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Abstract

We present state-of-the-art results for the QED Parton Distribution Functions (PDFs), which have been
recently pushed up to next-to-leading logarithmic (NLL) accuracy. In particular, in this contribution, we
will focus on a simple process as a toy model to explore the impact of NLL PDFs and the dependence
on the renormalisation and factorisation scheme.

It is not unreasonable to assume that the future of high-energy physics will involve an e+e− col-

lider. It is time for the theoretical community to start thinking about how to enlarge the legacy of LEP.

The techniques and the calculations developed for LEP need to be revisited to keep up with the aston-

ishing projected experimental error on measurements at future colliders. The relative error on several

electroweak observables will reach 0.01% and possibly be even smaller.

The typical cross section relevant to e+e− collisions is in principle entirely computable as a pertur-

bative series in the QED coupling constant α. However, calculations of processes in QED always feature

large contributions stemming from photon collinear emissions in the initial state (initial state radiation,

ISR). These contributions appear as logarithms to some power of some hard physical scale Q over the

mass of the electron me, L = logk(Q2/m2
e):

dσe+e− = αb
∞
∑

n=0

αn
(

c
(n)
0 + c

(n)
1 L+ . . .+ c(n)n Ln

)

, (1)

with b the power of α in the Born process. These logarithmic terms can be numerically large, preventing

the perturbative series from being well behaved.

It is fortunate that such logk(Q2/m2) terms are universal, hence they can be taken into account to all

orders in α by a process-independent resummation procedure. With the collinear factorisation approach,
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the physical cross section is written by means of a factorisation formula that recalls the standard QCD

factorization formula at hadron colliders:

dσe+e− =
∑

ij

∫

dz+dz− Γi/e+(z+, µ
2,m2

e) Γj/e−(z−, µ
2,m2

e) dσ̂ij(z+, z−, Q
2, µ2) +O

(

m2
e

Q2

)

. (2)

Let us describe the various terms present in this equation: dσe+e− is the particle-level cross section,

computed with massive electrons; dσ̂ij is a parton-level cross section, understood to be computed with

massless electrons, which does not contain any logarithmic term, and is expected to be well-behaved order

by order in perturbation theory; z± are the longitudinal momentum fractions carried by the partons w.r.t.

their mother particle; Γi/e± are the Parton Distribution Functions (PDFs) of the electron or the positron,

a name that originates from the analogy of Eq. 2 with its QCD counterpart. PDFs are universal and

resum to all order the collinear logarithms due ISR. Note that the nature of the parton entering the

short-distance cross section can coincide with that of the incoming particle e.g. (i, j) = (e+, e−), or it

can differ e.g. (i, j) = (γ, e−), (e−, e−), . . .. Moreover, as in QCD, a suitable factorisation scheme must

be introduced (e.g. MS) to regulate the zero-mass divergences in the parton-level cross section and a

factorization scale µ2 appears both in the Γi/e± and in dσ̂ij .

At variance with hadronic PDFs, QED PDFs are entirely calculable with perturbative techniques.

In the following, we will mostly focus on the PDFs relevant to an incoming unpolarised electron particle,

Γi/e− ≡ Γi; the PDFs of an incoming positron are trivially related by charge conjugation. We will refer

to Γe− as electron PDF, and to Γγ as photon PDF. At the initial scale µ2
0 ≃ m2

e, the leading order

initial condition is a trivial Γe−(z, µ
2
0) = δ(1 − z). The PDF at the final scale µ2 can be obtained by

means of QED DGLAP evolution equations 1, 2, 3, 4). At leading logarithmic (LL) accuracy i.e. the

resummation of the dominant tower of (αL)k terms, analytical expressions have been known for a long

time 2, 3, 5, 6):

ΓLL
e− (z, µ

2) =
exp [(3/4− γE)η]

Γ(1 + η)
η(1− z)−1+η − 1

2
η(1 + z) +O(α2) , η =

α

π
L . (3)

Such LL analytical expressions are built out of an additive matching between a recursive solution up to

some order in α, typically O(α3), and an all-order α solution valid in the region z → 1. Note that with Q

of the order of a few hundred GeV’s one obtains η ∼ 0.05. Therefore, because of the (1− z)−1+η factor,

the PDF is very peaked towards z = 1, where it diverges with an integrable singularity. In general, such

a peculiar structure of the PDFs requires a suitable re-parameterization of the phase-space 7) when

numerically performing the convolution in Eq. 2.

In view of high-energy future colliders and the need for precise predictions, LL accuracy for QED

PDFs is certainly insufficient. Moreover, theoretical systematics are not well defined in a LL-accurate

picture. For instance, the value of α in Eq. 3 is entirely arbitrary at LL: whether α runs or not, or more

generally in which renormalisation scheme α is defined, are questions that arise only at higher orders.

To improve on the LL result, one can calculate individual higher powers of αlLk by means of fixed-

order calculations (see e.g. 8) and references therein) or extend the resummed result to next-to-leading

logarithmic (NLL) accuracy i.e. resumming also the tower of α(αL)k terms. We will focus on the latter.

In Ref. 9), the electron, positron, and photon PDFs of the unpolarised electron have been calculated

at NLL accuracy in the MS factorisation and renormalisation scheme. The PDFs have been derived by

solving the DGLAP equations both numerically and analytically, by using as initial conditions for the

evolution the ones derived in Ref. 10). In Ref. 11), these results have been improved in several

directions: first, with a DGLAP evolution featuring multiple fermion families (leptons and quarks) in
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a variable flavour number scheme i.e. by properly including the respective mass thresholds; second,

by taking into account an alternative factorisation scheme, the ∆ scheme 12), where the NLO initial

condition are maximally simplified; third, by considering two alternative renormalisation schemes, α(mZ)

and Gµ schemes (where α is fixed).

NLL PDFs ready for phenomenology can be obtained with the public code eMELA, available here:

https : //github.com/gstagnit/eMELA

Such a code supersedes the one developed in Ref. 9) (ePDF), that was limited to the evolution with a

single lepton in the MS renormalisation and factorisation schemes. eMELA is a standalone code, and

can be linked to any external program. Since a runtime evaluation of the numerical solution is likely

too slow for phenomenological applications, the possibility is given to the user to output the PDFs as

grids compliant with the LHAPDF 13) format, that can be employed at a later stage. Moreover,

regardless of whether the numerical solution is computed at runtime or read from the grids, eMELA

always switches to the analytical solution for z → 1. eMELA can also provide one with PDFs with

beamstrahlung effects, according to the procedure presented in Ref. 7).

In Ref. 11), eMELA has been linked to MadGraph5 aMC@NLO 14, 15) in order to reach

NLL accuracy for the PDFs and NLO accuracy (in the full electroweak theory) for the short-distance

cross section, and obtain first NLL+NLO predictions for physical observables at lepton colliders. While

MadGraph5 aMC@NLO is widely used in the context of LHC simulations, it can also be employed

for lepton collisions. Indeed, many results for leptonic collisions were already provided in Ref. 14),

including NLO-QCD corrections but limited to the case of a strictly fixed centre-of-mass energy. The

extension to the case with QED ISR and beamstrahlung has been documented in Ref. 7), whereas

Ref. 11) describes the inclusion of NLO EW corrections to the short distance cross section, allowing for

the computation of NLL+NLO observables after linking to eMELA.

In order to investigate the effect of NLL PDFs, here we focus on a toy model process,

e+e− → qq̄(γ) , (4)

with a final state photon only present in the real-emission NLO contribution. In Eq. 4, q is a massless

fermion of charge eq, and in the corresponding short-distance cross sections we retain only the contribu-

tions proportional to e2q (this limits the real and virtual radiation to the initial state, and thus the process

is effectively equivalent to that for the production of a heavy neutral object of variable mass). Note that

this is the process already used in Ref. 10) for the determination of the initial conditions for the elec-

tron PDFs. The process under consideration is simple enough to be easy to calculate (indeed its simple

analytical cross sections have been used as a cross-check of the corresponding automated computation

carried out by MG5 aMC), but interesting enough to be able to draw some physical considerations.

We calculate the particle-level (parton-level) cross section as differential in τ (τ̂), defined as:

τ =
M2

qq̄

s
, τ̂ =

M2
qq̄

ŝ
=

τ

z+z−
, (5)

with M2
qq̄ the invariant mass squared of the pair of final state quarks. Eq. 2 can be rewritten as

dσ

dτ
=

∫ 1

0

dz+dz−dτ̂ Γe−(z+, µ
2
F ) Γe−(z−, µ

2
F )

dσ̂

dτ̂
(τ̂ , µ2

F ) δ(z+z−τ̂ − τ) , (6)

with the parton-level cross section given by the sum of the LO and the NLO contributions,

dσ̂

dτ̂
=

dσ̂[0]

dτ̂
+

α

2π

dσ̂[1]

dτ̂
. (7)
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The LO contribution is trivially given by

dσ̂[0]

dτ̂
= B(ŝ) δ(1− τ̂) , B(ŝ) =

4πα2

3ŝ
. (8)

In full generality, the NLO contribution is given by

dσ̂[1]

dτ̂
= B(ŝ)

1

τ̂

[

2

(

1 + τ̂2

(1− τ̂)+
+

3

2
δ(1− τ̂)

)

log
ŝ

µ2
F

− 2KF (τ̂) + 2(2π)KRδ(1− τ̂)

+ 4(1 + τ̂2)

(

log(1− τ̂)

1− τ̂

)

+

+ δ(1− τ̂)

(

−92

9
+

2

3
π2 +

4

3
log

ŝ

µ2
R

)

]

. (9)

The term proportional to KF is related to the change of factorisation scheme, with the factor of 2 due to

the fact that there are two incoming legs. In the MS factorisation scheme, KMS
F (z) = 0, whereas in the

e.g. ∆ scheme we have

K∆
F (z) =

[

1 + z2

1− z
(2 log(1− z) + 1)

]

+

. (10)

The term proportional to KR is related to the change of factorisation scheme, with the factor of 2 due

to the power of α in Eq. 8. In the MS renormalisation scheme, KMS
R (z) = 0, whereas in the e.g. α(mZ)

scheme with a single active lepton, by neglecting the presence of thresholds and the W-boson contribution

to the running of α, we have

K
α(mZ)
R =

1

3π
log

µ2
R

m2
Z

+
5

9π
. (11)

More involved expressions in presence of multiple fermion families (leptons and quarks) by properly

including the respective mass thresholds can be easily obtained with the results presented in Sec. 4 of

Ref. 11).

In the following, we will focus on the cumulative cross section defined as

σ(τmin) =

∫

dσΘ

(

τmin ≤
M2

qq̄

s

)

=

∫ 1

0

dz+dz− Γe−(z+) Γe−(z−)Θ

(

τmin

z+z−
< 1

)
∫ 1

τmin/(z+z−)

dτ̂
dσ̂

dτ̂
,

(12)

with the integral of parton-level NLO contribution given by

1

B(ŝ)

∫ 1

c

dτ̂
dσ̂[1]

dτ̂
= −56

9
− 4c+

4

3
log

ŝ

µ2
R

+ (4π)KR − 2

∫ 1

c

dτ̂
KF (τ̂)

τ̂

− 4(1− c) log(1− c) + 4 log2(1− c) + 4Li2(c)

+ log
ŝ

µ2
F

(1 + 2c+ 4 log(1− c)− 2 log c) . (13)

The integral of the KF function in the ∆ scheme reads

∫ 1

c

dτ̂
K∆

F (τ̂)

τ̂
= 2Li2(c)− c+ 2 log2(1− c) + 2c log(1− c)− log(c)− π2

3
− 1 . (14)

We present numerical results for the the cumulative cross section Eq. 12 for the toy model process at√
s = µR = µF = 500 GeV. Ratios of σ(τmin) for different settings of the PDFs are shown in Fig. 1 and

Fig. 2 as a function of τmin. We find qualitatively similar results in the range
√
s ∈ [50, 500] GeV. The

region close to τmin = 1 has to be taken with a grain of salt because it features unresummed purely soft

logs.
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In Fig. 1 on the left, we show the dependence of the cumulative cross section on the adopted

factorisation scheme. Such a dependence is of the order of 10−4–10−3, to be considered as a systematic

error associated to the calculation. Note that the NLL electron PDF largely differs (O(1)) between the

MS and the ∆ scheme, with the NLL electron PDF in the ∆ scheme closer to the LL value 11). Hence

we can conclude that there are large cancellations between the PDFs and the short-distance cross section

in the MS scheme, cancellations which are absent for the ∆ scheme. Such benefial cancellations in the

∆ scheme are also evident in the cumulative short-distance cross section, Eq. 13: when inserting Eq. 14

into Eq. 13, we see that the log2(1− c) term cancels entirely.

In Fig. 1 on the right, we show the dependence of the cumulative cross section on the adopted

renormalisation scheme. By comparing with Fig. 1 on the left, we see that the renormalisation scheme

dependence mostly leads to a normalisation effect, and it is significantly larger than the factorisation

scheme one. The choice of the renormalisation scheme should be regarded as an informed choice rather

than a systematic of the calculation.
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Figure 1: Dependence of the cumulative cross section Eq. 12 for the toy model process on factorisation
and renormalisation schemes at

√
s = µR = µF = 500 GeV . Several choices of factorisation and

renormalisation schemes for the PDFs are shown. The notation adopted in the legends of the plots is:
{accuracy of short-distance cross section}, {accuracy of PDF} [{factorisation scheme}, {renormalisation
scheme}]. The accuracy of the short-distance cross section is always NLO.

In Fig. 2, the impact of NLL vs. LL PDFs is shown for three different choices of renormalisation

schemes. It is clear that the corrections due to next-to-leading logarithms follow a non-trivial pattern,

impossible to account in some universal manner. Hence, NLL-accurate PDFs are phenomenologically

important for precision studies.

Note that, despite its semplicity, the toy model process behaves similary (w.r.t. ISR effects) to the

other 2 → 2 processes considered in Ref. 11). We refer the interested reader to Refs. 10, 9, 7, 12, 11)

for additional details about predictions at high-energy e+e− colliders within collinear factorisation and

the usage of NLL PDFs. As a final remark, we would like to stress that moving towards NLL is important

not only to improve on the accuracy of our predictions, but also needed for an assessment of sources of

theoretical uncertainties.
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Figure 2: Impact of next-to-leading logarithmic terms in the PDFs. The notation adopted is as in Fig. 1.
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8. J. Blümlein et al, Mod. Phys. Lett. A 37 2230004 (2022) [2202.08476].

9. V. Bertone et al, JHEP 03 135 (2020) [1911.12040].

10. S. Frixione, JHEP 11 158 (2019) [1909.03886].

11. V. Bertone et al, JHEP 10 089 (2022) [2207.03265].

12. S. Frixione, JHEP 07 180 (2021) [2105.06688].

13. A. Buckley et al, Eur. Phys. J. C 75 132 (2015) [1412.7420].

14. J. Alwall et al, JHEP 07 079 (2014) [1405.0301].

15. R. Frederix et al, JHEP 07 185 (2018) [1804.10017].

46


