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Faculté des Sciences Appliquées

Semi-microscopic and microscopic

three-body models of nuclei and

hypernuclei
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Chapter 1

Introduction

1.1 Cluster structures

The internal structure of the atomic nuclei clearly plays a role in many
phenomena, such as nuclear collisions and radioactivity. The most striking
processes are nuclear reactions, which occur when nuclei collide. In a nuclear
reaction, for example, a nucleus can break up into fragments, and/or ex-
change some nucleons (or even fuse) with another nucleus. This shows that
nuclei are highly dynamical systems. The radioactivity, in excited or unstable
nuclei, also reveals dynamical properties of the nuclear states. In particular,
certain excited nuclei can decay by spontaneously emitting nuclear particles
(such as an α-particle, or other clusters of nucleons).

The energy of these phenomena, as well as their mechanisms, which are
rather complex, depend on the dymanics of the nucleons, in each nucleus.
In general, the binding energy and the strong correlations between nucleons
essentially determine the nuclear structure. All observable nuclear properties
must be deduced from this structure. Nuclear models are then developed in
order to understand the structure of the nuclei and the nuclear processes,
such as the nuclear reactions.

In particular, many nuclear states and many reaction mechanisms are
well described assuming simple stable cluster structures [1–5] in nuclei. That
is, in certain circumstances, the nucleons tend to form clusters (i.e., stable
compact subunits, e.g. α-particles) in the nucleus, in order to reduce their
uncorrelated motions. The fundamental condition is that each cluster (e.g.
an α-particle) must be energetically advantageous, in terms of stability and
binding energy per nucleon. A reliable criterion to identify a cluster structure
is that the binding energies between the clusters in the nucleus must be weak,
in comparison with the substantial binding energies inside the clusters.

1



2 CHAPTER 1. INTRODUCTION

In this work, we will consider the specific case of three-cluster structures.
Such structures occur in nuclei, such as 6He, 9Be, 12C, and in many other
nuclear systems. They allow us to describe these nuclei and their properties,
essentially by three-body models. Let us now briefly present these nuclei,
and their respective internal three-body structures.

1.2 Three-cluster structures

The binding energy is very important in the nuclear structure. In par-
ticular, it can be useful to consider the nucleon separation energies. These
experimental data are given in Table 1.1 for relevant helium, beryllium and
carbone isotopes. The neutron separation energy Sn is defined as the energy
needed to remove a neutron. Similarly, the proton separation energy Sp is
the energy to remove a proton.

Among the nuclei that exhibit a clear three-body structure, there are the
halo nuclei [2, 6, 7], such as 6He and 11Li. These are β-unstable neutron-rich
nuclei that have exotic properties: in particular, their matter radii are signif-
icantly larger than in all other light nuclei. For instance, the matter radius of
6He is 2.48±0.03 fm, while the corresponding radius for 4He is 1.57±0.04 fm
[8, 9]. (These radii are derived from interaction cross section mesurements.)
Hence the halo nuclei (e.g. 6He and 11Li) display a particularly extended
matter density. This is actually due to two valence neutrons that are very
weakly bound to the nucleus. As a result, there is a significant probability of
finding these neutrons very far from the core of the nucleus. For this reason,
these two neutrons are said to form a “halo” surrounding the core of the
nucleus. Such halo nuclei are well described by a three-body model, with a
compact nuclear core and two valence neutrons. In the case of 6He, the weak
binding energy between the two valence neutrons and the core is S2n = 0.98
MeV. That corresponds to the two-neutron separation energy, i.e., the energy
needed to remove two neutrons. This value is the addition of the neutron
separation energies Sn of 6He and 5He in Table 1.1.

The three-body structure of 6He is thus an α-particle plus two valence
neutrons, forming the halo. It is interesting to note that such a halo system is
typically a Borromean binding [6,7], i.e., a weakly bound three-body system
in which none of the corresponding two-body subsystems are bound. Indeed,
α+ n+ n is bound in 6He, but α + n is unbound (because 5He is unstable
and spontaneously emits a neutron, as seen in Table 1.1). The dineutron
(n+ n) is also not bound. In other words, the halo structure, involving two
weakly bound neutrons, is remarkably fragile. If one of the halo neutrons is
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Sn Sp Qα
4He 20.58 19.81 stable
5He −0.89 ± 0.05 21.83 ± 0.12 0.89 ± 0.05 unstable (α+ n)
6He 1.87 ± 0.05 26.52 ± 0.95 unstable (β−)
8Be 18.90 17.26 0.092 unstable (α+ α)
9Be 1.67 16.89 −2.47 ± 0.05 stable
12C 18.72 15.96 −7.37 stable

Table 1.1: Experimental values of Sn, Sp, and Qα (in MeV) for the 4,5,6He,
8,9Be and 12C nuclei [14–16]

removed, the other neutron will also be removed at the same time, since 5He,
unlike 6He, is an unbound (Sn < 0) system.

Another illustrative example of three-cluster nucleus is 12C in the first
0+ excited state. This resonant state of 12C is situated slightly above the
threshold for fragmentation into three α-particles. Hence the 12C nucleus,
in this state, is basically a three-body system, made up of three α-particles.
This state plays a crucial role in nuclear astrophysics because it enables
the so-called triple-α process in stars, in which three α-particles combine
to form 12C [4, 10, 11]. This is a two-step reaction. First, two α-particles
collide (α + α → 8Be) to form 8Be. Note that the 8Be nucleus is unstable
(it spontaneously decays back into two α-particles, as seen in Table 1.1).
Nevertheless before decaying (τ1/2 = 0.968 × 10−16 s), this 8Be nucleus, in
stars, can capture a third α-particle to form 12C in the 0+ resonant state
(8Be+α → 12C

∗
). This 3α resonance of 12C is called the Hoyle state, because

it was first predicted by Hoyle in 1953 [12, 13] before being experimentally
discovered. The existence of this resonance in 12C strongly enhances the cross
section of the triple-α process. It is decisive in accounting for the observed
abundance of 12C in the universe, via the nucleosynthesis.

Another example of three-cluster nucleus is 9Be. In Table 1.1, we see
that the neutron separation energy of 9Be is especially weak, in comparison
with the other stable nuclei. This suggests that 9Be can be viewed as a 8Be
system plus a valence neutron. However, 8Be has clearly an α + α cluster
structure (since it decays into two α-particles). Hence the 9Be nucleus can
be reasonably described as an α+ α+ n structure.
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We have seen the examples of 6He, 9Be, and 12C, which have α+ n+ n,
α+ α+ n, and 3α structures, respectively. We will study these cluster struc-
tures. However, we will also explore some interesting variants, namely the
hypernuclei 6

ΛΛHe and 9
ΛBe. The hypernuclei are unstable systems very simi-

lar to atomic nuclei, except that they contain some exotic baryons (e.g. the
Λ baryon) instead of some nucleons. The 6

ΛΛHe and 9
ΛBe will be studied as

α+ Λ + Λ and α+ α+ Λ systems, respectively [17–19].
Moreover, it is interesting to mention that our examples of 6He, 9Be,

and 12C are Borromean structures, since the three-body systems (α+ n+ n,
α + α + n, and 3α) are bound, but the corresponding two-body subsystems
are not (i.e. α + n (5He), α + α (8Be), as well as n + n (the dineutron) are
unbound).

1.3 Three-body models

Three-body models are useful to describe the three-cluster systems (such
as 6He, 9Be, 12C, 6

ΛΛHe and 9
ΛBe). However, physically speaking, they are

just approximations. They have their shortcomings: they assume the nuclei
to be three-particle systems. These particles in the nuclei are typically nu-
clear clusters. Developing three-cluster models, all dynamical effects must
be included in the interactions between the clusters. In particular, the Pauli
exclusion principle is highly fundamental in the nuclear structure: it has im-
portant effects, which cannot be ignored, when the clusters overlap. The aim
of the present work is precisely to take into account the Pauli principle in
the three-body models [20–23].

Indeed, the clusters are composite particles, made of nucleons. The nucle-
ons are fermions, and in their mutual interactions, they must satisfy the Pauli
principle. In the simple three-body approximations, the effects of the Pauli
principle must be simulated in the cluster-cluster potentials. In this thesis,
we will study and improve the Pauli treatment in the models by considering
non-local potentials1 between the clusters.

1.4 Microscopic and macroscopic models

We will study e.g. 6He, 9Be and 12C, described as a α+ n+ n, α+ α+ n
and 3α systems, respectively. Notice the predominance of the α-particle

1A potential is nonlocal if it is represented by an integral operator in the Schrödinger
equation. Such an interaction potential requires the precise knowledge of the wave function
in the whole physical space. This nonlocality is an essential consequence of the Pauli
principle. It arises from the formal permutations of nucleons between the clusters.
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in the cluster structures. This is due to its high internal stability. The
binding energy per nucleon of the α-particle is indeed larger than in all other
neighbouring light nuclei [3, 4]. Moreover the first excited state of the α-
particle resides very high, at 20.21 MeV.

Of course, in the models, the internal structure of the α-particles must
be taken into account, because of the Pauli principle. (The α-particles are
composed of two protons and two neutrons.) Hence the most realistic mod-
els, for the cluster structures, are the so-called microscopic models, which
consider explicitly all the nucleons, in order to respect the Pauli principle
exactly. The microscopic models describe the cluster systems with a fully
antisymmetrised wave function, involving all nucleon coordinates. This is
a complicated detailed approach, starting from the nucleon-nucleon inter-
actions. This, of course, involves many laborious calculations, because of
the formal antisymmetrisation. Therefore, in practice, the microscopic clus-
ter models are limited to light nuclei, because they require extremely long
technical calculations.

Hence there is a need for easier models, especially the macroscopic mod-
els (or “non-microscopic models”), which consider the clusters as pointlike
particles, interacting via effective potentials. In other words, the clusters are
treated as stuctureless particles, in order to drastically simplify the calcula-
tions. The nuclear models are then reduced to a simple three-body problem,
in the case of a three-cluster system. However, this approach requires to
choose effective cluster-cluster potentials.

1.5 Semi-microcopic models

In the above examples, namely 6He, 9Be and 12C (described as α+ n+ n,
α+α+ n, and 3α system, respectively), the three-body macroscopic models
require effective αα, αn and nn potentials. These potentials are rather well
known [24–26], at least to describe cluster-cluster elastic phase shifts (i.e.,
α+ α, α+ n, or n+ n phase shifts).

Unfortunately, the simplest effective αα and αn potentials are not able to
reproduce accurately the experimental energies of 6He, 9Be and 12C, without
readjustment [20, 27]. This motivates the use of more realistic potentials
(especially improving the Pauli treatment).

To this end, Fujiwara and co-worker have suggested a more satisfactory
approach [17,28], which is to use the so-called non-local RGM cluster-cluster
potentials (with an ad hoc prescription) in three-body models. We call this
approach the semi-microscopic model, because it is a natural, plausible three-
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body approximation of a microscopic cluster model. These αα and αn po-
tentials are sophisticated potentials that take into account the composite
structure of the α-clusters and incorporate all the effects of the Pauli prin-
ciple. The aim of this approach is to judiciously simulate the effects of the
Pauli principle in the cluster-cluster potentials. The cluster-cluster potentials
are nonlocal because of the antisymmetrisation principle between nucleons in
interacting clusters. Indeed the Pauli principle is known to drastically affect
the relative motions between two overlapping clusters. In the present work,
we will first test this semi-microscopic three-body model, and discover that it
can be deficient in some respects. After identifying these deficiences, we will
then improve the semi-microscopic model, by calculating other (more appro-
priate) effective potentials. We will thus develop another semi-microscopic
model. In this study, we will compare macroscopic, semi-microscopic, and
fully microscopic models, in order to evaluate the quality of the Pauli treat-
ments in each model.

1.6 Outline

This work is structured as follows. In Chapter 2, we review the cluster-
cluster interaction potentials, coming from well-known two-cluster studies. In
particular, we discuss the RGM, which is a microscopic cluster model, which
can generate effective cluster-cluster potentials. We also consider the simpler
approximate potentials, inspired from the RGM. In Chapter 3, we give the
used technique to solve the three-body Schrödinger equation, namely the hy-
perspherical method, with the Lagrange meshes. In particular, we generalise
this technique to the case of the integro-differential equations occurring in
the semi-microscopic models. In Chapter 4, we present the three-cluster mi-
croscopic model. In Chapter 5, we present and compare the non-microscopic,
semi-microscopic, and microscopic cluster models. In Chapter 6, we apply
the models to two hypernuclei: 6

ΛΛHe and 9
ΛBe. In Chapter 7, we apply the

first semi-microscopic model to 6He, 9Be and 12C. We compare the semi-
microscopic and microscopic models. In Chapter 8, we apply the second
semi-microscopic model, in comparison with the first model. This will im-
prove the results significantly. In Chapter 9 we draw a general conclusion.



Chapter 2

Effective potentials between

clusters

2.1 Potentials in cluster models

The “macroscopic” models, which treat the clusters as pointlike particles,
are approaches that require effective potentials between the clusters. The
first step in developing such models is thus the choice of the potentials able
to represent the cluster-cluster interactions.

There are, however, several approaches to determine an effective potential
between two clusters. The simplest potentials are purely phenomenological
[24,25]. Such potentials are just approximations. They must simply fit some
relevant empirical data (such as energy levels and cluster-cluster scattering
phase shifts). Their purpose is to lead to easy calculations in practical ap-
plications, when clusters are treated as point particles. This typically gives
several variants of rudimentary potentials, which are more or less satisfactory.
Another, more fundamental, approach consists in deriving the inter-cluster
potentials from microscopic models [1,2,29]. In that case, the internal struc-
ture of the clusters is taken into account and the potentials are deduced from
the nucleon-nucleon interactions. However, because of the Pauli principle and
the exchanges of nucleons between the clusters, those potentials may have
complicated forms. In particular, the inter-cluster potentials are nonlocal.

In quantum mechanics, a potential V̂ is said to be nonlocal if it is defined
by an integral operator which acts on the wave function, i.e.,

(V̂ ψ)(r) =

∫
V (r, r′)ψ(r′) dr′, (2.1)

7
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with a kernel V (r, r′) 6∝ δ(r − r′), where the variable r denotes the relative
coordinate between the two interacting particles, and ψ(r) denotes the wave
function. Otherwise, when V (r, r′) ∝ δ(r− r′), the potential is local1, like a
simple classical potential.

In this chapter, we first review in Section 2.2 a two-cluster microscopic
model: the resonating-group method. One deduces from it effective nonlocal
potentials, representing the interactions between clusters. Then in Section
2.3 we consider some alternative potentials: they are simpler local potentials,
based on more phenomenological approaches.

2.2 Two-cluster Resonating-group method

2.2.1 RGM wave function

The resonating-group method (RGM)[1, 2, 29–31] is a well-known micro-
scopic model, which explicitly involves all the nucleons and takes the Pauli
antisymmetrisation into account. It was invented by Wheeler in 1937 [5,32].
It is a variational method which assumes a cluster structure of the wave func-
tion. We consider here the case of a system of two clusters, our aim being
essentially to derive effective potentials between the clusters.

Consider a system of A nucleons divided into two clusters of A1 and A2

nucleons (A1 + A2 = A) respectively. The RGM describes this system by a
wave function defined as

ψ = A(φ1φ2 g(r)), (2.2)

where φ1 and φ2 are the internal wave functions of the clusters, g(r) is a
function that describes the relative motion between the clusters, and A is an
operator that ensures the complete antisymmetrisation with respect to all
the nucleons. The vector r represents the relative coordinate between the
centres of mass of the clusters. It depends on the coordinates rj (j = 1, ..., A)
of the nucleons: it is defined as

r =
1

A1

A1∑

j=1

rj −
1

A2

A1+A2∑

j=A1+1

rj. (2.3)

1Since with a δ(r − r′) factor in the kernel, the wave function will not be integrated
but just evaluated at r′ = r.
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This definition corresponds to a configuration in which nucleons j = 1, ..., A1

form the first cluster, and nucleons j = A1 + 1, ..., A1 + A2 compose the
second cluster. The wave functions φ1 and φ2 represent the internal struc-
ture of the clusters. They are defined according to this partition: φ1 which
describes the nucleons in the first cluster depends on nucleon coordinates
j = 1, ..., A1, while φ2, describing the second cluster, depends on nucleon
coordinates j = A1 + 1, ..., A1 + A2. These wave functions are translation
invariant. Moreover, they are assumed to be square integrable and antisym-
metric with respect to the nucleons.

The wave function ψ (2.2) is antisymmetric, according to the Pauli prin-
ciple. Its antisymmetrisation with respect to all the nucleon coordinates is
performed by the operator A. This operator is called the antisymmetriser :
it is a projector (A2 = A) which can be written as

A =
1

A!

∑

P

(−)PP, (2.4)

where P represents an operator of permutation of the nucleon coordinates
and (−)P symbolises the sign of the permutation. The sum runs over all the
A! possible permutations of the coordinates of the nucleons (j = 1, ..., A).
The value of the coefficient (−)P is ±1 according to whether the permutation
P is even or odd.

The antisymmetrisation of ψ (2.2) plays a fundamental role. The clusters
are physically affected by the Pauli principle. The antisymmetriser exchanges
nucleons between the clusters (it sums all the possibilities of interchanging
nucleon coordinates). Hence it is not possible to discern specifically which
nucleons are in which cluster. Inside a nucleus, the clusters must be inter-
preted as collective correlations between nucleons, in which all the nucleons
of the nucleus take part. The nucleons are indeed indiscernible by virtue of
the antisymmetrisation.

Nevertheless, there is one very specific context in which the clusters tend
to behave like distinct particles [31]. This occurs asymptotically (but only
asymptotically) when the clusters tend to be so far apart that they are not
overlapping (i.e., for |r| → ∞):

ψ ∼
r→∞

A1!A2!

A!
φ1φ2

(
g(r) + (−1)A1δA1A2

δZ1Z2
g(−r)

)
, (2.5)

where Zi is the proton number in cluster i. This asymptotic form follows from
the fact that the functions φ1 and φ2 are square integrable and antisymmetric.
The physical interpretation of the wave function in this asymptotic regime is
clear. The two clusters then represent two separated nuclei, and the function
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g(r) describes their relative motion. Hence the wave function ψ can be
used to study a collision between two nuclei. Note that if the nuclei are
identical (A1 = A2 and Z1 = Z2)

2, the boson or fermion nature of the
nuclei appears in the relative motion wave function (2.5), as an effect of the
antisymmetriser. This is the only condition imposed asymptotically by the
Pauli principle between two nuclei. Otherwise, when the clusters do overlap
the wave function must be fully antisymmetric, with respect to all nucleons.

In the RGM, the internal wave functions of the clusters φ1 and φ2 are
usually approximated in a harmonic-oscillator model [1, 2, 29–31]. They are
antisymmetric and translation invariant. For example, in the particular case
of an α-cluster (made up of two protons and two neutrons) in its ground
state, the internal wave function is

φ1 = exp

(
− 1

2b2

4∑

j=1

|rj − R|2
)
χ1, (2.6)

where rj (j = 1, ..., 4) are the nucleon coordinates,

R =
1

4

4∑

j=1

rj (2.7)

is the centre-of-mass coordinate of the α-cluster, b is a parameter, and χ1

denotes a spinor. The spinor contains the spin and isospin coordinates of
the nucleons. It also ensures the antisymmetry of φ1, according to the Pauli
principle.

2.2.2 RGM equation

Let us consider the Hamiltonian hA of the A-nucleon system,

hA =
A∑

i=1

ti − Tc.m. +
A∑

i>j=1

vij, (2.8)

where ti denotes the kinetic energy of nucleon i, Tc.m. is the kinetic energy
of the centre of mass, and vij is an effective nucleon-nucleon potential. This
Hamiltonian is defined in the centre-of-mass reference frame.

2For simplicity, in equation (2.5), if A1 = A2 and Z1 = Z2, both (identical) nuclei are
assumed to be in the same state (i.e., φ1 and φ2 are identical).
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In the RGM [1,2,29–31], one seeks the solutions of the Schrödinger equa-
tion

hAψ = EAψ, (2.9)

where EA is the energy of the system. Assuming a two-cluster structure of
the system, the wave function is approximated by the function defined in
equation (2.2).

From here, it is convenient to denote by τi the set of all internal degrees
of freedom of cluster i. This notation symbolises the variables of the wave
function φi. Thus τi represents the set of relative coordinates of the nucleons
in cluster i. Equation (2.2) is rewritten by displaying the variables as

ψ(τ1, τ2, r) = A (φ1(τ1)φ2(τ2) g(r)) . (2.10)

The RGM consists in substituting ψ (2.10) into the Schrödinger equation
(2.9). An equation for the relative motion g(r) is determined by multiplying
both sides of the Schrödinger equation by φ∗

1(τ1)φ
∗
2(τ2) and by integrating

over the internal variables τi of the clusters, i.e. all the variables except the
vector r. Equation (2.9) becomes

HAg = EA N g, (2.11)

with

N g =

∫∫
φ∗

1(τ1)φ
∗
2(τ2)ψ(τ1, τ2, r) dτ1 dτ2, (2.12)

=

∫∫
φ∗

1(τ1)φ
∗
2(τ2)A (φ1(τ1)φ2(τ2)g(r)) dτ1 dτ2, (2.13)

and

HAg =

∫∫
φ∗

1(τ1)φ
∗
2(τ2)hA ψ(τ1, τ2, r) dτ1 dτ2, (2.14)

=

∫∫
φ∗

1(τ1)φ
∗
2(τ2)hA A (φ1(τ1)φ2(τ2)g(r)) dτ1 dτ2. (2.15)

The symbols N and HA represent integral (or integro-differential) opera-
tors acting on the function g(r). These operators are a consequence of the
antisymmetriser A. They can also be written

N g =

∫
N(r, r′) g(r′) dr′, (2.16)

HAg =

∫
HA(r, r′) g(r′) dr′, (2.17)
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with kernels, which can be formally represented as matrix elements [2]:

N(r, r′) = 〈φ1(τ1)φ2(τ2) δ(r
′′ − r)| A |φ1(τ1)φ2(τ2) δ(r

′′ − r′)〉 , (2.18)

HA(r, r′) = 〈φ1(τ1)φ2(τ2) δ(r
′′ − r)|hAA |φ1(τ1)φ2(τ2) δ(r

′′ − r′)〉 , (2.19)

where, in such matrix elements, r′′ denotes the relative coordinate (2.3) be-
tween the clusters, while r′ and r are then treated as parameters.

2.2.3 Inter-cluster relative-motion energy

In equation (2.11), EA is the total energy of the system, which includes
the internal energies of the clusters. The function g(r) describes the relative
motion of the clusters. Hence it is desirable to remove from the equation the
contributions of the internal energies of the clusters, in order to obtain an
equation depending only on the relative-motion energy [25,29].

Assuming that φ1 and φ2 are the exact wave functions of the clusters, the
internal energies, E1 and E2, are given by Schrödinger equations

hA1
φ1 = E1φ1, (2.20)

hA2
φ2 = E2φ2, (2.21)

where hA1
and hA2

are Hamiltonians defined as hA (2.8), for A1 and A2

nucleons, respectively. The internal Hamiltonians hA1
and hA2

are, of course,
included in the Hamiltonian hA of the system (A = A1 + A2):

hA = hA1
+ hA2

+ h12, (2.22)

where h12 then contains the relative motion between the clusters.
Because hA1

and hA2
are Hermitian operators, we have

〈φ1φ2δ(r
′′ − r)|hAi

A |ψ〉 = Ei 〈φ1φ2δ(r
′′ − r)| A |ψ〉 , i = 1, 2. (2.23)

A relative-motion operator H can therefore be defined as

H = HA − (E1 + E2)N . (2.24)

The kernel of that operator is then given by

H(r, r′) = 〈φ1(τ1)φ2(τ2)δ(r
′′ − r)|h12A |φ1(τ1)φ2(τ2)δ(r

′′ − r′)〉 , (2.25)

and

Hg =

∫
H(r, r′) g(r′) dr′. (2.26)
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Equation (2.11) can be written as

Hg = εN g, (2.27)

where

ε = EA − E1 − E2 (2.28)

is the energy of the inter-cluster relative motion.

In practice, however, the kernels of H and N are evaluated by approxi-
mating the internal waves functions φ1 and φ2 in a harmonic-oscillator shell
model (see, e.g., equation (2.6)). Such an approximation corresponds to a
variational calculation. In this case, the internal energies may be estimated
as

Ei =
〈φi|hAi

|φi〉
〈φi|φi〉

. (2.29)

2.2.4 Effective two-body Schrödinger equation

We discuss here briefly the RGM equation (2.27). The operators N and H
have a particular structure: their kernels contain a local term plus a short-
range nonlocal term [2,29].

By renormalising the functions, the kernel N(r, r′) can be written3 as

N(r, r′) = δ(r − r′) −KN(r, r′), (2.30)

where KN(r, r′) is a bounded and short-range function. The local term is a
simple δ(r−r′) (which means that g(r) (2.16) is left unchanged by this term).
This structure follows from definition (2.18), which indicates that N(r, r′)
is a matrix element of the antisymmetriser A. The δ function in (2.30)
results from the permutation terms of the expansion (2.4) of A that involve
no exchange of nucleons between the two clusters, that is, the permutations
that do not modify the relative coordinate4 (2.3). The function KN(r, r′)

3The normalisation consists in having a coefficient equal to 1 for the δ(r − r′) term in
(2.30). However, if both clusters are identical, the situation is subtle: equation (2.30) to be
valid requires that the boson (fermion) symmetry (see, e.g., equation (2.5)) is adequately
taken into account by defining g(r) as an even (odd) function [2].

4However, in the case of two identical clusters, a change of sign (r → −r) of (2.3) counts
as a ‘non-modification’ of the relative coordinate (this is indeed a trivial permutation of
the identical clusters, which does not exchange any nucleon between the clusters). This
contributes to the δ term in (2.30), considering the parity symmetry of g(r) [2, 29].
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comes from all the other terms of A, which exchange nucleons between the
clusters and thus modify (2.3). This function is bounded and short-range
because the internal functions φi are themselves bounded and short-range.

With the same normalisation, the kernel H(r, r′) can be written in the
form

H(r, r′) = δ(r − r′)

(
− ~

2

2µ
∆ + VD(r)

)
+KH(r, r′), (2.31)

where

µ =
A1A2

A1 + A2

mN (2.32)

is the reduced mass of the two clusters, with mN denoting the nuclear mass
unit, defined as the average mass of a nucleon, ∆ is the Laplacian oper-
ator and VD(r) and KH(r, r′) are two functions. Here again, the terms
with the δ function result from the permutations of the antisymmetriser A
that do not make any exchanges of nucleons between the clusters, whereas
KH(r, r′) results from the exchanges of nucleons between clusters5. The
function KH(r, r′) is bounded and short-range.

Defining a function K(ε, r, r′) by

K(ε, r, r′) = KH(r, r′) + εKN(r, r′), (2.33)

the RGM equation (2.27) can be written

(
− ~

2

2µ
∆ + VD(r)

)
g(r) +

∫
K(ε, r, r′) g(r′) dr′ = ε g(r). (2.34)

Formally, this equation resembles a Schrödinger equation for the relative
motion of the clusters. The term −(~2/2µ)∆ represents the kinetic energy
of the relative motion. In the right-hand side, there is the total relative-
motion energy ε. Hence the VD(r) term and the integral may be interpreted
as representing the potential energy and, therefore, the effective interaction
between the clusters.

Thus, interpreting (2.34) as a Schrödinger equation, an effective potential
between the clusters may be defined. This effective potential is nonlocal and
depends on the value of the energy ε. It contains a local term VD(r), which is

5Notice that if the nucleon-nucleon potential vij (2.8) includes exchange operators, then
those exchange operators also induce exchanges of nucleons between clusters, besides the
antisymmetrisation.
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generally termed the direct potential, and a nonlocal term determined by the
kernel K(ε, r, r′). This potential is deduced from the RGM: it is the result
of the nucleon-nucleon interactions and incorporates the effects of the Pauli
principle. The nonlocal term is a consequence of the exchanges of nucleons
between the clusters. The energy dependence of K(ε, r, r′) is an effect of the
Pauli antisymmetrisation.

2.2.5 Pauli Forbidden states

Among the solutions of the RGM equation (2.27) [or (2.34)], the functions
g0(r) for which

N g0 = 0 (2.35)

are to be excluded, because they are physically irrelevant. Indeed, condition
(2.35) implies that the corresponding antisymmetrised wave function vanish
identically,

A (φ1φ2 g0(r)) = 0. (2.36)

Hence

Hg0 = 0. (2.37)

Such functions g0(r) are clearly unphysical: they are eliminated by the anti-
symmetriser A and are called Pauli forbidden states of the relative motion of
two clusters [2, 29, 33]. They are also known as spurious or redundant states
because they can be added with an arbitrary coefficient to a physical state
g(r), since they vanish after antisymmetrisation,

ψ = A (φ1φ2 (g(r) + c g0(r)) ) = A (φ1φ2 g(r)) , (2.38)

c being any number. Because of properties (2.35) and (2.37), the (unphysical)
functions g0(r) satisfy the RGM equation (2.27) [(2.34)] whatever the energy
ε. Therefore, any solution g(r) of the RGM equation may contain some Pauli
forbidden states as components.

The physical solutions g(r) are defined as having no component in the
(unphysical) space of the Pauli forbidden states, i.e., the physical functions
g(r) are defined with the orthogonality condition

∫
g(r)g∗0(r) dr = 0, (2.39)

for all Pauli forbidden states g0(r) (2.35).
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Note that definition (2.35) of the forbidden states g0(r) is equivalent to
the condition ∫

KN(r, r′) g0(r) dr = g0(r). (2.40)

Forbidden states exist and are well known [2,29,34] in the particular cases
where both clusters are described in harmonic-oscillator shell models with a
same frequency. They are then given by harmonic-oscillator eigenfunctions
associated with the reduced mass µ (2.32) and with the oscillator frequency.

2.2.6 Partial wave of orbital angular momentum

Up to this point, we have considered the RGM equation for the wave ψ
(2.2). However, in practice, the wave function is usually expanded into partial
waves with a given angular momentum.

For simplicity, we first assume that the clusters have no spin (like e.g.
α-clusters). The more general case of clusters with explicit spin will be
discussed in section 2.2.8.

For a given partial wave, the relative-motion function g(r) can be written

g(r) =
ul(r)

r
Y m

l (Ω), (2.41)

where l is the orbital angular momentum of the relative motion, with m
its projection, r and Ω denote the norm and the direction of the vector r,
respectively, Y m

l (Ω) is a spherical harmonic and ul(r) a radial function. If
the system is rotation-invariant, the kernels of the operators N and H can
be expanded as

N(r, r′) = (rr′)−1
∑

lm

Y m∗
l (Ω′)Y m

l (Ω)Nl(r, r
′), (2.42)

H(r, r′) = (rr′)−1
∑

lm

Y m∗
l (Ω′)Y m

l (Ω)Hl(r, r
′), (2.43)

defining radial kernels Nl(r, r
′) and Hl(r, r

′). The RGM equation (2.27) can
be written for the partial wave as

Hlul = εNlul, (2.44)

where Nl and Hl are operators defined by

Nlul =

∫
Nl(r, r

′)ul(r
′) dr′, (2.45)

Hlul =

∫
Hl(r, r

′)ul(r
′) dr′. (2.46)
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Similarly, the nonlocal kernel K(ε, r, r′) can be expanded as

K(ε, r, r′) = (rr′)−1
∑

lm

Y m∗
l (Ω′)Y m

l (Ω) kl(ε, r, r
′). (2.47)

Therefore, the effective Schrödinger equation (2.34) can be written for the
radial function ul(r) as

[
− ~

2

2µ

(
d2

dr2
− l(l + 1)

r2

)
+ VD(r)

]
ul(r)+

∫ ∞

0

kl(ε, r, r
′)ul(r

′)dr′ = ε ul(r).

(2.48)

In that case (without spin), the direct potential VD(r) is usually central and
does not depend on l.

2.2.7 Renormalisation into another effective two-body

Schrödinger equation

We have seen in section 2.2.4 that an effective nonlocal potential between
the clusters may be determined from the RGM equation (2.34). However,
the so-defined potential has some drawbacks [35]. This nonlocal potential
K(ε, r, r′) depends explicitly on the energy ε, which may be considered as a
disadvantage. Furthermore, two functions g(r) and g′(r) which satisfy the
equation for two distinct energies ε and ε′,

Hg = εN g, (2.49)

Hg′ = ε′N g′, (2.50)

obey the condition

〈g| N |g′〉 = δ(ε− ε′), (2.51)

where the functions are assumed to be suitably normalised (and to represent
states for continuous energies). This relation corresponds to the orthogonal-
ity of the RGM wave functions ψ (2.2). Indeed, from definition (2.13) of N ,
equation (2.51) can be written as

〈A (φ1φ2 g) |A (φ1φ2 g
′)〉 = δ(ε− ε′). (2.52)

Nevertheless, the relation (2.51) between g(r) and g′(r) is not a direct
orthogonality of two functions: the orthogonality requires the presence of
the operator N . Therefore, the function g(r) does not behave like an usual
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probability amplitude. This may be regarded as another disadvantage in the
interpretation of equation (2.34) as an effective Schrödinger equation.

Thus, equation (2.34) has some drawbacks with respect to a true two-
body Schrödinger equation: the nonlocal potential in the Hamiltonian de-
pends on the energy ε, and g(r) cannot be interpreted as a direct probability
amplitude (inasmuch as it obeys a special orthogonality rule). This situation
may, however, be corrected [1, 2, 25, 29, 31, 35, 36]. It is indeed possible to
modify the RGM equation in order to write an effective Schrödinger equa-
tion, with an energy-independent potential and a function that behaves like
a wave function. To this end, we must introduce the eigenstates (and the
eigenvalues) of the operator N .

The operator N is Hermitian. It commutes with the orbital angular mo-
mentum of the relative motion of the clusters (as you may see from the
rotation-invariance (2.42)). Therefore N has a basis of common eigenstates
with the orbital angular momentum:

Nϕnlm = µnlϕnlm, (2.53)

where n, l and m represent the node number, the angular momentum and
the projection of the angular momentum, respectively. The eigenstates ϕnlm

form a complete set in the space of the wave functions. The eigenvalues µnl

are positive and admit an accumulation point at the value 1 [2,30,34], i.e.,

0 ≤ µnl, and lim
n→∞

µnl = 1 (2.54)

(with the normalisation adopted in equation (2.30)). The Pauli forbidden
states (2.35) are by definition the eigenstates belonging to µnl = 0.

The operator can be written as

N =
∑

nlm

µnl |ϕnlm〉 〈ϕnlm| . (2.55)

One defines the square root of the operator by

N 1/2 =
∑

nlm

µ
1/2
nl |ϕnlm〉 〈ϕnlm| , (2.56)

and its inverse,

N−1/2 =
∑

nlm
µnl 6=0

µ
−1/2
nl |ϕnlm〉 〈ϕnlm| , (2.57)
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with the restriction µnl 6= 0. The inversion is thus limited to the subspace of
the physical states:

N−1/2N 1/2 = I, (2.58)

where I is a projector that excludes the Pauli forbidden states (µnl = 0),

I =
∑

nlm
µnl 6=0

|ϕnlm〉 〈ϕnlm| . (2.59)

This projector I behaves like the identity operator in the subspace of the
physical states (2.39).

The operators N 1/2 and N−1/2 allow a reformulation of the RGM equation.
The idea is to define an auxiliary function g̃(r) from g(r) [2,25,29,31,35] as

g̃ = N 1/2g, (2.60)

and an operator H̃ as

H̃ = N−1/2HN−1/2. (2.61)

The RGM equation (2.27) can be rewritten

H̃g̃ = εg̃. (2.62)

This form of the RGM equation is interesting because it has the structure of
a regular Schrödinger equation. Indeed, the operator H̃ is Hermitian. It has
therefore the properties of an effective Hamiltonian for the relative motion
of the clusters. Equation (2.62), which states that the energy ε is an eigen-
value of this Hamiltonian, may thus be regarded as an effective Schrödinger
equation. This approach requires however to consider the modified function
g̃ instead of g. It is a reinterpretation of the wave function of the relative
motion of the clusters. Its advantage is that it does not possess the draw-
backs of g mentioned above. Indeed, the modified functions obey the usual
orthogonality relation,

〈 g̃|g̃′〉 = δ(ε− ε′), (2.63)

where g̃′ corresponds to the energy ε′.
Equation (2.63) follows from the hermiticity of H̃, but it can also be

established from equation (2.52) because, following definition (2.60), there is
the direct equivalence

〈 g̃|g̃′〉 = 〈g| N |g′〉 = 〈A (φ1φ2 g) |A (φ1φ2 g
′)〉 . (2.64)
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This nice property encourages the interpretation of g̃ as an effective relative-
motion wave function, in the sense that g̃ yields the same probability ampli-
tudes as the original microscopic wave function.

Moreover, the function g̃(r) has the same asymptotic behavior as g(r):

g̃(r) ∼
r→∞

g(r) (2.65)

(because the operator N 1/2 differs from the identity by short-range (nonlocal)
terms). Therefore the function g̃(r) may be used directly, instead of g(r), in
scattering calculations. We also notice that by definition, because of operator
N1/2, the function g̃(r) is orthogonal to the Pauli forbidden states.

The Hamiltonian H̃ can be represented by a kernel H̃(r, r′),

H̃g̃ =

∫
H̃(r, r′) g̃(r′) dr′. (2.66)

This kernel has the following structure:

H̃(r, r′) = δ(r − r′)

(
− ~

2

2µ
∆ + VD(r)

)
+ K̃(r, r′), (2.67)

where K̃(r, r′) is a short-range nonlocal term. The form of the kernel H̃(r, r′)
is rather similar to H(r, r′) (2.31). The local terms of both kernels are
identical.

Equation (2.67) allows us to rewrite equation (2.62):

(
− ~

2

2µ
∆ + VD(r)

)
g̃(r) +

∫
K̃(r, r′) g̃(r′) dr′ = ε g̃(r). (2.68)

This equation is equivalent to the RGM equation (2.34), as long as the re-
lation (2.60) between g̃(r) and g(r) is taken into account. This formulation
with g̃(r) is interesting because it introduces a nonlocal potential that does

not depend on the energy ε. Indeed, the kernel K̃(r′, r), unlike K(ε, r, r′)
in (2.34), is independent of the energy.

Of course, equation (2.68) can also be written for partial waves as

[
− ~

2

2µ

(
d2

dr2
− l(l + 1)

r2

)
+ VD(r)

]
ũl(r)+

∫ ∞

0

k̃l(r, r
′) ũl(r

′) dr′ = ε ũl(r),

(2.69)
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with ũl(r) defined by

g̃(r) =
ũl(r)

r
Y m

l (Ω), (2.70)

and the kernel k̃l(r, r
′) defined by

K̃(r, r′) = (rr′)−1
∑

lm

Y m∗
l (Ω′)Y m

l (Ω) k̃l(r, r
′). (2.71)

These relations assume, for simplicity, the absence of spin but can be gener-
alised without difficulty in the cases with spin.

2.2.8 Spin of the clusters

So far, we have not considered any spin effect. If the clusters have non-zero
spins (and if the interactions include spin-dependent terms), then the wave
functions must be modified. For a given partial wave, the wave function (2.2)
becomes

ψJM
lS = A

([
[φ1 ⊗ φ2]

S ⊗ Yl(Ω)
]JM

r−1 uJ
lS(r)

)
, (2.72)

where J denotes the total angular momentum, M its projection, and S the
total spin. The total angular momentum J is the result of the coupling of the
spin S with the orbital angular momentum l. This change of wave function,
however, does not affect the principle of the RGM. Following the same lines
as previously, one can derive a RGM equation for the function uJ

lS(r). The
operator Nl (2.42) and Hl (2.43) must be suitably modified: they become
dependent on quantum numbers S and J . RGM equation (2.44) becomes

HJ
lS u

J
lS = εN J

lS u
J
lS, (2.73)

with generalised operators N J
lS and HJ

lS, taking into account the spin.
Of course, a function

ũJ
lS =

(
N J

lS

)1/2
uJ

lS, (2.74)

and a modified Hamiltonian

H̃J
lS =

(
N J

lS

)−1/2 HJ
lS

(
N J

lS

)−1/2
, (2.75)

may be defined in order to write

H̃J
lS ũ

J
lS = ε ũJ

lS. (2.76)

Equations (2.73) and (2.76) may also be formally written as effective
Schrödinger equations with nonlocal potentials depending on l, S and J .
Such equations are direct generalisations of (2.48) and (2.69).
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In what follows, for simplicity, when we consider the RGM, we mainly refer
to equations (2.34) with g(r) and (2.68) with g̃(r). Of course, this does not
exclude the spin and all conclusions can be directly extended to the spin.

2.3 Effective interactions between clusters

2.3.1 Nonlocal RGM potentials

We have seen that the RGM equation may be interpreted as defining effec-
tive cluster-cluster potentials. Such potentials are the result of the nucleon-
nucleon interactions and contain the effects of the Pauli antisymmetrisation.
They are determined by identifying the equation that describes the inter-
cluster relative motion with a two-body Schrödinger equation. However, for
a given system, the RGM offers two possible choices of effective potentials
according to the formulation of the RGM equation that one adopts.

The first possibility is to consider g(r) as the wave function of the relative
motion of the clusters. This function is defined from the total wave function
ψ (2.2). The asymptotic behaviour (2.5) of ψ supports the interpretation of
g(r) as the relative-motion wave function. (One also imposes by definition
that g(r) has no component in the space of the Pauli forbidden states, which
vanish after antisymmetrisation (2.36).)

Equation (2.34), satisfied by g(r), determines the nonlocal potential V ,

(V g)(r) = VD(r) g(r) +

∫
K(ε, r, r′) g(r′) dr′. (2.77)

This potential represents the effective interaction between the clusters. Its
nonlocal part, defined by the kernel K(ε, r, r′), depends on the energy ε of
the relative motion. The potential has also a local term, the direct potential
VD(r).

The formulation with g̃(r) of the RGM equation offers an alternative to
define an effective potential between the clusters. Indeed, equation (2.68),
satisfied by g̃(r), can also be identified with a two-body Schrödinger equa-
tion describing the inter-cluster relative motion. The function g̃(r) is then
regarded as an effective wave function. This approach is supported by the
properties of g̃(r).

The function g̃(r) is defined by equation (2.60). It has the same asymp-
totic behaviour (2.65) as g(r), and therefore gives the same results in the
scattering calculations. It obeys the usual orthogonality relation (2.63) of
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the wave functions. Moreover the scalar product (2.64) of the functions g̃(r)
is equal to the scalar product of the original microscopic wave functions. In
addition, the function g̃(r) is orthogonal to the Pauli forbidden states.

The Schrödinger equation (2.68) allows the definition of another effective

potential Ṽ between the clusters,

(Ṽ g̃)(r) = VD(r) g̃(r) +

∫
K̃(r, r′) g̃(r′) dr′. (2.78)

This potential Ṽ , unlike V , is independent of the energy. Its local part is
given by the direct potential VD(r).

The explicit expressions of the RGM potentials (2.77) for the α+n and α+α
systems are written in Appendix C. The calculations of the corresponding
energy-independent potentials (2.78) are given in Appendix E.

Both potentials, V and Ṽ , are different through their nonlocal terms. Nev-
ertheless, they are equivalent from the experimental point of view, in partic-
ular with respect to the scattering data. The wave functions g(r) and g̃(r)
have indeed exactly the same asymptotic form. Hence, as long as only the
asymptotic regime of the wave functions is concerned, the potentials V and
Ṽ give the same results independently. Otherwise, if the physical observables
involve the behaviour of the wave functions at short distances, then the re-
lation between g(r) and g̃(r) has to be taken into account. In that case, it
may also be useful to refer to the original microscopic wave function ψ.

2.3.2 Local potentials

The nonlocal potentials lead to integro-differential Schrödinger equations.
The nonlocality may require very long calculations. Therefore, from a prac-
tical point of view, it is more convenient to replace, if possible, the effective
potentials by simplified local potentials. The local potentials are indeed much
easier to handle.

By local potentials, we mean potentials for which the Schrödinger equa-
tion can be written as an equation without any integral operator. The local
potentials, in that sense, may depend on the angular momentum (although
such a dependence should be expressed from projectors on partial waves, and
thus corresponds to a certain form of nonlocality). Such potentials can nev-
ertheless be considered as local if, for each partial wave, they act as simple
local terms, in the equations.
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The approaches with local potentials are approximations which simplify
the description of cluster systems. These potentials are determined in or-
der to reproduce experimental scattering properties of colliding nuclei (cor-
responding to the clusters). They are phenomenological potentials whose
validity is limited to certain energies. They may be derived directly from the
experimental data. They may also be inspired from insights obtained from
the RGM.

Orthogonality Condition Model

The direct potential VD(r) (2.34) is a local potential which can be extracted
from the RGM. It has the structure of a double-folding potential [2, 35,37].

The use of the direct potential VD(r) alone in a Schrödinger equation
does not give satisfactory results. It means that the nonlocality of the RGM
is absolutely not negligible.

However, Saito introduced an approximation [29, 33] that simplifies the
RGM from local potentials of folding type, like VD(r). This simplification is
called the Orthogonality Condition Model (OCM). The idea is to consider
that the essential effect of the nonlocality in the RGM is the exclusion of the
Pauli forbidden states. One then assumes that this effect is predominant and
that the nonlocal terms can be simulated by requiring the relative motion
wave function to be orthogonal to the forbidden states. The OCM consists
in using a simplified (local) potential and in solving the Schrödinger equa-
tion under the constraint that the wave function be orthogonal to the Pauli
forbidden states 6.

The choice of the direct potential VD(r) as local potential in the OCM
may be a reasonable approximation, for example, in the case of the elastic
scattering of two α-particles. Otherwise, it turns out that the effective local
potential to be used in the OCM depends strongly on the considered sys-
tems. Hence in general, the potential may be quite different from VD(r) and
determined phenomenologically [29,38,39].

However, the Schrödinger equation in the OCM is still nonlocal, because
it necessarily involves a projector that excludes the Pauli forbidden states.
Nevertheless, the OCM has inspired approximate local potentials that do
not require any projector in the Schrödinger equation. These are the deep
potentials, described in the next paragraphs.

6Equation (2.39) states the orthogonality condition.
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Deep local potential

The idea of the OCM is that the Pauli principle excludes certain states of
the relative motion of the clusters. The wave functions are then constrained
to be orthogonal to the Pauli forbidden states. The practical result is that
the wave functions will have nodes in the region where the clusters overlap.

These effects of the Pauli principle can be taken into account in a purely
local model [25]. To this end, one creates simple deep local potentials (with,
e.g., Gaussian-like shapes). The Pauli forbidden states in the RGM are
given by eigenstates of harmonic oscillator. The very deep potentials may
be similar, at least near their bottom, to a harmonic oscillator well. Hence
the idea that the lowest bound states generated by these potentials may
approximate the Pauli forbidden states. One thus develops deep enough
local potentials so that they give rise to bound states that can play the role
of forbidden states. Those bound states are considered as being unphysical.
They are situated at very negative energies, below the relevant energies of
the physical states.

Such deep local potentials enables one to easily fulfill the orthogonality
condition. One just solves a local Schrödinger equation, by simply discarding
the bound states corresponding to the forbidden states. All other solutions
given by the potential are interpreted as being physical. These physical
solutions (e.g., the scattering states) are then automatically orthogonal to
the unphysical bound states. Hence they have, qualitatively, the same node
structure as in the OCM.

The deep potentials are fitted to scattering data. They have the advantage
to be purely local and to consider the exclusion effects of the Pauli princi-
ple. For this purpose, they are judiciously elaborated with unphysical bound
states playing the role of the Pauli forbidden states.

Shallow local potential

The shallow local potentials are another possibility for representing the
cluster-cluster interactions. Such potentials are very simple. A shallow po-
tential means that this potential, unlike a deep potential, does not generate
any unphysical bound states simulating the Pauli forbidden states. In other
words, all states generated by a shallow potential are to be considered as
physical states.

The shallow potentials are thus local potentials, neglecting the internal
structure of the clusters. They are developed phenomenologically in non-
microscopic approaches. They include a short-range repulsive core [24] in



26 CHAPTER 2. EFFECTIVE POTENTIALS BETWEEN CLUSTERS

order to simulate approximately the effects of the Pauli principle. They may
depend on the angular momentum but they are local for each partial wave.
Their parameters are fitted to reproduce scattering data.

From the point of view of the experimental phase shifts, shallow and deep
potentials give equivalent results. However, the wave functions of both ap-
proaches are in general quite different. In particular, they have not the same
number of nodes, because the shallow potentials do not take into account the
Pauli forbidden states.

Supersymmetry between deep and shallow potentials

The supersymmetric transformations [40,41] allow us to convert any deep
potential into a shallow potential. It is a technique that modifies a potential
by suppressing the ground bound state, but reproducing exactly all the rest
of the energy spectrum and the scattering phase shifts.

This technique can be applied to a deep potential in order to remove
the unphysical bound states, which simulate the Pauli forbidden states. If
the potential supports several unphysical bound states, the removal of these
states can be done in several steps. Specifically, the unphysical bound states
are the ground states of certain partial waves. The potential is transformed
separately for each partial wave in which there are forbidden states. At each
step of the transformation, you have a new potential and you eliminate the
ground state in the considered partial wave. The forbidden bound states are
thus removed one after the other.

Let us consider a deep potential V j
ls(r) for a given partial wave in which

there is a forbidden state (l, s and j denoting the orbital angular momentum,
the spin and the total angular momentum of this wave, respectively). The
ground state supported by V j

ls(r) is a forbidden state. It corresponds to a

mathematical solution u
j(0)
ls (r) of the Schrödinger equation:

(
− ~

2

2µ

(
d2

dr2
− l(l + 1)

r2

)
+ V j

ls(r)

)
u

j(0)
ls (r) = ε(0) u

j(0)
ls (r), (2.79)

where ε(0) is the ground-state eigenvalue. Note that ε(0) is an unphysical
energy, since it corresponds to a forbidden state.

The supersymmetric transformation modifies V j
ls(r) in order to remove

ε(0) from the bound spectrum associated with the potential. It defines a new
potential Ṽ j

ls(r) as

Ṽ j
ls(r) = V j

ls(r) −
~

2

µ

d2

dr2
ln

∫ r

0

[u
j(0)
ls (r′)]2dr′. (2.80)
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The potentials Ṽ j
ls(r) and V j

ls(r) generate exactly the same energy spectrum,
apart from the unphysical ground level ε(0), which is suppressed in the trans-
formation.

The wave functions obtained with Ṽ j
ls(r) are connected to those obtained

with V j
ls(r) through

ũj
ls(r) = uj

ls(r) − u
j(0)
ls (r)

∫ r

0
uj

ls(r
′)u

j(0)
ls (r′)dr′

∫ r

0
[u

j(0)
ls (r′)]2dr′

, (2.81)

where uj
ls(r) and ũj

ls(r) are the real solutions of the Schrödinger equations
corresponding to a same energy ε,

(
− ~

2

2µ

(
d2

dr2
− l(l + 1)

r2

)
+ V j

ls(r)

)
uj

ls(r) = ε uj
ls(r), (2.82)

(
− ~

2

2µ

(
d2

dr2
− l(l + 1)

r2

)
+ Ṽ j

ls(r)

)
ũj

ls(r) = ε ũj
ls(r). (2.83)

Relation (2.81) clearly indicates that the forbidden state has been removed

from the bound spectrum because if uj
ls(r) = u

j(0)
ls (r) then ũj

ls(r) = 0. It
also shows that ũj

ls and uj
ls have the same asymptotic behaviour since the

difference ũj
ls(r) − uj

ls(r) vanishes for r → ∞. Hence the potential Ṽ j
ls(r)

provides the same phase shifts as V j
ls(r).

The potential Ṽ j
ls(r) includes a repulsive term in r−2, which can be re-

garded as approximately simulating the Pauli principle related to the sup-
pressed forbidden state.

The supersymmetric transformation can be applied in each partial wave,
until all the Pauli forbidden states are removed. This method allows us to
obtain a ‘phase-equivalent’ shallow potential from any deep potential. The
shallow potential depends on the angular momenta. It gives the same phase
shifts and the same energy levels for the physical states as the original deep
potential. However, the wave functions generated by both potentials are
quite different. The wave functions of the shallow potential does not indeed
have the nodes corresponding to the Pauli forbidden states.
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Chapter 3

Hyperspherical harmonics

method for three-body models

3.1 Introduction

Three-body systems allow us to model nuclei that have a pronounced three-
cluster structure. In these approches, the clusters are treated as pointlike
particles, which interact through effective potentials.

In the present work, we will solve the three-body Schrödinger equations
by the hyperspherical harmonics method [19, 27]. This method uses hyper-
spherical coordinates to represent the relative positions of three particles. It
is a variational method in which the wave functions are expanded in a set of
basis functions, called hyperspherical harmonics.

This chapter presents the hyperspherical formalism and its application
in solving the three-body Schrödinger equation. It starts with definitions
of Jacobi coordinates, which allow the hyperspherical coordinates to be de-
fined. Next it defines the hyperspherical harmonics, and introduces their
properties. After these definitions, the chapter considers the application of
the hyperspherical harmonics to the three-body problem. The cases of local
and nonlocal cluster-cluster potentials are treated. The Schrödinger equation
is converted into equivalent equations in hyperspherical coordinates. These
equations are solved by a variational approximation, called the Lagrange-
mesh method. The chapter continues by presenting this technique. This
finally leads to a discretisation of the equations into an equivalent algebraic
eigenvalue problem, which can be numerically solved.

29
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3.2 Jacobi coordinates

3.2.1 Definition of Jacobi coordinates

Let us consider a system of three particles labelled 1, 2 and 3, with mass
numbers A1, A2 and A3 (in nuclear mass unit mN), and space coordinates
r1, r2 and r3, respectively.

We introduce the centre-of-mass coordinate,

R =
A1r1 + A2r2 + A3r3

A1 + A2 + A3

, (3.1)

and three normalised sets of Jacobi coordinates (xk,yk) (with k = 1, 2, 3)
to represent the relative positions of the particles. These coordinates are
defined as

xk =
√
µij (ri − rj) , (3.2)

yk =
√
µ(ij)k

(
rk −

Airi + Ajrj

Ai + Aj

)
, (3.3)

where

µij =
AiAj

Ai + Aj

, (3.4)

µ(ij)k =
(Ai + Aj)Ak

Ai + Aj + Ak

(3.5)

are reduced masses, and (i, j, k) is a cyclic permutation of (1, 2, 3). The
variable xk is proportional to the distance between particles i and j, while
yk is proportional to the relative coordinate of particle k with respect to the
centre of mass of the subsystem formed by i and j.

3.2.2 Change of Jacobi coordinates

The Jacobi coordinates (xk,yk) are defined for a given index k. As this
index can take the values k = 1, 2 or 3, there are three possible sets (xk,yk)
defined by equations (3.2) and (3.3). These sets of Jacobi coordinates are
not independent. They are related by linear combinations. Let i 6= k. The
relation between (xk,yk) and (xi,yi) is given [42] by

xk = − cosϕki xi + sinϕki yi, (3.6)

yk = − sinϕki xi − cosϕki yi, (3.7)
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where

ϕki = (−1)P arctan

√
AAj

AiAk

, (3.8)

with the total mass number A = A1 + A2 + A3, j such that (k, i, j) forms a
permutation of (1, 2, 3), and P being even (resp. odd) if this permutation is
even (resp. odd).

The change from one set of Jacobi coordinates (xi,yi) to another (xk,yk)
is quite useful in practice. When we consider the interaction potential be-
tween a given pair of particles, it is usually more convenient to use the set
(xk,yk) in which xk is directly proportional to the distance between the two
interacting particles.

3.3 Hyperspherical coordinates

3.3.1 Definition of hyperspherical coordinates

The Jacobi coordinates xk and yk can be transformed into an equivalent
system of hyperspherical coordinates [7, 42]. These coordinates are defined
from the norms and directions of xk and yk. The vector xk is represented by
its norm xk and its direction Ωxk

= (θxk
, ϕxk

), where θxk
and ϕxk

denote two
angles that identify the direction. Similarly, yk is represented by its norm yk

and its direction Ωyk
= (θyk

, ϕyk
).

From the norms xk and yk, a hyperradius ρ and an angle αk are defined
as

ρ =
√
x2

k + y2
k, (3.9)

αk = arctan
yk

xk

. (3.10)

With these definitions, xk and yk are given by

xk = ρ cosαk, (3.11)

yk = ρ sinαk. (3.12)

The value of ρ is independent of index k. It is identical for the three sets
of Jacobi coordinates (k = 1, 2, 3):

ρ2 = x2
1 + y2

1 = x2
2 + y2

2 = x2
3 + y2

3. (3.13)
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It can also be written using the coordinates ri of the particles and the centre-
of-mass coordinate R:

ρ2 =
3∑

i=1

Ai|ri − R|2 (3.14)

=
1

A

3∑

j<i=1

AiAj|ri − rj|2. (3.15)

Equation (3.14) shows us that ρ2 corresponds to the moment of inertia of the
system, with respect to the centre of mass.

The angle αk (3.10) depends on index k, which means that its value is
specific to the considered set of Jacobi coordinates. This value is bounded:

0 ≤ αk ≤ π

2
. (3.16)

The hyperspherical coordinates are composed of ρ, αk and the directions
Ωxk

and Ωyk
. It is convenient to use a notation Ω5k that represents the

angular coordinates collectively,

Ω5k = (αk,Ωxk
,Ωyk

), (3.17)

= (αk, θxk
, ϕxk

, θyk
, ϕyk

). (3.18)

The hyperradius ρ and the five angular coordinates Ω5k are equivalent to the
Jacobi vectors xk and yk.

3.3.2 Kinetic energy in hyperspherical coordinates

In Jacobi coordinates, the centre-of-mass motion easily separates,

1

A1

∆r1
+

1

A2

∆r2
+

1

A3

∆r3
=

1

A
∆R + ∆xk

+ ∆yk
. (3.19)

The symbol ∆r represents the Laplacian operator for the variable r. The
kinetic-energy operator of the relative motion is thus given by

T = − ~
2

2mN

(
∆xk

+ ∆yk

)
, (3.20)

where mN is the mass unit. The sum of Laplacians can be written in hyper-
spherical coordinates (ρ,Ω5k):

∆xk
+ ∆yk

=
∂2

∂ρ2
+

5

ρ

∂

∂ρ
− 1

ρ2
K2(Ω5k), (3.21)
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where K2(Ω5k) is a differential operator [42] in the angular coordinates Ω5k,

K2(Ω5k) = − ∂2

∂α2
k

− 4 cot(2αk)
∂

∂αk

+
L2

x

cos2 αk

+
L2

y

sin2 αk

, (3.22)

L2
x and L2

y denoting the orbital angular momentum operators corresponding
to the coordinates xk and yk,

Lx = −ixk × ∇xk
, ∆xk

=
1

xk

∂2

∂x2
k

xk −
L2

x

x2
k

, (3.23)

Ly = −iyk × ∇yk
, ∆yk

=
1

yk

∂2

∂y2
k

yk −
L2

y

y2
k

. (3.24)

3.4 Hyperspherical harmonics

3.4.1 Definition of hyperspherical harmonics

The hypersherical harmonics [7, 42] are the eigenfunctions of the operator
K2(Ω5k). They are functions of the angular variables Ω5k = (αk,Ωxk

,Ωyk
). As

the dependence of K2(Ω5k) (3.22) on the directions Ωxk
and Ωyk

is exclusively
through the operators L2

x and L2
y, the hyperspherical harmonics Ymxmy

Klxly
(Ω5k)

are defined from the following separation of variables:

Ymxmy

Klxly
(Ω5k) = φ(αk) Y

mx

lx
(Ωxk

)Y
my

ly
(Ωyk

), (3.25)

where φ(αk) is a function of the angle αk and Y m
l (Ω) denotes a spherical

harmonic. Hence the hyperspherical harmonics are also eigenstates of L2
x

and L2
y,

L2
x Ymxmy

Klxly
(Ω5k) = lx(lx + 1)Ymxmy

Klxly
(Ω5k) (3.26)

L2
y Ymxmy

Klxly
(Ω5k) = ly(ly + 1)Ymxmy

Klxly
(Ω5k), (3.27)

where lx and ly are the orbital angular momentum associated with the relative
coordinates xk and yk. The symbols mx and my represent the projection
quantum numbers corresponding to lx and ly, respectively.

Using equations (3.22) and (3.25), the eigenvalue equation for φ(αk) is
found to be

−d
2φ

dα2
k

− 4 cot(2αk)
dφ

dαk

+

(
lx(lx + 1)

cos2 αk

+
ly(ly + 1)

sin2 αk

)
φ = λφ (3.28)

where λ is the eigenvalue. The solutions which are finite at αk = 0 and
αk = π/2 [43] are

φ(αk) = N(cosαk)
lx(sinαk)

lyP
ly+ 1

2
,lx+ 1

2
n (cos 2αk), (3.29)
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where N is a normalisation constant and P a,b
n (x) is a Jacobi polynomial of

degree n [44]. The corresponding eigenvalues are

λ = (2n+ lx + ly)(2n+ lx + ly + 4), (3.30)

where n must be zero or a positive integer: n = 0, 1, 2, ....
It is useful to introduce a quantity K defined as

K = 2n+ lx + ly. (3.31)

The hypersperical harmonics Ymxmy

Klxly
(Ω5k) are then defined as

Ymxmy

Klxly
(Ω5k) = N

lxly
K (cosαk)

lx(sinαk)
lyP

ly+ 1

2
,lx+ 1

2
n (cos 2αk)

Y mx

lx
(Ωxk

)Y
my

ly
(Ωyk

), (3.32)

with the normalisation coefficient

N
lxly
K =

√
2 (K + 2)n! (n+ lx + ly + 1)!

Γ(n+ lx + 3/2) Γ(n+ ly + 3/2)
. (3.33)

They are eigenfunctions of K2(Ω5k), with eigenvalues K(K + 4),

K2(Ω5k)Ymxmy

Klxly
(Ω5k) = K(K + 4)Ymxmy

Klxly
(Ω5k). (3.34)

The integer K is called the hypermomentum [7] because the operator K2(Ω5k)
may be interpreted, following equation (3.21), as a generalisation of the con-
cept of angular momentum to three-body systems in hyperspherical coordi-
nates. The hypermomentum K is a quantum number such that K ≥ lx + ly
and K − lx − ly = 2n, with n integer. It is a good quantum number in the
special case of a system of three non-interacting particles.

The harmonics Ymxmy

Klxly
(Ω5k) are orthogonal:

∫
Ym′

xm′

y∗
K′l′xl′y

(Ω5k)Ymxmy

Klxly
(Ω5k) dΩ5k = δKK′ δlxl′x δlyl′y δmxm′

x
δmym′

y
, (3.35)

where the element dΩ5k is defined as

dΩ5k = sin2 αk cos2 αk dαk dΩxk
dΩyk

, (3.36)

with αk varying from 0 to π/2, and the directions Ωxk
and Ωxk

covering unit
spheres.
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3.4.2 Angular Momentum coupling

The hyperspherical harmonics Ymxmy

Klxly
(Ω5k) (3.32) read

Ymxmy

Klxly
(Ω5k) = φ

lxly
K (αk)Y

mx

lx
(Ωxk

)Y
my

ly
(Ωyk

), (3.37)

with

φ
lxly
K (αk) = N

lxly
K (cosαk)

lx(sinαk)
ly P

ly+ 1

2
,lx+ 1

2
n (cos 2αk). (3.38)

They are eigenfunctions of K2(Ω5k), L
2
x and L2

y, but they are not eigenfunc-
tions of the total angular momentum. This can be easily corrected. Hy-
perspherical harmonics YML

KlxlyL(Ω5k) are then defined [7] by coupling lx and
ly,

YML

KlxlyL(Ω5k) = φ
lxly
K (αk)

[
Ylx(Ωxk

) ⊗ Yly(Ωyk
)
]LML , (3.39)

where L is the total orbital angular momentum and ML its projection. They
are connected to the Ymxmy

Klxly
(Ω5k) through the linear combinations:

YML

KlxlyL(Ω5k) =
∑

mxmy

(lxlymxmy|LML)Ymxmy

Klxly
(Ω5k), (3.40)

where (lxlymxmy|LML) stands for a Clebsch-Gordan coefficient.

In general, we must also take the spin into account. The spin states are
represented by spinors χSMS , where S denotes the total spin and MS its
projection. The harmonics YML

KlxlyL(Ω5k) and the spinors χSMS are then cou-

pled. Hyperspherical harmonics YJM
γK (Ω5k) [7, 45] with a given total angular

momentum J are defined as

YJM
γK (Ω5k) =

[
YKlxlyL(Ω5k) ⊗ χS

]JM
(3.41)

= φ
lxly
K (αk)

[[
Ylx(Ωxk

) ⊗ Yly(Ωyk
)
]L ⊗ χS

]JM

, (3.42)

where γ is a collective index which stands for {lxlyLS}, and M denotes the
projection quantum number associated with J . These functions can also be
written

YJM
γK (Ω5k) =

∑

MLMS

(LSMLMS|JM) YML

KlxlyL(Ω5k) χ
SMS , (3.43)

with Clebsch-Gordan coefficients. The total angular momentum J is the
result of the coupling of the angular momentum L with the spin S.
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3.4.3 Properties of the hyperspherical harmonics

The main properties of Ymxmy

Klxly
(Ω5k) are preserved by YJM

γK (Ω5k). The hy-

perspherical harmonics are eigenfunctions of K2(Ω5k), with the eigenvalues
K(K + 4) (3.34), i.e.,

K2(Ω5k)YJM
γK (Ω5k) = K(K + 4)YJM

γK (Ω5k). (3.44)

They are also eigenfunctions of total angular momentum J , with projection
M , and of various underlying angular momenta represented by γ (i.e., lx, ly,
L and S). They are normalised and form an orthogonal set (3.35),

∫
YJ ′M ′†

γ′K′ (Ω5k)YJM
γK (Ω5k) dΩ5k = δγγ′ δKK′ δJJ ′ δM ′M , (3.45)

where the dagger † indicates the complex conjugation and the transposition
of the spinors.

In addition, YJM
γK (Ω5k) are functions with a definite parity. The parity

operator Π transforms the functions by reversing the orientation of all vectors
corresponding to space coordinates. It reverses the directions Ωxk

and Ωyk

but does not modify the angle αk. The parity of the spherical harmonics is
well known [46,47]:

ΠY mx

lx
(Ωxk

) = (−1)lx Y mx

lx
(Ωxk

), (3.46)

ΠY
my

ly
(Ωyk

) = (−1)ly Y
my

ly
(Ωyk

). (3.47)

Therefore, following equation (3.37) or (3.42), the parity of the hyperspherical
harmonics is given by the product of (−1)lx and (−1)ly . The hypermomentum
K is related to lx and ly by definition (3.31). Hence

(−1)lx+ly = (−1)K , (3.48)

and

ΠYJM
γK (Ω5k) = (−1)K YJM

γK (Ω5k). (3.49)

Thus the quantum number K gives the parity of the harmonics.

3.4.4 Raynal-Revai coefficients

The hypersherical harmonics depend on the angles Ω5k. The index k refers
to the Jacobi coordinates (xk,yk) on which these angles are based. There are
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three possible sets of coordinates for k = 1, 2 or 3. In practical calculations,
it is convenient to change the value of k in order to systematically use the
most appropriate coordinates Ω5k.

The change from one set of coordinates to another is given in Jacobi
coordinates by equations (3.6) and (3.7). The corresponding change in terms
of hypersherical harmonics can be made via the Raynal-Revai coefficients.
The hyperspherical harmonics of two different sets of coordinates are related
by a linear combination:

YML

KlxlyL(Ω5k) =
∑

l′xl′y

〈i, l′xl′y|k, lxly〉KL
YML

Kl′xl′yL(Ω5i), (3.50)

where 〈i, l′xl′y|k, lxly〉KL denotes a Raynal-Revai coefficient [42]. This trans-
formation conserves the quantum numbers K, L and ML. The Raynal-Revai
coefficients are defined as by

〈i, l′xl′y|k, lxly〉KL
=

∫
YML

KlxlyL(Ω5k)YML∗
Kl′xl′yL(Ω5i) dΩ5i, (3.51)

where Ω5k depends on Ω5i (following equations (3.6) and (3.7)). They can
be calculated by using a formula given in Appendix A.

The number of hyperspherical harmonics involved in the relation (3.50)
is finite: l′x and l′y, as well as lx and ly, must be compatible with K and L,
i.e.,

K = 2n′ + l′x + l′y = 2n+ lx + ly, (3.52)

|l′x − l′y| ≤ L ≤ l′x + l′y, (3.53)

|lx − ly| ≤ L ≤ lx + ly, (3.54)

where n′ and n are non-negative integers. The sum (3.50) runs over all l′x
and l′y values obeying these conditions.

Of course, relation (3.50) with the Raynal-Revai coefficients also holds for
the hyperspherical harmonics of total angular momentum, i.e.,

YJM
γK (Ω5k) =

∑

l′xl′y

〈i, l′xl′y|k, lxly〉KL
YJM

γ′K(Ω5i), (3.55)

where γ′ stands for {l′xl′yLS} and γ for {lxlyLS}.
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3.5 Three-body Schrödinger equation in the

hyperspherical formalism

3.5.1 Three-body Hamiltonian

In a three-body model, the clusters are treated as pointlike particles. We
assume that the interactions between the clusters can be represented by ef-
fective cluster-cluster potentials. Under these assumptions, the Hamiltonian
describing a three-cluster system is

H =
3∑

i=1

Ti +
3∑

i>j=1

Vij, (3.56)

where Ti is the kinetic energy of cluster i and Vij is the effective interaction
potential between clusters i and j.

The simplest effective potentials Vij are local. However, in our models,
the considered potentials Vij can be nonlocal (see Chapter 2). Those non-
local potentials are derived from microscopic models. They allow us to take
account of the Pauli principle.

The Hamiltonian (3.56) includes the kinetic energy of the centre of mass
of the system. Because we are interested in the study of the relative motion
of the clusters (not in the overall centre-of-mass translation), we separate
the motion of the centre of mass. We introduce the kinetic energy T of the
relative motion:

T =
3∑

i=1

Ti − Tc.m., (3.57)

where Tc.m. is the centre-of-mass kinetic energy. The Hamiltonian, in the
centre-of-mass frame, is then defined as

H = T +
3∑

i>j=1

Vij, (3.58)

so that this Hamiltonian describes the relative motion of the clusters.

3.5.2 Wave functions in the hyperspherical harmonic

basis

The wave functions ΨJMπ describing the three-body system are the solu-
tions of the Schrödinger equation

HΨJMπ = EΨJMπ, (3.59)
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where E is the energy of the system. Using the Hamiltonian (3.58), the
Schrödinger equation reads

(
T +

3∑

i>j=1

Vij

)
ΨJMπ = EΨJMπ. (3.60)

The wave functions ΨJMπ are eigenstates with quantum numbers J , M and
π, which are the total angular momentum, the projection of this angular
momentum and the parity, respectively.

We solve equation (3.60) by using the hyperspherical harmonics [7,19,27].
The relative positions of the clusters are described in hyperspherical coor-
dinates (ρ,Ω5q); and the wave functions are expanded in the hyperspherical
harmonic basis as

ΨJMπ =
1

ρ5/2

∑

γK

χJπ
γK(ρ)YJM

γK (Ω5q), (3.61)

where the coefficients χJπ
γK(ρ) depends on the hyperradius. The functions

χJπ
γK(ρ) do not depend on the quantum number M , because the Hamiltonian

is rotation invariant. Of course, the values of the angular momenta γ =
{lxlyLS} must be compatible with the total angular momentum J . The
parity π conditions the parity of K, and the lx, ly values in γ, since according
to equations (3.48) and (3.49), the parity of the system is

π = π1π2π3(−1)K = π1π2π3(−1)lx+ly , (3.62)

where πi denotes the intrinsic parity of cluster i. The parity of K is thus
imposed in the summation (3.61). Definition (3.31) also imposes K ≥ lx + ly
on each γK value.

The factor ρ−5/2 in expansion (3.61) leads to judicious simplifications, in
the equations with the functions χJπ

γK(ρ). For example, it will cancel out the
first derivative with respect to ρ in the kinetic-energy operator T , which is
given by equations (3.20) and (3.21). It also allows us to write the square
norm of the wave function as

〈
ΨJMπ

∣∣ΨJMπ
〉

=
∑

γK

∫ +∞

0

∣∣χJπ
γK(ρ)

∣∣2 dρ. (3.63)

Indeed, the hypervolume element for the integrals in hyperspherical coordi-
nates is

dxk dyk = ρ5dρ dΩ5k, (3.64)
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where xk and yk are the Jacobi coordinates and dΩ5k is defined by equation
(3.36). The factors ρ−5/2 of the functions (3.61) cancel out the coefficient ρ5

of the element (3.64).

3.5.3 Local potentials in the hyperspherical formalism

With expansion (3.61) of ΨJMπ, the Schrödinger equation (3.60) can be
transformed into a system of equations in the variable ρ [19, 27]. The coef-
ficients of those equations are matrix elements of the potentials Vij in the
basis of the hyperspherical harmonics. We first consider the simple case of
local potentials.

A local potential Vij is defined as a function depending on the distance
between the interacting particles. This distance may be written in hyper-
spherical coordinates. So the local potential is written as

Vij (|ri − rj|) = Vij

(
xk√
µij

)
= Vij

(
ρ cosαk√

µij

)
, (3.65)

using definitions (3.2) and (3.11) of the Jacobi and hyperspherical coordi-
nates. The index k corresponds to the label of the third particle, which is
not involved in this interaction potential.

From the potential, we define a set of functions which depend on ρ,

V
Jπ (ij−q)
γ′K′,γK (ρ) =

∫
YJM†

γ′K′ (Ω5q)Vij

(
ρ cosαk√

µij

)
YJM

γK (Ω5q) dΩ5q, (3.66)

where index q refers to the hypersperical coordinates used for the expansion
(3.61) of the wave function. In the integral, the angle αk depends on the
integration variables Ω5q.

In general, the calculations of the integrals (3.66) are simpler for the
particular case q = k,

V
Jπ (ij−k)
γ′K′,γK (ρ) =

∫
YJM†

γ′K′ (Ω5k)Vij

(
ρ cosαk√

µij

)
YJM

γK (Ω5k) dΩ5k, (3.67)

because αk coincides with one integration variable. Otherwise, when q 6= k,
the dependence of αk on Ω5q may complicate the calculations (3.66). How-
ever, with the Raynal-Revay coefficients [42], any calculation with q 6= k can
be reduced to calculations with q = k only. It follows from relation (3.55)
that for q 6= k,

V
Jπ (ij−q)
γ′K′,γK (ρ) =

∑

l′′x l′′y l′′′x l′′′y

〈k, l′′xl′′y |q, lxly〉KL
〈k, l′′′x l

′′′
y |q, l′xl′y〉K′L′

V
Jπ (ij−k)
γ′′′K′,γ′′K(ρ),

(3.68)
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where indices γ, γ′, γ′′ and γ′′′ stand for {lxlyLS}, {l′xl′yL′S ′}, {l′′xl′′yLS} and
{l′′′x l

′′′
y L

′S ′}, respectively. We make use of expansion (3.68) with the Raynal-
Revai coefficients to calculate the potential matrix elements. In this way, we
just have to evaluate the integrals (3.67) with the hyperspherical harmonics
adapted to the potential.

If the potential depends on the orbital angular momentum, the simplifica-
tion accompanying the integrals (3.67) also lies in the fact that the harmonics
YJM

γK (Ω5k) are then eigenstates of the appropriate orbital angular momentum,
which is the quantum number lx.

We will sum the contributions of the local parts of all the potentials of the
three-body Schrödinger equation (3.60) in a single term V Jπ

γ′K′,γK(ρ), defined
as

V Jπ
γ′K′,γK(ρ) = V

Jπ (12−q)
γ′K′,γK (ρ) + V

Jπ (13−q)
γ′K′,γK (ρ) + V

Jπ (23−q)
γ′K′,γK (ρ). (3.69)

3.5.4 Nonlocal potentials in the hyperspherical formal-

ism

Now we consider the case of a nonlocal potential Vij, acting between par-
ticles i and j. In this case, the potential is defined by a kernel Wij(r, r

′). Its
action on a wave function ϕ(r) is given by

(Vij ϕ)(r) =

∫
Wij(r, r

′)ϕ(r′) dr′, (3.70)

where r = ri − rj denotes the coordinate between the interacting particles.
Following definition (3.2) of the Jacobi coordinate xk, the kernel Wij(r, r

′)
can be written

Wij(r, r
′) = Wij

(
xk√
µij

,
x′

k√
µij

)
. (3.71)

Let us consider a partial wave defined as

ϕJMπ
γK (ρ,Ω5q) =

1

ρ5/2
χJπ

γK(ρ)YJM
γK (Ω5q), (3.72)

in hyperspherical coordinates (ρ,Ω5q). Such a partial wave corresponds to a
term of the expansion (3.61) of the wave function ΨJMπ.
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According to equation (3.70), the action of the potential on the wave ϕJMπ
γK

is

(
Vijϕ

JMπ
γK

)
(ρ,Ω5q) =

∫
Wij(r, r

′)ϕJMπ
γK (ρ′,Ω′

5q) dr
′, (3.73)

and using relation (3.71), this gives

(
Vijϕ

JMπ
γK

)
(ρ,Ω5q) =

1

µ
3/2
ij

∫
Wij

(
xk√
µij

,
x′

k√
µij

)
ϕJMπ

γK (ρ′,Ω′
5q) dx

′
k, (3.74)

where (ρ′,Ω′
5q) is defined from x′

k(=
√
µijr

′) and yk as

ρ′ =
√
x′ 2k + y2

k, Ω′
5q = (α′

q,Ωx′

q
,Ωy′

q
), (3.75)

with Ω′
5q corresponding to Jacobi coordinates (x′

q,y
′
q),

x′
q = − cosϕqk x′

k + sinϕqk yk, (3.76)

y′
q = − sinϕqk x′

k − cosϕqk yk, (3.77)

where ϕqk is given by definition (3.8) if q 6= k (see equations (3.6) and (3.7)),
or else ϕkk = π. Note that (ρ′,Ω′

5q) depends on the coordinates (ρ,Ω5q), since
yk depends on (ρ,Ω5q).

We define a set of functions of the hyperradius ρ which represent the
action of the nonlocal potential on the partial wave ϕJMπ

γK in the basis of the
hyperspherical harmonics YJM

γK (Ω5q),

W
Jπ (ij−q)
γ′K′,γK (ρ) =

1

µ
3/2
ij

∫
YJM†

γ′K′ (Ω5q)

[∫
Wij

(
xk√
µij

,
x′

k√
µij

)
ϕJMπ

γK (ρ′,Ω′
5q) dx

′
k

]
dΩ5q. (3.78)

With definition (3.72), we rewrite (3.78) as

W
Jπ (ij−q)
γ′K′,γK (ρ) =

1

µ
3/2
ij

∫∫ (
YJM†

γ′K′ (Ω5q)Wij

(
xk√
µij

,
x′

k√
µij

)
YJM

γK (Ω′
5q) dΩ5q

)
χJπ

γK(ρ′)

ρ′5/2
dx′

k.

(3.79)



3.5. THREE-BODY SCHRÖDINGER EQUATION 43

In general, the calculations are much simpler when q = k, because the
hyperspherical coordinates (ρ,Ω5q) then correspond to the Jacobi variables
of the potential,

W
Jπ (ij−k)
γ′K′,γK (ρ) =

1

µ
3/2
ij

∫∫ (
YJM†

γ′K′ (Ω5k)Wij

(
xk√
µij

,
x′

k√
µij

)
YJM

γK (Ω′
5k) dΩ5k

)
χJπ

γK(ρ′)

ρ′5/2
dx′

k.

(3.80)

Therefore, we make use of the relation (3.55) with the Raynal-Revai coeffi-
cients, in order to expand the functions for q 6= k as

W
Jπ (ij−q)
γ′K′,γK (ρ) =

∑

l′′x l′′y l′′′x l′′′y

〈k, l′′xl′′y |q, lxly〉KL
〈k, l′′′x l

′′′
y |q, l′xl′y〉K′L′

W
Jπ (ij−k)
γ′′′K′,γ′′K(ρ),

(3.81)

where γ, γ′, γ′′ and γ′′′ stand for {lxlyLS}, {l′xl′yL′S ′}, {l′′xl′′yLS} and
{l′′′x l

′′′
y L

′S ′}, respectively. For the calculations, we thus reduce the integrals
to the simpler case (3.80) with q = k.

Also, it is convenient to define a hyperradial kernel W
(ij−q)
γ′K′,γK(ρ, ρ′) by

W
Jπ (ij−q)
γ′K′,γK (ρ) =

1

ρ5/2

∫ ∞

0

W
(ij−q)
γ′K′,γK(ρ, ρ′) χJπ

γK(ρ′) dρ′, (3.82)

which gives the action of the potential on the hyperradial function χJπ
γK(ρ).

In the case where the nonlocal potential (3.70) can be expanded in terms
of partial waves of relative orbital angular momentum as

Wij(r, r
′) =

∞∑

l=0

l∑

m=−l

Y m∗
l (Ωr′)Y

m
l (Ωr)W

l
ij(r, r

′), (3.83)

the hyperradial kernel, for q = k, reduces [19] to

W
(ij−k)
γ′K′,γK(ρ, ρ′) =

δγγ′

µ
3/2
ij (ρρ′)3/2

∫ min(ρ,ρ′)

0

W lx
ij

(
x

√
µij

,
x′

√
µij

)
φ

lxly
K′ (α)φ

lxly
K (α′)xx′ y2 dy, (3.84)

where x = (ρ2−y2)1/2, x′ = (ρ′2−y2)1/2, α = arctan (y/x), α′ = arctan (y/x′),

and where the functions φ
lxly
K (α) are defined by equation (3.38).
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We will sum the contributions of the nonlocal potentials of the three-body
Schrödinger equation (3.60) in a single kernel,

Wγ′K′,γK(ρ, ρ′) = W
(12−q)
γ′K′,γK(ρ, ρ′) +W

(13−q)
γ′K′,γK(ρ, ρ′) +W

(23−q)
γ′K′,γK(ρ, ρ′), (3.85)

where q is the label of the hyperspherical coordinates (ρ,Ω5q) used for the
expansion (3.61) of the wave function ΨJMπ.

3.5.5 Hyperradial equations

We apply the hyperspherical formalism to the Schrödinger equation. The
expansion (3.61) of ΨJMπ in hyperspherical harmonics allows us to reduce
equation (3.60) to an equivalent set of coupled equations for the hyperradial
functions χJπ

γK(ρ) [19],

[
− ~

2

2mN

(
d2

dρ2
− (K + 3/2)(K + 5/2)

ρ2

)
− E

]
χJπ

γK(ρ)

+
∑

γ′K′

V Jπ
γK,γ′K′(ρ)χJπ

γ′K′(ρ) +
∑

γ′K′

∫ ∞

0

WγK,γ′K′(ρ, ρ′) χJπ
γ′K′(ρ′) dρ′ = 0.

(3.86)

These equations are obtained by using the orthogonality (3.45) of the hyper-
sherical harmonics. The kinetic-energy terms follow from equations (3.20)
and (3.21), giving T in hyperspherical coordinates, and from the property
(3.44), giving K. The local and nonlocal potential terms are separated;
V Jπ

γK,γ′K′(ρ) and WγK,γ′K′(ρ, ρ′) are defined by equations (3.69) and (3.85).
Note that since there is an equation (3.86) for each hyperradial function

χJπ
γK(ρ), the number of coupled equations is in general infinite.

For the potentials that are bounded, or that do not tend to infinity as
fast as 1/ρ2 when ρ → 0, the singularity in equation (3.86) arises from the
effective centrifugal term, proportional to (K + 3/2)(K + 5/2)/ρ2. Hence
their behaviour near the origin is

χJπ
γK(ρ) ∼

ρ→0
ρK+5/2, (3.87)

because the functions χJπ
γK(ρ) have to be bounded, and therefore, for ΨJMπ

(3.61),

ρ−5/2χJπ
γK(ρ) ∼

ρ→0
ρK . (3.88)
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Also, for a bound state, χJπ
γK(ρ) must be square integrable (3.63) and thus

asymptotically vanish,

χJπ
γK(ρ) ∼

ρ→∞
e−kρ, (3.89)

with k =
√

2mNE/~.

3.5.6 Truncation of the hyperspherical expansion

The system of equations (3.86) has in principle an infinite number of equa-
tions. We solve these equations by a numerical method: we truncate the
series (3.61) by imposing a maximum value KM on the hypermomenta K.
The wave function is then approximated as

ΨJMπ ≈ 1

ρ5/2

∑

γ, K≤KM

χJπ
γK(ρ)YJM

γK (Ω5k), (3.90)

where the sum is limited to a finite number of terms.
The value of KM is a variational parameter which leads to a finite set of

hyperradial equations,

[
− ~

2

2mN

(
d2

dρ2
− (K + 3/2)(K + 5/2)

ρ2

)
− E

]
χJπ

γK(ρ)

+
∑

γ′,K′≤KM

V Jπ
γK,γ′K′(ρ)χJπ

γ′K′(ρ)+
∑

γ′,K′≤KM

∫ ∞

0

WγK,γ′K′(ρ, ρ′)χJπ
γ′K′(ρ′) dρ′ = 0,

(3.91)

with the truncationK ≤ KM . The higher the value ofKM , the more accurate
are the solutions of the Schrödinger equation.

3.6 Lagrange-mesh method

3.6.1 General principle of the Lagrange meshes

We solve equations (3.91) by the Lagrange-mesh method [19, 27]. This
is an approximate variational method that exploits a Gaussian quadrature
[48–52].

The Lagrange functions are defined with a set of N mesh points
ui ∈ [0,+∞[ with i = 1, ..., N . The Lagrange functions fi(u) are N indepen-
dent functions that verify at the mesh points ui the “Lagrange condition”:

fi(ui′) = λ
−1/2
i δii′ . (3.92)
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Each function fi(u) has thus the property to vanish at all mesh points but
one. The constant values λi and the mesh points ui are determined so as
to respectively correspond to the weights and the nodes associated with a
Gaussian quadrature rule [44], which is a numerical integration method:

∫ ∞

0

g(u) du ≈
N∑

i=1

λi g(ui), (3.93)

for any (regular enough) integrable function g(u).
The Lagrange-mesh method consists in making use of the quadrature

(3.93) and the property (3.92). The wave functions are expanded in the
basis of Lagrange functions fi(u).

The Lagrange condition (3.92) ensures that the basis functions fi(u) are
orthogonal with this Gaussian quadrature. The functions fi(u) can even be
exactly orthonormal:

∫ ∞

0

fi(u)fi′(u) du = δii′ , (3.94)

when the Gaussian quadrature is exact for products of Lagrange functions.
This is the case, in particular, when the Lagrange functions are constructed
from orthogonal polynomials.

The local potentials are represented by diagonal matrices,
∫ ∞

0

fi(u)V (u)fi′(u) du ≈ V (ui) δii′ , (3.95)

with the Gaussian quadrature. The kinetic-energy terms are given by matrix
elements of the operator − d2

du2 . They are evaluated as

−
∫ ∞

0

fi(u)f
′′
i′(u) du ≈ −λ1/2

i f ′′
i′(ui), (3.96)

where f ′′
i′(u) stands for the second derivative of fi′(u) with respect to u.

In practice, the accuracy of the Lagrange-mesh method turns out to be
essentially as good as the accuracy of an exact variational calculation per-
formed with the Lagrange basis fi(u) [27, 51]. This accuracy remains very
good when the method is applied to nonlocal interactions [19,52].

3.6.2 Lagrange functions

For u varying on [0,+∞[, the Lagrange functions are defined from the
Gauss-Laguerre quadrature [27,52]. They are defined by

fi(u) = (−1)iu
1/2
i

LN(u)

u− ui

e−u/2, (3.97)
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where LN(u) denotes the Laguerre polynomial of degree N . The mesh points
ui are the roots of the polynomial,

LN(ui) = 0, (3.98)

with i = 1, ..., N . Hence fi(u) is a polynomial of degree N − 1 multiplied
by a decreasing exponential. The weights λi of the quadrature are given by
[27,44]

λi =
eui

ui[L′
N(ui)]2

. (3.99)

The functions fi(u) satisfy the Lagrange condition (3.92). The Gaussian
quadrature (3.93), using ui and λi, gives exact evaluations of integrals for
functions that are products of an exponential e−u and a polynomial of degree
2N − 1, that is,

∫ ∞

0

e−uPm(u) du =
N∑

i=1

λi e
−uiPm(ui), (3.100)

for any polynomial Pm(u) of degree m ≤ 2N − 1. Hence the orthogonality
(3.94) is exact for the fi(u). In the same way, the kinetic-energy terms (3.96),
calculated with the Gaussian quadrature, are also exact, with these functions.

3.6.3 Regularisation factor

However, when the Schrödinger equation presents a singularity at the ori-
gin of the coordinates (such as a centrifugal barrier or a Coulomb potential)
the functions fi(u) (3.97) are not directly used. Their behaviour near the
origin is indeed not appropriate: while the wave functions vanish near the ori-
gin, the functions fi(u) do not. Therefore, in the Lagrange-mesh method, a
regularisation factor [27,49,50] is introduced, in order to adapt the functions.
Regularised functions f̂i(u) are defined as

f̂i(u) =

(
u

ui

)n

fi(u), (3.101)

with an arbitrary power n, to be determined further. The functions f̂i(u)
still satisfy the Lagrange condition (3.92). They vanish at the origin, with a
behaviour proportional to un.



48 CHAPTER 3. HYPERSPHERICAL HARMONICS METHOD

With these functions f̂i(u), the potential matrix (3.95) is preserved, i.e.,
∫ ∞

0

f̂i(u)V (u)f̂i′(u) du ≈ V (ui) δii′ , (3.102)

and the centrifugal terms, in particular, are defined:
∫ ∞

0

f̂i(u)
1

u2
f̂i′(u) du ≈ 1

u2
i

δii′ . (3.103)

For n = 1 and n = 3/2, the quadrature (3.103) is even exact, because
condition (3.100) is met.

The kinetic-energy matrix at the Gaussian approximation is

T̂G
ii′ = −λ1/2

i f̂ ′′
i′(ui). (3.104)

For f̂i(u) defined by equations (3.101) and (3.97), these terms are [27], for
i = i′,

T̂G
ii =

−12n2 + 24n− 8 + (4N + 2)ui − u2
i

12u2
i

, (3.105)

and, for i 6= i′,

T̂G
ii′ = (−1)i−i′ u

n−3/2
i′

u
n−1/2
i

(2n− 1)ui − (2n− 3)ui′

(ui − ui′)2
. (3.106)

3.6.4 Scale parameter

The mesh points ui (i = 1, ..., N) are the roots (3.98) of the Laguerre
polynomial of degree N . The position of these N mesh points is therefore
fixed, for the variable u. In the Lagrange-mesh method, u is however a
dummy variable, proportional to a physical variable ρ = hu. A scale factor
h is indeed introduced in order to optimise the Gaussian quadrature. The
physical integration variable is actually ρ, and u is defined by a change of
variable, e.g.

∫ +∞

0

g(ρ) dρ = h

∫ +∞

0

g(hu) du (3.107)

≈ h
N∑

i=1

λi g(hui) = h
N∑

i=1

λi g(ρi), (3.108)

where ρi is defined by ρi = hui. The parameter h is aimed to adapt the mesh
points ρi to the physical size of the problem. This may enable us to reduce
the number N of mesh points, and therefore the size of the matrices.
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In practice, the parameter h is determined so that the Lagrange-mesh
method yields stable accurate results, independently of the precise value of
h on a wide plateau [27].

3.6.5 Solving the equations with the Lagrange-mesh

method

We solve the hyperradial equations (3.91) by the Lagrange-mesh method
[19]. The functions χJπ

γK(ρ) are expanded in the basis of Lagrange functions,

χJπ
γK(ρ) =

1√
h

N∑

i=1

CJπ
γKi f̂i(ρ/h), (3.109)

with functions f̂i(ρ/h) and a scale parameter h.
The power n in the regularisation factor (3.101) of f̂i(ρ/h) must be able

to reproduce the behaviour of χJπ
γK(ρ) near the origin, which is proportional

to ρK+5/2 (3.87). We take n = 3/2 [27]. The basis functions are thus defined
as

f̂i(u) = (−1)i u
3/2

ui

LN(u)

u− ui

e−u/2, (3.110)

with u = ρ/h. The expansion (3.109) can reproduce the behaviour in ρK+5/2

for small ρ, provided the size N of the basis is larger than K+1. This power,
n = 3/2, gives a kinetic-energy matrix T̂G

ii′ (3.106) that is symmetric. Also
the matrix (3.103) of the centrifugal term becomes exact for n = 3/2,

∫ ∞

0

f̂i(u)
1

u2
f̂i′(u) du =

1

u2
i

δii′ . (3.111)

However, the basis functions f̂i(u) are then only orthonormal with the Gaus-
sian quadrature,

∫ ∞

0

f̂i(u)f̂i′(u) du ≈ δii′ , (3.112)

but this approximation is reasonable [27] in the eigenvalue problem below.

The expansion (3.109) allows us to reduce the hyperradial equations (3.91)
to an algebraic eigenvalue problem. Indeed, when these expansions are in-
serted in the system of equations, we have then

∑

γ′K′i

(
HJπ

γKi,γ′K′i′ − E δγγ′ δKK′ δii′
)
CJπ

γ′K′i′ = 0, (3.113)
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where the matrix HJπ
γKi,γ′K′i′ is defined with the Lagrange-mesh method [19]

by

HJπ
γKi,γ′K′i′ =

~
2

2mN

[
1

h2
T̂G

ii′ + −(K + 3/2)(K + 5/2)

(hui)2
δii′

]
δγγ′ δKK′

+ V Jπ
γK,γ′K′(hui) δii′ + W Jπ

γKi,γ′K′i′ . (3.114)

The kinetic term T̂G
ii′ is given by equations (3.105) and (3.106), with n = 3/2.

The local potential term V Jπ
γK,γ′K′(hui) is evaluated at the mesh points, ac-

cording to the quadrature (3.102). The nonlocal potential term W Jπ
γKi,γ′K′i′

is defined as

W Jπ
γKi,γ′K′i′ =

1

h

∫ ∞

0

dρ

∫ ∞

0

dρ′ f̂i(ρ/h)WγK,γ′K′(ρ, ρ′) f̂i′(ρ
′/h), (3.115)

from the kernelWγK,γ′K′(ρ, ρ′). The calculations of the elements V Jπ
γK,γ′K′(hui)

and W Jπ
γKi,γ′K′i′ is discussed in Appendix B.

Equation (3.113) is an algebraic problem, where the energy E of the three-
body system is an eigenvalue of the matrix HJπ

γKi,γ′K′i′ .

The matrix HJπ
γKi,γ′K′i′ is symmetric, because the kernels of the nonlocal

potentials are symmetric functions. Moreover this matrix is real, because we
consider real potentials.

The eigenvalue problem depends on three parameters: KM , N and h. The
size of the matrix HJπ

γKi,γ′K′i′ is determined by KM and N . The parameter
KM controls the number of γK values, while N is the size of the basis of
Lagrange functions (index i runs from 1 to N). The parameter h is a scale
factor for the Lagrange mesh. It is aimed to reduce, as much as possible, the
value of N in practice.

The energy E and the coefficients CJπ
γKi of the wave functions are deter-

mined by using standard numerical techniques of solving eigenvalue problems,
for real symmetric matrix HJπ

γKi,γ′K′i′ .

To sum up, the three-body Schrödinger equation (3.60), involving nonlocal
potentials, is finally reduced to an algebraic eigenvalue problem (3.113). To
this end, the wave function is first expanded in the hyperspherical harmonic
basis (3.61). Next, by a variational approach, the series expansion is trun-
cated (3.90). The resulting equations (3.91) are then discretized by means of
the Lagrange-mesh approximation. The hyperradial functions are expanded
in a basis of Lagrange functions (3.109). This leads to the eigenvalue problem
(3.113), which can be numerically solved.



Chapter 4

The microscopic three-cluster

model in the hyperspherical

formalism

4.1 Introduction

The hyperspherical harmonics, defined in the previous chapter, can also be
efficiently used in microscopic models. Indeed, Korennov and Descouvemont
[53] have developed a microscopic three-cluster model, which is based on the
hyperspherical harmonics. This model consists in applying the hyperspheri-
cal formalism in the framework of the Generator-Coordinate Method (GCM).
The GCM is a variational technique to solve the many-body Schrödinger
equation which arises in microscopic cluster models [2, 29–31,54].

In the present work, we will use the microscopic model of Korennov and
Descouvemont for comparisons with non-microscopic models. This chapter
gives a brief description of this microscopic model.

4.2 Microscopic three-cluster wave function

4.2.1 Definitions

Consider the Hamiltonian describing a system of A nucleons:

hA =
A∑

i=1

ti − Tc.m. +
A∑

i>j=1

vij, (4.1)

where ti is the kinetic energy of nucleon i, vij is an effective nucleon-nucleon
potential, and Tc.m. is the kinetic energy of the centre of mass. The wave

51
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function ψ of this system is given by the Schrödinger equation:

hAψ = E ψ, (4.2)

where E is the energy of the system.
Here, the system of nucleons is assumed to present a three-cluster struc-

ture. In this case, the many-body Schrödinger equation (4.2) can be solved
with a variational approach taking into account the cluster structure. The
nucleons are distributed into three clusters: we denote by A1, A2 and A3 the
numbers of nucleons in the three clusters, respectively. These mass numbers
are such that A1 + A2 + A3 = A.

The individual spatial coordinates of the nucleons are denoted by ri, with
i = 1, ..., A. We define three coordinates, R1, R2 and R3, representing the
centres of mass of the clusters:

R1 =
1

A1

A1∑

i=1

ri, R2 =
1

A2

A1+A2∑

i=A1+1

ri, R3 =
1

A3

A1+A2+A3∑

i=A1+A2+1

ri. (4.3)

We define Jacobi coordinates, rx and ry, indicating the relative positions of
the clusters:

rx = R1 − R2, (4.4)

ry = R3 −
A1R1 + A2R2

A1 + A2

. (4.5)

Of course, these coordinates depend on the coordinates of the nucleons:

rx =
1

A1

A1∑

i=1

ri −
1

A2

A1+A2∑

i=A1+1

ri, (4.6)

ry =
1

A3

A1+A2+A3∑

i=A1+A2+1

ri −
1

A1 + A2

A1+A2∑

i=1

ri. (4.7)

We also define the centre of mass of the system:

Rcm =
A1R1 + A2R2 + A3R3

A1 + A2 + A3

=
1

A

A∑

i=1

ri. (4.8)

In the microscopic model, the wave function ψ of the system is defined as

ψ = Aφ1φ2φ3 g(rx, ry), (4.9)
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where φ1, φ2 and φ3 denote the internal wave functions of the clusters, and
g(rx, ry) is a function describing the relative motion between the clusters.
The wave function respects the Pauli principle: it is fully antisymmetrised
with respect to all nucleon coordinates, via the antisymmetriser A (2.4).
Note that this wave function is a simple generalisation of the RGM wave
function (2.2) for a three-cluster system. Hence the wave function (4.9) is
known as the RGM wave function.

In definition (4.9), of course, the functions φ1, φ2 and φ3, which de-
scribe the clusters, must be consistent with the choice of rx and ry (which
means that φ1 depends on nucleons i = 1, ..., A1, φ2 depends on nucleons
i = A1 + 1, ..., A1 + A2, and φ3 depends on nucleons i = A1 + A2 + 1, ..., A).
These internal wave functions of the clusters are generally approximated in
a translation-invariant harmonic-oscillator shell model. The relative-motion
function g(rx, rx) is an unknown function, to be determined by solving the
Schrödinger equation.

4.2.2 The hyperspherical formalism applied to the

RGM wave function

Having introduced the wave function (4.9), we show how the hyperspherical
formalism is applied in the microscopic model.

We introduce the reduced masses

µ12 =
A1A2

A1 + A2

, µ(12)3 =
(A1 + A2)A3

A1 + A2 + A3

, (4.10)

and renormalise the coordinates:

x =
√
µ12 rx (4.11)

y =
√
µ(12)3 ry. (4.12)

The hyperspherical coordinates are defined by

ρ =
√
x2 + y2, (4.13)

α = arctan
y

x
. (4.14)

We use the notation Ω5, for the 5 angular variables:

Ω5 = (α,Ωx,Ωy), (4.15)

where Ωx and Ωy denote the directions of x and y. The hyperspherical
coordinates (ρ,Ω5) are equivalent to the coordinates rx and ry.
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Using these coordinates, the relative-motion function of the wave function
(4.9) is expanded in the hyperspherical harmonics:

g(rx, ry) = ρ−5/2
∑

KlxlyL

χL
Klxly(ρ)Y

ML

KlxlyL(Ω5), (4.16)

where harmonics YML

KlxlyL(Ω5) are defined by equation (3.39). This expansion

is formally analogous to the expansion (3.61) of the three-body models, but
with an essential difference: the hyperspherical coordinates (ρ,Ω5) here are
functions of the coordinates of the nucleons, according to equations (4.6) and
(4.7).

Thus, the RGM wave function (4.9) reads

ψ = Aφ1φ2φ3 ρ
−5/2

∑

KlxlyL

χL
Klxly(ρ)Y

ML

KlxlyL(Ω5). (4.17)

Note that the antisymmetriser A acts on the whole wave function.
The idea of such a formalism is to replace the unknown function g(rx, ry)

by an equivalent set of functions χL
Klxly

(ρ), which depend only on the hyper-
radius ρ.

So far, the spins of the clusters have not been considered in order to simplify
the presentation. We can now take into account the spin. In particular, we
shall couple the angular momenta and the spins, in order to define a wave
function that is an eigenstate of the total angular momentum.

We define the total spin S as resulting from the coupling of the different
spins of the clusters. The wave functions, φ1, φ2 and φ3, include spinors,
representing the respective spin states of the clusters (see equation (2.6)).
Eigenstates of the total spin S can be defined by

ΦSMS

S12
=
[
[φ1 ⊗ φ2]

S12 ⊗ φ3

]SMS

, (4.18)

where MS is the projection quantum number associated with S; and S12 is
the result of the coupling of the spins of clusters 1 and 2. The total spin S
is the result of the coupling of S12 with the spin of cluster 3.

Now, we couple the total orbital angular momentum L of the hyperspher-
ical harmonics YML

KlxlyL(Ω5) with the total spin S. The wave function (4.17)
then becomes

ψJMπ = A
∑

γK

ρ−5/2χJπ
γK(ρ)

[
YKlxlyL(Ω5) ⊗ ΦS

S12

]JM
, (4.19)
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where γ stands for {lxlyLS12S}. This wave function ψJMπ has the following
good quantum numbers: the total angular momentum J , with its projection
M , and the parity π. The wave function is antisymmetrised with respect to
all the nucleons. The functions ΦSMS

S12
take into account the internal structure

of the clusters. The functions χJπ
γK(ρ) and YML

KlxlyL(Ω5) describe the relative

motion between the clusters. These functions χJπ
γK(ρ) are analogous to the

hyperradial functions of (3.61), but here hyperradius ρ is a function of the
coordinates of the nucleons. The parity π of the wave function imposes
condition on γ K, according to the selection rule (3.62).

4.3 The generator-coordinate method

4.3.1 GCM basis functions

In the previous section, we have seen the principle of the three-cluster mi-
croscopic models in the hyperspherical formalism. However, the form (4.19)
of ψJMπ is not the most convenient to solve the many-body Schrödinger equa-
tion (4.2). In practice, this equation is solved numerically by the Generator-
Coordinate Method (GCM) [53,54].

The GCM is a technique in which the microscopic wave function is ex-
panded into linear combinations of Slater determinants. In this section, we
introduce the basis functions of the three-cluster GCM.

The GCM is based on harmonic-oscillator shell models. Let us consider
a harmonic-oscillator potential centred at a given point P i. A system of Ai

nucleons is represented in the shell model given by this potential by a Slater
determinant ΦSiνi

i (P i). Such a wave function represents a cluster located at
P i. The wave function ΦSiνi

i (P i) includes a spinor: Si denotes the spin of
the cluster and νi the spin projection. The wave function depends on the
coordinates of the Ai nucleons, and on P i, which is an independent constant
parameter.

The GCM basis functions for a three-cluster model are defined [53,54] by

Φν(P 1,P 2,P 3) = AΦS1ν1

1 (P 1) ΦS2ν2

2 (P 2) ΦS3ν3

3 (P 3), (4.20)

where ν stands for (ν1, ν2, ν3). The parameters P 1, P 2 and P 3 represent the
central positions of three clusters, with A1, A2 and A3 nucleons, respectively.
These functions are fully antisymmetrised with respect to all the nucleons,
via the operator A.

To avoid cumbersome notation, in the following, we drop the explicit
mention of the spins Si, and write more simply the GCM basis function
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(4.20) as

Φν(P 1,P 2,P 3) = AΦν1

1 (P 1) Φν2

2 (P 2) Φν3

3 (P 3). (4.21)

From P 1, P 2 and P 3, one defines two jacobi parameters, Rx and Ry,
giving the relative positions of the clusters,

Rx = P 1 − P 2, (4.22)

Ry = P 3 −
A1P 1 + A2P 2

A1 + A2

. (4.23)

The localisation of the centers P 1, P 2 and P 3 is then chosen such that
A1P 1 + A2P 2 + A3P 3 = 0. With this condition,

P 1 = −A3

A
Ry +

A2

A12

Rx, (4.24)

P 2 = −A3

A
Ry −

A1

A12

Rx, (4.25)

P 3 =
A12

A
Ry, (4.26)

where A12 = A1 + A2. The basis functions (4.21) can thus be written

Φν(Rx,Ry)

= AΦν1

1

(
−A3

A
Ry +

A2

A12

Rx

)
Φν2

2

(
−A3

A
Ry −

A1

A12

Rx

)
Φν3

3

(
A12

A
Ry

)
.

(4.27)

The parameters Rx and Ry, which determine the basis functions, are called
generator coordinates.

In the basis functions (4.27), the cluster internal functions Φνi

i (P i) are
described in a harmonic-oscillator shell model. In practice, it is judicious to
choose exactly the same oscillator frequency for all the clusters [30, 53, 54],
because the functions (4.27) can then be written as

Φν(Rx,Ry) = φcmAφν1

1 φ
ν2

2 φ
ν3

3 Γ

(
rx − Rx,

b√
µ12

)
Γ

(
ry − Ry,

b
√
µ(12)3

)
,

(4.28)

where the centre-of-mass motion is factorised out; φνi

i is then a translation-
invariant shell-model wave function describing cluster i, and Γ is a Gaussian
function defined by

Γ(r, β) =

(
1

πβ2

)3/4

exp

(
− r2

2β2

)
. (4.29)
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The centre-of-mass motion is given by

φcm =

(
A

πb2

)3/4

exp

(
−AR

2
cm

2b2

)
. (4.30)

In equations (4.28) and (4.30), b is the harmonic-oscillator parameter. The
variables rx and ry are the Jacobi coordinates depending on the nucleons,
and defined by equations (4.6) and (4.7).

The GCM consists in expanding the wave function, solution of Schrödinger
equation (4.2), in the basis functions Φν(Rx,Ry), as

ψ =
∑

ν

∫
fν(Rx,Ry) Φν(Rx,Ry) dRxdRy. (4.31)

The advantage of the GCM is that the basis functions are linear combina-
tions of Slater determinants. This property allows systematic calculations of
matrix elements of one-body and two-body operators [30,55].

4.3.2 GCM in the hyperspherical formalism

The so-defined basis functions Φν(Rx,Ry) (4.28) depend on two generator
coordinates: Rx and Ry. Korennov and Descouvemont [53] have applied
the hyperspherical formalism to these basis functions, in order to reduce
the parameters to a single scalar generator coordinate (namely a generator
hyperradius). Their approach is presented here.

In Section 4.2.2, hyperspherical coordinates (ρ,Ω5) equivalent to rx and
ry have been defined. Similarly, hyperspherical generator coordinates corre-
sponding to Rx and Ry can be defined. First, the coordinates Rx and Ry

are renormalised:

X =
√
µ12 Rx (4.32)

Y =
√
µ(12)3 Ry. (4.33)

A generator hyperradius R and a generator angle αR are then defined:

R =
√
X2 + Y 2, (4.34)

αR = arctan
Y

X
. (4.35)

The corresponding angular variables are represented by the symbol Ω5R:

Ω5R = (αR,ΩX ,ΩY ), (4.36)
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where ΩX and ΩY denote the directions of X and Y respectively. These
variables (R,Ω5R) are equivalent to (Rx, Ry).

In the microscopic model, there are thus two distinct hyperspherical sys-
tems: there are the coordinates (ρ,Ω5), equivalent to rx and ry, and the
generator coordinates (R,Ω5R). In order to avoid any confusion, we shall
add an index ρ to Ω5, and thus write Ω5ρ for Ω5. Hence the two distinct
systems of hyperspherical coordinates are written (ρ,Ω5ρ) and (R,Ω5R).

Note that (ρ,Ω5ρ) depend on the coordinates of the nucleons, while
(R,Ω5R) are independent parameters.

Using the coordinates (R,Ω5R), the GCM basis functions (4.28) are ex-
panded in the hyperspherical harmonics as

Φν(Rx,Ry) = φcm

∑

lxlyLMLK

YML∗
KlxlyL(Ω5R) Φ

lxlyLML

νK (R). (4.37)

The coefficients Φ
lxlyLML

νK (R) are then defined by

Φ
lxlyLML

νK (R) =
1

φcm

∫
YML

KlxlyL(Ω5R) Φν(Rx,Ry) dΩ5R. (4.38)

Note that the functions Φ
lxlyLML

νK (R) are independent of centre-of-mass mo-
tion, since φcm is factorised out in the expansion (4.37).

The functions Φ
lxlyLML

νK (R) are determined by using the following expan-
sion:

exp(x ·X +y ·Y ) =
(2π)3

(ρR)2

∑

lxlyLMLK

IK+2(ρR)YML∗
KlxlyL(Ω5R)YML

KlxlyL(Ω5ρ),

(4.39)

where IK+2(x) is a modified Bessel function [44]. This expansion follows from
the plane-wave expansion in hyperspherical coordinates [42]:

exp [i(x · X + y · Y )]

=
(2π)3

(ρR)2

∑

lxlyLMLK

iKJK+2(ρR)YML∗
KlxlyL(Ω5R)YML

KlxlyL(Ω5ρ), (4.40)

where JK+2(x) is a Bessel function. Using (4.28), (4.39) and definition (4.38),

the functions Φ
lxlyLML

νK (R) reduce to

Φ
lxlyLML

νK (R) = Aφν1

1 φ
ν2

2 φ
ν3

3 YML

KlxlyL(Ω5ρ)GK(b, ρ, R), (4.41)
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where

GK(b, ρ, R) = c

(
b2

ρR

)2

exp

(
−ρ

2 +R2

2b2

)
IK+2

(
ρR

b2

)
, (4.42)

with c denoting a constant

c =
(µ12µ(12)3

π2b4

)3/4

(2π)3 =

(
A1A2A3

A

)3/4(
4π

b2

)3/2

. (4.43)

Equation (4.41) gives basis functions Φ
lxlyLML

νK (R) depending on a single
generator coordinate, the hyperradius R. The next step is to couple the
total orbital momentum L with the spins, in order to get basis functions
that are eigenstates of the total angular momentum J . This is performed by
using Clebsch-Gordan coefficients:

ΦJMπ
γK (R) =

∑

ν1ν2ν3

∑

ML

(S1S2ν1ν2|S12ν12)(S12S3ν12ν3|SMS)

(LSMLMS|JM) Φ
lxlyLML

νK (R), (4.44)

with γ = {lxlyLS12S} (and where ν12 = ν1 + ν2, MS = ν12 + ν3). This can
also be written

ΦJMπ
γK (R) = A

[
YKlxlyL(Ω5ρ) ⊗ ΦS

S12

]JM
GK(b, ρ, R), (4.45)

where ΦSMS

S12
is defined by equation (4.18) from the cluster internal functions

φν1

1 , φν2

2 and φν3

3 .

In the hyperspherical GCM, the wave function ψJMπ of the three-cluster
system is written as a superposition of the basis functions ΦJMπ

γK (R) [53], i.e.,

ψJMπ =
∑

γK

∫ ∞

0

fJπ
γK(R) ΦJMπ

γK (R) dR, (4.46)

with coefficients fJπ
γK(R) to be determined.

This function ψJMπ is formally equivalent to the wave function (4.19)
with the hyperradial functions χJπ

γK(ρ). The functions are indeed connected
to each other through

χJπ
γK(ρ) = ρ5/2

∫ ∞

0

fJπ
γK(R)GK(b, ρ, R) dR. (4.47)
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The functions fJπ
γK(R) and the energy E of the system are determined by

solving the Hill-Wheeler integral equations [2, 29,31]:

∑

γ′K′

∫ ∞

0

(
HJπ

γK,γ′K′(R,R′) − ENJπ
γK,γ′K′(R,R′)

)
fJπ

γ′K′(R′) dR′ = 0, (4.48)

where

HJπ
γK,γ′K′(R,R′) =

〈
ΦJMπ

γK (R)
∣∣hA

∣∣ΦJMπ
γ′K′ (R′)

〉
, (4.49)

NJπ
γK,γ′K′(R,R′) =

〈
ΦJMπ

γK (R)
∣∣ΦJMπ

γ′K′ (R′)
〉
, (4.50)

with the bracket notation meaning an integration over all the coordinates of
the nucleons.

The Hill-Wheeler equations (4.48) are solved numerically. First, the ma-
trix elements (4.49) and (4.50) must be calculated. The main advantage of
the GCM is that it involves Slater determinants. Indeed, the basis functions
(4.27) can be written as linear combinations of Slater determinants. This
greatly facilitates the calculations, because systematic formulae for the cal-
culation of the matrix elements between Slater determinants are available
[55]. These formulae are used in calculating the matrix elements (4.49) and
(4.50). The elements (4.49) and (4.50) are then reduced to 7-dimensional
integrals [53]. In practice, those integrals will be evaluated numerically.

Next, the Hill-Wheeler equations (4.48) must be solved. The advantage of
the hyperspherical formalism is that it leads to a single generator coordinate,
the hyperradius R. The equations are solved by discretizing the generator
coordinate R. The wave function (4.46) is then approximated by a linear
combination

ψJMπ ≈
∑

γK

N∑

n=1

f̃Jπ
γK(Rn) ΦJMπ

γK (Rn), (4.51)

with a finite set of N values Rn. The integrals over R are replaced by sums
over Rn, and the Hill-Wheeler equations become an algebraic problem. This
approximation corresponds to a variational calculation in the finite basis
ΦJMπ

γK (Rn). The algebraic problem is then solved numerically [53].



Chapter 5

The non-microscopic,

semi-microscopic, and

microscopic three-cluster

models

5.1 Introduction

In this chapter, we consider different three-cluster models, in view of ap-
plying and comparing them in the next chapters. The first model, which will
serve as reference, is the fully antisymmetrised microscopic model, described
in the previous chapter. The other models considered here are simple three-
body approaches, based on effective cluster-cluster potentials. They are non-
microscopic models, which regard the clusters as pointlike particles. From
the point of view of the effective potentials, we consider two approaches: we
have, on the one hand, the models using local potentials and, on the other
hand, the models using the nonlocal RGM potentials. We term the latter –
with the RGM potentials – semi-microscopic models, and we will determine
in next chapters whether or not they can reasonably well approximate the
microscopic model.

The chapter starts by describing the models. Next, it briefly gives the
spectroscopic values which can serve as points of comparison. After that, it
mentions the three-body systems that will be considered in the next chapters.
It then describes some potentials that will be common to several applications.
These are the effective nucleon-nucleon potentials, used in the microscopic
models, and potentials describing the interactions between an α-cluster and
a neutron, and between two α-clusters. The question of the Pauli forbidden

61
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states, and their necessary elimination, is treated. Lastly, the question of the
energy-dependence of the RGM potentials is mentioned.

5.2 Comparison of three-cluster models

The most elaborate model here is the microscopic model, which takes
account of all the coordinates of the nucleons, with fully antisymmetrised
wave functions. We consider the three-cluster microscopic model described
in Chapter 4. This model is based on a Hamiltonian with effective nucleon-
nucleon potentials. The Pauli principle, acting between the nucleons, is fully
respected. However, in order to perform the calculations, the internal struc-
ture of the clusters is approximated in a harmonic-oscillator model. In spite
of this simplification, the microscopic model remains complicated and heavy
to handle. Hence the use of the three-cluster microscopic model is in prac-
tice limited to light nuclei, because of the laborious computational work,
increasing with the number of nucleons.

The non-microscopic models are much simpler. They are easier to use. In
these models, the internal structure of the clusters is neglected. The clusters
are considered as pointlike particles. The modelling then consists in choosing
effective potentials to represent the interactions between the clusters. These
potentials are used in the three-body Schrödinger equation (3.60), determin-
ing the relative motion of the clusters.

In the simplest approach, the potentials between the clusters are local.
We shall call local models the non-microscopic models with local potentials.
The local potentials are fitted to empirical data, such as scattering phase
shifts of the nuclei corresponding to the clusters.

There are however two categories of local potentials (see Section 2.3.2):
the deep and shallow potentials. In the shallow potentials, the effects of the
Pauli principle between the clusters are just simulated by a repulsive force.
In the deep potentials, the simulation of the Pauli principle is improved by
taking into account the existence of the Pauli forbidden states. Indeed, the
deep potentials generate unphysical bound states that play the role of the
Pauli forbidden states. The physical wave functions are then orthogonal to
these Pauli forbidden states. The question of the treatment of the forbidden
states in three-cluster models will be discussed in Section 5.5.

The semi-microscopic models are another version of the cluster models
that we analyse and develop in this work. The idea is simple: instead of us-
ing purely phenomenological potentials in three-body models, we employ the
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nonlocal effective potentials provided by the two-cluster RGM (to represent
the inter-cluster potentials). This approach is interesting because these mod-
els are then more realistic than the local models. They are also much simpler
and faster than the microscopic model, because they are three-body models,
assuming pointlike clusters. Moreover, the semi-microscopic models allow us
to investigate the fundamental question of the effective cluster-cluster inter-
actions, or in other words, the effective potential between two nuclei. The
RGM potentials are deduced from the nucleon-nucleon forces and incorporate
the effects of the Pauli principle through their nonlocality.

There are two variants of RGM potentials (see Section 2.3.1): the energy-
dependent nonlocal potentials and the energy-independent nonlocal poten-
tials. The semi-microscopic model that uses the energy-dependent RGM
potentials in three-body models has been first developed and worked out by
Fujiwara and co-workers [17, 18, 28] (with the Faddeev method). However,
we will show that such a model with the energy-dependent RGM potentials
turns out to be problematic, especially when applied to the 9Be nucleus [20].
This will motivate the development of the semi-microscopic model using the
energy-independent RGM potentials [21–23]. Both energy-dependent and
energy-independent potential models will be analysed on specific examples
of nuclei and hypernuclei, in the next chapters.

The semi-microscopic models can be regarded as approximations of the
microscopic model. The ingedients of the nonlocal RGM potentials are indeed
the same (i.e., a nucleon-nucleon potential, and the internal cluster wave
functions) as for the microscopic model. Thus, a comparison between the
semi-microscopic models and the fully microscopic model is meaningfull and
instructive.

In particular, the comparison between the models is interesting consid-
ering the Pauli principle. Because the nonlocal RGM potentials come from
two-cluster microscopic models (see Chapter 2), they incorporate the effects
of the Pauli principle corresponding to two interacting clusters. Hence the
semi-microscopic model simulates the Pauli principle between each pair of
clusters, but neglects the effects involving the three clusters simultaneously.
Thus, the importance of the three-cluster Pauli effects may be estimated by
comparing the semi-microscopic models with the fully microscopic model.

In this work, we will compare the local models, the semi-microscopic mod-
els, and the microscopic models. The comparison is furthermore facilitated
because the models are all based on a common hyperspherical formalism
(Chapters 3 and 4).
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5.3 Model observables

Solving the respective equations of the models, we obtain the energies and
the wave functions of the three-body systems.

The first point of comparison between the models, of course, will be the
energy levels E. The zero of energy, E = 0, is defined as the three-body
dissociation threshold. For bound states, the energy is negative, E < 0, and
the absolute value (−E) gives the three-body binding energy.

We will also compute the mean-square radius. In the three-body models,
the mean-square radius 〈r2〉 is

〈r2〉 =
〈
ΨJMπ

∣∣ 1

A

(
3∑

j=1

Aj|rj − R|2 +
3∑

j=1

Aj r
2
αj

)
∣∣ΨJMπ

〉
, (5.1)

where R is the centre-of-mass coordinate, rj is the coordinate of cluster j,
ΨJMπ denotes the wave function; and the size of each cluster is taken into
account by rαj, which is the intrinsic radius of cluster j.

With the definition (3.14) of the hyperradius ρ, the mean-square radius
reduces to

〈r2〉 =
1

A
〈ΨJMπ| ρ2 |ΨJMπ〉 +

1

A

3∑

j=1

Aj r
2
αj. (5.2)

The radius is evaluated with the Lagrange-mesh technique as

〈r2〉 ≃ 1

A

∑

γKi

(hui)
2|CJπ

γKi|2 +
1

A

3∑

j=1

Aj r
2
αj, (5.3)

where CJπ
γKi are the algebraic coefficients (3.113) of the wave function, ui

(with i = 1, ..., N) are the mesh points, and h is the scale parameter. The
coefficients are normalised as

∑

γKi

|CJπ
γKi|2 = 1. (5.4)

When we compare the models, the intrinsic radii rαj of the clusters will
be defined according to the microscopic model. That is, for an α-cluster, the
internal function (2.6), in the harmonic-oscillator shell model, leads to the
square radius

r2
αj =

9

8
b2, (5.5)
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while for a nucleon (when Aj = 1), rαj = 0, because the nucleons are treated
as pointlike particles.

In order to represent the wave functions and to analyse the three-body
structure, we will also calculate some probability densities, as functions of
the relative distances between the clusters,

P Jπ(rij, rk−ij) =
(
µij µ(ij)k

)1/2
x2y2

∫
dΩxdΩy |ΨJMπ(x,y)|2. (5.6)

where x and y are the Jacobi coordinates, rij and rk−ij are the distances
associated with these Jacobi coordinates: rij is the distance between clusters
i and j, and rk−ij is the distance between cluster k and the centre of mass
of the subsystem formed by i and j. The probability densities are, of course,
normalised: ∫ ∞

0

∫ ∞

0

P (rij, rk−ij) drij drk−ij = 1. (5.7)

We will also compute other values, such as reduced transition probabilities
B(E2) [56], proton or neutron densities (see Appendix F).

5.4 Effective potentials

5.4.1 Three-body systems

In the next chapters, we will consider several physical systems. The first
examples will be two hypernuclei: 6

ΛΛHe and 9
ΛBe [19]. These hypernuclei will

be studied as three-body αΛΛ and ααΛ systems, respectively. Such models
require αα, αΛ and ΛΛ effective potentials. The potentials representing the
αα interactions are given in Section 5.4.3. The αΛ and ΛΛ potentials will be
given in Chapter 6 with the models of hypernuclei.

The other examples will be atomic nuclei. We will then consider three-
body models of 6He, 9Be, and 12C. These nuclei will be described as αnn,
ααn and 3α systems, respectively. For those models, we need αα, αn and nn
potentials. Moreover, for the microscopic models, we need a nucleon-nucleon
potential. The different potentials are presented in the next subsections. The
results of the models will be discussed in Chapters 7 and 8.

5.4.2 Effective nucleon-nucleon potentials

We first give the effective nucleon-nucleon potentials, used in our models.
We consider two different potentials, in order to analyse the sensitivity of
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the models with respect to the choice of the interactions. We consider the
Minnesota potential (MN) [26] and the Volkov potential (V2) [57]. These
potentials are the basic ingredient of the microscopic model and of the RGM
potentials.

We write the nucleon-nucleon potential as vij = V NN
ij + V C

ij , where V NN
ij

is the nuclear interaction and V C
ij is the Coulomb potential.

The nucleon-nucleon potential MN is defined as

V NN
ij =

(
VR +

(
1 + P σ

ij

2

)
Vt +

(
1 − P σ

ij

2

)
Vs

)(u
2

+
(
1 − u

2

)
P r

ij

)
, (5.8)

with




VR = 200 exp(−1.487 r2),
Vt = −178 exp(−0.639 r2),
Vs = −91.85 exp(−0.465 r2).

(5.9)

Units, here and in the following, are MeV for the energies, and fm for the
lengths. The operator P r

ij exchanges the space coordinates, and P σ
ij exchanges

the spins of the interacting nucleons. The MN potential depends on an
exchange parameter u, whose value is typically u ≈ 1. This potential fits the
nucleon-nucleon 3S1 and 1S0 scattering lengths and effective ranges. It also
reproduces well the binding energies of the deuteron and the triton.

The nucleon-nucleon potential V2 is simpler, with only the exchange op-
erator P r

ij, and is defined as

V NN
ij (r) = (Vr + Va)

(
1 −m+mP r

ij

)
, (5.10)

with
{
Vr = 61.14 exp (−(r/1.01)2) ,
Va = −60.65 exp (−(r/1.8)2) ,

(5.11)

and the exchange parameter m, whose standard values are usually in the
vicinity of m = 0.6. This effective nucleon-nucleon potential reproduces
reasonably well the binding energies and size of 4He, 16O, and other light p-
shell nuclei. However, because of its simplicity, V2 is found to be somewhat
too strong in the nucleon-nucleon s-wave: its main drawback is to lead to a
bound dineutron.

Of course, when the interacting nucleons are protons, the Coulomb po-
tential must be added to MN (5.8) or V2 (5.10). It reads

V C
ij =

e2

r

(
1

2
− tiz

)(
1

2
− tjz

)
, (5.12)
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Effective potentials Pauli forbidden states
Local potentials Nonlocal potentials in the relative motion

αn KKNN RGM-ε, RGM- 6ε 0s
αα ABd, BFW RGM-ε, RGM- 6ε odd waves, 0s, 1s, 0d

Table 5.1: The various local and nonlocal potentials, used in the models to
represent the αn and αα interactions, and the corresponding Pauli forbidden
states.

where tiz is the isospin component of nucleon i (with tiz = −1/2 for a proton
and tiz = +1/2 for a neutron) and e2 = 1.44.

Furthermore, in certain cases (treating the αn systems), we also add a
spin-orbit force between nucleons [58] defined by

V SO
ij = − 2S0

~2κ5
exp(−r2/κ2) lij · sij, (5.13)

where lij is the relative-motion orbital angular momentum and sij the total
spin of the two interacting nucleons. The spin-orbit force depends on two
parameters: a range κ and an amplitude1 S0.

5.4.3 Cluster-cluster potentials

In the local and semi-microscopic models, potentials representing αn and
αα effective interactions are required. These potentials are listed in Table
5.1. The table also indicates the Pauli forbidden states occuring in the inter-
actions. We describe here the potentials, with their Pauli forbidden states.

In the semi-microscopic models, the αn and αα interactions are represented
by the nonlocal RGM potentials. For each interaction, there are, however,
two possible potentials that can be extracted from the RGM (See Section
2.3.1): the energy-dependent nonlocal potential (RGM-ε) and the energy-
independent nonlocal potential (RGM-6ε). These potentials are derived from
the nucleon-nucleon interactions (MN (5.8) or V2 (5.10)). The αn and αα
RGM-ε potentials are given in Appendix C. The calculations that we perform
to obtain the corresponding RGM-6ε potentials are given in Appendix E. The
question of the energy-dependence of the RGM-ε potentials in the three-body
models is treated in Section 5.6.

1The amplitude S0 in (5.13) is defined so that, when considering the αn interaction,
there is an existing limit as κ → 0 (see Appendix C).
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Also, the existence of the Pauli forbidden states (2.36) between the clus-
ters must be taken into account. In the case of the αn interactions, there is
one Pauli forbidden state, for l = 0 (in the relative motion between the α-
particle and the neutron). This Pauli forbidden state is given in the RGM by
the 0s harmonic-oscillator wave function [34] describing the relative motion.
The existence of this forbidden state may be interpreted schematically in a
shell-model picture, by saying that the Pauli exclusion principle prevents the
external neutron n from occupying the 0s orbital, because this ground-state
orbital is already occupied by the two neutrons inside the α-particle.

In the case of the αα interactions, there are two forbidden states for l = 0
(the 0s and 1s waves in the relative motion between the two α-particles) and
one forbidden state for l = 2 (the 0d wave) [34]. Moreover, all odd l waves
are also forbidden, because the α-particles are bosons. The wave functions
representing the Pauli forbidden states in the RGM are given by the 0s, 1s
and 0d harmonic-oscillator functions.

In the semi-microscopic models, the Pauli forbidden states must be pro-
jected out from the wave functions. Different techniques of projection are
possible. They will be given in the next section.

We also consider the effective local potentials, which are much simpler
(and are approximations), and which offer alternatives to represent the αn
and αα interactions.

As local αn potentials, we adopt the KKNN potential [59]. This effective
local potential reproduces the α+ n phase shifts. It depends on the angular
momentum, via a parity dependence, and includes a spin-orbit force. This
KKNN αn potential reads

V KKNN
αn (r) = −96.3 exp(−0.36r2) + 77 exp(−0.9r2)

+ (−1)l
(
34 exp(0.2r2) − 85 exp(0.53r2) + 51 exp(2.5r2)

)

+ 2(l · s)
[
− 8.4 exp(0.52r2)

+
(
1 + 0.3(−1)l−1

) (
−10 exp(−0.396r2) + 10 exp(−2.2r2)

) ]
,

(5.14)

with the energy in MeV and distance in fm, and where l denotes the orbital
angular momentum of the αn relative motion, and s the spin of the neutron.
This is a deep potential, which generates an unphysical bound state (with
l = 0) simulating the Pauli forbidden state.

As local αα potential, we consider two variants: the deep BFW potential
[25] and the shallow ABd potential [24].
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The BFW potential is very simple: this potential reads

V BFW
αα (r) = −122.6225 exp(−0.22r2) + 4 × 1.44

erf(−0.75r2)

r
, (5.15)

and reproduces very well the α+α scattering phase shifts. It generates three
bound states (two states with l = 0 and one state with l = 2). Those bound
states are unphysical and play the role of the Pauli forbidden states.

The ABd potential [24] is another αα potential. It is a shallow potential;
thus this potential does not take into account the Pauli forbidden states, i.e.,
the ABd potential generates no bound states. It contains a repulsive force,
which may be considered as approximately simulating the repulsion due to
the Pauli principle. The potential depends on the orbital angular momentum
l, but is local for a given l. The ABd αα potential reads

V ABd
αα (r) = V (N)

αα (r) + 4 × 1.44
erf(−0.60141r2)

r
, (5.16)

with

V (N)
αα (r) =





500 exp(−(0.7r)2) − 130 exp(−(0.475r)2), if l = 0,
320 exp(−(0.7r)2) − 130 exp(−(0.475r)2), if l = 2,
−130 exp(−(0.475r)2), if l ≥ 4.

(5.17)

This potential reproduces the α + α phase shifts. Also, the potential is not
defined for the odd values of l, because α-particles are bosons.

In the local models, we will have the opportunity to use and compare
the ABd and BFW potentials. This will illustrate the influence of the Pauli
forbidden states on the wave functions.

5.5 Exclusion of the Pauli forbidden states

The Pauli forbidden states are unphysical. They must be eliminated from
the wave functions, except in the models with the shallow potentials, where
they do not appear.

In the fully microscopic models, the Pauli forbidden states disappear quite
naturally via the antisymmetrisation of the wave function. In the models
with deep potentials and in the semi-microscopic models, the Pauli principle
is approximately simulated: the Pauli forbidden states exist in those models,
but they must be excluded from the three-body wave function, since they
would disappear under full antisymmetrisation. Also, this exclusion is actu-
ally crucial. Indeed, otherwise, their non-elimination in three-body models
gives rise to a strong (unphysical) overbinding of the systems.
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Several practical techniques of removal of the Pauli forbidden states in
the three-body models exist [45,60]. We give here the different methods that
will be employed.

In the case of a deep local potential, a first possible method consists in
using the supersymmetric transformations (2.80). The deep potential is sim-
ply transformed into a shallow potential. (The unphysical bound states are
removed from the potential, while the phase shifts and the energy spectrum
for the physical states remain unchanged.) The shallow potential can be
employed, as an effective interaction, in a three-body local model [27].

The other methods consist in orthogonalizing the wave function with re-
spect to the Pauli forbidden states (by means of projectors). In other words,
the wave function does not contain the Pauli forbidden states as component.
An operator P is defined as the sum of the projectors onto the two-body
forbidden states:

P =
3∑

i>j=1

Nij∑

n=1

|gFS
n,ij〉 〈gFS

n,ij| , (5.18)

where Nij is the number of Pauli forbidden states for the relative motion be-
tween clusters i and j; and gFS

n,ij denote the wave functions of these forbidden
states. Note that P is not necessarily a projector although it is a sum of
two-body projectors.

In the semi-microscopic models, gFS
n,ij are harmonic-oscillator eigenstates

[2, 29, 34] according to the RGM potentials2. Otherwise, in the local models
with a deep potential, the forbidden states gFS

n,ij are the wave functions of the
unphysical bound states, given by the potential.

The forbidden states are excluded from the wave function by imposing

P |ΨJMπ〉 = 0, (5.19)

where ΨJMπ denotes the three-body wave function. Indeed since

0 ≤ 〈ΨJMπ|P |ΨJMπ〉 , (5.20)

condition (5.19) is equivalent to

〈ΨJMπ|P |ΨJMπ〉 = 0 i.e. 〈ΨJMπ|gFS
n,ij〉 = 0. ∀n, ij. (5.21)

Thus ΨJMπ is orthogonal to the Pauli forbidden states.

2See, e.g., Sections 5.4.3 or E.2 in Appendix E.
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A first simple method to impose condition (5.19) is to add the operator P
multiplied by a very large coefficient Λ, as a nonlocal pseudopotential term, to
the Hamiltonian H of the system [27,61]. Indeed, in a variational calculation,
computing the energy E from this Hamiltonian with the additional term ΛP ,

E = 〈ΨJMπ|H + ΛP |ΨJMπ〉 , Λ → ∞, (5.22)

will automatically lead to condition (5.19), provided that Λ is sufficiently
large and positive. The term ΛP has no effect for the wave functions that
satisfy (5.19) but it discriminates all the other wave functions containing
forbidden states, since if (5.19) is not met, then the energy E is strongly
increased by a term proportional to Λ. Therefore, the minimum values of the
energy E are obtained for the wave functions (5.19), which are orthogonal
to the Pauli forbidden states. In practice, the constant Λ is chosen as a
much larger energy than the characteristic energies of the system (typically
Λ ∼ 106 – 109 MeV whereas E ∼ 1 MeV). The obtained energies E are
insensitive to the choice of Λ when the forbidden states are eliminated.

There is, of course, an alternative method to impose condition (5.19).
It consists in diagonalising the matrix that represents the operator P in a
variational calculation. The eigenvalues µn and eigenvectors X JMπ

n of P are
computed,

PX JMπ
n = µnX JMπ

n . (5.23)

Imposing (5.19) is equivalent to working in the subspace spanned by the
eigenvectors X JMπ

n belonging to µn = 0. In the variational calculation, the
wave function ΨJMπ is thus defined in this subspace (µn = 0) which is or-
thogonal to the forbidden states: the wave function is expanded in the basis

ΨJMπ =
∑

n
µn=0

cnX JMπ
n , (5.24)

where cn are coefficients and the summation runs over all states X JMπ
n be-

longing to µn = 0. However, in practice, when the calculations are performed
numerically, the eigenvalues µn are obtained approximately within the nu-
merical precision. The exact condition µn = 0 must therefore be replaced
by

µn < ǫ, (5.25)

where ǫ is arbitrarily close to zero, i.e., ǫ is the threshold under which an
eigenvalue may be considered, within the precision of the calculations, as
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numerically equivalent to zero. The variational calculation is thus performed
with a numerical function defined as

ΨJMπ =
∑

n
µn<ǫ

cnX JMπ
λ , (5.26)

with X JMπ
n satisfying the condition µn < ǫ.

In practice, this technique is equivalent to the pseudopotential method
(5.22). Both methods give the same results numerically [20, 60], provided
that ε is taken to be small enough.

Nevertheless, the pseudopotential method (5.22) is simpler to apply in our
nonlocal formalism, because it does not need to determine the eigenstates of
operator P (5.23).

5.6 Energy-dependent potentials

The models with the nonlocal RGM-ε potentials raises a fundamental ques-
tion. One of the important aspects of these RGM-ε potentials is that they
depend explicitly on the energy ε of the relative motion between the inter-
acting clusters (see Appendix C). Therefore, the use of these potentials in a
three-body model requires the two-body energies ε to be determined.

In the two-cluster problems, the energy ε is well defined, and the RGM-ε
potentials (2.77) describe correctly the two-cluster systems. However, in the
case of a three-cluster system, the energy that is well defined is not ε, but
the total energy E of the motion of the three clusters. Indeed, the two-body
energy ε is not a constant of motion in a three-body system (because the
Hamiltonian of a two-body subsystem does not commute with the three-body
Hamiltonian). Hence in the three-body model using the RGM-ε potentials,
the values of the two-body energies ε become parameters of the potentials,
which must be determined for each pair of clusters.

A plausible approach, suggested by Fujiwara and co-workers [17,28], is to
set these parameters equal to the mean energies of the two-body subsystems,

εij = 〈ΨJMπ|Tk + Vij(εij) |ΨJMπ〉 , (5.27)

where Vij(εij) is a RGM-ε potential, which depends on the energy εij, and Tk

is the kinetic energy of the relative motion between clusters i and j (ijk be-
ing a cyclic permutation of cluster indices 123). This approach is consistent
with the interpretation of the RGM-ε potential as representing the effective
interaction between two clusters. The two-body energy εij is identified as
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the average value of the relative-motion energy of the two interacting clus-
ters. The wave function ΨJMπ is the solution of the three-body Schrödinger
equation (3.60) with the potential Vij. Since εij is a parameter of the RGM-ε
potential Vij (and ΨJMπ is determined from Vij), a self-consistent resolution
of equations (3.60) and (5.27) must be performed. Equations (3.60) and
(5.27) are then solved iteratively. The practical calculation of εij (5.27) in
the hyperspherical formalism is given in Appendix D.

However, we will show [20] that prescription (5.27) is questionable in
practice, for example in the case of a three-body model of the 9Be nucleus
described as a system with two α clusters and one additional neutron. This
critical situation for (5.27) is clearly explicable by analysing the effects of
replacing ε by a constant parameter in a RGM-ε potential. This question will
be discussed in Chapter 7. This has motivated the development of our semi-
microscopic model using the energy-independent RGM-6ε potentials [21–23].
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Chapter 6

Three-body models of the 6
ΛΛHe

and 9
ΛBe hypernuclei

6.1 Introduction

As first physical applications, we consider two hypernuclei, 6
ΛΛHe and 9

ΛBe.
This choice is opportune. It will allow us to test accurately our three-body
technique with nonlocal potentials. Indeed there are published results [17,18]
of three-body models of 6

ΛΛHe and 9
ΛBe in a semi-microscopic approach using

nonlocal potentials. We will take the same parameters as those models. Com-
paring the results, this will provide a severe test for our nonlocal calculations
[19,20].

In addition, we will also perform new calculations with other poten-
tials, and compute various observables, such as probability densities, radii
and reduced transition probabilities. We will compare the nonlocal semi-
microscopic models with simple models using local potentials.

This chapter begins by briefly introducing the Λ hyperon. Then, the 6
ΛΛHe

and 9
ΛBe hypernuclei, and their respective three-body models, are defined.

Next, the potentials employed in the models are given. Before discussing the
physical results, we detail the conditions of the numerical calculations. The
results for 6

ΛΛHe and 9
ΛBe are then discussed and compared.

6.2 The Λ hyperon

The baryons [62–64] form a family of particles, which includes the nucleons.
They are not elementary particles: the baryons are made up of three quarks.
The nucleons are the lightest baryons. Hence they are the constituents of the
ordinary nuclear matter. But other baryons exist; those just heavier than the

75



76 CHAPTER 6. THREE-BODY MODELS OF 6
ΛΛHe AND 9

ΛBe

Mass Mean Life Quark

Charge Spin Isospin Strangeness (MeV/c2) (s) struct.

p +e 1/2 1/2 0 938.27 stable uud
n 0 1/2 1/2 0 939.57 885.7 udd
Λ 0 1/2 0 −1 1115.68 2.6 × 10−10 uds

Table 6.1: Basic properties and quark structure of the nucleons (proton p
and neutron n) and the Λ hyperon [64]. The principal decay modes of the Λ
are Λ → p+ π− (64%) and Λ → n+ π0 (36%).

The quarks
Electric charge:

−1/3e +2/3e

d (down) u (up)
s (strange) c (charm)
b (bottom) t (top)

Table 6.2: The six flavors of quarks in the Standard Model of particle physics.
They are grouped into 3 generations: each line corresponds to a generation,
and each generation of quarks has two members, one with a fractional electric
charge −1/3e and another with a charge +2/3e.

neutron are called hyperons. The hyperons possess a specific property called
strangeness, which corresponds to a quantum number, that the nucleons do
not have (the strangeness of a nucleon is zero). They are unstable and decay,
directly or indirectly, into a nucleon plus other particles, such as pions. Such
decays proceed by the weak interaction, which is the only interaction able to
modify the strangeness quantum number.

The lightest hyperon is the Λ particle. This is the only hyperon that will
be considered here. Table 6.1 briefly compares the basic properties of the Λ
with respect to the nucleons. The Λ hyperon is electrically neutral, like the
neutron. This is a particle with isospin zero, whereas the nucleons, having
isospin 1

2
, form an isospin doublet. The Λ differs markedly from the nucleons

by its strangeness quantum number −1. The quark structure of the baryons
accounts for those differences between the Λ and the nucleons.

The six flavors of quarks [63], according to the elementary particle
physics, are listed in Table 6.2. The hyperons, by definition, are the baryons
formed by u, d, or s quarks, and that contain at least one s quark. The
similarities and differences between the Λ and the neutron follow from their



6.3. THE 6
ΛΛHe AND 9

ΛBe HYPERNUCLEI 77

respective quark structure. Indeed, the elementary difference between the
neutron (udd) and the Λ (uds) is a d quark that is replaced by a s quark.

The Λ hyperon is a fermion with spin 1
2
, like the nucleons. Its mean life

time is 2.6 × 10−10 s, and the main decay channels are Λ → p + π− (64%)
and Λ → n+ π0 (36%). Notice also that the Λ (1115.68 MeV/c2) is heavier
than the neutron (939.57 MeV/c2).

6.3 The 6
ΛΛHe and 9

ΛBe hypernuclei

A hypernucleus is a many-body system composed of nucleons and one
or more hyperons [65–67]. Thus, in other words, a hypernucleus is similar
to an atomic nucleus, with a few hyperons among the nucleons. Here, we
consider two specific hypernuclei: 6

ΛΛHe and 9
ΛBe. By definition, the 6

ΛΛHe
hypernucleus corresponds to a 6He nucleus in which two neutrons are replaced
by two Λ hyperons. Hence the 6

ΛΛHe is a system of two protons, two neutrons
and two Λ hyperons. Such a nuclear system, with two Λ hyperons among the
nucleons, is usually termed a double-Λ hypernucleus. The 9

ΛBe is an example
of single-Λ hypernucleus, i.e., a hypernucleus with only one Λ hyperon. The
9
ΛBe corresponds to a 9Be nucleus with one Λ instead of one neutron. Thus
the 9

ΛBe is a bound system composed of four protons, four neutrons and one
Λ hyperon.

The choice of the hypernuclei as first applications [19] for our models is
instructive: it offers an ideal test for our three-body techniques. The hy-
pernuclei correspond to a research field of nuclear physics: both theoretical
and experimental studies are available [65–72]. In particular, there are cal-
culations (published in 2004) of three-body models of 6

ΛΛHe and 9
ΛBe using

semi-microscopic nonlocal forces [17, 18]. Those calculations however are
performed in the momentum space with the Faddeev method. We can ad-
vantageously take the same parameters as those models, in order to make
comparable calculations, but in the configuration space and with our hyper-
spherical method, which we have extended to the case of nonlocal potentials
[19]. This allows us to study the hypernuclei but also to test accurately the
numerical calculations with the nonlocal forces.

In addition, there is another practical aspect to consider hypernuclei as
first applications: the Pauli principle is simpler to apply in those models,
because the Λ hyperon is discernible from the nucleons. This brings a simpli-
fication in the calculation of the potentials. Indeed, in the hypernuclei, there
is no effect of the Pauli principle (no forbidden states, no energy-dependence
arising in the potential) in the relative motion between a Λ hyperon and an
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Figure 6.1: Three-body models of 6

ΛΛHe and 9
ΛBe

α cluster. Hence the αΛ interaction is fundamentally different from the α-
neutron interaction. In particular, the αΛ potential can form a bound state
(namely the 5

ΛHe hypernucleus), while α-neutron cannot form any bound
state (5He being particle unstable). Also, in 6

ΛΛHe and 5
ΛHe, the Λ hyperons

are in the 0s orbital, whereas in 6He and 5He, the valence neutrons must
occupy the 0p orbital, according to the Pauli principle.

The hypernuclei can be studied by assuming cluster structures [17, 18, 68,
69,72]. We consider three-body models of the 6

ΛΛHe and 9
ΛBe [19] (see Figure

6.1). The 6
ΛΛHe hypernucleus is represented by a system with a α-cluster

core and two Λ hyperons. Hence this αΛΛ model of 6
ΛΛHe requires αΛ and

ΛΛ effective interations. These interactions are given in the next section.
Considering the αΛ interactions, we investigate two variants: we use either
a simple local αΛ potential or a nonlocal αΛ potential taking the internal
structure of the α-cluster into account. In the latter case, the model with
the nonlocal αΛ potential will be essentially equivalent to a three-cluster
microscopic model of 6

ΛΛHe.
We also consider the 9

ΛBe hypernucleus: this hypernucleus is represented
in a three-body model as a system with one Λ and two α clusters. This ααΛ
model for 9

ΛBe requires the use of an effective αα potential and is therefore
not equivalent to a microscopic model. However, if the αα interaction is
represented by a RGM potential (see Section 5.4.3) and if the nonlocal αΛ
potential is employed, then the ααΛ model corresponds to a semi-microscopic
model of the 9

ΛBe hypernucleus.

We will determine to what extent the models can account for the experi-
mental data concerning the hypernuclei. Although the study of 6

ΛΛHe remains
experimentally extremely difficult, a first measurement of the binding energy
of 6

ΛΛHe is available [71]. This measurement is deduced from one single but
clear observation of 6

ΛΛHe, in 2001, called the NAGARA event. Of course,
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such a result must be treated carefully since it follows from only one event.
Nevertheless, the NAGARA event is claimed to be the first observation in
which the 6

ΛΛHe is uniquely identifiable, without possible ambiguity1. This
is a very scarce experimental data concerning 6

ΛΛHe, so far.
The experimental status for the single-Λ hypernuclei, such as 9

ΛBe, is
incomparably more advanced: those hypernuclei are relatively well-known
systems and spectroscopic measurements can be made. Indeed, accurate
experimental data for the binding energy [74] and the fine structure of excited
states of 9

ΛBe are available [70].

6.4 ΛΛ, αΛ and αα potentials

For the semi-microscopic models of 6
ΛΛHe and 9

ΛBe, we adopt the same
potentials (SB) as defined in Refs. [17, 18]. These effective potentials are
derived from baryon-baryon collision matrices generated by a quark model
[28,75]. Units are MeV and fm throughout.

The SB nucleon-Λ potential is defined as

V NΛ
ij =

((
1 + P σ

ij

2

)
VT +

(
1 − P σ

ij

2

)
VS

)(
ũ

2
+

(
1 − ũ

2

)
P r

ij

)
, (6.1)

with
{
VT = 1072 exp(−13.74 r2) − 56.31fNΛ exp(−0.7517 r2)
VS = 1015 exp(−5.383 r2) − 128 exp(−0.8908 r2),

(6.2)

where P σ
ij and P r

ij are the spin and space exchange operators, respectively.
The parameter fNΛ = 1 corresponds to the bare interaction. This potential
is obtained by supersymmetric inversion [76] from the 1S0 and 3S0 nucleon-Λ
phase shifts derived in a quark model of Ref. [75]. The parameter ũ is usually
set to ũ = 1 [17]. The interaction is then taken as zero for odd waves
(P r

ij → −1) of the nucleon-Λ system.
The SB ΛΛ potential [18] reads

V ΛΛ
ij = 658.2 exp(−5.936 r2) − 103.9fΛΛ exp(−1.176 r2), (6.3)

with fΛΛ = 1 for two bare Λ hyperons. It is obtained by inverting the 1S0

phase shift of the quark model. This ΛΛ potential is defined for the even

1Since 1966 [73], there have been three previous experimental observations of double-Λ
hypernuclei, but those reported events however were not accurate evidences, because they
allowed more than one possible interpretation [71] in terms of identification of the species
and their binding energy.
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ΛΛ partial waves. For odd partial waves the potential is expected to be
different, but there will be no odd waves in our applications, because of the
Pauli principle for 6

ΛΛHe (see Section 6.5.1).

The SB αΛ potential is generated from the nucleon-Λ interactions by tak-
ing into account the internal structure of the α-particle. This is a nonlocal
potential: it is obtained by folding the interaction V NΛ

ij (6.1) with a (0s)4

oscillator density |φ1|2 (2.6) representing the α-particle. For a Gaussian term
(

1 ± P σ
ij

2

)
exp(−κ r2)

(
ũ

2
+

(
1 − ũ

2

)
P r

ij

)
(6.4)

of the nucleon-Λ interaction (6.1), the resulting αΛ potential [19] is given by
a local term,

V SB
αΛ = Xd

(
8ν

3κ+ 8ν

)3/2

exp

(
− 8νκ r2

3κ+ 8ν

)
, (6.5)

plus a nonlocal term, the kernel of which reads

W SB
αΛ, l(r, r

′) = 4πXe

(
128ν

75π

)3/2

× exp

(
−4(12κ+ 17ν)(r2 + r′2)

75

)
il

(
32(3κ− 2ν) rr′

75

)
, (6.6)

where ν = 1/2b2, with b denoting the oscillator parameter of the wave func-
tion of the α-particle (2.6), Xd = ũ/2, Xe = (1− ũ/2) for the (1− P σ

ij) term
and Xd = 3ũ/2, Xe = 3(1 − ũ/2) for the (1 + P σ

ij) term, and il(x) denotes a
modified spherical Bessel function (or spherical Hankel function) [44]. The
kernel (6.6) is written for a partial wave of angular momentum l of the αΛ
relative motion (see definition (3.83)).

Thus, from V NΛ
ij (6.1), an effective αΛ potential is calculated, as a sum of

local and nonlocal terms (6.5) and (6.6). This potential has nonlocal terms
(6.6) because of the exchange operator P r

ij in the nucleon-Λ interaction. We
employ the nonlocal SB αΛ potential in the semi-microscopic models of 6

ΛΛHe
and 9

ΛBe.

In our study, we will compare the nonlocal models with simpler local mod-
els. In the local models, for the αΛ interaction, we take another potential:
the Isle potential [77,78] which reads

V Isle
αΛ = 450.4 exp

(
−(r/1.25)2

)
− 404.9 exp

(
−(r/1.41)2

)
. (6.7)
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Figure 6.2: The Isle potential (V Isle

αΛ ), and the local part of the semi-
microscopic SB αΛ potential (

∑
V SB

αΛ ) for comparison.

This is an effective, phenomenological, local αΛ potential, with an attractive
term and a repulsive core. It admits an α+ Λ bound state, representing a 5

ΛHe
hypernucleus, with the correct binding energy 3.1 MeV. The Isle potential is
displayed in Figure 6.2, with the local part of the SB αΛ potential (i.e., the
sum of terms (6.5)) for comparison. We see that the local terms of the αΛ
potentials are quite different, which is an essential point in the comparison
of the models.

In addition, for the ααΛ model of 9
ΛBe, an effective αα potential is needed.

The αα potentials (ABd or BFW in the local models, RGM-ε or RGM- 6ε in
the semi-microscopic models) are described in Section 5.4.3. The RGM and
BFW potentials generate Pauli forbidden states that must be eliminated from
the wave functions (see Section 5.5). In the case of the deep BFW potential,
two techniques of elimination of the bound states are investigated: when the
forbidden states are removed using supersymmetric transformations (2.80),
the potential is denoted SBFW, and otherwise, when the forbidden bound
states are eliminated using the projection technique (5.22) [or (5.26)], the
potential is denoted PBFW.
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6.5 Results and discussion

6.5.1 Conditions and convergence of calculation

We adopt exactly the same parameters as in Ref. [17]. The calculations are
performed with Aα = 4 and AΛ = 1.18826 as mass numbers of the α-particle
and the Λ hyperon, with mN as mass unit such that ~

2/2mN = 20.7355
MeV fm2. The oscillator parameter of the density of the α-particle is ν =
1/2b2 = 0.257 fm−2. The effective nucleon-Λ SB potential (6.1) is adjusted
with the values ũ = 1 and fNΛ = 0.8923 [17], so that the nonlocal SB αΛ
potential yields the right energy of the two-body α+ Λ bound state (namely
the 5

ΛHe hypernucleus). The binding energy of this α + Λ system with the
nonlocal αΛ potential is easily computed with the method of Ref. [52]. With
these choices of parameters, the value 3.1202 MeV is obtained, simulating
the experimental value 3.12 ± 0.02 MeV of the α+ Λ binding of 5

ΛHe [74].
For the 9

ΛBe hypernucleus, in the semi-microscopic models, we use the
Minnesota (MN) potential (5.8) as effective nucleon-nucleon force for the αα
RGM potentials. The exchange parameter of MN is taken as u = 0.94687
[17] in order to reproduce the α+ α scattering phase shifts.

In the calculations, we exploit the following symmetry considerations. The
ground state of 6

ΛΛHe is a 0+ state, which implies the equality L = S (where L
represents the total orbital angular momentum and S the total spin). Since
the potentials that we use are spin-independent, L and S are good quantum
numbers in the model. The ground state of 6

ΛΛHe is therefore a L = S = 0
state. In the hyperspherical formalism, L = 0 implies lx = ly. Moreover, the
Λ hyperons are fermions, hence the wave function must be antisymmetric
with respect to the exchange of the Λ particles. If the quantum number lx
denotes the orbital angular momentum of the relative motion between the Λ
hyperons, the Pauli antisymmetry imposes lx + S to be an even value, but
since S = 0, only the even values of lx are required, which reduces the size
of the hyperspherical basis.

In the case of the 9
ΛBe, we perform calculations for the 1/2+ ground state

and the 3/2+ or 5/2+ excited states of the hypernucleus. Here again, since
the potentials are spin-independent, L and S are good quantum numbers.
The total spin is the spin S = 1/2 of the Λ hyperon (since the α-particles
have zero spin). Therefore in our models, the 1/2+ ground state corresponds
to L = 0 and the excited states to L = 2. The 3/2+ and 5/2+ excited states
of 9

ΛBe are thus degenerate in the model. Furthermore, the α-particles are
bosons, which leads us to consider only the even values of lx, provided that lx
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6
ΛΛHe (0+) 9

ΛBe (1/2+) 9
ΛBe (3/2+, 5/2+)

KM E
√

〈ρ2〉 E
√

〈ρ2〉 E
√
〈ρ2〉

0 −7.28497 3.40956 1.08723
2 −7.39194 3.40986 −4.25184 6.12532 −1.0119 6.204
4 −7.76942 3.53180 −6.44122 5.67974 −3.4420 5.553
6 −7.88724 3.53455 −6.86288 5.72831 −3.9261 5.624
8 −7.98036 3.54459 −7.01574 5.78726 −4.0916 5.713

10 −8.03871 3.54086 −7.07490 5.82982 −4.1650 5.787
12 −8.07890 3.53732 −7.08940 5.84651 −4.1853 5.825
14 −8.10536 3.53509 −7.09559 5.85480 −4.1944 5.847
16 −8.12195 3.53340 −7.09822 5.85886 −4.1986 5.862
18 −8.13247 3.53269 −7.09962 5.86101 −4.2008 5.872
20 −8.13909 3.53236 −7.10037 5.86215 −4.2020 5.878
22 −8.14324 3.53232 −7.10071 5.86266 −4.2026 5.881
24 −8.14584 3.53238 −7.10090 5.86296 −4.2029 5.883
26 −8.14748 3.53249 −7.10102 5.86315 −4.2031 5.885
28 −8.14853 3.53262 −7.10108 5.86327
30 −8.14920 3.53273 −7.10112 5.86335
32 −8.14963 3.53283 −7.10114 5.86340
34 −8.14991 3.53291 −7.10115 5.86343
36 −8.15009 3.53298 −7.10116 5.86346
38 −8.15021 3.53303 −7.10117 5.86347
40 −8.15029 3.53307 −7.10117 5.86348

Table 6.3: Numerical convergence of the energies (in MeV) and r.m.s hyper-
radius (in fm) with respect to KM . In these examples, the potentials are the
SB potentials for αΛ and ΛΛ, and the ABd potential for αα.

corresponds to the orbital angular momental of the relative motion between
the α-particles. In addition, the considered states have a positive parity.
Therefore ly must be even, since the parity requires lx + ly to be even (3.62).

Let us now discuss the numerical convergence of our three-body calcu-
lations with the hyperspherical harmonics method. For each K value, all
possible lx, ly values are included. The number of Lagrange-mesh points
for the hyperradial functions (3.109) is N = 30 with the scale parameter
h = 0.3 fm. For the local potentials, integrals (B.4) are performed with a
Gauss-Legendre quadrature with 64 points. For the nonlocal potentials, the
parameters of the Gaussian quadrature in equation (B.24) are N2 = 30 and
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L = 0
KM NγK NγKi

10 12 360
20 36 1080
30 72 2160
40 121 3630

L = 2
KM NγK NγKi

10 24 720
20 85 2550
26 140 4200

Table 6.4: Matrix sizes NγKi, for L = 0 (ground states of 6
ΛΛHe and 9

ΛBe)
and L = 2 (excited state of 9

ΛBe), and the corresponding number NγK of γK
values in the basis (NγKi = NγK ×N), with respect to KM .

h2 = 0.08 fm. The integration over y in this equation is performed with a
constant step 0.06 fm and extends up to 48 fm.

In order to show in details the convergence of the numerical calculations,
we display in Table 6.3 some typical values of the energy and the r.m.s.
hyperradius, obtained in differents cases, with increasing values of KM . Cal-
culations are performed for the ground states of 6

ΛΛHe and 9
ΛBe (L = 0) and

for the degenerate (L = 2) excited state, corresponding to 3/2+ and 5/2+

states of 9
ΛBe.

The results for 6
ΛΛHe show that an accuracy of 100 keV is obtained for

KM = 12, of 10 keV for KM = 20, and of 1 keV for KM = 30. The same
accuracies are obtained for the 9

ΛBe ground state for KM = 8, KM = 12,
KM = 20, respectively. Slightly larger values are necessary for the excited
state.

The sizes of the numerical matrices (3.114) with respect to KM are given
in Table 6.4. For the ground states (L = 0) for KM = 40, the number of γK
values in the basis is 121 and the matrix size is 3630. For the excited state of
9
ΛBe (L = 2), the matrix size is much larger: with the smaller limit KM = 26,
the number of γK values is already 140, and the matrix size is 4200.

6.5.2 The 6
ΛΛHe hypernucleus

αΛΛ model with the SB potentials

First we make a comparison with a result of Fujiwara et al. [18], obtained
with the momentum-space Faddeev method under the same assumptions
with the SB potentials. For the 6

ΛΛHe hypernucleus, we obtain the three-
body binding energy (see Table 6.3) [19]

B( 6
ΛΛHe) = 8.150 MeV. (6.8)
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fΛΛ = 1 fΛΛ = 0.8 fitted fΛΛ

VαΛ E
√
〈r2〉 E

√
〈r2〉 fΛΛ E

√
〈r2〉

SB −8.150 1.820 −7.322 1.879 0.78 −7.248 1.886
Isle −7.732 1.926 −7.104 1.978 0.85 −7.248 1.965

Table 6.5: Energy (in MeV) and r.m.s matter radius (in fm) of 6
ΛΛHe for the

nonlocal SB and local Isle αΛ potentials, for different values of the parameter
fΛΛ in the ΛΛ potential (6.3).

The corresponding ΛΛ interaction energy is defined by

∆BΛΛ = B( 6
ΛΛHe) − 2B(5

ΛHe) = 1.910 MeV, (6.9)

with B(5
ΛHe) = 3.120 MeV. This is in perfect agreement with the value in

Table I of Ref. [18]. The three-body calculation, involving nonlocal potentials,
is therefore accurate and correct.

The experimental value is ∆BΛΛ = 1.01 ± 0.20 MeV [71]. It corresponds
to an energy B( 6

ΛΛHe) = 7.25 ± 0.20 MeV. Our binding energy is thus too
large by about 0.9 MeV. However, different corrections are not included in
the three-body model with the SB potentials. For example, as suggested in
Ref. [18], effects such as ΛΛα − ΞNα and ΛΛα − ΣΣα channel2 couplings,
arising in the baryon-baryon interactions, could account for a part of the
discrepancy [18,79,80].

Comparison with a simple local model

In order to make a comparison with a simple local model, the energies
and radii obtained with the nonlocal SB potential are compared in Table 6.5
with the results obtained with the local αΛ Isle potential (6.7). The binding
energy with the Isle potential is smaller than with the nonlocal SB potential,
i.e., appears to be closer to the experimental value. The r.m.s matter radius
of 6

ΛΛHe is calculated as

〈r2〉 =
1

Aα + 2AΛ

[
〈ρ2〉 + Aαr

2
α

]
, (6.10)

assuming rα = 1.47 fm for the radius of the α-particle. The r.m.s radius is
larger for the local potential as expected for a weaker binding.

2 Σ and Ξ are other hyperons (with strangeness −2 and −1, respectively); with the
nucleons N , the Λ, Σ and Ξ hyperons form a spin-1

2
baryon octet [62].
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Now we use fΛΛ in the ΛΛ SB interaction (6.3) as a parameter fitted to
bring the binding energy within the error bars of the experimental value.
This is achieved with fΛΛ = 0.8 (see Table 6.5). The radii increase since
the binding energies decrease but the 0.1 fm difference between the models
is essentially maintained. When values of fΛΛ are adjusted to reproduce the
experimental energy, the radius difference is still 0.08 fm.

The probability density of the 6
ΛΛHe ground state as a function of the ΛΛ

and α − ΛΛ distances is calculated from the wave function, according to
definition (5.7). In Figure 6.3, the probability density obtained in the local
model (with the Isle αΛ potential) is compared with the one obtained in
the nonlocal model (with the SB αΛ potential), for the same binding energy
(E = −7.248 MeV) of 6

ΛΛHe. These probability densities corresponds to
fΛΛ = 0.85 and fΛΛ = 0.78 for the models with the Isle and SB αΛ potentials,
respectively. Figure 6.3 shows that the local model and the nonlocal semi-
microscopic model yield quite similar probability densities for 6

ΛΛHe. There
are however very slight differences: with the nonlocal SB αΛ potential, the
maximum density (0.16 fm−2) is obtained for a ΛΛ distance of 2.3 fm and an
α−ΛΛ distance of 1.4 fm, while with the Isle αΛ potential, the maximum is
lower (0.13 fm−2) and corresponds to a ΛΛ distance of 2.5 fm and an α−ΛΛ
distance of 1.7 fm. Thus the local model gives similar results to the nonlocal
model, but with larger distances between the particles in 6

ΛΛHe.

We have also performed a search for possible excited states of the 6
ΛΛHe.

For 1P and 1D configurations, we find no indication of such states. When
increasing KM , the energy is negative and decreases but stays significantly
above the 5

ΛHe + Λ separation threshold.

Role of nonlocality and potential energies

In order to see the role of the nonlocal terms in the binding energy of
6

ΛΛHe, we calculate the mean values of the kinetic energy, and the local-
and nonlocal-potential energies. These values are given in Table 6.6. The
potential energy is separated into several terms: 〈VΛΛ〉 denotes the mean
value of the ΛΛ potential, and 〈VαΛ〉 and 〈WαΛ〉 denote respectively the mean
values of the local and nonlocal terms of the αΛ potential. There are two
αΛ interactions in the Hamiltonian of the αΛΛ model. The mean potential
energies are, of course, identical for both αΛ interactions, by symmetry.
Hence in Table 6.6, the values 〈VαΛ〉 and 〈WαΛ〉 are multiplied by 2, and
therefore correspond to the sum of both αΛ interactions. We have E =
〈T 〉 + 〈VΛΛ〉 + 2 〈VαΛ〉 + 2 〈WαΛ〉.
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Figure 6.3: Comparison of the probability densities (as functions of the ΛΛ
and α−ΛΛ Jacobi coordinates) for the ground state of 6

ΛΛHe for the nonlocal
SB αΛ potential (left) and the local Isle αΛ potential (right), when the
parameter fΛΛ is chosen so that E = −7.428 MeV. (3D view, with the
corresponding 2D side views along the rΛΛ and rα−ΛΛ axes.)

VαΛ fΛΛ 〈T 〉 〈VΛΛ〉 2 〈VαΛ〉 2 〈WαΛ〉 E
SB 1 17.462 −2.421 −11.668 −11.523 −8.150
Isle 1 14.821 −1.926 −20.627 0 −7.732
SB 0.78 15.975 −1.240 −11.082 −10.901 −7.248
Isle 0.85 14.081 −1.240 −20.089 0 −7.248

Table 6.6: Mean contributions 〈T 〉 of the kinetic energy, 〈VΛΛ〉 of the (local)
ΛΛ potential energy, 2 〈VαΛ〉 of the local terms of αΛ potential energy and
2 〈WαΛ〉 of the nonlocal terms of αΛ potential energy (in MeV), in the models
of 6

ΛΛHe.
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In Table 6.6, we see that the 6
ΛΛHe binding is mainly due to the αΛ

interactions. In the semi-microscopic model (with the SB αΛ potential), the
nonlocal terms contribute essentially for the half (about −11 MeV) of the
total αΛ potential energy. This near equality 〈VαΛ〉 ≈ 〈WαΛ〉 in magnitude
between the local and nonlocal αΛ terms may be related to fact that ũ = 1.
The question of the influence of the exchange parameter ũ will be discussed
below.

Otherwise, with the Isle potential, 〈WαΛ〉 = 0 since the potential is local,
but in compensation, the local contribution 2 〈VαΛ〉 is about twice as large
(about −20 MeV) as with the SB αΛ potential. Here, Figure 6.2 display-
ing the Isle potential and the local term of the SB potential is relevant: it
illustrates the difference of the local αΛ potential energy between the models.

An interesting comparison in Table 6.6 arises when the models give the
same energy (E = −7.248 MeV), via different values of fΛΛ. In this case, we
observe that the contribution 〈VΛΛ〉 of the ΛΛ potential becomes remarkably
identical for both models (〈VΛΛ〉 = −1.240 MeV), although the parameter
fΛΛ of the ΛΛ potentials (6.3) differs (fΛΛ = 0.78 and fΛΛ = 0.85). The
kinetic energies 〈T 〉 are however different, as expected from the probability
densities of Figure 6.3. The kinetic energy in the nonlocal model (about 16
MeV versus 14 MeV with the Isle potential) is larger by about 2 MeV, but
this difference is exactly cancelled out by the total (2 〈VαΛ〉 + 2 〈WαΛ〉) αΛ
potential energy, which allows the nonlocal model to give the same 6

ΛΛHe
binding energy as with the Isle potential.

In the above comparison, the fundamental difference between the models
should not be forgotten. This difference lies in the nature of the αΛ inter-
action potentials. The SB potential takes into account the exchange force of
the nucleon-Λ interactions (6.1). Hence the SB αΛ potential has a nonlocal
term, which plays a decisive role in the binding of 6

ΛΛHe. The phenomeno-
logical Isle αΛ potential is quite different: it is purely local and contains a
repulsive core (see Figure 6.2), but no exchange force.

The exchange parameter ũ

The physical reason for the nonlocality in the SB αΛ potential is the ex-
change force in the nucleon-Λ interactions (6.1). The parameter ũ allows us
to modify the importance of this exchange force. Now we set fΛΛ = 1 and
investigate the sensitivity of the 6

ΛΛHe energy to the exchange parameter ũ.
Figure 6.4 displays the dependence of the energy E on the parameter ũ, in

the semi-microscopic model of 6
ΛΛHe. It also displays the corresponding local

and nonlocal contributions 2 〈VαΛ〉 and 2 〈WαΛ〉. We see that the dependence
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of the total energy E on ũ is rather weak, especially in regard to the important
modifications of 〈VαΛ〉 and 〈WαΛ〉. The variation of the energy E around the
central value ũ = 1 (E = −8.150 MeV) is δE ≈ −0.145δũ for small variations
δũ of the order of 0.1.

The straight lines of 〈VαΛ〉 and 〈WαΛ〉 reflect the ũ-dependence of the
αΛ potential. Indeed the local and nonlocal terms of the SB αΛ potential
respectively arise from the local (ũ/2) and exchange ((1 − ũ/2)P r

ij) terms
of the nucleon-Λ potentials (6.1). Hence the αΛ potential depends on the
parameter ũ through the coefficients Xd ∝ ũ/2 (for the local terms (6.5))
and Xe ∝ (1 − ũ/2) (for the nonlocal terms (6.6)). This accounts for the
straight-line behaviour of 〈VαΛ〉 and 〈WαΛ〉 in Figure 6.4.

The crossing of the lines (〈VαΛ〉 = 〈WαΛ〉) occurs near ũ = 1, i.e., when
the local (ũ/2) and exchange (1 − ũ/2) terms have an equal weight in the
nucleon-Λ potential (6.1). The numerical values (E, 2 〈VαΛ〉, 2 〈WαΛ〉) for
ũ = 1 are those given above in Table 6.6.

We note that when ũ increases, the binding of 6
ΛΛHe increases. Thus in

the SB αΛ potential, the local terms appear to have a more binding effect
than the nonlocal (exchange) terms.

6.5.3 The 9
ΛBe hypernucleus

ααΛ model with various potentials

We now consider the 9
ΛBe hypernucleus, which is described in an ααΛ

model. We test several local (ABd, SBFW, PBFW) and nonlocal (RGM-ε
and RGM- 6ε) αα potentials. The local models are purely phenomenological.
The ABd and SBFW are shallow potentials, while PBFW is a deep αα
potential, which requires the elimination of the forbidden states. The semi-
microscopic models use the nonlocal potentials (RGM-ε or RGM- 6ε for αα and
SB for αΛ). Note that in the semi-microscopic models, the Pauli forbidden
states of the αα RGM potentials are to be eliminated too.

We consider the 1/2+ (L = 0) ground state and the (here degenerate)
3/2+ and 5/2+ (L = 2) excited state of 9

ΛBe.

We first make a comparison with published Faddeev ααΛ calculations [17]
using the SB αΛ potential and the local (ABd, PBFW) and nonlocal RGM-ε
αα potentials. For the ground state, with the local3 ABd and PBFW poten-

3For this comparison only, the used parameters slightly differ: ~
2/2mN = 20.893 MeV

fm2 in both cases; ν = 0.27127 fm−2 for the ABd potential, ν = 0.257 fm−2 for the BFW
potential. [17]
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Figure 6.4: Dependence on the exchange parameter ũ of the energy E (top)
in the semi-microscopic model of 6

ΛΛHe, and the corresponding local and
nonlocal potential energies 2 〈VαΛ〉 and 2 〈WαΛ〉 (bottom) for comparison
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tials, we obtain [19] the binding energies B(9
ΛBe) = 7.153 and 7.043 MeV,

respectively, i.e., a perfect agreement with Table XI of Ref. [17].

For the calculation with the nonlocal RGM-ε αα potentials, we obtain
B(9

ΛBe) = 6.839 MeV, with the self-consistent αα energy εαα = 1.18 MeV
[20]. This result agrees within 2 keV with Ref. [17]. The slight difference
could be due to the fact that we treat the Coulomb interaction between
the α-particles exactly, while in Ref. [17] a Coulomb cutoff approximation is
made. This again validates our calculation method using the hyperspherical
harmonics and the Lagrange-mesh technique, with nonlocal potentials.

Our results for the energies of the ground and excited states of 9
ΛBe are

given in Table 6.7 for the different potentials. The conditions of calculation
are identical for all the potentials (see Section 6.5.1).

The experimental Λ-separation energy of 9
ΛBe is 6.71±0.04 MeV [74]. The

corresponding experimental ground-state energy in the three-body (ααΛ)
model is E1/2+ = −6.62 ± 0.04 MeV.

In Table 6.7, we first observe that the models with the phenomenolog-
ical local potentials (ABd, SBFW, PBFW for αα and Isle for αΛ) give an
overbinding of about 2 MeV with respect to experiment.

Using the non-local SB αΛ potential instead of the Isle potential improves
the situation. The overbinding is reduced: there is only 0.5 to 0.8 MeV of
difference, when the local αα potentials are used. Note that it is the opposite
of the 6

ΛΛHe case. Here the results with the nonlocal SB potential, compared
to the local Isle αΛ potential, are closer to experiment.

While the local αα potentials (ABd, SBFW, PBFW) lead to overesti-
mates of the binding energy, the microscopically-founded RGM αα potentials
give rather excellent results. The semi-microscopic model using the nonlocal
energy-dependent RGM-ε potential give a binding energy with only 0.2 MeV
of difference with respect to experiment. The excellent result is that the semi-
microscopic model with the energy-independent RGM-6ε potential give the
right energy E1/2+ = −6.596 MeV (since experimentally E1/2+ = −6.62±0.04
MeV). Notice that this result is obtained without adjustable parameters: the
αα potential is configured to reproduce the α+α scattering phase shifts and
the αΛ potential is configured to reproduce the 5

ΛHe binding energy.

Two excited states (presumably 5/2+ and 3/2+) are experimentally located
at 3.029±0.003 MeV and 3.060±0.003 MeV [70] giving an average excitation
energy of 3.045±0.003 MeV. The different theoretical results in Table 6.7 all
lie within 150 keV of this experimental value. In particular, the excitation
energy with the RGM potentials is Ex = 2.92 MeV.
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VαΛ Vαα E1/2+

√
〈r2〉 E3/2+,5/2+

√
〈r2〉 Ex B(E2)

Isle ABd −8.437 2.32 −5.575 2.30 2.862 13.06
SBFW −8.682 2.28 −5.677 2.27 3.005 11.76
PBFW −8.986 2.22 −5.842 2.23 3.144 9.51

SB ABd −7.101 2.37 −4.203 2.38 2.898 14.86
SBFW −7.429 2.31 −4.341 2.34 3.088 12.98
PBFW −7.292 2.27 −4.179 2.32 3.113 11.61

SB RGM-ε −6.839 2.34 −3.922 2.37 2.917 13.76
RGM- 6ε −6.596 2.41 −3.675 2.47 2.921 17.26

Table 6.7: Energies (in MeV) and r.m.s matter radii (in fm) of the ground
state and first excited state of 9

ΛBe for different combinations of αΛ and αα
potentials. The excitation energy Ex(= E3/2+,5/2+ − E1/2+) and the B(E2)
(in e2fm4) for the L = 2 → L = 0 transition are also given. For the RGM-ε
αα potential, the self-consistent value of the αα energy is εαα = 1.18 MeV
for E1/2+ and εαα = 4.01 MeV for E3/2+,5/2+.

The reduced transition probabilities, from 5/2+ and 3/2+ excited states
to the 1/2+ ground state (i.e., the B(E2) for the L = 2 to L = 0 transition)
are also presented in Table 6.7. The experimental value is 5.7+2.1

−2.0 e
2fm4 [70].

All the model values are about twice as large, except for the result with the
RGM- 6ε potential, which reaches a higher value B(E2) = 17.26 e2fm4. The
magnitude of B(E2) for local (ABd, SBFW, PBFW) and RGM-ε potentials
is consistent with the predicted (theoretical) result 11.26 e2fm4 of Motoba et
al. [81]. The B(E2) obtained with the RGM-ε potential is lower (B(E2) =
13.76 e2fm4) than the one obtained with the RGM-6ε potential. Practical
information about the calculation of B(E2) in hyperspherical coordinates
can be found in Refs. [27,82].

In Table 6.7, the r.m.s radii of the states of 9
ΛBe are also given. They are

computed as

〈r2〉 =
1

2Aα + AΛ

[
〈ρ2〉 + 2Aαr

2
α

]
, (6.11)

with rα = 1.47 fm for the radius of the α-particles. The radius of the model
using the RGM- 6ε potential (2.41 fm for g.s., 2.47 for excited state) is larger
than the radius of the model using the RGM-ε potentials (2.34 fm for g.s.
and 2.37 fm for excited state).
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Figure 6.5: Probability densities for the 1/2+ (top) and 3/2+, 5/2+ (bottom)
states of 9

ΛBe as functions of the Jacobi coordinates rαα and rΛ−αα (in fm)
for the shallow ABd potential (left) and the deep PBFW potential with
projection of the forbidden states (right), the αΛ potential being the nonlocal
SB potential.

Comparison of the probability densities

The probability densities, as functions of the αα and Λ−αα distances, for
the 9

ΛBe ground and excited states are displayed in Figures 6.5 and 6.6.

The case of the models with local αα potentials is treated in Figure 6.5.
This figure clearly shows the fundamental difference between the wave func-
tions obtained with shallow (ABd) and deep (PBFW) potentials. The proba-
bility densities are similar only for large αα distances, above 2 fm. Otherwise,
for small αα distances (below 2 fm) the densities are qualitatively very differ-
ent. This illustrates the effect of the Pauli forbidden states, the exclusion of
which is, of course, not taken into account in models with shallow αα poten-
tials. With the deep PBFW αα potential, the wave function is constrained
to be orthogonal to the forbidden states (the unphysical bound states of the
deep potential): this leads to nodes in the wave function, describing the αα
relative motion. Hence the ground-state probability density displays three
bumps and the excited-state probability density displays two bumps. With
the shallow ABd αα potential, the densities do not have such bumps: the
densities are flat until the αα distance reaches 2 fm, and then have a single
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Figure 6.6: Probability densities for the 1/2+ (top) and 3/2+, 5/2+ (bottom)
states of 9

ΛBe as functions of the Jacobi coordinates rαα and rΛ−αα (in fm)
for the semi-microscopic models with the RGM-ε potential (left) and the
RGM- 6ε potential (right).

maximum, very similar to the last bump obtained with the PBFW potential.

With the shallow SBFW αα potential, we obtain probability densities
that are quite similar to those obtained with the ABd potential, hence such
densities are not displayed.

The probability densities obtained with the semi-microscopic models are
displayed in Figure 6.6. In those models (with the nonlocal RGM-ε and
RGM- 6ε αα potentials), the αα Pauli forbidden states must also be eliminated
from the wave function. The forbidden states are taken as harmonic-oscillator
wave functions, as in the RGM. The probability densities show that the local
model with the deep PBFW αα potential (in Figure 6.5) is qualitatively
correct. Because of the exclusion of the forbidden states, the densities display
three bumps, for the ground state, and two bumps, for the excited states.
The size of the bumps depends on the choice of the αα interaction. The
bumps are slightly less high with the RGM-6ε potential than with the RGM-ε
potential; this is consistent with the fact that the r.m.s radius in Table 6.7
is larger with RGM-6ε potential than with the RGM-ε potential.

Nevertheless, the probability densities of 9
ΛBe are very similar between the

different models. For example, for the ground state, the maximum density
(0.20 fm−2 for RGM-ε, and 0.19 fm−2 for RGM- 6ε) is obtained for nearly
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Jπ VαΛ Vαα 〈T 〉 〈Vαα〉 〈Wαα〉 2 〈VαΛ〉 2 〈WαΛ〉 E
1
2

+
Isle ABd 13.674 −3.733 0 −18.378 0 −8.437

SBFW 13.420 −3.217 0 −18.885 0 −8.682
PBFW 37.134 −26.958 0 −19.162 0 −8.986

SB ABd 12.265 −3.510 0 −8.308 −7.549 −7.101
SBFW 12.224 −3.015 0 −8.704 −7.934 −7.429
PBFW 34.302 −25.116 0 −9.025 −7.453 −7.292

1
2

+
SB RGM-ε 27.350 −15.872 −2.408 −8.602 −7.307 −6.839

RGM- 6ε 23.347 −13.189 −1.523 −8.180 −7.051 −6.596
3
2

+
Isle ABd 20.000 −6.834 0 −18.741 0 −5.575

SBFW 20.324 −6.970 0 −19.031 0 −5.677
PBFW 38.085 −24.844 0 −19.083 0 −5.842

SB ABd 18.253 −6.355 0 −8.485 −7.616 −4.203
SBFW 18.789 −6.579 0 −8.722 −7.829 −4.341
PBFW 34.744 −22.646 0 −8.902 −7.374 −4.179

3
2

+
SB RGM-ε 29.470 −15.532 −2.008 −8.581 −7.271 −3.922

RGM- 6ε 25.300 −12.693 −1.178 −8.112 −6.992 −3.675

Table 6.8: Mean values (in MeV) of the kinetic energy 〈T 〉 and of the local
and nonlocal potential energies: 〈Vαα〉 and 2 〈VαΛ〉 correspond to the local
terms, and 〈Wαα〉 and 2 〈WαΛ〉 to the nonlocal terms, of the αα and αΛ
interactions. 〈T 〉 + 〈Vαα〉 + 〈Wαα〉 + 2 〈VαΛ〉 + 2 〈WαΛ〉 = E.

equal αα distances (3.2 fm for RGM-ε and 3.3 fm for RGM- 6ε) and for a
same Λ − αα distance (1.9 fm for both models).

Kinetic and potential energies

In Table 6.8, we display the detailed values of the kinetic, local- and
nonlocal-potential energies of the different results of Table 6.7.

The results obtained with the ABd and SBFW αα potentials are very
similar. This is because ABd and SBFW are comparable shallow potentials
[40].

Here again, we see a significant difference between deep (PBFW) and
shallow (SBFW and ABd) αα potentials. The kinetic energies 〈T 〉 are indeed
very different according to whether the αα potential is PBFW or SBFW.
There are more than 20 MeV of difference in the kinetic energy 〈T 〉 between
the models with local deep and shallow potentials. Consequently, there is
also a difference in the potential energies 〈Vαα〉. However, we observe that
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the sum 〈T 〉 + 〈Vαα〉 is essentially independent of the choice of the local αα
potential (e.g., 〈T 〉 + 〈Vαα〉 ≈ 9 MeV with the SB αΛ potential, for the
ground state). Thus the difference in the kinetic energies 〈T 〉 between the
models is canceled out by the difference in the αα potential energies 〈Vαα〉
(e.g., 〈T 〉PBFW − 〈T 〉SBFW ≈ 22 MeV and 〈Vαα〉PBFW − 〈Vαα〉SBFW ≈ −22
MeV for the ground state with the SB αΛ potential).

We also see that the αΛ potential energy (2 〈VαΛ〉 + 2 〈WαΛ〉) is almost
insensitive to the depth of the local αα potential. The ααΛ binding is weaker
with the SB αΛ potential than with the Isle potential.

The kinetic energy 〈T 〉 obtained with the semi-microscopic models is lo-
cated between the SBFW and PBFW results (for the ground state, 〈T 〉 is
about 23 MeV with the RGM-6ε potential). In the RGM αα interactions,
the local term is significantly predominant with respect to the nonlocal term
(〈Vαα〉 / 〈Wαα〉 ∼ 7). For the αΛ SB interactions, the local and nonlocal
terms are comparable in magnitude (〈VαΛ〉 / 〈WαΛ〉 ∼ 1.2). The model with
the RGM-ε αα potential leads to different kinetic and potential energies
compared to the RGM-6ε αα potential.

For the excited state, the most significant changes with respect to the
ground-state values are in the kinetic energy (except for the PBFW case).
In the semi-microscopic models, the change in kinetic energy 〈T 〉 is about 2
MeV, out of the 3 MeV of excitation energy.

6.6 Conclusion

In this chapter, we have successfully tested our hyperspherical harmon-
ics method with the Lagrange-mesh technique for the three-body models
with nonlocal potentials [19, 20]. As first applications, we have studied two
hypernuclei, 6

ΛΛHe and 9
ΛBe. The practical test has been carried out by com-

paring some results with published results, independently obtained, under
the same conditions, with the momentum-space Faddeev method [17, 18].
An advantage of our method is that the Coulomb terms do not need any
special treatment. Also, working directly in the configuration space allows
us to easily obtain new information, such as probability densities, radii or
reduced transition probabilities.

In addition, we have also compared the nonlocal semi-microscopic models
with simple, phenomenological, models using local potentials. The nonlocal
potentials take into account the internal structure of the α clusters. The
nonlocality arises (i) because of the exchange forces in the baryon-baryon
interactions, as in the αΛ interaction, and (ii) because of the Pauli antisym-
metrisation between the nucleons, as in the αα interactions. Also, because
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of the Pauli principle and the internal structure of the clusters, there exist
forbidden states in the αα relative motion. The effects of the Pauli forbidden
states are particularly visible in the probability densities.

Considering the αΛ interaction, in the case of 6
ΛΛHe, the local and non-

local models give rather similar results, with some differences: the local αΛ
potential gives a smaller binding energy (and a larger radius) than the non-
local αΛ potential. However this is not a general rule. It is the exact opposite
in the case of 9

ΛBe: the local αΛ potential gives larger binding energies (and
smaller radii) than the nonlocal αΛ potential. The models with simple local
potentials overestimate the binding energy of 9

ΛBe. In comparison, the non-
local semi-microscopic models, especially with the energy-independent RGM
potential, successfully give the correct binding energy, without adjustable
parameter. This encourages the development and application of the semi-
microscopic three-body model, using pairwise RGM potentials. However,
we notice that if the results are correct in terms of binding energy, there is
a difference between the three-body model and experiment for the reduced
transition probability B(E2) for the excited 9

ΛBe.
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Chapter 7

Three-body models of 6He, 9Be

and 12C using the

energy-dependent RGM

potentials

7.1 Three-body models

In this chapter, we will apply the three-cluster models to three typical
examples of atomic nuclei: 6He, 9Be, and 12C. In particular, we will study
the validity of the semi-microscopic model that uses the energy-dependent
RGM-ε inter-cluster potentials [20]. To this end, we will compare the re-
sults of that semi-microscopic approximation with the exact results of the
corresponding fully microscopic model.

The advantage of the semi-microscopic model is that it allows us to ap-
proximate the three-cluster problem by a simple three-body model (where
the clusters are considered as pointlike particles). Also, it is interesting to
compare this model with the simplified macroscopic three-body models with
local potentials. Thus, before applying the semi-microscopic model, we will
first see the results of the three-body local models [20,27], for 6He, 9Be, and
12C. This will motivate the use of the semi-microscopic approximation.

Here we start by giving the three-body models of 6He, 9Be, and 12C.
Next, in Section 7.2, we will give the numerical parameters of the models.
In Section 7.3, the results of the local models will be discussed. In Section
7.4, the semi-microscopic model will be analysed, and compared with the
microscopic model. Conclusions will be drawn in Section 7.5.

99
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The first example of nucleus that presents a pronounced three-body struc-
ture is 6He. The 6He is a halo nucleus [6,7], which can be represented by an
αnn system (i.e., a core which is an α-particle, and two loosely bound valence
neutrons). The binding energy of this three-body (α + n + n) structure is
given by the two-neutron separation energy S2n = 0.973 ± 0.001 MeV [15].
The experimental studies of 6He also reveal the matter radius of the nucleus
(Rrms(

6He) ∼ 2.5 fm [7,83]), which is large in comparison with the one of 4He
(Rrms(α) ∼ 1.5 fm). This large radius is interpreted as a result of the halo
structure. The ground state of 6He is a 0+ state. The neutron-rich isotope
6He is unstable and decays, by β-emission (6He

β→ 6Li), with a half-life of
806.7 ± 1.5 ms[15].

The 9Be and 12C stable nuclei can also be represented by simplified three-
body models [20–22]. The 9Be is represented by an ααn system. The three
clusters (α+α+n) are bound, inside 9Be, with a binding energy of 1.573±0.01
MeV[16]. The ground state of 9Be is a 3/2− state. The 12C is represented
by a 3α system. In this cluster model, in the 0+ ground state of 12C, the
three α-particles are bound with a binding energy of 7.275 ± 0.01 MeV [14].
Also, more specifically, this 3α cluster structure of 12C is expected to be an
excellent approximation in an excited state (the 0+

2 resonance) of 12C, because
this state is situated at 7.65 MeV (that is, slightly above the threshold for
breackup into three free α-particles). This resonance (known as the Hoyle
state) plays a decisive role in nuclear astrophysics [10,11] because it enables
the stellar triple-α process, where three α-particles combine to form 12C.

Thus, we will describe 6He, 9Be and 12C in αnn, ααn and 3α models,
respectively. These models need effective αα and αn potentials. In the semi-
microscopic model, these potentials are represented by the nonlocal RGM-ε
αα and αn potentials. The parameters of the potentials are given in the next
section.

7.2 Parameters and numerical conditions

Before discussing the results, we specify the numerical parameters [21].
We adopt the same parameters in every model (local, semi-microscopic, and
microscopic cluster models). The mass unit is given by the value ~

2/2mN =
20.736 MeV fm2, where mN is the effective nucleon mass. The mass of an
α-cluster is thus mα = 4mN .

In the semi-microscopic model, we use the αn and αα RGM-ε potentials,
given in Appendix C. The potentials are calculated by using MN (5.8) or
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V2 (5.10), as effective nucleon-nucleon interactions. For the αn potential, we
add a spin-orbit force (5.13) (with κ → 0). The internal wave functions of
the α-clusters (2.6) are taken with the parameter b = 1.36 fm [53] to fit the
radius of the α-particle: rα = 1.44 fm, according to (5.5).

The experimental data about the αn and αα potentials are essentially
the scattering data. We adjust the MN and V2 forces in order to reproduce
the α+n and α+α elastic scattering phase shifts. For MN we set u = 0.9474
and S0 = 37 MeV fm5, for the spin-orbit force. For V2 we set m = 0.605 and
S0 = 49 MeV fm5. With these values the α + n and α + α phase shifts are
simultaneously reproduced, in agreement with experiment. However, in the
case of 12C (in the 3α model), the spin-orbit force is not necessary, since the
spin of the α-cluster is zero; hence we consider a slight variant by using a
more accurate value u = 0.94687 for MN.

When we compare the semi-microscopic model with the microscopic
three-cluster model, of course, we use the same parameters in both mod-
els.

In the semi-microscopic model, the Pauli forbidden states of the αn and
αα subsystems (according to the two-cluster RGM) must necessarily be pro-
jected out from the wave function, in the three-body Schrödinger equation.
The techniques that can be used to eliminate the Pauli forbidden state are
described in Section 5.5.

Let us now specify the conditions of the numerical calculations. The num-
ber of Lagrange-mesh points (3.109) is N = 30 with the scale parameter
h = 0.3 fm. For the local potentials, integrals (B.4) are performed with a
Gauss-Legendre quadrature with 64 points. For the nonlocal RGM-ε po-
tentials, the parameters of the Gaussian quadrature in equation (B.24) are
N2 = 30 and h2 = 0.08 fm. The integration over y in this equation is per-
formed with a constant step 0.06 fm and extends up to 48 fm.

In Table 7.1, we give a typical example of convergence of the calcula-
tions, with respect to the KM parameter [20] (in the semi-microscopic and
microscopic models). In the semi-microscopic model, for each value of K,
all possible values of (lx, ly) are considered (without restriction). However,
in the microscopic model, in order to simplify the calculations, the lx values
are limited by the condition lx ≤ 4 [53]. As a test, if we apply the same
restriction lx ≤ 4 in the semi-microscopic model, then the energy becomes
E3/2− = −3.83 MeV, instead of −3.86 MeV, for KM = 19. The restriction
on lx thus plays most probably a marginal role, in the microscopic model.

The physical relevance of the results in Table 7.1 will be discussed below
in Section 7.4.
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Semi-microscopic Microscopic
KM E3/2− E5/2− ∆E E3/2− E5/2− ∆E

5 −1.64 0.87 2.50 −1.27 1.51 2.28
7 −2.39 0.17 2.55 −1.89 0.57 2.46
9 −3.41 −0.84 2.57 −2.23 0.22 2.46

11 −3.68 −1.11 2.57 −2.49 0.02 2.51
13 −3.79 −1.23 2.56 −2.55 −0.04 2.52
15 −3.83 −1.29 2.55 −2.60 −0.08 2.52
17 −3.85 −1.30 2.55 −2.61 −0.09 2.52
19 −3.86

Table 7.1: Convergence of the 3/2− and 5/2− energies (in MeV) and of their
difference (∆E = E5/2−−E3/2−) with respect to KM , in the semi-microscopic
and microscopic three-cluster models of 9Be, using the MN potential. The
semi-microscopic results are obtained with the RGM-ε αα and αn potentials;
the values of the energies, in the nonlocal kernel, are εαα = 3.61 MeV and
εαn = 6.28 MeV for the 3/2− state, and εαα = 5.57 MeV and εαn = 6.39
MeV for the 5/2− state.

Hereafter, we use KM = 28, KM = 19 and KM = 30 in the models of
6He, 9Be and 12C, respectively.
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7.3 Failure of local three-body models

Three-body models with local potentials are discussed in detail with
the Lagrange-mesh technique and the hyperspherical harmonics in Ref. [27].
Here, we shall just give the energies and the root mean-square radii of 6He,
9Be and 12C (described as αnn, ααn and 3α systems, respectively) calcu-
lated with various αn and αα local potentials. The aim of this section is
simply to illustrate the well-known fact [7, 27, 45] that three-body models
with strict two-body local potentials, without readjustement, commonly give
unsatisfactory results in disagreement with experiment.

We consider the following local potentials (see Section 5.4.3): as αn po-
tential, we take the deep KKNN potential (5.14), and as αα potential, we
use two variants: the deep potential BFW (5.15) and the shallow potential
ABd (5.16). These αn and αα local potentials fit the α+n and α+α elastic
scattering phase shifts, respectively.

However, the deep potentials contain unphysical bound states, which
must be eliminated (see Sections 5.5 and 5.4.3). To exclude these states,
we test two techniques: either we use supersymmetric transformations (2.80)
(which convert the deep potentials into shallow potentials) or we use the pro-
jection technique (5.22) (projecting out the forbidden bound states from the
wave function). When we use the projection technique, the KKNN and the
BFW potentials are then denoted PKKNN and PBFW, respectively. Oth-
erwise, when we use the supersymmetric transformations, the potentials are
denoted SKKNN and SBFW, respectively.

The treatment of the Pauli forbidden states is shown in Refs. [60,84] to be
a sensitive question: the accuracy of the projection technique plays a critical
role. Here, we eliminate rigorously the forbidden bound states of the deep
αn and αα potentials. Other theoretical variants, e.g. defining the Pauli
forbidden states by harmonic-oscillator wave functions (like in the αn and
αα RGM), in the local models, are discussed in Refs. [20, 60, 84]. Anyway,
all three-body models with deep potentials are rather unsatisfactory, because
they lead to inaccurate binding energies.

We first consider the three-body model of 6He. The ground state of 6He
is a 0+ state with an experimental energy E = −0.973 MeV, with respect to
the αnn threshold.

The nn potential is chosen as the Minnesota potential (5.8) (with the
parameter u = 1). The results for the energy E and the root mean-square
radius are given in Table 7.2. The radius is obtained according to equation
(5.1) by assuming that the radius of the α-particle is 1.44 fm. We see that the
energy disagrees with the experimental value. Indeed the shallow (SKKNN)
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Vαn E
√
〈r2〉

SKKNN −0.01 3.07
PKKNN −0.42 2.63

Table 7.2: Ground-state energy (in MeV) and r.m.s. radius (in fm) of 6He in
the three-body local models, with shallow (SKKNN) or deep (PKKNN) αn
potentials. The experimental energy is E = −0.973 MeV.

and deep (PKKNN) potentials, which fit the α + n phase shifts, yield poor
results for 6He. This fact is actually well-known [7, 27, 45]: in three-body
local models of 6He, if you want to reproduce the experimental ground-state
energy, then you must somehow phenomenologically modify the interaction
potentials.

We also consider the case of 9Be described as an ααn system, with local
αn and αα potentials. The ground state is a 3/2− state with an experimental
energy E = −1.57 MeV, with respect to the ααn threshold. We study this
ground state, but also the first 5/2− excited state, which corresponds to the
experimental energy E = 0.86 MeV.

The results for 9Be are listed in Table 7.3. Here again, we see that the
local models cannot reproduce the experimental energy of the three-body
system. Such local ααn models are unrealistic for 9Be. For example, with
the PKKNN αn and PBFW αα potentials, the calculated 3/2− state (which
should be the ground state) is not bound, while the 5/2− excited state is
slightly bound. There is no 3/2− bound state in this model, because of the
exclusion of the forbidden αn and αα states of the deep potentials [20].

We also consider the 12C nucleus, described as a 3α cluster system. The
results for the 0+ ground state with the αα potentials are given in Table 7.4.
The experimental energy is E = −7.27 MeV. The local models strongly un-
derestimate the binding energy. Again, the three-body local model, without
modifying the αα potentials cannot reproduce the experimental value.

Thus, in the cases of 6He, 9Be, and 12C, we observe that in general, the
simple local αn and αα potentials, which reproduce the αn and αα phase
shifts, give incorrect results in three-body models. Typically, if one wants
to use local potentials in three-body models, then one needs somehow (phe-
nomenologically) to rectify the cluster-cluster potentials [27].
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Jπ Vαn Vαα E
√
〈r2〉

3
2

−
SKKNN ABd −2.77 2.38
SKKNN SBFW −3.12 2.32
PKKNN PBFW Unbound

5
2

−
SKKNN ABd −0.65 2.38
SKKNN SBFW −0.87 2.34
PKKNN PBFW −0.19 2.35

Table 7.3: Energies (in MeV) and r.m.s radii (in fm) of 9Be in the local three-
body model, for different αn and αα potentials. The experimental energies
are E = −1.57 MeV for the 3/2− ground state, and E = 0.86 MeV for the
5/2− excited state.

Vαα E
√
〈r2〉

ABd −1.60 2.74
SBFW −1.40 2.73
PBFW −0.73 2.76

Table 7.4: Energy (in MeV) and r.m.s radius (in fm) of the 0+ ground state
of 12C in the local 3α model, for different αα potentials. The experimental
energy is E = −7.27 MeV.
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This motivates the development of more realistic models, such as the
semi-microscopic approximations, which use the nonlocal αn and αα RGM
potentials as effective interactions.

7.4 Semi-microscopic versus microscopic

models

Since the local models give poor results, we now investigate the semi-
microscopic models [20–22]. These are three-body models with the nonlocal
αn and αα potentials provided by the two-cluster RGM (see Appendices C
and E). It is interesting to compare such three-body models with a fully
microscopic three-cluster model. Indeed, the ingredients (i.e., the nucleon-
nucleon force and the α-cluster densities) of the nonlocal RGM potentials
are exactly the ones of a microscopic cluster model. Therefore the semi-
microscopic models may be considered as a plausible approximation of the
microscopic model. The only difference between the models is the treatment
of the Pauli principle (which is fully respected in the microscopic model, but
which is only (partially) simulated, via the RGM potentials and the exclusion
of the Pauli forbidden states, in the semi-microscopic models).

Thus, comparing the models, we shall see whether the nonlocal RGM
potentials, which are valid for two-cluster systems, may be reasonably valid
in three-cluster systems.

In the present chapter, we consider the semi-microscopic model that uses
the energy-dependent RGM-ε potentials [20] (see Appendix C). In this
model, the potentials depend explicitly on two-body energies εij. These ener-
gies are treated as parameters of the RGM-ε potentials. Their values, for each
potential, are first calculated by the (self-consistent) condition (5.27), i.e., εij

is interpreted as the mean energy of the corresponding two-body subsystem.
These energy parameters, corresponding to the αn and αα potentials, will
be denoted εαn and εαα, respectively.

However, when the self-consistent prescription (5.27) will not give satis-
factory results, we will look for other values of parameters εαn and εαα, which
can improve the semi-microscopic approximation.

7.4.1 6He

The 6He nucleus is described as an αnn system. In Table 7.5, we compare
results of the microscopic and semi-microscopic models for the 0+ ground
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state, considering the same nucleon-nucleon forces (MN or V2). However,
some approximations are made in order to simplify the calculations. For
computing time reasons, the hyperspherical harmonic basis in the micro-
scopic model is limited to KM = 18 with lx ≤ 4 (like in Ref. [53]). Such a lx
restriction is not applied in the semi-microscopic model (where all the pos-
sible lx values are considered). Moreover, the zero-range spin-orbit potential
(which is added to MN and V2) is taken into account in the microscopic model
and in the nonlocal αn RGM-ε potential, but is neglected in the nn interac-
tion (between the halo neutrons) in the semi-microscopic model1. We have
checked that these approximations play a marginal role (they may slightly
modify the results but do not affect the comparison between the models).

In Table 7.5, different cases (with MN and V2 forces) are considered: in
case (a), the parameter (u or m) fits the αn scattering phase shifts; and in
case (b), it fits the experimental energy of 6He in the microscopic model. The
self-consistent values εαn, used as a parameter in the αn RGM-ε potential,
are given in the table. These energies εαn are calculated for KM = 28 in the
semi-microscopic model.

In case (a) with MN, we obtain a very weak binding energy: the micro-
scopic model yields an energy of −0.07 MeV. Thus, here again, we see that a
potential which fits the α + n scattering phase shifts cannot simultaneously
fit the correct energy of 6He in an αnn model. In the semi-microscopic model
with MN, the energy is −0.08 MeV forKM = 28 (and the self-consistent value
εαn = 1.65 MeV). If we apply a truncation at KM = 18, then this energy
becomes −0.03 MeV, in close agreement with the microscopic model. The
agreement between the models, with MN, is also verified in case (b), when
the nucleon-nucleon force is modified to fit the right 6He energy. Thus, with
MN, the semi-microscopic model yields very close results to the microscopic
model. There is only about 0.05 MeV of difference in the energy between the
models.

With V2, the results are different. In case (a), 6He is strongly overbound
with V2 (while the nucleus is hardly bound with MN). The semi-microscopic
approximation turns out to be less good. The semi-microcopic model with
V2 underestimates the binding energy by about 0.32 MeV. In case (b), we
also see that the r.m.s. radius is unrealistically very large with V2.

1We have checked that this approximation in the semi-microscopic model plays a neg-
ligible role, by making tests with κ = 0.01 fm (instead of pure κ = 0 fm) in a spin-orbit
potential in the nn potential.



108 CHAPTER 7. THREE-BODY MODELS USING RGM-ε ...

Jπ Potential Microscopic Semi-micro RGM-ε

E
√
〈r2〉 E

√
〈r2〉 εαn

(a) 0+ MN u = 0.9474 −0.07 2.57 −0.08 3.08 1.65
V2 m = 0.605 −2.43 2.46 −2.04 2.64 2.21

(b) 0+ MN u = 1.0045 −0.98 2.38 −1.03 2.55 1.50
V2 m = 0.6573 −0.98 2.90 −0.66 4.14 2.37

Table 7.5: Comparison of the 6He energy (in MeV), defined from the α+ 2n
threshold, and r.m.s matter radius (in fm) in the microscopic model and in
the semi-microscopic model using the RGM-ε αn potential; εαn is the self-
consistent value of the αn energy, used as a constant parameter in the RGM-ε
potential. In case (a), the exchange parameter (u orm) fits the αn scattering,
while in case (b), it fits the experimental ground-state energy (−0.973 MeV)
of 6He in the microscopic model.

7.4.2 9Be

While the semi-microscopic model seems a fair approximation of the mi-
croscopic model for 6He with MN, we see an important discrepancy between
the models in Table 7.6 with the results for 9Be, described as an ααn sys-
tem. Here, the semi-microscopic model strongly overestimates the energy,
especially with MN, where we see more than 1.2 MeV of difference with re-
spect to microscopic results. Note that the convergence of the results with
respect to KM is given above in Table 7.1, for the examples of case (a) with
MN.

Thus, for 9Be, we see that such a semi-microscopic model is unfortunately
a poor approximation of the microscopic model. In case (a), we also notice
that the models disagree with experiment. Nevertheless, in Tables 7.1 and
7.6, the excitation energy of the 5/2− state (i.e., the gap between the 3/2−

and 5/2− states) is very close between the models, but also relatively close
to the experimental value (which is ∆E = 2.43 MeV [16]).

With V2 in case (a), the 5/2− excited state is unbound (E > 0); hence in
Table 7.6 we give the positive energies approximately, because the calculated
energies (E > 0) are not converged. Note that this 5/2− energy level is also
positive experimentally (with respect to the α+ α+ n threshold).

We now focus on the example of case (a) with MN, in order to under-
stand the reason for the disagreement between the models in Table 7.6. The
strong overbinding (E = −3.86 MeV) in the semi-microscopic model leads
us to reconsider the values of εαn and εαα, i.e., the role of prescription (5.27)
for the αn and αα RGM-ε potentials [20]. According to this prescription,
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Jπ Potential Microscopic Semi-microscopic: RGM-ε

E
√
〈r2〉 E

√
〈r2〉 εαα εαn

(a) 3
2

−
MN u = 0.9474 −2.61 2.36 −3.86 2.30 3.61 6.28
V2 m = 0.605 −1.36 2.60 −2.19 2.56 2.91 4.64

5
2

−
MN u = 0.9474 −0.09 2.39 −1.30 2.33 5.57 6.39
V2 m = 0.605 ≈ 1 ≈ 0.1 4.51 4.68

(b) 3
2

−
MN u = 0.9250 −1.57 2.43 −2.71 2.37 3.75 6.03
V2 m = 0.6024 −1.57 2.58 −2.45 2.54 2.87 4.69

Table 7.6: Comparison of 9Be energies (in MeV) defined with respect to the
α+α+n threshold, and r.m.s matter radii (in fm) in the microscopic model
and in the semi-microscopic model with the RGM-ε αα and αn potentials;
εαα and εαn are the self-consistent values of the αα and αn energies, respec-
tively, used as parameters in the RGM-ε potentials. In case (a), the exchange
parameter (u or m) simultaneously fits the αα and αn scatterings, while in
case (b), it fits the experimental ground-state energy (−1.57 MeV) of 9Be in
the microscopic model.

in the αn potential, the self-consistent value εαn for the ground state of 9Be
is εαn = 6.28 MeV. This value is used as a constant parameter in the αn
RGM-ε potential. The corresponding effective αn interaction is analysed
in Figure 7.1, which shows α + n elastic phase shifts. The curves εαn = ε
correspond to the exact phase shifts within the RGM. They fit the exper-
imental phase shifts, since they are calculated with MN in case (a). The
dash-dotted curves are obtained from the RGM-ε potential with the energy
ε replaced by a constant parameter εαn = 6.28 MeV in the nonlocal kernel.
They show the quality of the effective αn interaction that is actually used
in the three-body model with the RGM-ε potentials. Such an approxima-
tion is exact for the relative energy ε = εαn (and thus most accurate around
this energy). Within this fixed εαn approximation, the s-wave phase shift is
good. However, the p-wave phase shifts and especially the p3/2 resonance
are not well reproduced with the self-consistent value of εαn: the energy of
the resonance is shifted down by about 0.8 MeV. The strong overbinding of
9Be in the semi-microscopic model is most probably related to this drastic
shift of the αn resonance. Rather than using prescription (5.27), it may be
more efficient to use an εαn value which reproduces the p-wave phase shifts
as well as possible, such as εαn = 1.5 MeV (dashed lines in Figure 7.1).

The situation is more satisfactory for the αα RGM-ε potential. Figure
7.2 presents the l = 0 to 4 phase shifts for the α + α elastic scattering.
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"�n = 1:5 MeV"�n = 6:28 MeV"�n = "1=2+
1=2�3=2�

" (MeV)
ÆJ l(deg)

1614121086420

150100500-50-100
Figure 7.1: α + n elastic scattering phase shifts obtained with MN for
u = 0.9474: RGM results (full lines), and results with εαn fixed to its self-
consistent value 6.28 MeV for 9Be (dash-dotted lines) and the value 1.5 MeV
reproducing the p3/2 resonance (dashed line). Dots represent the empirical
phase shifts of Ref. [85].
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"�� = 6 MeV"�� = 3:61 MeV"�� = 2 MeV"�� = "
4+2+0+

" (MeV)
Æ l(deg)

121086420

180160140120100806040200-20
Figure 7.2: α + α elastic scattering phase shifts obtained with MN for
u = 0.9474: RGM results (full lines), and results with εαα fixed to its self-
consistent value 3.61 MeV for 9Be (dash-dotted lines) and two other values
(dashed and dotted lines). Dots represent the experimental phase shifts of
Ref. [86].

The effective αα interaction in the three-body model of 9Be corresponds to
εαα = 3.61 MeV. This value gives results rather close to the experimental
phase shifts analysis [86], except above an energy of 9 MeV for the l = 4
wave. It also affects the l = 0 resonance which is shifted to 0.5 MeV. The
agreement is quite good around the l = 2 resonance. Other values of εαα

such as 2 or 6 MeV do not provide better results.

Thus, using constant values for εαn and εαα in the RGM-ε potentials
modifies the αn and αα interactions in terms of phase shifts. In particular,
the value εαn = 6.28 MeV does not seem physically reasonable (it alters the
p3/2 resonance in the α+n phase shifts; and it gives an overbinding of 9Be in
the semi-microscopic model in Table 7.6). This means that the self-consistent
prescription (5.27) (i.e., setting εαn and εαα equal to the expectation value of
the two-body energies) is rather inadequate for the case of the 9Be nucleus
[20].

This leads us to change the value of εαn, i.e., now we regard εαn and
εαα as free parameters of the RGM-ε potentials. We therefore study the
dependence of the energy E on εαn and εαα in the semi-microscopic ααn
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model. As shown in Figure 7.3, this dependence is essentially linear with
respect to both parameters εαn and εαα. The curves in Figure 7.3 can be
fitted by

E ≈ −2.64 + 0.16εαα − 0.28εαn (7.1)

in MeV. Some α + α and α + n phase shifts for various values of εαα or
εαn are presented in Figures 7.1 and 7.2. We suggest a new prescription
for the RGM-ε potentials [20]: the idea is to take a value of εαn that leads
to a better description of the α + n phase shifts, especially near the p3/2
resonance. For example, with εαn = 1.5 MeV and εαα = 3.61 MeV, in case
(a) with MN, the semi-microscopic model with the RGM-ε potentials then
gives the energy E = −2.48 MeV. This really improves the semi-microscopic
model: this energy E = −2.48 MeV (with εαn = 1.5 MeV, εαα = 3.61 MeV)
is now comparable to the microscopic result, which is E = −2.61 MeV (see
Table 7.6 in case (a) with MN).

Of course, we can make the same test for the other cases presented in
Table 7.6. Considering the 5/2− excited state of 9Be, in case (a) with MN,
we find in the semi-microscopic model a dependence on εαn and εαα which
can be fitted by

E ≈ −0.42 + 0.16εαα − 0.28εαn (7.2)

in MeV [20]. Comparing with equation (7.1), we see that the linear depen-
dence is the same as for the ground state. Thus, the gap between the 5/2−

and 3/2− levels for a given pair (εαα, εαn) does not depend much on the value
of this pair. This constant gap is about 2.22 MeV – i.e., somewhat smaller
than in the microscopic model (see Table 7.1). (Notice that this gap is better
in Tables 7.1 and 7.6 because the parameters εαα and εαn are different for
each state.)

Let us see the other cases in Table 7.6. Figure 7.4 shows the α + n and
α+α elastic phase shifts calculated using the potentials of Table 7.6 (case (b)
with MN, and cases (a), (b) with V2). The full curves represent the phase
shifts given by an exact RGM calculation. The dotted curves are obtained
from the actual RGM-ε potentials with the energy ε replaced by a constant
parameter (i.e., εαn and εαα given in Table 7.6) in the nonlocal kernel. The
RGM phase shifts (full curves) correspond to the microscopic model; they are
nothing but the direct result of the nucleon-nucleon potentials. The dotted
curves correspond to the αn and αα potentials (with the prescription (5.27))
used in the semi-microscopic model of 9Be.

We can make the same observations as before: the semi-microscopic
model yields phase shifts which are different from those of the original RGM



7.4. SEMI-MICROSCOPIC VERSUS MICROSCOPIC MODELS 113

"�n = 0"�n = 1"�n = 2
"�� (MeV)

E(MeV)
65.554.543.532.52

-1.6-1.8-2-2.2-2.4-2.6-2.8-3
"�� = 6"�� = 4"�� = 2

"�n (MeV)
E(MeV)

21.510.50

-1.6-1.8-2-2.2-2.4-2.6-2.8-3
Figure 7.3: Dependence on εαα and εαn of the ground-state energy of 9Be
in the semi-microscopic model with the RGM-ε potentials (in case (a) with
MN).
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4+2+ V2 (b)0+
" (MeV)

Æ l(deg) 1086420
180160140120100806040200-20

4+2+ V2 (a)0+
" (MeV)

Æ l(deg) 1086420
180160140120100806040200-20

4+2+ MN (b)0+
" (MeV)

Æ l(deg) 1086420
180160140120100806040200-20

V2 (b)3=2� 1=2�1=2+" (MeV)
ÆJ l(deg) 43.532.521.510.50
140120100806040200-20-40-60

V2 (a)3=2� 1=2�1=2+" (MeV)
ÆJ l(deg) 43.532.521.510.50
140120100806040200-20-40-60

MN (b)3=2� 1=2�1=2+" (MeV)
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Figure 7.4: α + n (left) and α + α (right) scattering phase shifts calculated
for MN (case (b)) and V2 (cases (a) and (b)) of Table 7.6: exact RGM
results (full lines), and semi-microscopic results obtained for the fixed values
of εαn and εαα given in Table 7.6 for 9Be, used as constant parameters in the
nonlocal RGM-ε potentials (dotted lines) – these parameters (εαn, εαα) being
those for the ground state of 9Be. Also shown are the α+ n phase shifts for
εαn = 1.5 MeV (dashed line) as constant parameter, in order to have a more
reasonable description of the p3/2 resonance in the semi-microscopic model.
Dots represent the experimental phase shifts of Refs. [85,86].
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Jπ Potential Microscopic Semi-microscopic: RGM-ε

E
√
〈r2〉 E

√
〈r2〉 εαα εαn

(a) 3
2

−
MN u = 0.9474 −2.61 2.36 −2.48 2.34 3.6 1.5
V2 m = 0.605 −1.36 2.60 −1.33 2.62 3.6 1.5

(b) 3
2

−
MN u = 0.9250 −1.57 2.43 −1.47 2.42 3.6 1.5
V2 m = 0.6024 −1.57 2.58 −1.56 2.60 3.6 1.5

Table 7.7: Comparison of the ground-state 9Be energy (in MeV) and r.m.s
matter radius (in fm) in the microscopic model and in the semi-microscopic
model with the RGM-ε αα and αn potentials for εαα = 3.6 MeV and
εαn = 1.5 MeV.

(microscopic model). In particular, in the α + n phase shifts, the p3/2 res-
onance is not well reproduced with the semi-microscopic (RGM-ε with con-
stant εαn) potentials: it is drastically shifted down. Thus, the self-consistent
prescription (5.27) seems physically inadequate for the 9Be case: it signifi-
cantly alters the α+n phase shifts. Nevertheless, the α+α semi-microscopic
phase shifts are reasonable. Notice in Figure 7.4 that there may be a slight
discrepancy in case (b) between the RGM phase shifts (full curves) and the
experimental data [85, 86] (compare with Figure 7.1, showing case (a) for
α + n with MN), because in case (b), the nucleon-nucleon force is modified
in order to get the right energy in the microscopic model of 9Be. This shows
how modifying the potentials may affect the phase shifts.

Because the prescription (5.27) is inadequate for 9Be, we now test our new
prescription, i.e., we drop this condition (5.27) and instead, we choose two
constant values of εαn and εαα, which yield phase shifts in better agreement
with the microscopic RGM phase shifts. For example, we set εαα = 3.6
MeV and εαn = 1.5 MeV. As seen in Figures 7.4 and 7.1, the value εαn = 1.5
MeV (dashed line) yields reasonable αn phase shifts, especially near the p3/2
resonance. Table 7.7 presents the results of the semi-microscopic model of 9Be
for these arbitrary values of εαn and εαα. We see that this new prescription
significantly improves the semi-microscopic model. Now, in contrast with
the previous results of Table 7.6, the semi-microscopic model becomes a
nice approximation of the microscopic model. Indeed, in Table 7.7, in case
(b) there is only some 0.01 MeV or 0.1 MeV of difference, for V2 and MN
respectively, between the semi-microcopic and microscopic models of 9Be.
Thus, now the semi-microcopic and microscopic models essentially agree.
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Jπ Potential Microscopic Semi-micro RGM-ε

E
√

〈r2〉 E
√
〈r2〉 εαα

(a) 0+
1 MN u = 0.94687 −11.61 2.18 −9.78 2.04 13.60

V2 m = 0.605 −4.53 2.50 −3.19 2.33 9.03
2+ MN u = 0.94687 −9.22 2.16 −7.49 2.03 14.61

V2 m = 0.605 −1.88 2.46 −0.55 2.30 10.62
0+

2 MN u = 0.94687 0.7 ≈ 0.5 5.34
V2 m = 0.605 1.6 ≈ 0.8 3.01

(b) 0+
1 MN u = 0.9122 −7.27 2.25 −5.49 2.09 13.62

V2 m = 0.5929 −7.27 2.41 −5.68 2.25 9.53

Table 7.8: Comparison of 12C energies (in MeV) defined with respect to
the 3α threshold, and r.m.s matter radii (in fm) in the microscopic model
and in the semi-microscopic model with the RGM-ε αα potential; εαα is
the self-consistent value of the αα energy, used as a parameter in the RGM-ε
potential. In case (a), the exchange parameter (u orm) fits the αα scattering,
while in case (b), it fits the experimental ground-state energy (−7.27 MeV)
of 12C in the microscopic model.

7.4.3 12C

We now consider the case of 12C, described as a 3α cluster system2. The
results comparing the semi-microscopic model (with the RGM-ε αα potential
using the prescription (5.27) for εαα) with the fully microscopic model are
given in Table 7.8. Here again, we see a discrepancy between the models.

However, we have learned from the 9Be case that a departure from the
self-consistent prescription (5.27) may improve the semi-microscopic approx-
imation, with respect to the microscopic results. Thus let us check the depen-
dence of the 3α energy E on εαα, when εαα is considered as a free parameter
of the RGM-ε αα potential. This dependence is shown on Figure 7.5, for
the 0+

1 ground state. Here, unfortunately, the value εαα = 3.6 MeV (which
seems reasonable for 9Be, as seen in Table 7.7) is unsatisfactory: it would
lead us to energies E which are quite unrealistic, in disagreement with the
microscopic model.

2Note that calculations of the 3α model with the RGM-ε αα potential are available in
Ref. [17] (for slightly different parameters) but they are performed in a Faddeev formalism,
considering only the self-consistent value for εαα. Of course, we have tested that we can
reproduce the results of Ref. [17] with our hyperspherical formalism [20]. Here we will
revisit this case, with our own parameters in order to explore the validity of the model
with the self-consistent value εαα.



7.4. SEMI-MICROSCOPIC VERSUS MICROSCOPIC MODELS 117

V2 (b)V2 (a)
MN(b)MN(a)

"�� (MeV)
E(MeV)

1412108642

0-2-4-6-8-10-12-14-16-18-20
Figure 7.5: Dependence on εαα of the 0+ ground-state energy of 12C in the
semi-microscopic 3α model with the RGM-ε αα potentials, for the various
(MN or V2) forces of Table 7.8.

Let us also look at the α+α phase shifts, in order to analyse the quality of
the potentials of Table 7.8. The phase shifts (for the potentials used for 12C,
in the 0+

1 state) are represented in Figure 7.6. We see that the prescription
(5.27) for εαα (in the RGM-ε αα potential) here gives α + α phase shifts
which are quite different (especially with MN) from those obtained with the
exact microscopic RGM calculation.

According to Figure 7.5, if we want to get semi-microscopic results closer
to the microscopic results by taking an arbitrary εαα value, then we must set
for example, εαα = 11 MeV for MN and εαα = 7 MeV for V2. This yields
the energies presented in Table 7.9 (where the semi-microscopic energies es-
sentially agree with the microscopic energies for the 0+

1 state). However, the
corresponding α+α scattering phase shifts, shown in Figure 7.7, are similar
to those given by the self-consistent εαα. Therefore they are still in disagree-
ment with the original (microscopic) RGM phase shifts (full lines), especially
in MN cases. Nevertheless, with V 2 the results seem more satisfactory: the
semi-microscopic model then gives α + α phase shifts (dashed lines) which
are rather close to the microscopic RGM data (full lines), and also rather
close to the experimental data.

From all these examples, we can now draw some conclusions about the
semi-microscopic approximation (which uses the RGM-ε potentials) and its
practical validity.
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Figure 7.6: α + α scattering phase shifts calculated for MN (right) and V2
(left), for the cases (a) and (b) given in Table 7.8: exact RGM results (full
lines) and results with self-consistent values of εαα (dotted lines) for 12C, used
as constant parameters in the nonlocal RGM-ε αα potentials. Dots represent
the empirical phase shifts of Ref.[86].

Jπ Potential Microscopic Semi-micro RGM-ε

E
√
〈r2〉 E

√
〈r2〉 εαα

(a) 0+
1 MN u = 0.94687 −11.61 2.18 −11.66 2.03 11

V2 m = 0.605 −4.53 2.50 −4.34 2.28 7
2+ MN u = 0.94687 −9.22 2.16 −10.12 2.03 11

V2 m = 0.605 −1.88 2.46 −2.69 2.23 7
(b) 0+

1 MN u = 0.9122 −7.27 2.25 −7.33 2.07 11
V2 m = 0.5929 −7.27 2.41 −7.24 2.21 7

Table 7.9: Comparison of 12C energies (in MeV) and r.m.s radii (in fm) in the
microscopic model and in the semi-microscopic model with arbitrary values
of εαα, as a constant parameter in the RGM-ε αα potential.
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Figure 7.7: α + α phase shifts for some arbitrary values of εαα (dotted and
dashed lines) as constant parameter in the RGM-ε αα potential, in various
cases (corresponding to Tables 7.8 and 7.9) used for the 3α model. The full
lines are given by the exact (fully microscopic) RGM calculation.
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7.5 Conclusions

As a preliminary remark, we can confirm the following well-known obser-
vation. In general, in the models (in cases (a) and also in the local models),
the potentials that fit the two-cluster (α + n and α + α) elastic scattering
phase shifts fail to reproduce the right energies in three-cluster systems (αnn,
ααn and 3α). Therefore, in the microscopic model (cases (b)), to obtain the
three-cluster energies in agreement with experiment, one must change a tun-
ing parameter of the effective nucleon-nucleon forces (and thus modify the
original α+ n and α+ α phase shifts).

Because the local models are unsatisfactory, and because the fully micro-
scopic models require heavy calculations, the semi-microscopic model seems
especially interesting: it is a simple three-body model (i.e., assuming point-
like clusters) where the effective cluster-cluster potentials are represented by
the non-local RGM-ε potentials.

However, the RGM-ε potentials are energy-dependent. This is a real draw-
back of the model, because the values of the energies (i.e., εαα or εαn) to be
used in the potentials are not well defined in a three-body model. However, a
plausible prescription for these εαα or εαn parameters is proposed by Ref. [17]:
these energies are taken as their mean values (calculated from the two-body
Hamiltonian) given by the three-body wave function. This self-consistent
prescription seems to be reasonable in some given examples, such as the 6He
nucleus (and also the hypernuclei, as seen in Chapter 6 and in Ref.[17]).

But this prescription becomes problematic when applied to the 9Be case
[20]. It yields three-body energies in disagreement with the microscopic
model (and thus with experiment). It is also problematic when we look
at the α+ n and α+α scattering phase shifts. Indeed, the semi-microscopic
model, by using constant εαn and εαα values in the RGM-ε potentials, in-
evitably modifies the α + n and α + α phase shifts. (This modification is
drastic for the α+n and α+α phase shifts, in the examples of 9Be and 12C,
respectively).

This naturally leads us to drop this prescription. So εαn and εαα become
free parameters of the model [20]. Choosing their values is not easy. However,
in the case of 9Be, we have found some (εαn, εαα) values that judiciously
give a fair agreement between the semi-microscopic and microscopic models,
for the three-body (ααn) energy and the (α + n and α + α) phase shifts
simultaneously. But unfortunately, in the case of 12C, it is not easy (and not
possible with MN) to find such an εαα value able to reconcile the models for
both three-body (3α) energies and (α+α) phase shifts simultaneously. From
this, we may conclude that there is no obvious criteria for εαα and εαn. The
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values of εαα and εαn become quite arbitrary parameters. This is clearly a
drawback of the semi-microscopic model.

This strongly encourages us to use other cluster-cluster potentials in
three-body models. In particular, this leads us to develop and investigate the
semi-microscopic approximation that uses the energy-independent RGM- 6ε
potentials, which will be discussed in the next chapter.
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Chapter 8

Three-body models of 6He, 9Be

and 12C using the

energy-independent RGM

potentials

8.1 Energy-independent potentials

In this chapter, we investigate the semi-microscopic model using the
energy-independent RGM- 6ε cluster-cluster potentials [22, 23]. The nonlocal
RGM- 6ε αα and αn potentials have the following advantages: they take into
account the Pauli principle, they give exactly the same α + α and α + n
phase shifts as the original RGM, and they are energy-independent. In other
words, these potentials seem to be more appropriate for a semi-microscopic
model than the RGM-ε potentials, in the sense that they will not create the
problems of the energy dependence, met in the previous chapter.

That three-body models should be developed with these nonlocal RGM- 6ε
potentials has been suggested several times [2,36] but it has never been thor-
oughly investigated in view of the technical difficulties involved. Indeed, not
only the complicated RGM-6ε potentials must be evaluated but their use re-
quires simultaneously mastering accurate calculations of three-body models
with nonlocal potentials and of the microscopic three-cluster model for com-
parison. This know-how has been successfully developed in the present work
[21,22].

We compare this semi-microscopic model with the corresponding micro-
scopic model. To this end, we apply the three-body models to the 6He, 9Be
and 12C nuclei, with the same parameter as in the previous chapter. In

123
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Section 8.2, we briefly summarise the models, and then discuss the results.
Conclusions are given in Section 8.3.

8.2 Semi-microscopic versus microscopic

models

The models are applied to 6He, 9Be and 12C (described as αnn, ααn and
3α systems, respectively) [21]. We consider the same calculations as in the
previous chapter, but using the nonlocal RGM-6ε αα and αn potentials in-
stead of the RGM-ε potentials in the semi-microscopic model. We therefore
take the same parameters as previously (see Section 7.2).

The nonlocal RGM-6ε αα and αn potentials are calculated from the
energy-dependent RGM-ε potentials (see Appendices C and E). The semi-
microscopic model, in the present chapter, using the RGM-6ε potentials, does
not contain any free parameter: it just needs the same parameters as the
microscopic model (i.e., MN or V2, and b the oscillator parameter for the α
clusters). In particular, it does not need any εαα, or εαn, parameter, since
the RGM- 6ε potentials (unlike the RGM-ε variant) are energy-independent.

Also, the RGM- 6ε αα and αn potentials reproduce exactly the same α+α
and α + n phase shifts as in the original (two-cluster) RGM. This means in
particular that here both semi-microscopic and microscopic models provide
strictly the same phase shifts.

The models only differs in the treatment of the Pauli principle. The semi-
microscopic model approximate the Pauli principle, via the nonlocal RGM-6ε
cluster-cluster potentials and the exclusion of the Pauli forbidden states in
each two-cluster subsystem. Hence we may consider that the two-cluster
aspects of the Pauli antisymmetrisation are essentially simulated in the semi-
microscopic model. (That is indeed the two-cluster Pauli antisymmetrisation
that is responsible for the nonlocality of the RGM-6ε inter-cluster potential.)
Thus, the only effects that are missing in the semi-microscopic approximation
should be the purely three-body antisymmetrisation effects, which involve all
three clusters simultaneously. Therefore, comparing this approximation with
the fully microscopic model, we can determine whether or not these effects
are significant.

We compare the models via the binding energies and the r.m.s radii of
the nuclei. We also consider the monopole neutron or proton densities (see
Appendix F), calculated from the wave functions, in order to compare the
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Jπ Potential Microscopic Semi-microscopic

E
√
〈r2〉 E

√
〈r2〉

(a) 0+ MN u = 0.9474 −0.07 2.57 −0.08 2.93
V2 m = 0.605 −2.43 2.46 −1.96 2.56

(b) 0+ MN u = 1.0045 −0.98 2.38 −0.95 2.46
V2 m = 0.6573 −0.98 2.90 −0.65 4.11

(c) 0+ MN u = 1.0055 −1.02 2.37 −0.97 2.46
V2 m = 0.640 −1.43 2.74 −0.98 3.23

Table 8.1: Comparison of the 6He energy (in MeV), defined from the α+ 2n
threshold, and r.m.s matter radii (in fm) in the microscopic model and in the
semi-microscopic model using the RGM- 6ε αn potential. In case (a), the pa-
rameter (u orm) fits the αn scattering, while in cases (b)/(c), it fits the exper-
imental ground-state energy (−0.973 MeV) of 6He in the microscopic/semi-
microscopic models.

models. These densities, denoted by ρ(r), are normalised as

∫ ∞

0

ρ(r)r2dr =
Z√
4π
, (8.1)

for a proton density, or similarly

∫ ∞

0

ρ(r)r2dr =
N√
4π
, (8.2)

for a neutron density, where Z and N are the proton and neutron numbers,
respectively (e.g., N = 4 for 6He, N = 5 for 9Be and Z = 6 for 12C).

8.2.1 6He

The results of the models for 6He are presented in Table 8.1 [21]. The
energies given by the RGM- 6ε αn potential turn out to be similar to those
given by the RGM-ε potential (see Table 7.5, previous chapter). Neverthe-
less, of course, here (with the RGM- 6ε potential) the semi-microscopic and
microscopic models have rigorously the same parameters (whereas with the
RGM-ε potential, there were an extra εαn parameter).

In case (a), with MN and V2 fitting the α+n phase shifts, the αnn model
does not reproduce the right energy of 6He. This must be due to the fact
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that MN and V2 are simplified effective nucleon-nucleon potentials 1. Hence
the u or m parameter of these potentials is modified in cases (b) and (c), in
order to reproduce the 6He energy, in the microcopic and semi-microscopic
models, respectively. Of course, with these modifications, MN and V2 do not
fit the α+ n phase shifts.

There is a very nice agreement between the models with MN, i.e., the
semi-microscopic and microscopic models provide virtually the same binding
energy with MN. This agreement is not confirmed with V2, where there is
a discrepancy between the models. The discrepancy clearly depends on the
nucleon-nucleon force (e.g., with V2, there is about 0.33 MeV in case (b)
between the semi-microscopic and microscopic calculations). Notice that the
semi-microscopic model provides smaller binding energies than the micro-
scopic approach, hence the three-body antisymmetrisation effects, which are
missing in the semi-microscopic model, should be attractive (but these effects
seem to be negligible with MN). The semi-microscopic model also provides
larger matter radii. With V2, it gives an unrealistic (very large) radius for
6He.

In Figure 8.1, the neutron densities of 6He are shown. They are cal-
culated for the models when the experimental binding energy of 6He is re-
produced (case (b) for the microscopic model, and case (c) for the semi-
microscopic model). With MN, the neutron densities of the microscopic and
semi-microscopic models are close to each other. This confirms that the
semi-microscopic approximation is better with MN for 6He. Also, in the mi-
croscopic model, V2 and MN give a similar density. This is different with V2
in the semi-microscopic model: since the density is lower at short distance,
the neutron radius must be larger. This is consistent with the extremely
large radius with V2.

8.2.2 9Be

The results for 9Be (in the ααn model) are displayed in Table 8.2 [21].
First, notice the progress in comparison with the previous results of Table
7.6: here, the semi-microscopic model yields comparable energies to the mi-
croscopic model. This is clearly due to the quality of the potentials: the
nonlocal RGM-6ε potentials, which are energy-independent, give exactly the
same α+α and α+n phase shifts as in the original RGM (microscopic model).

1However, inasmuch as 6He is hardly bound with MN, and strongly overbound with V2,
most probably, it would be possible, in principle, to find somehow another new effective
nucleon-nucleon potential fitting simultaneously the right 6He energy (which is between
the MN and V2 results) and the α + n phase shifts (in case (a)).
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Figure 8.1: Neutron densities of 6He with the MN and V2 potentials in the
microscopic (solid lines) and semi-microscopic (dashed lines) models. The
insert represents these densities in logarithmic scale.

Jπ Potential Microscopic Semi-microscopic

E
√
〈r2〉 E

√
〈r2〉

(a) 3
2

−
MN u = 0.9474 −2.61 2.36 −2.16 2.41
V2 m = 0.605 −1.36 2.60 −1.12 2.68

5
2

−
MN u = 0.9474 −0.09 2.39 ≈ 0.2
V2 m = 0.605 ≈ 1 ≈ 1

(b) 3
2

−
MN u = 0.9250 −1.57 2.43 −1.18 2.49
V2 m = 0.6024 −1.57 2.58 −1.32 2.66

(c) 3
2

−
MN u = 0.9340 −1.97 2.40 −1.57 2.46
V2 m = 0.5997 −1.81 2.56 −1.57 2.63

Table 8.2: Comparison of 9Be energies (in MeV), defined with respect to the
α+α+n threshold, and r.m.s matter radii (in fm) in the microscopic model
and in the semi-microscopic model with the RGM- 6ε αα and αn potentials.
In case (a), the parameter (u or m) fits the αα and αn scatterings, while
in case (b)/(c), it fits the experimental ground-state energy (−1.57 MeV) of
9Be in the microscopic/semi-microscopic models.
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However, in Table 8.2, there is a discrepancy between the semi-microscopic
and microscopic models.

The semi-microscopic model gives smaller binding energies than the mi-
croscopic model (with about 0.40 MeV for MN and 0.25 MeV for V2, between
the models). This again means that the three-body antisymmetrisation ef-
fects, missing in the semi-microscopic approach, are probably attractive.

In case (a), with MN and V2 fitting the α+α and α+n phase shifts, the
models do not give the right binding energy for 9Be (in the microscopic model,
the nucleus is overbound by about 1 MeV with MN, while it is underbound by
about 0.2 MeV with V2). The 5/2− first excited state is also calculated, and
when this gives a positive energy, such an energy (representing an unbound
system) is only approximate. The excitation energy, i.e., the gap between
5/2− and 3/2− states, is in rather close agreement with experiment. The
experimental value of the excitation energy is 2.43 MeV [16].

When the potentials are fitted to the experimental energy of 9Be, the radii
become close to each other. The corresponding neutron densities are shown in
Figure 8.2, when the models reproduce the experimental ground-state energy
(in case (b) for the microscopic model, and in case (c) for semi-microscopic
model). Below 2 fm, the semi-microscopic model provides a rather uniform
density, while the microscopic density is more peaked near the origin. This
shows a qualitative difference between the models.

8.2.3 12C

We also consider the case of 12C described as a 3α system. The results are
given in Table 8.3 [21]. They confirm what has been said about the models
for 6He and 9Be. The binding energies are smaller in the semi-microsocopic
calculation (by, e.g., about 2.4 MeV with MN and 2.5 MeV with V2, in case
(b)). Hence, in the treatment of the Pauli principle, the three-body (anti-
symmetrisation) effects, which are missing in the semi-microscopic model,
are attractive.

In case (a), the experimental energies of 12C are not reproduced: the
system is overbound with MN, and underbound with V2. This is because MN
and V2 are approximate nucleon-nucleon forces2. Also, the excitation energy
of the 2+ state does not agree with experiment (but is rather comparable
between the models).

In cases (b) and (c), both models provide quite similar radii. In Figure
8.3, the proton density of 12C (in its ground state) is shown, for the mod-

2Inasmuch as MN underbinds and V2 overbinds, in principle, it would seem possible to
find an effective potential giving both the right energy of 12C and the α + α phase shifts.
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Figure 8.2: Neutron densities of 9Be with the MN and V2 potentials in the
microscopic (solid lines) and semi-microscopic (dashed lines) models. The
insert represents these densities in logarithmic scale.

Jπ Potential Microscopic Semi-microscopic

E
√

〈r2〉 E
√
〈r2〉

(a) 0+
1 MN u = 0.94687 −11.61 2.18 −9.42 2.17

V2 m = 0.605 −4.53 2.50 −2.33 2.68
2+ MN u = 0.94687 −9.22 2.16 −7.12 2.15

V2 m = 0.605 −1.88 2.46 ≈ 0.38
0+

2 MN u = 0.94687 ≈ 0.7 ≈ 0.5
V2 m = 0.605 ≈ 1.6 ≈ 1.2

(b) 0+
1 MN u = 0.9122 −7.27 2.25 −4.90 2.27

V2 m = 0.5929 −7.27 2.41 −4.73 2.52
(c) 0+

1 MN u = 0.93105 −9.57 2.21 −7.27 2.21
V2 m = 0.582 −9.99 2.35 −7.27 2.42

Table 8.3: Comparison of 12C energies (in MeV), with respect to the 3α
threshold, and r.m.s matter radii (in fm) in the microscopic model and in the
semi-microscopic model with the RGM- 6ε αα potential. Experimental ener-
gies are −7.27, −2.83 and 0.38 MeV for the 0+

1 , 2+ and 0+
2 states, respectively.

In case (a), the parameter (u or m) fits the αα scattering; in case (b)/(c),
it fits the experimental ground-state energy of 12C in the microscopic/semi-
microscopic models.
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Figure 8.3: Neutron densities of 12C with the MN and V2 potentials in the
microscopic (solid lines) and semi-microscopic (dashed lines) models. The
dotted line corresponds to the case (a) with MN, in the microscopic model.
The insert represents the densities in logarithmic scale.
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els reproducing the experimental energy (i.e., case (b) for the microscopic
model and case (c) for the semi-microscopic model). The density for MN in
case (a) in the microscopic model (when E = −11.61 MeV) is also displayed
(dotted line), in order to illustrate the sensitivity with respect to the binding
energy. The densities are lower with V2 than with MN, hence the radius
of 12C is larger with V2 than with MN. Beyond 2 fm, the semi-microscopic
model seems to be a fair approximation. However, the short-distance be-
haviour is qualitatively very different: whereas the microscopic approach
provides a maximum near 1 fm and then decreases, the semi-microscopic
density steadily increases when r tends to zero. This is probably due to the
three-body antisymmetrisation effects, not included in the semi-microscopic
approximation.

8.3 Conclusions

The nonlocal RGM-6ε αα and αn potentials are more appropriate for a
semi-microscopic model than the RGM-ε potentials. They allow us to avoid
the problems of the energy-dependence, which occur in three-body systems
(with the RGM-ε cluster-cluster potentials).

The semi-microscopic model is a non-microscopic approximation of the
microscopic cluster model. This is a simple three-body model with nonlocal
potentials. The nonlocal potentials RGM-6ε simulate the Pauli principle, and
give the same cluster-cluster phase shifts as the original full RGM. With these
potentials, the semi-microscopic model yields comparable binding energies,
with respect to the ones given by the fully microscopic model. The model
has been successfully applied to 6He, 9Be and 12C [21]. The differences in
energy between the microscopic and semi-microscopic models are small, and
decrease with the nucleon number (about 2.5 MeV for 12C, and 0.5 MeV for
9Be and 6He). The discrepancy between the models depends on the choice
of the nucleon-nucleon force (MN or V2). The semi-microscopic model turns
out to be a very good approximation for 6He with MN.

Also, because we use simple effective nucleon-nucleon forces (MN or V2)
in the present work, it is not always possible to precisely reproduce the α+n
and α + α phase shifts and the experimental three-cluster binding energies
simultaneously. Therefore, in the microscopic model, for each physical sys-
tem, a tuning parameter in MN and V2 must be slightly modified in order
to fit the binding energies of 6He, 9Be and 12C.

We have also compared the neutron or proton densities given by the mi-
croscopic and semi-microscopic models. In general, differences between the
microscopic and semi-microscopic densities occur at short distances. The
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semi-microscopic approximation gives larger r.m.s matter radii than the mi-
croscopic model. In the simplest nucleus 6He with the MN interaction, the
densities given by the microscopic and semi-microscopic models are very sim-
ilar to each other.

In all cases the binding energy are slightly underestimated by the semi-
microscopic approach. This means that three-body antisymmetrisation ef-
fects, missing in this approximation should be attractive. The development of
a reliable three-body force, which could simulate these effects, is a challenge
for future works.



Chapter 9

Conclusion

In the present work, we have investigated the effects of the Pauli princi-
ple in three-cluster models. In particular, we have developed and analysed
simple three-body models, which can approximate the dynamics of the three-
cluster systems, such as the 6He, 9Be and 12C nuclei. In these three-body
models, the clusters are treated as structureless pointlike particles. This is a
very useful simplification, but it requires to choose microscopically founded
effective cluster-cluster potentials.

The consequences of the Pauli principle are rather well known in the case
of the two-cluster systems. Indeed the RGM, which is a microscopic cluster
model, shows that the general antisymmetrisation principle between nucleons
leads to exchanges of nucleons between the clusters. As a result of the nucleon
exchanges, the effective interaction between two clusters can be represented
by a nonlocal potential. Furthermore, because of the antisymmetrisation,
there are Pauli forbidden states for the relative motion between the clusters.

Therefore, it is not very suprising that three-body nuclear models with
local effective potentials, which fit the two-cluster elastic phase shifts, yield
rather poor results, in disagreement with experiment. This must be due to
the fact that local potentials cannot properly simulate the subtle effects of
the Pauli principle between the clusters. Hence, following a work of Fujiwara
et al. [17, 28], we have considered the use of the effective nonlocal RGM
cluster-cluster potentials. There are however two distinct variants of RGM
potentials: the original energy-dependent potentials, and the more compli-
cated energy-independent potentials. We have tested both variants. We call
the three-body models using the nonlocal potentials the semi-microscopic
models, since those potentials are extracted from the two-cluster RGM. We
have analysed the semi-microscopic models, and we have compared their re-
sults with those of the fully microscopic three-cluster model.

The microscopic model and the nonlocal RGM potentials are based on
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exactly the same parameters, i.e., an effective nucleon-nucleon force and an
effective internal wave function for each cluster. Nevertheless, the semi-
microscopic models are approximations that simulate the Pauli principle
between each pair of clusters via the nonlocal potentials, but neglect the
effects of the Pauli principle involving all three clusters simultaneoulsy. Fur-
thermore, because they treat the clusters as pointlike particles, the semi-
microscopic models are much simpler and faster than the microscopic model.
In other words, they avoid the very long and laborious calculations of the
microscopic theories.

In this context, we have studied the 6He, 9Be and 12C nuclei [20–23],
and the 6

ΛΛHe and 9
ΛBe hypernuclei [19]. These physical systems display

three-cluster structures: they have been studied as αnn, ααn, 3α, αΛΛ, and
ααΛ systems, respectively. These examples require in particular αα and αn
effective potentials. The nonlocal RGM αα and αn potentials have been
used in the semi-microscopic models. They allow us to simulate the Pauli
principle between two clusters. Also, the Pauli forbidden states in the αα and
αn relative motions must be properly eliminated from the wave functions in
the semi-microscopic models. In addition, for 6

ΛΛHe and 9
ΛBe some effective

αΛ and ΛΛ potentials are also required. The αΛ potential can be nonlocal,
because of the exchange forces in the baryon-baryon potentials.

We solve the three-body Schrödinger equations in configuration space
by the hyperspherical harmonics method with the Lagrange-mesh technique.
We have extended this method to the general case of nonlocal potentials [19].
We have developed a numerical code which implements the method. We have
successfully validated our techniques [19, 20], by reproducing the results of
Ref. [17,18], for 6

ΛΛHe and 9
ΛBe.

With these techniques, we can calculate the binding energies of the sys-
tems, as well as other physical observables, such as matter radii, probability
densities and reduced transition probabilities.

The cases of 6He, 9Be and 12C have been analysed in detail, by comparing
the results of the semi-microscopic models with the corresponding results
of the fully microscopic model. All calculations have been performed from
effective nucleon-nucleon forces (namely MN and V2).

We have first considered the energy-dependent RGM potentials in the
semi-microscopic model. The energy-dependence of the potentials is rather
problematic: we have discovered that the self-consistent prescription, pro-
posed by Ref. [17], to calculate the energy parameters of the potentials is
not always satisfactory. In particular, we have found that this prescription is
not realistic when applied to the case of 9Be. Indeed the binding energy for
9Be with this prescription is in disagreement with both experiment and the
microscopic model. The analysis of the α + α and α + n elastic scattering
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phase shifts reveals the reason behind this disagreement. We have shown that
the semi-microscopic model, by using constant energy values in the energy-
dependent RGM potentials, inevitably deteriorates the α+α and α+n phase
shifts. In particular, the low-energy resonances in the phase shifts may not be
well reproduced. Hence the αα and αn interactions, with such constant en-
ergy parameters, are physically questionable in the semi-microscopic model.
Indeed, the two-body energies are not well defined in three-body models.
Thus each two-body energy becomes a free parameter in the models. There-
fore, the semi-microscopic model with the energy-dependent RGM potentials
raises a difficulty. There is no obvious criteria to set the two-body energies.

The best solution is to use the energy-independent RGM potentials in the
semi-microscopic model. We have thus analysed the semi-microscopic model
with the energy-independent nonlocal αα and αn potentials. The results
are conclusive: this semi-microscopic model then becomes a rather fair ap-
proximation of the microscopic model. These nonlocal potentials reproduce
exactly the RGM α+α and α+n phase shifts. The binding energies of 9

ΛBe,
6He, 9Be and 12C are well reproduced. The differences in energy between this
semi-microscopic model and the microscopic model are small, and decrease
with the nucleon number (about 2.5 MeV for 12C, 0.5 MeV for 9Be and 6He).
The discrepancy between the models depends on the choice of the nucleon-
nucleon force (MN or V2). The semi-microscopic model turns out to be a
very good approximation for 6He with MN.

We have also compared the proton or neutron densities given by the mi-
croscopic and semi-microscopic models. In general, differences between the
microscopic and semi-microscopic densities occur at short distances. The
semi-microscopic approximation gives larger matter radii than the micro-
scopic model. In the case of 6He, the densities given by microscopic and
semi-microscopic models are very similar to each other.

In all cases the binding energies are slightly underestimated by the semi-
microscopic model. This suggests that the three-body antisymmetrisation
effects of the Pauli principle, missing in this approximation should be attrac-
tive. The development of an effective three-cluster force, in order to improve
the semi-microscopic model, is a challenge for future works.

In addition, we have observed that, with the simple effective (MN and V2)
forces, the microscopic model is not able to reproduce simultaneously (with
the same parameters) the two-cluster (α + α and α + n) elastic phase shifts
and the three-cluster binding energies (in the αnn, ααn and 3α models).
Hence these effective forces contain a parameter to be tuned, for each phys-
ical system. Such effective forces are useful to simplify the calculations. In
particular, they provide tractable wave functions that can be used in reaction
models.
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The present work thus provides a way of calculating the energies and
wave functions of the three-body bound states, for any system with effective
nonlocal potentials. The wave functions of the semi-microscopic model are
now ready to be applied in all applications requiring three-body bound-state
dynamics.

However, it would be also desirable to extend this model to the calculation
of continuum states. This would require further developments to apply the
formalism of the R-matrix [87] to the three-body Schrödinger equation with
nonlocal potentials.

Another interesting perspective would be to explore, with the same for-
malism, the cases of four-cluster systems, which remain difficult with the
microscopic models, but which seem more feasible in the semi-microscopic
approximation.



Appendix A

Raynal-Revai coefficients

The Raynal-Revai coefficients (3.50) are used to change from one set of Ja-
cobi coordinates to another in the hyperspherical harmonic basis (see Section
3.4.4). They are calculated from the explicit formula [42]:

〈i, l′xl′y|k, lxly〉KL
=
π

4

[
Cn′

l′xl′y
Cn

lxly

]−1/2

×
∑

λ1λ2λ3λ4

(i)λ3+λ4+l′y−ly(−1)λ1+λ2f(λ1, λ3; lx)f(λ4, λ2; ly)f(λ1, λ4; l
′
x)f(λ3, λ2; l

′
y)

×





λ1 λ3 lx
λ4 λ2 ly
l′x l′y L




∑

µν

(−1)µCµ
λ3λ4

Cν
λ1λ2

(cosϕki)
2ν+λ1+λ2(sinϕki)

2µ+λ3+λ4 ,

(A.1)

using the following notations:

Cα
βγ =

Γ(2α+ β + γ + 2)

Γ(α+ β + 3
2
)Γ(α+ γ + 3

2
)Γ(α+ 1)Γ(α+ β + γ + 2)

, (A.2)

f(a, b; c) =
√

(2a+ 1)(2b+ 1)(ab00|c0)

=
√

(2a+ 1)(2b+ 1)(2c+ 1)(−1)(a+b)

(
a b c
0 0 0

)
, (A.3)

i represents the complex number whose square is −1, ϕki is defined by equa-
tion (3.8), and n and n′ are defined by K = 2n+ lx + ly = 2n′ + l′x + l′y. The
summation runs over all integers values λ1, λ2, λ3, λ4, µ and ν that satisfy
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the conditions:

K = 2µ+ 2ν + λ1 + λ2 + λ3 + λ4, (A.4)

|λ1 − λ3| ≤ lx ≤ λ1 + λ3,

|λ4 − λ2| ≤ ly ≤ λ4 + λ2,

|λ1 − λ4| ≤ l′x ≤ λ1 + λ4,

|λ3 − λ2| ≤ l′y ≤ λ3 + λ2,

λ1 + λ3 + lx even,

λ4 + λ2 + ly even,

λ1 + λ4 + l′x even,

λ3 + λ2 + l′y even.



Appendix B

Calculation of the potential

matrix elements

In this appendix, we specify the practical calculations of the local and
nonlocal potential matrices in the hyperspherical formalism of Chapter 3.

B.1 Local potentials

The treatment of the local potentials in the hyperspherical harmonics
method is introduced in Section 3.5.3. Using the Raynal-Revai coefficients,
these terms reduce to the calculations of integrals (3.67).

In the models, the potentials can depend on the relative orbital angular
momentum lx. They can also include a spin-orbit dependence, in which case
the hyperspherical harmonics are expanded in a basis of eigenfunctions of
the spin-orbit operator, following the procedure explained in Section B.2.

To calculate the integrals defined in equation (3.67), we apply the othog-
onality relations between the angular momentum eigenstates. The integrals
then reduce to

V
Jπ (ij−k)
γ′K′,γK (ρ) =

∫
YJM†

γ′K′ (Ω5k)Vij

(
ρ cosαk√

µij

)
YJM

γK (Ω5k) dΩ5k (B.1)

= δγγ′

∫ π
2

0

φ
lxly
K′ (αk)Vij

(
ρ cosαk√

µij

)
φ

lxly
K (αk) sin2 αk cos2 αk dαk,

where the functions φ
lxly
K (αk) are defined by equations (3.37) and (3.38) and

lx is the relative-motion orbital angular momentum between particles i and j.
For the sake of simplicity, the above relation assumes that the potential does
not contain any spin-dependent term. The case of a spin-orbit potential is
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however treated similarly, except that it requires to first modify the angular
momentum coupling scheme of the hypersperical harmonics. The case of a
spin-orbit operator is discussed in Section B.2. Thus, for the local potential
matrix, we need to calculate integrals of the the form

I =

∫ π
2

0

φ
lxly
K′ (α)Vij

(
ρ cosα
√
µij

)
φ

lxly
K (α) sin2 α cos2 α dα, (B.2)

With definition (3.38) of φ
lxly
K (α), the integral (B.2) can be written

I = N
lxly
K N

lxly
K′

∫ π
2

0

(sinα)2ly+2 (cosα)2lx+2 Vij

(
ρ cosα
√
µij

)

P
ly+ 1

2
,lx+ 1

2

n′ (cos 2α) P
ly+ 1

2
,lx+ 1

2
n (cos 2α) dα, (B.3)

where n = (K − lx − ly)/2 and n′ = (K ′ − lx − ly)/2.
We make a change of integration variable: let v = tan(α/2),

I = N
lxly
K N

lxly
K′

∫ 1

0

(
2v

1 + v2

)2ly+2(
1 − v2

1 + v2
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ρ

√
µij
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1 + v2

)

P
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2
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2

n′

(
2
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1 + v2

)2

− 1

)
P

ly+ 1

2
,lx+ 1

2
n

(
2

(
1 − v2

1 + v2

)2

− 1

)
2

1 + v2
dv,

(B.4)

The integral over v is evaluated numerically by using a Gauss-Legendre
quadrature [44]. Typically, we use a Gauss-Legendre approximation with
64 points, which gives a good accuracy.

In practice, ρ = hui, according the Lagrange-mesh method (3.102). From
integrals (B.4), the matrix elements V Jπ

γK,γ′K′(hui) (3.69) which represent the
local forces are calculated.

B.2 Spin-orbit terms

For the spin-orbit potentials, the calculations are performed by applying
angular momentum recoupling techniques to the hyperspherical harmonics.

Let us consider a spin-orbit potential

Vij = 2V soLx · Sx, (B.5)

where Lx is the orbital angular momentum of the relative motion between
particles i and j, and Sx = si + sj, with si denoting the spin operator of
particle i. The coefficient V so is assumed to be independent of Lx and Sx.
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In order to calculate the matrix elements of the spin-orbit potential, we
expand the hyperspherical harmonics YJM

γK (Ω5k) into linear combinations of
eigenstates of the spin-orbit operator Lx · Sx. This is carried out by using
the Wigner 6j and 9j coefficients [47].

The angular momenta of YJM
γK (Ω5k) are γ = {lxlyLS} and J . The total

spin S has been introduced in the hyperspherical harmonics through spinors
χSMS (3.43). This spin S is however the result of the individual spins s1, s2

and s3 of the three particles. We need here to specify how these spins s1, s2

and s3 are coupled to give total spin S.

Let us first assume that the spin S, in the spinors χSMS , results from the
coupling of si with sj to give sx, and from the coupling of sx with sk. Under
this assumption, the short-hand symbol γ of YJM

γK (Ω5k) could be rewritten by
mentionning the spin coupling as γ = {lxlyL ((sisj)sx sk)S}, and the spinors
could also be rewritten with explicit labels as

χSMS = χSMS

((sisj)sx sk). (B.6)

Of course, the spins satisfy

|si − sj| ≤ sx ≤ si + sj, (B.7)

|sx − sk| ≤ S ≤ sx + sk. (B.8)

In order to apply the spin-orbit interaction (B.5) to the hyperspherical har-
monic YJM

γK (Ω5k), lx must be coupled with sx. We make use of the Wigner
9j coefficients: YJM

γK (Ω5k) is expanded as

YJM
γK (Ω5k) =

∑

jx jy

[(2jx + 1)(2jy + 1)(2L+ 1)(2S + 1)]1/2





lx sx jx
ly sk jy
L S J



YJM

lxsxjx

lyskjy
K

(Ω5k),

(B.9)

where

|lx − sx| ≤ jx ≤ lx + sx, (B.10)

|ly − sk| ≤ jy ≤ ly + sk, (B.11)

and YJM
lxsxjx

lyskjy
K

(Ω5k) are thus eigenfunctions of the spin-orbit operator,

(2Lx · Sx)YJM
lxsxjx

lyskjy
K

(Ω5k) = ηlxsxjx
YJM

lxsxjx

lyskjy
K

(Ω5k), (B.12)

with

ηlxsxjx
= jx(jx + 1) − lx(lx + 1) − sx(sx + 1). (B.13)
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Let us now consider the other case where, e.g, the spinors χSMS are defined
by first coupling sj with sk, to give sjk, and then coupling si with sjk, to
give S. The notation γ could thus be written more explicitly, with the detail
of the spins, as γ = {lxlyL (si (sjsk) sjk)S}, and the spinors χSMS could be
written

χSMS = χSMS

(si(sjsk)sjk)
. (B.14)

The spins satisfy

|sj − sk| ≤ sjk ≤ sj + sk, (B.15)

|si − sjk| ≤ S ≤ si + sjk. (B.16)

We make use of the Wigner 6j and 9j coefficients. The 6j coefficients are
used in order to change the spin coupling:

χSMS

(si(sjsk)sjk) =
∑

sx

〈
(sisj)sx skS

∣∣si(sjsk)sjkS
〉
χSMS

((sisj)sx sk), (B.17)

with coefficients

〈
(sisj)sx skS

∣∣si(sjsk)sjkS
〉

=

(−1)si+sj+sk+S [(2sx + 1)(2sjk + 1)]1/2

{
si sj sx

sk S sjk

}
. (B.18)

The hyperspherical harmonics YJM
γK (Ω5k) can therefore be written

YJM
γK (Ω5k) =

∑

sx jx jy

[(2sx + 1)(2sjk + 1)(2jx + 1)(2jy + 1)(2L+ 1)(2S + 1)]1/2

(−1)si+sj+sk+S

{
si sj sx

sk S sjk

}


lx sx jx
ly sk jy
L S J



YJM

lxsxjx

lyskjy
K

(Ω5k), (B.19)

Expansions (B.9) and (B.19), with the eigenvalue property (B.12), enable
us to calculate the spin-orbit potential terms.

Note that the functions YJM
lxsxjx

lyskjy
K

(Ω5k) satisfy the orthogonality relation

∫
YJM†

l′xs′xj′x
l′yskj′y

K′

(Ω5k)YJM
lxsxjx

lyskjy
K

(Ω5k) dΩ5k = δKK′δlxl′xδsxs′xδjxj′xδlyl′yδsys′yδjyj′y ,

(B.20)
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and

∫
YJM†

l′xs′xj′x
l′yskj′y

K′

(Ω5k)YJM
lxsxjx

lyskjy
K

(Ω5k) dΩxk
dΩyk

= φ
lxly
K′ (αk)φ

lxly
K (αk) δlxl′xδlyl′yδsxs′xδjxj′xδsys′yδjyj′y , (B.21)

The matrix elements V
Jπ (ij−k)
γ′K′,γK (ρ) of a spin-orbit potential therefore reduce

to linear combinations of integrals of type (B.2).

B.3 Nonlocal potentials

The matrix elements W Jπ
γKi,γ′K′i′ of the nonlocal potentials are defined by

equation (3.115). The hyperradial kernelsWγK,γ′K′(ρ, ρ′) is defined in Section
3.5.4.

The kernels can be reduced to the case (3.84). Therefore, to evaluate
W Jπ

γKi,γ′K′i′ , we need to calculate integrals of the form

J =

∫ ∞

0

dρ

∫ ∞

0

dρ′ f̂i(ρ/h) f̂i′(ρ
′/h)

1

(ρρ′)3/2

∫ min(ρ,ρ′)

0

W lx
ij

(
x

√
µij

,
x′

√
µij

)
φ

lxly
K (α)φ

lxly
K′ (α′)xx′ y2 dy, (B.22)

with x =
√
ρ2 − y2, x′ =

√
ρ′2 − y2, α = arctan (y/x), α′ = arctan (y/x′).

The function min(ρ, ρ′) has its first partial derivatives that are discon-
tinuous for ρ = ρ′. Therefore we choose to change the variables: instead
of using ρ, ρ′ we prefer to use x, x′, because their integration domains are
[0,+∞[. The integrals then become [19]

J =

∫ ∞

0

dy

∫ ∞

0

dx

∫ ∞

0

dx′ φ
lxly
K

(
arctan

y

x

)
φ

lxly
K′

(
arctan

y

x′

)

f̂i

(
1

h

√
x2 + y2

)
f̂i′

(
1

h

√
x′2 + y2

)
W lx

ij

(
µij

−1/2x, µij
−1/2x′

)
x2x′2y2

[(x2 + y2)(x′2 + y2)]5/4
.

(B.23)

They are evaluated numerically. The integrals over x and x′ are performed
using a Gauss-Laguerre quadrature (3.93) with N2 points and a scale param-
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eter h2,

J ≈ (h2)
2

N2∑

j=1

N2∑

j′=1

λj λj′ W
lx
ij

(
h2uj√
µij

,
h2uj′√
µij

)

∫ ∞

0

ϕ
lxly
Ki (h2uj, y)ϕ

lxly
K′i′(h2uj′ , y) dy, (B.24)

where λj and uj are the weights (3.99) and nodes (3.98) associated with the
Gauss-Laguerre quadrature, and

ϕ
lxly
Ki (x, y) = φ

lxly
K

(
arctan

y

x

)
f̂i

(
1

h

√
x2 + y2

)
x2y2

(x2 + y2)5/4
. (B.25)

The function φ
lxly
K reads

φ
lxly
K

(
arctan

y

x

)
= N

lxly
K

xlxyly

(x2 + y2)(lx+ly)/2
P

ly+ 1

2
,lx+ 1

2
n

(
x2 − y2

x2 + y2

)
, (B.26)

with n = (K − lx − ly)/2 and N
lxly
K given by equation (3.33).

The final step consists in evaluating the integrals over y in (B.24). They
are calculated numerically using a Gauss-Fourier quadrature [48] (or trape-
zoidal rule [44]):

∫ ∞

0

ϕ
lxly
Ki (h2uj, y)ϕ

lxly
K′i′(h2uj′ , y) dy ≈

Ny∑

n=1

ϕ
lxly
Ki (h2uj, nhy)ϕ

lxly
K′i′(h2uj′ , nhy)hy,

(B.27)

discretising the variable y with Ny points, and a constant step hy.



Appendix C

αn and αα RGM-ε potentials

The energy-dependent αn and αα RGM-ε potentials are given in this ap-
pendix [20]. Their expressions are taken from Refs. [1, 88, 89]. The general
form of the RGM-ε potentials is presented by equation (2.77): they con-
tain a local part VD(r) and a nonlocal kernel K(ε, r, r′) that depends on
the relative-motion energy ε of the two interacting clusters. In Section C.1
the nucleon-nucleon interactions from which the potentials are calculated are
specified. The αn and the αα potentials are given in Sections C.2 and C.3,
respectively. In Section C.4, formulae to apply the nonlocal kernel to a given
angular-momentum partial wave are provided.

C.1 Effective nucleon-nucleon potential

The RGM potentials are calculated from an effective nucleon-nucleon
potential. In general, the nucleon-nucleon potential is chosen as vij =
V NN

ij + V SO
ij + V C

ij , where V NN
ij , V SO

ij and V C
ij are nuclear central, spin-orbit

and Coulomb components, respectively.
The nucleon-nucleon central interaction is assumed to be a sum of Gaus-

sian terms of the form:

V NN
ij =

N∑

n=1

V0n(Wn +MnP
r
ij +BnP

σ
ij +HnP

r
ijP

σ
ij) exp(−r2/a2

n), (C.1)

where P r
ij and P σ

ij are the space- and spin-exchange operators, respectively,
and V0n, Wn, Mn, Bn, Hn and an are constant parameters. The effective
spin-orbit force between nucleons (5.13) reads

V SO
ij = − 2S0

~2κ5
exp(−r2/κ2) lij · sij, (C.2)

145
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V NN
ij n an V0n Wn Mn Bn Hn

V2 1 1.01 61.14 1 −m m 0 0
[57] 2 1.8 −60.65 1 −m m 0 0

MN 1 (
√

1.487)−1 200 u/2 1 − u/2 0 0

[26] 2 (
√

0.639)−1 −178 u/4 (2 − u)/4 u/4 (2 − u)/4

3 (
√

0.465)−1 −91.85 u/4 (2 − u)/4 −u/4 (u− 2)/4

Table C.1: Parameters of the nucleon-nucleon potentials V2 (5.10) and MN
(5.8) expressed as an interaction (C.1) with N = 2 and N = 3 Gaussians,
respectively. The value of parameters u and m depends on the applications.
Units are MeV for energy and fm for length.

where lij is the relative orbital angular momentum and sij the total spin of
the two interacting nucleons, and S0 and κ are constants. With this notation,
a limit exists as κ approaches zero, when considering the αn interaction.
There is also the Coulomb potential between protons:

V C
ij =

e2

r

(
1

2
− tiz

)(
1

2
− tjz

)
, (C.3)

where tiz is the isospin component of nucleon i, with tiz = −1/2 for a proton
and and tiz = +1/2 for a neutron.

The energy-dependent αn and αα RGM potentials will be written in
their general form for the interactions (C.1), (C.2) and (C.3). This allows
us to calculate these potentials for MN (5.8) and V2 (5.10), which are just
particular cases of interaction (C.1). The parameters of V NN

ij (C.1) for MN
and V2 are given in Table C.1.

C.2 αn potential

We give here the energy-dependent αn RGM potential [1, 23, 88, 89]. It
is calculated from the interactions (C.1) and (C.2) by assuming that the
α-particle is described by an oscillator internal wave function φ1 (2.6). Its
expression is given by

(Vα−nΨ)(r) = VD(r)Ψ(r) + V SO
D (r)Ψ(r) +

∫
K(ε, r, r′)Ψ(r′) dr′, (C.4)

where Ψ(r) represents the wave function describing the αn relative-motion,
VD(r), V SO

D (r) and K(ε, r, r′) are as follows. The potential depends on the
energy ε of the αn relative motion.
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The central local term generated by the nuclear potential (C.1) reads

VD(r) =
N∑

n=1

1

2
V0nX

d
n

(
4a2

n

4a2
n + 3b2

)3/2

exp

(
− 4r2

4a2
n + 3b2

)
, (C.5)

where Xd
n = 8Wn + 4Bn − 4Hn − 2Mn and b is the oscillator parameter of

the α-particle (2.6).
The local part generated by the spin-orbit potential (C.2) is given by

V SO
D (r) = −ηlj

5

2
S0

(
4

4κ2 + 3b2

)5/2

exp

(
− 4r2

4κ2 + 3b2

)
(C.6)

with

ηlj = j(j + 1) − l(l + 1) − s(s+ 1), (C.7)

where l denotes the orbital angular momentum of the αn relative motion,
s = 1/2, and j = |l±1/2| is the total angular momentum of the α+n system.

The nonlocal kernel K(ε, r, r′) reads

K(ε, r, r′) = KH(r, r′) + εKN(r, r′), (C.8)

according to equation (2.33). It arises from the nucleon exchanges and de-
pends on the energy ε, because of the Pauli principle. The kernel KN(r, r′)
is given by

KN(r, r′) =

(
4

5

)3(
4

3πb2

)3/2

exp

[
− 2

75b2
(17r2 + 17r′2 + 16r · r′)

]
. (C.9)

The kernel KH(r, r′) can be separated into several terms,

KH(r, r′) = KT (r, r′) +KV (r, r′) +KSO(r, r′). (C.10)

The kinetic energy of the nucleons leads to the kernel

KT (r, r′) = −1

4
~ω

[
49

5
− 64

1125b2
(38r2 + 38r′2 + 49 r · r′)

]
KN(r, r′), (C.11)

where ω = ~/(mNb
2), mN being the nucleon mass unit. The nuclear potential

(C.1) leads to

KV (r, r′) =
N∑

n=1

1

2
V0n

{
(Xd

n +Xe
n)

(
a2

n

a2
n + 2b2

)3/2

+Xe
n exp

(
−16(r − r′)2

25a2
n

)

− (Xd
n +Xe

n)SO

(
3a2

n

3a2
n + 2b2

)3/2 [
exp

(
− 16(4r + r′)2

75(3a2
n + 2b2)

)

+ exp

(
− 16(r + 4r′)2

75(3a2
n + 2b2)

)]}
KN(r, r′), (C.12)
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where Xe
n = 8Mn + 4Hn − 4Bn − 2Wn. The spin-orbit potential (C.2) gives

the kernel

KSO(r, r′) = −ηljS0κ
−3 5

3b2 − κ2
exp

[
−16(r − r′)2

25κ2

]
KN(r, r′). (C.13)

In order to simplify the calculations, as suggested in Refs. [26,58], we will
assume the limit case where the range parameter κ approaches zero. In this
case, the spin-orbit contribution becomes local. Let V SO

D(0)(r) be the value of

the term (C.6) for κ = 0, i.e.,

V SO
D(0)(r) = −ηlj

5

2
S0

(
4

3b2

)5/2

exp

(
−4r2

3b2

)
. (C.14)

The limit of the kernel (C.13) as κ→ 0 is

lim
κ→0

KSO(r, r′) = −ηlj
5

4
S0

(
4

3b2

)5/2

exp

(
−4r2

3b2

)
δ(r − r′) (C.15)

=
1

2
V SO

D(0)(r) δ(r − r′). (C.16)

To obtain (C.15), we have used the identity

δ(r) = lim
κ→0

π−3/2κ−3 exp(−r2/κ2), (C.17)

which leads to

lim
κ→0

π−3/2κ−3 exp

(
−16(r − r′)2

25κ2

)
= δ

(
4

5
(r − r′)

)

=

(
5

4

)3

δ(r − r′). (C.18)

It follows from (C.16) that

lim
κ→0

∫
KSO(r, r′)Ψ(r′) dr′ =

1

2
V SO

D(0)(r)Ψ(r). (C.19)

Thus, as κ→ 0, the total spin-orbit contribution is

lim
κ→0

[
V SO

D (r)Ψ(r) +

∫
KSO(r, r′)Ψ(r′) dr′

]
=

3

2
V SO

D(0)(r)Ψ(r), (C.20)

i.e., a purely local term in the αn potential. This simplifies the RGM cal-
culations. We will then adopt this case where κ → 0. Such a local effective
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spin-orbit interaction (C.20) in the αn potential is able to reproduce in good
agreement with experiment the α + n scattering phase shifts, by adjusting
the parameter S0.

Equations from (C.4) to (C.13) give the αn RGM potential. The expres-
sion of the corresponding α-proton potential would be quite similar, except
that it would include additional terms because of the Coulomb interaction
(C.3). Expressions of the α-proton RGM potential can be found, e.g., in Refs
[20,88,89].

In Section C.4, we will give the formulae which are used to apply the
nonlocal terms to any given partial wave.

C.3 αα potential

Here we give the expression of the energy-dependent αα RGM potential
[23, 88]. It is calculated from the nucleon-nucleon interactions (C.1) and
(C.3), assuming oscillator wave functions φ1 (2.6) for the α-particles. The
spin-orbit interaction (C.2) does not play any role in the α+α relative motion.
The expression of the αα RGM-ε potential is

(Vα−αΨ)(r) = VD(r)Ψ(r) + V C
D (r)Ψ(r) +

∫
K(ε, r, r′)Ψ(r′) dr′, (C.21)

where VD(r), V C
D (r) and K(ε, r, r′) are as follows, and Ψ(r) here describes

the relative motion between the α-particles. Note that Ψ(−r) = Ψ(r) by
virtue of the Pauli principle, the α-particles being bosons. In other words,
odd partial waves are forbidden. The potential depends on the energy ε of
the relative motion of the α+ α system.

The local term generated by the nuclear potential (C.1) reads

VD(r) =
N∑

n=1

2V0nX
d
n

(
2a2

n

2a2
n + 3b2

)3/2

exp

(
− 2r2

2a2
n + 3b2

)
, (C.22)

where Xd
n = 8Wn +4Bn − 4Hn − 2Mn. The local term given by the Coulomb

potential (C.3) reads

V C
D (r) =

4e2

r
erf

(√
2

3

r

b

)
. (C.23)

The function erf is defined as

erf(x) =
2√
π

∫ x

0

exp(−u2) du (C.24)
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The kernel K(ε, r, r′) is symmetrical with respect to r′ → −r′, i.e.,

K(ε, r,−r′) = K(ε, r, r′). (C.25)

Hence this kernel can be written as

K(ε, r, r′) =
1

2

[
K(u)(ε, r, r′) +K(u)(ε, r,−r′)

]
, (C.26)

where K(u)(ε, r, r′) is an effective unsymmetrized function, whose expression
is as follows. Note that K(u)(ε, r, r′) will directly lead to correct projected
kernels provided only even l values are kept. The nonlocal kernelK(u)(ε, r, r′)
can be separated into several terms,

K(u)(ε, r, r′) = K
(u)
H (r, r′) + εK

(u)
N (r, r′), (C.27)

where

K
(u)
H (r, r′) = K

(u)
T (r, r′) +K

(u)
V (r, r′) +K

(u)
C (r, r′). (C.28)

The kernel K
(u)
N (r, r′) reads

K
(u)
N (r, r′) = 4

(
8

3πb2

)3/2

exp

(
−5r2 + 5r′2 − 8r · r′

3b2

)

−3

(
2

πb2

)3/2

exp

(
−r

2 + r′2

b2

)
. (C.29)

The kinetic-energy kernel is given by

K
(u)
T (r, r′) = −~ω

{(
8

3πb2

)3/2(
13 − 112(r2 + r′2) − 208r · r′

9b2

)

× exp

(
−5r2 + 5r′2 − 8r · r′

3b2

)

−
(

2

πb2

)3/2(
27

4
− 3

r2 + r′2

b2

)
exp

(
−r

2 + r′2

b2

)}
, (C.30)
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where ω = ~/(mNb
2). The Coulomb interaction leads to the following kernel:

K
(u)
C (r, r′) = e2

(
8

3πb2

)3/2

exp

(
−r

2 + r′2

3b2

)
exp

(
−4(r − r′)2

3b2

)

×
[
4

(
2

πb2

)1/2

− 1

|r − r′| − 15
erf( 1√

3b
|r + r′|)

|r + r′|

−6
erf( 1√

3b
|2r − r′|)

|2r − r′| − 6
erf( 1√

3b
|r − 2r′|)

|r − 2r′|

]

+4e2
(

2

πb2

)3/2

exp

(
−r

2 + r′2

b2

)[
2
erf(1

b
|r − r′|)

|r − r′|

−
(

2

πb2

)1/2

+
erf(

√
2r√
3b

)

r
+

erf(
√

2r′√
3b

)

r′

]
. (C.31)

The nuclear potential (C.1) leads to

K
(u)
V (r, r′) =

N∑

n=1

V0n

(
8

3πb2

)3/2

exp

(
−5r2 + 5r′2 − 8r · r′

3b2

)

×
{

4(Xd
n +Xe

n)

(
a2

n

a2
n + 2b2

)3/2

+ 2Xe
n exp

(
−4(r − r′)2

a2
n

)

−2(2Xd
n −Xe

n)

(
3a2

n

3a2
n + 4b2

)3/2

exp

(
− 4(r + r′)2

3(3a2
n + 4b2)

)

−4(Xd +Xe
n)

(
3a2

n

3a2
n + 4b2

)3/2

×
[
exp

(
− 4(2r − r′)2

3(3a2
n + 4b2)

)
+ exp

(
− 4(r − 2r′)2

3(3a2
n + 4b2)

)]}

+
N∑

n=1

V0n

(
2

πb2

)3/2

exp

(
−r

2 + r′2

b2

)

×
{

2(Xd
n − 2Xe

n)

(
a2

n

a2
n + b2

)3/2

exp

(
−(r − r′)2

a2
n + b2

)

−4(Xd
n +Xe

n)

(
a2

n

a2
n + 2b2

)3/2

+ 4(Xd
n +Xe

n)

(
2a2

n

2a2
n + 3b2

)3/2

×
[
exp

(
− 2r2

2a2
n + 3b2

)
+ exp

(
− 2r′2

2a2
n + 3b2

)]}
, (C.32)
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where Xe
n = 8Mn + 4Hn − 4Bn − 2Wn.

C.4 Projection on angular momentum

In order to apply the nonlocal potentials to a given orbital angular mo-
mentum (see, e.g., equation (3.83)), the nonlocal kernels are expanded in
terms of spherical harmonics as

K(r, r′) =
∞∑

l=0

l∑

m=−l

Y m∗
l (Ωr′)Y

m
l (Ωr) kl(r, r

′), (C.33)

where Ωr′ and Ωr represent the directions of r′ and r, respectively. It follows
from the addition theorem of the spherical harmonics:

l∑

m=−l

Y m∗
l (Ωr′)Y

m
l (Ωr) =

2l + 1

4π
Pl(cos θ), (C.34)

and the orthogonality property of the Legendre polynomials:

∫ +1

−1

Pl(u)Pl′(u) du =
2

2l + 1
δll′ , (C.35)

that the kernels kl(r, r
′) are given by

kl(r, r
′) = 2π

∫ +1

−1

K(r, r′)Pl(u)du, (C.36)

with u = cos θ, where θ is the angle between r and r′. The kernels kl(r, r
′)

are calculated from the integral (C.36).
The calculations involving exponential terms in the nonlocal kernels are

carried out by using the following expansions:

exp(αr · r′) =
∞∑

l=0

(2l + 1)Pl(cos θ)il(αrr
′), (C.37)

exp(−αr · r′) =
∞∑

l=0

(−1)l(2l + 1)Pl(cos θ)il(αrr
′), (C.38)

where α is any number and il(x) is a modified spherical Bessel function (or
spherical Hankel function) [44]. This gives

∫ +1

−1

exp(±|α|r · r′)Pl(u)du = 2(±1)lil(|α|rr′). (C.39)



C.4. PROJECTION ON ANGULAR MOMENTUM 153

Thus applying relation (C.36), each exponential term leads to a modified
spherical Bessel function.

For the kinetic-energy terms, we also use the following property:

r · r′ exp(−αr · r′) = − d

dα

(
exp(−αr · r′)

)
, (C.40)

which leads to
∫ +1

−1

r · r′ exp(−αr · r′)Pl(u)du

=

∫ +1

−1

− d

dα

(
exp(−αr · r′)

)
Pl(u)du

= 2(−1)l+1dil(αrr
′)

dα
(C.41)

= 2(−1)l+1

(
rr′ il+1(αrr

′) +
l

α
il(αrr

′)

)
, (C.42)

where (C.41) is derived from equation (C.39), while (C.42) is an application
of the recurrence relation between the modified spherical Bessel functions
[44]:

dil(x)

dx
= il+1(x) +

l

x
il(x). (C.43)

Similarly, we have
∫ +1

−1

r · r′ exp(αr · r′)Pl(u)du = 2

(
rr′il+1(αrr

′) +
l

α
il(αrr

′)

)
. (C.44)

The kinetic-energy kernels for the partial waves are thus calculated as linear
combinations of modified spherical Bessel functions.

For the Coulomb potential terms, we use the following formula:
∫ +1

−1

1

|r ± r′|Pl(u)du = (∓1)l 2

2l + 1

rl
<

rl+1
>

, (C.45)

where r< = min(r, r′) and r> = max(r, r′). This relation corresponds to the
generating function of the Legendre polynomials [44].

Screened Coulomb terms are more complicated. They are calculated nu-
merically as
∫ +1

−1

f(|r ± r′|)
|r ± r′| Pl(u)du =

(±1)l

r>

∫ +1

−1

f(r> + vr<)Pl

(
v − (1 − v2)

r<

2r>

)
dv,

(C.46)
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where v is defined by

r> + vr< = |r ± r′| =
√
r2 + r′2 ± 2rr′u

=
√
r2
> + r2

< ± 2r>r<u, (C.47)

so that the relationship between u and v is

u = ±
(
v2 r<

2r>

+ v − r<

2r>

)
= ±

(
v − (1 − v2)

r<

2r>

)
, (C.48)

and

du

|r ± r′| =
±dv
r>

. (C.49)

The numerical integration over v in (C.46) is performed a Gauss-Legendre
quadrature. Formulae (C.39), (C.42), (C.44), (C.45) and (C.46) allow us to
calculate the nonlocal kernels for the partial waves.



Appendix D

Calculation of the mean

two-body energy

Each RGM-ε potential depends on the energy of the subsystem formed
by the two interacting clusters. In this appendix, we specify how the self-
consistent prescription (5.27) is applied in the semi-microscopic model with
the energy-dependent potentials, in the hyperspherical harmonics method.
This prescription reads

εij = 〈ΨJMπ|Tk + Vij(εij) |ΨJMπ〉 , (D.1)

where Vij(εij) is a RGM-ε potential and Tk is the kinetic energy of the relative
motion between clusters i and j. The nonlocal kernel of the potential Vij is
thus K(εij, r, r

′), with εij satisfying condition (D.1).

The value of εij is determined iteratively as follows (see Figure D.1). We
start from a guess value of εij. We put this value in the kernel K(εij, r, r

′)
of the potential. We solve the three-body Schrödinger equation (3.60) with
this potential. This gives a wave function ΨJMπ. With the wave function, we
calculate the value of the right-hand side of equation (D.1). This provides a
new value for εij. We start again the process for this new value. In practice,
a few iterations must be performed to satisfy (D.1).

Now let us specify the calculation of the mean two-body energy in the
hyperspherical harmonics method [20]. Here we use the basis YJM

γK (Ω5k), cor-
responding to the Jacobi coordinate xk, because the kinetic-energy operator
is

Tk = − ~
2

2mN

∆xk
. (D.2)
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εij

ΨJMπ

Vij(εij) in (3.60)〈ΨJMπ|Tk + Vij(εij) |ΨJMπ〉

Figure D.1: Schematic representation of the iterative solution of (D.1): (i)
from a given value of εij, we calculate a wave function ΨJMπ by solving (3.60)
with Vij(εij); (ii) from this function ΨJMπ, we compute the right-hand side
of (D.1), which gives us a new value for εij; (iii) we iterate the process, until
equation (D.1) is satisfied with εij.

The wave function is expanded as

ΨJMπ =
1

ρ5/2

∑

γK

χJπ
γK(ρ)YJM

γK (Ω5k) (D.3)

=
1√
h

1

ρ5/2

∑

γKi

CJMπ
γKi f̂i(ρ/h)YJMπ

γK (Ω5k). (D.4)

The calculation of the mean kinetic energy is performed from

〈ΨJMπ|Tk |ΨJMπ〉

=
~

2

2mN

∑

γKK′

(∫ ∞

0

y2dy

∫ ∞

0

∂

∂x

(
xφ

lxly
K χJπ

γK

ρ5/2

)
∂

∂x

(
xφ

lxly
K′ χJπ

γK′

ρ5/2

)
dx

+lx(lx + 1)

∫ π
2

0

sin2 αφ
lxly
K φ

lxly
K′ dα

∫ ∞

0

χJπ
γKχ

Jπ
γK′

ρ2
dρ

)
, (D.5)

where φ
lxly
K is defined by equation (3.38).

Using the expansion (D.4) of functions χJπ
γK in the Lagrange basis, we

obtain

〈ΨJMπ|Tk |ΨJMπ〉

=
~

2

2mNh2

∑

γKK′ii′

[
1

u2
i

(
15

2
δKK′ − 45

4
BγKK′ + EγKK′ + lx(lx + 1)AγKK′

)
δii′

+T̂ii′ BγKK′ − 2Uii′ DγKK′

]
CJπ

γKiC
Jπ
γK′i′ , (D.6)
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where

AγKK′ =

∫ π
2

0

sin2 αφ
lxly
K φ

lxly
K′ dα, (D.7)

BγKK′ =

∫ π
2

0

sin2 α cos4 αφ
lxly
K φ

lxly
K′ dα, (D.8)

DγKK′ =

∫ π
2

0

sin3 α cos3 α
dφ

lxly
K

dα
φ

lxly
K′ dα, (D.9)

EγKK′ =

∫ π
2

0

sin4 α cos2 α
dφ

lxly
K

dα

dφ
lxly
K′

dα
dα, (D.10)

and

T̂ii′ = −
∫ ∞

0

f̂i(u)
d2f̂i′(u)

du2
du, (D.11)

Uii′ =

∫ ∞

0

f̂i(u)
1

u

df̂i′(u)

du
du. (D.12)

The matrix elements T̂ii′ and Uii′ are evaluated with the Gauss-Laguerre
quadrature. The expressions for T̂ii′ are given by equations (3.105) and
(3.106). The other matrix elements read

Uii′ ≈ λ
1/2
i f̂ ′

i′(ui)

ui

=

{ 1
2u2

i

if i = i′,

(−1)i+i′

2ui′ (ui−u′

i)
if i 6= i.

(D.13)

The integrals BγKK′ and DγKK′ are evaluated with the help of properties
of the Jacobi polynomials [90] as

BγKK′ =





1
2(K+2)

√
n(n+lx+ly+1)(2n+2lx+1)(2n+2ly+1)

K(K+2)
if n′ = n− 1

1
2

(
1 + (lx+ly+1)(lx−ly)

(K+1)(K+3)

)
if n′ = n

1
2(K+3)

√
(n+1)(n+lx+ly+2)(2n+2lx+3)(2n+2ly+3)

(K+2)(K+4)
if n′ = n+ 1

0 otherwise

(D.14)

DγKK′ =





− K+4
2(K+1)

√
n(n+lx+ly+1)(2n+2lx+1)(2n+2ly+1)

K(K+2)
if n′ = n− 1

3(lx+ly+1)(ly−lx)

2(K+1)(K+3)
if n′ = n

K
2(K+3)

√
(n+1)(n+lx+ly+2)(2n+2lx+3)(2n+2ly+3)

(K+2)(K+4)
if n′ = n+ 1

0 otherwise.

(D.15)
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where n = (K − lx − ly)/2 and n′ = (K ′ − lx − ly)/2. The integration over α
in AγKK′ and EγKK′ is performed numerically.

The expectation value of the potential energy Vij is directly calculated
from

〈
ΨJMπ

∣∣Vij

∣∣ΨJMπ
〉

=
∑

γKi γ′K′i′

(
V

Jπ (ij−k)
γK,γ′K′ (hui) δii′ +W

Jπ (ij−k)
γKi,γ′K′i′

)
CJπ

γKiC
Jπ
γ′K′i′ ,

(D.16)

where V
Jπ(ij−k)
γK,γ′K′ (hui) and W

Jπ(ij−k)
γKi,γ′K′i′ are the matrix elements of the local

part and nonlocal kernel of the RGM-ε potential Vij, respectively, in the

basis f̂i(ρ/h)YJMπ
γK (Ω5k).



Appendix E

Calculation of the αn and αα
RGM- 6ε potentials

The calculation of the energy-independent RGM potentials is presented in
this appendix [22,23,91].

E.1 Energy-independent effective potentials

The energy-dependent nonlocal RGM potentials, which represent the αn
and αα interactions, are given in Appendix C. They have the following form:

(VΨ)(r) = VD(r)Ψ(r) +

∫
K(ε, r, r′)Ψ(r′) dr′, (E.1)

with

K(ε, r, r′) = KH(r, r′) + εKN(r, r′). (E.2)

Their merit is that they are directly obtained from an effective nucleon-
nucleon potential by taking into account the Pauli principle between all nu-
cleons. Nevertheless, they depend on the inter-cluster relative motion energy
ε, according to equation (E.2). As shown in Chapter 7, this energy depen-
dence can become questionable in a three-body model.

An interesting solution is then to replace the potential V by the corre-
sponding energy-independent potential Ṽ (2.78), which reads

(ṼΨ)(r) = VD(r)Ψ(r) +

∫
K̃(r, r′)Ψ(r′) dr′, (E.3)

and which can be constructed from the RGM potential V [2, 29, 31, 35] by
renormalising the wave function (see Equation (2.60)), as explained in Sec-

tion 2.2.7. This potential Ṽ yields exactly the same cluster-cluster elastic

159
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scattering phase shifts as the RGM potential V . It has also other advantages
(see Sections 2.2.7 and 2.3.1) which directly result from the renormalisation
(2.60) of the RGM relative-motion function.

The transformation of V into Ṽ requires calculations. Such calculations
can be carried out [21,22] and are given in this appendix, for the αn and αα
potentials.

Also, in the present work, comparing the semi-microscopic models, the
energy-dependent potential V is referred to as the “RGM-ε potential”; the
energy-independent potential Ṽ is then called the “RGM- 6ε potential”.

To determine the RGM- 6ε potential Ṽ , we must calculate the effective
Hamiltonian (2.61):

H̃ = N−1/2HN−1/2, (E.4)

where H and N are defined as

HΨ = − ~
2

2µ
∆Ψ(r) + VD(r)Ψ(r) +

∫
KH(r, r′)Ψ(r′)dr′, (E.5)

NΨ = Ψ(r) −
∫
KN(r, r′)Ψ(r′)dr′. (E.6)

Such operators H and N , being those of the RGM equation (2.27) [or (2.34)],

contain the potential V (E.1). The Hamiltonian H̃ (E.4) has the following
form:

H̃Ψ = − ~
2

2µ
∆Ψ(r) + VD(r)Ψ(r) +

∫
K̃(r, r′)Ψ(r′)dr′, (E.7)

i.e., it is equal to the potential Ṽ plus the kinetic energy.
Consider the eigenvalues µnl and eigenfunctions ϕnlm of N (2.53). The

operator N can be written as

N =
∑

nlm

µnl |ϕnlm〉 〈ϕnlm| , (E.8)

and the operator N−1/2 is defined as

N−1/2 =
∑

nlm
µnl 6=0

1√
µnl

|ϕnlm〉 〈ϕnlm| , (E.9)

where the sum runs over all eigenfunctions for which µnl 6= 0. The eigenfunc-
tions with µnl = 0, being the Pauli forbidden states, are excluded from the
sum.
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The eigenfunctions and eigenvalues of N for the α+n and α+α systems
will be given below. Using equations (E.4) and (E.9), we have

H̃ =
∑

nlm
µnl 6=0

∑

n′l′m′

µn′l′ 6=0

1√
µnlµn′l′

|ϕnlm〉 〈ϕnlm|H |ϕ′nl′m′〉 〈ϕn′l′m′ | . (E.10)

This expression allows us to calculate the Hamiltonian H̃ (E.7), and thus to

obtain the kernel K̃(r, r′). This kernel K̃(r, r′) can be written as

K̃(r, r′) = KH(r, r′) + K̃W (r, r′), (E.11)

where K̃W (r, r′) is the only unknown function, KH(r, r′) being given in

(E.2). Let W̃ be the difference between H̃ and H,

W̃ = H̃ − H = N−1/2HN−1/2 −H. (E.12)

We soon find that

W̃Ψ = H̃Ψ −HΨ =

∫
K̃W (r, r′)Ψ(r′)dr′, (E.13)

i.e., the operator W̃ provides the kernel K̃W (r, r′). Using (E.10), we have

W̃ =
∑

nlm
µnl 6=0

∑

n′l′m′

µn′l′ 6=0

(
1√

µnlµn′l′
− 1

)
|ϕnlm〉 〈ϕnlm|H |ϕn′l′m′〉 〈ϕn′l′m′ | . (E.14)

Therefore [21,22]

K̃W (r, r′) =
∑

nlm
µnl 6=0

∑

n′l′m′

µn′l′ 6=0

(
1√

µnlµn′l′
− 1

)
〈ϕnlm|H |ϕn′l′m′〉ϕnlm(r)ϕ∗

n′l′m′(r′).

(E.15)

The sums in equations (E.14) and (E.15) run over all eigenstates which are

not Pauli forbidden states. Thus, the kernel K̃W (r, r′) can be calculated
provided that (i) the eigenvalues µnl and eigenfunctions ϕnlm(r) are known

and (ii) the matrix elements 〈ϕnlm|H |ϕn′l′m′〉 are calculated. The potential Ṽ
(E.3) then becomes entirely determined, using equations (E.11) and (E.15).

The eigenvalues µnl and eigenfunctions ϕnlm(r) are given for the α + n
and α + α systems in the next section. Formulae [21, 92] to calculate the
matrix elements 〈ϕnlm|H |ϕn′l′m′〉 from the RGM potential V (E.1) will be
given in Section E.3.

The potential Ṽ is simply calculated by evaluating numerically the ex-
pansion (E.15). In practice, a finite number of eigenstates ϕnlm(r) is used in

our calculations. For each value of l, the kernel K̃W (r, r′) is computed for n
and n′ varying from 0 to 20 typically.
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The shapes of the kernels K̃W (r, r′) and KH(r, r′) are in fact very different
from each other, as graphically shown in Ref. [22] for the α+α case with the

MN force (5.8), for the partial waves l = 0, 2 and 4. In particular, K̃W (r, r′)
is found to be smaller by about one order of magnitude than KH(r, r′), on
average, but is not negligible at all.

E.2 Eigenvalues and eigenstates for the α+ n

and α + α systems

In order to calculate the kernel K̃W (r, r′) (E.15), the eigenvalues and eigen-
functions of N (E.8) must be determined. They are well known [2,29,34] for
the α+ n and α+ α systems. They coincide with harmonic oscillator states
owing to the Gaussian α-cluster internal wave functions (2.6) in the RGM.
The eigenvalues are

µnl = 1 −
(
−1

4

)2n+l

, (E.16)

for α+ n, and

µnl = 1 − 4

(
1

2

)2n+l

+ 3δ2n+l,0 with l even, (E.17)

for α + α. Otherwise, µnl = 0 for l odd for α + α. In other words, all odd
waves are Pauli forbidden states for the α+α relative motion. In both α+n
and α + α systems, the eigenstates ϕnlm(r) are given by three-dimensional
harmonic-oscillator wave functions [2, 29,34], i.e.,

ϕnlm(r) = (−1)n

[
n!2
(

µ
b2

)l+3/2

Γ(n+ l + 3/2)

]1/2

rlL(l+1/2)
n

(
µr2

b2

)
exp

(
−µr

2

2b2

)
Y m

l (Ωr),

(E.18)

where L
(α)
n (x) is a generalised Laguerre polynomial, µ is the reduced mass

(2.32) of the two clusters (in nucleon mass unit mN), and b is the oscillator
parameter of the α-clusters (2.6). Here the reduced masses are µ = 4/5 for
α+ n and µ = 2 for α+ α.

The Pauli forbidden states correspond to µnl = 0. Therefore, for α + n,
there is only one Pauli forbidden state, which is ϕ000. For α+α, the quantum
number l must be even, and the Pauli forbiden states are the waves ϕ000, ϕ100

and ϕ02m, plus all odd waves.
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E.3 Calculation of the matrix elements

Here we will provide formulae to calculate the matrix elements
〈ϕnlm|H |ϕn′l′m′〉, where ϕnlm are harmonic-oscillator eigenfunctions (E.18)
and H, represented by equation (E.5), contains local and nonlocal terms. We
can split this Hamiltonian H into three distinct operators:

H = T̂ + V̂D + K̂H , (E.19)

where T̂ stands for the inter-cluster relative motion kinetic energy, V̂D and
K̂H stand for the local and nonlocal potential terms, respectively. We have
thus

〈ϕnlm|H |ϕn′l′m′〉 = 〈ϕnlm| T̂ + V̂D + K̂H |ϕn′l′m′〉 (E.20)

where

〈ϕnlm| T̂ |ϕn′l′m′〉 =
~

2

2µ

∫
ϕ∗

nlm(r)∆ϕn′l′m′(r) dr (E.21)

〈ϕnlm| V̂D |ϕn′l′m′〉 =

∫
ϕ∗

nlm(r)VD(r)ϕn′l′m′(r) dr (E.22)

〈ϕnlm| K̂H |ϕn′l′m′〉 =

∫∫
ϕ∗

nlm(r)KH(r, r′)ϕn′l′m′(r′) dr′dr. (E.23)

The expressions of the local and nonlocal functions VD and KH for the α+n
and α+ α systems can be found in Appendix C.

We will first give the matrix elements of the kinetic-energy operator.
Then we will give formulae to calculate the matrix elements of the potentials.
Such formulae will be derived using the generating function of the harmonic-
oscillator functions [92].

E.3.1 Kinetic energy terms

The matrix elements of the kinetic-energy operator are

〈ϕnlm| T̂ |ϕn′l′m′〉 = 〈ϕnlm| T̂ |ϕn′lm〉 δll′δmm′ , (E.24)

with

〈ϕnlm| T̂ |ϕn′lm〉 =
~ω

2
×





(
2n+ l + 3

2

)
if n = n′

−
√

(n+ 1)
(
n+ l + 3

2

)
if n = n′ − 1

−
√
n
(
n+ l + 1

2

)
if n = n′ + 1

0 otherwise,

(E.25)
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where ω = ~/(mNb
2) is the pulsation associated with the harmonic-oscillator

basis (E.18). This formula can be obtained as follows. Let ν be defined as

ν = µ/b2, (E.26)

µ being either 4/5 or 2 for α+ n and α+ α, respectively. According to their
definition (E.18) and to the recurrence relations of the Laguerre polynomials
[44], the wave functions ϕnlm satisfy

νr2ϕnlm(r) =
(
2n+ l + 3

2

)
ϕnlm(r) +

√
n
(
n+ l + 1

2

)
ϕn−1lm(r)

+
√

(n+ 1)
(
n+ l + 3

2

)
ϕn+1lm(r). (E.27)

Moreover, since they are oscillator eigenfunctions, they are known to satisfy

〈ϕnlm| T̂ + VHO |ϕn′l′m′〉 =

(
2n+ l +

3

2

)
~ω δnn′δll′δmm′ , (E.28)

where

VHO =
1

2
µmNω

2r2 =
~ω

2

(
µr2

b2

)
=

~ω

2
νr2 (E.29)

is the corresponding harmonic-oscillator potential. The formula (E.25) is
simply obtained by inserting (E.29) and (E.27) in the property (E.28).

E.3.2 Local potential terms

The matrix elements of the potentials are obtained by making use of the
generating function of the harmonic-oscillator wave functions. The generat-
ing function [92,93] is

F (k, r) =
(ν
π

)3/4

exp

(
−1

2
k2 +

√
2νk · r − 1

2
νr2

)
(E.30)

=
∑

nlm

ϕ∗
nlm(r)Pnlm(k), (E.31)

where ν is the oscillator constant (E.26) and Pnlm(k) is defined as

Pnlm(k) =
√
anl k

2n+l Y m
l (Ωk), (E.32)

with the coefficient

anl =
4π

2nn!(2n+ 2l + 1)!!
. (E.33)
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The matrix elements (E.22) of the local potentials are determined by
calculating the integral

I =

∫
F (k, r)VD(r)F (k′, r) dr, (E.34)

involving the generating functions (E.30). Substituting the expansion (E.31)
for the generating functions in equation (E.34) yields

I =
∑

nlm

∑

n′l′m′

〈ϕnlm| V̂D |ϕn′l′m′〉Pnlm(k)P ∗
n′l′m′(k′). (E.35)

Thus, first the integral (E.34) is calculated. Then the result is simply ex-
panded in power series of k and k′ (using spherical harmonics for the direc-
tions of the vectors). By comparing the expansion with (E.35), the values of

the matrix elements 〈ϕnlm| V̂D |ϕn′l′m′〉 are found.
The local terms VD(r), in the α+n and α+α potentials (see Appendix C),

are linear combinations of Gaussian functions, plus the Coulomb interaction
for α + α. Considering thus VD(r) = Ce−ηr2

in the integral (E.34), after
calculations, we have

I = C

(
ν

ν + η

)3/2

epk2+p′k′2+qk·k′

(E.36)

with

p = p′ = −1

2
+

ν

2(ν + η)
, (E.37)

q =
ν

ν + η
. (E.38)

Expanding this result (E.36) in series of k and k′, with the help of the iden-
tities (C.37), (C.34) and

il(x) =
∞∑

n=0

x2n+l

2nn!(2n+ 2l + 1)!!
, (E.39)

we soon find the following matrix element:

〈ϕnlm|Ce−ηr2 |ϕn′l′m′〉 = δll′ δmm′ C

(
ν

ν + η

)3/2
1√

anlan′l

×
min(n,n′)∑

σ=0

aσl
pn−σp′n

′−σq2σ+l

(n− σ)!(n′ − σ)!
. (E.40)
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This formula enables us to calculate the matrix elements of the Gaussian
terms of the local potentials.

Now, consider the Coulomb term erf(γr)/r, occuring in the α + α inter-
action. The corresponding integral (E.34) to be calculated is

I =

∫
F (k, r)

erf(γr)

r
F (k′, r) dr (E.41)

Let M(z) be a function defined as

M(z) =

∫ 1

0

e−z2t2dt =

√
π

2

1

z
erf(z). (E.42)

The identity (E.42) can be used in equation (E.41) to replace erf(γr)/r by
an integral of a Gaussian function in the interval [0, 1]. The integral over r

of a Gaussian function between two generating functions can be calculated
exactly as in the previous case. The integral over r is thus carried out. Then
the following mathematical identity
∫ 1

0

1

(t2 + c)3/2
exp

(
d

t2 + c

)
dt =

1

c
√
c+ 1

exp

(
d

c

)
M

(√
d

c(c+ 1)

)
,

(E.43)

where c and d are constants, can be used. To prove formula (E.43) one just
makes a change of integration variable t→ u with

t =

√
c u√

d
c
− u2

.

Using equations (E.42) and (E.43), the integral (E.41), after calculations, is
found to be

I = 2

(
2νζ

π

)1/2

ek·k′

M
(√

ζ |k + k′|
)

(E.44)

with

ζ =
γ2

2(ν + γ2)
. (E.45)

Noting that the function M is an integral of a Gaussian function, one deduces
from the expansion (E.40) that

〈ϕnlm|
erf(γr)

r
|ϕn′l′m′〉 = δll′ δmm′ 2

(
2νζ

π

)1/2
1√

anlan′l

×
min(n,n′)∑

σ=0

aσl
1

(n− σ)!(n′ − σ)!

∫ 1

0

pn−σpn′−σq2σ+ldt, (E.46)
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where

p = −ζt2 (E.47)

q = 1 − 2ζt2. (E.48)

The formula (E.46) gives the value of the matrix element of the local Coulomb
term (C.23) in the α+ α potential.

E.3.3 Nonlocal potential terms

The matrix elements (E.23) of the nonlocal potentials are calculated by
using the same method [21,92] as above for the local potentials.

The expression of the kernel KH(r, r′), for the α+n and α+α potentials,
being rather long (see Appendix C), here we will use a matrix notation (see
Ref. [92]) in order to simplify the formulae and the calculations.

We define a 2×1 matrix v whose elements are r and r′ and v̄ its transpose,

v =

(
r

r′

)
, v̄ =

(
r r′) . (E.49)

All linear combinations and quadratic forms involving r and r′ can be written
as matrix products.

In particular, the kernel KH(r, r′) can be expressed as a sum of several
simple terms:

KH(r, r′) =
∑

i

Oi(r, r
′). (E.50)

The relevant expressions of Oi(r, r
′) (see Appendix C) are as follows. They

are typically of the form

Oi(r, r
′) = exp

(
−1

2
v̄Av

)
, (E.51)

Oi(r, r
′) = v̄Qv exp

(
−1

2
v̄Av

)
, (E.52)

or, for Coulomb terms,

Oi(r, r
′) = f(|ω̄v|) exp

(
−1

2
v̄Av

)
, (E.53)
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where f(s) is either 1/s or erf(γs)/s. Here, use is made of the matrix nota-
tion: A and Q are 2×2 symmetric matrices, which represent quadratic forms
in r and r′, and ω̄ =

(
ω1 ω2

)
is a 1 × 2 matrix, representing a linear com-

bination. In other words, the above formal expressions must be interpreted
as

exp

(
−1

2
v̄Av

)
= exp

(
−1

2

(
a11r

2 + a22r
′2 + 2a12r · r′)

)
, (E.54)

v̄Qv = q11r
2 + q22r

′2 + 2q12r · r′, (E.55)

ω̄v = ω1r + ω2r
′, (E.56)

where the coefficients aij and qij are the elements of matrices A and Q,
respectively. The matrix ω̄ contains the coefficients ω1 and ω2 of a linear
combination. The symbol ω will represent the transpose of the matrix ω̄
(i.e., ω will mean a one-column 2× 1 matrix whose elements are ω1 and ω2).

Because of equation (E.50), we have

〈ϕnlm| K̂H |ϕn′l′m′〉 =
∑

i

〈ϕnlm| Ôi |ϕn′l′m′〉 , (E.57)

with

〈ϕnlm| Ôi |ϕn′l′m′〉 =

∫∫
ϕ∗

nlm(r)Oi(r, r
′)ϕn′l′m′(r′) dr′dr. (E.58)

The exact values of 〈ϕnlm| Ôi |ϕn′l′m′〉 are obtained by determining the
integral

I =

∫∫
F (k, r)Oi(r, r

′)F (k′, r′)drdr′, (E.59)

which is equal to the expansion

I =
∑

nlm

∑

n′l′m′

〈ϕnlm| Ôi |ϕn′lm〉Pnlm(k)P ∗
n′l′m′(k′), (E.60)

according to equation (E.31).
All needed formulae to calculate (E.59) for the operators (E.51) (E.52)

and (E.53), are tabulated in Ref. [92].
First, for Oi(r, r

′) = exp
(
−1

2
v̄Av

)
, then

I =

(
4πν

det(A+ C)

)3/2

epk2+p′k′2+qk·k′

, (E.61)
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where C is a 2 × 2 diagonal matrix with Cij = νδij and

p = −1

2
+ ν{(A+ C)−1}11 (E.62)

p′ = −1

2
+ ν{(A+ C)−1}22 (E.63)

q = 2ν{(A+ C)−1}12. (E.64)

The expression of I being strictly similar to (E.36), we have the matrix
element

〈ϕnlm| e−
1

2
v̄Av |ϕn′l′m′〉 = δll′ δmm′

(
4πν

det(A+ C)

)3/2
1√

anlan′l

×
min(n,n′)∑

σ=0

aσl
pn−σp′n

′−σq2σ+l

(n− σ)!(n′ − σ)!
, (E.65)

for each term (E.54) in the kernel KH(r, r).

For Oi(r, r
′) = v̄Qv exp

(
−1

2
v̄Av

)
, the result is

I =

(
4πν

det(A+ C)

)3/2

epk2+p′k′2+qk·k′

(s+ tk2 + t′k′2 + uk · k′) (E.66)

where

s = 3Tr{(A+ C)−1Q} (E.67)

t′ = 2ν{(A+ C)−1Q(A+ C)−1}11 (E.68)

t′ = 2ν{(A+ C)−1Q(A+ C)−1}22 (E.69)

u′ = 4ν{(A+ C)−1Q(A+ C)−1}12, (E.70)

p, p′ and q being the same as in the previous case (E.61). Therefore we have

〈ϕnlm| v̄Qve−
1

2
v̄Av |ϕn′l′m′〉 = δll′ δmm′

(
4πν

det(A+ C)

)3/2
1√

anlan′l

×
min(n,n′)∑

σ=0

(spp′q + (n− σ)tp′q + (n′ − σ)t′pq + (2σ + l)upp′)

× aσl
pn−σ−1p′n

′−σ−1q2σ+l−1

(n− σ)!(n′ − σ)!
. (E.71)
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The Coulomb terms Oi(r, r
′) = f(|ω̄v|) exp

(
−1

2
v̄Av

)
are calculated as

follows. With the help of Ref. [92],

I =

∫∫
F (k, r)f(|ω̄v|) exp

(
−1

2
v̄Av

)
F (k′, r′)drdr′, (E.72)

is found to be

I =

(
4πν

det(A+ C)

)3/2

epk2+p′k′2+qk·k′ ×
( τ

2π

)3/2

e−τν(ρ1k+ρ2k′)2

×
∫
f(s) exp

[
−1

2
τs2 +

√
2ντ(ρ1k + ρ2k

′) · s
]
ds, (E.73)

where p, p′ and q are the same as previously and

ρ1 = ω1{(A+ C)−1}11 + ω2{(A+ C)−1}21 (E.74)

ρ2 = ω1{(A+ C)−1}12 + ω2{(A+ C)−1}22 (E.75)

τ = (ρ1ω1 + ρ2ω2)
−1 =

(
ω̄(A+ C)−1ω

)−1
. (E.76)

Considering the case f(s) = 1/s, we have
∫

1

s
exp

[
−1

2
τs2 +

√
2ντ(ρ1k + ρ2k

′) · s
]
ds

=
4π

τ
eτν(ρ1k+ρ2k′)2M(

√
ντ |ρ1k + ρ2k

′|), (E.77)

where the function M is defined by equation (E.42). Thus

I =

(
4πν

det(A+ C)

)3/2

epk2+p′k′2+qk·k′

√
2τ

π
M(

√
ντ |ρ1k + ρ2k

′|), (E.78)

which is similar to case (E.44). Using equation (E.42), we can write the
function M as an integral of a Gaussian funtion in the interval [0, 1] and
then employ the previous results for (E.61). Therefore we get the formula

〈ϕnlm|
1

|ω̄v|e
− 1

2
v̄Av |ϕn′l′m′〉 = δll′ δmm′

(
4πν

det(A+ C)

)3/2
√

2τ

π

1√
anlan′l

×
min(n,n′)∑

σ=0

aσl
1

(n− σ)!(n′ − σ)!

∫ 1

0

pn−σ
1 pn′−σ

2 p2σ+l
12 dt. (E.79)

where

p1 = p− τνρ2
1t

2, (E.80)

p2 = p′ − τνρ2
2t

2, (E.81)

p12 = q − 2τνρ1ρ2t
2. (E.82)
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The last case to consider is f(s) = erf(γs)/s in equation (E.73). The
integral is calculated as

∫
erf(γs)

1

s
exp

[
−1

2
τs2 +

√
2ντ(ρ1k + ρ2k

′) · s
]
ds

=
2π

γ2

∫ 1

0

1

(t2 + c)3/2
exp

(
d

t2 + c

)
dt (E.83)

=
2π

γ2

1

c
√
c+ 1

exp

(
d

c

)
M

(√
d

c(c+ 1)

)
, (E.84)

with

c =
τ

2γ2
, d =

ντ 2

2γ2
(ρ1k + ρ2k

′)2. (E.85)

The integral (E.83) over t can be obtained by first expressing erf(γs)/s as
an integral using (E.42), and then calculating the integral over s. The iden-
tity (E.43) yields the result (E.84). Therefore, substituting this result into
equation (E.61), we have

I =

(
4πν

det(A+ C)

)3/2

epk2+p′k′2+qk·k′

√
2τξ

π
M(
√
ντξ|ρ1k + ρ2k

′|), (E.86)

where

ξ =
2γ2

2γ2 + τ
. (E.87)

Note that the result (E.86) is actually similar to the previous case (E.78). To
obtain (E.86) from (E.78), we can simply replace τ in (E.78) by τξ. Replacing
τ by τξ in equation (E.79), we have

〈ϕnlm|
erf(γ|ω̄v|)

|ω̄v| e−
1

2
v̄Av |ϕn′l′m′〉

= δll′ δmm′

(
4πν

det(A+ C)

)3/2
√

2τξ

π

1√
anlan′l

×
min(n,n′)∑

σ=0

aσl
1

(n− σ)!(n′ − σ)!

∫ 1

0

pn−σ
1 pn′−σ

2 p2σ+l
12 dt (E.88)

with here

p1 = p− τξνρ2
1t

2, (E.89)

p2 = p′ − τξνρ2
2t

2, (E.90)

p12 = q − 2τξνρ1ρ2t
2. (E.91)
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All the formulae given in this appendix allow us to calculate the matrix
elements (E.20). These matrix elements are used to evaluate the expansion
(E.15), which determines the energy-independent potentials (E.3) [21,22].



Appendix F

Form factors and densities

In this Appendix [21], the calculation of the monopole proton (neutron)
density is explained, first for the microscopic model and then for the non-
microscopic three-body model.

In a microscopic model, the charge density and form factor operators are
defined as

ρ̂(r) =
A∑

i

(
1

2
− tiz)δ(ri − Rc.m. − r),

F̂ (q) =
1

Z

A∑

i

(
1

2
− tiz) exp[iq · (ri − Rc.m.)], (F.1)

where tiz, ri and Rc.m. are the isospin z-component and coordinate of nucleon
i, and the c.m. coordinate of the system, respectively. The neutron density
and form factor operators are obtained in a similar way. The matter density
is just the sum of the proton and neutron densities. Here and in the following,
we use the notation Ô for an operator, and O for its matrix elements. The
charge density and the form factor are related to each other through

ρ(r) =
Z

(2π)3

∫
exp(iq · r)F (q)dq. (F.2)

They are determined as explained in Ref. [94]. Owing to the Gaussian or-
bitals used in the Generator Coordinate Method, the densities can be easily
computed, and the Fourier transform (F.2) is not necessary.
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The density and the form factor are usually expanded in multipoles as

ρ(r) =
∑

λ

ρλ(r)Yλ0(Ωr)

F (q) =
∑

λ

Fλ(q)Yλ0(Ωq), (F.3)

where ρλ(r) and Fλ(r) are the multipolar densities and form factors, respec-
tively. For zero spin nuclei, such as 6He or 12C, the density is spherically
symmetric (λ = 0 only). The relationship between ρλ(r) and Fλ(r) is ob-
tained with Eq. (F.2) as

ρλ(r) =
Z

2π2
iλ
∫
jλ(qr)Fλ(q)q

2dq. (F.4)

In a non microscopic cluster model, the form factor operator is defined as

F̂ (q) =
1

Z

N∑

j=1

ZjFj(q) exp[iq · (rj − Rc.m.)], (F.5)

where N is the number of clusters, and Zj and Fj(q) are the charge and form
factors of cluster j. Equation (F.2) is still valid to determine the associated
density. In order to be consistent with the microscopic approach, the internal
form factors are defined in the HO shell model. For s-shell nuclei, the form
factor is given by

Fj(q) = exp

[
−q2b2

(Aj − 1)

4Aj

]
, (F.6)

where Aj is the nucleon number of cluster j.

In the three-cluster model the form factor operator (F.3) is written as

F̂ (q) =
1

Z

[
Z1F1(q) exp

(
iq · (A3

A
R +

A2

A12

r)
)

+Z2F2(q) exp
(
iq · (A3

A
R − A1

A12

r)
)

+Z3F3(q) exp
(
−iA12

A
q · R

)]
, (F.7)

where we have used the coordinate system of Fig. F.1 (A12 = A1 +A2). Each
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A3

A2

A1

r

R

Figure F.1: Coordinate system in the three-cluster model.

term is expanded in multipoles with the help of

exp(iq · r) = 4π
∑

λµ

iλjλ(qr)Y
⋆
λµ(Ωq)Yλµ(Ωr),

jλ(|αR + βr|)Yλµ(ΩαR+βr) =
∑

ℓ1,ℓ2

iℓ1+ℓ2−λ

×
[
4π(2ℓ1 + 1)(2ℓ2 + 1)/(2λ+ 1)

]1/2

〈ℓ1ℓ200|λ0〉

×jℓ1(αR)jℓ2(βr)

[
Yℓ1(ΩR) ⊗ Yℓ2(Ωr)

]

λµ

. (F.8)

This provides us with the multipolar form factor. In particular, the
monopole term reads

Z√
4π
F̂0(q) = Z3F3(q)j0

(A12

A
qR
)

+4π
∑

L

(2L+ 1)1/2 [YL(ΩR) ⊗ YL(Ωr)]00 jL
(A3

A
qR)

×
[
Z1F1(q

)
jL
( A2

A12

qr
)

+ (−1)LZ2F2(q)jL
( A1

A12

qr
)]
.

(F.9)

Finally, we have to determine the matrix elements of this operator be-
tween basis functions

First, coordinates R and r are expressed as a function of ρ and α. The
integration over (ΩR,Ωr) is performed analytically; for the hyperangle α, we
use a Fourier quadrature. Owing to the use of Lagrange functions combined
with the Gauss approximation, the integration over the hyperradius reduces
to a simple evaluation of Bessel functions at the mesh points. The multipolar
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densities are determined from (F.4) through a numerical integration over
momentum q. In practice, values up to q ∼ 10 fm−1 are involved to get a
good precision on the densities at short distances. The summation over L in
(F.9) is carried out up to L ∼ 6 − 8.
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2004.

[83] B. V. Danilin, N. Ershov, and J. S. Vaagen, Charge and matter radii of Borromean
halo nuclei: The 6He nucleus, Phys. Rev. C 71 (2005), 057301.

[84] Y. Fujiwara, Y. Suzuki, and M. Kohno, Case of almost redundant components in 3α
Faddeev equations, Phys. Rev. C 69 (2004), 037002.

[85] G. L. Morgan and R. L. Walter, Neutron-helium interaction. II. Angular distributions
and phase shifts from 0.2 to 7.0 MeV, Phys. Rev. 168 (1968), 1114.



182 APPENDIX F. FORM FACTORS AND DENSITIES

[86] S. A. Afzal, A. A. Z. Ahmad, and S. Ali, Systematic survey of the α − α interaction,
Rev. Mod. Phys. 41 (1969), 247.

[87] P. Descouvemont, E. Tursunov, and D. Baye, Three-body continuum states on a La-
grange mesh, Nucl. Phys. A 765 (2006), 370.

[88] D. R. Thompson, I. Reichstein, W. McClure, and Y. C. Tang, Effective α + α and
α + N potentials from resonating-group calculations, Phys. Rev. 185 (1969), 1351.

[89] I. Reichstein and Y.C. Tang, Study of N +α system with the resonating-group method,
Nucl. Phys. A 158 (1970), 529.

[90] I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series and Products, Academic
Press, New York, 1980.

[91] Y. Suzuki, private communication.

[92] Y. Suzuki and K. Varga, Stochastic variational approach to quantum-mechanical few-
body problems, Lecture notes in physics, vol. m54, Springer, Berlin, 1998.

[93] K. T. Hecht and Y. Suzuki, Some special SU(3) ⊇ R(3) Wigner coefficients and their
application, J. Math. Phys. 24 (1983), 785.

[94] P. Descouvemont D. Baye and N. K. Timofeyuk, Matter densities of 8B and 8Li in
a microscopic cluster model and the proton-halo problem of 8B, Nucl. Phys. A 577

(1994), 624.


