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Abstract

In this thesis, we develop computational tools to calculate tree and one-loop superstring am-
plitudes. In particular, we provide a recursive method to construct kinematic factors of tree
level open superstring amplitudes and present systematic tools to manifest the supersymmetric
cancellations in n-boson-two-fermion amplitudes at the one-loop order of the RNS superstring.

For tree level open superstring amplitudes, we present simplified recursions for multiparticle
superfields, which can be applied to construct kinematic parts of open superstring amplitudes
at tree level. We also discuss the gauge transformations which enforce their Lie symmetries
as suggested by the Bern-Carrasco-Johansson duality between color and kinematics. Another
gauge transformation due to Harnad and Shnider is shown to streamline the theta-expansion of
multiparticle superfields, bypassing the need to use their recursion relations beyond the lowest
components. The findings of this work greatly simplify the component extraction from kinematic
factors in pure spinor superspace.

We then investigate massless n-point one-loop amplitudes of the open RNS superstring with
two external fermions and determine their world-sheet integrands. The contributing correla-
tion functions involving spin-1/2 and spin-3/2 operators from the fermion vertices are evaluated
to any multiplicity. Moreover, we introduce techniques to sum these correlators over the spin
structures of the world-sheet fermions, such as to manifest all cancellations due to spacetime su-
persymmetry. These spin-summed correlators can be expressed in terms of doubly-periodic func-
tions known from the mathematics literature on elliptic multiple zeta values. On the boundary
of moduli space, our spin-summed correlators specialize to compact representations of fermionic
one-loop integrands for ambitwistor strings.





Zusammenfassung

In dieser Arbeit entwickeln wir Rechenwerkzeuge zur Berechnung von Baum– und Einschleifen-
superstringamplituden. Insbesondere stellen wir eine rekursive Methode zur Konstruktion
kinematischer Faktoren für die Amplitude offener Superstrings auf Baumniveau bereit und
präsentieren systematische Werkzeuge, um die supersymmetrischen Auslöschungen in n-Boson-
Zwei-Fermion Amplituden auf Einschleifenniveau des RNS Superstrings zu manifestieren.

Für offene Superstringamplituden auf Baumniveau stellen wir vereinfachte Rekursionen für
Mehrteilchensuperfelder vor, mit denen kinematische Teile von offenen Superstringamplituden
auf Baumniveau konstruiert werden können. Wir diskutieren auch die Eichtransformationen,
die ihre Lie-Symmetrien erzwingen, wie dies durch die Bern-Carrasco-Johansson-Dualität zwis-
chen Farbe und Kinematik nahegelegt wird. Eine weitere Eichtransformation aufgrund von
Harnad und Shnider soll die Theta-Expansion von Mehrteilchensuperfeldern vereinfachen und
die Notwendigkeit umgehen, ihre Rekursionsrelationen über die niedrigsten Komponenten hin-
aus zu verwenden. Die Ergebnisse dieser Arbeit vereinfachen die Komponentenextraktion aus
kinematischen Faktoren im reinen Spinor Superspace erheblich.

Wir untersuchen dann masselose n-Punkt-Ein-Schleifen-Amplituden des offenen RNS Su-
perstrings mit zwei externen Fermionen und bestimmen ihre Weltflächen-Integranden. Die
beitragenden Korrelationsfunktionen, an denen Spin-1/2– und Spin-3/2-Operatoren aus den
Fermionen-Vertices beteiligt sind, werden zu einer beliebigen Multiplizität ausgewertet. Darüber
hinaus führen wir Techniken ein, um diese Korrelatoren über die Spinstrukturen der Weltflächen-
Fermionen zu summieren, um alle Auslöschungen aufgrund der Supersymmetrie der Raumzeit
zu manifestieren. Diese spinsummierten Korrelatoren können in Form von doppeltperiodis-
chen Funktionen ausgedrückt werden, die aus der mathematischen Literatur über elliptische
Multiple-Zeta-Werte bekannt sind. Unsere spinsummierten Korrelatoren an der Grenze des
Modulraums sind auf kompakte Darstellungen von fermionischen Ein-Schleifen-Integranden
für ambitwistorische Strings spezialisiert.
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ONE

INTRODUCTION

1.1 Scattering amplitudes and string theory

Since Rutherford used the scattering of α and β particles to investigate the structure of atoms
[1], scattering experiments have been proving grounds for modern theories of elementary par-
ticles and their interactions due to their capability on controlling the input data and accessing
relatively high energy scale1. The most recent and influential example could be the discovery of
the spin-zero particle at the Large Hadron Collider (LHC) in CERN, whose existence has been
qualitatively predicted by the Standard Model.

The typical input of a scattering experiment is a set of physical observables, such as masses
and momenta, of effectively non-interacting incoming particles approaching each other, and the
output is again a set of physical observables of non-interacting outgoing particles, generated by
local interactions among incoming particles. Those incoming and outgoing particles are often
called external particles to distinguish them from internal particles created and annihilated
during local interactions.

The theoretical framework for establishing the relation between observables of incoming and
outgoing particles relies on computing the quantum probability amplitude between an in- and
an out-state [2]. An in-state (or an out-state) is defined by a state decomposable into quantum
states representing incoming (or outgoing) particles at the macroscopically far past (or future).
The resulting probability amplitude is called the scattering amplitude.

Conventionally scattering amplitudes are computed in the framework of quantum field the-
ories (QFTs), in which particles are realized by zero-dimensional mathematical objects called
point particles. The QFTs of point particles have provided a mathematically and physically
consistent algorithm for computing scattering amplitudes of elementary particles through the
Standard Model if one does not include gravity into the model, which causes uncontrollable
ultraviolet (UV) divergences in the quantum corrections to amplitudes.

In an attempt to integrate our understanding of elementary particles in the Standard Model
with gravity, several theories have been proposed. Among other candidates, theories labeled by
string theory are based on the idea that elementary particles can be realized by one-dimensional
objects, shortly strings, instead of points. This idea provides a conjecture that string theory can
be free of UV divergences due to the finite size of strings. Moreover, vibration modes of each
string can be interpreted as the physical properties of the string, which can be identified with
the physical properties of elementary particles.

The idea of string theory has been formulated in various ways. Notably, superstring theory,
which emerges from the combination of the idea of string theory and the supersymmetry, has
provided a massless sector in its spectrum including gravitons, gauge bosons, and fermions, in
which gravitons and gauge bosons are realized by closed strings and open strings respectively.
Moreover, it turns out that superstring theory necessarily unifies gravity with gauge interac-
tions since the consistency of interactions among open strings requires the existence of closed
string states in its spectrum.

1There exist other types of experiments which can access the higher energy scale compared to the biggest collider
performing scattering experiments. For example, cosmic rays scattered in the atmosphere of the earth have much
higher energy than hadrons in LHC. However, in general, one cannot sufficiently control those rays as an input of a
scattering experiment.

1
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Having massless states described above, interactions among those states have been ex-
tensively studied while establishing striking interplays with mathematics and other fields of
physics. In particular, in addition to the investigation on the UV completion of superstring
amplitudes, superstring amplitudes have many implications on the structure of scattering am-
plitudes of gravity and gauge theories. One of the remarkable outcomes is the discovery of
the Kawai-Lewellen-Tye (KLT) relation between closed and open superstring amplitudes at tree
level [3], which states that a closed superstring amplitude can be represented by a product of
two open superstring amplitudes.

The KLT relation for superstring amplitudes and their low-energy limit furnish the oldest
incarnation of the double-copy structure of amplitudes, which has been studied in various con-
texts not limited to gravity amplitudes. In particular, Bern, Carrasco, and Johansson (BCJ)
discovered in [4, 5] that if the kinematic dependence of a gauge theory amplitude mirrors the
relation among color factors of the amplitude, named by the BCJ duality, gravity amplitudes can
be obtained by replacing those color factors with another copy of the kinematic dependence.

A remarkable feature of the BCJ duality is that one can extend the discussion of the double-
copy structure to loop integrands of gauge and gravity amplitudes, although, in string theory, the
KLT relation has been found only at tree level. This feature drastically reduces the complexity of
the computation of loop level amplitudes of (possibly supersymmetric) gravity compared to the
conventional Feynman diagram method, and consequently, UV divergences of gravity theories
can be studied in a more systematic and precise manner [6, 7, 8, 9, 10, 11].

At tree level, the double-copy structure of gravity integrands emerged from the BCJ duality
of gauge theory integrands has been proved in [12], and a systematic way of obtaining kinematic
numerators manifestly satisfying the BCJ duality has been extracted from the n-point open su-
perstring amplitude [13, 14]. These BCJ manifest kinematic numerators have been constructed
from multiparticle superfields obtained by employing conformal field theory techniques of the
so-called pure spinor (PS) formulation of superstring theory [15].

In this thesis, we simplify the method to build those kinematic numerators of tree level
open superstring amplitudes by using a perturbative solution of the ten-dimensional Yang-Mills
(10D SYM) equations of motion. More precisely, We use the Lorenz gauge to solve the 10D
SYM equations, and show that BCJ satisfying numerators can be constructed by taking a gauge
transformation on the solution under the Lorenz gauge. This gauge transformation leads to a
perturbative solution under another gauge, which we will call the BCJ gauge.

At loop level, the duality remains conjectural with strong support by examples up to and
including five loops [5, 16, 17, 10, 11]. At one loop, an algorithm to obtain BCJ-satisfying kine-
matic dependences has recently been found in [18, 19], based on the Cachazo-He-Yuan (CHY)
representation of amplitudes [20, 21, 22, 23, 24, 25, 26] and the low energy limit of superstring
amplitudes. Therefore, as for tree level amplitudes, superstring amplitudes provide an accessi-
ble framework for obtaining the BCJ numerators (see [27, 28] for five-point one- and two-loop
examples in the PS framework).

However, at one loop, only superstring amplitudes with bosonic insertions have been simpli-
fied for any number of external states, and an explicit evaluation of amplitudes with fermions
and bosons is not yet accessible both in the PS and the Ramond-Neveu-Schwarz (RNS) formu-
lation of superstring theory beyond seven-point2. In computing one-loop amplitudes within the
RNS formalism, a significant challenge is to manifest the cancellations between bosons and
fermions in the loop due to spacetime supersymmetry. These cancellations arise from different
boundary conditions for the world-sheet spinors and are particularly well understood in one-loop
amplitudes of massless bosons [32, 33].

2See [29, 30, 31] for the most recent development on the computation of one-loop amplitudes in the PS formalism.
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In this context, we develop mathematical methods to systematically manifest the supersym-
metric cancellations in the RNS superstring theory, which make two-fermion-n-boson ampli-
tudes at one-loop completely accessible and allow for comparison with the respective superspace
components of the pure spinor expressions [34, 35, 29, 30, 31]. Similar to the treatment of
bosonic one-loop amplitudes in [33], our manipulations of Jacobi-theta functions rely on the
Eisenstein-Kronecker series [36, 37, 38] which has a profound relation to number theory.

The structure of this thesis is the following. From the next section to the end of this chapter,
we will briefly review the formal structure of scattering amplitudes in string theory. It also in-
cludes a short and nontechnical account on formulating the superstring theory. In Chapter 2, we
will consider the relation between tree level open superstring amplitudes computed in the PS
superstring theory and perturbative solutions of 10D SYM, and present a perturbative solution
of 10D SYM generating the BCJ numerators for scattering amplitudes of 10D SYM. Chapter 3
deals with one-loop superstring amplitudes in the RNS formalism. We review the method for
computing world-sheet conformal correlators with spin fields in the RNS formulation and de-
velop an algorithm for summing over spin structures of those correlators. The last chapter is
devoted to conclusions and outlooks expected from the results of the thesis. Main results of this
thesis presented in Chapter 2 and Chapter 3 are based on our previous works [39, 40].

1.2 Formal structure of string scattering amplitudes

String theory has been formulated in various contexts. Before diving into computations of string
scattering amplitudes in specific formulations, we will briefly review the formal structure of
string scattering amplitudes shared by most of string theory formulations.

1.2.1 String and string action
String theory postulates that quantum states representing elementary particles can be realized
by quantum states in the spectrum of a quantized string. Here, a string is a physical system
whose observables can be continuously parameterized by a real parameter σ in a closed interval
I = [0, l], l > 03.

A string and its dynamics are often defined by a string action

S [A]=
∫

dτ
∫ l

0
dσL (A (σ,τ)) (1.1)

where τ is the evolution parameter and L is the Lagrangian depending on the collection A (σ,τ)
of string degrees of freedom. The trajectory Σ of the string in the target space, i.e., the space of
string degrees of freedom, is called the world-sheet of the string.

In this thesis, we only consider the case that A (σ,τ) includes the position X (σ,τ) of the
string in a given spacetime M . The spacetime position of the string then defines the spacetime
trajectory of the string which is a two-dimensional surface in M . If we further assume that
X (σ,τ) is smooth and causal with ∂τX to be timelike or null, and ∂σX to be spacelike, it is
natural to require the action to be invariant under reparametrizations on (σ,τ) since we can
relate each parametrization with a local observer in M which should not have any physical
meaning due to the equivalence principle.

One of the simplest formulations of string theory is the bosonic string theory based on the
Nambu-Goto action [41, 42]

SNG[X ]=− 1
2πα′

∫
Σ

√
−det(g) (1.2)

3We assume that the space of observables is a topological space.
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proportional to the relativistic area of the world-sheet Σ of a causally propagating string in
M . In (1.2), g is the induced metric on Σ and α′ is a parameter having dimension (length)2.
Also, we take the flat Minkowski metric for a background spacetime M since the bosonic string
theory describes gravity through interactions among gravitons which are hypothetical quantum
states relevant to local fluctuations of a fixed spacetime metric. By introducing local coordinates
σa = (τ,σ), a = 0,1 and X m, m = 0,1, . . . ,dimM −1 for Σ and M respectively, we have

g = gabdσadσb, gab = ∂aX m∂b Xm, for a,b = 0,1

so that the Lagrangian LNG of SNG is locally given by

LNG =− 1
2πα′

√
−det(∂aX m∂b Xm). (1.3)

1.2.2 Closed and open strings
In addition to usual Euler-Lagrange equations, the string action in (1.2) implies boundary con-
ditions of A (σ,τ) at σ= 0, l. Especially, if the Lagrangian depends on X and its first derivatives
on (σ,τ) as in (1.3), boundary conditions of X at σ= 0, l are in the form of

0= ∂L
∂ (∂σX m)

δX m
∣∣∣∣
σ=0,l

.

These boundary conditions can be fulfilled by a closed string, i.e., X m (σ,τ)= X m (σ+ l,τ) for
all X m, or an open string with boundary conditions

0= ∂L
∂ (∂σX m)

or 0= δX m at σ= 0, l (1.4)

for each X m. The former in (1.4) is called the Neumann boundary condition and the latter is
called the Dirichlet boundary condition.

Imposing the Dirichlet boundary condition to some of the local coordinates of a string end is
equivalent to fixing those coordinates, which corresponds to confine the endpoint to a subspace
in M . Since the energy and momentum of the string cannot be conserved at the end confined on
a subspace, one has to consider the subspace as a dynamical object, called a D-brane, embedded
in M to retain the energy-momentum conservation of the whole system.

Once we adopt that the existence of dynamical D-branes, we can introduce several physically
distinguishable D-branes so that the string can have some extra degrees of freedom indicating
the D-brane on which its end is confined. In particular, if both ends of the string have some
Dirichlet boundaries, we can introduce N D-branes for each end which force local coordinates
X m(σ,τ) to be N ×N matrix-valued. Thus, X m can be expanded by using the Hermitian basis
{ta|a = 1, . . . , N2, (ta)† = ta} of the space of N ×N matrices:

X m (σ,τ)=
N2∑
a=1

taX m (σ,τ;a) . (1.5)

The extra degrees 1 ≤ a ≤ N2 of freedom in (1.5) are called Chan-Paton factors [43] and phe-
nomenologically important since they can be identified with the color degrees of freedom of an
U(N)-gauge symmetry carried by an open string.

As a technical remark, for an open string, it is often convenient to extend σ ∈ [0, l] to [0,2l]
such that for σ ∈ [0, l] [44]

X m (l+σ)=
{

X m(l−σ), if X m (0) and X m (l) are Neuman boundaries

−X m(l−σ)+2X m(l), otherwise
(1.6)
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(a)

X m (σ)

l0 2l
(b)

X m (σ)

l 2l0

Figure 1.1: The doubling trick on an open string with (a) the Neumann boundary condition for
both ends (b) the Dirichlet boundary condition for at least one end.

to avoid complications at string ends. See fig. 1.1. Especially, the doubling trick in (1.6) allows us
to handle an open and a closed string in a unified manner since the doubled open string has the
periodic boundary condition. In the following discussions, we implicitly rescale σ→ 2σwhenever
we apply the doubling trick to an open string so that the doubled open string is parametrized by
σ ∈ [0, l] which maximizes notational simplicity arising from the doubling trick.

1.2.3 Quantization of string action
In order to quantize the string defined by a string action, we have to employ the Hamiltonian
analysis on the string action whose detailed exposition depends on the given string action. For
instance, the Hamiltonian analysis on SNG begins with the canonical momentum Pm which
satisfies two primary first-class constraints

0=Φ± = 1
2

(Pm ±∂σXm)
(
Pm ±∂σX m)

.

Here, we have redefined X m → 2πα′X m for notational simplicity. Due to the vanishing canonical
Hamiltonian, the complete Hamiltonian is given by

HNG =
∫ l

0
dσ (u+ (σ,τ)Φ+ (σ,τ)+u− (σ,τ)Φ− (σ,τ)) (1.7)

where u± are Lagrange multipliers on Σ and Φ±. For a closed string, Φ± induces the following
constraint algebra: [

L±
m,L±

n
]= i (m−n)L±

m+n (1.8a)[
L±

m,L∓
n
]= 0. (1.8b)

where

L±
m =± l

2

∫ l

0
dσe−2πimσ/lΦ± (σ,τ) , m ∈Z.

This algebra corresponds to the direct sum of two classical Virasoro algebras, so the closed
bosonic string theory has the conformal symmetry as its gauge symmetry. For an open string,
one can use the doubling trick in (1.6) to combine Φ± into a single constraint

Φ (σ)=


Φ+ (σ) for σ ∈

[
0,

l
2

]
Φ− (σ) for σ ∈

[
l
2

, l
]

.
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Therefore, the symmetry algebra of an open string corresponds to a single classical Virasoro
algebra

[Lm,Ln]= i (m−n)Lm+n (1.9)

A physical spectrum of the string can be then constructed by choosing a suitable Hilbert
space. For the bosonic string theory, the most common and practical Hilbert space is the Fock
space generated by Fourier modes of

(
PM ±∂σX M)

(σ) (or
(
PM +∂σX M)

(σ) for an open string
with the doubling trick). At the quantum level, the constraint (or gauge) algebra in (1.8) or
(1.9) is anomalous in the Fock space representation except for dimM = 26 called the critical
dimension. Henceforth we will assume dimM = 26 for the bosonic string theory to avoid the
anomaly.

Having a physical spectrum of the string, one can proceed to compute the quantum evolu-
tion operator. In string theory, this can be accomplished by employing the path integral on the
Hamiltonian action of the string, and again the details of constructing the consistent path in-
tegral are model-dependent. In the bosonic string theory, the Hamiltonian action SH is given
by

SH =
∫

dτ
∫ l

0
dσ

(
PM Ẋ M −u+Φ+−u−Φ−

)
.

By integrating out the canonical momenta PM , one obtains the covariant form of SH as

SP = 1
4πα′

∫
Σ

d2σJab∂aX M∂b XM

where

(Jab)=
(

1
u++u−

−i(u−−u+)
u++u−−i(u−−u+)

u++u−
4u+u−
u++u−

)

and we have retrieved the α′ dependence by using the dimensional analysis. Also, we have taken
the Wick rotation on τ as τ=−iσ2 to obtain the Euclidean path integral.

The precise geometrical interpretation of Jab can be obtained by considering Ja
b = εac J cb

where εac is the Levi-Civita symbol with ε12 = 1. Ja
b then satisfies [45]

Ja
c Jc

b =−δb
a.

which indicates that Ja
b is an almost complex structure. Moreover, the almost complex structure

J = Ja
bdσa ⊗∂b has the vanishing Nijenhuis tensor defined by [46]

N (v,w)= [v,w]+ J [Jv,w]+ J [v, Jw]− [Jv, Jw]

where v and w are vector fields on Σ and [ , ] is the Lie bracket. Consequently, J induces a
complex structure on Σ by the Newlander-Nirenberg theorem [47], and Σ becomes a Riemann
surface, i.e., a two-dimensional complex manifold.

Since Σ is a Riemann surface, it is convenient to rewrite SP based on the complex structure
Ja

b:

SP [X , J,Σ]= 1
8πα′

∫
(Σ,J)

∂X m ∧ ∂̄Xm (1.10)

where ∂ and ∂̄ are the holomorphic and anti-holomorphic structure on Σ defined by

∂ f = (∂a f − iJa
b∂b f )dσa, ∂̄ f = (∂a f + iJa

b∂b f )dσa
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for any smooth function f on Σ, and
∫

(Σ,J) denotes the integration over the Riemann surface
Σ with the complex structure J. The action SP in (1.10) is often taken as a starting point
of constructing the path integral of the bosonic string theory and called the Polyakov action
[48, 49, 50].

Since the bosonic string theory has gauge symmetries, we need a gauge-fixed action as well
as a proper path integral measure to construct the path integral. A modern gauge-fixing proce-
dure based on the field-antifield formalism [51] is discussed in [52], and we do not repeat here.
Also, see [45] for a review on the more traditional approach. The resulting path integral with
some local operator insertions denoted by the ellipsis is given by [52, 53]〈(

dimMΣ∏
k=1

Ψk

)
. . .

〉

=
∫

ddimMΣµ

∫
DXDbDcD b̄D c̄

(
dimMΣ∏

k=1
Ψk

)
exp(−SGF ) . . . (1.11)

where (b, c) and (b̄, c̄) are the holomorphic and anti-holomorphic ghost-antighost pair, and

SGF = 1
2πα′

∫
(Σ,Ĵ)

d2z∂z X m∂z̄ Xm + 1
2π

∫
(Σ,Ĵ)

d2z{b∂z̄c+ b̄∂z c̄}

Ψk =
−i
4π

∫
(Σ,Ĵ)

d2z
(
b
∂Ĵz

z̄

∂µk − b̄
∂Ĵ z̄

z

∂µk

)
. (1.12)

In (1.12) Ĵ is a fixed-complex structure resulting from the gauge-fixing procedure and (z, z̄) are
complex coordinates defined by

∂̄z = 0, ∂z̄ = 0.

Finally, MΣ is the moduli space of the Riemann surface Σ and µk are local coordinates of MΣ.

1.2.4 String correspondence and string perturbation theory
From the single quantized string discussed in the above, one may attempt to construct the
theory of many-string or shortly the string field theory (SFT) to deal with interactions among
string states in a complete manner (see [54] for a recent review on the closed SFT). However, in
a conventional string theory having the spacetime position of the string as a dynamical degree of
freedom, one can construct a computational framework for the perturbative approach to string
interactions in the absence of the SFT. For this, we have to notice that the string length induced
by the spacetime position of the string implies a correspondence between the physics of strings
and that of point particles obtained by taking the string length to be zero.

In QFTs for point particle interactions, the perturbative expansion of a scattering amplitude
can be represented by Feynman diagrams consisting of edges and interaction vertices at which
edges can be joined together or split into other edges. Each edge represents the quantum prop-
agation of a single point particle, and an interaction vertex corresponds to a spacetime event
dressed with a local insertion which specifies the type of the interaction [55]. The propagation of
an external particle of a given scattering process is represented by an infinitely long edge, and
each order of the perturbative expansion of a scattering amplitude can be obtained by summing
over all possible Feynman diagrams with some infinitely long edges having the same number of
closed paths, called loops.

The string correspondence, thus, implies that the perturbative expansion of a string scat-
tering amplitude can also be realized by diagrams, called string diagrams, corresponding to



8 Introduction

(a)

=⇒

(b)

Figure 1.2: (a) A simple string diagram for the interaction of three closed strings and (b) the
corresponding Feynman diagram.

Feynman diagrams under the point particle limit. See fig. 1.2 for a simple three-string diagram
and the corresponding Feynman diagram. A string diagram can be constructed by joining and
splitting of cylinders (for closed strings) and strips (for open strings) representing propagations
of string states. Similar to Feynman diagrams with external particles, the propagation of an
external string state is represented by an infinitely long cylinder or strip.

In contrast to point particle interactions, however, a joining or splitting process in a string
diagram cannot be localized into a spacetime event, since there is no intrinsic notion of the
spacetime event at which strings are joined or split. Consequently, the propagation of a string
state in the middle of the interaction is locally equivalent to that of a free string, so the string di-
agram corresponds to the quantum evolution of a free string on the world-sheet whose spacetime
projection is homeomorphic to the string diagram.

Having a framework for constructing and computing string diagrams, each order of the per-
turbative expansion of the scattering amplitude of given external strings can be obtained by
summing over all possible string diagrams with some of infinitely long cylinders and strips, and
the same number of handles (or holes for a diagram with some boundary), called the genus,
corresponding to the number of loops in a Feynman diagram. See fig. 1.3 for an example of the
perturbative expansion of an amplitude with three open strings. For an explicit description, let
|Ψ+,i〉, i = 1, . . . ,n+ be incoming string states and |Ψ−,i〉, i = 1, . . . ,n− be outgoing string states
of a scattering process. Also, let (σ±,i,τ±,i), i = 1, . . . ,n± are local coordinates for world-sheets
corresponding to the propagation of an incoming or an outgoing string state. Then, a genus g
scattering amplitude Ag(n+ → n−) of n++n− string states can be formally written as

Ag(n− → n+)=∑
k

∫
exp(− i

ħSH[A,Σk])

×Ψ+,1(A;σ+,1,τ+,1 →−∞) . . .Ψ+,n+(A;σ+,n+ ,τ+,n+ →−∞)

×Ψ∗
−,1(A;σ−,1,τ−,1 →+∞) . . .Ψ∗

−,n−(A;σ−,n− ,τ−,n− →+∞)

where we have used the following notations:

(1) The world-sheet, denoted by Σk, carries an discrete index k which labels inequivalent world-
sheets homeomorphic to the given string diagram.

(2) SH[A,Σk] is an action for the path integral arising from the string action S[A,Σk] in (1.1).
For the bosonic string theory, SH corresponds to SGF in (1.12).

(3)
∫

denotes the path integral over A with a proper measure as in (1.11).
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= +

Tree

+ . . .

One-loop

Figure 1.3: The perturbative expansion of a scattering amplitude for three closed strings by
using string diagrams.

(4) Ψ±, j (A;σ,τ) are wave-functions of external states Ψ±, j formally defined by

Ψ±, j (A;σ,τ)= 〈
A(σ,τ)|Ψ±, j

〉
.

For an open string state, the wave-function is matrix-valued which can be expanded as

Ψ±, j(A;σ,τ)=∑
a

taΨ±, j,a(A;σ,τ)

and products among Ψ±, j(A;σ,τ) become

Tr(ta1 . . . tan++n− )Ψ+,1,a1(A;σ+,1,τ+,1) . . .Ψ∗
−,n−,an++n− (A;σ−,n− ,τ−,n−)

since the joining and splitting process require relevant ends of open strings to be located at
the same D-brane. Often the trace part is separated from the amplitude since it is indepen-
dent of world-sheet degrees of freedom and the remaining part is called the color-ordered
amplitude.

1.2.5 String theory as a conformal field theory
As we have seen in the bosonic string theory, a string action may possess the conformal symme-
try as a gauge symmetry, so the action defines a two-dimensional conformal field theory (CFT),
i.e., a two-dimensional QFT with the conformal symmetry. In the CFT framework, the string
spectrum constructed from the Fock space representation can be embedded into a representation
consisting of Verma modules, which are highest weight representations of the Virasoro algebra
defined by

[Lm,Ln]= (m−n)Lm+n + c
12

m
(
m2 −1

)
δm+n,0, [Lm, c]= 0 for m,n ∈Z. (1.13)

corresponding to the central extension of the classical Virasoro algebra in (1.8) or (1.9) by the
central element c. Conventionally, a weight in a Verma module corresponds to an eigenvalue of
the representation of L0, and a highest weight state is called a primary state.

A particularly useful implication of the conformal symmetry is the conformal mapping which
maps a world-sheet with infinitely long cylinders or strips to a world-sheet with marked points,
called punctures, (see fig. 1.4) so that a string scattering amplitude Ag(n− → n+) can be rewrit-
ten as

Ag(n− → n+)=∑
k

∫
exp(− i

ħSH[A,Σk])Ψ+,1(A;σ+,1,τ+,1) . . .Ψ+,n+(A;σ+,n+ ,τ+,n+)

×Ψ−,1(A;σ−,1,τ−,1) . . .Ψ−,n−(A;σ−,n− ,τ−,n−)
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=⇒

p3

p1 p2

(a)

=⇒

q3

q1 q2

(b)

Figure 1.4: (a) The conformal mapping of a string diagram with three open strings into a disk
with three punctures (p1, p2, p3) on its boundary, and (b) the conformal mapping of a string
diagram with three closed strings into a sphere with three punctures (q1, q2, q3).

where (σ±, j,τ±, j) are local coordinates of punctures. In trun, the computation of the path integral
becomes that of a correlator of a 2D CFT on a nontrivial background with some local insertions,
i.e.,

Ag(n− → n+)∼∑
k

〈
V+,1(σ+,1,τ+,1) . . .V+,n+(σ+,n+ ,τ+,n+)

×V−,1(σ−,1,τ−,1) . . .V−,n−(σ−,n− ,τ−,n−)
〉
Σk

(1.14)

where V±, j are local operators, called vertex operators, representing external states |Ψ±, j〉 and
we have omitted the insertion of the measure of the path integral. The relation between a state
and a vertex operator emphasized in (1.14) is called the state-operator correspondence. In the
bosonic string theory, the vertex operator for an external closed string state can be found in the
form of

c(z)c̄(z̄)V (z, z̄)

where V (z, z̄) is a local operator expressed in matter fields X m only. The simplest example is the
tachyonic vertex operator at the momentum k

c(z)c̄(z̄)eik·X (z, z̄)

which has the negative mass square − 1
4α′ .

The computation of correlators in a 2D CFT is highly constrained again due to the conformal
symmetry. In particular, the local behavior of two- and three-point correlators among primary
operators, which are vertex operators correspond to primary states, is completely determined by
the conformal symmetry up to the normalization. Consequently, the local behavior of two- and
three-point correlators of descendant operators corresponding to descendant states constructed
from primary states is also governed by the conformal symmetry since correlators of descendant
operators are dictated by correlators of primary operators. See [56] for more details. The local



1.3. Superstring theory 11

information of two- and three-point correlators together with the completeness of the space
of local operators guaranteed by the state-operator correspondence then defines the expansion
of the product of two operators as a linear combination of local operators, called the operator
product expansion (OPE), which establishes the local behavior of n-point correlators.

Finally, it should be emphasized that a CFT can be abstractly defined by a collection of Verma
modules and OPEs among primary operators, and does not require any specific Lagrangian
formulation [56]. Therefore, a CFT may allow several different realizations which have their
benefit for computing correlators. A well-known example is the bosonization of a fermionic
system, which is a description of the fermionic system based on bosonic operators. In chapter 3,
we will extensively use this bosonization technique to compute correlators among fermionic
fields.

1.3 Superstring theory

1.3.1 RNS superstring theory
The string spectrum of the bosonic string theory is insufficient to embed the Hilbert space of
elementary particle states since it contains no fermionic state. The Ramond-Neveu-Schwarz
(RNS) superstring theory is an appealing resolution of this problem proposed by [57, 58, 59],
which extends the bosonic string theory with world-sheet fermionic degrees of freedom ψm.
Here, we provide a short survey on core ideas underpinning the RNS superstring theory, and for
more comprehensive discussions we refer to reviews [45, 53].

We begin with an observation that for a point particle, one can obtain a fermionic spectrum
by enlarging the phase space consisting of the spacetime position xm and the corresponding
canonical momentum pm of a point particle with a set of dynamical variables γm satisfying the
Clifford algebra {

γm,γn}
PB = ηmn,

through the Poisson bracket {·, ·}PB, and a constraint

γm pm = 0

equivalent to Dirac equations for a massless fermion.
In [57], the world-sheet analogue of the construction of the fermionic spectrum of a point par-

ticle has been proposed by introducing a set of world-sheet fields ψm(σ) which form an affiniza-
tion of the Clifford algebra {

ψm (σ) ,ψn (
σ′)}= ηmnδ

(
σ−σ′) , (1.15)

and satisfy a constraint either

G+ = (
Pm +∂σX m)

ψm (σ)= 0 or G− = (
Pm −∂σX m)

ψm (σ)= 0

for a closed string, and

G = (
Pm +∂σX m)

ψm (σ)= 0

for an open string subject to the doubling trick. For a closed and a doubled open string, the
Poisson bracket structure in (1.15) indicates that ψm(σ) has the periodic boundary condition
called the Ramond (R) boundary condition.

Also, it has been noticed in [58, 59] that world-sheet fermions ψm(σ) with the anti-periodic
boundary condition, called the Neveu-Schwarz (NS) boundary condition, ψm(σ+ l) = −ψm(σ)
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can generate the spectrum of bosonic states alternative to the spectrum of the bosonic string
theory. Accordingly, the world-sheet fermionic extension of the bosonic string theory leads us to
a formulation of string theory which naturally incorporates with interactions among spacetime
bosons and fermions.

However, it turns out that the naive spectrum of the RNS superstring theory signals an in-
stability of the vacuum through the presence of a tachyonic state. In fact, the mathematical
consistency of string interactions in the RNS superstring theory requires truncation of the spec-
trum through the so-called GSO projection [60, 61], which also eliminates the tachyon. More-
over, the truncated spectrum and interactions among states in the spectrum admit an implicit
symmetry called the spacetime supersymmetry relating bosonic and fermionic states.

The dynamics of the RNS superstring can be defined by the Hamiltonian HRNS of the system

HRNS =


∫ l

0
dσ

(
u+Φ++u−Φ−+uψΦψ+v+G+

)
for a closed string,

1
2

∫ l

0
dσ

(
uΦ++uψΦψ+vG

)
for a doubled open string,

where u±, u, uψ, v+ and v are Lagrange multipliers and

Φψ =ψm∂σψm

is a secondary constraint arising from the standard Dirac procedure. Also, it is straightforward
to show that Φ± (or Φ), Φψ and G+ (or G) are first-class, so they are generators of gauge trans-
formations. More precisely, Φ± (or Φ) and Φψ are generators of the conformal symmetry, and the
symmetry generated by G+ (or G) is called the world-sheet supersymmetry to distinguish from
the spacetime supersymmetry existing in the superstring spectrum. The conformal symmetry
generated by above constraints has a quantum anomaly in the Fock space representation, which
can be removed by choosing u+ = uψ (or u = uψ) and dimM = 10. As in the bosonic string theory,
we will assume these conditions in the following discussion.

On the basis of HRNS one can proceed to construct the quantum evolution of a superstring
state by employing the path integral in the same spirit of the bosonic string theory. Again
the path integral can be systematically defined by employing the covariant action obtained by
integrating out the canonical momentum Pm in the Hamiltonian action [62]

SH =


∫
Σ

d2σ
{
Pm Ẋ m +ψmψ̇m −u+

(
Φ++Φψ

)−u−Φ−−v+G+
}

for a closed string,

1
2

∫
Σ

d2σ
{
Pm Ẋ m +ψmψ̇m −u

(
Φ++Φψ

)−vG
}

for a doubled open string.

(1.16)

The explicit form of the resulting covariant action can be found in [48, 49, 63], and we do not
present here.

The superstring spectrum and the quantum evolution of a string state then enable us to
construct perturbative superstring amplitudes whose computation relies on the CFT framework
defined by the superstring action. In chapter 3, we will develop some technical tools which can
be applied to compute one-loop superstring amplitudes of the RNS superstring theory.

As a side remark, for a closed string, one can extend the bosonic string theory with two sets
world-sheet fermions ψm

± with two constraints

G± = (Pm ±∂σX m)ψ±m(σ)= 0

which leads to a different extension of the bosonic string theory. The extension with a single set
of world-sheet fermions is categorized by the heterotic superstring theory and with two sets of
world-sheet fermions is categorized by the type II superstring theory.
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1.3.2 Pure spinor superstring theory
The pure spinor (PS) formalism is an alternative formulation of the superstring theory where
spacetime supersymmetry is manifest. It has been firstly proposed by [15] and extensively
applied to compute superstring amplitudes due to the explicit spacetime supersymmetric form
of resulting amplitudes.

Arguably, the simplest way of constructing the PS superstring action is taking it as a world-
sheet extension of the supersymmetric point particle action relevant to the low energy theory of
the superstring theory. For this, we begin with equations of motion of the 10D SYM which is
the low energy effective theory for the massless states of the open superstring theory. Let m,n
again denote spacetime vector indices and α,β = 1, . . . ,16 denote spacetime spinor indices. We
define supercovariant derivatives [64, 65],

∇α ≡ Dα−Aα, ∇m ≡ ∂m −Am (1.17)

with a Lie algebra-valued spinor and vector potential Aα and Am. The fermionic differential
operators

Dα ≡ ∂

∂θα
+ 1

2
(
γmθ

)
α∂m,

{
Dα,Dβ

}= γm
αβ∂m (1.18)

involve the 16×16 Pauli matrices γm
αβ

= γm
βα

subject to the Clifford algebra γ(m
αβ
γn)βγ = 2ηmnδ

γ
α,

and the convention for (anti)symmetrizing indices does not include 1
2 . The constraint equations{∇α,∇β

} = γm
αβ

∇m together with Bianchi identities then lead to the equations of motion of the
10D SYM [65], {∇α,∇β

}= γm
αβ∇m, (1.19a)

[∇α,∇m]=−(
γmW

)
α , (1.19b){

∇α,Wβ
}
= 1

4
(
γmn)

α
βFmn, (1.19c)[∇α,Fmn]= (

W[mγn]
)
α

, (1.19d)

for a spinor field Wα and

Fmn ≡−[∇m,∇n
]
, Wα

m ≡ [∇m,Wα
]
.

It is straightforward to check that equations in (1.19) are invariant under the gauge transfor-
mations

δΩAα = [∇α,Ω] , δΩAm = [∇m,Ω] ,

δΩW
α = [

Ω,Wα
]
, δΩF

mn = [
Ω,Fmn]

, (1.20)

with a Lie algebra-valued gauge parameter Ω=Ω(x,θ).
In order to find a point particle relevant to the 10D SYM, we note that the constraint equa-

tions (1.19a) are equivalent to the integrability condition on Fαβ := {∇α,∇β
}−γm

αβ
∇m along a pure

spinor line defined by [66]

xm = xm
0 + tλαγm

αβλ̄
β, θα = θα0 + ζ̄λα−ζλ̄α

where λα is a commuting pure spinor subject to the pure spinor condition λαγm
αβ
λβ = 0 and

(t,ζ, ζ̄) are parameters for the pure spinor line with respect to the reference point
(
xm

0 ,θα0
)
. The

integrability condition corresponds the BRST formalism of twistor-like constraints [67, 68]

φα = pmγ
m
αβλ

β = 0 (1.21)
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on the extended phase space of a point particle whose BRST charge QB is given by

QB =λα
(
pα+ pmγ

m
αβθ

β
)

with the ghosts θα and the antighosts pα related to constraints in (1.21). By choosing an appro-
priate gauge one can obtain a covariant Hamiltonian action [67]

S =
∫

dτ
(

1
2

ẋm ẋm +παλ̇α+ pαθ̇α
)

(1.22)

called the pure spinor superparticle action.
The string action of the PS open superstring theory can be then found as the world-sheet

extension of (1.22) in the same way as the Nambu-Goto action (1.2) of the bosonic string theory
is the world-sheet extension of the world-line action. Explicitly, the PS open superstring action
under the doubling trick is given by [15]

SPS = 1
2π

∫
d2z

(
1
2
∂X m∂̄Xm + pα∂̄θα−ωα∂̄λα

)

with world-sheet fields {X m(z, z̄),θα(z), pα(z),λα(z),ωα(z)} which are world-sheet counterparts of
dynamical variables in (1.22).

The physical spectrum is defined by the cohomology of the world-sheet extension Q of QB

Q =
∮
λα(z)dα(z), dα(z)= pα− 1

2
(γmθ)α∂Xm − 1

8
(γmθ)α(θγm∂θ)

and contains the massless open superstring state corresponding to the vertex operator

V =λαAα(X ,θ)=∑
a
λαta Aα(X ,θ;a) (1.23)

where ta are generators of the given Lie algebra as in (1.5). The BRST-closedness enforces
Aα(X ,θ) to be the linearized field of the spinor potential Aα in (1.17) satisfying linearized equa-
tions of motion obtained by discarding the quadratic terms in (1.19)

{
D(α, Aβ)

}= γm
αβAm, (1.24a)

[Dα, Am]= (γmW)α+ [∂m, Aα] , (1.24b){
Dα,Wβ

}
= 1

4
(
γmn)

α
βFmn, (1.24c)

[Dα,Fmn]= [
∂[m, (γn]W)α

]
. (1.24d)

where superfields {Am,Wα,Fmn} are linearized fields of {Am,Wα,Fmn}. These equations are in-
variant under the linearized gauge transformations

δΩAα = [
Dα,Ω

]
, δΩAm = [

∂m,Ω
]
, δΩWα = 0, δΩFmn = 0

for a Lie algebra-valued gauge parameter Ω, which render δΩV BRST exact. Also, linearized
superfields {Aα, Am,Wα,Fmn} can be expanded in θα by using the Harnad-Shnider (HS) gauge



1.3. Superstring theory 15

θαAα = 0 [69, 70],

Aα(θ)=1
2

(θγm)αem + 1
3

(θγm)α(θγmχ)− 1
32

(θγm)α(θγmnpθ) fnp (1.25a)

+ 1
60

(θγm)α(θγmnpθ)(χγpθ)kn + 1
1152

(θγm)α(θγmnpθ)(θγpqrθ) f qrkn +O
(
θ6)

Am(θ)=em + (θγmχ)− 1
8

(θγmpqθ) f pq + 1
12

(θγmnpθ)(χγpθ)kn (1.25b)

+ 1
192

(θγm
nrθ)(θγr

pqθ) f pqkn − 1
480

(θγm
nrθ)(θγr

pqθ)(χγqθ)knkp +O
(
θ6)

Wα(θ)=χα+ 1
4

(θγmn)α fmn − 1
4

(θγmn)α(χγnθ)km − 1
48

(θγ q
m )α(θγqnpθ) f npkm (1.25c)

+ 1
96

(θγ q
m )α(θγqnpθ)(χγpθ)kmkn − 1

1920
(θγ r

m )α(θγ s
nr θ)(θγspqθ) f pqkmkn +O

(
θ6)

Fmn(θ)= f mn −k[m(χγn]θ)+ 1
8

(θγ [m
pq θ)kn] f pq − 1

12
(θγ [m

pq θ)kn]kp(χγqθ) (1.25d)

− 1
192

(θγ [m
ps θ)kn]kp f qr(θγs

qrθ)+ 1
480

(θγ[m
psθ)kn](χγrθ)kpkq(θγs

qrθ)+O
(
θ6)

These θ-expansions are understood to be accompanied by plane waves, e.g. Aα(x,θ)= Aα(θ)ek·x.
The bosonic and fermionic polarizations em and χα correspond to gluons and gluinos, respec-
tively, and we denote the linearized gluon field strength by fmn = kmen −knem.

As in other formulations of string theory, scattering amplitudes in the PS superstring theory
are then defined by conformal correlators with vertex operator insertions as well as the proper
measure insertion. In the next chapter, we will discuss tree level superstring amplitudes of
massless states computed by inserting vertex operators in the form of (1.23).
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TWO

TREE LEVEL OPEN SUPERSTRING AMPLITUDES AND 10D SYM

In this chapter, we discuss the computation of tree level scattering amplitudes of massless open
superstrings in the PS superstring theory with a particular emphasis on the role of the 10D
SYM equations for the computation. In the following discussions, we often take 2α′ = 1 unless
otherwise specified.

2.1 Tree level superstring amplitudes in the PS superstring theory

In the PS superstring theory, a world-sheet relevant to the tree level string diagram of N open
strings can be conformally mapped to a disk with N punctures at the boundary of the disk. The
latter can be further mapped to the upper-half plane with the real axis corresponding to the
boundary of the disk as in fig. 2.1. Also, the insertion of the path integral measure can be taken
into account by inserting the N−3 integrated form of the vertex operator. For the massless open
string vertex operator given in (1.23) the integrated vertex operator has the form of

U =
∫

dz
(
∂θαAα+Πm Am +dαWα+ 1

2
FmnNmn

)
, for


Nmn = 1

2
(
λγmnω

)
,

Πm = ∂X m + 1
2

(θγm∂θ)
(2.1)

where the integral is taken over the real axis. Consequently, the N-point tree level superstring
amplitude for massless open strings is given by

AN =
〈

V (z1)V (zN−1)V (zN )
N−2∏
i=2

U

〉

=Tr
(
ta1 . . . taN

)〈
Va1(z1)VaN−1(zN−1)VaN (zN )

N−2∏
i=2

Uai

〉
(2.2)

where ai denote color degrees of freedom. It is important to note that the bracket 〈. . .〉 is nor-
malized as 〈(

λγmθ
)(
λγnθ

)(
λγpθ

)(
θγmnpθ

)〉= 2880 (2.3)

due to zero modes of λα and θα.
As we have discussed in section 1.2.5, the computation of AN in (2.2) can be implemented by

employing the CFT framework defined by the PS superstring action. The relevant CFT can be
summarized as the following:

(1) The energy-momentum tensor T(z) given by

T(z)=−1
2
ΠmΠm −dα∂θα+ωα∂λα.

(2) Conformal primaries relevant to superstring amplitudes in the PS formulation generated by{
eik·X ,Πm,dα,θα,ωα,λα

}
17
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p2

p1

pN−1
pN

(a) (b)

⇐⇒
Re z

z

p1 p2 pN−1 pN

Figure 2.1: (a) A disk with N punctures (p1, p2, . . . , pN−1, pN ) on its boundary and (b) the corre-
sponding upper half-plane with the real axis.

whose OPEs are given by [71, 15]

eik1·X (z,z̄)eik2·X (w,w̄) = |z−w|2k1·k2 ei(k1+k2)·X (w,w̄)(1+O(z−w, z̄− w̄))

Πm(z)eik·X (w,w̄) =−i(z−w)−1kmeik·X (w,w̄) + . . .

dα(z)eik·X (w)= i
2

(z−w)−1(γmθ)kmeik·X + . . .

Πm(z)Πn(w)=− ηmn

(z−w)2 + . . .

Πm(z)dα(w)=−(z−w)−1(γm∂θ)α+ . . .

dα(z)dβ(w)=−(z−w)−1γm
αβΠm + . . .

dα(z)θβ(w)= (z−w)−1δ
β
α+ . . .

ωα(z)λβ(w)= (z−w)−1δ
β
α+ . . .

where we have omitted non-singular OPEs.

By using the CFT above, the color-ordered part of (2.2) has been computed in the series of
works [72, 73, 74] for N = 4,5,6 and a closed form of the aribtrary N have been found in [14] as

AN =
N−2∏
i=2

∫ 1

zi−1

dzi

N∏
j,k=1
j<k

∣∣z jk
∣∣−s jk

(
N−2∏
l=2

l−1∑
m=1

sml

zml
ASY M (1,2, . . . , N)+P (2,3, . . . , N −2)

)

where (z1, zN−1, zN ) are taken to be (0,1,∞) with zi j = zi − z j for complex coordinates zi (i =
2, . . . , N − 2) of integrated vertex operators, and s12... j = α′ (k1 +k2 +·· ·+k j

)2 for external mo-
menta ki. Also, 1,2, . . . , N stand for shorthanded notations for momentum-polarization pairs of
vertex operator insertions and P (2,3, . . . , N −2) denotes the summation over all possible permu-
tations of {2,3, . . . , N −2}. ASY M (1,2, . . . , N) denotes the zi-independent kinematic factor called
the color-ordered N-point SYM subamplitude, since under the limit α′ → 0,

ASY M(1,ρ(2),ρ(3), . . . ,ρ(N −2), N −1, N), ρ ∈ SN−3

form a basis of the N-point color-ordered 10D SYM amplitude [4, 75, 76].

2.1.1 SYM amplitudes in pure-spinor superspace
The explicit form of ASY M(1,2, . . . , N) has been obtained by using successive OPEs between an
unintegrated vertex operator [14] and an integrated operator, and further simplified in [77] by
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using OPEs between integrated vertex operators. Both computations lead to the expression

ASY M(1,2, . . . , N)=
N−2∑
j=1

〈
M12... jM j+1 j+2...N−1MN

〉
(2.5)

with M12... j =λαA
12... j
α (θ) for some non-local multiparticle superfields A

12... j
α .

The multiparticle superfields A
P=12...p
α satisfy the following equations [14]

D(αA P
β) = γm

αβA P
m + ∑

XY=P

(
A X
α A Y

β −A Y
α A X

β

)
(2.6a)

which induce further non-local multiparticle superfields
{
A P

m ,W α
P ,F P

mn
}

satisfying

DαA P
m = kP

mA P
α + (

γmWP
)
α+

∑
XY=P

(
A X
α A Y

m −A Y
α A X

m

)
(2.6b)

DαW
β

P = 1
4 (γmn)αβF P

mn +
∑

XY=P

(
A X
α W

β

Y −A Y
α W

β

X

)
(2.6c)

DαF mn
P = k[m

P (γn]WP )α+
∑

XY=P

(
A X
α F mn

Y −A Y
α F mn

X
)

+ ∑
XY=P

(
A [n

X (γm]WY )α−A [n
Y (γm]WX )α

)
. (2.6d)

Here, the multiparticle momentum km
P is defined by

km
P ≡ km

1 +·· ·+km
p

and the summation over multiparticle labels XY = P instructs to deconcatenate P = 1. . . p into
non-empty words X = 1. . . j and Y = j+1. . . p with j = 1, . . . , p−1. Equations in (2.6) are invariant
under non-linear gauge transformations

δA P
α = DαΩP + ∑

XY=P
ΩX A Y

α , δA P
m = ∂mΩP + ∑

XY=P
ΩX A Y

m ,

δW α
P = ∑

XY=P
ΩX W α

Y , δF P
mn = ∑

XY=P
ΩX FY

mn.

for a multiparticle gauge parameter ΩP .
Also, the multiparticle index P of KP ∈ {

A P
α ,A P

m ,W α
P ,F P

mn
}

satisfies the shuffle relation

KA�B = 0, ∀A,B 6= ; and P = AB

where� denotes the shuffle product1, so KP uniquely define the Lie algebra-valued generating
series K ∈ {Aα,Am,Wα,Fmn}

K=Ka1 ta1 +Ka1a2 ta1 ta2 +Ka1a2a3 ta1 ta2 ta3 + . . .

=Ka1 ta1 + 1
2Ka1a2[ta1 , ta2]+ 1

3Ka1a2a3[[ta1 , ta2], ta3]+ . . .

=
∞∑

p=1

∑
a1,a2,...,ap

1
p

Ka1a2...ap

[
ta1 ,

[
ta2 , . . . ,

[
tap−1 , tap

]]
. . .

]
.

1The shuffle product� between the words A = a1a2 . . .a|A| and B = b1b2 . . .b|B| is defined recursively by

;�A = A�;= A, A�B ≡ a1(a2 . . .a|A|�B)+b1(b2 . . .b|B|�A),

and ; denotes the empty word.



20 Tree level Open Superstring Amplitudes and 10D SYM

Nonlinear equations of motion in (2.6) can be then cast into the form of [78]

{
D(α,Aβ)

}= 1
4
γm
αβAm +{

Aα,Aβ
}
, (2.7a)

[Dα,Am]= [∂m,Aα]+ (
γmW

)
α+ [Aα,Am] , (2.7b){

Dα,Wβ
}
= 1

4
(
γmn) β

α Fmn +
{
Aα,Wβ

}
, (2.7c)[

Dα,Fmn]= (
W[mγn]

)
α
+ [
Aα,Fmn]

, (2.7d)

which are equations of motion of the 10D SYM obtained by inserting definitions in (1.17) into
(1.19). The non-local multiparticle superfields KP are often called the supersymmetric Berends-
Giele currents of the 10D SYM since they are the supersymmetric analogue of the original
Berends-Giele currents of the Yang-Mills theory [79].

2.2 Perturbative solutions of the 10D SYM and Berernds-Giele currents in the Lorenz
gauge

In section 2.1 we have seen that the generating series of supersymmetric Berends-Giele cur-
rents form a perturbative solution of the equations of motion for the 10D SYM. This observation
together with the gauge invariance of ASY M (1, . . . , N) indicates that we can construct those
Berends-Giele currents by perturbatively solving the 10D SYM equations instead of relying on
the CFT framework. For this, we note that

äK= [
∂m,

[
∂m,K

]]
for any Lie-algebra valued function K, so by Jacobi identities and repeated use of ∂m =∇m+Am,
we have the wave equation of the 10D SYM as

�K= [∇m +Am, [∂m,K]]

= [[∇m,∂m],K]+ [Am, [∂m,K]]+ [Am, [∇m,K]]+ [∇m, [∇m,K]]. (2.8)

We then impose the Lorenz gauge [∂m,Am]= 0 so that the first term in the second line vanishes,
and by inserting K→ {∇α,∇m,Wα} into (2.8), we find wave equations for Aα,Am,Wα as

�Aα = [
Am,

[
∂m,Aα

]]+ [
Am,

(
γmW

)
α

]
(2.9a)

�Am = [
Ap,

[
∂p,Am]]+ [

Fmp,Ap
]+γm

αβ

{
Wα,Wβ

}
(2.9b)

�Wα = [
∂m,

[
An,

(
γmγnW

)α]]
. (2.9c)

One can see that the right-hand sides of (2.9) contain only non-linear terms in superfields, thus
they can be solved in a perturbative manner.

In order to find a perturbative solution of (2.9), we expandK ∈ {Aα,Am,Wα} by KP ∈ {
A P
α ,A P

m ,W α
P

}
as [78]

K=
∞∑

p=1

∑
a1,a2,...,ap

1
p

Ka1a2...ap

[
ta1 ,

[
ta2 , . . . ,

[
tap−1 , tap

]]
. . .

]
. (2.10)

Equations in (2.9) then imply Berends-Giele recursions in the form of

KP ≡ 1
sP

∑
XY=P

K[X ,Y ], sP = 1
2

k2
P (2.11)
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where

A
[P,Q]
α ≡−1

2

[
A P
α (kP ·A Q)+A P

m (γmW Q)α− (P ↔Q)
]

(2.12a)

A
[P,Q]
m ≡−1

2

[
A P

m (kP ·A Q)+A P
n F

Q
mn − (W PγmW Q)− (P ↔Q)

]
(2.12b)

W α
[P,Q] ≡

1
2

(
km

P +km
Q

)
γ
αβ
m

[
A n

P (γnWQ)β− (P ↔Q)
]

(2.12c)

as well as
F mn

P ≡ km
P A n

P −kn
PA m

P − ∑
XY=P

(
A m

X A n
Y −A n

X A m
Y

)
(2.12d)

obtained from Fmn = − [∇m,∇n]. It is straightforward to show by induction that these solu-
tions obey the equations of motion (2.7) by assuming

{
A i
α,A i

m,W α
i ,F i

mn
}

satisfy the linearized
equations (1.24).

The perturbative nature of the solution in the above is preserved by gauge transformation
generated by Lie algebra-valued gauge parameters in the form of

Ω=
∞∑

p=1

∑
a1,a2,...,ap

1
p
Ωa1a2...ap

[
ta1 ,

[
ta2 , . . . ,

[
tap−1 , tap

]]
. . .

]
, ΩA�B = 0 ∀A,B 6= ;, (2.13)

which lead to another generating series of Berends-Giele currents. Non-linear gauge trans-
formations of the generating series (2.10) of multiparticle superfields reparametrize the SYM
amplitudes by moving terms between different cubic diagrams. They can therefore be viewed as
an example of the “generalized gauge freedom” of [4, 12, 5]. In the remainder of this chapter we
will exploit the effects of different gauge parameters ΩP .

2.3 Non-linear superfields and Berends–Giele currents in BCJ gauge

In [77], supersymmetric Berends–Giele currents were constructed in a totally different fashion
originated from the CFT defined by the PS superstring action. Starting with a local representa-
tion of multiparticle superfields

KP ∈
{

AP
α , AP

m,Wα
P ,FP

mn

}
,

redefinitions were employed in order to enforce the symmetries of nested commutators
[[

t1, t2]
, t3]

in a Lie algebra such as K123 + K231 + K312 = 0. Their Berends-Giele currents K BCJ
P were

constructed by adjoining propagators, i.e., inverse Mandelstam invariants sP in (2.11), to Lie
symmetry-satisfying numerators, following an intuitive mapping to cubic graphs compatible
with the ordering of the external legs. Incidentally, the family KBCJ

P of local multiparticle super-
fields forming K BCJ

P satisfies the same “generalized Lie symmetries” [80] as a string of structure
constants in [ta, tb]= f abc tc,

“kinematics" KBCJ
12...p ←→ f 12a3 f a33a4 f a44a5 . . . f ap pap+1 “color". (2.14)

The construction of K BCJ
P in [77] is motivated by the BCJ conjecture [4] on a duality between

color and kinematics: The kinematic factors Ni of scattering amplitudes can be arranged to
satisfy the same Jacobi identity as their associated color factors Ci, see [12] for the striking
impact on gravity amplitudes, [5] for the loop-level formulation of the conjecture and [81] for a
review.

Despite their different construction, the Berends-Giele currents K BCJ
P of [77] or those in the

Lorenz gauge K L
P ≡ KP constructed in the previous section give rise to identical tree level am-

plitudes, since these different currents are in fact related by a non-linear gauge transformation
as verified below up to multiplicity five. Accordingly, the currents K BCJ

P are said to be in BCJ
gauge.
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2.3.1 Recursive definition of local superfields in Lorenz gauge
The definition of local superfields K̂[P,Q] in Lorenz gauge2 is given by

Â[P,Q]
α =−1

2
[
ÂP
α (kP · ÂQ)+ ÂP

m(γmŴQ)α− (P ↔Q)
]

(2.15a)

Â[P,Q]
m =−1

2
[
ÂP

m(kP · ÂQ)+ ÂP
n F̂Q

mn − (ŴPγmŴQ)− (P ↔Q)
]

(2.15b)

Ŵα
[P,Q] =

1
2

(km
P +km

Q )γαβm
[
Ân

P (γnŴQ)β− (P ↔Q)
]
, (2.15c)

it amounts to picking up the numerator on top of various inverse sX in the recursions (2.12a)
to (2.12c) for Berends–Giele currents. We will often use a simplified notation for brackets [P,Q]
when one of P,Q is of single-particle type,

K̂12...p ≡ K̂[12...p−1,p].

In this topology, the field-strength appearing above is given by

F̂12...p
mn ≡ k12...p

m Â12...p
n −k12...p

n Â12...p
m +

p∑
j=2

∑
δ∈P(β j)

(k12... j−1 ·k j) Â12... j−1,{δ}
[n Â j,{β j\δ}

m] , (2.15d)

where β j ≡ { j+1, j+2, . . ., p} and P(β j) denotes its power set. For p = 2,3,4 we have

F̂12
mn =k12

m Â12
n −k12

n Â12
m + (k1 ·k2) Â1

[n Â2
m]

F̂123
mn =k123

m Â123
n −k123

n Â123
m + (k1 ·k2)

(
Â1

[n Â23
m] + Â13

[n Â2
m]

)
+ (k12 ·k3) Â12

[n Â3
m]

F̂1234
mn =k1234

m Â1234
n −k1234

n Â1234
m + (k1 ·k2)

(
Â1

[n Â234
m] + Â13

[n Â24
m] + Â14

[n Â23
m] + Â134

[n Â2
m]

)
+ (k12 ·k3)

(
Â12

[n Â34
m] + Â124

[n Â3
m]

)
+ (k123 ·k4) Â123

[n Â4
m].

2.3.2 Review of generalized Lie symmetries for multiparticle superfields
The approach of [77] to Berends–Giele currents in BCJ gauge K BCJ

P is based on local superfields
K12...p satisfying all generalized Lie symmetries £k up to k = p,

0= £k ◦K12...p (k = 2, . . . , p)

=
{

K12...n+1[n+2[...[2n−1[2n,2n+1]]...]] −K2n+1...n+2[n+1[...[3[21]]...]] = 0 for k = 2n+1,

K12...n[n+1[...[2n−2[2n−1,2n]]...]] +K2n...n+1[n[...[3[21]]...]] = 0 for k = 2n.
(2.16)

For example,

£2 ◦K12 = K12 +K21 = 0, £3 ◦K123 = K123 +K231 +K321 = 0,

£4 ◦K1234 = K1234 −K1243 +K3412 −K3421 = 0,

and so forth. These symmetries leave (p−1)! independent permutations of K12...p and are also
obeyed by nested commutators [. . . [[t1, t2], t3], . . . , tp] and the color factors in

K12...p ←→ f 12a3 f a33a4 f a44a5 . . . f ap pap+1 .

Therefore the local superfields KP admit the following diagrammatic interpretation in fig. 2.2.

2Starting from rank four, the superfields denoted by {ÂP
α , ÂP

m,Ŵα
P , F̂mn

P } in this work and [77] do not match.



2.3. Non-linear superfields and Berends–Giele currents in BCJ gauge 23

1

2 3 4

. . .
p

. . . ↔ K123...p

Figure 2.2: The diagrammatic interpretation of local superfields K12...p.

2.3.3 Recursive definition of local superfields in BCJ gauge

The recursively defined superfields K̂12...p in (2.15) do not yet satisfy the Lie symmetries (2.16).
However, this can be compensated by redefinitions K12...p = K̂12...p + . . . via superfields Ĥ12...p ≡
Ĥ[12...p−1,p] which amount to a non-linear gauge transformation of their corresponding generat-
ing series. Starting from Ĥi = Ĥi j = 0, the superfields Ĥ12...p at multiplicity p enter through the
following recursive system of equations [77]

K[12...p−1,p] ≡K̂[12...p−1,p] −
p∑

j=2

∑
δ∈P(β j)

(k1... j−1 ·k j)
[
Ĥ1... j−1,{δ} K̂ j,{β j\δ} − (1. . . j−1↔ j)

]

−


DαĤ[12...p−1,p] for K = Aα

km
12...pĤ[12...p−1,p] for K = Am

0 for K =Wα

(2.17)

and will be introduced separately in the next subsection.
The redefinitions in (2.17) have been originally designed in a two-step procedure which yields

the expressions for Ĥ12...p in a constructive manner3 [77]. As a result, the superfields K12...p
defined by (2.17) as well as

F12...p
mn ≡ k12...p

m A12...p
n −k12...p

n A12...p
m +

p∑
j=2

∑
δ∈P(β j)

(k12... j−1 ·k j) A12... j−1,{δ}
[n A j,{β j\δ}

m]

satisfy all the Lie symmetries £2,£3, . . . in (2.16) up to and including £p. For example, since
Ĥi = Ĥi j = 0, the definitions in (2.17) yield

K1 = K̂1, K12 = K̂12, ∀ K ∈ {Aα, Am,Wα,Fmn}, (2.18)

and the first non-trivial redefinition occurs at multiplicity three with

A123
α = Â[12,3]

α −DαĤ[12,3], Am
123 = Âm

[12,3] −km
123Ĥ[12,3], Wα

123 = Ŵα
[12,3]. (2.19)

A rank-four sample of the redefinitions (2.17) is provided by

Am
1234 =Âm

[123,4] − (k123 ·k4)Ĥ[12,3] Am
4 − (k12 ·k3)Ĥ[12,4] Am

3

− (k1 ·k2)
(
Ĥ[13,4] Am

2 − Ĥ[23,4] Am
1

)−km
1234Ĥ[123,4]. (2.20)

3 As discussed in [77], an intermediate step of the redefinition procedure gives rise to redefined superfields A′m
12...p

which determine the definition of H[12...p−1,p] via £p◦A′m
[12...p−1,p] ≡ p km

12...pH[12...p−1,p]. For this definition to work,

the overall momentum km
12...p must factorize in the sum dictated by £p ◦ A′m

[12...p−1,p], providing a strong consistency

check of the setup. The relation between H12...p and Ĥ12...p will be given in (2.21).
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2.3.4 Explicit form of the redefinitions Ĥ

One can show that expressions for Ĥ[12...p−1,p] can be conveniently summarized by

Ĥ[A,B] ≡ H[A,B] −
1
2

[
ĤA(kA · AB)− (A ↔ B)

]
(2.21)

H′
A,B,C ≡ HA,B,C + 1

2
[
H[A,B](kAB · AC)+cyclic(A,B,C)

]
,

with the central building block

HA,B,C ≡−1
4

Am
A An

BFmn
C + 1

2
(WAγmWB)Am

C +cyclic(A,B,C) . (2.22)

In particular, the redefinitions up to multiplicity five are captured by

H[12,3] =
1
3

H1,2,3 (2.23a)

H[123,4] =
1
4

(
H′

12,3,4 +H′
34,1,2

)
(2.23b)

H[12,34] =
1
4

(−2H′
12,3,4 +2H′

34,1,2
)

(2.23c)

H[1234,5] =
1
5

(
H′

123,4,5 −H′
543,2,1 +H′

12,3,45
)

(2.23d)

H[123,45] =
1
5

(−3H′
123,4,5 −2H′

543,2,1 +2H′
12,3,45

)
. (2.23e)

The treatment and significance of the additional topologies H[12,34] and H[123,45] is explained
around (2.31) and in appendix A. Higher-rank versions of HP are under investigation, and it
would be interesting to extend the simple expressions in (2.23) to arbitrary multiplicity4. The
expressions above are sufficient to identify the redefinitions up to and including multiplicity five
as originating from a non-linear gauge transformation.

It is worth mentioning a remarkable feature of HA,B,C in (2.22): Upgrading the polarization
vectors and spinors in the color-ordered SYM three-point amplitude at tree level5,

ASY M(1,2,3)=−1
2

em
1 en

2 f mn
3 + (χ1γmχ2)em

3 +cyclic(1,2,3) (2.24)

to superfields according to em
i → Am

i (θ), χαi → Wα
i (θ) and f mn

i = k[m
i en]

i → Fmn
i (θ), the amplitude

(2.24) can be rewritten as

ASY M(1,2,3)= 2H1,2,3(θ = 0).

2.3.5 Supersymmetric Berends–Giele currents in BCJ gauge
In this subsection, we will justify the terminology of Lorenz and BCJ gauge for the representa-
tions K L

P and K BCJ
P of Berends–Giele currents. It will be verified up to multiplicity five that

they are indeed related by a non-linear gauge transformation, i.e.

ABCJ
m =AL

m − [∂m,H]+ [AL
m,H], (2.25)

4Noting that H[12...p−1,p] here corresponds to H12...p from [77], the expression of H[123,4] presented in (2.23)
considerably simplifies the expression of H1234 given in the appendix C of [77].

5See (1.25) for the appearance of polarization vectors and spinors in θ-expansions of linearized superfields.
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translating into

A
m,BCJ
P =A

m,L
P −km

P HP + ∑
XY=P

(A m,L
X HY −A

m,L
Y HX ). (2.26)

Clearly, (2.25) is a special case of a non-linear gauge transformation (1.20) with Ω→−H. The
generating series of gauge parameters

H≡ ∑
a1,a2,a3

Ha1a2a3 ta1 ta2 ta3 + ∑
a1,a2,a3,a4

Ha1a2a3a4 ta1 ta2 ta3 ta4 +·· · (2.27)

is built from Berends–Giele currents HP of the superfields Ĥ[A,B]. As before, the Berends–Giele
symmetry HA�B = 0 implies Lie algebra-valuedness of the series (2.27) [82]. Of course, the
same H describes the transformation of the remaining series Aα, Wα, Fmn, see (1.20). We will
focus on the transformation between the currents A

m,BCJ
P and A

m,L
P of the vector potential since

the remaining superfields follow the same or simpler lines.
In the following discussion we will construct Berends–Giele currents up to rank four using

the mapping between planar binary trees and nested brackets [77], see appendix A for rank five.
By (2.18), the two gauge choices are identical at multiplicities one and two,

K BCJ
1 =K L

1 , K BCJ
12 =K L

12,

reflecting the vanishing of the simplest redefinitions,

Ĥ1 = Ĥ12 = 0 ⇒ H1 =H12 = 0, (2.28)

and justifying the absence of single-particle and two-particle contributions in the series (2.27).

Rank three At multiplicity three, the two binary trees displayed in fig. 2.3 lead to

K BCJ
123 = K[12,3]

s12s123
+ K[1,23]

s23s123
, K L

123 =
K̂[12,3]

s12s123
+ K̂[1,23]

s23s123
,

with K̂[P,Q] = −K̂[Q,P] from (2.15a) to (2.15c). Hence, the relation (2.19) between the local su-
perfields in the two gauges is sufficient to determine the corresponding relation between their
Berends–Giele currents. For example, Am

[12,3] = Âm
[12,3] −km

123Ĥ[12,3] implies that

A
m,BCJ
123 =A

m,L
123 −km

123H123, H123 =
Ĥ[12,3]

s12s123
+ Ĥ[1,23]

s23s123
,

where (2.28) allows to restore a vanishing deconcatenation term 0 = A
m,L
1 H23 +A

m,L
12 H3 −

A
m,L
23 H1 −A

m,L
3 H12 and to verify (2.26) at P = 123.

Rank four Similar calculations at multiplicity four lead to the relation

A
m,BCJ
1234 =A

m,L
1234 −km

1234H1234 +A m
1 H234 −A m

4 H123 (2.29)

required by (2.26), where (2.28) identifies the last two terms on the right-hand side as a perfect
deconcatenation

∑
XY=1234(A m,L

X HY −A
m,L
Y HX ). The Berends–Giele currents comprise the five

binary trees depicted in fig. 2.3,

A
m,BCJ
1234 = 1

s1234

( Am
[123,4]

s12s123
+

Am
[321,4]

s23s123
+

Am
[12,34]

s12s34
+

Am
[342,1]

s34s234
+

Am
[324,1]

s23s234

)
A

m,L
1234 =

1
s1234

( Âm
[123,4]

s12s123
+

Âm
[321,4]

s23s123
+

Âm
[12,34]

s12s34
+

Âm
[342,1]

s34s234
+

Âm
[324,1]

s23s234

)
(2.30)

H1234 = 1
s1234

( Ĥ[123,4]

s12s123
+ Ĥ[321,4]

s23s123
+ Ĥ[12,34]

s12s34
+ Ĥ[342,1]

s34s234
+ Ĥ[324,1]

s23s234

)
,
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1 2 3 1 2 3

K[[1,2],3]

s12s123

K[1,[2,3]]

s23s123
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

K[[[1,2],3],4]

s12s123s1234

K[[1,[2,3]],4]

s23s123s1234

K[[1,2],[3,4]]

s12s34s1234

K[1,[2,[3,4]]]

s34s234s1234

K[1,[[2,3],4]]

s23s234s1234

Figure 2.3: The planar binary trees used to define K123 and K1234.

where four of the five numerators in (2.30) belong to the topology of (2.20).
However, the third term representing the middle diagram in fig. 2.3 follows the separate

conversion rule

Am
[12,34] =Âm

[12,34] −km
1234Ĥ[12,34]

+ (k1 ·k2)
(
Ĥ[13,4] Am

2 − Ĥ[23,4] Am
1

)+ (k3 ·k4)
(
Ĥ[12,4] Am

3 − Ĥ[12,3] Am
4

)
(2.31)

between Lorenz gauge and BCJ gauge. As a defining property of BCJ gauge, the left-hand side
can be expressed in terms of the basic topology (2.17) via Am

[12,34] = Am
1234 − Am

1243. The new
topology Ĥ[12,34] of redefining fields (see [83]) is determined by (2.31) whose solution can be
found in (2.23).

Upon insertion into (2.30), contributions of the form Ĥ[12,3] Am
4 in (2.20) and (2.31) conspire

to the desired deconcatenation term in (2.29), verifying the mediation of a non-linear gauge
transformation between A

m,BCJ
1234 and A

m,L
1234. The analogous analysis of the gauge transformation

at multiplicity five is relegated to appendix A.

2.3.6 BCJ master numerators from multiparticle superfields
With the local multiparticle superfields (2.17) corresponding to Berends–Giele currents in BCJ
gauge, one can construct kinematic numerators that manifestly satisfy the BCJ duality. Each
cubic diagram is associated with a local superspace expression made from trilinears in multi-
particle vertex operators

V12...p =λαA12...p
α , (2.32)

and it is sufficient to specify the (n−2)! master numerators which are independent under kine-
matic Jacobi relations: The kinematic numerator of the depicted half-ladder diagrams with fixed
endpoints 1 and n−1 is given as follows

〈V12... jVnVn−1,n−2... j+1〉←→

1

2
3

. . .

j n j+1

. . .
n−3

n−1

n−2

V12... j Vn−1,n−2... j+1

The kinematic factors for any other graph different from the figure and its (n−2)! permuta-
tions in 2,3, . . . ,n−2,n can be reached by a sequence of Jacobi relations. The last leg n always
enters through a single-particle vertex operator Vn. This representation agrees with the field-
theory limit of the open superstring amplitude and yields the amplitudes (2.5) of 10D SYM
[13, 84]. At the end of the next section 2.4, we will give a compact formula for the bosonic and
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fermionic components 〈VAVBVC〉 of the master numerators, based on a combination of BCJ- and
Harnad-Shnider gauge.

2.4 Theta-expansions in Harnad–Shnider gauge

In the last section we have identified a particular gauge transformation H which relates the
Berends–Giele currents in the BCJ gauge to their counterparts in the Lorenz gauge. Similarly,
we will now construct another gauge transformation

L≡ ∑
a1,a2

La1a2 ta1 ta2 + ∑
a1,a2,a3

La1a2a3 ta1 ta2 ta3 +·· · (2.33)

whose expansion starts at multiplicity two and is designed to simplify the theta-expansions of
the multiparticle superfields.

2.4.1 Generating series of Harnad–Shnider gauge variations
A convenient gauge choice to expand the superfields of ten-dimensional SYM in theta is the
Harnad–Shnider (HS) gauge [69],

θαAHS
α = 0 (2.34)

At the linearized level, the gauge θαA i
α = 0 has been used in [70] to obtain the theta-expansions

of the single-particle superfields to arbitrary order. However, the recursive definition (2.12a)
of multiparticle Berends–Giele currents A P

α in Lorenz gauge does not preserve linearized HS
gauge, e.g.

θαA i
α = 0 ⇒ θαA 12

α = 1
2s12

[
A2

m(θγmW1)− (1↔ 2)
] 6= 0.

Still, there is a non-linear gauge transformation L which brings the currents from Lorenz gauge
into HS gauge via

AHS
α =AL

α− [Dα,L]+ [AL
α,L]. (2.35)

It can determined recursively by contracting with θα:

[D,L]= θαAL
α+ [θαAL

α,L], (2.36)

where the Euler operator

D ≡ θαDα = θα ∂

∂θα

weights the kth order in θ by a factor of k. At the level of multiparticle components in (2.33),
this translates into

DLP = θαA P
α + ∑

XY=P

(
θαA X

α LY −θαA Y
α LX

)
, (2.37)

where the Berends–Giele currents LX ,LY on the right hand side have lower multiplicity than
LP on the left hand side. Hence, (2.37) is a recursion w.r.t. multiplicity in the Lie-series ex-
pansion (2.33). The currents A P

α are understood to follow the Lorenz-gauge setup in (2.11) to
(2.12d). Using θαA i

α =Li = 0 at the linearized level, we have for instance

DL12 = θαA 12
α , DL123 = θαA 123

α , DL1234 = θαA 1234
α +θαA 12

α L34 −θαA 34
α L12.
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By imposing L(θ = 0)= 0, we arrive at explicit theta-expansions such as

L12 = 1
2s12

(
(θγmχ1)em

2 + 1
8

(θγmnpθ)em
1 f np

2

+ 1
12

(θγmnpθ)(θγmχ1)kn
12ep

2 − (1↔ 2)+·· ·
)
ek12x,

with terms of order θ≥4 in the ellipsis and analogous expressions for L12...p at p ≥ 3.

2.4.2 Multiparticle theta-expansions in Harnad-Shnider gauge
The theta-expansion of non-linear fields in HS gauge (2.34) can be elegantly captured by means
of higher mass dimension superfields [78],

Wm1...mkα ≡ [∇m1 ,Wm2...mkα] , Fm1...mk|pq ≡ [∇m1 ,Fm2...mk|pq] , (2.38)

subject to non-linear gauge transformations [78]

δΩW
m1...mkα = [

Ω,Wm1...mkα
]
, δΩF

m1...mk|pq = [
Ω,Fm1...mk|pq]

. (2.39)

In the subsequent, we assume that the superfields have been brought to HS gauge via (1.20)
through the transformation Ω→ L constructed from (2.37). For ease of notation, the accompa-
nying HS superscripts as in (2.35) will henceforth be suppressed. Contracting the non-linear
equations of motion (2.7) with θα yields [69](

D+1
)
Aβ = (θγm)βAm, DAm = (θγmW)

DWβ = 1
4

(θγmn)βFmn, DFmn =−(W[mγn]θ)

by virtue of HS gauge. This can be used to reconstruct the entire theta-expansion of any super-
field from their zeroth orders K(θ = 0) [69],

[Aα]k =
1

k+1
(θγm)α[Am]k−1 , [Am]k =

1
k

(θγm[W]k−1)

[Wα]k =
1

4k
(θγmn)α[Fmn]k−1 , [Fmn]k =−1

k
([W[m]k−1γ

n]θ) , (2.40)

where the notation [. . .]k instructs to only keep terms of order (θ)k of the enclosed superfields.
The analogous expressions for superfields at higher mass dimensions are

[Wα
m]k =

1
k

{1
4

(θγpq)α[Fm|pq]k−1 − (θγm)β
k−1∑
l=0

{[Wβ]l , [Wα]k−l−1}
}

[Fm|pq]k =−1
k

{
([Wm[p]k−1γ

q]θ)+ (θγm)α
k−1∑
l=0

[[Wα]l , [Fpq]k−l−1]
}

[Wα
mn]k =

1
k

{1
4

(θγpq)α[Fmn|pq]k−1 + (θγm)β
k−1∑
l=0

{[Wβ]l , [Wα
n]k−l−1}

+ (θγn)β
k−1∑
l=0

(
{[Wβ

m]l , [Wα]k−l−1}+ {[Wβ]l , [Wα
m]k−l−1}

)}
, (2.41)

see [78] for the underlying equations of motion and (B.2) for generalizations to higher mass
dimension.
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The component wavefunctions The theta-independent terms [K]0 initiate the above recur-
sions in the order of theta, and their multiparticle components [KP ]0 at lowest mass dimensions

[A m
P ]0 ≡ em

P ekP x, [W α
P ]0 ≡X α

P ekP x (2.42)

are shown in [84] to supersymmetrize the Berends–Giele currents in [79], e.g.

s12e
m
12 = em

2 (k2 · e1)− em
1 (k1 · e2)+ 1

2
(km

1 −km
2 )(e1 · e2)+ (χ1γ

mχ2)

s12X α
12 =

1
2

km
12γ

αβ
m

[
en

1(γnχ2)β− en
2(γnχ1)β

]
.

Note that Lorenz gauge for the superfields A m
P propagates to the component currents em

P ,

(kP · eP )= (kP · [AP ]0)= 0, (2.43)

since the transformation towards HS gauge in (2.36) is chosen with L(θ = 0)= 0.
At higher mass dimensions, the wavefunctions in

[W m1...mkα
P ]0 ≡X

m1...mkα
P ekP x, [F m1...mk|pq

P ]0 ≡ fm1...mk|pq
P ekP x (2.44)

with k = 0,1,2, . . . inherit the recursive expressions from (2.38) such that

fmn
P ≡ km

P en
P −kn

Pe
m
P − ∑

XY=P
(em

X e
n
Y − en

X e
m
Y )

X
m1...mkα
P ≡ km1

P X
m2...mk|pq
P − ∑

XY=P
(em1

X X
m2...mkα
Y −X

m2...mkα
X em1

Y ), k = 1,2, . . .

fm1...mk|pq
P ≡ km1

P fm2...mk|pq
P − ∑

XY=P
(em1

X fm2...mk|pq
Y − fm2...mk|pq

X em1
Y ), k = 1,2, . . . . (2.45)

The theta-expansion Using the notation KP (x,θ)≡KP (θ)ekP ·x one can show that the recur-
sions (2.40) and (2.41) lead to the following multiparticle theta-expansions,

A P
α (θ)=1

2
(θγm)αem

P + 1
3

(θγm)α(θγmXP )− 1
32

(θγm)α(θγmnpθ)fPnp

+ 1
60

(θγm)α(θγmnpθ)(X P
n γpθ)+ 1

1152
(θγm)α(θγmnpθ)(θγpqrθ)fn|qr

P

+ ∑
XY=P

[A X ,Y
α ]5 + . . . (2.46a)

A m
P (θ)=em

P + (θγmXP )− 1
8

(θγmpqθ)fpq
P + 1

12
(θγmnpθ)(X n

P γ
pθ)

+ 1
192

(θγm
nrθ)(θγr

pqθ)fn|pq
P − 1

480
(θγm

nrθ)(θγr
pqθ)(X np

P γqθ)

+ ∑
XY=P

(
[A m

X ,Y ]4 + [A m
X ,Y ]5

)
+ . . . (2.46b)

W α
P (θ)=X α

P + 1
4

(θγmn)αfPmn −
1
4

(θγmn)α(X m
P γnθ)− 1

48
(θγ q

m )α(θγqnpθ)fm|np
P

+ 1
96

(θγ q
m )α(θγqnpθ)(X mn

P γpθ)− 1
1920

(θγ r
m )α(θγ s

nr θ)(θγspqθ)fmn|pq
P

+ ∑
XY=P

(
[W α

X ,Y ]3 + [W α
X ,Y ]4 + [W α

X ,Y ]5

)
+ . . . (2.46c)

F mn
P (θ)=fmn

P − (X [m
P γn]θ)+ 1

8
(θγ [m

pq θ)fn]|pq
P − 1

12
(θγ [m

pq θ)(X n]p
P γqθ)

− 1
192

(θγ [m
ps θ)fn]p|qr

P (θγs
qrθ)+ 1

480
(θγ[m

psθ)(X n]pq
P γrθ)(θγs

qrθ)

+ ∑
XY=P

(
[F mn

X ,Y ]2 + [F mn
X ,Y ]3 + [F mn

X ,Y ]4 + [F mn
X ,Y ]5

)
+ ∑

XY Z=P
[F mn

X ,Y ,Z]5 + . . . (2.46d)
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with terms of order θ≥6 in the ellipsis. The non-linearities of the form
∑

XY=P [KX ,Y ]l can be
traced back to the quadratic expressions in (2.41), e.g.

[A X ,Y
α ]5 = 1

144
(θγm)α(θγmnpθ)(X Xγnθ)(X Yγpθ)

[A m
X ,Y ]4 = 1

24
(θγm

npθ)(X Xγnθ)(X Yγpθ)

[W α
X ,Y ]3 =−1

6
(θγmn)α(XXγ

mθ)(XYγ
nθ)

[F mn
X ,Y ]2 =−(XXγ

[mθ)(XYγ
n]θ) ,

and further instances as to make the complete orders θ≤5 available are spelt out in appendix B.
It is easy to see that these non-linear terms vanish in the single-particle case, and one recovers
the linearized expansions of (1.25).

Analogous theta-expansions for superfields (2.38) of higher mass dimensions start with

W mα
P (x,θ)= ekP x

(
X mα

P + 1
4

(θγnp)αfm|np
P + ∑

XY=P

[
(XXγ

mθ)X α
Y − (X ↔Y )

]+ . . .
)

(2.47a)

F
m|pq
P (x,θ)= ekP x

(
fm|pq
P − (X m[p

P γq]θ)+ ∑
XY=P

[
(XXγ

mθ)fpq
Y − (X ↔Y )

]+ . . .
)

(2.47b)

where the lowest two orders ∼ θ2,θ3 in the ellipsis along with generalizations to higher mass
dimensions are spelt out in appendix B.

2.4.3 Combining HS gauge with BCJ gauge
The steps in (2.35) and (2.36) towards HS gauge can be literally repeated when starting with
BCJ gauge:

ABCJ−HS
α =ABCJ

α − [Dα,L′]+ [ABCJ
α ,L′]

[D,L′]= θαABCJ
α + [θαABCJ

α ,L′] .

The multiparticle expansion of the gauge parameter L′ can be constructed along the lines of
(2.37) where we again set L′(θ = 0)= 0. The resulting gauge combines the benefits of a simplified
theta-expansion due to

θαABCJ-HS
α = 0

with a manifestation of the BCJ duality in cubic-diagram numerators subject to Lie symmetries.
The arguments of subsection (2.4.2) give rise to theta-expansions completely analogous to HS
gauge, see (2.46) and appendix B. The only difference is a redefinition of the component Berends–
Giele currents according to

em
P →A

m,BCJ
P (θ = 0)= em

P + ∑
XY=P

(em
X hY − em

Y hX )−km
P hP (2.48a)

X α
P →W

α,BCJ
P (θ = 0)=X α

P + ∑
XY=P

(X α
XhY −X α

Y hX ), (2.48b)

where the multiparticle gauge parameters contribute through their θ = 0 order,

hP ≡HP (θ = 0).

The redefinitions in (2.48) propagate to their counterparts at higher mass dimension via (2.45).
Since BCJ gauge already violates the Lorenz-gauge condition at the three-particle level, e.g.
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k123
m A

m,BCJ
123 =−2s123H123, transversality (2.43) of the modified current em

P →A
m,BCJ
P (θ = 0) will

no longer hold.
Similarly, the theta-expansions of higher-mass dimension Berends–Giele currents given in

(2.47) and appendix B preserve their structure after the replacements in (2.48). As mentioned
earlier, the BCJ gauge appears naturally in the context of string amplitudes due to the redef-
initions induced by the double poles in OPE contractions [74, 14]. Hence, BCJ-HS gauge is
particularly convenient for an accelerated approach to component amplitudes of the pure spinor
superstring.

2.4.4 Application of Berends–Giele currents in Harnad-Shnider gauge
In this section, we sketch applications of multiparticle superfields in HS gauge to tree level open
superstring scattering amplitudes in the PS superstring theory discussed in section 2.1. In the
PS open superstring theory and the 10D SYM tree level kinematics can be expressed in terms
of the building block

〈MA MBMC〉 , MA ≡λαA A
α (2.49)

as in (2.5). Indeed, BRST-invariant combinations of the building block (2.49) descend from a
generating series of color-dressed tree level amplitudes M SYM(1,2, . . . , N) [78],

1
3

Tr 〈VVV〉 =
∞∑

N=3
(N −2)

∑
i1<i2<...<iN

M SYM (i1, i2, . . . , iN ) , V≡λαAα . (2.50)

Since (2.50) is invariant under non-linear gauge transformations, the components of (2.49) can
be equivalently evaluated in HS gauge for arbitrary multiplicity,〈

MHS
A MHS

B MHS
C

〉
= 1

2
em

A e
n
Bf

C
mn + (XAγmXB)em

C +cyc(A,B,C) . (2.51)

The component currents em
A ,X α

A and fmn
A defined in (2.42) and (2.44) can be obtained by truncat-

ing the superspace recursion (2.11) to (2.12d) to θ = 0. By the theta-expansions in (2.46), this
component extraction involves no tensor structures ∼λ3θ5 other than

〈(λγmθ)(λγnθ)(λγrθ)(θγpqrθ)〉 = 32(δmpδnq −δmqδnp)

〈(λγmθ)(λγnθ)(λγpθ)(γnθ)α(γpθ)β〉 =−18γm
αβ,

and elegantly settles the building blocks for components of tree level amplitudes. In [84], it has
been demonstrated that (2.51) reproduces the Berends-Giele formula for bosonic tree amplitudes
[79] along with its supersymmetric completion from the pure spinor superspace formula [85].

As mentioned at the end of section 2.3, the component expression in (2.51) allows us to obtain
BCJ numerators by inserting multiparticle Berends–Giele currents AP,BCJ

α in the BCJ gauge to
the building block in (2.51). Explicitly, we have〈

MBCJ-HS
A MBCJ-HS

B MBCJ-HS
C

〉
= 1

2
em

A,BCJe
n
B,BCJf

C,BCJ
mn + (XA,BCJγmXB,BCJ)em

C,BCJ +cyc(A,B,C).

(2.52)

Moreover, since components currents em
A,BCJ,X α

A,BCJ and fmn
A,BCJ are zeroth order components of

θ-expansions of corresponding multiparticle Berends-Giele currents A m
A,BCJ,W α

A,BCJ and F mn
A,BCJ,

they can be obtained by following the description in section 2.3 with replacing multiparticle
Berends-Giele currents to their zeroth order components. See [28] for more details.
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The generating series (2.50) found appearance in [67] as a superspace action for the 10D
SYM. The component evaluation in (2.51) is compatible with the component action of SYM in
the sense that

1
3

Tr 〈VVV〉 =Tr
(

1
4
FmnF

mn + (Wγm∇mW)
)∣∣∣∣
θ=0

.

The fermionic coupling vanishes on-shell by the Dirac equation

∇m
(
γmW

)
α = 0

and a total derivative ∂m has been discarded to relate

(∂mAn)Fmn = ∂m
(
AnF

mn)−An

([
Am,Fmn]+γn

αβ

{
Wα,Wβ

})
through the expression for ∂mF

mn in[∇m,Fmp]= γp
αβ

{
Wα,Wβ

}
.

2.4.5 Application of Harnad-Shnider gauge to BCJ master numerators
One can also define local multiparticle superfields in Harnad-Shnider gauge such as A12...p

α,HS by
adapting the recursions (2.40) and (2.41) to local fields6. Their θ-expansion is of the form in
(2.46), i.e. the components due to multiparticle vertex operators V HS

12...p = λαA12...p
α,HS in Harnad-

Shnider gauge follow the structure of (2.52),〈
V HS

A V HS
B V HS

C

〉
= 1

2
em

A en
B f C

mn + (χAγmχB)em
C +cyc(A,B,C). (2.53)

The local multiparticle polarizations on the right-hand side are defined as the θ0 order of the
local multiparticle superfields of section 2.3,

[Am
P ]0 = em

P ekp·x , [Wα
P ]0 = χαP ekp·x , [Fmn

P ]0 = f mn
P ekp·x. (2.54)

By applying (2.53) to the BCJ master numerators in section 2.3.6, we obtain a compact for-
mula for their bosonic and fermionic components [84]. Note that similar multiparticle polariza-
tions and BCJ numerators have been given [86] for matrix elements of YM with higher-mass-
dimension deformations F3,F4 that preserve the color-kinematics duality [87].

6Alternatively, the map between Berends–Giele currents and multiparticle superfields exemplified in (2.29) can
be adapted to Harnad-Shnider-gauge currents.



THREE

ONE-LOOP SUPERSTRING AMPLITUDES AND DOUBLY-PERIODIC
FUNCTIONS

The PS superstring theory in the previous chapter can be applied to compute loop amplitudes
by taking world-sheets as Riemann surfaces of genus g ≥ 1. This framework has significantly
extended the computational reach for superstring amplitudes, see [88, 89, 90, 91, 92, 93] for
multiloop results.

However, in contrast to the bosonic string action in (1.10) the PS superstring action has no
explicit dependence on the complex structure of a given world-sheet, and instead the complex
structure can be expressed as a composition of dynamical variables of the action. The composite
nature of the complex structure is then translated into the complication of the insertion of the
path integral measure [94], which poses difficulties in the direct evaluation of loop amplitudes
with six and more external legs, although indirect methods have been successfully applied to
pinpoint the complete one-loop six- and seven-point results [35, 29, 30, 31].

On the other hand, the covariant action of the RNS superstring theory arising from the
Hamiltonian action in (1.16) reveals that world-sheets of the RNS superstring theory are super
Riemann surfaces which are supersymmetric extensions of Riemann surfaces. Also, the RNS su-
perstring action depends explicitly on the super complex structure of a super Riemann surface,
which leads to the path integral formulation for tree and loop superstring scattering amplitudes
from first principles.

However, the computation of superstring amplitudes in the RNS superstring theory has the
two-fold difficulty originating from the mathematical complication of the moduli space of super
Riemann surfaces and the non-manifestation of the spacetime supersymmetry in the formula-
tion. In particular, the latter often requires extra manipulations to reveal the consequences of
spacetime supersymmetry in amplitude computations.

At one-loop, the moduli space of world-sheets relevant to the one-loop string diagram is rela-
tively simple compared to multiloop cases, but one has to sum over different boundary conditions
of world-sheet fermions, called spin structures, to demonstrate the supersymmetric cancellation
in superstring amplitudes. The summation over spin structures is well understood for one-loop
RNS amplitudes with any number of external bosons [32, 95, 33], and in this chapter we advance
the method to implement spin sums for n-boson-two-fermion (nB-2F) amplitudes at one-loop.

3.1 Massless vertex operators in the RNS formalism

In the RNS superstring theory, massless bosons and fermions enter the amplitude prescription
through vertex operators constructed from the set of local operators

{
c(z),ψµ(z),Sa (z) , eqφ(z), eipX (z, z̄)

∣∣∣µ= 0, . . . ,dimM −1, a = 1, . . . ,16, and q ∈Z/2
}

(3.1)

together with an anti-holomorphic operator for a closed string. Here, µ denotes a spacetime
vector index, and a is a Weyl spinor index. The integer or the half-integer q of the operator eqφ

is called the superghost number due to its close relation with the ghost-antighost pair of the
world-sheet supersymmetry. Also, we set α′ = 2 for notational simplicity.

The vertex operator of a massless open string state with momentum p (under the doubling

33
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trick) is then given by

V (−1) or (−1/2)
open (p; z)=

{
eµ (p) c (z)ψµ (z) eipX−φ(z) for a NS bosonic state

χa (p) c (z)Sa (z) eipX−φ/2(z) for a R fermionic state
(3.2a)

where eµ is a spacetime vector and χa is a Majonara-Weyl spinor satisfying on-shell conditions

pµeµ = 0 and pµγ
µ

abχ
b = 0 (3.2b)

imposed by the BRST condition. In contrast to chapter 2, the 16×16 Pauli matrices γµab satisfy
the Clifford algebra γµabγ

νbc +γνabγ
µbc =−2ηµνδc

b with the minus sign.
For a massless closed string, the vertex operator with momentum p can be written in the

form of

V (1) or (−1/2)
closed (p; z, z̄)=

{
eµ(p)c (z)ψµ (z)V̄ (p; z̄) eipX−φ(z, z̄)

χa(p)c (z)Sa (z)V̄ (p; z̄) eipX−φ/2(z, z̄)
(3.2c)

where V̄ is an anti-holomorphic vertex operator, and its specific form is determined by the type
of the RNS superstring theory. In the type II superstring theory, it can be constructed from
anti-holomorphic copies of operators in (3.1), and in the heterotic superstring theory it can be
built from world-sheet currents. A simple example is the graviton vertex operator in the type II
superstring theory

Vgraviton(p; z, z̄)= hµν(p)c (z)ψµ (z) c̄ (z̄)ψ̄ν (z̄) eipX−φ−φ̄(z, z̄)

where hµν is the symmetric and traceless part of eµ ēν corresponding a metric fluctuation satis-
fying the transverse condition pµhµν = 0. Henceforth, we only consider the heterotic case for the
closed superstring theory.

Local operators in (3.1) are conformal primaries having conformal weights

h(c)= (−1,0) , h
(
ψµ

)= (
1
2

,0
)
, h (Sa)=

(
5
8

,0
)
,

h
(
eqφ)= (

−1
2

q2 − q,0
)
, h

(
eipX

)
=

(
p2

2
,

p2

2

)
(3.3)

and following OPEs [96, 97]

ψµ (z)ψν (0)= z−1ηµν+ψµψν (0)+O
(
z1)

(3.4a)

ψµ(z)Sa(0)= 1p
2

z−1/2γ
µ

abSb(0)+O (z1/2) (3.4b)

Sa (z)Sb (0)= z−5/4δb
a +

1
4

z−1/4 (
γµν

)
a

bψµψν (0)+O
(
z3/4

)
(3.4c)

Sa (z)Sb (0)= 1p
2

z−3/4γµabψ
µ(0)+O

(
z1/4

)
(3.4d)

eq1φ (z) eq2φ (0)= z−q1q2 e(q1+q2)φ (0)+ z−q1q2+1q2∂φe(q1+q2)φ (0)+O
(
z−q1q2+2)

(3.4e)

eip1 X (z, z̄) eip2 X (0,0)= |z|2p1·p2 ei(p1+p2)X (0)+O
(|z|2p1·p2+1)

(3.4f)

where we have omitted OPEs irrelevant to amplitude computations. Conformal weights in (3.3)
indicate that holomorphic parts of vertex operators for massless bosons and fermions have the
conformal weight 0, which is required by the BRST condition. Also The OPE (3.4b) indicates
that the insertion point of a spin field Sa corresponds to the endpoint of the branch cut for each
ψµ insertion, so the interaction between Sa and ψµ is non-local [98].
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1
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Im z

p

Figure 3.1: (a) A torus with a puncture p and (b) its embedding on the complex plane.

3.2 One-loop amplitudes in RNS superstring theory with two fermions

3.2.1 World-sheets for one-loop RNS superstring amplitudes
As mentioned at the beginning of this chapter, world-sheets of the RNS superstring theory are
super Riemann surfaces. Roughly speaking, a super Riemann surface Σ1|1 is an extension of an
ordinary Riemann surface which locally admits supercomplex coordinates (z,θ) in C1|1 where θ
is an anti-commuting variable [99]. For two open sets Uα and Uβ in Σ1|1 with the non-empty
overlap, local coordinates (zα,θα) of Uα and (zβ,θβ) of Uβ are superholomorphically related to
each other [99]

zα =uαβ(zβ)+θβηαβ(zβ)
√

u′
αβ

(zβ),

θα =ηαβ(zβ)+θβ
√

u′
αβ

(zβ)+ηαβ(zβ)η′
αβ

(zβ)

where uαβ is an even holomorphic function on zβ and ηαβ is an odd holomorphic function on zβ.
For the case that ηαβ = 0, the super-holomorphic condition is reduced to

zα = uαβ(zβ), θα = θβ
√

u′
αβ

(zβ). (3.6)

If we project out the odd coordinate, the super-holomorphic condition becomes the holomorphic
condition on an ordinary Riemann surface Σred, so the space obtained by the above reduced
super-holomorphic condition becomes a line bundle over Σred whose fibre is locally trivialized by
θα. For a genus g Σred, the square root in (3.6) implies 22g choices of the sign, which are called
spin structures. Those spin structures can be classified by even or odd, depending on whether
the space of global holomorphic sections of the line bundle over Σred has the even or odd number
of dimensions [99], and realized by boundary conditions of world-sheet fermions ψm in the RNS
superstring action.

At one-loop, superstring amplitudes in the RNS superstring theory can be computed from
correlators with vertex operator insertions and the measure insertion defined on a super Rie-
mann surface Σ1|1 whose reduced Riemann surface Σred is a punctured genus one Riemann
surface. For closed strings, a punctured genus one Riemann surface is a torus with marked
points1, which can be embedded into the complex plane z through the identification

z ' z+m+nτ, m,n ∈Z, τ ∈C with Im(τ)> 0

as depicted in fig. 3.1. A punctured genus one Riemann surface for an open superstring ampli-

1Throughout this chapter, we only consider oriented surfaces.
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p
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Figure 3.2: (a) An annulus with a puncture p at its boundary and (b) the corresponding embed-
ding on the complex plane.

tude is an annulus with marked points located at its boundary, which can be embedded into the
complex plane through [100] (See fig. 3.2.)

0≤Re z ≤ 1
2

, z ' z+ it, t ∈R.

Upon the doubling trick, an annulus on the complex plane can be interpreted as a torus with
τ = it, so in the most of amplitude computations, there is no need to distinguish open string
world-sheets from closed string world-sheets.

3.2.2 One-loop RNS superstring amplitudes with two fermions
The contribution of the insertion of the path integral measure together with the integration over
odd variables in one-loop superstring amplitudes results in the modification of the form of some
vertex operator insertions. Those modified vertex operators have the form of [97, 101]

V (0) or (+1/2)
open (p; z)=


eµ (p) c(z)

(
pνψνψµ+ i∂Xµ

)
(z) eipX (z),

χac(z)
(

1p
2
γ
µ

ab i∂XµSb + pµSµ
a

)
(z) (z) eipX+φ/2(z)

(3.7a)

for an open string, and

V (0) or (+1/2)
closed (p; z, z̄)=


eµ(p)c(z)

(
pνψνψµ+ i∂Xµ

)
(z)V̄ (p; z̄) eipX (z, z̄),

χa(p)c(z)
(

1p
2
γ
µ

ab i∂XµSb + pµSµ
a

)
V̄ (p; z̄) eipX+φ/2(z, z̄) ,

(3.7b)

for a closed string, where V̄ is again an anti-holomorphic operator may or may not be modified
by the measure insertion, and

Sµ
a (z)∝

∮
z
dw (w− z)−1ψµψν (w)γνabSb (z) . (3.8)

are excited spin field operators satisfying the irreducibility constraint

γab
m Sµ

b = 0 (3.9)

due to the on-shell condition on χa. Also, we need integrated versions of vertex operators in (3.2)
and (3.7) obtained by replacing

c(z) ↔
∫
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where
∫

is the integral over a torus for a closed string and over the boundary of an annulus for
an open string. In the following discussion, the integrand of an integrated vertex operator will
be denoted by U instead of V in the above.

One-loop amplitudes of the open RNS superstring are then computed from correlation func-
tions with vanishing overall superghost charge. For n external bosons and two external fermions,
we have

A
1-loop
open =

∫
M1,n+2

4∑
ν=1

(−1)n+1

〈
M∏

i=1
U (0)

open (e i, pi; zi)U (−1/2)
open (χ, pA; zA)U (+1/2)

open
(
χ̄, pB; zB

)〉
ν

(3.10a)

where
∫
M1,n+2

denotes the integral over the moduli space of genus-one Riemann surfaces with n+
2 punctures, and ν= 1,2,3,4 are spin structures corresponding to the four boundary conditions of
the world-sheet spinors ψµ which may be independently chosen as periodic or antiperiodic under
translations around the A- and B-cycle of a torus. Similarly, the closed superstring amplitude
for n bosons and 2 fermions also can be written as

A
1-loop
closed =

∫
M1,n+2

4∑
ν=1

(−1)n+1

〈
n∏

i=1
U (0)

closed (pi; zi, z̄i)U (−1/2)
closed (pA; zA, z̄A)U (+1/2)

closed (pB; zB, z̄B)

〉
ν

.

(3.10b)

The correlation function in (3.10) factorizes into contributions from the decoupled CFT sec-
tors of the superghost fields eqφ, the {ψµ,Sa,Sµ

b} system, world-sheet bosons Xµ as well as the
anti-holomorphic sector for closed string amplitudes, and by ignoring the anti-holomorphic sec-
tor, only the former two depend on the spin structure ν. Correlation functions of the world-sheet
bosonic sector in (3.10) can be expressed in the form of〈

m∏
j=1

i∂Xµ j
(
z j

) n∏
k=1

eipk·X (zk, z̄k)

〉
for m ≤ n,

and the general spin structure dependent correlation function is given by either

〈
e−φ/2(zA)e+φ/2(zB)

〉
ν

〈
n∏

i=1
ψµiψνi (zi)Sa (zA)Sb (zB)

〉
ν

(3.11a)

or 〈
e−φ/2(zA)e+φ/2(zB)

〉
ν

〈
n∏

i=1
ψµiψνi (zi)Sa (zA)Sλ

b (zB)

〉
ν

. (3.11b)

We will often use the notation〈〈
ψµ(z1) . . .Sa(z2)

〉〉
ν =

〈
e−φ/2(zA)e+φ/2(zB)

〉
ν

〈
ψµ(z1) . . .Sa(z2)

〉
ν (3.12)

to denote spin structure dependent correlators.
In the RNS formalism, the two-fermion amplitudes (3.10) with n = 2 bosons has firstly been

computed in [102] (also see [103, 104] for work on n = 3). For higher numbers of bosons, however,
the challenges from the correlators in (3.10) and the sum over spin structures have never been
addressed prior to [40].

As a technical remark, the superghost pictures of the above vertex operators partially depart
from the prescription of [53, 105] on the distribution of superghost charges near a world-sheet
degeneration. This can be balanced by relocating the superghost pictures which will generically
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introduce boundary terms in moduli space (see appendix A of [35] for explicit examples in the PS
formalism). Such boundary terms are likely to vanish with a large amount of supersymmetry
in ten-dimensional flat spacetime, but they might play a role in compactifications with reduced
supersymmetry. It would be interesting to pinpoint the onset of such boundary terms.

In the following sections, we will briefly review computations of the genus-one correlators
of the world-sheet bosons, the superghosts and the combination of Lorentz currents ψλψρ with
unexcited spin fields Sa(zA)Sb(zB). New results to be given in section 3.3.5 and section 3.5
include the genus-one correlators involving excited spin fields as well as the spin sum over the
ν-dependent correlators of (3.10).

3.3 Computations of correlation functions

3.3.1 Structure of the correlators

By construction, correlation functions in (3.10) are doubly-periodic under

z → z+m+nτ, m,n ∈Z

for each insertion point. Elementary mathematical objects for representing such doubly-periodic
functions are Jacobi theta functions θν(z,τ), ν= 1,2,3,4 defined by

θν (z,τ)=



−i
∞∑

n=−∞
(−1)nq

1
2 (n+ 1

2 )2
e2πi(n+ 1

2 )z for ν= 1,

∞∑
n=−∞

q
1
2 (n+ 1

2 )2
e2πi(n+ 1

2 )z for ν= 2,

∞∑
n=−∞

q
1
2 n2

e2πinz for ν= 3,

∞∑
n=−∞

(−1)nq
1
2 n2

e2πinz for ν= 4,

where the dependence on the second argument via q ≡ e2πiτ will often be suppressed in the
subsequent. They are quasi-periodic under z → z+1 and z → z+τ

θ1(z)=−θ1(z+1)=−q1/2e2iπzθ1(z+τ)

θ2(z)=−θ2(z+1)= q1/2e2iπzθ2(z+τ)

θ3(z)= θ3(z+1)= q1/2e2iπzθ3(z+τ)

θ4(z)= θ4(z+1)=−q1/2e2iπzθ4(z+τ),

and related to each other by the half-periodicity

θ1(z)=−θ2

(
z+ 1

2

)
=−iq1/8eiπzθ4

(
z+ τ

2

)
=−iq1/8eiπzθ3

(
z+ 1

2
+ τ

2

)
. (3.14)

Bosonic correlators of the free fields Xµ can be straightforwardly computed from the two-
point function on the torus

〈
iXµ(z)iXλ(0)

〉
= ηµλ

[
log

∣∣∣∣θ1(z)
θ′1(0)

∣∣∣∣2 − 2π
Im(τ)

[Im(z)]2
]
≡ ηµλG(z)
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via Wick-contractions, e.g.2〈
i∂Xµ (z1)

N∏
j=1

eip j X(z j)
〉
=

N∑
l=2

pµl

(
∂ logθ1 (z1l)+2πi

Im(z1l)
Im(τ)

) N∏
i< j

epi ·p jG(zi j) (3.15)

with zi j ≡ zi−z j and additional Wick contractions i∂Xµ(z)i∂Xλ(0)∼ ηµλ∂2G(z) between multiple
insertions of ∂Xµ.

The CFT sectors which are sensitive to the spin structure involve the prime form

E(z,w)= θ1(z−w)
θ′1(0)

raised to some fractional powers. By design of the GSO projection, the powers of the prime form
always conspire to integers when combining the individual correlators of the superghost system
[108] 〈

e−φ/2 (zA) e+φ/2 (zB)
〉
ν
= θ′1(0)E (zA, zB)1/4

θν
(1

2 (zB − zA)
) (3.16)

and the
{
ψµ,Sa,Sµ

b

}
system, starting with the two-point function of the spin field [108]

〈
Sa(zA)Sb(zB)

〉
ν
= δb

a θν
(1

2 (zB − zA)
)5

θ′1(0)5E(zA, zB)5/4 . (3.17)

In slight abuse of notation, the combined partition function
(
θν(0)
θ′1(0)

)4
of ten worldsheet bosons

and fermions as well as the respective ghosts has been absorbed into the normalization of the ν-
dependent correlators in (3.16), (3.17) and (3.12). This is useful for a unified treatment of the odd
spin structure ν= 1 and the even ones ν= 2,3,4 such that their contributions to the amplitude
(3.10) can be efficiently combined. In particular, this choice of normalization bypasses spurious
indeterminates of the form 0

0 from the formally vanishing θν(0) in the partition function of the
odd spin structure.

3.3.2 Bosonization
The interacting nature of spin fields as reflected in their OPE (3.4) with the worldsheet spinors
ψµ renders SO(1,9)-covariant correlation functions inaccessible to free-field methods. In other
words, correlators cannot be obtained from a naive sum over Wick contractions as in (3.15), and
the computation of higher-point instances becomes a nontrivial problem, see [109, 110]. How-
ever, a free-field description in even spacetime dimensions D = 2n can be found by representing
the {ψµ,Sa,Sµ

b}-system via n free bosons. These redefinitions are known as bosonization [111]
and break the SO(1,9) symmetry to an SU(5) subgroup.

Let H denote an SU(n) vector of free chiral bosons {H j, j = 1,2, . . . ,n} subject to normaliza-
tion H j(z)Hk(0) ∼−δ jk ln(z)+ . . ., then its exponentials eip·H are conformal primaries of weight
1
2p2 with OPEs3

eip·H(z) eiq·H(0)∼ zp·q ei(p+q)·H(0) + . . . .

2In order to obtain a double-copy representation of closed-string correlators, one can follow the prescription of
chiral splitting [106, 45, 107] and exclude the contributions from the joint zero modes of ∂Xµ and ∂̄Xµ from the
Wick contractions. This simplifies the contractions in (3.15) to the meromorphic expression ∂Xµ(z1)eip j X (z j) →
pµj ∂ logθ1(z1 j)eip j X (z j).

3To simplify the notation, we neglect Jordan-Wigner cocycle factors [112, 113] in our discussion. These are addi-
tional algebraic objects accompanying the exponentials to ensure that e±iH j

and e±iHk 6= j
associated with different

bosons anticommute. It suffices to remember that they are implicitly present and that the bosonized representation
of ψµ still obeys fermi statistics.
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The OPE among the worldsheet spinors, ψµ(z)ψν(0) ∼ ηµνz−1 + . . . can be reproduced from the
dictionary

ψ± j(z)≡ 1p
2

(
ψ2 j−2(z)± iψ2 j−1(z)

)≡ e±iH j(z) , (3.18)

where j ∈ {1,2, . . . ,n}. One can notice that ψ± j form the Cartan–Weyl basis for the fundamental
representation of SO(1,2n−1).

Spinor components of SO(1,2n−1) can be labelled by their eigenvalues ±1
2 under the n

simultaneously diagonalized Lorentz generators 1
2γ

µν which are most conveniently chosen as
1
2γ

2i−2,2i−1 with i = 1,2, . . . ,n in the SU(n) setting. This suggests to identify spinor indices
with n-component lattice vectors

(±1
2 ,±1

2 , . . . ,±1
2
)

from the (anti-)spinor conjugacy classes of
SO(1,2n−1). The chiral irreducibles can be disentangled by counting the number of negative
entries:

Sa=(± 1
2 ,...,± 1

2 ) ↔ left-handed spinor ↔ a has an even number of ’−’ signs

Sa=(± 1
2 ,...,± 1

2 ) ↔ right-handed spinor↔ a has an odd number of ’−’ signs .

Given this dictionary between spinor indices and lattice vectors, we can make the bosonization
of spin fields more precise: The Sa,Sa are represented as an exponential of bosons H contracted
into a vector a in the weight lattice of (the Lie algebra of) SO(1,2n−1):

Sa(z),Sa(z) ≡ eia·H(z), a ∈
{

(a1,a2, . . . ,an)
∣∣ a j =±1

2
, j = 1, . . . ,n

}
. (3.19)

Accordingly, vector indices µ are identified with lattice vectors (0, . . . ,0,±1,0, . . . ,0) of SO(1,2n−1)
from the vector conjugacy class with one nonzero entry ±1 such that (3.18) can be written as
ψµ = eiµ·H.

Bosonization ofψµ and Sa,Sa allows us to relate other conformal primaries to their bosonized
expressions, in particular the excited spin fields Sµ

a in (3.8)4:

Sµ
a(z)

∣∣
µ j+a j=± 3

2
= ei(a+µ)·H(z) = e±

i
2 H1±···± i

2 H j−1± 3
2 iH j± i

2 H j+1±···± i
2 Hn

(z). (3.20)

Therefore, in the bosonization scheme, Sµ
a can be taken as independent primaries involving

a factor of e±
3
2 iH j

which capture the gamma-traceless components of the composite operators
∼ψµψνγ

ν
abSb.

The Cartan–Weyl basis has the remarkable advantage that entries of gamma- and charge
conjugation matrices can be written as delta functions for the lattice vectors of SO(1,2n−1)
associated with the vector- and the spinor indices. Up to a complex phase (which can in principle
be determined by keeping track of all the cocycles [112, 113]), one has

δb
a ∼ δ(a+b) , ηµν ∼ δ(µ+ν) , γ

µ

ab ∼
p

2δ(µ+a+b) . (3.21)

The relations in (3.21) admit a derivation of covariant OPEs (3.4) in bosonized language, see
appendix C for details.

4Obviously, the n2n bosonized fields of the form (3.20) do no exhaust the (2n−1)2n independent components of
the excited spin field Sµa in a spin-3/2 representation of SO(1,9). Still, the n2n components in (3.20) are sufficient to
infer the Lorentz-covariant correlators in the next subsections.
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3.3.3 Loop level correlators from bosonization
Correlation functions involving free bosons are well known on surfaces of arbitrary genus [114],
and their genus-one instances are given by [108]〈

N∏
j=1

eiq j H(z j)

〉
ν

= 1
θ′1(0)

δ(
N∑

j=1
q j)θν(

N∑
k=1

qkzk)
N∏

l<m
E(zl , zm)ql qm . (3.22)

where we again normalize the correlator such as to absorb the partition function of two world-
sheet supermultiplets Xµ,ψµ. A general account on bosonization at nonzero genus including the
role of spin structures can be found in [115, 116, 117], also see [118] for bosonization of odd-spin
structure amplitudes.

For a given choice of the weight vectors µ,a,b, one-loop correlators of the fields {ψµ,Sa,Sµ

b}
can be straightforwardly reduced to products of the free-field correlator (3.22) by virtue of their
bosonization (3.18), (3.19) and (3.20). Once a sufficient number of such “component” results is
available, they can be combined into Lorentz covariant expressions. The idea is to make an
ansatz for the correlator with all admissible Lorentz tensors involving products of ηµλ,δb

a,γµab
whose index structure is compatible with the {ψµ,Sa,Sµ

b} insertions. Each linearly indepen-
dent Lorentz tensor in the ansatz is accompanied by a spin structure dependent function of the
insertion points zi and the modular parameter τ, which remains to be determined.

Then, for each component result computed via (3.22), one can use the delta-function repre-
sentations (3.21) of ηµν,δb

a and γ
µ

ab to identify the tensor structures compatible with the given
choice of lattice vectors. Each choice yields an equation among the unknown functions of z j and
τ along with the Lorentz tensors in the ansatz. In [102, 119, 110], this procedure is applied
to construct higher-point correlation functions involving ψµ,Sa, some of which are reviewed in
section 3.3.4.

Given that the delta-function representation (3.21) of ηµν,δb
a and γ

µ

ab is only fixed up to
complex phases, covariant OPEs such as (3.4) and

Sa(z)Sµ

b(0)= γνabψνψ
µ(0)

p
2 z5/4

+O
(
z1/4

)
(3.23a)

ψµψν(z)ψλψρ(0)= ηλ[νηµ]ρ

z2 + ηλ[νψµ]ψρ(0)−ηρ[νψµ]ψλ(0)
z

+O
(
z0)

(3.23b)

are required to determine the signs in correlators, where we remind of the antisymmetrization
conventions ηλ[νηµ]ρ = ηλνηµρ−ηλµηνρ.

3.3.4 Correlators involving spin fields
The spin-field correlators in the last line of (3.11) computed by the bosonization in the previous
section can be assembled from the results of [110] for any number of ψλψρ insertions.

Lower-point example In the notation of (3.12), the simplest generalization of the two-point
function

〈〈
Sa(zA)Sb(zB)

〉〉
ν
= δb

aθν
(1

2 (zB − zA)
)4

θ′1(0)4E(zA, zB)
(3.24)

is given by

〈〈
ψλψρ(z1)Sa(zA)Sb(zB)

〉〉
ν
= γλρa

bθν
(1

2 zAB
)2
θν

(1
2 (zA1+zB1)

)2

2θ′1(0)4E1AE1B
, (3.25)
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where we used the shorthands

zi j ≡ zi − z j, E i j ≡ E(zi, z j).

In the subsequent cases with multiple insertions of ψλψρ, it is convenient to introduce the
notation

Tν
i j ≡

E iAE jBθν
(
zi j+1

2 zAB
)+E jAE iBθν(z ji+1

2 zAB)

E i jEABθν
(1

2 zAB
) , tνi ≡

θν
(1

2 (zAi + zBi)
)

θν
(1

2 zAB
) (3.26)

for the coefficients of the tensor structures:〈〈
ψµ1ψν1(z1)ψµ2ψν2(z2)Sa(zA)Sb(zB)

〉〉
ν
= EABθν

(1
2 zAB

)4

4θ′1(0)4 E1AE1BE2AE2B

×
[
γµ1ν1µ2ν2 a

b (
tν1tν2

)2 +ην1[µ2ην2]µ1δb
a
(
Tν

12
)2 +

(
ηµ2[ν1γµ1]ν2 a

b −ην2[ν1γµ1]µ2 a
b
)
Tν

12tν1tν2
]

(3.27)

The relative signs in the second line depend on the conventions for the Clifford algebra, and we
follow [109, 119, 110] with a minus sign on the right-hand side of the anticommutator {γµ,γν}=
−2ηµν.

Given that vector indices are antisymmetrized with the normalization convention ην1[µ2ην2]µ1 =
ην1µ2ην2µ1 −ην1ν2ηµ2µ1 , each tensor in the [. . .] bracket of (3.27) and the subsequent equation ap-
pears with a prefactor of ±1. We note that the building blocks in (3.26) are related via tνi = Tν

Bi.
The correlator with one more pair of ψµ is given by

〈〈
ψµ1ψν1(z1)ψµ2ψν2(z2)ψµ3ψν3(z3)Sa(zA)Sb(zB)

〉〉
ν
= E2

ABθν
(1

2 zAB
)4

8θ′1(0)4 ∏3
i=1 E iAE iB

×
[
γµ1ν1µ2ν2µ3ν3 a

b (
tν1tν2tν3

)2 +
(
ην1[µ2ην2][µ3ην3]µ1 −ηµ1[µ2ην2][µ3ην3]ν1

)
δb

aTν
12Tν

23Tν
13

+
{(
ηµ2[ν1γµ1]ν2µ3ν3 a

b −ην2[ν1γµ1]µ2µ3ν3 a
b
)
Tν

12tν1tν2
(
tν3

)2 +ην1[µ2ην2]µ1γµ3ν3 a
b (

Tν
12tν3

)2

+
(
ηµ3[ν2ηµ2][ν1γµ1]ν3 a

b −ην3[ν2ηµ2][ν1γµ1]µ3 a
b
)
Tν

12Tν
23tν1tν3 +cyclic (1,2,3)

}]
, (3.28)

where the cyclic sum in the curly bracket does not extend to the totally symmetric terms in the
second line.

The n-point function The above examples of spin-field correlators involving Sa(zA), Sb(zB)
and n≤3 currents ψµ jψν j point to the generalization to n insertions of ψµ jψν j (z j) (which can be
derived from the results of [110]). The structure of the results is captured by〈〈

n∏
j=1

ψµ jψν j (z j)Sa(zA)Sb(zB)

〉〉
ν

= En−1
AB θν(1

2 zAB)4

2nθ′1(0)4 ∏n
j=1 E jAE jB

∑
i

(`(i))[µiνi]a
bϕ(i)

ν (z) , (3.29)

where the sum over i gathers Lorentz tensors `(i) with the index structure of the left-hand side
along with spin structure dependent functions of the n+2 punctures ϕ(i)

ν (z)=ϕ(i)
ν (z1, z2, . . . , zn, zA, zB)

and τ. The prefactors are ±1 once the `(i) in (3.29) are organized in terms of a single form
(γρ1ρ2...ρ2k )a

b and products of η·· with antisymmetrizations in µi ↔ νi, cf. (3.28).
Most importantly, each Lorentz tensor `(i) in (3.29) can be translated into its accompanying

function ϕ(i)
ν (z) through the following dictionary (where ⊃ is understood as “contains a factor of”)

`(i) ⊃ (γ...µ j ...)a
b or (γ...ν j ...)a

b ⇒ ϕ(i)
ν (z)⊃ tνj (3.30a)

`(i) ⊃ ηµ jµk or ην jνk or ηµ jνk ⇒ ϕ(i)
ν (z)⊃ Tν

jk , (3.30b)
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see (3.26) for the definitions of tνj and Tν
jk. The summation range

∑
i in (3.29) involves all

Lorentz tensors that can be obtained from partitions of the antisymmetrized pairs of indices
[µ1ν1], [µ2ν2], . . . , [µnνn] into a form (γ...)a

b and products of η··.
For each Lorentz tensor `(i), the relative prefactor ±1 can be read off by starting with the

2n-form γµ1ν1µ2ν2µ3ν3...µnνn and moving the pairs of indices entering the given η·· to neighboring
position. The rule is that the indices in ηµiµ j , ηνiν j , ηµiν j with i < j must be moved into the
order γ...µiµ j ..., γ...νiν j ..., γ...µiν j ... and not the converse one (such as γ...µ jµi ...). Then, the number of
transpositions among the µi and νi required to attain the pairs of neighbors determines the sign
of the Lorentz tensor `(i) according to the total antisymmetry of the γ.... The leftover indices of
the form must be left in their order after transferring the neighboring pairs to the η··.

For instance, the negative sign of ην1µ2ην2ν3γµ1µ3 a
b in (3.28) can be seen by rearranging

γµ1ν1µ2ν2µ3ν3 =−γµ1ν1µ2ν2ν3µ3 and then removing the neighboring pairs ν1µ2 → ην1µ2 and ν2ν3 →
ην2ν3 , leaving −γµ1ν1µ2ν2ν3µ3 →−γµ1µ3 .

3.3.5 Correlators involving excited spin fields
On top of the spin-field correlators in section 3.3.4, the integrand (3.10) for two-fermion ampli-
tudes requires correlators of the form

〈〈∏
jψ

λ jψρ j (z j)Sa(zA)Sµ

b(zB)
〉〉
ν

with an excited spin field
Sµ

b . Again, following the techniques of [108, 111, 114, 110], we will determine the structure of
these genus-one correlators using bosonization techniques for any number of ψλψρ insertions.

Three-point example Since the two-point correlator 〈Sa(zA)Sµ

b(zB)〉ν of primary fields with
different conformal weights vanishes, the simplest example involving an excited spin field reads〈

ψλψρ(z1)Sa(zA)Sµ

b(zB)
〉
ν
= (ηµρ γλab −ηµλγ

ρ

ab) rν(z1, zA, zB) , (3.31)

with some function rν of z1, zA, zB and τ. The tensor on the right-hand side is uniquely deter-
mined by the antisymmetry of ψλψρ =−ψρψλ and the irreducibility condition (3.9) of the excited
spin field Sµ

b which forbids a “gamma-trace” ∼ γµab as well as the corresponding three-form γ
λρµ

ab .
By choosing the weight vectors to be

λ→ (−1,0,0,0,0), ρ→ (0,+1,0,0,0), µ→ (+1,0,0,0,0)

a → 1
2

(−,−,−,−,−), b → 1
2

(+,−,+,+,+),

one can assemble the function in rν in (3.31) via five copies of (3.22):

±
p

2rν(z1, zA, zB)=
〈

e−iH1(z1)e−
i
2 H1(zA)e

3i
2 H1(zB)

〉
ν

〈
eiH2(z1)e−

i
2 H2(zA)e−

i
2 H2(zB)

〉
ν

×
5∏

j=3

〈
e−

i
2 H j(zA)e

i
2 H j(zB)

〉
ν

=θν
(3

2 zB − z1 − 1
2 zA

)
θν

(
z1 − 1

2 (zA + zB)
)
θ3
ν

(1
2 (zB − zA)

)
θ′1(0)5E(z1, zB)2E(zA, zB)5/4

The factor of
p

2 on the left-hand side stems from the normalization (3.21) of the gamma-
matrices in the Cartan–Weyl basis. By adjoining the correlator (3.16) of the superghosts, the
above results combine to〈〈

ψλψρ(z1)Sa(zA)Sµ

b(zB)
〉〉

ν
= ηµ[ργλ]

ab

θν
(1

2 (zA1+zB1)
)
θν

(
z1B+1

2 zAB
)
θ2
ν

(1
2 zAB

)
p

2θ′1(0)4E2
1BEAB

≡ θ4
ν

(1
2 zAB

)
p

2θ′1(0)4E1AE1BEAB
×ηµ[ργλ]

ab tν1T
ν
1 , (3.32)
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with shorthands zi j = zi − z j and E i j = E(zi, z j), where the sign can be fixed via Jordan–Wigner
cocycles or the covariant OPE (3.23). In passing to the second line of (3.32), we have introduced
an additional building block

Tνj ≡
E jAθν

(
z jB + 1

2 zAB
)

E jBθν
(1

2 zAB
) (3.33)

which extends the definitions of Tν
i j and tνi in (3.26) to account for the z-dependence from an

excited spin field.

Four-point example As an example with several viable tensor structures, we consider〈〈
ψµ1ψν1(z1)ψµ2ψν2(z2)Sa(zA)Sλ

b(zB)
〉〉

ν
= γ[µ1

ab η
ν1][µ2ην2]λR1

ν(z)

+γ[µ2
ab η

ν2][µ1ην1]λR2
ν(z)+γµ1ν1[µ2

ab ην2]λR3
ν(z)+γµ2ν2[µ1

ab ην1]λR4
ν(z), (3.34)

with R j
ν(z)≡ R j

ν(z1, z2, zA, zB), where R1
ν↔ R2

ν and R3
ν↔ R4

ν are related to each other by exchange
of z1 and z2. In order to see that four tensor structures are sufficient to express the correlator
in question, one can verify that the tensor product of the Lorentz representations of ψµ1ψν1 ,
ψµ2ψν2 , Sa, Sλ

b contains precisely four scalars.
Starting from λ→ (1,0,0,0,0), one can isolate R3

ν(z) through the choice

µ1 → (0,0,−1,0,0), ν1 → (0,0,0,−1,0), µ2 → (0,1,0,0,0)

ν2 → (−1,0,0,0,0), a → 1
2

(−,−,+,+,−), b → 1
2

(+,−,+,+,+)

of lattice vectors, which specializes (3.34) to

± 2
p

2R3
ν(z)=

〈
e−φ/2(zA)eφ/2(zB)

〉
ν

4∏
j=3

〈
e−iH j(z1)e

i
2 H j(zA)e

i
2 H j(zB)

〉
ν

×
〈

e−iH1(z2)e−
i
2 H1(zA)e

3i
2 H1(zB)

〉
ν

〈
eiH2(z2)e−

i
2 H2(zA)e−

i
2 H2(zB)

〉
ν

〈
e−

i
2 H5(zA)e

i
2 H5(zB)

〉
ν

= θν
(1

2 (zA1 + zB1)
)2
θν

(1
2 (zA2 + zB2)

)
θν

(
z2B + 1

2 zAB
)

θ′1(0)4 E1AE1BE2
2B

. (3.35)

The three powers of
p

2 stem from the product of three gamma-matrices in (3.34) along with R3
ν.

Likewise, combinations of R1
ν and R3

ν can be addressed via λ→ (1,0,0,0,0) and

µ1 → (0,0,1,0,0), ν1 → (0,∓1,0,0,0), µ2 → (0,±1,0,0,0)

ν2 → (−1,0,0,0,0), a → 1
2

(−,−,−,−,−), b → 1
2

(+,+,−,+,+), (3.36)

which specializes (3.34) to〈
e−φ/2(zA)eφ/2(zB)

〉
ν

〈
e−iH1(z2)e−

i
2 H1(zA)e

3i
2 H1(zB)

〉
ν

〈
e∓iH2(z1)e±iH2(z2)e−

i
2 H2(zA)e

i
2 H2(zB)

〉
ν

×
〈

eiH3(z1)e−
i
2 H3(zA)e−

i
2 H3(zB)

〉
ν

5∏
j=4

〈
e−

i
2 H j(zA)e

i
2 H j(zB)

〉
ν

= θν
(1

2 zAB
)
θν

(
z2B + 1

2 zAB
)
θν

(1
2 (zA1 + zB1)

)
θ′1(0)4 E12EABE1AE1BE2

2B
×

{
E1AE2Bθν(z12+ 1

2 zAB) : ν1=(0,−1,0,0,0)
E1BE2Aθν(z21+ 1

2 zAB) : ν1=(0,+1,0,0,0)
. (3.37)
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Both γ
[µ1
ab η

ν1][µ2ην2]λ and γ
µ1ν1[µ2
ab ην2]λ are non-zero for the lattice vectors in (3.36), but they ex-

hibit different symmetry properties under exchange of µ2 and ν1: Since γ[µ1
ab η

ν1][µ2ην2]λ is sym-
metric under µ2 ↔ ν1, its coefficient must be the sum of the two expressions in (3.37) related by
exchange of µ2 and ν1. The difference of the two expressions in (3.37) in turn reproduces the
coefficient (3.35) of the tensor γµ1ν1[µ2

ab ην2]λ with manifest antisymmetry in µ2 ↔ ν1, as can be
verified through the Fay trisecant identity [120]

E12EABθν

(
1
2

(z1 + z2 − zA − zB)+ z0

)
θν

(
1
2

(z1 + z2 − zA − zB)− z0

)
= E1AE2Bθν

(
1
2

z12+1
2

zAB+z0

)
θν

(
1
2

z12+1
2

zAB−z0

)
−E1BE2Aθν

(
1
2

z12−1
2

zAB+z0

)
θν

(
1
2

z12−1
2

zAB−z0

)
at z0 → 1

2 z12. After assembling the above results and fixing the signs through covariant OPEs,
the correlator of interest is given by

〈〈
ψµ1ψν1(z1)ψµ2ψν2(z2)Sa(zA)Sλ

b(zB)
〉〉

ν
= θν

(1
2 zAB

)4

2
p

2θ′1(0)4E1AE1BE2AE2B

×
[
γ
µ1ν1[µ2
ab ην2]λTν2(tν1)2tν2 +γ[µ1

ab η
ν1][µ2ην2]λTν2Tν

12tν1 + (1↔ 2)
]
. (3.38)

The functions tνi ,Tν
jk and Tνl are defined in (3.26) and (3.33), respectively, and the notation +(1↔

2) instructs to add the image of the previous two terms under (z1,µ1,ν1)↔ (z2,µ2,ν2).

Five-point example The same strategy gives rise to five permutation-inequivalent functions
of the punctures in the correlator with three currents ψµiψνi ,

〈〈
ψµ1ψν1(z1)ψµ2ψν2(z2)ψµ3ψν3(z3)Sa(zA)Sλ

b(zB)
〉〉

ν
= EABθν

(1
2 zAB

)4

4
p

2θ′1(0)4 ∏3
j=1 E jAE jB

×
[{
γ
µ1ν1µ2ν2[µ3
ab ην3]λTν3

(
tν1tν2

)2 tν3 +
(
ην1[µ2ην2]µ1 −ηµ1[µ2ην2]ν1

)
γ

[µ3
ab η

ν3]λTν3 (Tν
12)2 tν3

+
(
ηµ2[ν1γ

µ1]ν2[µ3
ab ην3]λ−ην2[ν1γ

µ1]µ2[µ3
ab ην3]λ

)
Tν3Tν

12 tν1tν2tν3 +cyc(1,2,3)
}

+
{(
γ
µ1µ2ν2
ab ην1[µ3ην3]λ−γν1µ2ν2

ab ηµ1[µ3ην3]λ
)
Tν3Tν

13 tν1
(
tν2

)2

+γ[ν2
ab η

µ2][µ1ην1][µ3ην3]λTν3Tν
12Tν

13 tν2 +perm(1,2,3)
}]

, (3.39)

which can be determined by suitable choices of the lattice vectors λ,µi,νi,a,b along the lines of
the previous examples. Note that the explicit correlators in (3.32), (3.38) and (3.39) are sufficient
to capture the contributions of the excited spin field to open-string integrands (3.10) with two
fermions and n ≤ 3 bosons.

The n-point function Similar to the discussion in section 3.3.4, the above examples of cor-
relators involving Sa(zA)Sλ

b(zB) strongly suggest their generalization to n insertions of ψµ jψν j :
After stripping off the overall prefactor of〈〈

n∏
j=1

ψµ jψν j (z j)Sa(zA)Sλ
b(zB)

〉〉
ν

=
p

2En−2
AB θν(1

2 zAB)4

2nθ′1(0)4 ∏n
j=1 E jAE jB

∑
i

(L(i))
[µiνi],λ
ab Φ(i)

ν (z) , (3.40)
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the remaining contributions are Lorentz tensors L(i) with the index structure of the left-hand
side and spin structure dependent functions Φ(i)

ν (z) of z1, z2, . . . , zn, zA, zB and τ that obey the
following rules: First, the tensors L(i) are antisymmetric in all pairs µi ↔ νi and cannot involve
the vector index of the excited spin field Sλ

b on a gamma-matrix to account for its irreducibility
constraint. Second, L(i) is a sum of products of a single odd-rank form γ

ρ1ρ2...ρ2k+1
ab accompanied

by n−k factors of η··, and each summand has a prefactor ±1 given the choice of normalization in
(3.40).

Most importantly, each Lorentz tensor L(i) in (3.40) can be translated into its accompanying
function Φ(i)

ν (z) through the following dictionary (where ⊃ is understood as “contains a factor
of”),

L(i) ⊃ γ...µ j ...
ab or γ...ν j ...

ab ⇒ Φ(i)
ν (z)⊃ tνj (3.41a)

L(i) ⊃ ηµ jµk or ην jνk or ηµ jνk ⇒ Φ(i)
ν (z)⊃ Tν

jk (3.41b)

L(i) ⊃ ηµ jλ or ην jλ ⇒ Φ(i)
ν (z)⊃Tνj , (3.41c)

see (3.26) and (3.33) for the building blocks tνj ,T
ν
j and Tν

jk. While the first two rules (3.41a) and
(3.41b) tie in with those for two unexcited spin fields, see (3.30a) and (3.30b), the additional
vector index of the excited spin field is addressed by (3.41c).

The summation range
∑

i in (3.40) involves all Lorentz tensors L(i) that can be obtained from
partitions of the antisymmetrized pairs of indices [µ1ν1], [µ2ν2], . . . , [µnνn] into a form (γ...)ab,
products of η·· and an additional η·λ associated with the excited spin field.

Similar to the rules of section 3.3.4 to determine the signs in the correlator with unexcited
spin fields, the idea is to start with a reference (2n+1)-form γµ1ν1µ2ν2...µnνnλ. Pairs of indices
which enter the given product of η·· must be moved to neighboring positions γ...µiµ j ..., γ...νiν j ...,
γ...µiν j ... with i < j (and not i > j) or γ...µiλ..., γ...νiλ... (with λ on the right of µi,νi) before trans-
ferring them to the metric tensors. For instance, the positive sign of ηµ1µ2ην1ν2γν3ηµ3λ in (3.39)
can be seen by rearranging γµ1ν1µ2ν2µ3ν3λ = (−1)2γµ1µ2ν1ν2ν3µ3λ before transferring the pairs µ1µ2,
ν1ν2, µ3λ to the η·· and converting γµ1µ2ν1ν2ν3µ3λ→ γν3 .

3.4 Doubly-periodic functions and spin sums

In addition to the doubly-periodicity, spin structure dependent parts of correlation functions in
(3.11) are meromorphic functions for each insertion point, so by summing over spin structures
they become elliptic functions for those insertion points [108]. Traditionally, an elliptic function
has been represented by the Weierstrass ℘-function and a linear combination of Weierstrass
ζ-functions. However, for superstring amplitudes, it is somewhat useful to introduce a set of
doubly-periodic functions f (n) (z) , n ∈ N0 generated from a non-holomorphic extension of the
Kronecker-Eisenstein series [36, 38]

F(z,α)= θ′1(0)θ1(z+α)
θ1(z)θ1(α)

, Ω(z,α)= e2πiα Im(z)
Im(τ) F(z,α)=

∞∑
n=0

αn−1 f (n)(z), (3.42)

which can be used to generate homotopy invariant iterated integrals over an elliptic curve [38]
and therefore enter the definition of elliptic multiple zeta values [121]. The latter have been
identified as a convenient language for the α′-expansion of one-loop open-string amplitudes [33],
including double-trace contributions [122]. The simplest expansion coefficients read

f (0)(z)= 1, f (1)(z)≡ ∂ logθ1(z)+2πi
Im(z)
Im(τ)

f (2)(z)= 1
2

{(
∂ logθ1(z)+2πi

Im(z)
Im(τ)

)2 +∂2 logθ1(z)− θ′′′1 (0)
3θ′1(0)

}
.
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3.4.1 Spin sums on bosonic one-loop amplitudes
In order to exemplify the relevance of the doubly-periodic f (n) in (3.42) for spin sums, let us
review their instances in the N-gluon amplitudes. From the N vertex operators (3.7), we are led
to products of the Szegö kernels

Pν(z)≡ θ′1(0)θν(z)
θ1(z)θν(0)

which ultimately appear in the combinations

G (~zn)=G (z1, z2, . . . , zn)≡
4∑

ν=2
(−1)ν+1

(
θν(0)
θ′1(0)

)4
Pν(z1)Pν(z2) . . .Pν(zn),

n∑
j=1

z j = 0 (3.43)

with n ≤ N. It is not difficult to show that G (~zn) is elliptic for each zi, i = 1,2, . . . ,n, therefore it
can be represented by a suitable set of elliptic functions on zi.

All-multiplicity techniques for the simplification of (3.43) by using elliptic functions have
been given in [32], also see [95] for an alternative method. In order to represent (3.43) in elliptic
functions, we notice that Szegö kernels in (3.43) can be replaced by

n∏
i=1

Pν (zi)=Ω (~zn,ων−1)=
n∏

i=1
Ω (zi,ων−1) , ων =

(
1
2

,
−1−τ

2
,
τ

2

)
due to the relations in (3.14) and

∑n
i=1 zi = 0. From the definition of Ω in (3.42) one can easily

show that Ω (~zn, y) is an elliptic function on y having a pole structure at y= 0 as

n∑
k=0

y−n+kVk (~z)= 1
yn + V1(~z)

yn−1 + V2(~z)
yn−2 + . . .+ Vn−2(~z)

y2 +Vn(~z) (3.44)

with Vk (~z) = 1
k!

∂k

∂yk

{∏n
i=1 yΩ (zi, y)

}
y=0, which are polynomials of f (n)(zi), so Ω (~zn, y) can be rep-

resented by using Weierstrass ℘-functions [123, 124]:

Ω (~zn, y)=
n−2∑
k=0

(−1)n−k

(n−k−1)!

(
℘(n−k−2) (y)− Ĝn−k−2

)
Vk (~zn)+Vn (~zn) .

for

Ĝk≥2 =
{

0, for k = 2

Gk (τ) , otherwise
, Gk =

∑
m,n∈Z

(m,n) 6=(0,0)

1

(mτ+n)k , k ≥ 3,

which allows us to the representation of Ω (~zn,ων−1) in terms of Vk, Eisenstein series Gk as well
as Weierstass invariants e i = ℘ (ωi) , i = 1,2,3. By combining this result with (see for instance
[125])

(−1)ν+1
(
θν(0)
θ′1(0)

)4
=



1
(e1 − e2) (e1 − e3)

for ν= 2

1
(e2 − e1) (e2 − e3)

for ν= 3

1
(e3 − e1) (e3 − e2)

for ν= 4

the correlation function in (3.43) can be expressed in terms of Vk and symmetric polynomials of
(e1, e2, e3) related to Eisenstein series Gk by

e1 + e2 + e3 = 0, e1e2 + e2e3 + e1e3 =−15G4, e1e2e3 = 35G6.
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For instance the n ≤ 9-point results of [32] translate into [33]

G (~zn)= 0, 1≤ n ≤ 3, G (~zn)=Vn−4(~zn), 4≤ n ≤ 7

G (~z8)=V4(~z8)+3G4, G (~z9)=V5(~z9)+3G4V1(~z9),

where further simplifications arise in the degeneration limit τ→ i∞ [19].
Hence, the worldsheet integrand for the N-gluon amplitude comprising spin sums (3.43) and

correlators of Xµ can be entirely expressed in terms of f (n) functions in (3.42). This motivates to
express the two-fermion amplitudes in (3.10) which are related to external bosons by supersym-
metry in the same language, also see [35] for the six-point one-loop amplitude in pure spinor
superspace involving f (2)

i j & f (1)
i j f (1)

pq .
Note that the same techniques can be used for spin sums in bosonic one-loop N-point ampli-

tudes in orbifold compactifications with reduced supersymmetry [126] (see [127, 128] for earlier
work on the four-point function).

3.4.2 A standard form for spin sums
In view of the ultimate goal of this work to sum the above correlators (3.29) and (3.40) over the
spin structures ν = 1,2,3,4, we identify a prototype spin sum from the dictionaries (3.30) and
(3.41). First, the prefactors of (3.29) and (3.40) along with the ν-dependent minus sign in the
amplitude prescription (3.10) suggest to introduce the shorthands

Zν

(
1
2

y
)
≡ (−1)ν+1θν

(1
2 y

)4

θ′1(0)4 , y≡ zAB (3.45)

where Zν

(1
2 y

)
may be interpreted as a partition function of Xµ and ψµ with twisted boundary

conditions. All the ν-dependence in the building blocks tνj ,T
ν
j and Tν

jk for ϕ(i)
ν (z) and Φ(i)

ν (z)

in (3.30) and (3.41) occurs via products of ratios
θν(x± 1

2 y)
θν( 1

2 y) , with x representing some zi j with

i, j ∈ {1,2, . . . ,n, A,B}. It is particularly convenient to gather such ratios of θν functions via

Fν(z,w)≡ θ′1(0)θν(z+w)
θ1(z)θν(w)

= θν(z+w)
E(z)θν(w)

, (3.46)

which generalizes the Kronecker–Eisenstein series in (3.42) to even spin structures with Fν=1(z,w)=
F(z,w) and exhibits the following symmetry property,

Fν(−z,−w)=−Fν(z,w) .

More precisely, the building blocks of the above spin-field correlators can be expressed in terms
of the function Fν(x, y) by means of

Tν
jk =

E jAEkBFν

(
z jk, 1

2 y
)−E jBEkAFν

(
zk j, 1

2 y
)

EAB

tνj = EBiFν

(
zBi,

1
2

y
)

, Tνj = E jAFν

(
z jB,

1
2

y
)

.

Then, the most general spin sum we will be concerned with in the next section can be brought
into the standard form

W

(
x1, x2, . . . , xN

∣∣∣∣1
2

y
)
≡

4∑
ν=1

Zν(y)Fν

(
x1, x2, . . . , xN ,

1
2

y
)

(3.47)

where Fν (x1, x2 . . . , xN ) denotes
∏N

i=1 Fν

(
xi, 1

2 y
)

and xi, i = 1,2, . . . , N are linearly dependent over
(−1,+1) i.e., x1±x2± . . .±xN = 0 for some choices of signs. The spin sum in (3.47) generalizes the
prototype spin sum (3.43) for bosonic one-loop amplitudes.
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Examples with unexcited spin fields Let us give the simplest examples of spin-field corre-
lators rewritten in terms of the standard spin sum (3.47) with building blocks (3.45) and (3.46):
In presence of unexcited spin fields, the correlators (3.24), (3.25) and (3.27) translate into

4∑
ν=1

(−1)ν+1
〈〈

Sa(zA)Sb(zB)
〉〉

ν
=

4∑
ν=1

δb
a Zν

(1
2 y

)
EAB

= δb
a

EAB
W

(
−

∣∣∣∣1
2

y
)

(3.48)

4∑
ν=1

(−1)ν+1
〈〈
ψλψρ(z1)Sa(zA)Sb(zB)

〉〉
ν
=

4∑
ν=1

γλρa
b E1B

2E1A
Zν

(
1
2

y
)

Fν

(
zB1, zB1,

1
2

y
)

= γλρa
b E1B

2E1A
W

(
zB1, zB1

∣∣∣∣1
2

y
)

(3.49)

as well as

4∑
ν=1

(−1)ν+1
〈〈
ψµ1ψν1(z1)ψµ2ψν2(z2)Sa(zA)Sb(zB)

〉〉
ν

= (γµ1ν1
µ2ν2)a

b EABE1BE2B

4E1AE2A
W

(
zB1, zB1, zB2, zB2

∣∣∣∣1
2

y
)

+δ[ν1
[µ2
γµ1]

ν2]a
b
{ E2B

4E2A
W

(
z12, zB1, zB2

∣∣∣∣1
2

y
)
− E1B

4E1A
W

(
z21, zB1, zB2

∣∣∣∣1
2

y
)}

−δν1
[µ2
δ
µ1
ν2]δ

b
a

{ 1
2EAB

W

(
z12, z21

∣∣∣∣1
2

y
)

− E1AE2B

4EABE1BE2A
W

(
z12, z12

∣∣∣∣1
2

y
)
− E1BE2A

4EABE1AE2B
W

(
z21, z21

∣∣∣∣1
2

y
)}

(3.50)

The generalization to three insertions of ψµ jψν j (z j) can be found in appendix D.1.

Examples with an excited spin field In presence of excited spin fields, the expressions
(3.32) and (3.38) for the simplest correlators give rise to

4∑
ν=1

(−1)ν+1
〈〈
ψλψρ(z1)Sa(zA)Sµ

b(zB)
〉〉

ν
=−

ηµ[ρ γλ]
abp

2EAB

4∑
ν=1

Zν

(
1
2

y
)

Fν

(
z1B, zB1,

1
2

y
)

=−
ηµ[ρ γλ]

abp
2EAB

W

(
z1B, zB1

∣∣∣∣1
2

y
)

(3.51)

as well as

4∑
ν=1

(−1)ν+1
〈〈
ψµ1ψν1(z1)ψµ2ψν2(z2)Sa(zA)Sλ

b(zB)
〉〉

ν

=−γ[µ1
ab η

ν1][µ2ην2]λ
{ 1

2
p

2EAB
W

(
z12, z2B, zB1

∣∣∣∣1
2

y
)
− E1BE2A

2
p

2EABE1AE2B
W

(
z21, z2B, zB1

∣∣∣∣1
2

y
)}

−γµ1ν1[µ2
ab ην2]λ E1B

2
p

2E1A
W

(
z2B, zB1, zB1, zB2,

∣∣∣∣1
2

y
)
+ (z1,µ1,ν1)↔ (z2,µ2,ν2) . (3.52)

The generalization to three insertions of ψµ jψν j (z j) can be found in appendix D.2.
From the discussion in the next section, one can find that most of the spin sums in (3.48) to

(3.52) vanish, except for the case with W
(
z12, z2B, zB1

∣∣1
2 y

)
. The latter leads to the non-vanishing

four-point amplitude among two bosons and two fermions which has been first computed in
[102].
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3.5 Evaluating spin sums in two-fermion amplitudes

In this section, we present a method to evaluate the prototype spin sum (3.47) for two-fermion
amplitudes in terms of the doubly-periodic functions f (n) in (3.42).

3.5.1 Quasi-periodicity of W

As we have seen in (3.47), the arguments xi, i = 1,2, . . . , N of the prototype spin sum

W
(
x1, x2, . . . , xN

∣∣∣ y
2

)
are linearly dependent over {±1}. Thus, one can always rearrange xi such that

n∑
i=1

xi =
N∑

i=n+1
xi . (3.53)

for some n ≤ N. Then, by denoting xn+i = x′i, the quasi-periodicity of W can be easily obtained
from the definition of W as

W

(
~xn,~x′n′

∣∣∣∣1
2

(y+1)
)
=−W

(
~xn,~x′n′

∣∣∣ y
2

)
(3.54a)

W

(
~xn,~x′n′

∣∣∣∣1
2

(y+τ)
)
=−q−1/2e−2πi(y+∑n′

i=1 x′i)W
(
~xn,~x′n′

∣∣∣ y
2

)
(3.54b)

W
(
x1, x2, . . . , xi +1, . . . , xn,~x′n

∣∣∣ y
2

)
=W

(
~xn,~x′n′

∣∣∣ y
2

)
(3.54c)

W
(
x1, x2, . . . , xi +τ, . . . , xn,~x′n

∣∣∣ y
2

)
=W

(
~xn,~x′n′

∣∣∣ y
2

)
(3.54d)

W
(
~xn, x′1, x′2, . . . , x′i +1, . . . , x′n′

∣∣∣ y
2

)
=W

(
~xn,~x′n′

∣∣∣ y
2

)
(3.54e)

W
(
~xn, x′1, x′2, . . . , x′i +τ, . . . , x′n′

∣∣∣ y
2

)
= e−2πi yW

(
~xn,~x′n′

∣∣∣ y
2

)
(3.54f)

where we introduce ~xn = (x1, x2, . . . , xn) and ~x′n′ = (x′1, x′2, . . . , x′n′), n′ = N − n for notational sim-
plicity.

3.5.2 Elliptic representation of W

n′ = 0 We begin with the simplest case of spin sums having n′ = 0:

W
(
~xn

∣∣ y
2

)
E(y)

=
4∑

ν=1

Zν

( y
2
)

E(y)
Fν

(
~xn,

y
2

)
. (3.55)

In order to represent (3.55) in elliptic functions, we consider

Z1 (α)
E (2α)

F1 (~xn,α)

which is related to each summand in (3.55) by α = y
2 + sν, sν = (0,ων−1) due to (3.14). One can

easily see that Z1(α)
E(2α) is an elliptic function on α having simple poles at α=ων−1, ν= 2,3,4, so it

can be expressed as

Z1 (α)
E (2α)

= 1
2

4∑
ν=2

Zν (0)
(
ζ (ων−1 −α)−ην−1

)
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where ζ is the Weierstrass ζ-function and ην = ζ (ων) for ν = 1,2,3. Also, we note that F1 (~xn,α)
can be replaced by Ω (~xn,α) which can be expanded as in (3.44). Therefore, by examining the
pole structure we have

Z1 (α)
E (2α)

F1 (~xn,α)=1
2

4∑
ν=2

Zν (0)
(
ζ (ων−1 −α)−ην−1

)
Fν (~xn,0)+ζ (α)

n−1∑
l=0

gn−l−1Vl (~xn)

+
n∑

l=0
gn−lVl (~xn)+

n−2∑
k=0

n−k−2∑
l=0

(
(−1)k

(k+1)!
℘(k) (α)− Ĝk+2

)
gn−k−l−2Vl (~xn) (3.56)

where

g0 = 0, gk≥1 =
4∑

ν=2

1
2k!

Zν (0)℘(k−1) (ων−1) , Ĝk≥2 =
{

0, for k = 2

Gk otherwise,

and gk≥1 can be computed as in section 3.4.1. For some lower k we have

gk≤2 = 0, g3 = 1
2

, g4≤k≤6 = 0, g7 = 3G4

2
, g8 = 0, g9 = 5G6.

Now, by inserting α= y
2 + sν to (3.56) and using (see appendix E for a proof)

2ζ (2z)=
4∑

ν=1
ζ (z+ sν) , 2k+2℘(k) (2z)=

4∑
ν=1

℘(k) (z+ sν)

we obtain an elliptic representation of (3.55)

4∑
ν=1

Zν

(1
2 y

)
E (y)

Fν (~xn,α)

= 4
n∑

l=0
gn−lVl (~xn)+

n−2∑
k=0

n−k−2∑
l=0

(
(−1)k2k+2

(k+1)!
℘(k) (y)−4Gk+2

)
gn−k−l−2Vl (~xn) . (3.57)

n′ 6= 0 For n′ 6= 0, the quasi-periodicity of W implies that the following expression

W
(
~xn,~x′n

∣∣1
2 y

)
E(y)F(~x′n, y)

(3.58)

is an elliptic function on xi, x′j and y. Moreover, each xi (resp. x′i) has a simple pole at xi = 0
(resp. x′i + y= 0) whose residue is in the form of

W
(
~xn−1,~x′n

∣∣1
2 y

)
E(y)F(~x′n, y)

which is recursively related to the target spin sum in (3.58). Thus, one can expect that Vk again
provide a convenient basis for representing (3.58) since Vk are recursively related to Vk−1 by
simple poles of Vk.

We can deduce an ansatz for (3.58) by considering the case n = 0:

W
(
~x′n′

∣∣1
2 y

)
E(y)F(~x′n′ , y)

=
∑n′−3

k=1 wn′−k(y)Vk(~x′n′)+wn′(y)

F(~x′n′ , y)
(3.59)

where we have rewritten W
(
~xn′

∣∣1
2 y

)
in (3.57) as

W

(
~xn′

∣∣∣∣1
2

y
)
=

n′−3∑
k=1

wn′−k(y)Vk(~xn′)+wn′(y),
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by collecting elliptic functions wk(y) on y represented by ℘(k−2) and Gk for Vl . (3.59) indicates
that F(xi, y) and F(x′i, y) can appear in addition to Vk, so we claim that for n > 0,

W
(
~xn,~x′n′

∣∣1
2 y

)
E(y)F(~x′n′ , y)

=
F(~xn, y)

∑n′−3
p=1 cn,n′−p(y)Vp(~x′n′ ,−~xn −~yn,~yn)+ cn,n′(y)

F(~x′n′ , y)

+
n−3∑
p=1

dn−p,n′(y)Vp(~xn,−~x′n′ −~yn,~yn)+dn,n′(y) (3.60)

where ~yn = (
n︷ ︸︸ ︷

y, y, . . . , y). cn,n′(y) and dn,n′(y) are elliptic functions on y satisfying

cn,n′(y)= cn−1,n′(y)−
n′−3∑
p=1

cn,n′−p(y)Vp(y,−y) (3.61a)

dn,n′(y)= dn,n′−1(y)−
n−3∑
p=1

cn−p,n′(y)Vp(y,−y) . (3.61b)

where

V1(y,−y)= 0, V2(y,−y)=−℘ (y) , Vn>3(y,−y)= (−1)n(n−1)Gn

by Proposition E.3.
The claim can be proven by induction. It is obvious that at either n = 0 or n′ = 0, the claim is

true by imposing

cn,0(y)= 0, dn,0 = wn(y), c0,n′(y)= wn′(y), d0,n′(y)= 0 .

At n = n′ = 1, by using the Riemann identity

4∑
ν=1

(−1)ν+1θν(z1)θν(z2)θν(z3)θν(z4)= θ1(z′1)θ1(z′2)θ1(z′3)θ1(z′4)

z′1 ≡
1
2

(z1 + z2 + z3 + z4), z′2 ≡
1
2

(z1 + z2 − z3 − z4) ,

z′3 ≡
1
2

(z1 − z2 − z3 + z4), z′4 ≡
1
2

(z1 − z2 + z3 − z4) ,

one can easily show that

W
(
x, x

∣∣1
2 y

)
F(x, y)E(y)

= 0

which provides the starting point for induction.
Now, suppose that for n < m and n′ < m′ the claim is true. For n = m, the left hand side of

(3.60) has the residue at xm = 0 as

W
(
~xm−1,~x′m′

∣∣1
2 y

)
E(y)F(~x′m′ , y)

=
F(~xm−1, y)

∑m′−3
p=1 cm−1,m′−p(y)Vp(~x′m′ ,−~xm−1 −~ym−1,~ym−1)+ cm−1,m′(y)

F(~x′m′ , y)

+
m−4∑
p=1

dm−1,m′−p(y)Vp(~xm−1,−~x′m′ −~ym′ ,~ym′)+dm−1,m′(y) . (3.62)
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The right hand side of (3.60) has the residue at xm = 0 as

F(~xm−1, y)
∑m′−3

p=1
∑p

q=0 cm,m′−p(y)Vq(y,−y)Vp−q(~x′m′ ,−~xm−1 −~ym−1,~ym−1)+ cm,m′(y)

F(~x′m′ , y)

+
m−3∑
p=1

dm,m′−p(y)Vp−1(~xm−1,−~x′m′ −~ym′ ,~ym′)

=
F(~xm−1, y)

∑m′−3
r=0

∑m′−r−3
p=0 cm,m′−r−p(y)Vp(y,−y)Vr(~x′m′ ,−~xm−1 −~ym−1,~ym−1)

F(~x′m′ , y)

+
m−4∑
p=0

dm,m′−1−p(y)Vp(~xm−1,−~x′m′ −~ym′ ,~ym′) . (3.63)

Then, by (3.61)

m′−3−r∑
p=0

cm,m′,p+r(y)Vp(y,−y)= cm−1,m′,r ,

so (3.62) and (3.63) are same.
In a similar manner, one can show that both sides of (3.60) have a common residue at x′m′+y=

0. Consequently, the difference between both sides is an elliptic function on y. The difference
can be determined by inserting x′n′ = 0 into both sides and one can easily show that it vanishes
again due to (3.61).

By multiplying F(x′n′ , y) to both sides of (3.60), the elliptic representation in (3.60) can be
expressed more symmetrically in~xn and~x′n′ :

W
(
~xn,~x′n′

∣∣1
2 y

)
E(y)

=F(~xn, y)
n′−3∑
p=1

cn,n′−p(y)Vp(~x′n′ ,−~xn −~yn,~yn)+ cn,n′(y)

+F(~x′n′ , y)
n−3∑
p=1

dn−p,n′(y)Vp(~xn,−~x′n′ −~yn,~yn)+dn,n′(y).

3.5.3 Cleaning up the prime forms
In the elliptic representation of a spin sum in (3.60) Vk carry arguments −xi − y and −x′j − y.
As we have seen in section 3.4.2, these arguments are expressed as −zkl − zAB and it is often
desired to split those arguments into zkl , zAB, zlA and zkB which are more suitable to integrate.
For this, consider

F(zi j, zAB)Vn(−zi j − zAB, x1, . . . , xn)= 1
n!

∂n

∂αn

(
F(zi j, zAB)αF(−zi j − zAB,α)

n∏
i=1

F(xi,α)

)
.

where
∑n

i=1 xi = zi j + zAB. By combining

F(zi j, zAB)F(−zi j − zAB,α)=− E(−zi j − zAB +α)
E(zi j)E(zAB)E(α)

.

with the Fay’s identity in (E.4)

E(−zi j − zAB +α)E(α)
E(z jA)E(zBi)

E(z ji)E(z jA)E(zBi)E(zBA)
= det

( E(z ji+α)
E(z ji)

E(z jA+α)
E(z jA)

E(zBi+α)
E(zBi)

E(zBA+α)
E(zBA)

)
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we have

E(−zi j − zAB +α)
E(α)

E(z jA)E(zBi)
E(z ji)E(z jA)E(zBi)E(zBA)

= det
(

F(z ji,α) F(z jA,α)
F(zBi,α) F(zBA,α)

)

which implies

F(zi j, zAB)Vn(−zi j − zAB, . . . )= E(z jA)E(zBi)
E(z jA)E(zBi)

1
n!

∂n

∂αn

(
αdet

(
F(z ji,α) F(z jA,α)
F(zBi,α) F(zBA,α)

)
. . .

)
.

3.5.4 Worked out examples

While the procedure of the previous section can be applied to evaluate spin sums of arbitrary
multiplicity, we shall now present its simplest applications covering spin sums in three- to five-
point amplitudes. For notational simplicity, we use the notation Vk (i1, . . . , in)=Vk

(
zi1 i2 , . . . , zin i1

)
in the following.

n′ = 0

W
(
z12, z21

∣∣1
2 y

)
E(y)

= 0,

W
(
z12, z23, z31

∣∣1
2 y

)
E(y)

= 0,

W
(
z12, z23, z34, z41

∣∣1
2 y

)
E(y)

= 2V1 (1,2,3,4) ,

W
(
z12, z23, z34, z45, z51

∣∣1
2 y

)
E(y)

= 2V2(1,2,3,4,5)−2V2(A,B).

n′ = 1

E2BE1A

E2AE1B

W
(
z12, z12

∣∣1
2 y

)
E(y)

=0,

E3BE1A

E3AE1B

W
(
z12, z23, z13

∣∣1
2 y

)
E(y)

=0,

E4BE1A

E4AE1B

W
(
z12, z23, z34, z14

∣∣1
2 y

)
E(y)

=2V1(1,B, A,4),

E5BE1A

E5AE1B

W
(
z12, z23, z34, z45, z15

∣∣1
2 y

)
E(y)

=2V2(1,2,3,4,5)+2V2(A,B)−2V2(1,2,3,4,5, A,B).
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n′ = 2

E2BE1AE4BE3A

E2AE1BE4AE3B

W
(
z12, z34, z12, z34

∣∣1
2 y

)
E(y)

= 0,

E3BE1AE5BE4A

E3AE1BE5AE4B

W
(
z12, z23, z45, z13, z45

∣∣1
2 y

)
E(y)

= 2V1(1,B, A,3)V1(4,B, A,5),

E4BE1AE6BE5A

E4AE1BE6AE5B

W
(
z12, z23, z34, z56, z14, z56

∣∣1
2 y

)
E(y)

= 2V1(1,2,3,4)(V2(5,6)+2V2(A,B)−V2(5,6, A,B)−V2(A,B))
−2V2(1,2,3,4)V1(5,6, A,B)

−2V1(1,2,3,4, A,B) (V2(5,6)+V2(A,B)−V2(5,6, A,B))
+2V2(1,2,3,4, A,B)V1(5,6, A,B)

3.5.5 Examples of spin-summed correlators
In this section, we assemble the expressions for various spin-summed correlators in fermionic
one-loop amplitudes.

Two unexcited spin fields The vanishing of the spin sums in (3.48) to (3.50) immediately
propagates to

4∑
ν=1

(−1)ν+1
〈〈

Sa(zA)Sb(zB)
〉〉

ν
= 0

4∑
ν=1

(−1)ν+1
〈〈
ψµ1ν1(z1)Sa(zA)Sb(zB)

〉〉
ν
= 0

4∑
ν=1

(−1)ν+1
〈〈
ψµ1ν1(z1)ψµ2ν2(z2)Sa(zA)Sb(zB)

〉〉
ν
= 0.

The first non-vanishing spin sums occur in the five-point correlator (D.1) such that

4∑
ν=1

(−1)ν+1
〈〈
ψµ1ψν1(z1)ψµ2ψν2(z2)ψµ3ψν3(z3)Sa(zA)Sb(zB)

〉〉
ν

= (γµ1ν1µ2ν2µ3ν3)a
b h(0)

; + ην1µ2(γµ1ν2µ3ν3)a
b h(0)

[12]

+ηµ1ν2ην1µ2(γµ3ν3)a
b h(0)

(12) +ην1µ2ην2µ3(γµ1ν3)a
b h(0)

12,23

+ ην1µ2ην2µ3ηµ1ν3δb
a h(0)

[123] +permutations

with

h(0)
; = h(0)

12,23 =−h(0)
(12) =

1
2

, h(0)
[12] = h(0)

[123] = 0 ,

or equivalently

4∑
ν=1

(−1)ν+1
〈〈
ψµ1ψν1(z1)ψµ2ψν2(z2)ψµ3ψν3(z3)Sa(zA)Sb(zB)

〉〉
ν

= 1
2

{
(γµ1ν1µ2ν2µ3ν3)a

b − [
(ηµ1ν2ην1µ2 −ηµ1µ2ην1ν2)(γµ3ν3)a

b +cyc(1,2,3)
]

+ [
ηµ2[ν1(γµ1][ν3)a

bηµ3]ν2 −ην2[ν1(γµ1][ν3)a
bηµ3]µ2 +cyc(1,2,3)

]}
. (3.67)
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The spin sums in the corresponding six-point correlator evaluate to

4
4∑

ν=1
(−1)ν+1

〈〈
ψµ1ψν1(z1)ψµ2ψν2(z2)ψµ3ψν3(z3)ψµ4ψν4(z4)Sa(zA)Sb(zB)

〉〉
ν

= (γµ1ν1µ2ν2µ3ν3µ4ν4)a
b h(1)

; +ην1µ2(γµ1ν2µ3ν3µ4ν4)a
b h(1)

[12]

+ ηµ1ν2ην1µ2(γµ3ν3µ4ν4)a
b h(1)

(12) +ην1µ2ην2µ3(γµ1ν3µ4ν4)a
b h(1)

12,23

+ην1µ2ην3µ4(γµ1ν2µ3ν4)a
b h(1)

[12],[34] +ηµ1ν2ην1µ2ην3µ4(γµ3ν4)a
b h(1)

(12),[34]

+ην1µ2ην2µ3ηµ1ν3(γµ4ν4)a
b h(1)

[123] +ην1µ2ην2µ3ην3µ4(γµ1ν4)a
b h(1)

12,23,34

+ηµ1ν2ην1µ2ην3µ4ηµ3ν4δb
a h(1)

(12),(34) +ην1µ2ην2µ3ην3µ4ηµ1ν4δb
a h(1)

(1234)

+permutations (3.68)

with doubly-periodic functions h(1)
... ≡ h(1)

... (z j, zA, zB) given by

h(1)
; (z j, zA, zB) =

4∑
i=1

V1(i, A,B)

h(1)
[12](z j, zA, zB) = V1(1,2, A,B)−V1(2,1, A,B)

h(1)
(12)(z j, zA, zB) =

2∑
i=1

V1(i, A,B)−
4∑

i=3
V1(i, A,B)

h(1)
12,23(z j, zA, zB) = −V1(2, A,4,B)

h(1)
[12],[34](z j, zA, zB) = 0

h(1)
(12),[34](z j, zA, zB) = −V1(3,4, A,B)−V1(3,4,B, A)

h(1)
[123](z j, zA, zB) = −2V1(1,2,3)

h(1)
12,23,34(z j, zA, zB) =

3∑
i=1

[
V1(i, i+1, A,B)+V1(i, i+1,B, A)

]
h(1)

(12),(34)(z j, zA, zB) = −
4∑

i=1
V1(i, A,B)

h(1)
(1234)(z j, zA, zB) = 1

2
[
V1(1,2, A,B)−V1(1,2,B, A)+cyc(1,2,3,4)

]
.

The analogous seven-point correlator can be found in appendix F.1, and the sum over permuta-
tions in (3.68) can be reconstructed from section 3.3.4.

One excited spin field Again, the vanishing of the relevant spin sums leads to

4∑
ν=1

(−1)ν+1
〈〈
ψµ1ψν1(z1)Sa(zA)Sλ

b(zB)
〉〉

ν
= 0 ,

resulting in a vanishing three-point amplitude. The first non-vanishing spin-summed correlator
with an excited spin field requires two insertions of ψµiψνi (zi),

1p
2

4∑
ν=1

(−1)ν+1
〈〈
ψµ1ψν1(z1)ψµ2ψν2(z2)Sa(zA)Sλ

b(zB)
〉〉

ν

= (γµ1ν1µ2)abη
ν2λH(0)

; +ην1µ2(γµ1)abη
ν2λH(0)

12 +permutations, (3.70)
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with

H(0)
; = H(0)

12 =−1
2

,

or equivalently

4∑
ν=1

(−1)ν+1
〈〈
ψµ1ψν1(z1)ψµ2ψν2(z2)Sa(zA)Sλ

b(zB)
〉〉

ν

= 1p
2

[
(γµ1ν1[µ2)abη

ν2]λ+ (γ[µ1)abη
ν1][µ2ην2]λ+ (1↔ 2)

]
= 1p

2

[
ηλ[ν2(γµ2]γµ1ν1)ab + (1↔ 2)

]
.

The corresponding five-point correlator

2
p

2
4∑

ν=1
(−1)ν+1

〈〈
ψµ1ψν1(z1)ψµ2ψν2(z2)ψµ3ψν3(z3)Sa(zA)Sλ

b(zB)
〉〉

ν

= (γµ1ν1µ2ν2µ3)abη
λν3 H(1)

; +ην1µ2(γµ1ν2µ3)abη
λν3 H(1)

[12]

+ην1µ2ηµ1ν2(γµ3)abη
λν3 H(1)

(12) + (γµ1µ2ν2)abη
ν1µ3ηλν3 H(1)

13

+ηµ1µ2(γν2)abη
ν1µ3ηλν3 H(1)

12,13 +permutations (3.71)

involves the following doubly-periodic functions H(1)
... ≡ H(1)

... (z j, zA, zB):

H(1)
; (z j, zA, zB)=−V1(1, A,B)−V1(2, A,B)

H(1)
[12](z j, zA, zB)=−V1(1,2, A,B)−V1(1,2,B, A)

H(1)
(12)(z j, zA, zB)=−V1(1,2, A,B)+V1(1,2,B, A)

H(1)
13 (z j, zA, zB)=−V1(1,3, A,2,B)−V1(1,3,B,2, A)−V1(2, A,3,B)

H(1)
12,13(z j, zA, zB)=−2V1(1,2, A,B,3)−V1(1, A,2,B) .

The analogous six-point correlator is presented in appendix F.2, and the sum over permutations
in (3.70) and (3.71) can be reconstructed from (3.38) and (3.39).

Note that (3.67) and (3.71) yield an expression for the worldsheet integrand of the five-point
amplitude (3.10) in terms of the f (1)

i j functions with i, j ∈ {1,2,3, A,B}. It would be interesting to
relate its factorization properties to the general considerations of [53, 105] on the distributions
of superghost picture numbers at the boundary of (super-)moduli space.
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FOUR

CONCLUSION AND OUTLOOK

In this thesis, we have presented various tools for computing scattering amplitudes of super-
string theory at tree level and one-loop. Here, we summarize the main results of this work and
anticipate potential outlooks.

4.1 Tree level superstring amplitudes

In addition to the review on the formal structure of string amplitudes in chapter 1, in chapter 2
we have provided a method to construct supersymmetric Berends–Giele currents of 10D SYM by
perturbatively solving equations of motion of 10D SYM. This method allows us to find kinematic
factors of tree level open superstring amplitudes without relying on the CFT techniques of the
PS superstring theory.

Also, we have considered two different gauge choices on Berends–Giele currents, called the
BCJ gauge and the HS gauge. We have shown that through the BCJ gauge, one can arrive at a
set of Berends–Giele currents whose kinematic numerators manifestly satisfying the BCJ color-
kinematics duality. Consequently, we have established a systematic method to generate BCJ
satisfying kinematic numerators, which are essential to study the double-copy structure of tree
level scattering amplitudes. In section 2.4, we have introduced the HS gauge which simplifies
the θ-expansion of a given superfield.

One of obvious future research directions relevant to chapter 2 is the application of super-
symmetric Berends–Giele currents to loop amplitudes. In the same way as the building block
(2.49) is specific to tree amplitudes, any loop order singles out specific scalar combinations of
multiparticle superfields which are BRST invariant at the linearized level, e.g.

MA(λγmWB)(λγnWC)F mn
D ↔ 1-loop [88, 34, 77] (4.1)

(λγmnpqrλ)(λγsWA)F mn
B F

pq
C F rs

D ↔ 2-loop [89, 28]

(λγmW n
A )(λγnW

p
B )(λγpW m

C ) ↔ 3-loop [78].

They describe the low-energy limit in string theory and are motivated by the zero-mode sat-
uration rules of the pure spinor formalism [15, 88]. Moreover, they are believed to represent
box, double-box and Mercedes-star diagrams in SYM amplitudes to arbitrary multiplicity, see
[27, 28]. Again, HS gauge as well as the theta-expansions in (2.46), (2.47) and Appendix B
greatly simplify their component evaluation via (2.3).

In contrast to tree level, loop amplitudes in SYM and superstring theory additionally involve
tensorial building blocks contracting the loop momenta where HS gauge yields comparable ben-
efits in the component evaluation. One-loop kinematic factors generalizing (4.1) to arbitrary
tensor rank have been constructed in [83], and some of them have been defined in terms of the
superfields H12...p from the transformation to BCJ gauge. As will be described elsewhere, kine-
matic factors with explicit reference to gauge parameters will require extra care when adapted
to different non-linear gauges. At any rate, HS gauge for Berends-Giele currents sets new scales
for the computational effort in component evaluations.

4.2 One-loop superstring amplitudes

In chapter 3, we have studied the correlation functions of two fermionic and any number of
bosonic vertex operators on the torus, with particular emphasis on the cancellations between

59
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different spin structures reflecting spacetime supersymmetry. These correlators form the world-
sheet integrands for the respective massless one-loop amplitudes of the open RNS superstring,
and their double copy yields closed-string amplitudes involving up to two Ramond–Ramond
forms, gravitinos or dilatinos.

Among other things, the resulting fermionic RNS amplitudes are useful to test the equiv-
alence with the pure spinor formalism in more advanced situations. For example, the explicit
correlators in section 3.5.5 and appendix F.2 are suitable for comparison with the five- [34] and
six-point [35] results in pure spinor superspace.

Moreover, the τ→ i∞ limit of the present results extends the RNS ambitwistor-string setup
[23, 24] to CHY formulae for one-loop SYM amplitudes with external fermions and the corre-
sponding supergravity amplitudes. In particular, the tensor structure of our correlators at τ→
i∞ can be converted to explicit and local BCJ numerators using the techniques of [19]. Finally,
we hope that our results are useful to study the forward-limit relations between ambitwistor-
string correlators at different loop orders and the application of the gluing operators in [129].

While a detailed investigation of the resulting string and field-theory amplitudes is relegated
to the future, the major novelties of Chapter 3 are

(i) the one-loop correlation functions involving one excited spin field from the fermion vertex
in the +1

2 picture and any number of Lorentz currents

(ii) an algorithmic method to systematically perform and simplify the sum over spin struc-
tures for the one-loop integrand of two-fermion amplitudes

The n-point correlator (i) can be found in section 3.3.5, and the mathematical techniques for the
spin sums (ii) are presented in section 3.5, see in particular section 3.5.5 and appendix F for
explicit n ≤ 6-point expressions.

A mild generalization of the techniques which led to the main results (i) and (ii) can be ap-
plied to one-loop correlators involving any number of fermion pairs. And we expect that several
of the mathematical tools developed in this work are helpful for higher-genus amplitudes, for
instance to extend the two-loop spin sums of [130, 124] for bosonic external states to fermionic
amplitudes.

On the one hand, the pure spinor formalism bypasses the spin sums, gathers all component
amplitudes into supersymmetric expressions and held the key to the first explicit three-loop cal-
culation [92]. On the other hand, the form of the RNS spin sums at genus one given in [32, 33]
pinpointed the ubiquity of doubly-periodic functions f (n)(z,τ) (see section 3.4) in multiparticle
correlators which is crucial to construct the latter from an ansatz in both RNS- and pure spinor
variables. Hence, we expect that explicit control over RNS spin sums provides valuable inspi-
ration for the design of multiparticle correlators at genus one [27, 28, 29] and higher genus and
appropriate generalizations of the f (n)(z,τ) functions.

Another kind of follow-up question concerns the extension of the present results to string
compactifications with reduced supersymmetry, see e.g. [131] for a review. Higher-genus cor-
relators involving two spin fields and an arbitrary number of NS fermions were found to be
robust under dimensional reduction [110], and the same is expected for excited spin fields, see
[132] for tree level evidence. It remains to incorporate the fingerprints of the compactification
geometry on the fermionic vertex operators where universal statements for a given number of
supersymmetries can be made from [96, 133, 134, 135].

For bosonic one-loop amplitudes, the spin sums in half-maximally and quarter-maximally
supersymmetric setups could be identified as specializations of maximally supersymmetric spin
sums with two additional legs [126]. Upon extrapolation to external fermions, the spin-summed
five- and six-point correlators in the maximally supersymmetric setup of this work should admit
a similar map to spin summed three- and four-point correlators with reduced supersymmetry.
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The resulting expressions for fermionic one-loop RNS amplitudes with reduced supersym-
metry will provide helpful cross-checks and guidance to supersymmetrize their bosonic counter-
parts [127, 128, 126]: They are important in comparing RNS results with one-loop amplitudes
in the hybrid formalism with four or eight supercharges manifest [136, 137, 138, 139]. While
one-loop hybrid amplitudes with maximally supersymmetric multiplets in the loop have been
computed in [140], it remains to derive their generalizations to spectra with reduced supersym-
metry.
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Appendix A

BCJ GAUGE VERSUS LORENZ GAUGE AT RANK FIVE

In this appendix, we verify that the supersymmetric Berends–Giele currents at rank five in BCJ
gauge and Lorenz gauge are related by a non-linear gauge transformation as in (2.26). Straight-
forward but tedious calculations lead to the following translation between local superfields in
BCJ and Lorenz gauge,

Am
[1234,5] =Âm

[1234,5] −km
12345Ĥ[1234,5]

− (k1 ·k2)(Ĥ[134,5] Am
2 + Ĥ[14,5] Am

23 + Ĥ[13,5] Am
24 + Ĥ[13,4] Am

25 − (1↔ 2))

− (k12 ·k3)(Ĥ[124,5] Am
3 + Ĥ[12,5] Am

34 + Ĥ[12,4] Am
35 − Ĥ[34,5] Am

12)

− (k123 ·k4)(Ĥ[123,5] Am
4 + Ĥ[12,3] Am

45)− (k1234 ·k5)(Ĥ[123,4] Am
5 )

Am
[123,45] =Âm

[123,45] −km
12345Ĥ[123,45] − (k1 ·k2)(Ĥ[13,45] Am

2 + Ĥ[45,2] Am
13 − (1↔ 2))

− (k12 ·k3)(Ĥ[12,45] Am
3 + Ĥ[45,3] Am

12)− (k123 ·k45)(Ĥ[12,3] Am
45)

− (k4 ·k5)(Ĥ[123,4] Am
5 − Ĥ[123,5] Am

4 )

Am
[[12,34],5] =Âm

[[12,34],5] −km
12345Ĥ[[12,34],5]

− (k1 ·k2)(Ĥ[34,2] Am
15 − Ĥ[34,1] Am

25 + Ĥ[342,5] Am
1 − Ĥ[341,5] Am

2 )

− (k3 ·k4)(Ĥ[12,3] Am
45 − Ĥ[12,4] Am

35 + Ĥ[123,5] Am
4 − Ĥ[124,5] Am

3 )

− (k12 ·k34)(Ĥ[12,5] Am
34 − Ĥ[34,5] Am

12)− (k1234 ·k5)(Ĥ[12,34] Am
5 ),

where the second and third equations can be regarded as the definitions of Ĥ[123,45] and Ĥ[[12,34],5].
The solution of the former is given in (2.23) and (2.21) while the latter is

Ĥ[[12,34],5] = H[1234,5] −H[1243,5] −
1
2

H[12,34](k1234 · A5) .

Plugging the above equations into the generic definition of the rank-five Berends–Giele current
as displayed in fig. A.1, namely,

s12345K12345 =
K[1,4532]

s2345s345s45
− K[1,3452]

s2345s345s34
− K[1,3425]

s2345s234s34
+ K[1,2345]

s2345s234s23
− K[12,453]

s345s12s45

+ K[12,345]

s345s12s34
+ K[45,231]

s123s23s45
− K[45,123]

s123s12s45
+ K[3421,5]

s1234s234s34
− K[2341,5]

s1234s234s23

− K[2314,5]

s1234s123s23
+ K[1234,5]

s1234s123s12
+ K[1,[23,45]]

s2345s23s45
− K[5,[12,34]]

s1234s12s34
,
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1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

K[[[[1,2],3],4],5]

s12s123s1234s12345

K[[[1,2],[3,4]],5]

s12s34s1234s12345

K[[1,[[2,3],4]],5]

s23s234s1234s12345

K[[1,[2,3]],[4,5]]

s23s123s45s12345

K[[1,2],[3,[4,5]]]

s12s345s45s12345

K[1,[[2,[3,4]],5]]

s34s234s2345s12345

K[1,[2,[[3,4],5]]]

s34s345s2345s12345

K[[[1,[2,3]],4],5]

s23s123s1234s12345

K[[[1,2],3],[4,5]]

s12s123s45s12345

K[[1,[2,[3,4]]],5]

s34s234s1234s12345

K[1,[2,[3,[4,5]]]]

s45s345s2345s12345

K[1,[[2,3],[4,5]]]

s23s2345s45s12345

K[1,[[[2,3],4],5]]

s23s234s2345s12345

K[[1,2],[[3,4],5]]

s12s34s345s12345

Figure A.1: The fourteen binary trees used in the definition of K12345.

leads to

A
m,BCJ
12345 =A

m,L
12345 −km

12345H12345 +A m
1 H2345 +A m

12H345 −A m
5 H1234 −A m

45H123.

By the vanishing of H i and H i j, this reproduces the non-linear gauge transformation (2.26) at
multiplicity five.



Appendix B

THETA-EXPANSIONS IN HARNAD–SHNIDER GAUGE

B.1 Theta-expansions of A P
α ,A m

P ,W α
P ,F mn

P

The component prescription (2.3) in pure spinor superspace requires the theta-expansion of the
enclosed superfields up to the order θ5. The expansions up to θ5 of the Berends–Giele currents
A P
α ,A m

P ,W α
P ,F mn

P in HS gauge can be found in (2.46) up to deconcatenation terms. These are
now spelt out:

[A m
X ,Y ]5 = 1

320
(θγmnrθ)(θγrpqθ)(XXγnθ)fpq

Y − (X ↔Y )

[W α
X ,Y ]4 =− 1

64
(θγ q

m )α(θγqnpθ)(XXγ
mθ)fnp

Y − (X ↔Y )

[W α
X ,Y ]5 = 1

120
(θγ q

m )α(θγnpqθ)(XXγ
mθ)(X n

Y γ
pθ)+ 1

240
(θγ q

n )α(θγmpqθ)(XXγ
mθ)(X n

Y γ
pθ)

− 1
1280

(θγrs)α(θγmnrθ)(θγpqsθ)fmn
X fpq

Y − (X ↔Y )

[F mn
X ,Y ]3 =1

8
(θγ [m

pq θ)(XXγ
n]θ)fpq

Y − (X ↔Y )

[F mn
X ,Y ]4 =− 1

12
(θγ [m

pq θ)(XXγ
n]θ)(X p

Y γ
qθ)− 1

24
(θγpq[mθ)(XXγpθ)(X n]

Y γqθ)

− 1
128

(θγ[m
pqθ)(θγn]

rsθ)fpq
X frs

Y − (X ↔Y )

[F mn
X ,Y ]5 =− 1

192
(θγ[m

psθ)(XXγ
n]θ)fp|qr

Y (θγs
qrθ)− 1

320
(XXγ

pθ)(θγ [m
ps θ)fn]|qr

Y (θγs
qrθ)

− 1
320

(θγ [m
ps θ)(X n]

X γpθ)fqr
Y (θγs

qrθ)+ 1
96

(θγ[m
pqθ)(θγn]

rsθ)(X p
Xγ

qθ)frs
Y − (X ↔Y )

[F mn
X ,Y ,Z]5 =− 1

24
(θγ [m

pq θ)(XXγ
n]θ)(XYγ

pθ)(XZγ
qθ)+ (X ↔ Z).

B.2 Theta-expansions of the simplest higher-mass dimension superfields

For the simplest superfields of higher mass dimension, the theta-expansion in HS gauge that
starts as in (2.47) and has the following second and third order:

[W mα
P ]2 =−1

4
(θγnp)α(X mn

P γpθ)+ ∑
XY=P

[1
4

(θγnp)α(XXγ
mθ)fnp

Y

− 1
8

(θγm
npθ)X α

X f
np
Y − (X ↔Y )

]
[W mα

P ]3 =− 1
48

(θγ r
n )α(θγrpqθ)fmn|pq

P + ∑
XY=P

[− 1
4

(θγnp)α(XXγ
mθ)(X n

Y γ
pθ)

− 1
6

(θγnp)α(XXγ
nθ)(X m

Y γpθ)− 1
12

(θγm
npθ)(X n

Xγ
pθ)X α

Y

− 1
32

(θγnp)α(θγm
qrθ)fnp

X fqr
Y − (X ↔Y )

]
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[F m|pq
P ]2 =−1

8
fm[p

|nr(θγq]nrθ)− ∑
XY=P

[
(XXγ

mθ)(X [p
Y γq]θ)

+ (X m
X γ[pθ)(XYγ

q]θ)+ 1
8

(θγm
nrθ)fpq

X fnr
Y − (X ↔Y )

]
[F m|pq

P ]3 = 1
12

(X m[p
B nγrθ)(θγq]nrθ)+ ∑

XY=P

[1
8

(XXγ
mθ)(θγ[p

nrθ)fq]|nr

+ 1
8

(θγ [p
nr θ)(XXγ

q]θ)fm|nr
Y − 1

8
(X m

X γ[pθ)(θγq]
nrθ)fnr

Y

+ 1
8

(θγm
nrθ)(X [p

X γq]θ)fnr
Y − 1

12
(θγm

nrθ)(X n
Xγ

rθ)fpq
Y − (X ↔Y )

]
+ ∑

XY Z=P

[
(XXγ

[pθ)(XYγ
q]θ)(XZγ

mθ)+ (X ↔ Z)
]

.

B.3 Theta-expansions of generic higher-mass dimension superfields

For superfields of higher mass dimension as defined in (2.38), the theta-expansion in HS gauge
is governed by the recursion

[WNα]k =
1
k

{1
4

(θγpq)α[FN|pq]k−1 +
∑

M∈P(N)
M 6=0

k−1∑
l=0

{
([W]lγθ)M , [W(N\M)α]k−l−1

}}
(B.2a)

[FN|pq]k =−1
k

{
([WN[p]k−1γ

q]θ)− ∑
M∈P(N)

M 6=0

k−1∑
l=0

[
([W]lγθ)M , [F(N\M)|pq]k−l−1

]}
. (B.2b)

We are using multi-index notation N ≡ n1n2 . . .nk, where the power set P(N) consists of the 2k

ordered subsets of N, and (Wγ)N ≡ (Wn1...nk−1γnk ). Their resulting theta-expansion to subleading
order is given by

W Nα
P (θ)=X Nα

P + 1
4

(θγpq)αfN|pq
P

+ ∑
XY=P

∑
M∈P(N)

M 6=0

[
(XXγθ)MX (N\M)α

Y − (XYγθ)MX (N\M)α
X

]+ . . .

F
N|pq
P (θ)= fN|pq

P − (X N[pγq]θ)

+ ∑
XY=P

∑
M∈P(N)

M 6=0

[
(XXγθ)Mf(N\M)|pq

Y − (XYγθ)Mf(N\M)|pq
X

]+ . . . .



Appendix C

OPES AND BOSONIZATION

The bosonization technique discussed in section 3.3.2 renders the OPEs among ψµ and spin
fields Sa,Sb of SO(D = 2n) accessible to free-field methods. For example, (3.18) and (3.19) give
rise to

ψµ(z)Sa(0)=eiµ·H(z) eia·H(0) ∼ zµ·aei(µ+a)·H(0)
(
1+ ziµ ·∂H(0)+ . . .

)
. (C.1)

Since µ= (0, . . . ,0,±1,0, . . . ,0) and a = (±1
2 ,±1

2 , . . . ,±1
2 ), the exponent µ ·a of z is either −1

2 or +1
2 .

Therefore, one can split (C.1) into (up to the subleading order)

ψµ(z)Sa(0)∼


1

z1/2 ei(µ+a)·H(0) + z1/2 iµ ·∂Hei(µ+a)·H(0) if µ ·a =−1
2

z1/2ei(µ+a)·H(0) if µ ·a =+1
2

.

The subleading term iµ ·∂Hei(µ+a)·H(0) can be further decomposed into a primary and a descen-
dant part with respect to the energy-momentum tensor T(z)=−1

2∂H·∂H of the bosonized system,

iµ ·∂Hei(µ+a)·H(0) = 4
D

i(µ+a) ·∂Hei(µ+a)·H(0) + i
(

D−4
D

µ− 4
D

a
)
·∂Hei(µ+a)·H(0) .

Thus, we have primary fields Sµ
a(z) defined by

Sµ
a(z)= δ

(
µ·a+1

2

)(
D−4

D
µ− 4

D
a
)
·i∂Hei(µ+a)·H(z) +δ

(
µ·a−1

2

)
ei(µ+a)·H(z) (C.2)

at the subleading order in the OPE (C.1). Although the first term of (C.2) could in principle be
used in section 3.3.3 to evaluate components of the correlators involving Sµ

a, we found the second
term ei(µ+a)·H(z) more convenient to extract the small number of required examples.

Moreover, if µ·a =−1
2 , the resulting lattice vector µ+a = b refers to a spin field Sb of opposite

chirality. Therefore, the OPE (C.1) can be written as

ψµ(z)Sa(0)∼ ∑
b∈(±1

2 ,...,±1
2 )

δ(µ+a−b)
z1/2

{
eib·H(0) + z

4
D
∂eib·H(0)

}
+ z1/2Sµ

a(0)

≡
γ
µ

abp
2z1/2

{
Sb(0)+ z

4
D
∂Sb(0)

}
+ z1/2Sµ

a(0) .

In passing to the last line, we have used the definition (3.21) of gamma-matrices in the Cartan–
Weyl basis, where the sign of b is flipped by the contraction through the charge-conjugation
matrix in γ

µ

abSb. The computation above exemplifies how Lorentz covariance can be a posteriori
restored in results obtained from bosonization. In [102, 119, 110], this procedure is applied to
construct higher-point correlation functions involving ψµ and Sa.
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Appendix D

EXAMPLES FOR THE STANDARD FORM OF SPIN SUMS

This appendix complements the discussion in section 3.4.2 by identifying the standard form
(3.47) of spin sums in correlators with three insertions of ψµ jψν j (z j). The evaluation of the spin
sums is addressed in section 3.5.

D.1 Unexcited spin fields

With two unexcited spin fields, the five-point correlator

8
4∑

ν=1
(−1)ν+1

〈〈
ψµ1ψν1(z1)ψµ2ψν2(z2)ψµ3ψν3(z3)Sa(zA)Sb(zB)

〉〉
ν

= (ην1[µ2ην2][µ3ην3]µ1 −ηµ1[µ2ην2][µ3ην3]ν1)δa
b ξ(1)(z1, z2, z3, zA, zB)

+
[
(ηµ2[ν1(γµ1]ν2µ3ν3)a

b −ην2[ν1(γµ1]µ2µ3ν3)a
b) ξ(2)(z1, z2, z3, zA, zB)

+ (ηµ3[ν2ηµ2][ν1(γµ1]ν3)a
b −ην3[ν2ηµ2][ν1(γµ1]µ3)a

b) ξ(3)(z1, z2, z3, zA, zB)

+ (ην1[µ2ην2]µ1 −ηµ1[µ2ην2]ν1)(γµ3ν3)a
b ξ(4)(z1, z2, z3, zA, zB)+cyc(1,2,3)

]
+ (γµ1ν1µ2ν2µ3ν3)a

bξ(5)(z1, z2, z3, zA, zB) (D.1)

involves spin sums

ξ(1)(zi, z j, zk, zA, zB)=− 1
EAB

W

(
zi j, z jk, zki

∣∣∣∣1
2

y
)
+ E iAEkB

EABE iBEkA
W

(
zi j, z jk, zik

∣∣∣∣1
2

y
)

+ E jBEkA

EABE jAEkB
W

(
zi j, zki, zk j

∣∣∣∣1
2

y
)
− E iAE jB

EABE iBE jA
W

(
zi j, zk j, zik

∣∣∣∣1
2

y
)

+ E iBE jA

EABE iAE jB
W

(
z jk, zki, z ji

∣∣∣∣1
2

y
)
− E jAEkB

EABE jBEkA
W

(
z jk, z ji, zik

∣∣∣∣1
2

y
)

− E iBEkA

EABE iAEkB
W

(
zki, z ji, zk j

∣∣∣∣1
2

y
)
+ 1

EAB
W

(
z ji, zk j, zik

∣∣∣∣1
2

y
)

ξ(2)(zi, z j, zk, zA, zB)= 1
EAB

W

(
zi j, z jk, zki

∣∣∣∣1
2

y
)
+ E iAEkB

EABE iBEkA
W

(
zi j, z jk, zik

∣∣∣∣1
2

y
)

+ E jBEkA

EABE jAEkB
W

(
zi j, zki, zk j

∣∣∣∣1
2

y
)
+ E iAE jB

EABE iBE jA
W

(
zi j, zk j, zik

∣∣∣∣1
2

y
)

− E iBE jA

EABE iAE jB
W

(
z jk, zki, z ji

∣∣∣∣1
2

y
)
− E jAEkB

EABE jBEkA
W

(
z jk, z ji, zik

∣∣∣∣1
2

y
)

− E iBEkA

EABE iAEkB
W

(
zki, z ji, zk j

∣∣∣∣1
2

y
)
− 1

EAB
W

(
z ji, zk j, zik

∣∣∣∣1
2

y
)
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ξ(3)(zi, z j, zk, zA, zB)=− 1
EAB

W

(
zi j, z jk, zki

∣∣∣∣1
2

y
)
− E iAEkB

EABE iBEkA
W

(
zi j, z jk, zik

∣∣∣∣1
2

y
)

+ E jBEkA

EABE jAEkB
W

(
zi j, zki, zk j

∣∣∣∣1
2

y
)
+ E iAE jB

EABE iBE jA
W

(
zi j, zk j, zik

∣∣∣∣1
2

y
)

+ E iBE jA

EABE iAE jB
W

(
z jk, zki, z ji

∣∣∣∣1
2

y
)
+ E jAEkB

EABE jBEkA
W

(
z jk, z ji, zik

∣∣∣∣1
2

y
)

− E iBEkA

EABE iAEkB
W

(
zki, z ji, zk j

∣∣∣∣1
2

y
)
− 1

EAB
W

(
z ji, zk j, zik

∣∣∣∣1
2

y
)

ξ(4)(zi, z j, zk, zA, zB)=− EkB

EkA
W

(
zBk, zi j, z ji, zBk

∣∣∣∣1
2

y
)
+ EkBE iAE jB

E iBE jAEkA
W

(
zBk, zi j, zBk, zi j

∣∣∣∣1
2

y
)

+ EkBE iBE jA

E iAE jBEkA
W

(
zBk, z ji, zBk, z ji

∣∣∣∣1
2

y
)
− EkB

EkA
W

(
zBk, zBk, z ji, zi j

∣∣∣∣1
2

y
)

ξ(5)(zi, z j, zk, zA, zB)= 1
EAB

W

(
zi j, z jk, zki

∣∣∣∣1
2

y
)
+ E iAEkB

EABE iBEkA
W

(
zi j, z jk, zik

∣∣∣∣1
2

y
)

+ E jBEkA

EABE jAEkB
W

(
zi j, zki, zk j

∣∣∣∣1
2

y
)
+ E iAE jB

EABE iBE jA
W

(
zi j, zk j, zik

∣∣∣∣1
2

y
)

+ E iBE jA

EABE iAE jB
W

(
z jk, zki, z ji

∣∣∣∣1
2

y
)
+ E jAEkB

EABE jBEkA
W

(
z jk, z ji, zik

∣∣∣∣1
2

y
)

+ E iBEkA

EABE iAEkB
W

(
zki, z ji, zk j

∣∣∣∣1
2

y
)
+ 1

EAB
W

(
z ji, zk j, zik

∣∣∣∣1
2

y
)

.

The notation +cyc(1,2,3) in (D.1) refers to cyclic permutations of both the Lorentz indices and the
punctures including for instance {(z1,µ1,ν1), (z2,µ2,ν2), (z3,µ3,ν3)} → {(z2,µ2,ν2), (z3,µ3,ν3), (z1,µ1,ν1)}.

D.2 Excited spin field

In case of an excited spin field, the five-point correlator

4
p

2
4∑

ν=1
(−1)ν+1

〈〈
ψµ1ψν1(z1)ψµ2ψν2(z2)ψµ3ψν3(z3)Sa(zA)Sλ

b(zB)
〉〉

ν

=
[
(γµ1ν1µ2ν2[µ3)abη

ν3]λ Ξ(1)(z1, z2, z3, zA, zB)

+ (ηµ2[ν1(γµ1]ν2[µ3)ab −ην2[ν1(γµ1]µ2[µ3)ab)ην3]λ Ξ(2)(z1, z2, z3, zA, zB)

+ (ηµ2[ν1ηµ1]ν2 −ην2|[ν1ηµ1]µ2)(γ[µ3)abη
ν3]λ Ξ(3)(z1, z2, z3, zA, zB)+cyc(1,2,3)

]
+

[
(γµ1ν1[µ2)abη

ν2][µ3ην3]λ Ξ(4)(z1, z2, z3, zA, zB)

+ (γ[µ1)abη
ν1][µ2ην2][µ3ην3]λ Ξ(5)(z1, z2, z3, zA, zB)+perm(1,2,3)

]
involves spin sums

Ξ(1)(zi, z j, zk, zA, zB)=− 1
EAB

W

(
zBi, zkB, zi j, z jk

∣∣∣∣1
2

y
)
− E jBEkA

EABE jAEkB
W

(
zBi, zkB, zi j, zk j

∣∣∣∣1
2

y
)

− E iBE jA
EABE iAE jB

W

(
zBi, zkB, z jk, z ji

∣∣∣∣1
2

y
)
− E iBEkA

EABE iAEkB
W

(
zBi, zkB, z ji, zk j

∣∣∣∣1
2

y
)

Ξ(2)(zi, z j, zk, zA, zB)=− 1
EAB

W

(
zBi, zkB, zi j, z jk

∣∣∣∣1
2

y
)
− E jBEkA

EABE jAEkB
W

(
zBi, zkB, zi j, zk j

∣∣∣∣1
2

y
)

+ E iBE jA
EABE iAE jB

W

(
zBi, zkB, z jk, z ji

∣∣∣∣1
2

y
)
+ E iBEkA

EABE iAEkB
W

(
zBi, zkB, z ji, zk j

∣∣∣∣1
2

y
)
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Ξ(3)(zi, z j, zk, zA, zB)= 1
EAB

W

(
zi j, z ji, zBk, zkB

∣∣∣∣1
2

y
)
− E iAE jB

E iBE jAEAB
W

(
zi j, zBk, zkB, zi j

∣∣∣∣1
2

y
)

− E iBE jA
E iAE jBEAB

W

(
z ji, zBk, zkB, z ji

∣∣∣∣1
2

y
)
+ 1

EAB
W

(
zBk, zkB, z ji, zi j

∣∣∣∣1
2

y
)

Ξ(4)(zi, z j, zk, zA, zB)=− 1
EAB

W

(
zBi, zkB, zi j, z jk

∣∣∣∣1
2

y
)
+ E jBEkA

EABE jAEkB
W

(
zBi, zkB, zi j, zk j

∣∣∣∣1
2

y
)

− E iBE jA
EABE iAE jB

W

(
zBi, zkB, z jk, z ji

∣∣∣∣1
2

y
)
+ E iBEkA

EABE iAEkB
W

(
zBi, zkB, z ji, zk j

∣∣∣∣1
2

y
)

Ξ(5)(zi, z j, zk, zA, zB)=− 1
EAB

W

(
zBi, zkB, zi j, z jk

∣∣∣∣1
2

y
)
+ E jBEkA

EABE jAEkB
W

(
zBi, zkB, zi j, zk j

∣∣∣∣1
2

y
)

+ E iBE jA
EABE iAE jB

W

(
zBi, zkB, z jk, z ji

∣∣∣∣1
2

y
)
− E iBEkA

EABE iAEkB
W

(
zBi, zkB, z ji, zk j |

)
.
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Appendix E

SOME IDENTITIES OF ELLIPTIC FUNCTIONS

In this section, we present some identities which are useful for implementing spin sums in
chapter 2. We begin with recalling two elementary theorems of elliptic functions whose proofs
can be found in the standard literature on elliptic functions such as [141].

THEOREM E.1. The sum of residues over an irreducible set of poles of an elliptic function van-
ishes.

THEOREM E.2. An elliptic function with an empty irreducible set of poles is a constant function.

On the basis of these two theorems we state the following identities.

PROPOSITION E.3. Let F(x, y) be a Eisenstein-Kronecker series defined by

F(x, y)= θ′1(0)θ1(x+ y)
θ1(x)θ1(y)

which has the quasi-periodicity as

F(x+1, y)= F(x, y), F(x+τ, y)= e−2πi yF(x, y). (E.1)

Then,

F(x, y)F(−x, y)=℘(y)−℘(x)

where ℘(z) is the Weierstrass ℘-function defined by

℘(z)=−∂2
z logθ1(z)+ ∂3

zθ1(0)
3∂zθ(0)

.

Proof. It is obvious from the quasi-periodicity of F in (E.1) that F(x, y)F(x,−y) is an elliptic
function on both x and y with a pole with multiplicity two at x = 0 and y= 0. Therefore, one can
deduce that

F(x, y)F(−x, y)−℘(y)+℘(x) (E.2)

has no irreducible pole, so it is a constant by the theorem E.2. By inserting x = y one can also
show that the constant is zero, so the statement is true.

PROPOSITION E.4. Let ζ (x) and ℘ (x) be the Weierstrass ζ- and ℘-function and sν =
(
0, 1

2 , −1−τ
2 , τ2

)
where 1 and τ are elliptic periods of ζ and ℘. Then

2ζ (2x)=
4∑

ν=1
ζ (x+ sν) , 2k+2℘ (2x)=

4∑
ν=1

℘(k) (x+ sν) .

Proof. One can easily see that the summation
∑4
ν=1 ζ (x+ sν) has simple poles at x = ±sν, ν =

1,2,3,4 and under x → x+ sν,ν= 2,3,4 it transforms as

4∑
ν=1

ζ (x+ sν)→
4∑

ν=1
ζ (x+ sν)+8ην
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where ην = ζ (sν) for ν= 2,3,4. Therefore,

2ζ (2x)−
4∑

ν=1
ζ (x+ sν) (E.3)

is a constant due to the Liouville theorem. Then by inserting x = 0 to (E.3), we find that

2ζ (2x)−
4∑

ν=1
ζ (x+ sν)= 0

since η2 +η3 +η4 = 0. The second identity for ℘ can be then proven by noticing

℘ (x)=−ζ′ (z) .

We also present the Fay trisecant identities whose proof can be found in [120].

THEOREM E.5. Let θν(z) 6= 0 and consider complex variables {x1, x2, . . . , xn} and {y1, y2, . . . , yn},
where x j and yk are pairwise different for j,k = 1,2, . . . ,n. Then, the following Fay trisecant
identities hold for ν= 1,2,3,4 [120],

θν

(
n∑

j=1
(x j − yj)+ z

)
θν(z)n−1

∏n
j<k E(x j, xk)E(yk, yj)∏n

j,k=1 E(x j, yk)
= det

j,k

[
θν(x j − yk + z)

E(x j, yk)

]
, (E.4)

where the determinant refers to the n×n matrix with entries θν(x j−yk+z)
E(x j ,yk) .



Appendix F

EXAMPLES FOR SPIN-SUMMED CORRELATORS

This appendix adds further examples of spin-summed correlators to section 3.5.5.

F.1 Unexcited spin-fields

The seven-point generalization of the correlators in section 3.5.5 is given by

8
4∑

ν=1
(−1)ν+1

〈〈
ψµ1ψν1(z1)ψµ2ψν2(z2)ψµ3ψν3(z3)ψµ4ψν4(z4)ψµ5ψν5(z5)Sa(zA)Sb(zB)

〉〉
ν

= (γµ1ν1µ2ν2...µ5ν5)a
bh(2)

; +ην1µ2(γµ1ν2µ3ν3µ4ν4µ5ν5)a
bh(2)

[12]

+ην1µ2ηµ1ν2(γµ3ν3µ4ν4µ5ν5)a
bh(2)

(12) +ην1µ2ην2µ3(γµ1ν3µ4ν4µ5ν5)a
bh(2)

12,23

+ην1µ2ην3µ4(γµ1ν2µ3nu4µ5ν5)a
bh(2)

[12],[34] +ην1µ2ηµ1ν2ην3µ4(γµ3ν4µ5ν5)a
bh(2)

(12),[34]

+ην1µ2ην2µ3ηµ1ν3(γµ4ν4µ5ν5)a
bh(2)

[123] +ην1µ2ην2µ3ην3µ4(γµ1ν4µ5ν5)a
bh(2)

12,23,34

+ην1µ2ην2µ3ην4µ5(γµ1ν3µ4ν5)a
bh(2)

12,23,45 +ην1µ2ηµ1ν2ην3µ4ηµ3ν4(γµ5ν5)a
bh(2)

(12),(34)

+ην1µ2ην2µ3ηµ1ν3ην4µ5(γµ4ν5)a
bh(2)

[123],[45] +ην1µ2ην2µ3ην3µ4ηµ1ν4(γµ5ν5)a
bh(2)

(1234)

+ην1µ2ηµ1ν2ην3µ4ην4µ5(γµ3ν5)a
bh(2)

(12),34,45 +ην1µ2ην2µ3ην3µ4ην4µ5(γµ1ν5)a
bh(2)

12,23,34,45

+ην1µ2ην2µ3ην3µ1ην4µ5ην5µ4δb
ah(2)

[123],(45) +ην1µ2ην2µ3ην3µ4ην4µ5ηµ1ν5δb
ah(2)

(12345)

+permutations (F.1)

with the following doubly-periodic functions h(2)
... ≡ h(2)

... (z j, zA, zB):

h(2)
; (z j, zA, zB)=−

5∑
i=1

5∑
j=i+1

V2(i, A, j,B)−16V2(A,B) (F.2a)

h(2)
[12](z j, zA, zB)=

5∑
i=3

V2(1,2,B, i, A)+4V2(1,2, A,B)− (A ↔ B) (F.2b)

h(2)
(12)(z j, zA, zB)=

5∑
i=3

5∑
j=i+1

V2(i,B, j, A)−
2∑

i=1

5∑
j=i+1

V2(i,B, j, A)−4V2(1,2) (F.2c)

h(2)
12,23(z j, zA, zB)=

5∑
i=1,i 6=2

V2(2, A, i,B)−V2(1, A,3,B)−V2(4, A,5,B)

−2 {V2(2, A,1,3)+V2(2, A,3,1)+ (A ↔ B)} (F.2d)

h(2)
[12],[34](z j, zA, zB)=V2(1,2, A,3,4,B)− (1↔ 2)− (3↔ 4)+ (1↔ 2,3↔ 4) (F.2e)

h(2)
(12),[34](z j, zA, zB)= (V1(1, A,B)+V1(2, A,B)−V1(5, A,B))

× (V1(3,4, A,B)+V1(3,4,B, A))
−V2(3,4, A,B)+V2(3,4,B, A) (F.2f)
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h(2)
[123](z j, zA, zB)=V2(1, A,2,3,B)+

5∑
i=4

V2(1,2, A, i,B)+cyc(1,2,3)

− (A ↔ B) (F.2g)

h(2)
12,23,34(z j, zA, zB)=−V2(2, A,3,4,B)−V2(3, A,1,2,B)−

3∑
i=1

V2(i, i+1, A,5,B)

− (A ↔ B) (F.2h)

h(2)
12,23,45(z j, zA, zB)=−V2(2, A,4,5,B)+V2(2,B,4,5, A) (F.2i)

h(2)
(12),(34)(z j, zA, zB)=V2(1, A,2,B)+V2(3, A,4,B)+4V2(1,2)+4V2(3,4)

+
4∑

i=1
V2(i, A,5,B)−

2∑
i=1

4∑
j=3

V2(i, A, j,B) (F.2j)

h(2)
[123],[45](z j, zA, zB)=−2V1(1,2,3)(V1(4,5, A,B)+V1(4,5,B, A)) (F.2k)

h(2)
(1234)(z j, zA, zB)=V2(1, A,3,B)+V2(2, A,4,B)−

4∑
i=1

V2(i, A,5,B)

−4V2(1,2,3,4) (F.2l)

h(2)
(12),34,45(z j, zA, zB)=V2(1,B,4, A)+V2(2,B,4, A)−V2(1,B,2, A)−4V2(1,2)

−V2(3,B,4, A)−V2(4,B,5, A)+V2(3,B,5, A)

−2V2(3, A,5,4)−2V2(3,B,5,4) (F.2m)

h(2)
12,23,34,45(z j, zA, zB)=V2(1, A,2,B)−V2(2, A,4,B)+V2(4, A,5,B)

−V2(1, A,5,B)+2V2(1,2,3,4,5, A)+2V2(1,2,3,4,5,B) (F.2n)

h(2)
[123],(45)(z j, zA, zB)= (V2(1,2, A,B)+cyc(1,2,3))−V1(1,2,3)

5∑
i=1

V1(i, A,B)

− (A ↔ B) (F.2o)

h(2)
(12345)(z j, zA, zB)= (

V2(1, A,2,3,B)+V2(1, A,3,4,B)+V2(1, A,4,5,B)

+4V2(1,2, A,B)+cyc(1,2,3,4,5)
)− (A ↔ B) . (F.2p)

F.2 One excited spin-fields

The six-point generalization of the correlators in section 3.5.5 reads

4
p

2
4∑

ν=1
(−1)ν+1

〈〈
ψµ1ψν1(z1)ψµ2ψν2(z2)ψµ3ψν3(z3)ψµ4ψν4(z4)Sa(zA)Sλ

b(zB)
〉〉

ν

= (γµ1ν1µ2ν2µ3ν3µ4)abη
ν4λH(2)

; +ην1µ2(γµ1ν2µ3ν3µ4)abη
ν4λH(2)

[12]

+ην1µ2ηµ1ν2(γµ3ν3µ4)abη
ν4λH(2)

(12) +ην1µ2ην2µ3(γµ1ν3µ4)abη
ν4λH(2)

12,23

+ην1µ2ην2µ3ηµ1ν3(γµ4)abη
ν4λH(2)

[123] + (γµ1µ2ν2µ3ν3)abη
ν1µ4ην4λH(2)

14

+ην2µ3(γµ1µ2ν3)abη
ν1µ4ην4λH(2)

[23],14 +ην2µ3ηµ2ν3(γµ1)abη
ν1µ4ην4λH(2)

(23),14

+ (γν2µ3ν3)abη
µ1µ2ην1µ4ην4λH(2)

12,14 +ην2µ3(γν3)abη
µ1µ2ην1µ4ην4λH(2)

12,23,14

+permutations (F.3)
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with doubly-periodic functions H(2)
... ≡ H(2)

... (z j, zA, zB) given by

H(2)
; (z j, zA, zB)= [

V2(1, A,2,B)+cyc(1,2,3)
]−2V2(4,B)+8V2(A,B) (F.4a)

H(2)
[12](z j, zA, zB)=V2(1,2, A,3,B)−2V2(1,2, A,B)− (A ↔ B) (F.4b)

H(2)
(12)(z j, zA, zB)= [

V2(1,B,2, A)+cyc(1,2,3)
]+4V2(1,2)+2V2(4,B) (F.4c)

H(2)
12,23(z j, zA, zB)=−V2(1,B,2, A)−V2(2,B,3, A)+V2(1,B,3, A)

−2V2(1, A,3,2)−2V2(1,B,3,2)−2V2(4,B) (F.4d)

H(2)
[123](z j, zA, zB)=−2V2(2,3, A,B)−2V2(1,2, A,B,3)−V2(1, A,2,3,B)

− (A ↔ B) (F.4e)

H(2)
14 (z j, zA, zB)=

[
−2V2(1,4, A,B)−

3∑
i=2

V2(i, A,1,4,B)− (A ↔ B)
]

−
3∑

i=2
V2(i,B,4, A)+V2(2,B,3, A)+2V2(4,B) (F.4f)

H(2)
[23],14(z j, zA, zB)=

3∑
i=2

(V2(1, A, i,B)+V2(4, A, i,B))−2V2(1, A,4,B)

−2V2(2, A,3,B)−2V2(1,4, A,2,3,B)−2V2(1,4,B,2,3,B)

+V2(4, A,2,3,B)−V2(4,B,2,3, A) (F.4g)

H(2)
(23),14(z j, zA, zB)=

[
−

3∑
i=2

(V2(i, A,1,4,B))−2V2(1,4, A,B)− (A ↔ B)
]

−
3∑

i=2
V2(4, A, i,B)+4V2(2,3)+V2(2,B,3, A)−2V2(4,B) (F.4h)

H(2)
12,14(z j, zA, zB)=−2V2(2, A,1,4,B)+2V2(3, A,1,4,B)+2V2(1,B,2, A)

−V2(3, A,1,2,B)+V2(3,B,1,2, A)+4V2(4,B,2,1) (F.4i)

H(2)
12,23,14(z j, zA, zB)=−(

2V2(1,2, A,B)+2V2(1,4,B, A)+2V2(2,3, A,B)

+V2(1, A,2,3,B)− (A ↔ B)
)−2V2(2,B,4, A)

−2V2(1,4, A,3,2)−2V2(1,4,B,3,2)+2V2(2, A,1,4,B)

+2V2(4, A,2,1,B)+2V2(4, A,3,2,B)+2V2(4,B) . (F.4j)
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