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Abstract
We study the fractality of the energy spectrumof honeycomb lattice with various defects or impurities
under a perpendicularmagnetic field. Using a tight-bindingHamiltonian including interactions with
the nearest neighbors, we investigate its energy spectrum for different choices of point defects or
impurities. First, wefix a unit cell consisting of 8 lattice points and survey the energy eigenvalues in the
presence of up to 2 point defects. Then it turns out that the existence of the fractal energy structure,
calledHofstadter’s butterfly, highly depends on the choice of defect pairs. Next, we extend the size of a
unit cell which contains a single point defect in the unit cell consisting of 18 and 32 lattice points to
lower the density of the defects. In this case, the robust gapless point exists on the E=0 eV line
without depending on the size of unit cells. Andwe find this gapless point always exists at the center of
the butterfly shape. This butterfly shape also exists for the case of no defect lattice which has the
fractality.

1. Introduction

It has beenwidely known that the graph of the spectrumover awide range of rationalmagnetic fields passing
through a two-dimensional lattice shows fractal, called theHofstadter butterfly [1], which is confirmed by
various experimental studies [2–4]. This intriguing behavior of Bloch electrons has long attracted themajor
interest of researchers from various perspectives. In a two-dimensional system, theHofstadter problem is
addressed for various choice of lattices: general Bravais lattice [5], buckled graphene likematerials [6] and square
lattice with next-nearest-neighbor hopping [7].More recentlyHofstadter’s butterfly appears in relation to the
quantumgeometry [8, 9] and it is also surveyed from a perspective ofmathematical physics [10–12]. This
problem is extended to higher dimensional cases [13–15] and it is known that analog ofHofstadter’s butterfly
exists inmore general systems. Yet, the underlying theoretical reasons of such fractality has not been clear.

All of the above theoretical studies are based on the perfect lattice structures, therefore it would be natural
to consider the problem: does the fractal structure appear on various lattice systemswith defects? Indeed,
there are some authors worked on this issue. For example, a square lattice with an array of point defects was
studied in [16], andHall conductance in graphene with point defects was studied in [17]. As well as
investigating the origin of the fractal nature, we aim at giving a positive answers for this question. Apparently it
is a formidable task to find such a fractal energy spectrum in a systemwith defects or impurities since they
usuallymake energy bands gapped. Indeed, as we report in this article the energy spectrumhighly depends on
a choice of defect pairs and analog of theHofstadter butterfly exists only under appropriate conditions. It is
briefly reported that the honeycomb lattice with a single point defect in a unit cell accommodates the fractal
spectrumwith large band gaps nearby the E=0 eV line (figure 3) and point defects are responsible for
modifying theHofstadter butterfly structure [18]. As a succeeding study, we investigatemore on influence of
defects or impurities on the energy spectrum in order to enhance our knowledge on its fractal nature. Though
it is obvious that the fractal structure cannot be obtained if toomany defects are introduced into a unit cell, as a
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non-trivial result, we find that the large band gaps reported in the previous paper [18] are closed and the
graph of the energy spectrum looks like symmetric rather than fractal when another atom is vacant so that the
honeycomb lattice accommodates line defects (figure 4). In addition, even for several enlarged unit cells, we
observe a robust gapless point on the E=0 eV line that exists without depending on the size of a unit cell. It
can be found at the center of the butterfly shape (f=0.5 in figure 1) and it is crucial to the fractal nature of the
graph.

This article is orchestrated as follows. In section 2we explain our problem setting.We use the tight-binding
Hamiltonian including the nearest neighbor interactions of electrons in enlarged unit cells with point defects or
impurities. In section 3, we present a number of graphs obtained by numerical calculation for various choices of
defects and for several enlarged unit cells.We also give several theoretical reasons for the obtained family of
energy structures and consider the origin of the fractal nature in various setups. This article is concluded in
section 4with some proposed future works.

2.Model and formulation

Herewe explain ourmodel used for this article.We introduce the effect of themagnetic field into the 2
dimensional honeycomb lattice systemby the Peierls substitution [19]
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where Ri is a position vector specifying the atom, m nR a ai i
i 1 2= +a a with labelsα of the atoms in the enlarged

unit cell i,f=BS/f0,f0=h/e and S is the area of the enlarged unit cell.
Under this setup, our system can bewritten bymeans of a newmatrix equationwhich can be called the

generalizedHarper equation [20]
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Figure 1.Energy spectrumplotted over awide range off on a pure honeycomb lattice.
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Usingmatrix representation, we rewrite it as
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whereUm,Vm,Wm are certainmatrixes andW W e ik a q
1 1
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k k,
q x q y   p p- -p p( ). Note that the indexm is periodic in qwith a period q therefore wave functions
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byBloch’s theorem. For example, if the unit cell (a) infigure 2 is preferred, then mY has the form
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andUm,Vm,Wm are 8×8matrices. Then solving the characteristic equation E Hdet 0- =( ) with respect to
eachf, whereH is defined by the right hand side of the equation (4), we obtain the butterfly shape (figure 1).

We investigate that the energy spectra dependence on position of impurities or defects in the honeycomb
latticewhose unit cell is displayed figure 2(a), and dependence on the density of defects by changing the size of a
unit cell (figure 2). In the first study, we treat the atomatE as a defect and introduce additional impurities atC, F
andH, respectively. (Those three pairs are enough for our purpose since the honeycomb lattice has theπ/6
rotation symmetry as well as the transition symmetry.) (E, F) is a nearest neighbor pair of defects, (E,C) is a next-
nearest neighbor pair of defects, and (E,H) is a third nearest neighbor pair of defects. In the second study, each
unit cell (from (a) to (c) infigure 2) contains a single defect (E in (a), L in (b) andQ in (c)), and the purity of the
honeycomb lattice would get close to a realistic situation (the density of defect 0.125 (a), 0.056 (b), 0.031 (c)).
Throughout this article, all interactions amongBloch electrons are treated as the nearest neighbor interactions.

Figure 2.Enlarged unit cells of the honeycomb lattice. Each of them consists of 8 (a), 18 (b) and 32 (c) atoms respectively. For example,
the lattice vector are ax ay aya a3 3 , 2 31 2= + =ˆ ˆ ˆ in the case of (a).
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3. Results and discussion

3.1. 2 defects in a unit cell
Webeginwith the casewhere a single defect exists at E in a unit cell (figure 3). Comparedwith studies on
Hofstadter’s butterfly on a perfect lattice, a similar fractal nature can be found. Note that there are gapless points
atf=k+1/2 (k 0Î ) in the E=0 eV line and large band gaps having triangular shapeswhose boundaries
are formed by cos curves are formed elsewhere.

We next leave the atom atE vacant and introduce additional impurities or defects. Graphs of the spectrum
over awide range of rationalmagnetic fieldsf are displayed infigure 4.We denote by Hpp

F
p the interaction of the

π orbital of the atom at Fwith the neighboringπ orbital.Wefirst consider the case where an impurity is inserted
at F. According to thefigures infigure 4, there are three different patterns based on positions of impurities. As
interactionswith the atom E get weaken (H 0pp

F p ), energy levels split and formgaps around E 1.8 eV~∣ ∣ .

Consequently, energy levels within±1.8 eV ranges aremodified and the blank area having a bicone shaped
energy gapwithin E 1.0 eV<∣ ∣ shrinks. If atoms atE and F aremissed, then the graph acquires a new transition
symmetrywhose period is one-quarter of the original.When only a single impurity exists in a unit cell, those
central band gaps are robust: it does not disappear for arbitrary non-zero value of hopping parameter Hpp

E
p [18].

However this is not true if additional impurity is considered.
In contrast to this case, flowof spectra formed in the process of H 0pp

C p show completely different

behavior. As seen in thefigures of Hpp
C
p, the arcwise sets of spectra infigure 3 becomes boundaries which divide

the chunks of spectra into three parts. As a result, all spectra within the range E 0.8 eV<∣ ∣ in thefigure of
H H1 3pp

C
pp=p p approach toE=0 eV, namely the corresponding states get degenerated, and the graph of

H 0pp
C =p does not accommodate any fractal nature. Though there is awide band gap in E 1 eV∣ ∣ , the other

regions are gapless. This is in contrast to the case H 0pp
F =p , which has band gaps around E 1.8 eV=∣ ∣ . Note that

when atoms at E andC aremissed, then the honeycomb lattice is nomore arcwise connected and the boundaries
are zigzag. Therefore onemay naively think that this is consistent with the fact thatHofstadter’s butterfly never
appears on any one-dimensional lattice system, but this is not correct here. To confirm this, we also tried a case
with armchair boundaries and as a result, we obtained graphwhich exhibits the fractal nature (figure 5).

The last case H 0pp
H p is also different from the above two cases. Energy bands localize around six

independent stripes (or cos curves)which remain at H 0pp
H =p . Theywould correspond to energy bands of the

six atoms living in the unit cell. It should be noted that there are band crossing points in theE=0 eV line
throughout the process, and the fractal nature of graphs also observed for all non-zero Hpp

H
p.

Figure 3. Spectrum for a honeycomb lattice whose unit cell has a single defect.
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3.2.Dependence on the size of unit cells
Wenext consider the unit cell size dependence of the energy spectrum. To address this problem,we extend the
previous unit cell which contains 8 atoms as shown infigure 2. The graphs of spectrumonunit lattice (b) in
figure 2with a single defect correspond to (b-1) and (b-2) in figure 6, and similarly defined for spectra on unit cell
(c). Fractal structures can be found in either case. One significant aspect is that there are robust gapless points
(f=0.5 for example) in the E=0 eV line even if a single defect is inserted in a unit cell, without depending on
its size (see (b-2) and (c-2) for detail). Those points exist in theHofstadter problemon both the perfect
honeycomb lattice (figure 1) and in the previous case with a defect atE (figure 3). InHofstadter’s original case on
a square lattice, those points also correspond to the center of butterflies and their basic shapes are protected
(compare alsowithfigure 4) unless the fractality is lost. Therefore it would be natural to guess that such a gapless

Figure 4.Graphs of energy spectrumoverf=4P/Q, where P andQ are positive integers. Defects or impurities are introduced at
points (E, F), (E,C) and (E,H). The hopping parameter Hppp stands for the interaction of theπ orbital with the neighboringπ orbital.
Hpp

E
p is set to 0 for all cases, i.e.E is vacant.
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point exist without depending on lattice forms, and this gapless point always appear if the graph has the
fractality. This fact is very particular since the other gapless points (ex.f=0.25 infigure 1)which exist in the
perfect lattice case disappear when there is a defect in a unit cell.

Figure 5.Butterflies on the honeycomb latticewith armchair boundaries.We use the lattice (b) infigure 2 cut alongA, E, F,M,N,R.

Figure 6. Spectra on the different enlarged unit cells. (b-1) corresponds to a two-period of the energy spectra considered on the unit
cell (b) in figure 2 and the area aroundf=0.5 is picked up and displayed in (b-2). (c-1) and (c-2) are labeled in a samemanner.
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4. Conclusion and futureworks

In this note, we considered theHofstadter problemon the honeycomb latticewith defects using the tight-
bindingHamiltonian including the nearest-neighbor interactions.We examined the contributions fromdefects
or impurities to the formulation ofHofstadter’s butterfly.Naively, increasing the number of defects in a unit cell
makes graphs less fractal. Howeverwe found a case where it recovers its fractal nature and acquires a new
translation symmetry. In addition, we also surveyed the dependence on the size of unit cells with a single defect
and unexpectedly found robust gapless points in theE=0 eV line. Those points exist without depending on the
size of a unit cell and they exist at the center of butterflies. Therefore wemay conclude that the butterfly at
f=0.5 point is immortal as long as graphs have fractal structures. In the endwe add some comments on
experimental study. A few experimental efforts to detect theHofstadter butterflies have been reported.
Measurements of the quantizedHall conductance in such a structure indirectly suggest the complex pattern of
gaps that was expected in the butterfly spectrum [21, 22], for example.Most recently, a directmeasurement
technique of the fractal energy spectrum suing a chain of 9 superconducting qubits were proposed [23], inwhich
disorder was introduced to study the statistics of the energy levels of the system as it undergoes the transition
froma thermalized to a localized phase. By applying thismethod, it will be possible to observe themain features
of the intricate energy spectrumpredicted in this article for two-dimensional lattice systemwith a number of
defects in amagnetic field. Our results show that the fractal nature of energy spectrum is rather robust against the
presence of defects or impurities, thereby it will be experimentally easier to observe butterflies compared to a
study on a perfect lattice, which is difficult to prepare.

For futurework, there are several research direction. It will be interesting to investigate the defect
dependence of the fractality in other lattices such as triangular lattice and square lattice.Moreover it is also
possible to considerHamiltonianwith the next-nearest-interactions.We found that the choices ofmissing two
points are crucial to energy structures. Butwe also admit that interactions amongBlochwave functions are also
crucial. It would be also intriguing tofind a topologicalmethod to describe butterflies with orwithout defects.
Especially we are curious how the robustness of the gapless points can be described in amore theoretical way.
When a standard topological insulator has a gapless point, then its topological number usually change there.We
expect there would be a certain topological number whose parameter isf.Moreover, extension to higher
dimensional case remains open question.Does such a robust gapless point generally exist in higher dimensional
lattice spaces? If so, does it depend on space’s dimension?How can it be generically described in a uniformed
manner?
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