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Abstract

We study the fractality of the energy spectrum of honeycomb lattice with various defects or impurities
under a perpendicular magnetic field. Using a tight-binding Hamiltonian including interactions with
the nearest neighbors, we investigate its energy spectrum for different choices of point defects or
impurities. First, we fix a unit cell consisting of 8 lattice points and survey the energy eigenvalues in the
presence of up to 2 point defects. Then it turns out that the existence of the fractal energy structure,
called Hofstadter’s butterfly, highly depends on the choice of defect pairs. Next, we extend the size of a
unit cell which contains a single point defect in the unit cell consisting of 18 and 32 lattice points to
lower the density of the defects. In this case, the robust gapless point exists on the E = 0 eV line
without depending on the size of unit cells. And we find this gapless point always exists at the center of
the butterfly shape. This butterfly shape also exists for the case of no defect lattice which has the
fractality.

1. Introduction

It has been widely known that the graph of the spectrum over a wide range of rational magnetic fields passing
through a two-dimensional lattice shows fractal, called the Hofstadter butterfly [ 1], which is confirmed by
various experimental studies [2—4]. This intriguing behavior of Bloch electrons has long attracted the major
interest of researchers from various perspectives. In a two-dimensional system, the Hofstadter problem is
addressed for various choice of lattices: general Bravais lattice [5], buckled graphene like materials [6] and square
lattice with next-nearest-neighbor hopping [7]. More recently Hofstadter’s butterfly appears in relation to the
quantum geometry [8, 9] and it is also surveyed from a perspective of mathematical physics [10—12]. This
problem is extended to higher dimensional cases [ 13—15] and it is known that analog of Hofstadter’s butterfly
exists in more general systems. Yet, the underlying theoretical reasons of such fractality has not been clear.

All of the above theoretical studies are based on the perfect lattice structures, therefore it would be natural
to consider the problem: does the fractal structure appear on various lattice systems with defects? Indeed,
there are some authors worked on this issue. For example, a square lattice with an array of point defects was
studied in [16], and Hall conductance in graphene with point defects was studied in [17]. As well as
investigating the origin of the fractal nature, we aim at giving a positive answers for this question. Apparently it
is a formidable task to find such a fractal energy spectrum in a system with defects or impurities since they
usually make energy bands gapped. Indeed, as we report in this article the energy spectrum highly depends on
a choice of defect pairs and analog of the Hofstadter butterfly exists only under appropriate conditions. It is
briefly reported that the honeycomb lattice with a single point defect in a unit cell accommodates the fractal
spectrum with large band gaps nearby the E = 0 eV line (figure 3) and point defects are responsible for
modifying the Hofstadter butterfly structure [18]. As a succeeding study, we investigate more on influence of
defects or impurities on the energy spectrum in order to enhance our knowledge on its fractal nature. Though
itis obvious that the fractal structure cannot be obtained if too many defects are introduced into a unit cell, as a
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Figure 1. Energy spectrum plotted over a wide range of ¢ on a pure honeycomb lattice.

non-trivial result, we find that the large band gaps reported in the previous paper [ 18] are closed and the

graph of the energy spectrum looks like symmetric rather than fractal when another atom is vacant so that the
honeycomb lattice accommodates line defects (figure 4). In addition, even for several enlarged unit cells, we
observe a robust gapless pointon the E = 0 eV line that exists without depending on the size of a unit cell. It
can be found at the center of the butterfly shape (¢ = 0.5 infigure 1) and it is crucial to the fractal nature of the
graph.

This article is orchestrated as follows. In section 2 we explain our problem setting. We use the tight-binding
Hamiltonian including the nearest neighbor interactions of electrons in enlarged unit cells with point defects or
impurities. In section 3, we present a number of graphs obtained by numerical calculation for various choices of
defects and for several enlarged unit cells. We also give several theoretical reasons for the obtained family of
energy structures and consider the origin of the fractal nature in various setups. This article is concluded in
section 4 with some proposed future works.

2. Model and formulation

Here we explain our model used for this article. We introduce the effect of the magnetic field into the 2
dimensional honeycomb lattice system by the Peierls substitution [19]

mag

IR;) (Rj| — e©i"|R;) (R, (1)

where ©% = f% fR l:i A - dl.In the Landau gauge (0, Bx, 0), it corresponds to

O} = —r (@ + R) - DR ~ R) - ), @
where R; is a position vector specifying the atom, R; = m. a; + n. a, with labels v of the atoms in the enlarged
unitcell i, = BS/ ¢, po = h/eand Sis the area of the enlarged unit cell.

Under this setup, our system can be written by means of a new matrix equation which can be called the
generalized Harper equation [20]

E¥, = Uy Py + Vm\Ilerl + W 1. 3
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Figure 2. Enlarged unit cells of the honeycomb lattice. Each of them consists of 8 (a), 18 (b) and 32 (c) atoms respectively. For example,
the lattice vector are a; = 3axX + «/gaﬁ, a, = 2\/§a)7 in the case of (a).

Using matrix representation, we rewrite it as

I U Vi 0 0 ... 0 Wl &
v, W, U, , 0 0 ... 0 ¥
E|l ¢ |=]l0 Wy U V3 0 ... 0 C, 4)
‘I’qfl : : ‘1’471
¥, Vieo o ...0W )| Y

where U,,,, V,,, W,, are certain matrixes and W;* = W,e <14, Vq* = Ve kg
(—% < ke < %, -7 <k < 7r). Note that the index m is periodic in g with a period g therefore wave functions
are written
Vg = Xy, ©)
by Bloch’s theorem. For example, if the unit cell (a) in figure 2 is preferred, then ¥, has the form
e
Vi
B
Vi
c
Vim
1/)D
W, = ;5" (6)
Vom
F
Vi
G
Vom
H
[V |

and U,,,, V,,,, W,,,are 8 x 8 matrices. Then solving the characteristic equation det (E — H) = 0 with respect to
each ¢, where H is defined by the right hand side of the equation (4), we obtain the butterfly shape (figure 1).

We investigate that the energy spectra dependence on position of impurities or defects in the honeycomb
lattice whose unit cell is displayed figure 2(a), and dependence on the density of defects by changing the size of a
unit cell (figure 2). In the first study, we treat the atom at E as a defect and introduce additional impurities at C, F
and H, respectively. (Those three pairs are enough for our purpose since the honeycomb lattice has the /6
rotation symmetry as well as the transition symmetry.) (E, F) is a nearest neighbor pair of defects, (E, C) is a next-
nearest neighbor pair of defects, and (E, H) is a third nearest neighbor pair of defects. In the second study, each
unit cell (from (a) to (¢) in figure 2) contains a single defect (Ein (a), L in (b) and Qin (¢)), and the purity of the
honeycomb lattice would get close to a realistic situation (the density of defect 0.125 (a), 0.056 (b), 0.031 (c)).
Throughout this article, all interactions among Bloch electrons are treated as the nearest neighbor interactions.

3
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Figure 3. Spectrum for a honeycomb lattice whose unit cell has a single defect.

3. Results and discussion

3.1. 2 defects in a unit cell

We begin with the case where a single defect exists at E in a unit cell (figure 3). Compared with studies on
Hofstadter’s butterfly on a perfect lattice, a similar fractal nature can be found. Note that there are gapless points
at¢ =k + 1/2 (k € Nyo)inthe E = 0 eV line and large band gaps having triangular shapes whose boundaries
are formed by cos curves are formed elsewhere.

We next leave the atom at E vacant and introduce additional impurities or defects. Graphs of the spectrum
over a wide range of rational magnetic fields ¢ are displayed in figure 4. We denote by H&m the interaction of the
 orbital of the atom at F with the neighboring 7 orbital. We first consider the case where an impurity is inserted
at F. According to the figures in figure 4, there are three different patterns based on positions of impurities. As
interactions with the atom E get weaken (H;;,,r — 0), energy levels split and form gaps around |E| ~ 1.8 eV.
Consequently, energy levels within 1.8 eV ranges are modified and the blank area having a bicone shaped
energy gap within [E| < 1.0 eV shrinks. Ifatoms at E and F are missed, then the graph acquires a new transition
symmetry whose period is one-quarter of the original. When only a single impurity exists in a unit cell, those
central band gaps are robust: it does not disappear for arbitrary non-zero value of hopping parameter Hﬁm [18].
However this is not true if additional impurity is considered.

In contrast to this case, flow of spectra formed in the process of H ppr — 0 show completely different

behavior. As seen in the figures of H pc the arcwise sets of spectra in figure 3 becomes boundaries which divide

pm>
the chunks of spectra into three parts. As a result, all spectra within the range |[E| < 0.8 eV in the figure of

H pcpﬂ =1 / 3H,,r approach to E = 0 eV, namely the corresponding states get degenerated, and the graph of
H pcpﬂ = 0 does not accommodate any fractal nature. Though there is a wide band gap in |E] < 1 eV, the other
regions are gapless. This is in contrast to the case H;,,r = 0, which has band gaps around |E|] = 1.8 eV. Note that

when atoms at E and C are missed, then the honeycomb lattice is no more arcwise connected and the boundaries
are zigzag. Therefore one may naively think that this is consistent with the fact that Hofstadter’s butterfly never
appears on any one-dimensional lattice system, but this is not correct here. To confirm this, we also tried a case

with armchair boundaries and as a result, we obtained graph which exhibits the fractal nature (figure 5).

The last case Hg,7T — 0 isalso different from the above two cases. Energy bands localize around six

independent stripes (or cos curves) which remain at ngﬂ = 0. They would correspond to energy bands of the

six atoms living in the unit cell. It should be noted that there are band crossing points in the E = 0 eV line
throughout the process, and the fractal nature of graphs also observed for all non-zero Hgm.
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Figure 4. Graphs of energy spectrum over ¢ = 4P/Q, where Pand Q are positive integers. Defects or impurities are introduced at
points (E, F), (E, C) and (E, H). The hopping parameter H,, stands for the interaction of the  orbital with the neighboring 7 orbital.

pr,, is set to 0 for all cases, i.e. Eis vacant.

3.2. Dependence on the size of unit cells

We next consider the unit cell size dependence of the energy spectrum. To address this problem, we extend the
previous unit cell which contains 8 atoms as shown in figure 2. The graphs of spectrum on unitlattice (b) in
figure 2 with a single defect correspond to (b-1) and (b-2) in figure 6, and similarly defined for spectra on unit cell
(). Fractal structures can be found in either case. One significant aspect is that there are robust gapless points

(¢ = 0.5 for example) inthe E = 0 eV line even if a single defect is inserted in a unit cell, without depending on
its size (see (b-2) and (c-2) for detail). Those points exist in the Hofstadter problem on both the perfect
honeycomb lattice (figure 1) and in the previous case with a defect at E (figure 3). In Hofstadter’s original case on
asquare lattice, those points also correspond to the center of butterflies and their basic shapes are protected
(compare also with figure 4) unless the fractality is lost. Therefore it would be natural to guess that such a gapless
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Figure 6. Spectra on the different enlarged unit cells. (b-1) corresponds to a two-period of the energy spectra considered on the unit
cell (b) in figure 2 and the area around ¢ = 0.5 is picked up and displayed in (b-2). (c-1) and (c-2) are labeled in a same manner.

point exist without depending on lattice forms, and this gapless point always appear if the graph has the

fractality. This fact is very particular since the other gapless points (ex.¢p = 0.25 in figure 1) which exist in the
perfect lattice case disappear when there is a defect in a unit cell.
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4, Conclusion and future works

In this note, we considered the Hofstadter problem on the honeycomb lattice with defects using the tight-
binding Hamiltonian including the nearest-neighbor interactions. We examined the contributions from defects
or impurities to the formulation of Hofstadter’s butterfly. Naively, increasing the number of defects in a unit cell
makes graphs less fractal. However we found a case where it recovers its fractal nature and acquires a new
translation symmetry. In addition, we also surveyed the dependence on the size of unit cells with a single defect
and unexpectedly found robust gapless points in the E = 0 eV line. Those points exist without depending on the
size of a unit cell and they exist at the center of butterflies. Therefore we may conclude that the butterfly at

¢ = 0.5 pointis immortal as long as graphs have fractal structures. In the end we add some comments on
experimental study. A few experimental efforts to detect the Hofstadter butterflies have been reported.
Measurements of the quantized Hall conductance in such a structure indirectly suggest the complex pattern of
gaps that was expected in the butterfly spectrum [21, 22], for example. Most recently, a direct measurement
technique of the fractal energy spectrum suing a chain of 9 superconducting qubits were proposed [23], in which
disorder was introduced to study the statistics of the energy levels of the system as it undergoes the transition
from a thermalized to alocalized phase. By applying this method, it will be possible to observe the main features
of the intricate energy spectrum predicted in this article for two-dimensional lattice system with a number of
defects in a magnetic field. Our results show that the fractal nature of energy spectrum is rather robust against the
presence of defects or impurities, thereby it will be experimentally easier to observe butterflies compared to a
study on a perfect lattice, which is difficult to prepare.

For future work, there are several research direction. It will be interesting to investigate the defect
dependence of the fractality in other lattices such as triangular lattice and square lattice. Moreover it is also
possible to consider Hamiltonian with the next-nearest-interactions. We found that the choices of missing two
points are crucial to energy structures. But we also admit that interactions among Bloch wave functions are also
crucial. It would be also intriguing to find a topological method to describe butterflies with or without defects.
Especially we are curious how the robustness of the gapless points can be described in a more theoretical way.
When a standard topological insulator has a gapless point, then its topological number usually change there. We
expect there would be a certain topological number whose parameter is . Moreover, extension to higher
dimensional case remains open question. Does such a robust gapless point generally exist in higher dimensional
lattice spaces? If so, does it depend on space’s dimension? How can it be generically described in a uniformed
manner?
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