the valid single triggers, the selection of inverse
beta decay candidates i.e. pairs of prompt - delayed signal candidates can be done.

First, there is a cut on the visible energies: For prompt event candidates a visible energy
Evis between 1.0 and 20.0 MeV is required. For delayed event candidates a visible energy
Evis satisfying 1.3 MeV < Edelayed,vis < 10 MeV is required [50].

Next, there are cuts on the relation between prompt and delayed candidate which are listed
in the following.

• The time difference between prompt and delayed signal ΔT has to meet the condition
0.5µs <ΔT < 800µs.

• There is a cut on the distance between the vertex positions ΔR forcing ΔR < 1.2m
[50]. It reduces accidental background since the distance between a the vertexes of a
prompt-delayed signal pair is shorter than for two random coincided signals.

• Muons induce plenty of neutrons rather than single neutrons. Therefore, fast neutron
background is considerably suppressed by not allowing for any other valid trigger
within 800µs before the prompt candidate and no valid trigger within 0.5µs to 900µs
after the prompt candidate except the delayed candidate. These background rejection
conditions are referred to as unicity conditions and the corresponding cut is referred
to as multiplicity cut or unicity cut. These selection conditions are illustrated in figure
3.2. Figure 3.3 provides some examples for accepted and rejected coincidences.

Moreover several vetos are applied [79]. They are explained in the following and summa-
rized in table 3.2.

• Prompt candidates are rejected if there is a coincidence with an outer veto signal
within 224 ns reducing the fast neutron and stopping muon background. The outer
vetos do not always take good data. Therefore the outer veto veto condition is only
applied for data for which good outer veto data exists.

• Inner Veto veto conditions are slightly different for prompt respectively delayed
candidates. Events with an inner veto PMT multiplicity >1 are vetoed (i.e. at least
two PMTs must observe a signal to trigger the veto) if the total charge in the inner
veto is bigger than 400 DUC (FD1) resp. 300 DUC (FD2 and ND) and if the distance
between inner veto and inner detector vertex is <3.7 m. For prompt candidates the
veto only applies if the time difference ΔT satisfy -100 ns < ΔT < -10 ns (FD1) resp.
-40 ns < ΔT < 70 ns (FD2 and ND). For delayed candidates -100 ns < ΔT < -30 ns
( -30 ns < ΔT < 60ns) is required in the FD1 (FD2 and ND) phase to meet the veto
conditions. Additionally, delayed events are only rejected, if the visible energy in the
inner detector is smaller than 3 MeV.

• The so called Functional Value veto mainly suppresses the stopping muon back-
ground but also Light Noise background not rejected by the Light Noise cut. For
that purpose, the Functional Value veto investigates the negative log-likelihood value
of the vertex reconstruction algorithm for its best fit hypothesis called Functional
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Figure 3.2: Illustration of the inverse beta decay selection conditions that have to be
fulfilled by the prompt delayed coincidence.
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3.5. Neutrino candidate selection

Figure 3.3: Illustration of several examples for accepted and rejected prompt-delayed
coincidences. Examples a) - d) are accepted while e) - i) are rejected for the following
reasons. e) is rejected because there is no delayed candidate. f) and g) are rejected because
the multiplicity cut is not passed, h) is rejected because the prompt candidate comes to
shortly after a muon and i) is rejected because the time difference between delayed and
prompt candidate is to big.
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Value (cf. section 3.2). Large Functional Values, indicating bad reconstruction, oc-
cur for non point like events (typically stopping muons) since the algorithm assumes
point like events. Thus, stopping muons usually have large Functional Values. The
Functional Value cut is a function of the visible energy Evis as the quality of the ver-
tex reconstruction depends on the energy deposit: Evis/MeV > 0.36 · exp(FV/2.4)
and Evis/MeV > 0.06 · exp(FV/1.2) is required for all delayed candidates in the
FD1 dataset, Evis/MeV > 0.2 · exp(FV/1.8) and Evis/MeV > 0.05 · exp(FV/1.2)
is required for all delayed candidates in the FD2 dataset and Evis/MeV > 0.32 ·
exp(FV/2.1) and Evis/MeV > 0.07 · exp(FV/1.2) is required for all delayed candi-
dates in the ND dataset.

• The lithium (Li) veto rejects background from cosmogenic β-n isotopes. The lithium
likelihood quantifies the probability of each event to be a β-n decay background
event. It takes into account the distance between signal vertex position to the next
muon track and the number of neutron candidates within 1 ms after this muon.
The probability density function for evaluating the lithium likelihood are obtained
from 12B because 12B yields more statistics than 9Li. Agreement of the probability
denisty functions from lithium and boron has been confirmed [7]. Prompt candidates
are rejected if the maximum lithium likelihood LLi w.r.t. all preceding muons within
700 ms meets the condition LLi ≥ 0.4. Further details on the lithium likelihood can
be found in [45].

• The so called ANN is a multivariate analysis grounded on an Artificial Neural Net-
work (ANN) intending for accidental background rejection. Input variables are the
distance between the event vertexes ΔR, the time between the events ΔT and the vis-
ible delayed energy Evis,delayed. Although preselective cuts have already been applied
to this variables, the combination of them allows for major accidental background
reduction. The ANN was trained with a Monte Carlo data sample of inverse beta
decay events and an accidental background candidate sample obtained from data
using the offtime method (cf. section 3.7.1) [9]. The implementation of the ANN cut
increased the signal to accidental background ratio by more than a factor of seven
from publication [5] to [9] while the detection efficiency only decreased by around six
percent [9].

• The chimney-pulse-shape (CPS) veto is aiming on further reducing the contami-
nation with stopping muons. The pulse shape of stopping muons is usually distorted
due to poor vertex reconstruction. Those events are very often reconstructed more
or less in the middle of the upper part of the inner detector, although in reality the
muon was decaying in the chimney. For those events, the pulse shape does not get
significantly worse if the originally reconstructed vertex is replaced by the position
of the chimney [92]. Thus, the stopping muon background can be suppressed be
comparing the negative log likelihood of the pulse shape with vertex in the chimney
Lchimney to the likelihood of the pulse shape with the originally reconstructed ver-
tex Lvertex and requiring Lchimney/Lvertex > 0.95. The chimney-pulse-shape veto is
explained in detail in [92].

• The ΔBJ − FV ∗ cut is a cut aiming on stopping muons utilizing the usually unsta-
ble vertex reconstruction of these events. As mentioned in [77] there are two vertex
reconstruction algorithms: RecoBAMA and RecoJapan. Both algorithms agree well
for most of the events. However, for stopping muons the position of the reconstructed
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3.5. Neutrino candidate selection

vertex tents to differ III. Hence, the variable ΔBJ = ZJP − ZBAMA is defined where
ZJP and ZBAMA are the z-coordinates of the vertex from RecoJapan and RecoBAMA
respectively. The rejection power of ΔBJ can be improved further if combined with
the so called Functional Value Time Likelihood (FVtlk). The FVtlk is the negative
log likelihood of the RecoBAMA vertex reconstruction where only the hit time infor-
mation is used IV. High energetic events are easier to reconstruct due to more light
emission. Hence, FVtlk is smaller than for low energetic events. Therefore, FVtlk is
corrected for the energy depended effect by defining [77]:

FV ∗ = FVtlk +





0.110 · Evis/MeV (FD1)
0.120 · Evis/MeV (FD2)
0.097 · Evis/MeV (ND)

. (3.9)

The cut was finally optimized to

FVtlk > 4.3 ∧





(FV ∗−4.00)2

0.142
+ (ΔBJ+0.03)2

0.212
≥ 42 (FD1)

(FV ∗−4.00)2

0.152
+ (ΔBJ−0.01)2

0.212
≥ 52 (FD2)

(FV ∗−4.00)2

0.142
+ (ΔBJ−0.01)2

0.192
≥ 52 (ND)

(3.10)

Several distributions before and after cuts are exemplary presented in the following. Figure
3.4 shows the ΔR distribution of the FD2 dataset. One can see that the selected events are
characterized by a smaller ΔR. For the rejected events the distribution is mostly given by
the detector geometry. This is due to the large contamination with accidental background
before cuts. Figure 3.5 shows the distribution of the time difference between prompt and
delayed event ΔT . One can take from the plot, that the rejected events are basically
given by two groups. First, there is a concentration of rejected events at small ΔT . These
are mostly fast neutron background events. The second group is characterized by a flat
ΔT distribution [54]. These are accidental background events. There is no preferred time
difference since they are just random coincidence.

IIIThis is because in contrast to RecoBAMA, RecoJapan does not force vertices inside the detector.
Moreover, the pull term strategy differs [77].

IVIndeed, FVtlk yields a better rejection power than the Functional Value using charge information as
well [77].
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Figure 3.4: ΔR distribution of the FD2 dataset where ΔR is the distance between prompt
and delayed vertex in 3 dimensional space. Black dots are used to show the data after all
cuts have been applied, all data before cuts is shown as black solid line. The rejected
events are shown as red line [54].
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3.5. Neutrino candidate selection

Figure 3.5: ΔT distribution of the FD2 dataset where ΔT is the time between prompt
and delayed trigger. Black dots are used to show the data after all cuts have been applied,
all data before cuts is shown as black solid line. The rejected events are shown as red line
[54].
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Figure 3.6: Visible delayed energy distribution of the FD2 dataset. Black dots are used
to show the data after all cuts have been applied, all data before cuts is shown as black
solid line. The rejected events are shown as red line. The accumulation of events around
2.2 MeV arises from neutron captures on hydrogen while the accumulation of events around
8 MeV arises from neutron captures on gadolinium [54].
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Table 3.2: Summary of veto conditions for the inverse beta decay selection [79]. Events
meeting any of the listed criteria are rejected. If more than one condition is listed in one
field and they are not separated by a dashed line all of them have to be fulfilled in order
to veto the event. More details can be found in the text.

name target FD1 FD2 ND
Evis p Evis ≤ 1.0 MeV

Evis ≥ 20.0 MeV
Evis d Evis ≤ 1.3 MeV

Evis ≥ 10.0 MeV
ΔT p+d ΔT ≤ 0.5µs

ΔT ≥ 800µs
ΔR p+d ΔR ≥ 1.2 m
ΔTµ p+d ΔTµ ≤ 1.25 ms
µ-IV p+d QIV >30000 DUC QIV > 50000 DUC QIV > 30000 DUC

Trigger-Word (TW) = "IV-muon"
µ-ID p+d Evis > 100 MeV
LN p+d Qmax/Qtot > 0.12 Qmax/Qtot > 0.20

Qdiff > 30000 DUC Qdiff > 100000 DUC
ς(Ts) > 36 ns ς(Ts) > 36 ns

ς(Q)
DUC > 464− 8 ς(Ts)

ns
ς(Q)
DUC > 1680− 28 ς(Ts)

ns

unicity p+d valid trigger within 800µs before prompt cand.
valid trigger 0.5µs to 900µs after prompt cand. (except delayed cand.)

ANN p ANN≤0.86 ANN≤0.85
IV d IV PMT multiplicity >1

distance IV-ID vertex <3.7 m
Evis<3 MeV

Q>300DUC Q>400 DUQ
-30 ns < ΔT < 60 ns -100 ns < ΔT < -30 ns

IV p IV PMT multiplicity >1
distance IV-ID vertex <3.7 m

Q>300 DUC and Q>400 DUC
-40 ns < ΔT < 70 ns -100 ns < ΔT < -10 ns

OV p OV coincidence within 224 ns (if good OV data exists)
Li p LLi ≥ 0.4

FV d Evis

MeV < 0.36e(FV/2.4) Evis

MeV < 0.20e(FV/1.8) Evis

MeV < 0.32e(FV/2.1)

Evis

MeV < 0.06e(FV/1.2) Evis

MeV < 0.05e(FV/1.2) Evis

MeV < 0.07e(FV/1.2)

ΔBJ d FVtlk > 4.3

vs. FVt (FV ∗−4.00)2

0.142
(FV ∗−4.00)2

0.152
(FV ∗−4.00)2

0.142

+ (ΔBJ+0.03)2

0.212 ≥ 42 + (ΔBJ−0.01)2

0.212 ≥ 52 + (ΔBJ−0.01)2

0.192 ≥ 52

CPS d Lchimney/Lvertex ≤ 0.95
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3.6 Efficiencies

The Double Chooz data acquisition system is background free and the trigger efficiency
is 100% with negligible uncertainty at 0.5 MeV [7]. Thus, the detection efficiency for the
prompt event is almost 100%. In contrast, for the delayed event there are several physics
aspects that lead to a smaller detection efficiency.

3.6.1 Inverse beta decay candidate selection

The efficiency of the inverse beta decay selection is defined as [94]:

�inc =
#IBD ∩ ANN > k

#IBD ∩ ANN > 0.1

�
k = 0.85 FD1, FD2
k = 0.86 ND

(3.11)

Here, #IBD is the number of inverse beta decay candidates fulfilling the criteria

• prompt energy Eprompt fulfilling 1MeV < Eprompt < 8.5MeV
• time between prompt and delayed event ΔT fulfilling 0.5µs < ΔT < 800µs
• delayed energy Edelayed fulfilling 1.3MeV < Edelayed < 10.0MeV
• space distance ΔR between prompt and delayed event fulfilling 0.0m < ΔR < 1.2m
• passing all other vetos except for the ANN cut

Monte Carlo data studies have been investigating if a small gadolinium contamination in
the buffer changes the neutron detection efficiency. For that purpose, four different near
detector Monte Carlo datasets with four different gadolinium concentrations of 2.40, 1.55,
1.00 and 0.00µg/cm3 (standard) in the buffer have been used. The detection efficiencies
for near detector Monte Carlo datasets are in agreement [94].

Calibration data with the 252-Cf source located at different positions along the central
z-axis is used to measure the inverse beta decay selection efficiency.

3.6.2 Spilling

Neutrons produced in inverse beta decay processes in the buffer might propagate into the
neutrino target and neutrons produced in inverse beta decay processes in the neutrino
target might propagate into the buffer. This effects are referred to as spill in and spill out.
Since in the classical gadolinium analysis the fiducial volume is only the neutrino target,
spilling is an important systematical effect in that analysis. In contrast, in the Gd++
analysis the fiducial volume is given by neutrino target and buffer. Thus, spilling is almost
irrelevant, as it is only a propagation of the signal inside the fiducial volume.

3.6.3 Boundary effects

The neutron occupancy is almost the same for the flat top respectively bottom lid of the
cylindrical vessel and the curved lateral walls of the cylindrical vessel.
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Table 3.3: Percentage of neutrino events surviving each background rejection cut for the
inverse beta decay selection[79].

name target FD1 FD2 ND
ΔTµ p+d 94.57± < 0.01 74.48± < 0.01

LN p+d 99.99± < 0.01 100.00± < 0.01 100.00± < 0.01

unicity d+p 97.29± < 0.01 96.20± < 0.01 96.86± < 0.01

IV d 99.94± 0.01 99.95± 0.01 99.93± 0.01

IV p 100.00± < 0.01 100.00± < 0.01 99.99± < 0.01

OV p 99.94± < 0.01 99.94± < 0.01 99.99± < 0.01

Li p 99.48± < 0.01 99.47± 0.01 99.88± < 0.01

CPS d 99.99± < 0.01 99.85± 0.01 99.93± < 0.01

ΔBJ vs. FVt d 99.87± 0.02 99.90± 0.02 99.97± 0.01

FV d 99.95± 0.01 99.92± 0.02 99.96± 0.01

3.6.4 Background rejection inefficiency

Although background rejection cuts aim on background reduction they might also reject
some small amount of real neutrino events. This is referred to as background rejection
inefficiency. Table 3.3 presents the percentage of neutrino events surviving each background
rejection cut [79]. Values typically range from sin 99.5% − 100.0% except for the unicity
conditions (∼ 96%− 97%) and the ΔTµ cut. The ΔTµ cut reduces the livetime in the near
detector more significantly than in the far detector due to less overburden (cf. section 2.1,
table 3.1).

3.7 Background estimation

The background rejection cuts (cf. section 3.5) reject through going muon events and
Light Noise events with almost hundred percent efficiency. However, a rest contamination
with accidental, lithium, fast neutron and stopping muon background events can not be
avoidedV. The top plot in figure 3.7 shows the number of inverse beta decay candidates
as a function of the visible energy of the prompt event for the near detector dataset with
blue triangles. The red line indicates the prediction from reactor models assuming no
oscillation and background templates. Background templates are plotted as shaded areas.
The middle and bottom plot in figure 3.7 display the save distributions for the FD1-On
respectively FD2 dataset. The signal to background ratio is ∼ 10 in the far detector and
∼ 20 in the near detector. This section describes how the background templates that are
shown in figure 3.7 are obtained.

3.7.1 Accidental background

The accidental background is estimated with the offtime method [7]: The original time
difference of 0.5µs <ΔT < 800µs in the selection is replaced by a time window in which
no delayed events are expected while other section criteria remain unchanged. Therefore,

VLight Noise events passing all cuts are automatically accounted for by the accidental background
estimation as described in the next subsection (section 3.7.1).
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Figure 3.7: Visible energy distributions of the prompt events in the final inverse beta
decay dataset. Entries versus visible energy are shown. The experimental data from the
near detector is plotted in the top plot with blue diamonds. The distributions for the FD2
and the FD1-On experimental dataset are displayed the middle and bottom plot (black
squares). The red line indicates the prediction from reactor models assuming no oscillation
background templates. Those are represented by the shaded areas where green indicates
the lithium background template, blue the accidental background template and gray the
fast neutron and stopping muon background template [55] (modified).
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Figure 3.8: Data sample of the accidental background in the near detector obtained with
the offtime method as explained in the text[56]. Entries versus visible energy are shown.

the remaining events in that time window are mostly accidental background events. In that
way, the accidental background rate is measured using 200 consecutive time slots where
the first one begins 1 s after the prompt candidate. Moreover, an accidental background
sample is obtained by putting all of the 200 time slots in a row. Figure 3.8 shows the
accidental background sample for the near detector in dependence of the visible energy in
the detector. Figure 3.9 and 3.10 show it for the far detector. The accidental background is
characterized by small energies (cf. figure 3.8, figure 3.9 and figure 3.10). The distributions
for FD1 and FD2 are not a priory assumed to be the same since there have been changes
in the data readout system from the FD1 to the FD2 period. However, the shapes are
comparable and the order of magnitude is the same (see figure FD1, cf. figure FD2).

Figure 3.11 presents the covariance matrix of the data sample for the FD2 accidental
background obtained with the offtime method. The corresponding plots for near detector
and FD1 data sample can be found in figure A.2 and figure A.1.

3.7.2 Lithium background

The shape of the lithium background is measured with a lithium background sample. This
sample contains events passing all selection criteria except for having a lithium likelihood
LLi ≥ 0.4 (cf. section 3.5.2). The lithium background dataset is complementary to the
final inverse beta decay candidate dataset because the final inverse beta decay candidate
dataset only contains events with LLi < 0.4 (cf. section 3.5.2). Furthermore, there is a
Monte Carlo simulation of the lithium background taking into account feasible branches
considering α and neutron emissions as well [7] [116]. Monte Carlo simulation and real
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Figure 3.9: Data sample of the accidental background for the FD1 dataset obtained with
the offtime method as explained in the text [56]. Entries versus visible energy are shown.

Figure 3.10: Data sample of the accidental background for the FD2 dataset obtained with
the offtime method as explained in the text [56] (modified). Entries versus visible energy
are shown.
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Figure 3.11: Covariance matrix for the FD2 accidental background obtained with the
offtime method as explained in the text.

background data energy distributions agree within the uncertainty [116]. Figures 3.12,
3.13 and A.3 show the energy distributions of the lithium data samples used in this work
for ND, FD2 and FD1. The absolute lithium rate is a free parameter in the final fit.
However, an independent estimate can be done by fitting the time difference of the inverse
beta decay-candidates to the previous muons ΔTµ since random coincidence of muons and
inverse beta decay candidates yield a flat distribution while the lithium contamination is
falling with ΔTµ. In doing so, time and space distance to the previous muons and the
visible energy of these muons is taken into account. The results of this external estimate
from [116] can be found in table 4.5. There is no physical reason to assume a different
lithium background shape between FD2, ND and FD1. This is confirmed by experimental
data (cf. figure 3.12, figure 3.13 and figure A.3). The matrix of the correlations among
bins of the cosmogenic isotope background is displayed in figure 3.14.

3.7.3 Fast neutron and stopping muon background

Most of the correlated fast neutron and stopping muon background can be sorted out
by the inner veto. Thus, events that did not pass the inner veto veto conditions but all
other cuts can be used for a shape measurement of the fast neutron and stopping muon
background. These events are referred to as inner veto tagged events. Figure 3.15 presents
entries versus visible energy exemplary for the FD2 dataset, figure 3.16 and A.4 show it
for FD2 and FD1. The fast neutron and stopping muon background shape is consistent to
be identical in all datasets and parameterized by an empirical function

fFNSM(Evis) = p0 · exp(−p1 · Evis) + p2 · Evis . (3.12)

The fast neutron and stopping muon rate is estimated using the fact that these background
events are dominating at high energies. The rate is higher in the near detector due to
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Figure 3.12: ND lithium background data sample obtained based on the lithium likelihood
as explained in the text [56]. Entries versus visible energy are shown.

Figure 3.13: FD2 lithium background data sample obtained with the offtime method
based on the lithium likelihood as explained in the text [56] (modified). Entries versus
visible energy are shown.
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Figure 3.14: Covariance matrix for cosmogenic isotopes generated using the cosmogenic
isotope sample obtained as described in the text.

Figure 3.15: Fast neutron and stopping muon background data sample for the near de-
tector from inner veto tagged events as explained in the text [56]. Entries versus visible
energy are shown.
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Figure 3.16: FD2 fast neutron and stopping muon background data sample obtained from
inner veto tagged events as explained in the text [56] (modified). Entries versus visible
energy are shown.

less overburden (cf. figure 3.15, figure 3.16). It is constraint by the inverse beta decay
candidates passing all selection criteria except for a visible prompt energy between 20 MeV
and 100 MeV. More details about the parameterization of the background are explained in
section 4.2.5 where the values of p0, p1, and p2 are as well as the rates listed in table 4.5.
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Chapter 4

Sterile oscillation analysis

This chapter describes the oscillation analysis performed in this work.

4.1 General concept

The general concept of this analysis is a Poisson likelihood based approach, which is based
on Stefan Schoppmann’s [113] analysis. Figure 4.1 illustrates the fitting process. The
strategy is not unfolding but one that will be referred to as forward folding in the following.
At first, a hypothetical measurement is constructed from a simulated reactor neutrino flux,
background spectra, detector systematics and oscillation parameters - simultaneously for all
datasets (i.e. ND, FD1, FD2). These hypothetical measurements are then simultaneously
compared to the real measurements. These two steps are repeated for another set of initial
parameters. This is done until the point of best agreement between real and hypothetical
measurement is found. This point is mathematically identified by the smallest negative
logarithmic likelihood. Technically, the algorithm calculates the estimated distance to
minimum (EDM) and aborts the minimization if the EDM is below a threshold (i.e. a fixed
value that depends on the desired accuracy). Figure 4.2 provides an other illustration of
the fit principle.

4.1.1 Statistical method

This section summarizes the statistical method used in this analysis. The analysis is
based on the minimum negative logarithmic likelihood which is equivalent to the maximum
likelihood approach as described in the following.

A set of measurements �n may consist of N ∈ N single measurements:

�n = (n1, n2, . . . , nN ) . (4.1)

The parameters of primary interest (i.e. the oscillation parameters sin2 2θ13, sin2 2θ14 and
Δm2

41) as well as so called nuisance parameters may be contained in a vector �a:

�a = (a1, a2, . . . , aM ), M ∈ N (4.2)
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Figure 4.1: Illustration of the general fit idea following a so-called forward folding approach
which is explained in the text. As illustrated, the likelihood formula consists of a shape
part, an OffOff part and pulls. These parts will be explained in further detail hereinafter
[117].

where nuisance parameters are parameters that are not of primary interest but needed in
order to construct a prediction (the nuisance parameters used in this analysis will be listed
below).

The likelihood to observe the measurements �n under the assumption that �a contains the
true values is the so called likelihood function L(�n|�a). If the measurements in �n are
uncorrelated, the likelihood function is a product of the probabilities fi(ni|�a) to observe
the measurement ni under the condition that �a contains the true values:

L(�n|�a) =
N�

i=1

fi(ni|�a) . (4.3)

If L external measurements �x = (x1, x2, . . . , xL) independently from the measurement �n
constrain components of �a, this knowledge may be included by extending equation (4.3)
to

L(�n, �x|�a) =
N�

i=1

fi(ni|�a)
L�

j=1

gj(xj |�a) . (4.4)

Equation (4.4) can be understood as a function of �a if �n is given:

L(�n, �x|�a) =
N�

i=1

fi(�a, ni = const.)

L�

j=1

gj(�a, xj = const.) =

N�

i=1

f̃i(�a)

L�

j=0

g̃j(�a) = L(�a) . (4.5)

Thus, the vector containing the most likely parameters �̂a may be obtained by maximizing
equation (4.5). This is the so called maximum likelihood approach.
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Figure 4.2: Illustration of the general fit idea following a so called forward folding approach
which is explained in the text. As illustrated a model for the measured energy distribution
of neutrino events is constructed using oscillation parameter, energy reconstruction and
resolution parameters, detection systematics and the hypothetical initial reactor flux. The
backgrounds are added in the next step. The resulting total model of energy spectrum of
the inverse beta decay candidates is then compared to the data. As pointed out in the
text and illustrated in figure 4.1, after the comparison the model parameters are changed
using the gradient method Minuit2 [80] [26] [81]. The whole process is repeated until the
point of best agreement is found.
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The minimum negative logarithmic likelihood approach is equivalent but includes two
modifications induced for technical reasons. L(�n, �x|�a) can be replaced by 2 ln (L(�n, �x|�a))
as the natural logarithm is a strictly monotonically increasing function:

L(�̂a) = max. ⇔ 2 ln
�
L(�̂a)

�
= max. (4.6)

By doing so, the product in equation (4.5) transforms into a sum:

L(�a) =
N�

i=1

f̃i(�a)
L�

j=0

g̃j(�a) ⇔ 2 ln
�
L(�̂a)

�
= 2

N�

i=1

ln
�
f̃i(�a)

�
+ 2

L�

j=0

ln (g̃j(�a)) . (4.7)

In particular the g̃j(�a), which are included in order to account for a priori knowledge of
components of �a, usually do not depend on all components of �a. Thus, a separation of
variables is usually done by the logarithm. A minimization is technically easier to do than
a maximization. Therefore, ln (L(�a)) · −2 is minimized instead of maximizing 2 ln (L(�a))
since it is equivalent:

2 ln
�
L(�̂a)

�
= max. ⇔ −2 ln

�
L(�̂a)

�
= min. . (4.8)

If the measurement values are Gaussian distributions,

− 2 ln (L(�n|�a)) =
n�

i=1

(nmeas
i − nexp

i (�a))2

σ2
i

(4.9)

follows. The right side of equation (4.9) is well known as the so called Chi-square [95].

In this work, the measurements are the number of events in visible prompt energy bins for
FD1-On, FD2 and ND. They are assumed to follow a Poisson distribution. For Poisson
distributions

L(�n|�a) =
�

i

nexp
i (�a)n

meas
i

nmeas
i !

· e−nexp
i (�a) ⇒ (4.10)

− 2 ln (L(�n|�a)) = −2

��

i

nmeas
i · ln(nexp

i (�a))− nexp
i (�a)− ln (nmeas

i !)

�
(4.11)

applies.

The binning in this work consists of 38 bins between 1 and 20 MeV with custom bin sizes.
Only the region up to about 8 MeV is IBD dominated. The bin size is 0.25 MeV in this
region. The fit region has been extended to background dominated energy regions in order
to allow a background constraint in the fit itself. In doing so, more bins have been added.
In order to optimize for the lower statistics in the background dominated regions the bin
size is increasing; in the lithium background dominated region between 8 and 10 MeV the
bin width is 0.5 MeV, followed by two bins from 10-12 MeV with a width of 1.0 MeV each.
Finally, the bin size is 2.0 MeV in the region between 12 and 20 MeV which is dominated
by fast neutron and stopping muon background (cf. figure 3.7). A summary of the binning
can be found in table 4.1.
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Table 4.1: Binning of the visible prompt energy spectrum (identical to the binning used
in the θ13 analysis [39]).

characteristics range [MeV] bin width [MeV] number of bins
IBD dominated [1.0, 8.0) 0.25 28

lithium bckgr. dominated [8.0, 10) 0.5 4
intermediate [10.0, 12.0) 1.0 2

FNSM bckgr. dominated [12.0, 20.0) 2.0 4
total [1.0, 20.0) 0.25 - 2.0 38

Thus, assuming Poisson statistics for the measurement the negative log likelihood function
is given by:

−2 lnL(�a) = (4.12a)
�

d � {FD1-On, ND, FD2}

�
−2

�

i

nmeas,d
i · ln

�
nexp,d
i (�a)

�
− nexp,d

i (�a)

�
(4.12b)

+ nmeas
OffOff · ln

�
nexp
OffOff(�a)

�
− nexp

OffOff(�a) (4.12c)

+
�

j � {constraint input par./vectors}

�
pullcorr(j) j vector of correlated par.
pull(j) j single par. (uncorrelated)

(4.12d)

where nmeas,d
i is the measured number of inverse beta decay-candidates in energy bin i and

dataset d (FD1-On, FD2 or ND). nexp,d
i (�a) is the expected number of IBD candidates in

energy bin i and dataset d under the condition that the input parameters are given by vector
�a. nmeas

OffOff is the number of measured inverse beta decay-candidates during the reactor off
FD1 period, nexp

OffOff(�a) is the number of expected reactor off candidates. The parts (4.12b)
and (4.12c) account for the measurement compared to the expectation assuming Poisson
statistics. The terms in equation (4.12d) are Gaussian priors on those input parameters
which are constraint in the fit. The Gaussian prior is given by:

pull(j) =

�
aj − âj

σj

�2

(4.13)

for those constraint parameters which are not correlated to others. For those constraint
parameters that are correlated to others, the correlations are accounted for by a correlated
Gaussian prior:

pullcorr.(j) =
�
�j − �̂j

�T

·Vj
−1 ·

�
�j − �̂j

�
(4.14)

where �j is the vector of parameters that are correlated to each other and Vj is the corre-
sponding covariance matrix. The parameters not constraint by a prior are referring to:

• sin2 2θ14, Δm2
41- the parameters of major interest

• sin2 2θ13

It is important to have no constraints on θ13 as all values provided by any experiment
were either obtained under the no sterile assumption or in a sterile analysis. It should
be considered that the best fit θ13 value can actually be different if θ14 �= 0 which
does not allow to have a θ13 constraint. Also the result of a similar analysis should
not be inserted into this analysis (unless a combination of both analysis is aimed.)
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• correlated reactor flux normalization in all energy bins,
• lithium background rates.

The reactor flux normalization in all energy bins are nuisance parameters. In principle,
they could be constraint in the fit as predictions for the reactor flux exist. However, it
turns out that the currently existing reactor predictions do not describe the observations
by reactor neutrino experiments sufficiently (cf. sections 1.4.1 and 1.4.4). Thus, the rate
and shape of the reactor prediction is not used and a Data-to-Data fit approach is done.

The parameters that are constraint by a prior in the fit are related to:

• Δm2
ee

• several background attributes:

– accidental background rates
– spectral shape of the accidental background
– spectral shape of the lithium background
– fast neutron and stopping muon background rates
– spectral shape of the fast neutron and stopping muon background

• energy reconstruction
• detection efficiencies
• number of neutrino events during the reactor off period
• uncorrelated reactor neutrino flux in all energy bins

Thus, equation (4.12) may be expressed as:

−2 lnL(�a) = (4.15a)
�

d � FD1-On, ND, FD2

�
−2

�

i

Nmeas,d
i · ln

�
N exp,d

i (�a)
�
−N exp,d

i (�a)

�
(4.15b)

+Nmeas
OffOff · ln

�
N exp

OffOff(�a)
�
−N exp

OffOff(�a)) (4.15c)
+ pull(acc. rate FD1) + pull(acc. rate FD2) + pull(acc. rate ND) (4.15d)

+
�

i

pull(spectral acc. bin i FD1) +
�

i

pull(spectral acc. bin i FD2)

+
�

i

pull(spectral acc. bin i ND)

(4.15e)

+ pull(FNSM rate FD) + pull(FNSM rate ND) (4.15f)

+
�

k

pull(FNSM spectral parameter k) (4.15g)

+
�

i

pull(spectral lithium bin i) (4.15h)

+ pullcorr(uncorr. reactor flux in all energy bins) (4.15i)
+ pullcorr(energy parameters) (4.15j)
+ pullcorr(detection efficiency parameters) (4.15k)
+ pull(OffOff neutrino rate) (4.15l)

+ pull(Δm2
ee) . (4.15m)
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The treatment of the systematics effects is explained in further detail in the following.

The likelihood function is minimized using the Minuit2 algorithm [80].

4.2 Input model

This section describes the input model i.e. how the nexp,d
i (�a) in equation (4.12) are calcu-

lated.

4.2.1 Correlation handling

Several model parameters such as the reactor flux, detection efficiencies, energy parame-
ters and background parameters are correlated among ND, FD1-On and FD2 and/or other
parameters of the same dataset. Minimizer algorithms do not a priori assume correlations
unless this is forced despite that they usually can calculate posterior correlations of pa-
rameters based on the function to be minimized. How correlations are forced in this work
is explained in the following. This section describes the general method of correlation
handling used in this work, while further information about the correlation coefficients can
be found in the following sections.

Covariance matrices (aji) are always quadratic real symmetric matrices (aij = aji ∈ R i, j =
0, 1, .., n). Thus, they always have exactly n eigenvalues and n orthogonal eigenvectors.
Furthermore, all of the eigenvalues are non negative real numbers (i.e. covariance matrices
are positive definite). Correlated variables can not only be expressed in the given coordi-
nate system in which they are correlated but also in the eigenbasis of the covariance matrix
in which they are uncorrelated. Since the parameters used by the minimizing algorithm
are preferrably uncorrelated, they necessarily need to be collinear to the eigenvectors of the
covariance matrix requiring a variable transformation into that eigenbasis. This transfor-
mation of a vector in the eigenbasis of a matrix M (the so called eigenvector decomposition)
can be done with the matrix U defined by:

M = UΛUT (4.16)

where Λ is the n dimensional diagonal matrix with the eigenvalues on the diagonal axis.
Since the eigenvalues are always non-negative equation (4.16) can also be written as

M = LLT with L = U
√
Λ . (4.17)

That is the so called Cholesky decomposition [42]. It transforms into a coordinate system
in which the matrix M is the unit matrix. In doing so, multiplication of U with a vector
can be understood as a rotation of the coordinate system while multiplication of

√
Λ with a

vector can be understood as a stretching or shrinking of it. Speaking in terms of correlated
variables, the Cholesky decomposition matrix transforms a vector of correlated variables
into the coordinate system in which the variables are uncorrelated and all variances are
exactly equal to one. Figure 4.3 illustrates the coordinate systems. The eigenbasis of the
covariance matrix (obtained by applying matrix U) is illustrated in the top, the trans-
formation in the scaled eigenbasis in which the covariance matrix (obtained by applying
matrix L) is the unit matrix is shown in the bottom.
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In this work, the Cholesky decomposition is used to substitute correlated variables by their
representation in the coordinate system in which the covariance matrix is the unit matrix.
Namely this is applied to the energy treatment parameters, the reactor flux parameters,
the detection efficiency parameters and background shape parameters.

4.2.2 Energy

The energy reconstruction parameters are correlated among FD1, FD2 and ND.

The light non-linearity correction is applied only to the prompt Monte Carlo events in the
final fit process. All other corrections related to energy are already implemented in the
Monte Carlo simulation. The energy Evis,MC in the final fit is modeled as

Evis,MC = E�
vis,MC · fLNL · fSt/U · fQNL (4.18)

where fLNL, fSt/U and fQNL are correction functions accounting for light non-linearity,
stability plus uniformity respectively charge non-linearity:

fLNL =
aLNL

E�
vis,MC

+ bLNL (4.19a)

fSt/U =bSt/U (4.19b)

fQNL =bQNL + cQNL · E�
vis,MC (4.19c)

Here, E�
vis,MC is the visible energy of the prompt event from the Monte Carlo simulation.

(4.18) may be written as:

Evis,MC = a� + b� · E�
vis,MC + c� · (E�

vis,MC)
2 (4.20)

where

a� =aLNL · bSt/U · bQNL (4.21)

b� =aLNL · bSt/U · cQNL + bLNL · bSt/U · bQNL (4.22)

c� =bLNL · bSt/U · cQNL . (4.23)

a�, b� and c� are optimized in the final oscillation analysis instead of aLNL, bLNL, bSt/U, bQNL

and cQNL in order to avoid ambiguity induced by an unnecessary amount of degrees of
freedom. Table B.2 (see section B.2) presents the values of aLNL, bLNL, bSt/U, bQNL and
cQNL. The correlations between these parameters can be found in table B.1 (see section
B.2). The correlation matrix is assumed to be identical for FD1, FD2 and ND. aLNL and
bLNL are entirely anti-correlated and the correlation correlation between bQNL and cQNL of
the same detector is -0.45 while light non-linearity, charge non-linearity and stability and
uniformity corrections are fully uncorrelated to each other. aLNL and bLNL are completely
correlated between FD1, FD2 and ND while bSt/U, bQNL and cQNL are not correlated
between FD1, FD2 and ND.

a�, b� and c� can be calculated to the values presented in table 4.2 with the given information
from table B.2 and the functional dependence from equation (4.21) . The correlations of the
parameters have been calculated using a simulation of 15 000 random Gaussian distributed
values [102]. The results can be found in table 4.3.

60 RWTH Aachen
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Figure 4.3: Illustration of the different coordinate systems used in this work for two
example variables called FD2 variable x and ND variable x. Note that this is only an
example and the variables could also belong to the same dataset or be different variables
of different datasets. The eigenbasis system of two correlated variable is shown in the top
(blue fine dashed coordinate system), the coordinate system in which the covariance matrix
is the unit matrix is shown in the bottom (red dashed coordinate system). The second
coordinate system can not be obtained from the original coordinate system (black solid)
by a rotation. Additionally, a stretching of the axis is needed. In this work, a variable
substitution from the original coordinate system into the coordinate system in which the
covariance matrix is the unit matrix (bottom plot, red dashed coordinate system) is done.
For further information see text.
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Table 4.2: Values of the energy calibration parameters and their uncertainties in terms of
the parameters a�, b� and c� used in the final fit. All values are identical to the values used
in the θ13 fit [44].

parameter FD1 FD2 ND
a� 0.009 ± 0.016
b� 0.9959 ± 0.0083 0.9959 ± 0.0085 0.9959 ± 0.0093
c� 0.00000 ± 0.00053 0.00000 ± 0.00069 0.00000 ± 0.00048

Table 4.3: Correlations of the energy calibration parameters in terms of the parameters
a�, b� and c� used in the final fit. The values are identical to the values used in the θ13 fit
[44].

parameter a b� FD1 b� FD2 b� ND c� FD1 c� FD2 c� ND
a� 1 -0.85 -0.83 -0.76 0.00 0.00 0.00

b� FD1 -0.85 1 0.71 0.65 -0.07 0.00 0.00
b� FD2 -0.83 0.71 1 0.63 0.00 -0.08 0.00
b� ND -0.76 0.65 0.63 1 0.00 0.00 -0.05
c� FD1 0.00 -0.07 0.00 0.00 1 0.00 0.00
c� FD2 0.00 0.00 -0.08 0.00 0.00 1 0.00
c� ND 0.00 0.00 0.00 -0.05 0.00 0.00 1

4.2.3 Oscillation model

The theory of neutrino oscillation has been discussed in chapter 1.2. It was shown that the
survival probability of electron antineutrinos in the range of baselines relevant for Double
Chooz is approximately given by equation (1.30):

Pee ≈ 1− c414 sin
2 2θ13 sin

2Δee − sin2 2θ14 sin
2Δ41 .

In this section, oscillation signatures observable with the Double Chooz experiment are
visualized and further discussed in this section.

Majorana and Dirac CP-validating phases are not observable for disappearance experi-
ments such as Double Chooz in general regardless of the number of neutrino states (see
section 1.2, equation (1.17)). Therefore, CP-validating phases are not discussed in the
following.

Figure 4.4 illustrates an example for the ν̄e neutrino survival probability versus true neu-
trino energy in MeV for baselines of 400 m (top) and 1050 m (bottom) assuming sterile
oscillations. The dotted blue line shows sin2 2θ14=0.0, the red dashed line sin2 2θ14=0.02,
Δm2

41=0.1 eV2 and the solid green line sin2 2θ14=0.02, Δm2
41=0.02 eV2. The far detector

has been placed in such a way that the first minimum due to the sin2 2θ13 oscillation is in
an observable energy range (cf. sin2 2θ14=0.0, dotted blue line in the lower part of figure
4.4). In contrast, the position of the near detector was chosen such that there is mostly
no oscillation due to sin2 2θ13 yet (cf. sin2 2θ14=0.0, dotted blue line in the upper part of
figure 4.4). Comparing the dashed dotted blue line to the dashed red and solid green line
one can see that in case of sin2 2θ14 �= 0 there is basically a superposition of the deficits
due to sin2 2θ13 and sin2 2θ14 oscillation (given that sin2 2θ14 << 1 and |Δm2

41| ≥ |Δm2
31|).

The superposition of the deficits due to sin2 2θ13 and sin2 2θ14 oscillations also follows from
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Figure 4.4: ν̄e neutrino survival probability versus true neutrino energy in MeV for base-
lines of 400 m (top) and 1050 m (bottom). The dotted blue line illustrates sin2 2θ14=0.0,
the red dashed line sin2 2θ14=0.02, Δm2

41=0.1 eV2 and the solid green line sin2 2θ14=0.02,
Δm2

41=0.02 eV2. θ13 = 8.52 ◦ (sin2 2θ13 = 0.086) and Δm2
31=0.00252 eV2 has been used

for all probabilities shown in this figure. All probabilities in this plots were calculated with
NuCraft [125] assuming full four flavor oscillation.
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equation (1.30) since cos4 θ14 ≈ 0. sin2 2θ14 > 0, |Δm2
41| > |Δm2

31| leads to oscillation pat-
terns in both defectors that are different in near and far detector (cf. figure 4.4). More
precisely, the oscillations are around 1050/400 ≈ 2.5 times faster in the far detector. That
is because the baseline L appears in the nominator of the term sin2

�
Δm2

41[eV
2]L[km]

4E[GeV]

�
in

equation (1.30). |Δm2
41| also appears in the nominator of sin2

�
Δm2

41[eV
2]L[km]

4E[GeV]

�
. Hence,

the larger |Δm2
41|, the faster the oscillations are, as one can see by comparing the lines for

sin2 2θ14=0.02, Δm2
41=0.02 eV2 and sin2 2θ14=0.02, Δm2

41=0.10 eV2 in figure 4.4. sin2 2θ14
gives the amplitude of the sterile oscillation signature since sin2

�
Δm2

41[eV
2]L[km]

4E[GeV]

�
is multi-

plied by the factor sin2 2θ14 in equation (1.30).

Neutrinos are oscillated using the approximation (1.30) in the final analysis where Δm2
ee =

(2.484± 0.036) · 10−3eV2 is used where Δm2
ee the value is from [44] which used the input

from [65] [66]. Figure 4.5 compares the approximation for exemplary sterile parameters of
sin2 2θ14 = 0.02 and Δm2

41 = 0.05 eV2. Hereby, the full four flavor oscillation probability
Δm2

41 > 0 and a baseline of 1050 m are assumed. By showing the electron antineutrino
survival probability versus true neutrino energy for a far detector baseline of precisely
1050 m, figure 4.6 does the same but assumes Δm2

41 < 0. The solid blue lines show
the full four flavor oscillation for Δm2

32 > 0 while the dashed green lines show the full
four flavor oscillation for Δm2

32 < 0 and the dashed red lines show the approximation
from equation (1.30). The lines for Δm2

32 > 0 and Δm2
32 < 0 are very close to each

other and cannot be distinguished experimentally since Double Chooz has no sensitivity
to the mass ordering of the known neutrino states. The oscillation probabilities assuming
full four flavor oscillation have been calculated using NuCraft [125]. One can see that
approximation and full four flavor oscillation probabilities agree to the per-mille level in
all cases. The maximum difference between approximation and full four flavor case is 4.5
per-mill. Figure 4.7 shows electron antineutrino survival probability versus energy for all
possible mass orderings together in one plot. Figure B.1 is identical to figure 4.7 expect
for the sterile mass and shows the same for Δm2

41 = 0.02 eV2.

Figure 4.8 shows an example for so called AsimovI inverse beta decay candidate predictions
without background relative to the no-oscillation model prediction versus visible prompt
energy. Error bars correspond to three years of gadolinium physics data taking from
the signal region with example parameters of sin2 2θ13 = 0.085, sin2 2θ14 = 0.100 and
Δm2

41 = 0.02 eV2. The FD2 plot is shown in the top, FD1-On plot in the middle and
the the ND plot in the bottom. A sterile oscillation pattern is observed in all detectors.
Figure 4.9 shows the same set of plots for a different sterile squared mass difference of
Δm2

41 = 1.0 eV2. For such a big value of |Δm2
41| the oscillations become so fast that they

can not be resolved anymore due to the finite energy resolution of the detectors. Thus, only
a smaller normalization is visible in all detectors to which the analysis will not be sensitive
since it does not compare the correlated reactor flux (i.e. the global normalization in all
energy bins) to the prediction. Therefore, there is no sensitivity to Δm2

41 = O(1.0 eV2) or
larger. Examples for Δm2

41 = 0.0001 eV2 are shown in figure 4.10. For |Δm2
41| < |Δm2

ee|
no significant sterile oscillation happened yet at both near and far detector baselines.
Hence, the sterile analysis will not be sensitive in this mass squared region either.

IIt has been pointed out in [47] that a sensitivity study on many pseudo experiments (i.e. a so-called
ensemble study) can be replaced by a sensitivity study on the expected mean dataset which has infinite
statistics. The sensitivity study on this so-called Asimov Dataset will give the same result as the median
result of the ensemble study. More on this can be found in section 4.3.1
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Figure 4.5: Comparison of the approximation for the electron antineutrino survival prob-
ability used in this work to the full four flavor oscillation for example parameters of
sin2 2θ14 = 0.02 and Δm2

41 = 0.05 eV2. The electron antineutrino survival probability
versus true energy is shown. The approximation used in this work is plotted in dashed
red. The full four flavor probability is shown in solid blue for scenario of neutrino mass
ordering NONO, and in dashed green for scenario NOIO. The full four flavor oscillation
probabilities have been calculated using NuCraft [125]. θ13 = 8.52 ◦ (sin2 2θ13 = 0.086)
and Δm2

31=0.00252 eV2 has been used for all probabilities shown in this figure.

4.2.4 Neutrino flux model

This analysis uses the Data-to-Data fit principle. Thus, it does not depend on any specific
reactor model since the data of far and near detector is not compared to the MC but only
to data of the other detector. The correlation of the reactor flux between ND and FD2 is
assumed to be 99.75%, the correction between FD1-On and FD2 is 93.20% and the corre-
lation between FD1-On and ND is 93.10% [44]. These correlations are also summarized in
table 4.4. The reactor flux model is only used for corrections to allow for a flux difference
due to uncorrelated reactor flux parts. These effects are very small due to a correlation of
more than 93%. For these small correction the reactor flux covariance matrices produced
without using the Bugey4 anchor point are used (cf. section 3.4) - just as it is done in the
θ13 Data-to-Data fit. These reactor covariance matrices are displayed in figure 4.11 (ND),
figure B.2 (FD1-On) and figure B.3 (FD2).

Despite this analysis does not rely on any reactor flux prediction model, the algorithm in-
ternally constructs a hypothetical neutrino flux in order to compare it to data as explained
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Figure 4.6: Comparison of the approximation for the electron antineutrino survival prob-
ability used in this work to the full four flavor oscillation for example parameters of
sin2 2θ14 = 0.02 and Δm2

41 = −0.05 eV2. The electron antineutrino survival probabil-
ity versus true energy is shown. The approximation used in this work in dashed red.
The full four flavor probability is shown in solid blue for the scenario of neutrino mass
ordering IONO, and in dashed green for scenario IOIO. The full four flavor oscillation
probabilities have been calculated using NuCraft [125]. θ13 = 8.52 ◦ (sin2 2θ13 = 0.086)
and Δm2

31=0.00252 eV2 has been used for all probabilities shown in this figure.

Table 4.4: Correlations of the reactor flux used in this work. All correlations are identical
to the correlations used in the θ13 fit [44].

correlations FD1-On FD2 ND
FD1-On 1 0.932 0.931

FD2 0.932 1 0.9975
ND 0.931 0.9975 1

66 RWTH Aachen



4.2. Input model

� � � � � � �

�����

����

����

����

����

����

����

�
�
�� �

�
��
�
��
��
�
��
�
��
�
�

��� �

��
������ ��

� � ���� ��
��
�����

���
�
��

��
���������� �

��
����� ����� ��

�

������������������

������������������

������������������

������������������

�������

Figure 4.7: Comparison of oscillation formula approximation used in this work to the full
four flavor oscillation for example parameters of sin2 2θ14 = 0.02 and |Δm2

41| = 0.05 eV2.
The electron antineutrino survival probability versus true energy is shown. The approx-
imation used in this work while the full four flavor probability is shown in solid blue for
scenario NONO in dashed magenta for scenario NOIO in solid black for scenario IOIO and
in dashed green for scenario IONO. The full four flavor oscillation probabilities have been
calculated using NuCraft [125]. θ13 = 8.52 ◦ (sin2 2θ13 = 0.086) and Δm2

31=0.00252 eV2

has been used for all probabilities shown in this figure.
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Figure 4.8: Asimov (cf. footnote I) inverse beta decay candidate predictions without
background relative to the no-oscillation model prediction versus visible prompt energy
where error bars correspond to three years of gadolinium physics data taking. The ratio of
the no-sterile prediction to the no-oscillation prediction is shown in dashed red. The FD2
plot is shown in the top, FD1-On plot in the middle and the the ND plot in the bottom.
sin2 2θ13 = 0.085, sin2 2θ14 = 0.100 and Δm2

41 = 0.02 eV2 have been used.
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Figure 4.9: Asimov inverse beta decay candidate predictions without background relative
to the no-oscillation model prediction versus visible prompt energy where error bars corre-
spond to three years of gadolinium physics data taking. The ratio of the no-sterile predic-
tion to the no-oscillation prediction is shown in dashed red. The FD2 plot is shown in the
top, FD1-On plot in the middle and the the ND plot in the bottom. Here, sin2 2θ13 = 0.085,
sin2 2θ14 = 0.100 and Δm2

41 = 1.00 eV2 have been used.
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Figure 4.10: Asimov inverse beta decay candidate predictions without background rela-
tive to the no-oscillation model prediction versus visible prompt energy where error bars
correspond to three years of gadolinium physics data taking. The ratio of the no-sterile pre-
diction to the no-oscillation prediction is shown in dashed red. The FD2 plot is shown in the
top, FD1-On plot in the middle and the the ND plot in the bottom. Here, sin2 2θ13 = 0.085,
sin2 2θ14 = 0.100 and Δm2

41 = 0.0001 eV2 have been used.
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Figure 4.11: Covariance matrix of the reactor flux parameters for the near detector dataset.
This matrix has been generated without using the Bugey4 anchor point (cf. section 3.4).

in the introduction of this chapter. This hypothetical spectrum does not have to match any
prediction. It is described by 41 reactor flux parameters per detector that are optimized
in the fit. These parameters are correlated among the datasets with the correlation factors
that can be found in table 2.2. The correlation is technically implemented by a transfor-
mation in the eigenbasis of the covariance matrix as described in section 4.2.1. The part
that is correlated is efficiently not constraint in the fit, more precisely the Gaussian prior
on these parameters is relaxed by a factor of 20 since a soft prior helps the fit to converge.
In order to center this weak prior as good as possible, the internally constructed model
is re-weighted on number of events w.r.t. the measurement assuming the latest Double
Chooz θ13 result of sin2 2θ13 = 0.119 [43].

More precisely, the reactor flux parameters do not refer directly to the absolute reactor
flux but to the relative deviation in units of the reactor flux uncertainty from the reference
Monte Carlo which is in particular arbitrary. This is useful since for the conversion from
true neutrino energy to visible prompt energy a Monte Carlo simulation must be used.
For the baseline distribution, a Monte Carlo simulation is necessary as well. The already
existing Monte Carlo, which was used for the MC-Data θ13 fit [57], is used in order to
do the conversion and for the baseline distribution. The true neutrino energy distribution
in that Monte Carlo is arbitrary as long as the near - far ratio in the Monte Carlo is
conserved. The Monte Carlo which was used for the MC-Data θ13 fit was chosen because
it is the only existing Monte Carlo. Moreover, it is helpful to use a Monte Carlo which
has the most statistics at a reasonable position and is not by several orders of magnitude
away from the measurement. Technically, for instance a Monte Carlo having a flat energy
distribution could also be used, but this would require much more computing time a large
human effort to produce it. By using the Monte Carlo as a reference point for comparison
expected differences between near detector and far detector are automatically accounted
for. Such expected differences are for instance the different baseline distributions or small
non-iso flux corrections in terms of thermal power or fuel composition.
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How the construction of the hypothetical neutrino flux is done and why it is independent
from the energy shape of the Monte Carlo is explained in further detail in the following.

1. The algorithm iterates over all events in the Monte Carlo and first oscillates them
using equation (1.30), true baseline and true energy from the Monte Carlo. Next,
it fills them in a histogram according to their visible prompt energy information
provided in the Monte Carlo. That histogram covers the energy range of 0-20 MeV
with 80 bins of 0.25 MeV width each. The bins are smaller because this allows for
more precise energy corrections which are explained in the next steps.

2. The histogram is re-weighted by the reactor flux shift parameters.

3. The histogram from step 2 is interpolated using a linear spline.

4. The linear spline from step 3 is shifted using the energy parameters a�, b�, c� for the
corresponding dataset.

5. The shifted linear spline is converted to a histogram of equidistant 80 bins from
0-20 MeV again by analytic integration.

As mentioned in section 1.4.1 the Double Chooz Experiment observes a global deficit of
the total neutrino rate with both near and far detector to the prediction which can not be
explained by oscillation. Therefore, the Monte Carlo prediction for the neutrino events is
divided by the empirical factor describing the deficit of 8.6% [101].

4.2.5 Background model

Lithium background The lithium background shape is assumed to be the same in FD1,
FD2 and ND (i.e. it is fully correlated). It is modeled with 38 shape parameters. The
lithium rate is fully correlated between FD1 and FD2 while the FD1 and FD2 lithium
rate is not correlated to the lithium rate in the near detector. Therefore, there are two
parameters for the lithium rate in total. As mentioned above, the lithium rates are not
constrained in the fit.

Fast neutron and stopping muon background The fast neutron and stopping muon
(FNSM) background shape is parameterized by the empirical function

fFNSM(Evis) = p0 · exp(−p1 · Evis) + p2 · Evis (4.24)

where Evis is the visible prompt inverse beta decay candidate energy. The values of the
parameters p0 , p1 and p2 can be found in table 4.5 and are fully correlated among FD1-On,
FD2 and ND. The correlations between p0, p1 and p2 can be found in table 4.6. Equation
(4.24) is normalized on integral to one and scaled with the rate parameters. The fast
neutron and stopping muon rate is fully correlated between FD1 and FD2 but uncorrelated
between far and near detector (i.e. there are two parameters for the fast neutron and
stopping muon rates in total).
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Table 4.5: Values of the background rate parameters and the shape parameters for the
fast neutron and stopping muon background used in the fit in 1/day [44].

parameter FD1 FD2 ND
acc. bckgr. rate 3.930 ± 0.010 4.320 ± 0.020 3.110 ± 0.004
Li bckgr. rate 2.57 ± 0.61 12.32 ± 2.01

FNSM bckgr. rate 2.54 ± 0.07 20.77 ± 0.43
FNSM bckgr. par. p0 180.723 ± 3.911
FNSM bckgr. par. p1 0.0153251 ± 0.00102562
FNSM bckgr. par. p2 -0.296282 ± 0.041220

Table 4.6: Covariance matrix of the fast neutron and stopping muon background param-
eters used in the fit in 1/day2. The matrix is identical to the matrix used in the θ13 fit
[44].

parameter p0 p1 . p2
p0 1.52951·101 3.21573·10−3 0.103868
p1 3.21573·10−3 1.05219·10−6 4.04599·10−5

p2 1.03868·10−1 4.04599·10−5 0.00169909

Accidental background Since the readout system has changed, the accidental back-
ground rates and shapes are fully uncorrelated between FD1, FD2 and ND. There is one
rate parameter and 38 shape parameters for each dataset.

A summary of the background rates can be found in table 4.5.

4.2.6 Reactor Off

The expected number of inverse beta decay events with both reactors off is mainly given
by the expected number of background events for that period. However, a small number
of neutrinos from the reactor cores is expected even when they are off. More precisely,
Nν,exp

OffOff = 4.18 ± 1.25 neutrinos are expected within the 7.16 days of FD1-Off-Off lifetime
with both reactors off resulting in a rate of 0.58 ± 0.17/day. These neutrinos undergo
neutrino oscillation with the same neutrino oscillation parameters as neutrinos produced
when reactors are running. These neutrinos are oscillated using their mean energy of
2.74 MeV in order to get the off-off expectation. While this is a very good approximation
for the θ13 fit since the far detector is in the first oscillation minimum, for a sterile analysis
this is usually not the case. Thus, using the mean energy is less accurate, since it is
not averaged over the energy distribution. As no official energy shape distribution of the
neutrinos exists for the Gd++ analysis, the off-off rate is only priored if it is larger than
the central value since sterile neutrino oscillation can only reduce and not increase the
number of measured electron antineutrinos. Furthermore, only positive rates are allowed
and the neutrinos are oscillated using θ14 = 0 in order to avoid an unstable behavior of
the prediction for large Δm2

41 due to fast oscillation.

The background rates are assumed to be independent from the reactor operation. Thus,
they are identical to the rates with reactors running and can be used as a background
measurement. The values can be found in table 4.5.
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Table 4.7: Values and correlations of the MC-data correction factor. All values and
correlations are identical to the values and correlations used in the θ13 fit [44].

values FD1 FD2 ND
0.9076± 0.0069 0.8944± 0.0069 0.7010± 0.0049

correlations FD1 FD2 ND
FD1 1 0.808 0.743
FD2 0.809 1 0.742
ND 0.743 0.742 1

Table 4.8: List of parameters used in the fit

number of par. correlation
FD1 FD2 ND FD1-FD2 FD2-ND FD1 - ND

detectionII 1 1 1 yes yes yes
energy a 1 yes yes yes
energy b 1 1 1 yes yes yes
energy c 1 1 1 yes yes yes

Off-Off ν-rate 1 0 0 no no no
acc-rate 1 1 1 no no no

acc-shape 38 38 38 no no no
Li-rate 1 1 yes no no

Li-shape 38 yes yes yes
FNSM-rate 1 1 yes no no

FNSM-shape 3 yes yes yes
relative shift of reactor ν 41 41 41 yes yes yes

sin2 2θ13 1 yes yes yes
Δm2

ee 1 yes yes yes
sin2 2θ14 1 yes yes yes
Δm2

41 1 yes yes yes

4.2.7 Detection efficiency

The Monte Carlo generation was using the best measurement value of the proton number
at that time. However, the Monte Carlo generation was not repeated after a more pre-
cise measurement, as it can be rescaled to correct for the difference to the more precise
measurement. The proton number correction is applied simultaneously with other effects
contributing to the detection efficiency. All corrections are merged in a factor called Monte
Carlo data correction factor. Table 4.7 presents the values and correlations used in the fit.
Note that the contribution fully correlated in all detectors is fixed in the fit in order to
avoid ambiguity.

4.2.8 List of parameters

Table 4.8 provides a list of all parameters to summarize the model description in the text
above. For details on the usage of the parameters refer to the corresponding subsection.
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4.3 Validation of the algorithm

4.3.1 Crosschecking with non-sterile fit

The Poisson likelihood approach used for this analysis has also been used for a θ13 analysis
[117]. The fit framework and the inputs are identical - except for the electron antineutrino
survival probability which is in the θ13 analysis calculated for the specific case θ14 = 0.0.
Thus, the sterile fit results with θ14 = 0.0 are always identical with the θ13 fit results using
the approach developed in Aachen.

The θ13 analysis done with the software and inputs of this analysis has been very carefully
crosschecked. There are three θ13 analysis groups in the Double Chooz collaboration and all
of them have been carefully crosschecking each other. Sensitivities as well as the systematics
breakdown have been compared before the experimental data fit has been done.

The Aachen Double Chooz group is one of the groups. The fit approach done in Aachen
for the θ13 analysis and the sterile fit is referred to as Likelihood Flux Free (LLH-FF) fit.
The term LLH-D2MC is used for the approach in [117]. It only differs from the LLH-FF
by constraining the reactor flux parameters with adding pulls on the reactor flux using the
reactor covariance matrix (cf. figure 4.11) correlated with the correlation coefficients in
table 4.7.

The two other fit groups have developed Chi-square based fits where each group has a Data-
MC fit and a Data-to-Data fit. The approaches of both groups are similar. Details on the
Chi-square fits can be found in [39]. In the following, the Chi-square fits are referred to by
the names of the people doing the fit for better comparison with Double Chooz internal
documentation, Thiago J.C. Bezerra and Tsunayuki Matsubara.

Before the comparison between the tests is shown, the techniques used to compare the
systematics breakdown are explained.

• General technique The post fit uncertainties are not necessarily symmetric if Pois-
son statistics are assumed. Moreover, correlations between parameters may in general
depend on the values of these parameters themselves. The ROOT framework assumes
that uncertainties are symmetric and the statistics is Gaussian when providing post
fit uncertainties on default (even if the Minos method is used) [81]. Thus, a precise
uncertainty calculation requires a likelihood scan. This is done in the following way:
First, the best fit is obtained. Second, the best fit value fit sin2 2θ13 is shifted by the
root error estimate in positive and negative direction and fixed. Next, a fit at that po-
sition is done, ln(L) is obtained and −2Δ ln(L) = −2(ln(L)− ln(Lmax)) is calculated
where Lmax is the maximum likelihood value. If 0.99 < |− 2Δ ln(L)|− 1 < 1.01, the
error estimate is accepted. Otherwise, a two sided parabola is extrapolated (interpo-
lated) to the point −2Δ ln(L) = 1 and the difference of the corresponding sin2 2θ13
to the best fit sin2 2θ13 is taken as new error estimate. The procedure is repeated
with the new error estimate if 0.95 < |− 2Δ ln(L)|− 1 < 1.05.

• Asimov approach All sin2 2θ13 sensitivities are calculated with the so called
Asimov approach. It has been pointed out in [47] that a sensitivity study on many
pseudo experiments (i.e. an ensemble study) can be replaced by a sensitivity study
on the expected mean dataset which has infinite statistics. The sensitivity study on
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this so-called Asimov Dataset will give the same result as the median result of the
ensemble study. Using the Asimov dataset for sensitivity calculation is refereed to
as Asimov approach. The Asimov approach usually saves a lot of computing time,
provided that - like in this work - the Asimov dataset can be calculated analytically.
If this is given, the Asimov dataset is simply given by the calculated expectation
without any fluctuations applied.

• Statistical (only) sensitivity The statistical (stat.) uncertainty/sensitivity σstat

is defined as the sensitivity obtained with all nuisance parameters fixed at their best
fit value (which is the central value if the Asimov approach is used). With this, the
systematics sensitivity σsys is defined as

σsys =
�
σ2
tot − σ2

stat (4.25)

where σtot is the total sensitivity i.e. the sensitivity with the default systematics
setup.

• N-1 test The impact of a systematic quantity is investigated in the so called N-1
test. Hereby, the sensitivity assuming that this systematics quantity is known with
infinite precision is calculated and compared to the sensitivity with default setup. A
handle to estimate the impact of the specific variable is

σN−1,X =
�
σ2
tot − σ2

N−X , (4.26)

where σN−X is the sensitivity assuming the quantity X is known with infinite precision
and σtot is the sensitivity in the default setup. Alternatively the quality

rN−1,X :=
σN−1,X

σtot
=

�
σ2
tot − σ2

N−X

σtot
. (4.27)

may be used.

• Stat+1 test First of all the statistics only sensitivity is calculated in the so called
Stat+1 test. Second, one particular systematic effect is enabled (i.e. nuisance param-
eters describing this systematics effected are unfixed) and the sensitivity is calculated
in this setup. Next, the nuisance parameters describing the particular systematic ef-
fect are fixed again and the procedure is repeated with the next systematic effect.
An estimate of the impact of the specific variable is

σstat+1,X =
�
σ2
stat+X − σ2

stat (4.28)

where σstat+X is the sensitivity assuming the quantity X is the only systematic effect
to be considered and σstat is the statistics only sensitivity. This quantity may also
be used relative to the default sensitivity defining:

rstat+1,X :=
σstat+1,X

σtot
=

�
σ2
stat+X − σ2

stat

σtot
(4.29)

can be used.

The N-1 test provides an estimate on how much the sensitivity can be improved if
a certain variable is known better. However, in this test correlations among sets of
parameters play a role. Therefore, if the intention is to isolate the impact of a certain
variable and to compare it between different fits, the Stat+1 test is better.
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Table 4.9 shows the results of the Stat+1 and N-1 test for the LLH-FF approach and
the D2D Chi-square fit approach. For the LLH-FF fit approach negative, positive and
average sensitivities (σ− , σ+ and σ) are given. For the D2D Chi-square fit the sensitivity
is symmetric by definition. The quantities σN−1,X (cf. equation (4.26)), σstat+1,X (cf.
equation (4.28)), rstat+1,X (cf. equation (4.29)) and rN−1,X (cf. equation (4.27)) can be
found in the table.

The focus of the discussion will be on the Stat+1 test results since in the N-1 test cor-
relations usually play a bigger role as in the Stat+1 test and correlations are respected
differently in the likelihood fit and the Chi-square fit.

Figure 4.12 provides a visual comparison of the systematics breakdown for LLH-FF and
D2D Chi-square from the Stat+1 test. The top plot shows the N-1 test sensitivity results,
the plot in the middle shows σstat+1,X (cf. equation (4.28)) and the plot in the bottom
shows rstat+1,X (cf. equation (4.28)). The values can be found in table 4.9. The likelihood
fit is shown in red, the D2D Chi-square fit in light blue. The error bars correspond to a
rounding error of 0.00005 for the Chi-square fit and to 1% of the Stat+1 test results for
the likelihood fit.

The default sensitivity is in good agreement between both fits, the statistics only sensi-
tivity is a bit larger for the likelihood fit. This can be possible to the different statistical
assumptions. Furthermore, the impact of the atmospheric square mass difference and the
background seems consistent. However, the energy seems to be much more important in
the likelihood fit. Also, there is a small difference w.r.t. the impact of detection and
reactor parameters. The results of the N-1 test are consistent with those of the Stat+1
test. The comparison plot for the N-1 test can be found in figure C.1 in the appendix. A
possible explanation for the difference w.r.t. the impact of detection, energy and reactor
parameters is that the parameters modeling the correlated reactor flux are not fixed in the
likelihood fit for the statistics only sensitivity since they are part of the model. Hypothesis
A states that the difference in the systematics breakdown is due to correlation between the
correlated reactor flux, energy and detection parameters (which seem to be likely).

In order to test hypothesis A, the Stat+1 test has been repeated using the MC-Data
approach for detection, energy and reactor. The outcome is presented in table 4.10 and
figure 4.13. The agreement is now remarkably good verifying hypothesis A. The difference
in the systematics breakdown between Chi-square and likelihood fit was largest for the
energy parameters. Therefore, as an additional test, the post fit correlations of the energy
parameters and the correlated reactor flux parameters have been plotted, That plot is
displayed in figure C.2 and shows correlations up to 0.58 between energy and reactor flux
parameters.

Sin22θ13 fit results

The LLH-FF sin2 2θ13 fit has been run on experimental data. Table 4.11 summarizes the
sin2 2θ13 fit results of the three fits that are based on comparing experimental near and
far detector only. The agreement between Thiago’s fit and the likelihood fit is within a
quarter of the uncertainty and the agreement to Tsunayukis fit is also within a half of the
uncertainty on sin2 2θ13. It is remarkable that the LLH-FF fit which has both lithium rates
unconstrained fits a around two sigma larger lithium rate for both near and far detector.
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Table 4.9: Comparison of the systematic breakdown w.r.t. sin2 2θ13 between the LLH-FF
fit approach used in this work and the D2D Chi-square fit approach for sin2 2θ13 = 0.1.
For the LLH-FF fit approach negative, positive and average sensitivity (σ− , σ+ and σ) are
given. For the D2D Chi-square fit the sensitivity is symmetric by definition. Therefore,
only σ is given. σsys denotes σsys in the stat only row, σN−1,X (cf. equation (4.26)) in
the N-1 test rows and σstat+1,X(cf. equation (4.28)) in the stat+1 test rows. Similarly, r
either stands for σsys/σtot in the stat only row, rN−1,X (cf. equation (4.27)) or rStat+1,X

(cf. equation (4.29)). Visualizations of this table can be found in figure C.1 and 4.12.

sin2 2θ13 systematics breakdown
LLH-FF D2D Chi-square [40]

σ+ σ− σ σsys r σ σsys r
default 0.0162 0.0164 0.0163 0.0164
stat only 0.0092 0.0092 0.0092 0.0135 0.82 0.0084 0.0141 0.86
N-Detection 0.0137 0.0137 0.0137 0.0089 0.55 0.0136 0.0092 0.56
N-BG 0.0155 0.0157 0.0156 0.0047 0.29 0.0155 0.0054 0.33
N-Reactor 0.0149 0.0150 0.0149 0.0066 0.40 0.0138 0.0089 0.54
N-Energy 0.0129 0.0130 0.0130 0.0099 0.61 0.0139 0.0087 0.53
N-Δm2 0.0161 0.0164 0.0163 0.0012 0.07 0.0163 0.0018 0.11
Stat+Detection 0.0114 0.0116 0.0115 0.0068 0.42 0.0117 0.0081 0.50
Stat+BG 0.0096 0.0096 0.0096 0.0026 0.16 0.0087 0.0023 0.14
Stat+Reactor 0.0106 0.0106 0.0106 0.0052 0.32 0.0116 0.0080 0.49
Stat+Energy 0.0106 0.0108 0.0107 0.0054 0.33 0.0087 0.0023 0.14
Stat+Δm2 0.0093 0.0093 0.0093 0.0013 0.08 0.0085 0.0013 0.08
Stat+En+Reactor 0.0126 0.0127 0.0127 0.0087 0.53

Table 4.10: Comparison of the systematic breakdown w.r.t. sin2 2θ13 between the LLH-
D2MC fit approach and the D2MC Chi-square fit approach for sin2 2θ13 = 0.1. For the
LLH-D2MC fit approach negative, positive and average sensitivity (σ− , σ+ and σ) are
given. For the D2MC Chi-square fit the sensitivity is symmetric by definition. Therefore,
only σ is given. σsys denotes ssys in the stat only row and σstat+1,X(cf. equation (4.28))
in the stat+1 test rows. Similarly, r either stands for σsys/σtot or rStat+1,X (cf. equa-
tion (4.29)).

sin2 2θ13 MC-data sin2 2θ13 systematics breakdown
LLH-D2MC D2MC Chi-square [40]

σ+ σ− σ σsys r σ σsys r
default 0.0136 0.0140 0.0138 0.0141
stat only 0.0054 0.0054 0.0054 0.0127 0.92 0.0054 0.0130 0.92
Stat+Detection 0.0090 0.0091 0.0091 0.0072 0.52 0.0091 0.0073 0.52
Stat+Reactor 0.0098 0.0099 0.0098 0.0082 0.59 0.0097 0.0081 0.57
Stat+Energy 0.0057 0.0057 0.0057 0.0017 0.12 0.0057 0.0018 0.13
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Figure 4.12: Comparison of the LLH-FF fit and D2D Chi-square fit (Thiago) for a break-
down of the systematics for sin2 2θ13 from the Stat+1 test. The top plot shows the Stat+1
test sensitivity results, the plot in the middle shows σstat+1,X (cf. equation (4.28)) and
the plot in the bottom shows rStat+1,X (cf. equation (4.29)). The values can be found in
table 4.9. The error bars correspond to a rounding error of 0.00005 for the Chi-square fit
and to 1% of the Stat+1 test results for the likelihood fit. The error bars correspond to a
rounding error of 0.00005 for the Chi-square fit and to 1% of the Stat+1 test results for
the likelihood fit.
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Figure 4.13: Comparison of the likelihood D2MC fit and D2MC Chi-square fit (Thiago) for
a breakdown of the systematics for sin2 2θ13 from the Stat+1 test. The top plot shows the
Stat+1 test sensitivity results, the plot in the middle shows σstat+1,X (cf. equation (4.28))
and the plot in the bottom shows rStat+1,X (cf. equation (4.29)). The values can be found
in table 4.9. The error bars correspond to a rounding error of 0.00005 for the Chi-square
fit and to 1% of the Stat+1 test results for the likelihood fit. The error bars correspond to
a rounding error of 0.00005 for the Chi-square fit and to 1% of the Stat+1 test results for
the likelihood fit.
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Table 4.11: Comparison of final fit results on experimental data between the three fits
that are based on near-far comparison. Values for the Chi-square fits have been taken
from [40]. The degrees of freedom given for the likelihood fit are calculated by number of
data points minus number of parameters in the fit that are not constraint with a Gaussian
prior

.

fit LLH-FF LLH-FF χ2 D2D χ2 D2D
(Li-unconst) (Li-const) (Thiago) (Tsunayuki)

sin2 2θ13 0.1075 0.1069 0.1034 0.0987
σ+ 0.0161 0.0170 0.0164
σ− 0.0172 0.0170 0.0164

χ2(Pearson) 78.2
χ2(Neyman) 79.1

Li-FD (1/day) 3.109+0.298
−0.274 3.005 2.612±0.347 2.588± 0.315

Li-ND (1/day) 16.752+1.898
−1.805 14.865 12.558 ±1.909 13.221 ± 1.797

dof 71 73 37 38

4.3.2 Wilks’ theorem

The so called Wilks’ theorem [127] is useful to compare two different hypothesis and applied
in many physics cases. May H0 be a hypothesis to be compared to another hypothesis H1

given a measurement �x with high statistics. H0 (H1) may be that some physics is described
by �θ0 (�θ1). Correspondingly, sup(L(�θ0|�x) (sup(L(�θ1|�x)) is the supremum of the likelihood
function given hypothesis H0 (H1) described by θ0 (θ1) given the measurements �x. In
other words, sup(L(�θ0|�x) (sup(L(�θ1|�x)) is the likelihood function for hypothesis H0 (H1)
evaluated at the best fit θ0 (θ1).

H0 may be a simple version of hypothesis H1. This means that H0 is that one or more
parameters describing H1 have a given constant value. In case H0 is true, the theorem
states for the likelihood ratio

λ(�x) =
sup(L(�θ0|�x))
sup(L(�θ1|�x))

(4.30)

that −2 ln(λ) follows a Chi-square distribution with m − n degrees of freedom, where m
and n are the number of dimension of �θ1 and �θ0, i.e.

− 2 ln(λ(�x)) = χ2
m−n (4.31)

if optimum estimates of the θj exist. The existence of optimum estimates re-
quires that the matrices of the mathematical expectations of the partial derivative

||ckij ||:= ||< ∂2 ln(L( �θk|�x))
∂θki∂θkj

>|| with k = 1, 2 is positive definite [127]. Here, θki (θkj) is
component i (j) of θk. Correspondingly ∂

θki
is the partial derivative with respect to θki. i

and j run over all dimensions of θ0 and θ1.

In the context of this thesis H0 could be that sin2 2θ14 and Δm2
41 have given values:

H0 : {sin2 2θ14 = X,Δm2
41 = Y eV2|X,Y ∈ R, 0 ≤ X ≤ 1} . (4.32)

The alternative, less simple hypothesis H1 could be:

H1 : {0 ≤ sin2 2θ14 ≤ 1, |Δm2
41| ≥ 0 eV2} . (4.33)
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These definitions result in the test statistics (TS) [14]:

TS2D := −2 lnλ(�x) = −2 ln

�
supL(sin2 2θ14 = X,Δm2

41 = Y eV2|�x)
supL(sin2 2θ14,Δm2

41|�x)

�
. (4.34)

The hypothesis H �
0 : { sin2 2θ14 = 0∨Δm2

41 = 0} is particular interesting and is compared
to H �

1: {sin2 2θ14 �= 0 ∧Δm2
41 �= 0}. In this situation m− n = 2 holds.

Δm2
41 and sin2 2θ14 are degenerate in (Δm2

41 = 0., sin2 2θ14 = 0.). This implies that
Wilks‘ theorem is not strictly fulfilled [14] but in most of physics cases the later issue is no
problem, in particular as Double Chooz is hardly sensitive to |Δm2

41| � |Δm2
31|.

The negative logarithmic function is a function of the electron antineutrino survival proba-
bility (cf. equation (4.12)). The survival probability of an electron antineutrino is approx-
imately given by equation (1.30). Nyquist-Shannon sampling theorem says that a signal
with a certain frequency (which is the additional oscillation pattern due to sterile in this
case) can always be described by a series of higher frequencies [115]. Therefore, −2Δ ln(L)
always includes several minima in Δm2

41. Several minima imply that < ∂2 ln(L( �θ1|�x))
∂Δm2

41∂Δm2
41

> must
be zero at some point in parameter space in between. Thus, the conditions for Wilks’ the-
orem are not given in Δm2

41, sin
2 2θ14 space i.e. the behavior of −2 ln(λ(�x)) = −2Δ ln(L)

is a priori unknown and must be obtained from pseudo experiments.

However, Wilks’ theorem holds in sin2 2θ14 space for a fixed specific Δm2
41 in the region in

which Double Chooz is sensitive [14]. Hereby, the simple hypothesis is

H0 : {sin2 2θ14 = X �,Δm2
41 = Y � eV2|X �, Y � ∈ R, 0 ≤ X ≤ 1} , (4.35)

while the alternative hypothesis H1 is

H1 : {0 ≤ sin2 2θ14 ≤ 1,Δm2
41 = Y �, eV2|Y � ∈ R} . (4.36)

Here, H1 and H0 yield the test statistics:

TS1D := −2 lnλ(�x) = −2 ln

�
supL(sin2 2θ14 = X �,Δm2

41 = Y � eV2|�x)
supL(sin2 2θ14,Δm2

41 = Y � eV2|�x)

�
. (4.37)

TS1D follows a Chi-square distribution with one degree of freedom if H1 is true [127] [14].
Examples are shown in section 4.4.1.

4.3.3 Sterile Asimov-Wilks sensitivity

The so called signal exclusion sensitivity describes the parameter space that is expected
to be excluded assuming that the null hypothesis (i.e. sin2 2θ14 = 0.0) is true. If the
distribution of the TS is known, it can be obtained by utilizing a two dimensional scan of
-2 ln(L) in sin2 2θ14 and Δm2

14 on Asimov data (cf. section 4.3.1) with sin2 2θ14 = 0.0. It
follows a Chi-square distribution if Wilks’ theorem holds. 95% confidence level corresponds
to −2Δ ln(L) =3.84 for one degree(s) of freedom resp to −2Δ ln(L) =5.99 for two degree(s)
of freedoms concerning a two sided parameter space centered around the central value.
However, Wilks’ theorem does not hold if Δm2

41 is free (cf. section 4.3.2, cf. [14]) and the
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Figure 4.14: Sketch of scan of −2 ln(L) for Asimov data with sin2 2θ14 = 0: −2Δ ln(L) ver-
sus sin2 2θ14 where −2Δ ln(L) is the difference between −2 ln(L) for the given sin2 2θ14 and
the minimum of −2 ln(L). The 1σ AW sensitivity is that sin2 2θ14 for which −2Δ ln(L) = 1
and the AW sensitivity at 95% confidence level is that sin2 2θ14 for which −2Δ ln(L) = 3.84,
as indicated on the x-axis.

distribution of the test statistics is only known a priori if Δm2
41 is fixed [14]. Nevertheless, it

will be shown later, that the actual sensitivity indeed is proportional to a quantity refereed
to as Asimov-Wilks sensitivity (AW sensitivity) in the following. The AW sensitivity is
defined as that value of sin2 2θ14 for which a scan of −2 ln(L) on Asimov data with true
sin2 2θ14 = 0 yields −2Δ ln(L) =3.84. Similarly, the term 1σ AW sensitivity is used for
that value of sin2 2θ14 for which an likelihood scan on Asimov data with true sin2 2θ14 = 0
yields −2Δ ln(L) =1. Both definitions are sketched in figure 4.14III. As the calculation
of the actual sensitivity is too computing expensive to be done for all systematics studies,
the AW sensitivity will be used for validation instead.

Figure 4.15 shows the AW sensitivity at 95% confidence level. The AW sensitivity for one
degree(s) of freedom (dof) is shown in solid black, while the 1σ AW sensitivity for one dof
is shown in solid green. The sin2 2θ14 steps in the grid used for the scan have a width of

IIIThe AW sensitivity is rather a discovery potential with extremely low confidence level than the actual
sensitivity, following the definition by [109]. One can also understand the AW sensitivity as the expected
95% allowed region around the central value sin2 2θ14 = 0 , which would only make sense to give if the
existence of a sterile neutrino was known from external input. Otherwise an upper limit will be provided
in case the measurement is consistent with the no sterile hypothesis.
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Figure 4.15: AW sensitivity at 95% confidence level with the LLH-FF approach. The
black solid line shows the AW sensitivity for one degree of freedom, the solid green line the
1σ AW sensitivity for one degree of freedom (see text, figure 4.14). The color scale shows
−2Δ ln(L) w.r.t. the minimum −2 ln(L) from this plot. Gray shaded areas mark missing
dataa.

aIsolated missing data points are due to technical not fit related computing issues (such as that the
machine on which a fit was running got switched off). The number of fits that did not converge due to
EDM above max is around 0.3% and clustered at large sin2 2θ14 and small Δm2

41.
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0.002. The color scale represents −2Δ ln(L) w.r.t. the minimum −2 ln(L) from this plot.
Gray shaded areas mark missing dataIV.

The lack of sensitivity around Δm2
41 ≈ m2

ee is due to ambiguity between sin2 2θ41 and
sin2 2θ13, below Double Chooz is not sensitive because the oscillation baselines are to large
for both detectors (cf. section 4.2.3). For high Δm2

41 � 0.3 eV2 the fast oscillations get
washed out by limited energy resolution in both detectors. Thus, Double Chooz is not
sensitive here. It is clearly not intended to apply the MC-Data fit to the sterile analysis in
the near or intermediate future due to the reactor neutrino anomaly (cf. section 1.4.1) and
the spectral distortion (cf. section 1.4.4). The AW sensitivity for the MC-Data fit approach
is plotted with a solid red line in figure 4.16. It is compared to the AW sensitivity for the
MC-Data fit approach (solid black line). One can see that the AW sensitivity for the
MC-Data fit approach is always better than for the LLH-FF approach. That is because
the MC-Data fit approach has the ability to compare the predicted neutrino rate in near
and far detector to the measurements. Therefore, the LLH-FF approach does not provide
any sensitivity for large Δm2

41 ≥ 0.3 eV2 since the sterile signature is only a global deficit
in all detectors (cf. section 4.2.3). In contrast, the MC-Data approach has the ability
to compare that constant global deficit to the prediction. Hence, it provides a constant
sensitivity for Δm2

41 ≥ 0.3 eV2. Both approaches are not sensitive for Δm2
41 ≈ |Δm2

31| due
to the ambiguity between sin2 2θ13 and sin2 2θ14.

It was shown in [73] that the shape of the AW sensitivity is well understood by the cross
correlation corrcross(θ14,Δm2

41) between near and far detector defined as

corrcross(θ14,Δm2
41) =

�
iΔNND,i(θ14,Δm2

41) ·ΔNFD,i(θ14,Δm2
41)��

i[ΔNND,i(θ14,Δm2
41)]

2
��

i[ΔNFD,i(θ14,Δm2
41)]

2
(4.38)

where i runs over all energy bins and

ΔNJD,i(θ14,Δm2
41) = NJD,i(θ14,Δm2

41)−NJD,i(θ14 = 0.,Δm2
41) (4.39)

and NJD,i(θ14,Δm2
41), J = N,F is the mean expected number of inverse beta decay candi-

dates in energy bin i [73]. This cross correlation may be identified as a quantity related
to the inner product of to vectors �x and �y. For the angle between those two vectors
cos(φ) = �x·�y

|�x||�y| applies.

In order to identify the systematics due to interference of the two reactor baselines, the
AW sensitivity was calculated where the baseline of all neutrinos detected in the near (far)
detector from reactor B1 was changed to the near (far) detector B2 baseline in the oscilla-
tion progress of pseudo data generation and fit. Total number of neutrinos and unoscillated
neutrino energy spectrum were not modified. Figure 4.17 shows the corresponding scan
of −2 ln(L) and the AW sensitivity. Compared to the nominal AW sensitivity the dip
around Δm2

41 ≈ 0.05 eV2 is not present anymore (see figure 4.17, cf. figure 4.15). The
overall AW sensitivity is better in this hypothetical situation. However, this does not mean
that the overall sensitivity would be better if there was only one reactor at Chooz power
plant since that would also reduce the overall statistics in the usual dataset but probably
also increase the statistics in the Off-Off dataset.

IVcf. footnote a for text in caption of figure 4.15
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Figure 4.16: Comparison of AW sensitivity at 95% CL between MC-Data approach and
LLH-FF approach. Δm2

41 is plotted versus sin2 2θ14. The black solid line shows the
AW sensitivity for the LLH-FF approach, the red line for the LLH MC-Data approach.
Note that no fit of experimental data with the MC-Data fit is planned.
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Figure 4.17: Two dimensional scan of −2 ln(L) in sin2 2θ14 (x-axis) and Δm2
41 (y-axis)

on Asimov data where the baseline of neutrinos from B1 was changed to the B2 base-
line (i.e. the measured number of neutrinos in near and far detector was conserved (see
text)). The color scale shows the −2Δ ln(L) w.r.t. to the minimum of −2Δ ln(L). The 1σ
AW sensitivity is solid green line. The solid black line marks the AW sensitivity at 95%
confidence level. Gray shaded areas mark missing data.
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Figure 4.18: Two dimensional scan of −2 ln(L) in sin2 2θ14(x-axis) and Δm2
14(y-axis) of

Asimov data with sin2 2θ14 = 0.05 and Δm2
14 = 0.01 eV2. −2Δ ln(L) is represented by

the color bar where Δ ln(L) = ln(L)− ln(Lmax) is the difference of the natural logarithm
of the likelihood to the natural logarithm of the maximum likelihood. Gray shaded areas
mark missing data. Figure 4.19 shows the same data with a different color scale such that
the minimum is more obvious.

4.3.4 Data challenges

A so called data challenge is a method to test the full chain of analysis in a representative
computer experiment. For a data challenge pseudo data is calculated using known input
values. This pseudo data is inserted in the fit algorithm in order to test if the algorithm
can recover the inserted values. Instead of mock data Asimov data may be inserted as well.
The fit should recover the inserted values exactly except for a negligible deviation due to
limited numerical accuracy.

Figure 4.18 shows an example of such a data challenge with Asimov data. Here, Asimov
data with sin2 2θ14 = 0.05 and Δm2

14 = 0.01 eV2 has been generated. Figure 4.19 displays
the same scan on −2 ln(L) with different scaling of the z-axis. Figures 4.18 and 4.19
illustrate that the inserted values are recovered. Moreover, it can be seen in figure 4.18
that there are several local minima. Indeed, due to the Nyquist-Shannon sampling theorem
there are always local minima in the signal region [115] (cf. section 4.3.2).

The data challenge presented above has two disadvantages: First, the Asimov data is
calculated by the same software that does the fit. Second, the person running the fit
knows the true value. Thus, a blind data challenge has been done, i.e. the datasets were
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Figure 4.19: Two dimensional scan of −2 ln(L) in sin2 2θ14(x-axis) and Δm2
14(y-axis) of

Asimov data with sin2 2θ14 = 0.05 and Δm2
14 = 0.01 eV2. −2Δ ln(L) is represented by

the color bar where Δ ln(L) = ln(L)− ln(Lmax) is the difference of the natural logarithm
of the likelihood to the natural logarithm of the maximum likelihood. Gray shaded areas
indicate missing data. Figure 4.18 shows the same data with a different color scale.
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Table 4.12: Summary of the blind data challenge. The first column indicates the number
of the dataset, the second the indicates which figures show the result of the corresponding
−2 ln(L) scan, the third one the best fit value of sin2 θ13, the fifth the bin width in sin2 θ13,
the sixth one the fitted Δm2

41/eV
2 and the last one the true Δm2

41/eV
2.

# plots sin2 θ14,fit bin width sin2 θ14,true Δm2
41,fiteV

2 Δm2
41,trueeV

2

1 C.4, C.3 0.0394 0.0010 0.040 0.050 0.0500
2 C.6, C.5 0.0808 0.0010 0.080 0.16 0.1600
3 4.20, C.7 0.0807 0.0010 0.080 0.012 0.0120
4 C.9, C.8 0.0285 0.0020 0.030 0.0055 0.0055
5 C.11, C.10 0.0806 0.0010 0.080 0.045 0.0450

provided by another personV without letting the analyzing person know which values were
inserted. This has been done with an algorithm which is independent from the likelihood
fit in this work (i.e. the datasets are not generated in the same way as they are produced).
Five Asimov datasets with unknown parameters have been provided. Two dimensional
scans of −2 ln(L) have been performed on these Asimov datasets since there is usually
more than one local minimum (cf. previous paragraph).

Here, dataset 3 is taken as an example. A first scan was used to identify local minima
(cf. figure C.7), second a scan with a finer binning has been done around the deepest
local minimum and is shown in figure 4.20. sin2 2θ14 is on the x-axis, Δm2

41 on the y-
axis the difference in 2 ln(L) is shown by the color scale. The minimum was found at
sin2 2θ14 = 0.0807 with a bin width of 0.0010 and Δm2

41 = 0.012 eV2 and is marked with a
green star. The true inserted values were sin2 2θ14 = 0.080 and Δm2

41 = 0.012 eV2. Thus,
they have been recovered. All true values used in the blind data challenge are indicated by
a star in figure 4.21 and numbered. All of these points have been recovered as summarized
in table 4.12. The corresponding plots of the scans of −2 ln(L) can be found in figures C.4,
C.3, C.6, C.5, 4.20, C.7, C.9, C.8, C.11 and C.10. Table 4.12 indicates which plots belong
to which dataset.

4.3.5 Spectral distortion bias testing

As mentioned in section 1.4.4, the shape of the reactor flux observed with reactor flux
experiments does not meet the theoretical prediction very well.

In order to test the independence of the fit result from the original reactor Monte Carlo,
Asimov data with artificial distortions have been created. Next, a two dimensional raster
scan in sin2 2θ14 and Δm2

41 has been done with those datasets.

The modeled spectral distortion was officially used in order to probe the stability of the
sin2 2θ13 fits. It was modeled by fitting two Gaussians to the spectral distortion observed
by Daya Bay. The datasets were provided by Tsunayuki Matsubara. Figures 4.22, 4.23
and 4.24 show the distorted Asimov datasets for FD1-On, FD2 and ND.

Figure 4.25 shows the result of the two dimensional raster scan of these datasets, where
sin2 2θ14 is on the x-axis, Δm2

41 is on the y-axis and −2Δ ln(L) = 2 · (ln(L)− ln(Lmax)) is

VThiago J.C. Bezerra
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Figure 4.20: Two dimensional scan of −2Δ ln(L) in sin2 2θ14 (x-axis) and Δm2
41 (y-axis) of

the third Asimov data sample. where −2Δ ln(L) is represented by the color bar. Δ ln(L) =
ln(L)− ln(Lmax) is the difference of the natural logarithm of the likelihood to the natural
logarithm of the maximum likelihood. The 1σ (2σ) region for the local (sin2 2θ14, Δm2

41)
range in which Wilks‘ theorem holds is marked by the light blue (black) line.
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Figure 4.21: AW sensitivity at 95% confidence level with the LLH-FF approach. The
black solid line shows the one degree of freedom case, the dashed line the two degree of
freedom case. The Daya Bay 95% C.L. exclusion limit from [21] is shown in light blue for
comparison. The true values inserted in the blind data challenge are marked with starts
and numbered. The results of the blind data challenge are summarized in table 4.12.
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Figure 4.22: FD1-On Asimov data with the spectral distortion used to test the θ13 fit and
the sterile fit. The nominal background subtracted number of inverse beta decay candidates
in this dataset is shown relative to the nominal prediction (without neutrino oscillation
and spectral distortion) versus visible energy of the prompt event by the data points. The
red line indicates the nominal model assuming sin2 2θ14 = 0 and sin2 2θ13 = 0.119.

Figure 4.23: FD2 Asimov data with the spectral distortion used to test the θ13 fit and the
sterile fit. The nominal background subtracted number of inverse beta decay candidates in
this dataset is shown relative to the nominal prediction (without neutrino oscillation and
spectral distortion) versus visible energy of the prompt event by the data points. The red
line indicates the nominal model assuming sin2 2θ14 = 0 and sin2 2θ13 = 0.119.
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Figure 4.24: ND Asimov data with the spectral distortion used to test the θ13 fit and the
sterile fit. The nominal background subtracted number of inverse beta decay candidates in
this dataset is shown relative to the nominal prediction (without neutrino oscillation and
spectral distortion) versus visible energy of the prompt event by the data points. The red
line indicates the nominal model assuming sin2 2θ14 = 0 and sin2 2θ13 = 0.119.

represented by the color bar. Here, L is the likelihood value at the specific
�
sin2 2θ14,Δm2

41

�

position and Lmax is the maximum likelihood value. One can see that the fit does not a
minimum for sin2 2θ14 �= 0. Figure 4.26 compares the 95 % confidence level AW sensitivities
(1 dof) obtained from the datasets with (dashed green) and without distortion (solid blue)
to each other. Both AW sensitivitys match well except for a small difference due to the
statistics being slightly different.

4.3.6 Systematics breakdown

Figure 4.27 shows the two dimensional Stat+1 test AW sensitivity at 95% confidence
level (1 dof), where Δm2

41 is on the y-axis and sin2 2θ14 is on the x-axis. Default (solid
black), statistics only (solid blue), stat+detection (dashed red), stat+reactor (dashed
dotted violet), stat+energy (dashed dotted cyan) and stat+θ13 (dashed green) 95% CL
AW sensitivity (1 dof) AW sensitivity are plotted.

It can be seen that the statistics only AW sensitivity is very close to the default
AW sensitivity in most of the Δm2

41 region.

The statistics only AW sensitivity assumes that θ13 is known to infinite precision. This
is a hypothetical assumption since the Double Chooz experiment cannot measure θ13 and
θ14 independently. Therefore, a sterile analysis should always do a simultaneous fit of θ13
and θ14. However, only for Δm2

41 ≈ Δm2
31 the difference between Stat+θ13 and Stat. only

sensitivity is significant. The difference between stat only AW sensitivity and Stat+reactor
and Stat+detection AW sensitivity is not significant for any Δm2

41. The energy has some
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Figure 4.25: Two dimensional scan of −2 ln(L) in sin2 2θ14 (x-axis) and Δm2
41 (y-axis) of

the Asimov data shown in figures 4.22, 4.23 and 4.24 where −2Δ ln(L) is represented by
the color bar. Δ ln(L) = ln(L)− ln(Lmax) is the difference of the natural logarithm of the
likelihood to the natural logarithm of the maximum likelihood. The 95% CL AW sensitivity
for 1 dof (solid) and 2 dof (dashed) is drawn as well as the Daya Bay 95% C.L. exclusion
limit from [21] (solid light blue). Gray shaded areas mark missing data.
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Figure 4.26: AW sensitivity with spectral distortion (dashed green) and nominal
AW sensitivity (solid blue). The corresponding Asimov data with distortion is shown
in figures 4.22, 4.23 and 4.24. The colored regions indicate the accuracy of the calculation.
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Figure 4.27: Sterile systematics breakdown: Comparison of default (solid black), statis-
tics only (solid blue), stat+detection (dashed red), stat+ reactor (dashed dotted violet),
stat+energy (dashed dotted cyan) and stat+ θ13 (dashed green) AW sensitivity (1 dof) at
95% confidence level. Plotted is Δm2

41 versus sin2 2θ14.

impact for Δm2
41 < 0.01 eV2 which can be understood by the correlation between param-

eters modeling the reactor flux and energy as pointed out in section 4.3.1.

In addition to the two dimensional Stat+1 test, one dimensional Stat+1 and N-1 tests
have been done for specific Δm2

41 (0.1000, 0.0500, 0.0300, 0.0200, 0.0100 and 0.0073 eV2).
The results are summarized in table 4.13. The calculation of the systematical uncertainties
(cf. equation (4.25), table 4.13) shows that the fit uncertainty is statistically dominated
for Δm2

41 ≥ 0.01 eV2.

In addition to the two dimension stat+1 test, one dimensional stat+1 and N-1 tests have
been done for some Δm2

41/eV2 where sin2 2θ14 = 0.1. The results are presented in table
4.13. Note that the values have an uncertainty of around two percent. One can take
from the table that for Δm2

41 > 0.01 eV2 the statistical uncertainty is dominant. This
is a direct consequence from the fact, that Double Chooz was optimized for the mass
squared difference Δm2

ee ≈ 0.0025 eV2. The one dimensional systematics breakdown also
demonstrates that background and Δm2

ee have almost no impact.
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Table 4.13: One dimensional systematics breakdown in sin2 2θ14 for sin2 2θ14 = 0.1 and
several Δm2

41. The values have a uncertainty of around 2%.

sin2 2θ14 AW sensitivity (for sin2 2θ14 = 0.1)
Δm2

41/eV2 0.1000 r 0.0500 0.0300 r 0.0200 r 0.0100 r 0.0073 r
1. Default 0.0240 1.00 0.0314 1.00 0.0182 1.00 0.0169 1.00 0.0121 1.00 0.0140 1.00
2. Stat. 0.0237 0.99 0.0305 0.97 0.0161 0.88 0.0143 0.85 0.0085 0.70 0.0077 0.55
3. Sys. : 0.0038 0.16 0.0075 0.24 0.0085 0.47 0.0090 0.53 0.0087 0.71 0.0117 0.84
4. N-1
4.1 Det. 0.0240 0.0314 0.0182 0.0169 0.0120 0.0139
4.2 Reactor 0.0238 0.0313 0.0180 0.0168 0.0120 0.0138
4.3 BG 0.0239 0.0314 0.0181 0.0169 0.0121 0.0139
4.4 Energy 0.0238 0.0311 0.0172 0.0156 0.0115 0.0105
4.6 θ13 0.0240 0.0314 0.0181 0.0168 0.0110 0.0135
4.7 Δm2

atm 0.0240 0.0315 0.0182 0.0169 0.0121 0.0140
4.8 Δm2

41 0.0240 0.0324 0.0181 0.0169 0.0121 0.0140
5. Stat+1
5.1 Det. 0.0237 0.0306 0.0166 0.0144 0.0094 0.0077
5.2 Reactor 0.0237 0.0308 0.0167 0.0145 0.0093 0.0079
5.2 BG 0.0237 0.0308 0.0163 0.0145 0.0086 0.0078
5.3 Energy 0.0238 0.0311 0.0170 0.0167 0.0093 0.0132
5.5 θ13 0.0237 0.0305 0.0164 0.0148 0.0111 0.0091
5.6 Δm2

atm 0.0237 0.0306 0.0161 0.0143 0.0086 0.0077
5.7 Δm2

41 0.0237 0.0306 0.0161 0.0143 0.0086 0.0077

4.4 Test statistics and sensitivity

This section describes the sensitivity calculation. In order to do so, first the test statistic
used to quantify the agreement with the no-sterile hypothesis is discussed. Next, the test
statistics with sterile signal is introduced. Finally, the sensitivity calculation is presented.

4.4.1 No-sterile test statistics

As mentioned in section 4.3.2, Wilks’ theorem does not hold for the sterile analysis with
free parameters sin2 2θ14 and Δm2

41 in general. This means that the distribution of the
test statistics of type TS2D (cf. equation (4.34)) is a priori unknown [14]. In principle, this
problem can be solved by Monte Carlo simulations (cf. section 4.3.2). Unfortunately, for
each pseudo experiment, a full scan would need to be done while one scan takes at least
100 – 200 central processing unit (CPU)-hours which means that a solution via Monte
Carlo simulations becomes practically impossible.
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Figure 4.28: Sketch of the definition of the background test statistics from equa-
tion (4.40a): −2 ln(L) versus sin2 2θ14 in arbitrary units for a given dataset. Here,
−2 ln

�
L(sin2 2θ14)

�
= ln sup(L(sin2 θ14 ≥ 0) i.e. all parameters except sin2 2θ14 are op-

timized. sin2 2θ14,best labels the best fitting sin2 2θ14 for this dataset.

In order to quantify the agreement with the no-sterile hypothesis, the test statistics TS0

is defined as a special case of TS2D (cf. equation (4.34) ):

TS0 : = −2 ln(λ) = −2 ln

�
sup(L(sin2 θ14 = 0.,Δm2

41))

sup(L(sin2 θ14 ≥ 0,Δm2
41 ≥ 0))

�
(4.40a)

= −2 ln sup(L(sin2 θ14 = 0)) + 2 ln sup(L(sin2 θ14 ≥ 0)) (4.40b)

= min(−2 lnL(sin2 θ14 = 0))−min(−2 lnL(sin2 θ14 ≥ 0)) (4.40c)

This definition is illustrated in figure 4.28. TS0 will be referred to as background test
statistics.

The background test statistics was obtained from 390 pseudo experiments. Thereby, Δm2
41

was scanned with 100 grid points in order to find the best fit while sin2 2θ14 was a free
parameter in the fitVI.

The resulting probability density function (pdf) of the background test statistics from equa-
tion (4.40a) is plotted in solid blue in figure 4.29. It does neither follow a χ2 distribution
with dof=1 which is plotted in dashed dotted black, nor a χ2 distribution with dof=2 shown
in dashed red. Strikingly, zero is not the most likely value of the TS and values close to
zero are extremely unlikely. but This is a mathematical feature of the likelihood-function:

VIexcept that it was required 0 ≤ sin2 2θ14 ≤ 1
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Any fluctuation of the data will always be described better by a sterile oscillation with free
amplitude and frequency than by no a non-sterile oscillation. Mathematically this can be
explained as follows:

• There is always more than one minimum of −2 ln(L) (cf. section 4.3.2)

• Close to each of this local minima −2 ln(L) follows a Chi-square distribution

• Dicing random numbers from more than one Chi-square distribution and taking the
minimum of this numbers does not yield in a Chi-square distribution

One may understand this being similar to the look elsewhere effect [69][90][14]. There are
always multiple minima and only the deepest minimum is selected. For further confirmation
and illustration a simple test has been done by dicing random numbers from Chi-square
distributions with given number of dofs ndof and selecting the minimum, i.e. producing a
distribution of

Q(x,M, ndof) = min




M times� �� �
χ2(x, ndof),χ

2(x, ndof), ..


 (4.41)

where χ2(ndof ) is a Chi-square distribution with ndof of freedom. The resulting pdf for
100000 pseudo experiments is displayed in figure 4.30. The dashed dotted black line shows
the pdf for Q(M = 6, ndof), the solid blue line shows the average pdf of Q(M = 3, ndof) and
Q(M = 9, ndof) and the dashed red line shows the average probability density function for
Q(M = 3, ndof), Q(M = 4, ndof),..,Q(M = 9, ndof). These three pdfs are not identical and
neither of them matches a Chi-square distribution with ndof=2 which is shown in cyan.

Q(M,ndof) can be written down as

Q(x,M, ndof) = M · χ2(ndof , x) ·
�� x

0
χ2(ndof , y)dy

�(M−1)

. (4.42)

The fit of equation (4.42) with free parameters ( M,ndof) to the TS0 probability density
function is shown in figure 4.29. It yields ndof = 1.79 ± 0.44,M = 7.52 ± 3.02 with a
χ2/dof of 1.23 i.e. is consistent with ndof = 2 and 2σ consistent with ndof = 1. Fits
with fixed ndof = 2 (ndof = 1) are shown in dashed cyan (dashed green). The fit with
ndof = 2 describes the probability density function quite good and returns M = 6.22±0.34,
χ2/dof = 1.15 while the fit with ndof = 1 is worse than the two other fits. Thus, taken
together, the degrees of freedom seem to be close to two.

4.4.2 Sensitivity

By definition the median 95% confidence level sensitivity sin2 2θsens14 is that value of sin2 2θ14
for which in 95% of cases pseudo experiments will result in a larger best fit background
test statistics than the median best fit background test statistics for pseudo experiments
with true value sin2 2θ14 = 0 (called sin2 2θmed

14 ). This definition is sketched in figure 4.32
a). Unfortunately, the behavior of the test statistics in two dimensions is not a priori
known (cf. section 4.3.2) and fitting a sufficient number of pseudo experiments in every
point of (sin2 2θ14, Δm2

41) requires an undoable amount of computing time. this work, the
sensitivity is given as a function of Δm2

41.
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4.4. Test statistics and sensitivity

Figure 4.29: Probability density function of the test statistics distribution (cf. equation
(4.40a)) for no sterile signal. Plotted are fraction of occurrence versus TS value (cf. equa-
tion (4.40a)). The obtained pseudo data is illustrated by the solid blue histogram. The fit
of a Q(M,ndof) (cf. equation (4.41)) with ndof as an unconstrained fit parameter is shown
in solid black, with ndof=1 (ndof=2) in dashed dotted green (dashed cyan). For compari-
son Chi-square distributions with 1 (2) dof are shown in dashed dotted black (dashed red).
This plot includes 388 pseudo experiments.
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Chapter 4. Sterile oscillation analysis

Figure 4.30: Pdf of dicing random numbers from equation (4.41). The dashed dotted
black line shows the pdf for Q(M = 6, ndof), the solid blue line shows the average pdf
of Q(M = 3, ndof) and Q(M = 9, ndof) and the dashed red line shows the average pdf
for Q(M = 3, ndof), Q(M = 4, ndof),..,Q(M = 9, ndof). A Chi-square distribution with
ndof = 2 is shown in cyan for comparison.
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4.4. Test statistics and sensitivity

Accordingly, by definition the median 95% confidence level sensitivity sin2 2θsens14 for a
Δm2

41 is that value of sin2 2θ14 for that Δm2
41 which in 95% of cases pseudo experiments

will result in a larger best fit sin2 2θ14 for that Δm2
41 than the median best fit sin2 2θmed

14

for that Δm2
41. For reasons of readability the dependence on Δm2

41 is not written outVII.

sin2 2θmed
14 is obtained from pseudo experiments. In detail, 390 pseudo experiments with

true sin2 2θ14 = 0 were generated and sin2 2θ14 was fitted for 100 Δm2
41 grid points. These

pseudo experiments are identical to those used for the background test statistics calculation
(cf. section 4.4.1). sin2 2θmed

14 is the median fit result and was identified for all 100 Δm2
41

grid point independently.

For the sterile distribution, pseudo experiments are not needed as Wilks‘ theorem holds as
long as Δm2

41 is fixed.

The red histogram in figure 4.31 displays the probability density function of the test statis-
tics TS1D (cf. equation (4.37)) from 1999 pseudo experiments with sin2 2θ14 = 0.000 for
constant Δm2

41 = 0.080 eV2. The black histogram shows the probability density function
of the test statistics from 1999 pseudo experiments with sin2 2θ14 = 0.072 for constant
Δm2

41 = 0.280 eV2. Both histograms match well with the chi-square distribution for one
degree of freedom indicated with the dashed blue line.

The test statistics

TSS(Δm2
41) :=− 2 ln

�L( �xa| sin2 2θmed
14 ,Δm2

41)

L( �xa| sin2 2θbest14 ,Δm2
41)

�
(4.43)

= −2 ln
�
L( �xa| sin2 2θmed

14 ,Δm2
41)

�

−
�
−2 ln

�
L( �xa| sin2 2θbest14 ,Δm2

41)
��

is defined as illustrated in sketch 4.32 b). Here, sin2 2θbest14 is the best fit sin2 2θ14 for the
Asimov dataset �xa (i.e. �xa is a pseudo dataset with infinite statistics, cf. section 4.3.1)
and L is the likelihood function (cf. equation (4.12)). sin2 2θ14,best is identical to the true
sin2 2θ14 used to produce the dataset as the statistics is infinite and the fit is unbiased.
While the dependence on Δm2

41 is explicitly mentioned in equation (4.43) it will not be
explicitly written out in the following. The median sensitivity sin2 2θ14,sens according to
Wilks’ theorem is that true value of sin2 2θ14 for which TSS = 2.71 [100] [127]. This is
illustrated in figure 4.32 c). Thus, TSS is obtained for reasonable sin2 2θ14 > sin2 2θmed

14

and a spline is used to describe the inverse of the relation TSS(sin
2 2θ14) (cf. figure 4.32

d)). That spline evaluated at TSS = 2.71 yields the median sensitivity.

The uncertainty on the sensitivity is calculated similarly. The 1σ area is defined as the area
in which 68.2% of experiments should be, where values are added to the area according
to their likeliness. This yields an area centered around the median in case of a Gaussian
distribution (cf. figure 4.33). However, 1σ and 2σ area might be asymmetric or even share
an edge if the probability distribution is not symmetric. Moreover, that edge can even be
identical to the median if the probability distribution contains a delta distribution at that
edge.

Figure 4.34 shows the pdfs of best fit sin2 2θ14 from pseudo experiments with true
sin2 2θ14 = 0 exemplary for for Δm2

41 = 0.007 eV2 (dashed blue line), Δm2
41 = 0.017 eV2

VIIi.e. one could also use sin2 2θ
sens,Δm2

41
14 , sin2 2θ

med,Δm2
41

14 as symbols
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Chapter 4. Sterile oscillation analysis

Figure 4.31: Probability density function of the test statistics TS1D (cf. equation (4.37))
with fixed Δm2

41 from pseudo experiments. The red histogram shows the probability
density function from 1999 pseudo experiments with sin2 2θ14 = 0.000 for constant Δm2

41 =
0.080 eV2. The red histogram displays the probability density function from 1997 pseudo
experiments with sin2 2θ14 = 0.072 for constant Δm2

41 = 0.280 eV2. The dashed blue line
indicates a Chi-square distribution with one degree of freedom.
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4.4. Test statistics and sensitivity

Figure 4.32: Sketches on the sensitivity calculation: Δm2
41 is assumed to have the same

fixed value in all subplots. sin2 2θsens14 names the sin2 2θ14 sensitivity (which is to be calcu-
lated) and sin2 2θmed

14 the median best fit sin2 2θ14 for pseudo experiments with no signal
for that given Δm2

41
a.

a) Definition of the sensitivity [90]: The probability is sketched versus sin2 2θ14 in arbitrary
units. The solid blue line shows the probability density function of best fit sin2 2θ14 for
pseudo experiment with true value sin2 2θ14 = 0.0. The dashed blue line marks the median
of this distribution, called sin2 2θmed

14 . The black dashed dotted line sketches the pdf for
pseudo experiments with true value sin2 2θ14 = sin2 2θmed

14 (i.e. at the sensitivity value).
The gray shaded area covers the 95% upper tail of the later distribution.
b) Definition of TSS from equation (4.43); −2 lnL for pseudo data with median best fit
value sin2 2θbest14 is plotted versus sin2 2θ14 in arbitrary units. The definition of the test
statistics is marked on the y-axis..
c) Illustration of how the sensitivity is connected to TSS (cf. equation (4.43)); TSS versus
sin2 2θ14 in arbitrary units, sin2 2θsens14 is marked on the x-axis (for more see text).
d) Sketch on the calculation of the sensitivity. TSS (y-axis) is obtained for various sin2 2θ14
(x-axis, sketched in arbitrary units). A spline is used to describe the inverse function
(sin2 2θ14 as a function of TSS) and its value for TSS = 2.71 is given as sin2 2θsens14 . For
efficiency reasons and the make the function unique not the whole range of sin2 θ14 is
scanned but only reasonable values > sin2 2θmed

14 as sin2 2θsens14 is larger than > sin2 2θmed
14

by definition.

ai.e. sin2 2θsens14 and sin2 2θmed
14 are a functions of Δm2

41 which are evaluated at the same fixed point
here, for reasons of readability the dependence on Δm2

41 is not written out.
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Figure 4.33: 1 (a)) and 2 (b)) σ area from a Gaussian distribution. The 1σ area covers
≈68.2%, the 2σ area ≈ 95.4%.

(solid cyan line), Δm2
41 = 0.040 eV2 (dashed dotted green line), Δm2

41 = 0.096 eV2 (dotted
black line) and Δm2

41 = 0.230 eV2 (dashed red line). In all fits sin2 2θ14 was free while
Δm2

41 was fixed. Each histogram contains around 390 pseudo experiments. Those pseudo
experiments are identical to the pseudo experiments used to obtain TS0 (cf. section 4.4.1).
One can see that the probability density functions are maximal in the first bin (i.e. for
sin2 2θ = 0, cf. figure 4.34). This means that as long as Δm2

41 is fixed to the inserted
value, sin2 2θ14 = 0 is the most likely best fit result for true inserted sin2 2θ14 = 0. In the
specific situation given here, the 1σ area is identical to the 68.2% quantile and the 2σ area
is identical to the 95.4% quantile since sin2 2θ14 < 0. is not allowed.

Figure 4.35 illustrates the definition of the upper edge of the sensitivity uncertainty band
following fro that for 1 and 2σ range.

The rest of the calculation works entirely analogy to the calculation of the median sensi-
tivity. Just that sin2 2θ14,med is exchanged for the 1σ (2σ) quantile sin2 2θq1σ14 (sin2 2θq2σ14 ).

Figure 4.36 presents median(solid black), Φ(68.2%) quantile(solid red) and Φ(95.4%) quan-
tile (dashed blue) of the best fit sin2 2θ14 pdf from null hypothesis pseudo experiments.
The median is very close to zero for all Δm2

41. This is expected as the inserted true value
was sin2 2θ14 = 0.0 ∀Δm2

41 unless fluctuations into the sin2 2θ14 < 0. region fit better to
sin2 2θ14 > 0. than to sin2 2θ14 = 0.. Here, this is not given as Δm2

41 is fixedVIII. The 1σ
AW sensitivity (cf. section 4.3.3) is represented by the dotted black line in figure 4.36. It
matches the 68.2% quantile (solid red line) by construction.

The final step for sensitivity calculation is to describe the inverse function TS(sin2 2θ14)
by a spline and evaluate it at TS=2.71 like it is sketched in figure 4.32 d). This spline
interpolation is presented exemplary for several Δm2

41 in figure 4.37.

VIIIOtherwise (if Δm2
41 was not fixed), the median best fit sin2 2θ14 value would be a non-zero and a

positive number
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4.4. Test statistics and sensitivity

Figure 4.34: Example probability density functions of best fit sin2 2θ14 from pseudo
experiments with true sin2 2θ14 = 0.0. The plot shows the probability density p versus
best fit sin2 2θ14 for Δm2

41 = 0.007 eV2 (dashed blue line), Δm2
41 = 0.017 eV2 (solid cyan

line), Δm2
41 = 0.040 eV2 (dashed dotted green line), Δm2

41 = 0.096 eV2 (dotted black line)
and Δm2

41 = 0.230 eV2 (dashed red line). Each histogram contains around 390 pseudo
experiments. Those pseudo experiments are identical to the pseudo experiments used to
obtain TS0 from equation (4.40a) (cf. section 4.4.1).
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Figure 4.35: Sketches on the definition of the uncertainty of the sensitivity: Δm2
41 is

assumed to have the same fixed value in all subplots.
a) Definition of the upper 1σ edge of the sensitivity uncertainty error band. The solid blue
line shows probability versus best fit sin2 2θ14 for the probability density function of best
fit sin2 2θ14 for pseudo experiments with true value sin2 2θ14 = 0.0. The dashed blue line
marks the 1σ quantile of this distribution, called sin2 2θq1σ14

a. The black dashed dotted
line represents the probability density function for pseudo experiments with true value
sin2 2θ14 = sin2 2θ1σsens14 (i.e. at the 1σ edge of the sensitivity uncertainty band). The gray
shaded area covers the 95% upper tail of the later distribution.
b) Definition of the upper edge of the 2σ sensitivity uncertainty error band. The solid
blue line shows pdf of best fit sin2 2θ14 for pseudo with true value sin2 2θ14 = 0. in terms
of probability versus best fit sin2 2θ14 and the dashed blue line marks the 2σ quantile
of this distribution, called sin2 2θq2σ14

b. The solid black line sketches the pdf for pseudo
experiments with true value sin2 2θ14 = sin2 2θ2σsens14 (i.e. at the 2σ edge of the sensitivity
uncertainty band). The gray shaded area covers the 95% upper tail of the later distribution.

aThe no-sterile pdf actually almost contains a delta distribution at sin2 2θ14 = 0 and thus does not look
like sketched here.

bThe no-sterile pdf actually almost contains a delta distribution at sin2 2θ14 = 0 and thus does not look
like sketched here.
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4.4. Test statistics and sensitivity

Figure 4.36: Various quantiles of the sin2 2θ14 best fit distribution from null hypoth-
esis pseudo experiments; Δm2

41 versus sin2 2θ14. The median is shown in solid black,
the Φ(68.2%) quantile in solid red and the Φ(95.4%) quantile in dashed blue. The 1σ
AW sensitivity (cf. section 4.3.3) is shown in dotted black and matches the Φ(1) quantile
by construction.
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Chapter 4. Sterile oscillation analysis

Figure 4.37: TSS from equation (4.43) (illustrated in figure 4.32 b)) versus sin2 2θ14 for
Asimov data with true value sin2 2θ14 and various Δm2

41 (see legend) as sketched in figure
4.32 d). The spline interpolation is indicated by the solid lines.

Figure 4.38 displays the final median sensitivity to sin2 2θ14 as a function of Δm2
41/eV

2

(y-axis). Its 1σ (2σ) uncertainty area is shaded in green (yellow). As the pdf of best fit
sin2 2θ14 for no sterile pseudo experiments has its global maximum at sin2 2θ14 = 0 and
is zero for sin2 2θ14 = 0 values left to the left 1σ uncertainty edge are not possible. The
median sensitivity is almost identical to the later. Therefore, best fits on experimental
data to the right of the median sensitivity are more likely than to its left since being to
the left is not even possible for most of Δm2

41. The AW sensitivity (cf. figure 4.14, section
4.3.3) is indicated with a dashed blue line in figure 4.38. It is almost parallel to the median
sensitivity and in the middle of the 1σ area. Thus, all systematical studies done with the
AW sensitivity can be transferred to the actual median sensitivity.
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4.4. Test statistics and sensitivity

Figure 4.38: Sensitivity to sin2 2θ14 (x-axis) as a function of Δm2
41/eV

2 (y-axis). The
median sensitivity is plotted in solid green, the 1σ area is indicated in green and the 2σ
area in yellow. The AW sensitivity (cf. figure 4.14, section 4.3.3) is plotted with a dashed
blue line.
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Chapter 5

Results

This chapter presents the results of the experimental data fit, the fit validation and the
upper limit calculation.

Figure 5.1 shows the results of a two dimensional likelihood scan in sin2 2θ14 (x-axis) and
Δm2

41/eV
2 (y-axis) on experimental data. The color scale shows −2Δ ln(L) which is minus

two times the difference between the natural logarithm of the likelihood at the grid point
and the minimum of ln(L). The green star marks the global best fit. It was found that
−2Δ ln

�
L(sin2 2θ14 = 0 ∨Δm2

41 = 0)
�
= 6.15. The main tasks of the sterile analysis are

testing whether −2Δ ln
�
L(sin2 2θ14 = 0 ∨Δm2

41 = 0)
�
= 6.15 is consistent with no-sterile

signal and giving a p-value.

These two tasks will be discussed in section 5.1. The definition of the p-value is sketched
in figure 5.2.
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Figure 5.1: Scan of −2Δ ln(L) for experimental data in sin2 2θ14 (x-axis) and Δm2
41/eV

2(y-
axis).−2Δ ln(L) is represented in the color bar where Δ ln(L) = ln(L) − ln(Lmax) is the
difference of the natural logarithm of the likelihood to the natural logarithm of the maxi-
mum likelihood from this scan. The green star marks the best fit point (i.e. the minimum
of −2Δ ln(L)). Grey shaded areas mark missing data.

Figure 5.2: Sketch on p-value definition: Probability density function of TS0 (defined
in equation (4.40a), cf. section 4.4.1) for pseudo experiments without sterile signal. The
p-value corresponds to the shaded area i.e. to the integral of the pdf from the TS0 found
in actual data, TSd0, to infinity.
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5.1. P-value

5.1 P-value

Figure 5.3 displays test statistics for the null hypothesis (see also figure 4.29). The value
of the test statistics from experimental data is indicated by the dashed black vertical line.
One can see that the experimental data result is well within the expectation from pseudo
experiments. K = 96 of the N = 388 pseudo experiments of the null hypothesis for figure
5.3 have a test statistics value of TS0 > 6.15. This corresponds to a p-value of 0.247.
Assuming a Poisson uncertainty on K results in an uncertainty of 0.025. However, the
distribution of the pseudo experiments is a binomial distribution. Therefore giving

σp−value =

�
K(1−K/N)

N
≈ 0.022 (5.1)

as uncertainty is more accurate.

As explained in section 4.4.1 the test statistics distribution for no-sterile signal has been
fitted with an extreme value function Q(M,ndof) cf. equation (4.41). Q(M,ndof) math-
ematically describes the superposition of M Chi-square functions with ndof degrees of
freedom. The best fit of Q(x,M, ndof) yields M = 7.52 ± 3.02. There are O(10) local
minima of −2Δ ln(L) visible in the scan of experimental data. This is consistent with
M = 7.52± 3.02. Also one can see in figure 5.1 that the minima are horizontal, i.e. there
is only one minimum per Δm2

41. The p-value may also be calculated via

p-value =

� ∞

6.15
Q(x,M, ndof)dx (5.2)

The p-values for best fit parameters can be found in table 5.1. All of them are consistent
with 0.247 ± 0.025 and do not depend on the details on the parametrization of the test
statistics. Even more importantly, all values are significantly larger than 5%. Taking
all p-values together confirms that the experimental data is consistent with the no-sterile
hypothesis.

Thus, giving allowed regions under the signal hypothesis is not meaningful and an upper
limit is given. The global best fit is compared to the sensitivity in figure 5.4. One can
see that is just outside the 1σ area. This is indeed expected, as fluctuations in a range in
which Double Chooz is not sensitive would not be recognized by the fit.

As already mentioned, the best fit was found to be consistent with the no-sterile hypothesis.
Thus, it was decided not to give uncertainties under the signal hypothesis. Also, giving
uncertainties even on nuisance parameters would require an uneffortable computing effort

Table 5.1: P-values of the no-sterile hypothesis w.r.t. Double Chooz experimental data.
Values were obtained from fitting Q(M,ndof) (cf. equation (4.41)) to the test statistics
distribution for no sterile signal (cf. equation (5.2)) and from counting pseudo experiments
assuming a binomial distribution respectively.

Method M ndof p value
counting pseudo experiments 0.247 ± 0.022

equation (5.2) 7.52 1.79 0.248
equation (5.2) 6.22 2 0.255
equation (5.2) 18.82 1 0.220
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Figure 5.3: Probability density function of the test statistics distribution (cf. equation
(4.40a)) for no sterile signal. Plotted are fraction of occurrence versus test statistics value
TS0 (cf. equation (4.40a)). The obtained pseudo data is illustrated by the solid blue
histogram. The fit of a Q(M,ndof) (cf. equation (4.41)) with ndof as an unconstrained fit
parameter is shown in solid black, with ndof=1 (ndof=2) in dashed dotted green (dashed
cyan). For comparison Chi-square distributions with 1 (2) dof are shown in dashed dot-
ted black (dashed red). This plot is identical to figure 4.29 except that the value from
experimental data is indicated by the dashed black vertical line. It includes 388 pseudo
experiments.
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5.1. P-value

Figure 5.4: Sensitivity to sin2 2θ14 (x-axis) as a function of Δm2
41/eV

2 (y-axis). The
median sensitivity is plotted in solid green, the 1σ area is indicated in green and the 2σ
area in yellow. The AW sensitivity (cf. figure 4.14, section 4.3.3) is plotted with a dashed
blue line. The global best fit from experimental data is marked with a blue star.
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Table 5.2: Sterile and nominal best fit parameter values. For the sterile best fit uncertain-
ties are not provided.

sterile best fit nominal best fit
sin2 θ14 0.043 -

Δm2
41/eV

2 0.028 -
sin2 θ13 0.1077 0.1075+0.0161

−0.0172

Li-ND/(1/day) 3.14 3.11 ± 0.29
Li-FD/(1/day) 17.17 16.75 ± 1.85

since requiring a scan of −2 ln(L) for each parameter where every point would again require
a scan in Δm2

41, sin
2 2θ14. However, it has been checked that all nuisance parameters stay in

the σ allowed range. Table 5.2 summarizes best fit values of the main important parameters
for sterile and nominal best fit.

5.2 Fit validation

The next paragraph describes the validation of the data fit. After that, the upper limit
and its calculation is explained in section 5.3.

Figure 5.5 shows the best fit spectra of inverse beta decay candidates normalized to the
nominal expectation oscillated with sin2 2θ13 = 0.086 [13]. The sterile best fit spectrum is
plotted in solid blue, the no-sterile best fit in dashed black and the data with red points.
Note that the dof are significantly less than N=(number of data points-2) since (among
others) the reactor flux parameters are free in the fit.

To highlight the difference between the sterile and the no-sterile best fit the Chi-square
per energy bin i following the definition by Neyman [95] is used:

χ2
i (
�ζ) =

(n
i,�ζ

− ni,meas)
2

n
i,�ζ

, (5.3)

where n
i,�ζ

is the number of inverse beta decay candidates in bin i expected for the model

parameters set �ζ. ni,meas is the number of inverse beta decay candidates measured in bin i.
χ2
i (
�ζ) will be labeled χ2

sbf,i if �ζ is given by the outcome of the sterile best fit and χ2
nsbf,i if

�ζ is given by the outcome of the no-sterile best fit. The difference between both quantities
will be called:

Δχ2
i := χ2

nsbf,i − χ2
sbf,i . (5.4)

Figure 5.6 shows the residuum for the no-sterile best fit normalized to the no-sterile best
fit as a function of visible energy. The sterile best fit is indicated by the solid blue line.
The color scale shows the Δχ2

i (cf. equation (5.4)) between sterile and no-sterile best fit
for each energy bin. For red points (positive values) the sterile fit fits better while for blue
points (negative values) the no-sterile best fit matches data better. The ND is shown in
the top, the FD1-On in the middle and FD2 in the bottom. Indeed, the sterile best fit
seams to fit better. One can identify that the points around 2, 4 and 6 MeV have the
largest impact on the fit.
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5.2. Fit validation

Figure 5.5: Sterile (solid blue) and no-sterile (dashed black) best fit inverse beta decay
spectra. FD1-On (top), FD2 (middle) and ND (bottom) number of inverse beta decay
candidates normalized to the nominal expectation oscillated with sin2 2θ13 = 0.086 [13]
versus visible energy. The experimental data is plotted with red circles.
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Figure 5.6: Residuum of no-sterile best fit normalized to the no-sterile best fit versus
visible energy compared to sterile best fit (blue line) for the ND(top), FD1 (middle) and
FD2 (bottom) dataset. The color scale shows the Δχ2

i (cf. equation (5.4)) between sterile
and no-sterile best fit for each energy bin.
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Figure 5.7: Sterile (blue dots) and no-sterile (red squared) best fit χ2 · sign(residuum)
versus visible energy for ND(top) and FD1

�
FD2(bottom). FD1

�
FD2 simply means that

the terms for FD1(χ2
i,FD1) and FD2(χ2

i,FD2) are added to each other: χ2
i,FDI

�
χ2
i,FD2 =

χ2
i,FDI + χ2

i,FD2.

The fit should be rather driven by the combination of FD1 and FD2 period together than
any single one of them, i.e. a fluctuation in either of the FD datasets should not be
matched by a sterile oscillation. Thus, the quantile χ2

i,FD1

�
χ2
i,FD2 = χ2

i,FD1 + χ2
i,FD2 has

been plotted as a function of visible energy in the bottom plot of figure 5.7. The top plot
shows χ2

i,ND. In both detectors, one can see the points around 2, 4 and 6 MeV for which
the sterile fit is better. One can estimate from figure 5.6, that the Chi-square difference
between near and far detector is around six.

Despite the observed sterile best fit is fully consistent with the null hypothesis the Asimov
dataset with best fit sin2 2θ14 and Δm2

41 has been produced andn scan of −2 ln(L) for
this dataset is displayed in figure D.1. It does not qualitatively differ much from the
experimental data scan.

Taken together, the fit seams robust and no indication for a technical failure of the fit was
found.
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5.3 Frequentist upper limit

This section focuses on the upper limit as the experimental data fit result was found to be
consistent with the no-sterile hypothesis (cf. to the beginning of this chapter). First, the
definition and calculation are explained before the result is given later in this section.

The classical frequentist upper limit is defined as that point in parameter space for which
one would in 95% of cases observe an effect (i.e. test statistics) larger than actually seen
in data [90].

As explained in section 4.3.2, Wilks’ theorem does not hold in (sin2 2θ14, Δm2
41) space.

Therefore, the behavior of the test statistics is a priori unknown. In order to get access
to it, pseudo experiments in every point of the (sin2 2θ14, Δm2

41) area are needed, which
again need to be scanned with a grid. This is due to the fact that the landscape of the
negative logarithmic likelihood always has more than one local minimum in Δm2

41. Taking
together giving limits in two dimensions includes enormous computing effort and makes
giving two dimensional limits technically impossible at current point in time.

As pointed out in section 4.3.2, Wilks’ theorem is not violated if Δm2
41 is fixed. Hence, the

test statistics is known to follow a Chi-square distribution with one degree of freedom and
pseudo experiments in every point are not needed. Therefore, the upper limit on sin2 2θ14
is given in one dimension as a function of Δm2

41. Thus, the upper limit at 95% confidence
level for a given Δm2

41 is defined as that sin2 2θ14 for which in 95% cases one would observe
a larger sin2 2θ14 (for that Δm2

41) than seen in experimental data (for that Δm2
41). This

definition in sketched in figure 5.8 a).

The following paragraph describes how the upper limit is technically obtained. In doing
so, the Asimov approach (cf. section 4.3.1) is used, as the −2 ln(L) landscape is known to
have only one minimum in sin2 2θ14 and Wilks’ theorem holds. Using the Asimov approach
is significantly faster than using pseudo experiments and gives a more precise result as the
statistics of pseudo experiments would be highly constrained by computing time. The
calculation works analogy to the calculation of the sensitivity (cf. section 4.4.2) just that
instead of sin2 2θ14,med the best fit found in experimental data sin2 2θ14,bfd.

More in detail, first, the test statistics is defined as

TS(Δm2
41) :=− (−2 ln

�
L( �xa| sin2 2θ14,bfd,Δm2

41)
�
) (5.5)

− 2 ln
�
L( �xa| sin2 2θ14,true,Δm2

41)
�

where L( �xa| sin2 2θ14,bfd,Δm2
41) is the likelihood of Asimov data with parameters

(sin2 2θ14,true,Δm2
41 ( �xa) evaluated at the experimental data best fit sin2 2θ14 for that

Δm2
41. This definition is sketched in figure 5.8 b). The upper limit sin2 2θ14,UL is

that sin2 2θ14 for which TS=2.71 as illustrated in figure 5.8 c). The test statistics (cf.
equation 5.5) is calculated for a set of Asimov datasets with sin2 2θ14 > sin2 2θ14,bfd as
sin2 2θ14 > sin2 2θ14,bfd by definition. A spline interpolation between these (TS, sin2 2θ14)
is performed to extract sin2 2θ14(TS = 2.71) as sketched in figure 5.8 d).

Figure 5.9 presents the scan of 2 ln(L) for experimental data in sin2 2θ14 (x-axis) and
Δm2

41/eV
2 (y-axis). The best fit sin2 2θ14 from experimental data for each Δm2

41,
sin2 2θ14,bfd is indicated by the solid black line. The green star marks the global best
fit from experimental data.
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5.3. Frequentist upper limit

Figure 5.8: Sketches on the calculation of the upper limits: Δm2
41 is assumed to have

the same fixed value in all subplots. sin2 2θ14,UL names the upper limit on sin2 2θ14 and
sin2 2θ14,bfd the best fit sin2 2θ14 on experimental data for that given Δm2

41
a.

a) Definition of the upper limit on sin2 2θ14[90]: Sketch of the pdf of best fit sin2 2θ14 for
pseudo with true value sin2 2θ14,UL; probability versus sin2 2θ14 in arbitrary units. The
grey shaded area covers 95% of probability and the dashed blue line marks the 5% quantile
which matches best fit sin2 2θ14 from experimental data sin2 2θ14,bfd.
b) On the definition of the test statistics from equation (5.5): −2 lnL is plotted versus
sin2 2θ14 in arbitrary units for pseudo data with median best fit value sin2 2θ14,best. The
definition of the test statistics is marked on the y-axis.
c) Illustration of how the upper limit can be obtained from the relation test statistics versus
sin2 2θ14 (in arbitrary units); sin2 2θ14,UL is marked on the x-axis (see text).
d) Sketch on the final upper limit calculation. The test statistics TS (y-axis) is obtained
for various sin2 2θ14 (x-axis, sketched in arbitrary units). A spline is used to describe
the inverse function (sin2 2θ14 as a function of TS) and its value for TS=2.71 is given as
sin2 2θ14,UL. For efficiency reasons and to make the function unique not the whole range of
sin2 θ14 is scanned but only reasonable values > sin2 2θ14,med as sin2 2θ14,UL is larger than
> sin2 2θ14,bfd by definition.

ai.e. sin2 2θ14,UL and sin2 2θ14,bfd are a functions of Δm2
41 which are evaluated at the same fixed point

here. For reasons of readability the dependence on Δm2
41 is not written out.
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Figure 5.9: Scan of −2Δ ln(L) for experimental data in sin2 2θ14 (x-axis) and Δm2
41/eV

2(y-
axis). −2Δ ln(L) is represented in the color bar where Δ ln(L) = ln(L) − ln(Lmax) is
the difference of the natural logarithm of the likelihood to the natural logarithm of the
maximum likelihood from this scan. The green star marks the best fit point (i.e. the
minimum of −2Δ ln(L)). The solid black line marks the experimental data best fit sin2 2θ14
as a function of Δm2

41.
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5.3. Frequentist upper limit

Figure 5.10: TS from equation (5.5)(illustrated in figure 5.8 b)) versus sin2 2θ14 for Asimov
data with true value sin2 2θ14 and various Δm2

41 (see legend) as sketched in figure 5.8 d).
The spline interpolation is indicated by the solid lines.

Figure 5.10 demonstrates the spline interpolation to describe the test statistics (cf. equation
(5.5)) as a function of sin2 2θ14 (as illustrated in figure 5.8 d)) exemplary for a set of Δm2

41

values (see legend). The markers identify the points that have been calculated and the
solid lines the spline interpolation. As explained already in figure 5.8 for a given Δm2

41 the
sin2 2θ14 for which TS=2.71 is the upper limit on sin2 2θ14, sin2 2θ14,UL. The upper limit
calculated with this procedure has been confirmed with pseudo experiments for three data
points [75].

Figure 5.11 presents the upper limit on sin2 2θ14 as a function of Δm2
41. The upper limit

at 95% confidence level is plotted with a solid black line. For comparison the median
sensitivity is shown in solid green and its 1σ (2σ) uncertainty band is indicated in green
(yellow) (cf. figure 4.38). The global best fit of experimental data is indicated with a blue
diamond. As expected and natural for the approach used in this work, the upper limit is
not better than the expected sensitivity (cf. section 4.4.2). Also, the upper limit is mostly
in the 1σ and 2σ range of the sensitivity uncertainty and worst in the area around the
global best fit.
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Figure 5.11: Upper limit at 95% confidence level on sin2 2θ14(x-axis) as a function of
Δm2

41 (y-axis). The upper limit at 95% confidence level is indicated by the solid black
line. The median sensitivity (also shown in figure 4.38) is plotted with a green solid line
for comparison. Its 1σ uncertainty is shaded in green and its 2σ uncertainty is shaded in
yellow. The best fit from experimental data is indicated with a blue diamond.
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5.4 Comparison to RENO and Daya Bay

There are two other big reactor experiments designed to measure sin2 2θ13 that are similar
to Double Chooz: RENO and Daya Bay. Both collaborations have published limits on
(Δm2

41, sin
2 2θ14) [129] [21]. These limits are two dimensional limits on the combination

of (Δm2
41, sin

2 2θ14) while the limits in this work are limits on sin2 2θ14 if Δm2
41 is given.

In other words, Double Chooz does not provide a statement about likeliness of any Δm2
41.

RENO and Daya Bay give information about likeliness of values for Δm2
41 in combination

with sin2 2θ14. This means that one can check the 95% excluded sin2 2θ14 for an external
value of Δm2

41 directly from figure 5.11 but not directly from the plots provided by RENO
and Daya Bay since the likeliness of Δm2

41 itself is included. Mathematically it means that
95% coverage corresponds to the two dimensional (Δm2

41, sin
2 2θ14) area for RENO and

Daya Bay while it corresponds to one dimension (sin2 2θ14) for Double Chooz. Methodi-
cally, it means that Double Chooz uses a test statistics of general type TS1D (cf. equation
(4.37)) while RENO and Daya Bay use a test statistics of general type TS2D (cf. equation
(4.34) [129] [21].

Therefore, the limits from RENO, Daya Bay and Double Chooz do not have the identical
physical meaning. However, the limited comparison of the provided by RENO, Daya Bay
and Double Chooz is presented in figure 5.12. The upper limit from this work is plotted
with a solid black line the upper limit from Daya Bay([21], full configuration, gadolinium
selection) with a light grey line and from RENO([129], 500 days of lifetime, gadolinium
selection) with a light green line. In most of the Δm2

41 area, the Daya Bay constraints are
stronger than from Double Chooz which is expected to be due to the fact that Daya Bay
detectors have a larger total target mass volume, their reactors provide more thermal
power and that they collected more statistics (cf. figure 5.13). However, the Double Chooz
constraints are in most of the Δm2

41 range stronger than RENO’s. Adding inverse beta
decay candidates in all detectors the RENO datasets used for their sterile analysis contains
slightly more inverse beta decay candidates than the Double Chooz datasets together (cf.
figure 5.13). In this work, it was decided to not calculate limits for Δm2

41 ≤ Δm2
ee as

for Δm2
41 = Δm2

ee the limits of sin2 2θ13 and sin2 2θ14 would be identical and for smaller
Δm2

41 Double Chooz is barely sensitive. In contrast, RENO and Daya Bay analysis differ
in terms of sin2 2θ13 handling, put constraints on it and published limits in Δm2

41 ≤ Δm2
ee

region. The nonexistence of constraints on sin2 2θ13 is an aspect for which limits provided
in this work are more conservative. This effect is large for Δm2

41 ≈ Δm2
ee and small for

Δm2
41 > Δm2

ee (cf. section 4.3.6).
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Figure 5.12: Upper limits at 95% confidence level provided by Double Chooz (this work),
Daya Bay [21] and RENO [129] plotted Δm2

41 versus sin2 2θ14. The upper limit from
Daya Bay is plotted with a dotted blue line, the upper limit from RENO with a dashed
grey line and the upper limit from this work with a solid black line. The upper limit
provided by Daya Bay and RENO are two dimensional limits, i.e. putting constraints on
the combination of Δm2

41 versus sin2 2θ14. In contrast, the upper limit provided in this
work is a one dimensional limit on sin2 2θ14 as a function of Δm2

41. Thus, the limits by
Daya Bay and RENO do not have the identical physical meaning (see text for details).
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Figure 5.13: a) reactor power/GWth(y-axis) available for Double Chooz (DC, left stack),
Daya Bay (DB, middle stack) and RENO (right stack) experiments b) target mass/t (y-
axis) of Double Chooz(left stack), Daya Bay(middle stack) and RENO (right stack) ex-
perimental setups used for sterile analyses c) total number of ibd candidates (y-axis) in
datasets used for sterile analysis by Double Chooz (DC, left stack), DayaBay (DB, middle
stack) and RENO (right stack).

5.5 Transfer to 3+2 model

Seven additional neutrino mixing angles exist in the 3+2 model (cf. section 1.2), namely
θ14, θ24, θ34, θ15, θ25, θ35, θ45. The PMNS-Matrix may be defined as

U = R45R35R34R25R24R23R15R14R13R12 = R45R35R25R15R34R24R14R23R13R12 (5.6)

in the 3+2 model, yielding

Ue1 = cos θ15 cos θ14 cos θ13 cos θ12 (5.7)
Ue2 = cos θ15 cos θ14 cos θ13 sin θ12 (5.8)
Ue3 = cos θ15 cos θ14 sin θ13 (5.9)
Ue4 = cos θ15 sin θ14 (5.10)
Ue5 = sin θ15 . (5.11)

Thus, with equation (1.17), the only non-standard mixing angles entering the anti-electron-
neutrino survival probability are θ14 and θ15. It is approximately given by:

Pee ≈ 1− sin2 2θ13 sin
2(Δ31)− sin2 2θ14 sin

2(Δ41)− sin2 2θ15 sin
2(Δ51) (5.12)

(see section E ). Equation (5.12) tells that two sterile states with similar mass would
be indistinguishable. Also, interference between oscillations related to both sterile states
could occur depending on m2

4, m2
5. Figure 5.14 shows the far detectors neutrino events

in 3+2 model and 3+1 model relative to the no-sterile model as a function of visible
energy for (sin2 2θ14 = 0.043, Δm2

41 = 0.029 eV2, sin2 2θ14 = 0.047, Δm2
51 = 0.038 eV2,

sin2 2θ14 = 0.091). The same plot for the near detector may be found in figure E.1. One
can see that the survival probability in the 3+2 model looks similar to a typical 3+1
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Figure 5.14: Far detector neutrino events in 3+2 model and 3+1 model relative to no-
sterile model versus visible energy (sin2 2θ14 = 0.043, Δm2

41 = 0.029 eV2, sin2 2θ14 = 0.047,
Δm2

51 = 0.038 eV2, sin2 2θ14 = 0.091) [119]. This plot has been taken from [119] and
modified.

model survival probability just with different Δm2
41. Interference occurs in particular if

O
���Δm2

41

��� = O
���Δm2

51

��� where the signature will depend in detail on the two mass
squared differences. As Double Chooz basically covers the sensitivity 0.005 eV2 ≤ Δm2 ≤
0.2 eV2 (i.e. one order of magnitude) this makes giving limits in the 3+2 model even more
non trivial and would require far too much computing effort at the current point in time. If
Δm2

41 << Δm2
51 ≥ 0.3 eV2 oscillation signatures due to the fifth neutrino state get washed

out and only lead to a smaller normalization in all detectors. An example is shown in
figure E.2. Thus, the limits obtained in this work hold for models with Δm2

51 ≥ 0.3 eV2.
More details on oscillation signatures in the 3+2 model can be found in [119].
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Chapter 6

Summary

The search for so called light sterile neutrino with the Double Chooz reactor neutrino
experiment was done for the first time in this work. Oscillation effects in the 3+1 model
can be described by only two new parameters in very good approximation: θ14 and Δm2

41

(cf. chapter 1.2) where Double Chooz is sensitive to the new mixing angle θ14. In contrast to
earlier θ13, data from both neutron capture on gadolinium and hydrogen has been selected
to increase statistics. This is the current standard data selection applied in Double Chooz
(see chapter 3 for details). A new Poisson likelihood fit technique, virtually relying only
on the comparison of near and far detector data (i.e. independent from any reactor flux
model), was used. The concept of this approach was developed in this work and based
on the work by Stefan Schoppmann and described in detail in chapter 4. This work was
done in close cooperation with Philipp Soldin who focused on the technical part and on
the θ13 fit. In order to ensure consistency with the θ13 fit and as much crosschecking
as possible, θ13 and sterile fit use the same software which was fully validated. Inter
alia, by crosschecks with two other fit approaches doing the θ13 fit which were developed
in the United States of America respectively Japan (cf. section 4.3.1). Moreover, data
challenges have been done and systematics effects have been studied where it is found that
the analysis is limited by statistics in most of the range where Double Chooz is sensitive
(around 0.004 eV2 � Δm2

41 � 0.2 eV2). Also, it is demonstrated that the fit is indeed
independent from the reactor flux model by adding artificial distortions (cf. section 4.3.4
and following). A huge challenge for this analysis is that there are always multiple solutions
w.r.t. Δm2

41 and that any statistical fluctuation in data induces a best fit with sin2 2θ14 > 0.
Therefore, Wilks‘ theorem [127] does not hold and pseudo experiments are needed to obtain
p-value, sensitivity and allowed regions. Each pseudo experiment needs to be scanned w.r.t.
Δm2

41 to avoid problems due to local minima (see section 4.3.2). Finally, the analysis of
the experimental data showed a p-value of 24.7% ± 2.2% i.e. fully consistence with the
no-sterile hypothesis. Upper limits on sin2 2θ14 are given as a function of Δm2

41 after
the best fit result has been carefully validated (cf. chapter 5). That is because two
dimensional limits in (Δm2

41, sin2 2θ14) space are computationally impossible at current
point in time. The limits on sin2 2θ14 are presented in figure 5.11 and cover the region
0.004 eV2 � Δm2

41 � 0.2 eV2. As there is effort ongoing to further improve computation
time, future analysis may be able to give limits in two dimensional space. Future analysis
will be able to get higher statistics by running on the final Double Chooz dataset containing
three years of exposure time with two detectors instead of the 18 month used in this work.
Also, the final dataset will include around 25 exposure days of reactor off data including
reactor off measurements for the near detector [50]. Analysis of this data is expected to
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improve background constraints remarkably. Moreover, systematical limitations may be
reduced by precise measurement of the detector volume during reconstruction suppressing
dominant systematical uncertainty due to the so called proton number significantly.
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Appendix A

Backgrounds

This chapter collects plots referring to the background processes mentioned in section 3.7.

Figure A.1: Covariance matrix for the FD1 accidental background obtained with the
offtime method as explained in section 3.7.1.
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Figure A.2: Covariance matrix for accidental background in the near detector obtained
with the offtime method as explained in section 3.7.1.

Figure A.3: FD1 lithium background data sample obtained based on the lithium likelihood
as explained in the text [56]. Entries versus visible energy are shown.
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Figure A.4: FD1 fast neutron and stopping muon background data sample obtained from
inner veto tagged events as explained in the text [56]. Entries versus visible energy are
shown.
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Appendix B

Input model

This chapter collects additional plots and tables referred to in section 4.2.

B.1 Oscillation probability

Figure B.1 provides comparison of oscillation formula approximation used in this work to
the full four flavor oscillation for example parameters and is similar to figure 4.7.
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Figure B.1: Comparison of the approximation for the electron antineutrino survival prob-
ability used in this work to the full four flavor oscillation for example parameters of
sin2 2θ14 = 0.02 and |Δm2

41| = 0.02 eV2. The electron antineutrino survival probability
versus true energy is shown. The approximation used in this work is plotted in dashed
red. The full four flavor probability is shown in solid blue for scenario NONO, in dashed
magenta for scenario NOIO in solid black, for scenario IOIO and in dashed green for sce-
nario IONO. θ13 = 8.52 ◦ (sin2 2θ13 = 0.086) and Δm2

31=0.00252 eV2 has been used for all
probabilities shown in this figure.

B.2 Energy and reactor flux

Table B.1 provides the correlations coefficients between energy calibration parameters in
terms of physical cause (aLNL, bLNL, bSt/U, bQNL and cQNL, cf. section 4.2.2). Central values
and uncertainties of these parameters can be found in table B.2. Figures B.2 and B.3 show
the covariance matrix of the reactor flux parameters for the FD1-On(FD2) dataset.
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Table B.1: Correlations coefficients between energy calibration parameters in terms of
physical cause. Correlations are assumed to be identical for FD1-On, FD2 and ND . The
light non linearity parameters aLNL and bLNL are considered to be fully correlated between
FD1-On, FD2 and ND while bSt/U, bQNL and cQNL are considered to be fully uncorrelated
between FD1, FD2 and ND. All correlations are identical to the correlations used in the
θ13 fit [44].

parameter aLNL bLNL bSt/U bQNL cQNL

aLNL 1 -1 0 0 0
bLNL -1 1 0 0 0
bSt/U 0 0 1 0 0
bQNL 0 0 0 1 -0.45
cQNL 0 0 0 -0.45 1

Table B.2: Energy calibration parameters and uncertainties in terms of physical cause.
All parameters are identical to the parameters in the θ13 fit [44].

parameter FD1 FD2 ND
aLNL 0.0091 ± 0.0157
bLNL 0.9959 ± 0.0071
bSt/U 1.0000 ± 0.0042 1.0000± 0.0045 1.0000± 0.0060
bQNL 1.0000 ± 0.0012 1.0000 ± 0.0015 1.0000 ± 0.0011
cQNL 0.00000 ± 0.00053 0.00000 ± 0.00069 0.00000 ± 0.00048

Figure B.2: Covariance matrix of the reactor flux parameters for the FD1-On dataset.
This matrix has been generated without using the Bugey4 anchor point (cf. section 3.4).
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Figure B.3: Covariance matrix of the reactor flux parameters for the FD2 dataset. This
matrix has been generated without using the Bugey4 anchor point (cf. section 3.4).
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Appendix C

Validation of the algorithm

This section collects additional information regarding section 4.3. Figure C.1 shows a
comparison of the LLH-FF fit and D2D Chi-square fit (Thiago) for a breakdown of the
systematics for sin2 2θ13 from the N-1 test. The values can be found in table 4.9. Figure C.2
shows the post fit correlation matrix from the sin2 2θ13 fit for energy and correlated reactor
flux parameters. Figure C.2 is intended to demonstrate that the correlations between
reactor flux and energy parameters may significantly differ from zero. Particular values
are not important.
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Figure C.1: Comparison of the LLH-FF fit and D2D Chi-square fit (Thiago) for a break-
down of the systematics for sin2 2θ13 from the N-1 test. The top plot shows the N-1 test
sensitivity results, the plot in the middle shows σN−1,X (cf. equation (4.26)) and the plot
in the bottom shows rN−1,X (cf. equation (4.27)). The values can be found in table 4.9
The error bars correspond to a rounding uncertainty of 0.00005 for the Chi-square fit and
to 1% of the N-1 test results for the likelihood fit.
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Appendix C. Validation of the algorithm

C.1 Data challenges

Figures C.3 - C.11 are two dimensional scan of −2 ln (L) that were done during the data
challenge described in section 4.3.4 and listed in table 4.12.

Figure C.3: Two dimensional scan of −2 ln (L) in sin2 2θ14 (x-axis) and Δm2
41 (y-axis) of

the first toy dataset from table 4.12. where −2Δ ln(L) is represented by the color bar.
Δ ln(L) = ln(L) − ln(Lmax) is the difference of the natural logarithm of the likelihood
to the natural logarithm of the maximum likelihood. The 1σ (2σ) region for the local
(sin2 2θ14, Δm2

41) range in which Wilks‘ theorem holds is marked by the light blue (black)
line. Gray areas indicate missing data. The same plot with an other z-axis (color bar)
scaling is provided in figure C.4.
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C.1. Data challenges

Figure C.4: Two dimensional scan of −2 ln (L) in sin2 2θ14 (x-axis) and Δm2
41 (y-axis) of

the first toy dataset from table 4.12. where −2Δ ln(L) is represented by the color bar.
Δ ln(L) = ln(L) − ln(Lmax) is the difference of the natural logarithm of the likelihood
to the natural logarithm of the maximum likelihood. The 1σ (2σ) region for the local
(sin2 2θ14, Δm2

41) range in which Wilks‘ theorem holds is marked by the light blue (black)
line. Gray areas indicate missing data. The same plot with an other z-axis (color bar)
scaling is provided in figure C.3.
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Figure C.5: Two dimensional scan of −2 ln (L) in sin2 2θ14 (x-axis) and Δm2
41 (y-axis)

of the second toy dataset from table 4.12. where −2Δ ln(L) is represented by the color
bar. Δ ln(L) = ln(L)− ln(Lmax) is the difference of the natural logarithm of the likelihood
to the natural logarithm of the maximum likelihood. The 1σ (2σ) region for the local
(sin2 2θ14, Δm2

41) range in which Wilks‘ theorem holds is marked by the light blue (black)
line. Gray areas indicate missing data. The same plot with an other z-axis (color bar)
scaling is provided in figure C.6.
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Figure C.6: Two dimensional scan of −2 ln (L) in sin2 2θ14 (x-axis) and Δm2
41 (y-axis)

of the second toy dataset from table 4.12. where −2Δ ln(L) is represented by the color
bar. Δ ln(L) = ln(L)− ln(Lmax) is the difference of the natural logarithm of the likelihood
to the natural logarithm of the maximum likelihood. The 1σ (2σ) region for the local
(sin2 2θ14, Δm2

41) range in which Wilks‘ theorem holds is marked by the light blue (black)
line. Gray areas indicate missing data. The same plot with an other z-axis (color bar)
scaling is provided in figure C.5.
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Appendix C. Validation of the algorithm

Figure C.7: Two dimensional scan of −2 ln (L) in sin2 2θ14 (x-axis) and Δm2
41 (y-axis) of

the third toy dataset from table 4.12. where −2Δ ln(L) is represented by the color bar.
Δ ln(L) = ln(L) − ln(Lmax) is the difference of the natural logarithm of the likelihood
to the natural logarithm of the maximum likelihood. The 1σ (2σ) region for the local
(sin2 2θ14, Δm2

41) range in which Wilks‘ theorem holds is marked by the light blue (black)
line. Gray areas indicate missing data. The same plot with an other z-axis (color bar)
scaling is provided in figure 4.20.
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C.1. Data challenges

Figure C.8: Two dimensional scan of −2 ln (L) in sin2 2θ14 (x-axis) and Δm2
41 (y-axis)

of the fourth toy dataset from table 4.12. where −2Δ ln(L) is represented by the color
bar. Δ ln(L) = ln(L)− ln(Lmax) is the difference of the natural logarithm of the likelihood
to the natural logarithm of the maximum likelihood. The 1σ (2σ) region for the local
(sin2 2θ14, Δm2

41) range in which Wilks‘ theorem holds is marked by the light blue (black)
line. Gray areas indicate missing data. The same plot with an other z-axis (color bar)
scaling is provided in figure C.9.
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Appendix C. Validation of the algorithm

Figure C.9: Two dimensional scan of −2 ln (L) in sin2 2θ14 (x-axis) and Δm2
41 (y-axis)

of the fourth toy dataset from table 4.12. where −2Δ ln(L) is represented by the color
bar. Δ ln(L) = ln(L)− ln(Lmax) is the difference of the natural logarithm of the likelihood
to the natural logarithm of the maximum likelihood. The 1σ (2σ) region for the local
(sin2 2θ14, Δm2

41) range in which Wilks‘ theorem holds is marked by the light blue (black)
line. Gray areas indicate missing data. The same plot with an other z-axis (color bar)
scaling is provided in figure C.8.
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C.1. Data challenges

Figure C.10: Two dimensional scan of −2 ln (L) in sin2 2θ14 (x-axis) and Δm2
41 (y-axis)

of the fifth toy dataset from table 4.12. where −2Δ ln(L) is represented by the color bar.
Δ ln(L) = ln(L) − ln(Lmax) is the difference of the natural logarithm of the likelihood
to the natural logarithm of the maximum likelihood. The 1σ (2σ) region for the local
(sin2 2θ14, Δm2

41) range in which Wilks‘ theorem holds is marked by the light blue (black)
line. Gray areas indicate missing data. The same plot with an other z-axis (color bar)
scaling is provided in figure C.11.
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Appendix C. Validation of the algorithm

Figure C.11: Two dimensional scan of −2 ln (L) in sin2 2θ14 (x-axis) and Δm2
41 (y-axis)

of the fifth toy dataset from table 4.12. where −2Δ ln(L) is represented by the color bar.
Δ ln(L) = ln(L) − ln(Lmax) is the difference of the natural logarithm of the likelihood
to the natural logarithm of the maximum likelihood. The 1σ (2σ) region for the local
(sin2 2θ14, Δm2

41) range in which Wilks‘ theorem holds is marked by the light blue (black)
line. Gray areas indicate missing data. The same plot with an other z-axis (color bar)
scaling is provided in figure C.10.
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Appendix D

Results of the sterile analysis

D.1 Asimov dataset for sterile best fit parameters

Figure D.1 shows a scan of −2 ln(L) for Asimov dataset with sterile best fit sin2 2θ14 and
Δm2

41

Figure D.1: Scan of −2 ln (L) for Asimov dataset with best fit sin2 2θ14 and Δm2
41 found

in experimental data as a function of sin2 2θ14(x-axis) and Δm2
41/eV

2(y-axis). The color
scale shows the −2Δ ln(L).
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Appendix D. Results of the sterile analysis

D.2 Residuen

Figures D.2- D.4 are additional plots of the residuen of sterile and no-sterile best fit for
experimental data.

Figure D.2: Residuum of no-sterile best fit normalized to the no-sterile best fit versus
visible energy compared to sterile best fit (blue line) for the ND(top), FD1 (middle) and
FD2 (bottom) datasets. The color scale shows the χ2 for each energy bin multiplied with
the signum of the residuum.
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D.2. Residuen

Figure D.3: Residuum of sterile best fit normalized to the sterile best fit versus visible
energy compared to no-sterile best fit (blue line) for the ND (top), FD1 (middle) and FD2
(bottom) datasets. The color scale shows the χ2 for each energy bin multiplied with the
signum of the residuum.
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Appendix D. Results of the sterile analysis

Figure D.4: Residuum of sterile best fit normalized to the sterile best fit versus visible
energy compared to no-sterile best fit (blue line) for the ND(top), FD1-On(middle) and
FD2 (bottom) datasets. The color scale shows the Δχ2

i (cf. equation (5.4)) between sterile
and no-sterile best fit for each energy bin.
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Appendix E

3+2 model

Addition information related to chapter 5.5 is provided in the following.

E.1 Calculation of the electron antineutrino survival proba-
bility

This section provided more details on the calculation of the anti electron neutrino survival
probability in the 3+2 model which is given in section 5.5 by equation (5.12). The matrix
elements of the PMNS-matrix are given in equation (5.7) to (5.11). Several products of
these matrix elements need to be calculated in order to use (1.17). These products are
with equation (5.7) to (5.11):

Ue1Ue1Ue2Ue2 sin
2Δ21 = c414c

4
15c

4
13

sin2 2θ12
4

sin2Δ21
sin2 Δ21≈0≈ 0 (E.1)
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Appendix E. 3+2 model

were
sij = sin(θij) and cij = cos(θij) (E.11)

and

Δij :=
Δm2

ijL

4E
≈ 1.27

Δm2
ij [eV

2]L[km]

4E[GeV]
(E.12)

is used. Moreover, reasonable approximations have been done using
sin2 2θ13, sin

2 2θ14, sin
2 2θ15 << 1, c213, c214, c215 << 1 and sin2Δ21 ≈ 0.

Inserting equations (E.1) to (E.10) into equation (1.17) yields

Pee ≈ 1− c212 sin
2 2θ13 sin

2(Δ31)− c213c
2
12 sin

2 2θ14 sin
2(Δ41)

− c214c
2
13c

2
12 sin

2 2θ15 sin
2(Δ51)− s212 sin

2 2θ13 sin
2(Δ32)

− c213s
2
12 sin

2 2θ14 sin
2(Δ42)− c214c

2
13s

2
12 sin

2 2θ15 sin
2(Δ52) (E.13)

≈ 1− sin2 2θ13 sin
2(Δ31)− sin2 2θ14 sin

2(Δ41)− sin2 2θ15 sin
2(Δ51) (E.14)

E.2 Additional plots

Figure E.1 and E.2 show additional examples for near detector neutrino events in 3+2
model and 3+1 model relative to no-sterile model. They are mentioned in section 5.5.

Figure E.1: Neutrino events in the near detector for the 3+2 model and the 3+1 model
relative to no-sterile model versus visible energy (sin2 2θ14 = 0.043, Δm2

41 = 0.029 eV2,
sin2 2θ14 = 0.047, Δm2

51 = 0.038 eV2, sin2 2θ14 = 0.091) [119]. This plot has been taken
from [119] and modified.
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E.2. Additional plots

Figure E.2: Neutrino events in the far detector for the 3+2 model and the 3+1 model
relative to no-sterile model versus visible energy (sin2 2θ14 = 0.043, Δm2

41 = 0.029 eV2,
sin2 2θ14 = 0.047, Δm2

51 = 0.2 eV2, sin2 2θ14 = 0.091) [119]. This plot has been taken from
[119] and modified.
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