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Abstract

In the 1977 paper of McCoy et al. (J. Math. Phys. 18, 1058-1092, 1977) it was
shown that the limiting two-point correlation function in the two-dimensional Ising
model is related to a second order nonlinear Painlevé function. This result identified
the scaling function as a tau-function and the corresponding connection problem was
solved by Tracy (Commun. Math. Phys. 142, 297-311, 1991), see also the works
by Tracy and Widom (Commun. Math. Phys. 190, 697-721, 1998). Here we present
the solution to a certain generalized version of the above connection problem which
is obtained through a refinement of the techniques chosen in Bothner (J. Stat. Phys.
170, 672-683, 2018).
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1 Introduction and Statement of Results

This note is concerned with the solution of a generalized connection problem for a
distinguished tau-function of the v-modified radial sinh-Gordon equation.

1.1 Modified Sinh-Gordon Equation and Connection Problem

In 1977, B. McCoy, C. Tracy and T. Wu derived the following result, see also [30]
for a much simpler proof.

Theorem 1.1 (McCoy, Tracy, Wu [21], 1977) Let

= / (””)V :
Sonltsv) = vi+1) yi+yin

y—l

n

<[T03-1) dej’ neZs,

j=1 j=1

with yy,4+1 = y1,t > 0and v > —%. Then for any X\ € [0, %],

exp |:— Z)Lz”fz,l (t; v):| = exp {i /tloo|:sinh2 W— (%) + — smh2 (g>:|v ds} cosh (%),

n=1
(1.1)

where = ¥ (t; v, A) € R solves the second order nonlinear ODE

v L L hep) + P sinhy (12)
— 4+ -—— = —sin — sin .
dr? ¢t dt 2S t s ’

subject to the boundary condition

o]

ey y—1\"
Yt v, A) ~ 2\ —— ) dy ast— +oo. (1.3)

1 y2—1\y+1

The right-hand side in (1.1), which we shall abbreviate as t(¢; v, A) below,
appeared first in the Wu, McCoy, Tracy, Barouch analysis [32] (for v = 0 and
A= %— the general case was introduced in [21]) of the scaling limit of the spin-
spin correlation function in the 2D Ising model. In a nutshell (cf. [22, 24] for more
details), if £ = £(T') is the temperature dependent correlation length (which diverges
as |T — TC|’1 near the critical temperature 7,) and (ogpopn) the 2-point function on
an isotropic Onsager lattice after the thermodynamic limit, then

R*{oooomn) = Fx(1), (1.4)

holds true in the massive scaling limit & — 00, R = v/ M? + N? — oo such that
t = R/& > 0is fixed. The + choice refers to the scaling limit taken either above or

@ Springer



Math Phys Anal Geom (2018) 21:37 Page3of14 37

below the critical temperature T, and F4 (¢) are the so-called scaling functions given
by

F (1) =2811 (z, 0, 1) and  Fo(t) = F_(t) tanh [lw <t; 0, l)} .
b4 2 b4
(1.5)
The nonlinear (1.2), coined v-modified radial sinh-Gordon equation, is intimately
related to Painlevé special function theory since u(¢; v, 1) := e~V (2nv.4) solves

u 1 du\? 1du  2v
a2

1
2 3
i P t(u 1) +u - (1.6)
which, cf. [23, 32.2.3], is Painlevé-1II with constants («, 8, ¥, §) = (2v, —2v, 1, —1).
Historically, (1.2), resp. (1.6), was the very first appearance of a Painlevé function
in a problem of mathematical physics - predating various field theoretic or nonlinear
wave theoretic applications and in particular predating their numerous appearances
in quantum gravity, enumerative topology, random matrix theory, combinatorics,
integrable probability, etc. It is known that v/ (¢; v, A), uniquely determined by the
above specified +oo behavior, is a highly transcendental function which cannot
be expressed in terms of known classical special functions (i.e. not in terms of a
finite number of contour integrals of elementary, or elliptic or finite genus algebraic
functions). This fact turns the underlying connection problem, i.e. the problem of
computing the ¢ | 0 behavior of ¥ (¢; v, A) from its known ¢t — +o00 asymptotics
(or vice versa), into a challenging and foremost nonstandard task. Nowadays pow-
erful analytical techniques of inverse scattering, isomonodromy or Riemann-Hilbert
theory allow us to derive the underlying connection formul® in a systematic fash-
ion. Again, [21] predates these approaches and McCoy, Tracy and Wu had, for the
very first time, derived a complete connection formula in case of (1.2), resp. (1.6). In
detail, they showed in [21, 1.10] that for fixed A € [0, %) the small 7-expansion of
u(t; v, A) is given by

t
u(z v, A) = Bt° (1 — %(1 — o) 2" 4 Bu(1 + o) 21 Fo + O(tz(lfg))) ,
1.7
with (¢, v, A)-differentiable error terms and where (o, B) are the following functions
of (v, A),

M1 -o) T+ 3(1+0)
A +o)re+id-o)’

_ % : . __»—30
o = —arcsin(wA) € [0,1); B =2 (1.8)
b4

in terms of Euler’s Gamma function I'(z), cf. [23, 5.2.1]. Note that B = B(v, o)
might vanish for v < 0, thus expansion (1.7) holds uniformly in (o, v) € [0, 1) x

—%, 400) \ {o = 1+ 2v} chosen from compact subsets. Also, B = B(v, o) is
negative iff o > 1 + 2v, compare Fig. 1 below. Hence, given our connection of
u(;v,\) = e ¥(Q25v.2) > 0 to the real-valued scaling functions in the 2D Ising
model (1.1), we shall in the following restrict ourselves, whenever working with (1.7)
and (1.8), to the values (o, v) € [0, 1) x (=3, +00) for which o < 1 + 2v.
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B(v,0)

Fig. 1 The coefficient B = B(v, o) as function of o € [0, 1] for varying v > 7% on the left. On the right
we display A = A(v, o) as computed in Theorem 1.2 below for o € [0, 1] with varying v > —% such that
v+ %(1 —0)>0

In addition to (1.7), the paper [21, 4.119] also investigated the behavior of
u(t; v, ) in the limito 1 (A 1 %) for small enough # and obtained
t 1 t 2 I, 5,
u(-; v, —) = loin?t—c)int + —(Ew) = 1)} +o(1), (1.9
b4 2 4v

where c(v) = 1 + 2v(3 In2 — 2y — Yo(1 + v)) which is defined in terms of the
digamma function ¥ (z), cf. [23, 5.2.2], and Euler’s constant yg, cf. [23, 5.2.3].

1.2 Hamiltonian Structure

Equation 1.2 is expressible as the Hamiltonian system

dg 9H dp aH t .., p? .2 (4
4 _ %P B _H ptv) = —sinhq—2 44 h(—)
ar op dr 3q (@, p.1.v) = 5 sinh”q =5 +4vsinh® {5

(1.10)

with the identification g = g (¢; v, L) = ¥ (¢; v, A) so that in turn from (1.1),

e %0
T(t; v, A) = exp |:§/ H(q, p,s, V)dS—vf sinh? (%) ds:| cosh (%)
t t
(1.11)

This equality identifies 7 (¢; 0, A) (modulo the cosh factor) as a tau-function for (1.2)
and the associated transcendent v (¢; 0, A), cf. [16]. For v # 0 a similar statement
does not appear to be true, however if we allow Painlevé-III (1.6) to re-enter at this
point, then [3, 3.12] showed that t(¢; v, A) for v > —% is expressible as a product of
two Painlevé-III tau-functions. Still, since this interpretation won’t play any further
role below, we shall simply address (1.11) as generalized tau-function for (1.2) and
continue with the discussion of the associated tau-function connection problem:
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Standard asymptotic techniques based on (1.3), (1.7), (1.8) and (1.9) show that

M2+ 1\ [, 3v 1
T(t;U,)\.)Nl—T(Zt)T_He {U—(U+E><V +7+1>?},

1
t — 400, Amr €[0,1], v > 5

as well as
Tt v, 0) ~ AW, MtECD 110, are 0,1, o <1+2v, (1.12)

with some ¢-independent coefficient A(v, A). It is straightforward to write down a
total integral formula for A(v, 1) in terms of ¥ (¢; v, A) using (1.1), however a simple
closed form expression for it cannot be obtained in this elementary way. The explicit
computation of A(v, A) is known as tau-function connection problem and a special
case of it was solved by Tracy [27], see also Tracy and Widom [28]. In detail, he
computed A(v, 1) forv =0,

/ — 1 1
A(O, )\‘) — 63{ (—l)—(3‘;2+%)1n2(G(1 + S)G(l _ S)) l’ 5 = 5(1 . O') c |:O, E) ,

(1.13)
in terms of the Riemann zeta function ¢ (z), see [23, 25.2.1], and Barnes G-function
G(2), see [23, 5.17.3]. In this note we prove the following general formula for
AW, ).

Theorem 1.2 Lets = (1 —0) € [0, 1), v > —1 where 0 = Z arcsin(zr2) € (0, 1]
such that s +v > 0. Then,

AQ A)=e3£/(—1>—(3sz+é>1n2< G2(1+5)G*(1—s) )1 G*(Pr(3)
' G(+s+v)G(1—s +v) G2+ Hrow+ 1)
% r‘i—s+vyird+s+v) v
X exp |:—§ln( F2(v+%) >:| (s +v)2. (1.14)

We choose not to simplify the special values G(%) and F(%) in (1.14) any fur-
ther since (1.14) now quite obviously degenerates to Tracy’s result (1.13) for fixed
s € [0, %) as v — 0. The importance of (1.13) and its generalization (1.14) stems
from the following application to the scaling hypothesis of spin-spin functions in the
analysis of Wu, McCoy, Tracy and Barouch [32]: As shown by Wu in [31, 5.7] the
critical correlation Sy := (ogoon N )T=7, along the diagonal satisfies

1 3 2 1 2 11
Sy ~G <§> G <§) (1 4+ tanh“(B:J1))4 (1 — tanh“(B.J1)) " 4N~ 4, N — 00,
(1.15)
where, compare for instance (3.7) below,

G 1 G 3 — 3¢/ (=DpyIn2
2 2
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In order to prove that the limiting scaling functions F(¢) connect to the critical
result (1.15) one must then derive the small 7-expansions of Fi (¢) and confirm that
the above numerical constant G (%)G(%) is precisely equal to!

1
lim N34({op0onN)
TI1T,
N—o0

But this is now an easy task once (1.14) is available: indeed, from (1.5), (1.9), (1.12)
and (1.14) we find at once

= 2% lim Fi (o).
=0 110

278 lim Fi () = 23 A (0, 1) = M/ (D+pn2,
tl0 4
and the connection to (1.15) is therefore rigorously established.
1.3 Further Generalizations

It is also worthwhile to mention that other generalizations of the 2D-Ising t-function
7(t; 0, %) have been studied in the literature. For instance, in the Jimbo, Miwa, and
Sato [26] analysis of holonomic quantum fields one considers instead of (1.1) the
following

T(1: 6, ) == ex e inh? ¢ — d_¢2 6% o’ _
10, )) :=exp > sinh” ¢ s + ) tanh“ ¢ | sds;, 6 e (—1,1),
t

where ¢ = ¢ (¢; 0, A) satisfies the differential equation

¢ 1dp 1 . 6 2
m + ;E = 5 Slnh(2¢) + [_2(1 — tanh d)) tanh¢, (116)

with boundary condition

¢(t;0,1) ~20Kg(t), t— +oo, Am € [0, 1],
in terms of the modified Bessel function Ky(z), cf. [23, 10.25.3]. The ODE (1.16) is
a special version of Painlevé-V after changing variables and Jimbo [17] subsequently
solved part of the T-function connection problem in 1982, while working on the con-
nection problem for Painlevé-V functions. The full solution (which is the analogue

of our (1.14) for the small distance expansion of T) was given by Basor and Tracy
[2, Theorem 3] in 1992 as

2426, 0) ~ 100, V3T 110, o €0, 1): 7222 =sin (%(04—9)) sin (%(o—@)),

with connection coefficient

s@r—p GU+a+B)G(I+a—p)G(—a+p)G(1—a—B)

0(0, 2)=2" G(1 +2a)G(1 —2a)

, 2 =0, 28 =0.

I'The additional power of two in the right-hand side is needed since on the diagonal R =28NT.
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Yet another occurrence of T can be traced to Federbush’s quantum field theory model
[10]: there the two point function is expressible in terms of T(¢; 2, % sinmf), cf.
[25], with coupling constant . In the same paper [25], Ruijsenaars also provided
a partial treatment of the connection problem for the Federbush two point function
and he derived a series representation for the connection coefficient later on. Still,
the series was not summed and the full connection problem only solved by the above

mentioned later work of Basor and Tracy [2].

Remark 1.3 Several other t-function connection problems in statistical mechanics
and field theories were solved in the past. Without going into details, or claiming
completeness of the following list, we mention the works of Lenard and Jimbo on
impenetrable bosons [18, 20], the analysis of Wu and Wu, McCoy, Tracy, Barouch
on Ising correlations [31, 32] and the ever growing random matrix theory themed
literature, for instance Widom and Dyson [7, 29], Ehrhardt and Krasovsky [8, 9,
19], Deift, Its, Krasovsky [5], Deift, Its, Krasovsky and Zhou [6] as well as Baik,
Buckingham and DiFranco [1].

1.4 Methodology and Outline of Paper

As indicated in the abstract our derivation of (1.14) will rely on a refinement of the
techniques chosen in [3], that is solely on the Hamiltonian structure (1.10), (1.11)
and the known solution of the connection problem for (1.6), i.e. the boundary data
(1.7), (1.8), (1.9). This is in sharp contrast to all the above mentioned connection
problems for 7-functions. There, one relied almost always on a deep connection of
the underlying t-function to the theory of Toeplitz (or Hankel) determinants with
possible singular generating functions. In this context powerful operator theoretical
or in more recent years Riemann-Hilbert nonlinear steepest descent techniques are
readily available in the derivation of asymptotics. Still, these techniques are fairly
advanced and their implementation often a technical challenge. The most significant
aspect of the present paper is the fact that a quicker and less technical way is available
for (1.1). In detail we will rewrite the Hamiltonian integral in (1.11) as action integral
plus explicit terms without any integrals. This strategy for asymptotic analysis was
first suggested, though not executed, for a generic Sine-Gordon tau-function in [13,
Appendix A.1]. The first successful implementation appeared then in the paper [4]
on tau-function asymptotics in random matrix theory and in [3] where our (1.11) was
analyzed asymptotically for v = 0. Additionally, the last reference provides in [3,
Section 4] further discussions on recent advances on Painlevé 7-function connection
problems, most importantly a short discussion of the important works of Gamayun,
Iorgov, Lisovyy, Tykhyy, Its and Prokhorov [11, 12, 15] (the interested reader is also
invited to find more information on Hamiltonian aspects of Painlevé tau-functions in
[14]).

Regarding the organization of the remaining sections, we will generalize the above
discussed action integral method to v # 0 in (1.1) when 7 (¢; v, 1) is no longer a clas-
sical T-function for . In detail, in Section 2 we rewrite (1.11) in terms of classical
action integrals and v-derivatives thereof (the last part is the main difference to [3]).
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After that standard special function manipulations based on (1.7) and (1.8) yield our
final result (1.14) in Section 3.

2 Proof of Theorem 1.2 - Exact Identities

Our starting point is the following generalization of [3, (2.1)] for v # 0.

Proposition 2.1 Suppose q = q(t;v, 1) and p = p(t;v, 1) solve (1.10) with
boundary condition (1.3) for any fixedt > 0, A7 € [0, 1] and v > —%. Then

o o0
/ H(q, p,s,v)ds = —tH(q, p, 1, v)+S(t: v, A)+4v/ sinh? (‘—é) ds, (2.1)
t t

where S = S(t; v, A) denotes the action integral

o0 d
S(t;v,2) = / <pd—q — H(q, p.s, v)) ds.
t s

Proof Simply ¢-differentiate the right-hand side in (2.1),

d 00 q
—| —tH(gq,p, ) + S(; V,X)+4v/ sinh2<—> ds
dr ] 5
oH dg 2 /4
o s (3
91 pdt+ V sin >

2
t
=3 sinh2q + g_t — 4v sinh? (%) =—H,

i.e. both sides in (2.1) have to match, modulo a possible 7-independent additive term.
However, from (1.3),

1
q(t;v, 1) ~ - F(v + —)e*’, t — +o0,
(2t)v+§ 2
which implies that both sides in (2.1) decay exponentially fast at # = +o00. Thus the
potential additive term is in fact vanishing and (2.1) therefore established. [

The presence of the action integral S(¢; v, A) is the main advantage of iden-
tity (2.1); namely we can first shift z-integration to A-integration (this step already
appeared in [3, Corollary 2.3]).

Corollary 2.2 For any fixedt > 0, A7 € [0, 1] and v > —%,

A aq
S, v, L) =— —dx. 2.2
(50, 1) /0 P (2.2)

Proof Compare the proof of [3, Corollary 2.3], here subject to (1.3) and ¢ (¢; v, 0) =
0. O
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Secondly, the remaining integral [ sinh?( ) ds in (2.1) can also be computed in
terms of S(¢; v, A).

Corollary 2.3 For any fixedt > 0, A7 € [0, 11and v > —1,
oo
) q 1 dg 9S
h2<—)d=—- 94220, 23
/; sin 2 s 4(p8v+8v (2.3)

Proof We have

S *Mapd a ¢d oH 0 oH o
9 _ / Wy p 2 (%) 209 OOy an2 (1) as
av ! v ds av \ds ag dv ap dv 2

(léo)/too[p;—v(j—z)+i_fg_z —4sinh2(%)] dsz—pg—z—4[m sinh2<%>ds,

where we integrated by parts in the last equality and used the v-differentiable
asymptotics (1.3). O

Merging (2.1), (2.2) and (2.3) with (1.11) we arrive at the following exact identity:
for any fixed r > 0, Aw € [0, I]Jand v > —%,

_— t H lS _— v dg 03§ h q
T(t;v,A) = exp|: > (g, p,t,v) + > (t; v, Q) ) (pav + aV)]cos (2>,
2.4
where the action S is given by the A-integral in (2.2). This completes our collection
of exact formule and we will now derive the small ¢-expansions of S(¢; v, 1) and

H(q, p,t,v).

3 Proof of Theorem 1.2 - Asymptotic Identities

Fix Awr € (0,1),v > —% throughout such that 0 < o < 1 4 2v (this is sufficient
since (1.12) holds true for all Aw € (0, 1] and v > —% such that 0 < o < 1 + 2v).
From (1.10) and (1.7), as ¢ | O,

g _ 9o, _10B =0 11 7). _ -0},
5= o nt B8A+O(t Int); p=0c+0('"7);

so that with (2.2) and o (0) = 0,
o2 /* o) 9B
0

S(t:v, 1) = — Int — W, A)dN + 0@, rlo. 3.1
(v.3) = S inr | 2O 0 ) d ('), 1l 3.1)

The last expansion can be further broken down by recalling (1.8),
o? 302 l—o
St v,\) = - In t_T In24+JL (v, AN)—J_(v,\)=2J+ (v, \)+2J_(v, k)+(9(r ),
(3.2)
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where

A
J(v, 1) :=/ a(x’)iln r'(v+ l(1 +o (1) dN.
0 ar 2

Proposition 3.1 For any Aw € (0,1),v > —% such thato < 1+ 2v,

o2 Gl —s5s+v)G(1+s5+v)
T+, 1) = J- (v, 4) = 7+2ln[ G*(3 +)
+(1=2v)In F<1_S+U3F(l+s+v)
F2(§+V)

1
—2InT"'(A 4+s5s4+v)+ (1 4+2v)In(s 4+ v), SZE(I —0).

Proof Sets = $(1 —0) € (0, ) sothat] —s = 1(1 4+ 0) € (3, 1) and

A
9
Ji(v, X)) = / a(x’)W InT(1—s()+v)d,
0

as well as

A

A
J_(v,k)=/ a(x’)ir(1+s(x’)+v)dx’—/ U(A’)iln(s(k)/+v)dk/.
0 oA 0 oA

Integrating by parts, we have thus

_ A _ /
]Jr(v,)h)_Ji(v’)h):g]n{M} _/ [di(k’)]ln{w d)’
0

C(14s+v) dy Td+sQ)+v)
» dU / / /
+oln(s +v) — f [—(x )] In(s)+v)dr. (3.3)
o Ldw
Next,
A do v+% V+%
/ [_/m] In (s() + v) di’ = 2/ Inxdx = Z[x Inx — x] . (34)
0 d)\, V+s X=V+s§
and

s do , F(l —S()\./) + U) L v—s§ v+s§
(3.5)

2

At this point the Barnes G-function enters our computation via the formula

4
/ 1nF(1+x)dx=§ln(2n)—%(z+1)+zlnF(l+z)—lnG(1+Z), z€eC: Nz>—1,

0
(3.6)
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and, combining (3.3), (3.4) with (3.5) and (3.6), after straightforward simplifications,

2
G(l— G(1
Loy — Ty = 2 +2m| & s+”1) d+s+v)

2 G2(5 +v)

ra-— ra
(1 -2y | & S+”l) d+s+v)

F2(j +U)
—2InT( 4+s4+v)+ (14 2v)In(s 4+ v),
which proves the Proposition. O

Next, we use Proposition 3.1 back in (3.2), combine it with the well-known special
values

2
and arrive at the following small 7-expansion for the action integral.

1 1 ) 1 1
r(-):ﬁ, 21nG(§>:3{ (=) = 57+ 12 (3.7)

Proposition 3.2 Forany Aw € (0, 1), v > —%, ast | 0, withs +v > 0,

2 2
21 1 2 _

+21n G (z)F(2) 11’1|: r (S) F(l S—I—l))j|

G2+ I +v) P21 =) D145 +v)

r‘i —s+v)ir(d+s+v)
—2vln

(3 +v)

+(1+2v) In(s +v) + O(¢'79), (3.8)

o? 302 o? 1 G(1—s4+v)G(1+s54v)
Stv =S =22 m2— % y6r' (=14 2421
(tv.2) =~ In 8 =D+ gin2t n[ G2(1—5)G2(1+s) }

and the error term is (t, v, A)-differentiable.

Note that all logarithms above are well-defined and real-valued since I'(x) >
0, G(x) > 0 for x > 0 and by our assumption s + v > 0. After the action integral,
the small #-behavior of the Hamiltonian is much easier, see (1.10) and (1.7),

Proposition 3.3 For any Awr € (0,1),v > —%, ast | 0, withs +v > 0,

2

H(g. p.1.v) = =2+ 0(17).

Next, we merge (2.3), (3.8) and compute the outstanding integral ftoo sinhz(%) ds
in the ¢ | O limit.

Proposition 3.4 For any A € (0, 1),v > —3, ast | 0, withs +v > 0,

dg S I(l—s+vIA+s+v)
42— 2

-0
Py + . T ] +2In(s +v)+O(t' 7). 3.9)
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Proof By definition, the digamma function [23, 5.2.2] equals ¥y(z) := I''(2)/ T (2)
for z ¢ Z<o. Moreover

G'(z) = G(2) [(z —Dvo@) —z+ %ln(Zn) + ﬂ . 2 ¢ Z<o

which follows from (3.6) by differentiation. Thus, v-differentiating (3.8), we find

85_ 11 11
T —0[1/1()(\)—{—5( +0)>—W0<V+§( —0)>j|

rM—-—s+v)Fd+s+v)
—2In
(3 +v)
+0(t'77), tlo. (3.10)

:| + 21n(s + v)

Since also
dg 0 0B l—o\ _ 1 1
Py = B8v+0(t ) = a[wo(v+2(l+0)) wo(v+2(1 0)>i|
+0(t'7), t 0, (3.11)
expansion (3.9) follows now from (3.10) and (3.11). ]

Towards the end of our derivation we are now left with combining our result: first
by Propositions 3.2, 3.3 and 3.4,

pav v
y < Gz(l—S)Gz(l-i-S) )7 Gz(%)r‘(%) o _Kln rl—s+v)['(14+s+v)
G(l=s+v)G(1+s+v)) G2+ (+v) 2 2w+ 1)

r2(s) T'(l—s+v)(s+v)
<F2(1—s) F(14+s+v)

t 1 a aS ' k
o] = L@ v+ 350 - 5 (24 B) < it

1

v 1
X (s +v)2 exp |:fln

2 ﬂ(”o(tl_")), t40, s+v>0.

On the other hand, see (1.7), (1.8),as ¢t | O withs + v > 0,

2 _
cosh (z) = t_%ae(%”_l)lnzexp —1 In I(s) d=s+v)
2 2 "\ M2 =5 TG+v)

X (1 + O(max{tl_a, t"}))

so that all together,

oedrd)

G2(3 + 0I5 +v)

2 2
T(r; v,x)=e3:’<—1)—(%az—%a+%)1n2< G (1=5)G"(1+5) )

G(1—s+v)G(1+s5+v)

X exp|:—; In (F(l—slj;(vv)i(;)—i—s—i-v))} (s+v)Zra=D (l—i—O(max{t'*”, z"})) ,

as t | 0, uniformly in (s, v) € (0, %) X (—%, +00) chosen from compact subsets

such that s +v > 0. The last expansion matches to leading order precisely (1.12) and
thus completes the proof of Theorem 1.2.
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