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ABSTRACT

We begin by reviewing the basic theory and phenomenology of twin Higgs mod-

els. In these theories, the Higgs arises as a pseudo-Nambu-Goldstone boson of a

spontaneously broken global symmetry. A discrete symmetry restricts the form of

the radiatively generated Higgs potential such that dimensionful terms respect this

global symmetry. The Higgs mass is then protected from receiving quadratically

divergent contributions, allowing natural electroweak symmetry breaking up to a

cutoff scale of about 10 TeV.

We then show how to incorporate a tree level quartic into the left-right twin

Higgs. The addition of such a term results in a substantial reduction in the fine

tuning compared to that of the original twin Higgs. We do this by extending the

symmetry of the theory to include two Z2 symmetries, each of which is sufficient

to protect Higgs mass from receiving quadratically divergent corrections. Although

both parities are broken explicitly, the symmetries that the protect Higgs mass from

getting a quadratically divergent mass are broken only collectively. Therefore, the

Higgs mass parameter is free from quadratic divergences to one loop.

Finally, we consider the collider signatures of the left-right twin Higgs in the limit

that the right-handed neutrino mass is less than the right-handed gauge boson mass.

In this limit, which has not been considered previously, new leptonic decay channels

open up. This allows the discovery of the right-handed gauge boson WR and the

heavy top partner TH , which are responsible for canceling the one-loop quadratic di-

vergences of the Higgs mass. Half of these events contain same-sign leptons without

missing energy, which have no SM background. These signals may be used to com-

plement other collider searches, and in certain regions of parameter space, may be

the only way to observe the particles responsible for natural electroweak symmetry

breaking in the left-right twin Higgs.
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CHAPTER 1

INTRODUCTION

1.1 The Planck-Weak Hierarchy

The standard model (SM) of particle physics describes most observations in nature

to very high precision. However, the model is not without its flaws. The majority of

the universe is composed of non-luminous, uncharged “dark matter,” which cannot

be accounted for in the SM. The SM also does not explain neutrino masses or

generate a sufficient baryon asymmetry. But perhaps most importantly, the SM

suffers from the “hierarchy problem.” The SM contains a scalar particle known as

the Higgs boson, whose mass depends very sensitively on short distance physics.

Without a fine-tuning of parameters the Higgs would naturally be heavy, of order

the cutoff of the theory, which for the SM is the Planck scale, the scale where

gravity gets strong. However, theoretical consistency of the SM requires a Higgs

that is much lighter than this, with mass less than or of order a TeV. Thus, the

SM is either fine tuned, or new physics must emerge at the TeV scale to stabilize

the Higgs mass. New physics at the TeV scale is an exciting possibility, since the

Large Hadron Collider (LHC) will begin to probe this energy regime in the very

near future.

1.2 The Little Hierarchy Problem

Even though the Higgs mass is only theoretically constrained to be less than or of

order a TeV, precision electroweak tests predict a Higgs mass in the SM that is lighter

than 200 GeV. On the other hand, non-renormalizable operators that contribute to

precision electroweak observables must be suppressed by a scale that is greater than

about 5 TeV. Specifically, the scale Λ that appears in operators such as
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D̄2H†D2H

Λ2

|H†DµH|2
Λ2

, (1.1)

which we expect to arise when we integrate out new physics, is greater than 5 TeV.

This observation suggests that new physics will not show itself until scales of at

least 5 TeV. However, without significant fine-tuning, quantum corrections from a

cutoff scale of order 5 TeV will generate a Higgs mass much greater than 200 GeV.

To resolve this “little hierarchy,” we expect new physics with mass less than or of

order a TeV, which stabilizes the Higgs mass, but does not contribute significantly

to precision electroweak observables. Models that address the little hierarchy should

be considered possible low energy effective theories for the ultraviolet physics that

cures the Planck-weak “big hierarchy” problem. This is an active area of research

and many interesting ideas have been put forth.

Models that address the hierarchy problem typically invoke a new symmetry that

eliminates the Higgs mass parameter’s quadratic sensitivity to the cutoff. This is the

case, for example, in supersymmetry. The graphs that contribute to the quadrat-

ically divergent part of the Higgs mass are cancelled by new contributions from

partners of the SM particles, known as “superpartners.” The role of the new sym-

metry, in this case supersymmetry, is to ensure the necessary relationships between

couplings so that the cancellation goes through exactly.

Another possible explanation for the lightness of the Higgs based on a symmetry

argument is that it may be the pseudo-Nambu-Goldstone boson of a spontaneously

broken global symmetry [1, 2, 3, 4, 5]. Whenever a continuous global symmetry

is spontaneously broken, massless particles, known as a Nambu-Goldstone bosons,

will always appear in the spectrum of the theory. This fact is known as Goldstone’s

Theorem. Moreover, the Nambu-Goldstone bosons possess a shift symmetry that

ensures they can only appear derivatively coupled in the Lagrangian.

However, the gauge, Yukawa and self interactions of the SM Higgs explicitly

break any shift symmetry. Therefore, the Higgs can only be a “pseudo-Nambu-

Goldstone.” Such an explicit breaking of shift symmetry will typically generate a
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potential for the Nambu-Goldstone bosons consistent with the remaining symmetries

of the theory. In general, this includes quadratically divergent contributions to the

Nambu-Goldstone’s mass parameter. Therefore, the challenge in describing the

Higgs as a Nambu-Goldstone boson is to explain how quadratically divergent terms

do not arise in its potential even though it has non-derivative couplings. If this

challenge can be met, it is possible for the Nambu-Goldstone bosons, and hence the

Higgs, to acquire some mass, while still remaining light compared to the cutoff of

the theory. A class of theories that have successfully implemented these ideas are

known as little Higgs theories [6, 7, 8, 9, 10, 11].

1.3 Twin Higgs Theories

Recently another class of theories, known as twin Higgs theories, have been pro-

posed in which the Higgs is also realized as a pseudo-Nambu-Goldstone boson

[12, 13, 14, 15]. Twin Higgs theories are interesting because they provide a novel

way to eliminate quadratic divergences of the Higgs mass up to LHC energies, thus,

alleviating the little hierarchy problem. In addition, one of these models demon-

strates that the new particles responsible for stabilizing the Higgs mass need not be

charged under the SM gauge groups. Previously it was assumed that the new states

responsible for stabilizing the Higgs mass had to be charged under the familiar SM

gauge groups, SU(3)c × SU(2)L × U(1)Y .

1.3.1 The Twin Mechanism

In twin Higgs theories, how is the Higgs protected from receiving quadratically

divergent contributions to its mass parameter? For the time being, let us focus only

on the gauge interactions. Consider a complex scalar field H, which transforms as

a fundamental under a global U(4) symmetry

H =





HA

HB



 . (1.2)
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HA and HB transform as doublets under the subgroups SU(2)A and SU(2)B, re-

spectively. A potential for H which spontaneously breaks the U(4) global symmetry

is given by,

V (H) = −m2H†H + λ(H†H)2. (1.3)

This potential gives H a vacuum expectation value (vev) of 〈H〉 = m/
√

2λ, and

breaks U(4) → U(3). This pattern of symmetry breaking yields 7 massless Nambu-

Goldstone bosons. A simple way to see why eq. (1.3) does not generate mass for

the Nambu-Goldstone bosons is to consider the following parameterization of H,

H = eihata/f















0

0

0

ρ + f















, (1.4)

where the ha’s are the Nambu-Goldstone bosons, f is the symmetry breaking scale

m/
√

2λ, and the ta’s are the broken generators of U(4). That is, the broken gener-

ators satisfy

ta















0

0

0

f















6= 0. (1.5)

It is now clear that in this parameterization only the “radial mode” ρ has a potential

and not the Nambu-Goldstone bosons. Furthermore, any potential that is in U(4)

invariant form will not contribute to the potential of Nambu-Goldstone bosons.

We now gauge an SU(2)A × SU(2)B subgroup of U(4). By gauging these two

subgroups we have explicitly broken the global U(4) symmetry and therefore no
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longer expect Goldstone’s theorem to apply. However, it is clear that in the limit

that the gauge couplings gA and gB vanish, the U(4) symmetry of the theory re-

turns. Therefore the contribution of gauge interactions to the potential must be

proportional to the U(4) breaking parameters, gA and gB. In addition, the theory

still possesses an SU(2)A × SU(2)B symmetry. Therefore gauge loop contributions

to the potential above must be of the form,

δV =
c1g

2
AΛ2

16π2
H†

AHA +
c1g

2
BΛ2

16π2
H†

BHB

+
c2g

4
A

16π2
log

(

Λ

gAf

)

(H†
AHA)2 +

c2g
4
B

16π2
log

(

Λ

gBf

)

(H†
BHB)2 + · · · , (1.6)

where Λ is the cutoff of the theory. We see that the explicit breaking of the U(4)

symmetry has generated a contribution to the potential for the Nambu-Goldstone

bosons, and hence the SM Higgs, that is quadratically divergent. This is completely

expected since Goldstone’s theorem only guarantees massless Nambu-Goldstones

bosons if the spontaneously broken symmetry is an exact symmetry of the La-

grangian.

Now consider imposing the following discrete Z2 symmetry that exchanges the

A and B-type fields.

HA ↔ HB

W a
A ↔ W a

B (1.7)

This “twin symmetry” requires that gA = gB = g. Therefore, the mass terms above

eq. (1.6) can be written as

δVmass =
c1g

2Λ2

16π2
(H†

AHA + H†
BHB) =

c1g
2Λ2

16π2
H†H. (1.8)

Notice that δVmass now has a U(4) invariant form. Therefore, this quadratically
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divergent term does not contribute to the potential for the Nambu-Goldstone bosons,

and hence, the SM Higgs. Thus, we have succeeded in removing the quadratically

divergent contributions to the Higgs mass and can now hope to achieve natural

electroweak symmetry breaking.

The remaining terms in δV give a logarithmically divergent contribution to the

Higgs mass,

m2
h ∼ g4f 2

16π2
log

(

Λ

gf

)

. (1.9)

In the limit of strong coupling Λ ∼ 4πf , the Higgs can acquire a weak scale mass

for f of order a TeV.

mh ∼ g2f

4π
(1.10)

Let us summarize what we have learned. The theory above possesses a discrete

symmetry which guarantees that any dimensionful terms in the Higgs potential

respect a larger global symmetry. Also, the SM Higgs emerges as a pseudo-Nambu-

Goldstone boson associated with the spontaneous breaking of this global symmetry.

These two facts are sufficient to ensure that the SM Higgs is protected from re-

ceiving quadratically divergent contributions to its mass parameter. We chose to

demonstrate these ideas above using a global U(4) symmetry since it is the simplest

group that can contain the SU(2)×U(1) of the SM and separately an SU(2)×U(1)

gauge symmetry for the twin sector.

The challenge now is to create a realistic model utilizing the twin mechanism

in which all quadradically divergent contributions to the Higgs mass parameter are

absent. To accomplish this task, the twin symmetry must be extended to include

all interactions of the SM. Two approaches have been studied in the literature, and

are known as the mirror twin Higgs [12] and the left-right twin Higgs [14]. We will

review each of these models separately in the following sections.
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1.3.2 The Mirror Twin Higgs

We are now in a position to review the first realistic model utilizing the twin mech-

anism, the mirror twin Higgs [12]. The twin symmetry in this model relates the SM

fields to those of a “mirror SM,” which has the same field content and interactions

as the SM.

Consider two copies of the Standard Model, SMA and SMB, with a Z2 symmetry

that exchanges all of the fields in SMA with those in SMB, and vice versa.

Z2 : SMA ↔ SMB (1.11)

We identify the fields in SMA with those of the SM and the fields of SMB with

those of a hidden “mirror SM.” If the pattern of symmetry breaking in the Higgs

sector is identical to that of the twin mechanism described above, U(4) → U(3),

quadratically divergent contributions to the Higgs potential arising the from gauge

loops vanish, leaving only logarithmically divergent contributions.

In the SM, there are also quadratically divergent contributions to the Higgs mass

arising from fermion loops. However, because the twin symmetry has been extended

to include all interactions of the theory, these divergences are also eliminated, leaving

only logarithmic divergences. Since the top Yukawa coupling, yt, is order one, the

largest of the fermionic contributions to the Higgs mass arises from top quark. With

a little extra structure, we might be able to improve naturalness further by making

the top contribution finite. This can be done by expanding the global symmetry

of the top Yukawa coupling to SU(6) × U(4) × U(1), with the two SM subgroups,

(SU(3)c×SU(2)×U(1))A,B gauged. This is done by introducing the following chiral

fermions
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QL = (6, 4̄)

= (3,2;1,1) + (1,1;3,2) + (3,1;1,2) + (1,2;3,1)

≡ qA + qB + q̃A + q̃B

TR = (6̄,1)

= (3̄,1;1,1) + (1,1; 3̄,1)

≡ tA + tB, (1.12)

or more explicitly

QL =





qA q̃B

q̃A qB



 , TR =





tA

tB



 . (1.13)

With this matter content we can write the U(4) invariant coupling

Ltop = ytHQLTR + h.c. (1.14)

Notice that in addition to the SMA and SMB quark doublets, qA and qB, we also

have two exotic quark doublets, q̃A and q̃B, with a mixture of non-trivial A and

B quantum numbers. Introduce the two more chiral fermions q̃c
A,B with charge

assignment opposite to that of the exotic fermions, q̃A,B. Then we can write the

following Z2 symmetric mass for the exotic quarks,

M(q̃c
Aq̃A + q̃c

B q̃B). (1.15)

This mass term is the only source of U(4) breaking in the top sector, but it only

breaks U(4) softly. Thus, the top contribution to the Higgs potential will be finite

at one loop.
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We are now in a position to compute the Higgs potential in more detail. We

will do this using the following non-linear parameterization for the seven pseudo-

Nambu-Goldstones,

H = exp

(

i

f
hata

)















0

0

0

f















= exp















i

f















0 0 0 h1

0 0 0 h2

0 0 0 h3

h†
1 h†

2 h†
3 h0











































0

0

0

f















, (1.16)

where h1, h2 and h3 are complex and h0 is real. This parameterization of H describes

the dynamics of the Nambu-Goldstone bosons up to the cutoff scale Λ1. If we

assume the theory is strongly coupled at the cutoff scale, we can estimate Λ ∼ 4πf .

In general the effective theory for the Nambu-Goldstones will contain all operators

allowed by the U(4) symmetry suppressed by Λ. However, only U(4) breaking terms

can contribute to the potential for the Nambu-Goldstones, namely the gauge and

Yukawa interactions. Of these, the electroweak and top sectors contribute the most

and therefore will be studied in detail.

When SU(2)B × U(1)B is broken to U(1)Y ′ , 3 degrees of freedom are eaten by

the mirror gauge bosons and correspond to the fields h3 and h0. After removing

these fields the parameterization above yields

H = f















i h1

|h|
sin |h|

f

i h2

|h|
sin |h|

f

0

cos |h|
f















, (1.17)

where hT = (h1 h2)
T is the uneaten SU(2)A doublet, which we identify as the SM

1One might worry that by using this parameterization of H, we may not have correctly chosen

the vacuum alignment. However, this is not the case. The Nambu-Goldstone bosons h in eq. (1.16)

are free to acquire vevs determined by U(4) breaking interactions. Therefore, the true vacuum

alignment is determined dynamically.
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Higgs doublet. Therefore,

H†
AHA = f 2 sin2 |h|

f
= h†h − (h†h)2

3f 2
+ · · ·

H†
BHB = f 2 cos2 |h|

f
= f 2 − h†h +

(h†h)2

3f 2
+ · · · . (1.18)

We will compute the effective potential for the SM Higgs using the Coleman-

Weinberg (CW) effective potential [16]. In the absence of quadratic divergences

the effective potential is given by

VCW = ± 1

64π2

∑

i

M4
i

(

log
Λ2

M2
i

+
3

2

)

, (1.19)

where Mi is the field dependent mass for the ith field. The sum runs over all degrees

of freedom and is positive for fermions and negative for bosons. If the Higgs potential

is written as

V (h) = m2
hh

†h + λh(h
†h)2 + · · · , (1.20)

it is found that the gauge contribution to the potential is

m2
h|gauge =

6g2M2
WB

64π2

(

log
Λ2

M2
WB

+ 1

)

+
3(g2 + g′2)M2

ZB

64π2

(

log
Λ2

M2
ZB

+ 1

)

, (1.21)

where

M2
WB

=
g2f 2

2
M2

ZB
=

(g2 + g′2)f 2

2
. (1.22)

Eq. (1.21) is valid if U(1)EM in the twin sector is an unbroken symmetry. However,
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it is possible that the mirror U(1)EM is broken giving the mirror photon a mass.

This could occur if the mirror hypercharge gauge boson has a mass MB which softly

breaks the twin symmetry. If M2
B >> g′2f 2, the second term in eq. (1.21) becomes

approximately

3g2M2
WB

64π2

(

log
Λ2

M2
WB

+ 1

)

+
3g′2M2

B

64π2

(

log
Λ2

M2
B

+ 1

)

. (1.23)

The gauge contributions to the SM Higgs quartic are small and therefore can be

neglected. Let us now consider the top sector. To lowest order in |h|2, the Higgs

dependent masses are

m2
tA

=
y2M2

M2 + y2f 2
h†h m2

TA
= M2 + y2f 2

m2
tB

= y2f 2 m2
TB

= M2. (1.24)

This leads to a contribution to the Higgs potential given by

m2
h|top =

3

8π2

y2M2

M2 − y2f 2

(

M2 log
m2

TA

m2
TB

− y2f 2 log
m2

TA

m2
tB

)

λh|top = −m2
h

3f 2
+

3

16π2

y4M4

(M2 + y2f 2)2
log

m2
TA

m2
tA

+
3

16π2

y4M4(M2 + y2f 2)

(M2 − y2f 2)3
log

m2
TB

m2
tB

− 3

32π2

[

4y4M4

(M2 − y2f 2)2
+

y4M4

(M2 + y2f 2)2

]

. (1.25)

In addition, a ‘µ term’ which softly breaks the twin symmetry must be added to

the theory to achieve the correct pattern of symmetry breaking. This term is given

by µ2H†
AHA and therefore according to eq. (1.18) contributes the following to the

Higgs potential
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m2
h|µ = µ2 (1.26)

λh|µ =
µ2

3f 2
. (1.27)

Now that the effective potential for the Higgs has been evaluated, we are in a position

to compare the fine-tuning in mirror twin Higgs models to that of the SM with a

cutoff of Λ = 5 TeV. It is convenient to divide these models into two classes, each

with distinct phenomenological consequences; those with an extended top sector and

those without. For models without an extended top sector, the contribution from

the top sector can be found, up to finite terms, by taking the limit M → Λ in the

formulas above.

To estimate the fine-tuning, suitable values for 4 of the 5 parameters in the theory

(f , Λ ∼ 4πf , M , MB, µ) must be chosen. The resulting potential is then minimized

with respect to v, the SM Higgs vev. The experimental value of v can then be used

to determine the value of the unknown fifth parameter. The fine-tuning is roughly

defined as the fractional change in a known observable divided by the fractional

change of a parameter in the theory. For example,

fine-tuning ∼ δM2
Z/M2

Z

δµ2/µ2
∼ ∂ log M2

Z

∂ log µ2
. (1.28)

The tuning at a few points in parameter space for the two minimal mirror twin

Higgs models [12] is summarized in table 1.1. For comparison note that the SM

with a cutoff of Λ = 5 TeV is fine-tuned at the percent level. Due to the absence of

quadratic divergences contributing to the Higgs potential, it is clear that the fine-

tuning required in twin symmetric models is significantly less than that of the SM,

thereby achieving natural electroweak symmetry breaking and stabilizing the Higgs

mass up to 5 - 10 TeV.
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Λ(TeV) f (GeV) M (TeV) MB (TeV) µ(GeV) mh(GeV) Tuning
10 800 6 1 239 122 0.134
6 500 5.5 1 145 121 0.378
10 800 - 0 355 166 0.112
6 500 - 0 203 153 0.307

Table 1.1: A summary of the Higgs mass and fine-tuning, ∂ logM2
Z/∂ logµ2, for

sample points of parameter space in the two classes of mirror twin Higgs models.
The first two lines refer to mirror twin models with an extended top sector. The last
two lines refer to the minimal mirror twin models without an extended top sector.
In this case, M = Λ and the mirror photon is massless, MB = 0.

Phenomenology

Let us first consider the class of mirror twin Higgs theories with an extended top

sector. In this case, there are 4 exotic quarks q̃A,B and q̃c
A,B with the following

quantum numbers under [SU(3) × SU(2) × U(1)]A,B

q̃A = (3,1,4/3;1,2,−1) q̃c
A = (3̄,1,−4/3;1, 2̄,1)

q̃B = (1,2,−1/2;3,1,2/3) q̃c
B = (1, 2̄,1/2; 3̄,1,−2/3). (1.29)

These exotic quarks are charged under both U(1)A and U(1)B, which at one loop

leads to kinetic mixing between the photon and its partner, the mirror photon [17].

Since there there are severe constraints from big bang nucleosynthesis (BBN) on

such mixing, the mirror photon must be heavy, with a mass greater than about 100

GeV.

If the top sector is not extended, there are no longer particles charged under

both sets of gauge groups. This fact leads to an absence of kinetic mixing between

the photon and its mirror partner up to at least three loop order [12]. Therefore, it

is no longer necessary for the mirror photon to be heavy. In fact, it may be possible

phenomenologically for the mirror photon to be massless. In this case, if the kinetic

mixing term between the photon and mirror photon is small but non-zero, the light

exotic fermions may have very small fractional charges.
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Other than the possibility of fractionally charged states in the mirror twin Higgs

without an extended top sector, the phenomenology of both classes of models are

very similar. Each of them predict new light particles that are not charged under

the SM gauge groups. Since these particles have no SM charge, they cannot be

produced through the SM gauge interactions at colliders. However, these states do

couple to the Higgs, and therefore may be produced via Higgs decay. Again, since

these particles have no SM charge, it is not possible to detect them directly once

they have been produced. On the other hand, it may be possible to detect the

invisible decays of the Higgs into the light mirror fermions [18, 19]. Using eq. (1.17)

to expand HB in the twin symmetric Yukawa interaction HAqAtA +HBqBtB, gives a

term ∼ f(1−|h|2/f2 + · · · )qBtB. When the Higgs acquires a vev, there is a coupling

of the Higgs to the light quark partners of order v/f . Therefore the branching

fraction for invisible Higgs decays is of order v2/f2.

1.3.3 The Left-Right Twin Higgs

We now turn to another possible way to implement the twin mechanism. In the

original twin Higgs model, a Z2 symmetry related each particle in the SM to its

corresponding particle in the “mirror” SM. The Z2 symmetry ensured that dangerous

quadratically divergent terms possessed an accidental U(4) global symmetry and

therefore did not contribute to the potential for the SM Higgs. In this model the

mirror SM particles are singlets under the SM gauge groups and therefore are only

visible as missing energy in collider experiments such as the LHC.

The left-right twin Higgs [14] is a more minimal construction that does not

involve approximately doubling the field content of the SM. Instead of using mirror

symmetry, the discrete symmetry necessary for the twin mechanism is identified

with the parity symmetry associated with left-right symmetric extensions of the

SM. In addition to reducing field content, left-right twin Higgs models have far

more interesting experimental signatures because the Z2 exchange symmetry no

longer relates SM particles to particles that are singlets under the SM gauge groups.

All of the particles in this class of models have SM charge and therefore lead to
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interesting collider signals.

The cancellation of quadratic divergences in this class of models is similar to that

of the mirror model. Let us again investigate a linear realization of a broken U(4)

symmetry. Consider a complex scalar field H which transforms as a fundamental

under a global U(4) symmetry. The potential for this field is the same as in eq. (1.3),

V (H) = −m2H†H + λ(H†H)2. (1.30)

As before, H will develop a vev, 〈H〉 = m/
√

2λ, that breaks U(4) → U(3) and

yields seven massless Nambu-Goldstone bosons.

We now gauge an SU(2)L × SU(2)R subgroup of U(4), which explicitly breaks

the global U(4) symmetry. The SU(2)L symmetry is that of the SM while SU(2)R

corresponds to the right-handed interactions of left-right extensions of the SM. H

now transforms as

H =





HL

HR



 , (1.31)

where HL is a doublet of SU(2)L and HR is a doublet of SU(2)R. As before, the

Nambu-Goldstones pick up a mass proportional to the explicit breaking,

δV =
c1g

2
LΛ2

16π2
H†

LHL +
c1g

2
RΛ2

16π2
H†

RHR + · · · . (1.32)

We now impose a Z2 parity symmetry that exchanges the left-handed fields with

the right-handed fields and vice versa. This symmetry forces the gauge couplings to

be equal, gL = gR, and therefore

δVmass =
c1g

2Λ2

16π2
(H†

LHL + H†
RHR) =

c1g
2Λ2

16π2
H†H. (1.33)
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The quadratically divergent terms in δV are now in a U(4) invariant form and there-

fore do not contribute to the potential for the Nambu-Goldstone bosons. However,

the Nambu-Goldstone bosons do receive logarithmically divergent contributions to

the potential that are not U(4) invariant, which are of the form

δV ∼ cg4

16π2
(|HL|4 + |HR|4) log

(

Λ

gf

)

. (1.34)

In the limit of strong coupling, Λ ∼ 4πf , these terms give a mass to the Nambu-

Goldstones of order

mh ∼ g2f

4π
, (1.35)

which is approximately the weak scale for f about a TeV.

We now generalize the ideas above to include all interactions of the SM. By

making the theory left-right symmetric, the quadratically divergent contributions to

the potential for Nambu-Goldstone bosons, and hence the Higgs, have an accidental

U(4) symmetric form. Therefore the Higgs receives at most logarithmically divergent

contributions to its potential allowing natural electroweak symmetry breaking. The

matter content of the theory is three generations of

QL = (uL dL)T = (2,1,1/3) LL = (νL eL)T = (2,1,−1)

QR = (uR dR)T = (1,2,1/3) LR = (νR eR)T = (1,2,−1)

HL = (2,1,1) HR = (1,2,1) (1.36)

where the numbers in parentheses indicate the quantum numbers of the fields under

SU(2)L×SU(2)R×U(1)B−L. When HR acquires a vev, SU(2)R×U(1)B−L is broken

down to U(1)Y of the SM.

The SM down-type Yukawa couplings arise from non-renormalizable operators

of the form



27

QRHRH†
LQL

Λ
+

LRHRH†
LLL

Λ
+ h.c., (1.37)

while the SM up-type Yukawa couplings arise from non-renormalizable operators of

the form

QRH†
RHLQL

Λ
+ h.c. (1.38)

When HR acquires a vev, these terms reduce to the well-known Yukawa couplings

of the SM. Unfortunately, this method of generating SM Yukawa couplings does not

work well in the top sector since the top Yukawa coupling is order one. This problem

is remedied by introducing the following vector-like quarks, which transform as

TL = (1,1,4/3) TR = (1,1,4/3) (1.39)

under SU(2)L × SU(2)R × U(1)B−L. We can then write the following left-right

symmetric interactions

(

yQRH†
RTL + yQLH†

LTR + MTLTR

)

+ h.c. (1.40)

The SM right-handed top quark is then a linear combination of TR and the third

generation up-type quark in QR, while the left-handed top quark is linear combi-

nation of TL and the third generation up-type quark in QL. The other two linear

combinations are heavy exotic quarks. The parameter M determines the mixing

between the SM left-handed top and TL and is constrained by Z → bb̄.

Since the theory is parity symmetric, quadratically divergent contributions to

the mass of HL and HR have the form ∼ Λ2(|HL|2 + |HR|2), which has an accidental

U(4) symmetry. Therefore quadratically divergent terms do not contribute to the

potential for the Nambu-Goldstones and therefore the Higgs mass. On the other
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hand, quantum contributions to the quartic will not be U(4) invariant and will

therefore contribute to the mass of the Higgs. However, these contributions are at

most logarithmically divergent and allow for natural electroweak symmetry breaking.

Let us now pause and show diagrammatically how the cancellation of quadratic

divergences occurs in this model. In the non-linear parameterization above, HL =

h + · · · and HR = (0, f − h†h/2f + · · · )T , where h is the SM Higgs doublet.

The relevant vertices that contribute to gauge loops arise from the following gauge

interactions

|DµHL|2 + |DµHR|2 = g2
LH†

L(W †
LWL)HL + g2

RH†(W †
RWR)HR + · · ·

=
g2

L

4
h†σaσbW a

LW b
Lh +

g2
R

4
(0 f − h†h

2f
)σaσb





0

f − h†h
2f



W a
RW b

R + · · ·

=
g2

L

4
h†hW a

LW a
L +

g2
R

4
(f − h†h

2f
)2W a

RW a
R + · · ·

=
g2

L

4
h†hW a

LW a
L − g2

R

4
h†hW a

RW a
R + · · · (1.41)

where the σa’s are the Pauli matrices and WL,R = W a
L,R

σa

2
. These terms each

generate quadratically divergent contributions to the the Higgs mass parameter

and are shown in the first two diagrams of Fig. 1.1. However, left-right symmetry

guarantees that gL = gR = g and the two diagrams cancel exactly due to the sign

difference in eq. (1.41).

How does the cancellation of the top loop go through? The relevant vertices come

from the Yukawa interactions

yLQLH†
LTR + yRQRH†

RTL + h.c.

∼ yLQLhTR − yRQR(f − h†h

2f
+ · · · )TL + h.c.

∼ yLQLhTR − yRfQRUTL + yR
h†h

2f
QRUTL + h.c. + · · · , (1.42)

where QRU is the upper component of QR. The quadratically divergent contributions

to the Higgs mass parameter from these terms are shown in the last two diagrams
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Figure 1.1: Cancellation of quadratic divergences in the left-right twin Higgs model.
The top two diagrams are contributions from SU(2)L and SU(2)R gauge bosons,
while the bottom two diagrams are contributions from the top and the heavy top
partner.

of Fig. 1.1. The first term gives the usual contribution from the top loop in the

SM and is proportional to y2
L. The second and third term generate a contribution

proportional to yR

2f
× (−yRf) × 2 = −y2

R, where the extra factor of two accounts

for the fact that there are two such mass insertion diagrams. Imposing left-right

symmetry sets yL = yR and these diagrams cancel exactly.

Even though the model described above eliminates the quadratically divergent

contributions to Higgs mass, constraints on the parameter f make the theory some-

what unsatisfactory. Precision electroweak constraints on SU(2)R gauge bosons put

a lower bound on f of about 1.6 TeV [20, 21], which begins to reintroduce fine-

tuning to the model. Although other solutions to this problem may exist, in the

original left-right twin Higgs the problem is remedied in the following way. Note

that if f lies at 2 TeV, the fine-tuning from the gauge sector would still be milder

than that of the top sector with f ∼ 500 − 800 GeV. Therefore we can solve the

problem by raising the effective symmetry breaking scale scale in the gauge sector
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without affecting the top sector. This idea can indeed be accomplished by adding

to the theory a new Higgs Ĥ that transforms as a fundamental of U(4) which does

not couple to fermions

Ĥ =





ĤL

ĤR



 , (1.43)

where ĤL and ĤR transform exactly as HL and HR. We assume that the potential

for Ĥ at the scale Λ has the U(4) invariant form

V (Ĥ) = −m̂2Ĥ†Ĥ + λ̂(Ĥ†Ĥ)2 (1.44)

and that there is no direct coupling between H and Ĥ at this scale. There is now

an approximate U(4) × U(4) symmetry in the Higgs sector of the theory, with the

SU(2)L × SU(2)R × U(1)B−L subgroup gauged. If ĤR acquires a vev f̂ > 2 TeV

breaking SU(2)R×U(1)B−L to U(1)Y , then the precision electroweak constraints on

the SU(2)R gauge bosons of this theory are satisfied. Moreover, the potential for H

is still twin symmetric, allowing for natural electroweak symmetry breaking.

We are now in a position to compute the Higgs potential in more detail. We

will do this using the following non-linear parameterizations for the pseudo-Nambu-

Goldstones

H = exp

(

i

f
hata

)


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
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, (1.45)
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where h1···3 and ĥ1···3 are complex and h0, ĥ0 are real. This parameterization of H

describes the dynamics of the Nambu-Goldstone bosons up to the cutoff scale Λ.

If we assume the theory is strongly coupled at the cutoff scale, we can estimate

Λ ∼ 4πf . However, Λ may be less than this value, for example if the U(4) ×
U(4) symmetry is realized linearly in the UV. In this case, Λ is then the mass of

the radial mode. In general the effective theory for the Nambu-Goldstones will

contain all operators allowed by the U(4) symmetry suppressed by Λ. However,

only U(4) breaking terms can contribute to the potential for the Nambu-Goldstones,

namely the gauge and Yukawa interactions. Of these, the electroweak and top sectors

contribute the most and therefore will be studied in detail.

When HR and ĤR acquire the vevs f and f̂ , the gauged SU(2)R × U(1)B−L is

broken to U(1)Y giving the right-handed gauge bosons masses of order gf̂ . Of the

fourteen Nambu-Goldstone degrees of freedom, three are eaten by the WR and ZR

gauge bosons. As we will see below, the remaining degrees of freedom correspond

to the SM Higgs doublet h = (h+
1 h0

2)
T , a second SU(2)L doublet ĥ = (ĥ+

1 ĥ0
2)

T , a

neutral Higgs φ0 and a pair of charged Higgses φ±.

As in the mirror twin Higgs model, the effective potential for the SM Higgs

is found by evaluating the CW potential eq. (1.19). It is found that the gauge

contributions to the Higgs potential eq. (1.20) are given by

m2
h|gauge =

3g2M2
WR

32π2

(

log
Λ2

M2
WR

+ 1

)

+
3g2

64π2
(2M2

ZR
− M2

WR
)

(

log
Λ2

M2
ZR

+ 1

)

λh|gauge = −m2
h|gauge

3f 2
, (1.46)

where M2
WR

= g2(f 2 + f̂ 2)/2 and M2
ZR

= (g2 + g′2)(f 2 + f̂ 2)/2. The other gauge

contributions to the SM Higgs quartic are small and therefore can be neglected. Let

us now consider the top sector. To lowest order in |h|2, the Higgs dependent masses
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are

m2
Q =

y4f 2

M2 + y2f 2
h†h m2

T = M2 + y2f 2. (1.47)

This leads to a contribution to the Higgs potential from the top sector given by

m2
h|top = − 3

8π2
y2

t m
2
T

(

log
Λ2

m2
T

+ 1

)

λh|top = −m2
h|top

3f 2
+

3

16π2

(

y4
t log

m2
T

m2
Q

+ 2y4 log
Λ2

m2
t

)

− 3

32π2

(

y4
t − 4y4

)

. (1.48)

In contrast to the mirror twin Higgs, this theory has ‘uneaten’ pseudo-Nambu-

Goldstone fields. To ensure that the symmetry breaking pattern above is not spoiled,

these fields must all have positive mass squareds. To guarantee that the fields in ĤL

have a positive mass squared, it is sufficient to add to the potential a term µ̂2Ĥ†
LĤL,

where µ is of order f . This term breaks left-right symmetry and the approximate

U(4) symmetry for Ĥ. Therefore the would-be Nambu-Goldstone bosons in ĤL will

acquire masses of order µ̂. Moreover, since the breaking is soft, it is technically

natural for µ̂ to be smaller than Λ.

Let us now enumerate the Nambu-Goldstone boson degrees of freedom. Eight of

the original fourteen degrees of freedom arise from the SM Higgs doublet h and the

second SU(2)L doublet ĥ contained in HL and ĤL, respectively. The six remaining

Nambu-Goldstone bosons arise from the fields HR and ĤR. Of these, three of them

are eaten by the right-handed gauge bosons. What about the remaining three? First

recall that the six Nambu-Goldstone bosons in HR and ĤR arise from the sponta-

neous breaking of the global symmetry U(2)R × U(2)R̂ → U(1)R × U(1)R̂. When

SU(2)R ×U(1)B−L is gauged, we expect three Nambu-Goldstone bosons associated

with the breaking of SU(2) × U(1)B−L → U(1)Y to be eaten, while the remaining

three acquire mass via their gauge interactions. However, the gauge interactions
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preserve a global U(1) × U(1) symmetry, with the first U(1) acting on H, and the

second U(1) acting on Ĥ. Therefore the true symmetry breaking pattern of the the-

ory is SU(2) × U(1) × U(1) → U(1), yielding four exact Nambu-Goldstone bosons.

This implies that of the three remaining uneaten Nambu-Goldstone bosons, only

two acquire mass via their gauge interactions and one remains massless. Since there

is only one massless degree of freedom, this particle must be neutral. We denote

this particle by φ0.

Since massless particles with SM strength gauge interactions have not been ob-

served, the neutral Higgs φ0 must be given a mass. We can give φ0 a mass by adding

to the Lagrangian a term µ2
RH†

RĤR, where µR is of order 50 - 100 GeV. This term

breaks the additional U(1) symmetry originally protecting φ0, thereby giving it a

mass proportional to µR. Note that this is the only term in the Lagrangian that

violates the discrete symmetry ĤR → −ĤR. Therefore it is technically natural for

µR to be small.

Now that the effective potential for the Higgs has been evaluated, we are in a

position to compare the fine-tuning in the minimal left-right twin Higgs model to

that of the SM with a cutoff of Λ = 5 TeV. The procedure for estimating the fine-

tuning is similar to the mirror twin Higgs case discussed above. The fine-tuning of

left-right twin Higgs model for a few points in parameter space is shown in Table 1.2.

Λ(TeV) f (GeV) f̂ (TeV) M (TeV) µR(GeV) mh(GeV) Tuning
10 800 4.29 150 50 174 0.117
6 500 2.27 150 50 172 0.270
5 800 4.68 150 50 155 0.124

Table 1.2: A summary of the Higgs mass and fine-tuning, ∂ logM2
Z/∂ logf 2 at a few

sample points in parameter space for the minimal left-right symmetric twin Higgs
model. The most significant fine-tuning is occurs when varying the parameter f .

Recall that the SM with a cutoff of Λ = 5 TeV is fine-tuned at the percent level.

As in the mirror twin model, the absence of quadratic divergences contributing to

the Higgs potential greatly reduces the fine-tuning required in the model, thereby

achieving natural electroweak symmetry breaking and stabilizing the Higgs mass up
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to 5 - 10 TeV.

Phenomenology

Unlike the mirror twin Higgs, where the exotic particles only communicate with the

SM through the Higgs boson, the left-right twin Higgs contains new particles that

are coupled directly to the SM particles. These couplings lead to very rich signals

at colliders such as the LHC.

The new particles in the model include the right-handed gauge bosons, WR

and ZR, and a heavy partner of the top quark TH , all of which are necessary for

canceling the quadratic divergences of the Higgs mass. Three generations of right-

handed neutrinos νR are also present, as required by left-right symmetry. There

are also additional Higgs fields arising from the extended Higgs sector. ĤL gives

rise to a second Higgs doublet, ĥT = (ĥ+, ĥ0), while φ± and φ0 are the uneaten

linear combinations contained in HR and ĤR. The heavy top mass can be anywhere

from 500 GeV to 1.5 TeV depending on the value of f . The masses of the right-

handed gauge bosons depend on the value of f̂ , the larger vev, and are therefore

heavier, ranging from about 1 TeV to 5 TeV. The mass of φ0 is determined by

the U(1) breaking parameter µR and is given by m2
φ0 = µ2

Rf̂/f . For a reasonable

choice of µR = 50 GeV, φ0 acquires a mass of about 100 GeV. The mass of the

charged Higgs φ± depends on µR in a similar way, but also receives a significant

contribution from the CW potential. For f = 800 GeV the mass of the φ± is about

200 GeV and increases with f . The masses of ĥ±
1 and ĥ0

2 are determined by µR,

µ̂ and contributions from the CW potential. These masses are nearly degenerate

and range from about 300 GeV to 1 TeV [22]. The particle spectrum is shown in

Fig. 1.2.

Finally, neutrino masses are generated by the following operators: A Dirac mass

term arises from an operator of the form



35

500 700 900 1100 1300 1500
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

f  (GeV)

f, 
m

Z
H

, m
W

H
, m

T
   

 (
G

eV
)

f̂

^

m
ZH

m
WH

m
T

500 700 900 1100 1300 1500
0

200

400

600

800

1000

f  (GeV)

m
as

s 
of

 H
ig

gs
es

   
(G

eV
)

m
h

1,2

^

mφ±

m
h

mφ0

Figure 1.2: Mass spectrum for particles in the left-right twin Higgs model. The plot
on the left shows the value of f̂ and the masses of ZH , WH and the heavy top, T .
The plot on the right shows the masses of ĥ1,2, φ±, h, and φ0. The other parameters
are chosen to be Λ = 4πf , M = 150 GeV, µR = 50 GeV and µ̂ = f/2 [22].

yν
LRH†

RHLLL

Λ
+ h.c. → yν

fv

Λ
ννR + h.c.

= mDννR, (1.49)

while the operator

y1(LRĤRĤRLR + LLĤLĤLLL)

Λ
+ h.c. → y1

f̂ 2

Λ
νRνR + h.c. (1.50)

generates Majorana masses of order f̂ 2/Λ and v2/Λ for νR and νL, respectively. For

y1 ∼ O(1), we get a TeV scale seesaw for yν of order the electron Yukawa coupling.

What is the discovery potential for the left-right twin Higgs at the LHC? In what

follows we assume that mνR
> mWR

. Let us begin with the heavy right-handed gauge

bosons, ZR and WR. The production cross sections for these particles at the LHC

were calculated in [22] and are shown in Fig. 1.3. The branching ratios for the decay

of right-handed gauge bosons into various final states were also calculated in [22]

and are shown in Figure 1.4. The simplest way to discover the ZR is through its

decay into e+e− or µ+µ−. Even though the branching fractions to these leptons
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are small, the invariant lepton mass distribution provides a very clean signal that

is easily distinguished from the SM background, as shown in Fig. 1.5 [22]. The

Drell-Yan production cross section for ZR ranges from 5× 103 fb to 2 fb for masses

between 1.3 TeV and 5 TeV. The LHC will probably be capable of observing neutral

gauge bosons up to a mass of about 5 TeV [23].
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Figure 1.3: Cross section for WH and ZH Drell-Yan production at the LHC in the
LRTH model as a function of gauge boson mass. The crosses correspond to f values
of 500, 600, . . . , 1500 GeV [22].

The dominant decay mode for WR is into two jets (30 %) [22]. This process has a

large QCD background making discovery via this channel very difficult. The WH

also decays a large fraction of the time (20% - 30%) to a heavy top and a b-jet [22],

as shown in Fig. 1.4. Therefore discovery of the WR critically depends on the decays

of the heavy top. For a small but reasonable reasonable choice of M = 150 GeV, the

heavy top decays mostly (more than 70% of the time) [22] to φ+b. See Fig. 1.7. For

this value of M , the φ+ then decays mostly to tb, as shown in Fig. 1.9. Therefore,

the most promising signal is when the top decays leptonically, giving the following

decay chain (see Fig. 1.8)
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Figure 1.4: Decay branching fractions for the heavy right-handed gauge bosons WH

and ZH . Here we have chosen M = 150 GeV and mνR
> mWH

. Therefore the
leptonic decays of WH are absent [22].

TH → φ+b → tbb → W+bbb → l+νbbb. (1.51)

The signal is 3 b-jets + charged lepton + missing ET with an additional energetic

jet, usually a b-jet. If we assume all of the missing energy came from the neutrino

in the decay of a W , the invariant mass of the charged lepton and neutrino can

be used to reconstruct the W . Once the W has been reconstructed, we require

that the invariant mass of one b-jet plus the W gives the top mass. We can then

reconstruct the φ+ using tb and the heavy top TH using φ+b. Since the single heavy

top production cross section is large, more than 10,000 of these events can be seen

with a luminosity of 10 fb−1 for a heavy top mass around 600 GeV [22]. After

reconstructing the heavy top, the invariant mass distribution of the heavy top and

energetic b-jet should provide a signal of WR. The SM backgrounds for this process

are tt̄, W + 4 jets and tbj, of which tt̄ is dominant [22]. Since one jet in single heavy

top production is typically very energetic, a cut on the pT of the most energetic jet

may be an effective way to reduce the tt̄ background [22].

The dominant production mechanism for φ+ is from heavy top decay with a

cross section ranging from 10 fb - 6× 103 fb [22]. Therefore the procedure described

above is also the most effective way to observe the φ±. The neutral pseudo-scalar
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Figure 1.5: Invariant mass distribution of e+e− at the LHC clearly showing a bump
at the ZH mass. The blue (dark) line is that of the SM background, while the
red (light) line is that of the LRTH where ZH is produced through a Drell-Yan
process. Other model parameters are chosen to be f = 800 GeV, M = 150 GeV,
and Λ = 4πf . The mass of the ZH corresponding to this parameter set is 2403 GeV,
with a decay width of ΓZH

= 51 GeV [22].

Higgs φ0 is produced mainly through the decay WR → φ0φ± with a cross section of

1 fb - 103 fb [22]. φ0 decays dominantly into bb̄, cc̄ and τ+τ−, which alone is difficult

to observe due to the large QCD background. However, the φ+ decays most often

to tb and therefore we can trigger on the leptonic decay of the top. The decay chain

is then

φ±φ0 → tbbb̄ → l±νbbbb̄. (1.52)

The signal is 4 b-jets + 1 charged lepton + missing ET . The W can be reconstructed

if one assumes the charged lepton is the result of a W decay and that a neutrino

is the only source of missing ET . Once the W has been reconstructed, restrict

the invariant mass of the W and two b-jets to be equal to the mass of the φ±,
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Figure 1.7: The plot on the left shows the single and pair production cross sections
for the heavy top TH at the LHC. The crosses correspond to f values of 500, 600,. . . ,
1500. The plot on the right shows the branching ratios of TH decay into various
final states [22].

which should be known from heavy top decay. Using the remaining bb̄ pair one can

reconstruct the φ0.

What about the additional Higgses ĥ±
1 and ĥ0

2? These particles interact only

with the gauge bosons and have very degenerate masses. A small mass splitting δm

of about 100 - 700 MeV is the result of electromagnetic interactions, making the

charged ĥ±
1 slightly heavier. The ĥ0

2 is stable and a natural dark matter candidate.

In colliders the ĥ±
1 and ĥ0

2 can only be pair produced through gauge boson exchange.

The cross section for this process is small, about 1 fb [22]. Once produced the ĥ±
1

can decay into the neutral ĥ0
2 and soft jets or leptons. If δm > mπ, the lifetime of ĥ±

is short and the decay occurs instantly inside the detector. There is no signal in this
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case because the soft jets and leptons will be missed and the ĥ0
2 escapes the detector.

For δm ∼ mπ the decay happens more slowly, but inside the detector. In this case, a

disappearing track may be observable and provide a signal. For δm < mπ the decay

occurs outside of the detector. In this case, two charged tracks are present which

potentially can be distinguished from muon tracks by ionization rate and time of

flight information [22].

The ĥ0
2 is completely stable due to a residual ĤL → −ĤL symmetry, has a weak

scale mass and only weak interactions. It is therefore a perfect candidate for WIMP

dark matter. A study of the relic abundance of dark matter in the left-right twin

Higgs model was conducted in [24] and we will now summarize their findings. First

decompose the complex scalar ĥ0
2

ĥ0
2 =

Ŝ + iÂ√
2

(1.53)

where Ŝ and Â are real. To evade direct detection constraints, it is necessary to

introduce a small mass splitting between Ŝ and Â of at least a few hundred MeV.

This splitting makes inelastic scattering off of nuclei via a Z boson kinematically

forbidden. Such a splitting can be generated by adding a term −λ5

2
(H†

LĤL)2 to the

Higgs potential. When ĤL gets a vev of 〈ĤL〉 = (0 v/
√

2)T , this term produces a
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mass splitting of

m2
Â
− m2

Ŝ
= λ5v

2. (1.54)

This term violates left-right symmetry but does not reintroduce quadratic diver-

gences to the Higgs potential at one loop. Note that this term lowers the mass of Ŝ

below Â, making the scalar Ŝ the dark matter candidate. This choice is arbitrary

and the results below hold for pseudo-scalar dark matter as well. Recall that the

mass splitting between ĥ±
1 and ĥ0

2 caused by electromagnetic interactions is approx-

imately a few hundred MeV. Defining δ1 = mĥ±
1
− mŜ and δ2 = mÂ − mŜ, we have

the approximate relation δ1 ≈ 2δ2 for δ2 & 1 GeV.

Since µ̂ is a free parameter, it can be used to vary the mass of mŜ arbitrarily.

Therefore the relevant mass parameters in the Higgs sector for a relic abundance

study are mŜ, δ1 and δ2. Although the analysis in [24] considered arbitrary values

of δ1 and δ2, we will limit our discussion to the case of left-right twin Higgs, where
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δ2 ≈ 2δ1. An analysis of the relic density using the program MicrOMEGAs [25]

revealed two mass regions of mŜ that can produce the observed dark matter relic

density consistent with WMAP at the 3 σ level. The first is a low mass region where

mŜ < 100 GeV and the second a high mass region where 400 GeV < mŜ < a few

TeV.

Figure 1.10: Ωh2 vs. mŜ plot (a) and the corresponding relic density contour plot
(b) for the LRTH where δ2 = 2δ1. The band in plot (a) and the region enclosed by
the contours in plot (b) are the WMAP 3 σ regions [24].

Figure 1.11: Ωh2 vs. mŜ plot (a) for f = 500 GeV (solid curve), 600 GeV and
700 GeV. The contour plot (b) shows the relic density in the mŜ vs. δ2 plane for
f = 600 GeV. The enclosed region corresponds to the WMAP 3 σ region [24].

Let us first consider the low mass region shown in Fig. 1.10. When δ2 is small,

coannihilation between Ŝ and Â needs to be taken into account. When mŜ ∼
40 GeV, the process ŜÂ → qq̄/ll̄ via Z exchange is enhanced due to the Z pole.
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The efficiency of this reaction is the reason for the large dip in the relic density at

mŜ ∼ 40 GeV. As mŜ is increased beyond the Z pole region, the coannihilation

cross section decreases, therefore increasing the relic abundance. However, when

mŜ ∼ MW another annihilation channel opens up, ŜŜ → WW , causing efficient

annihilation and lowing the relic abundance. When δ2 is large, coannihilations are

irrelevant and Z pole region is no longer present. In this case, the only dip in the

relic abundance occurs when mŜ ∼ MW . In the high mass region, shown in Fig. 1.11,

the relic abundance begins to increase to an acceptable level allowed by the WMAP

data, with the dominant processes still being ŜŜ → WW/ZZ. Later, another dip

appears due to the coannihilations between Ŝ and Â at the ZH pole, which occurs

when mŜ ∼ MZH
/2.

1.4 Dissertation Format

The introduction of this work presented the basic theory and phenomenology of two

“twin Higgs” models which stabilize the Higgs mass up to a cutoff Λ = 5− 10 TeV.

This purpose of this dissertation is two-fold. First we discuss how to implement a

tree level quartic without generating a corresponding mass term for the Higgs in the

left-right twin Higgs model. As we will see, doing so decreases the fine-tuning of the

model significantly. There exists an implementation of this idea in the mirror twin

Higgs [13], but this approach does not generalize to the left-right twin Higgs model.

Secondly we study the collider signatures of the left-right twin Higgs in the limit

that mνR
< mWR

. Previous studies have assumed that mνR
> mWR

, in which case

there is a large region of parameter space where it becomes difficult to detect the

heavy top quark TH and the right-handed gauge boson WR due to an all jet final

state. These particles are important to observe because they are responsible for

the cancellation of quadratic divergences in the left-right twin Higgs. A TeV scale

right-handed neutrino will open up exciting lepton number violating decay channels,

allowing events containing the heavy top to be triggered on. The body of this thesis

contains two appendices consisting of my published work and work submitted for
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publication regarding these two topics. The research was conducted by myself and

Dr. Hock-Seng Goh, who is a co-author on both works, and under the supervision

of Professor Zackaria Chacko. The first appendix is an article demonstrating how to

implement the desired type of tree level quartic into the left-right twin Higgs model.

The second is a study of the collider signatures of a TeV scale right-handed neutrino

in the left-right twin Higgs model. We now briefly summarize these two appendices.
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CHAPTER 2

THE PRESENT STUDY

2.1 The Little Twin Higgs

Before we begin a discussion of the Little Twin Higgs, let us briefly review how we

arrived at this point. The twin mechanism was born with the observation that a

discrete twin symmetry in conjunction with a spontaneously broken global symmetry

can restrict the form of quadratically divergent terms in such a way that they do

not contribute to the Higgs mass. The simplest realistic example of this scenario is

the embedding of two SU(2) × U(1) gauge symmetries into a global U(4), which is

spontaneously broken to U(3). With this basic setup, there are two directions that

have been studied. The twin symmetry can be identified as an exchange symmetry

between the SM and a “mirror SM,” or as an exchange symmetry between left-

handed SM fields and right-handed SM fields.

In mirror twin Higgs models, an entire copy of the SM is introduced along with

a symmetry that exchanges the SM fields with those of the mirror SM. In addition,

the top sector may be extended so that its contribution to the Higgs potential is

finite at one loop. The fine-tuning in each of these cases is about 10% for a cutoff

scale of 10 TeV. Although it was not discussed in the introduction, it is possible to

decrease the fine-tuning of these models even further by introducing an additional

Higgs field Ĥ that acquires a vev which is not aligned with vev of H1. In this case,

the fine-tuning becomes approximately 30% for a cutoff of 10 TeV.

Left-right twin Higgs models require the introduction of right-handed gauge

bosons and right-handed neutrinos. An additional Higgs field must also be in-

troduced to evade constraints on SU(2)R gauge bosons. It has been shown that the

fine-tuning in the minimal left-right twin Higgs is approximately 10% for a cutoff

1This possibility will be discussed below.
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scale of 10 TeV. We summarize the evolution and fine tuning of twin Higgs models

in Fig. 2.1.

Recall that it is possible achieve a fine-tuning in the mirror twin Higgs model of

approximately 30% for a 10 TeV cutoff. Is it possible to do as well in the left-right

twin Higgs model? To answer this question, we must first understand the origin of

the 10% fine-tuning in the left-right twin Higgs.

Consider a simple potential for a complex scalar field h

V (h) = m2
hh

†h + λh(h
†h)2. (2.1)

For m2
h < 0, h will acquire a vev v =

√

|m2
h|/2λh and the physical mass m2

phys =

2|m2
h|. Recall that there are many contributions to m2

h,

m2
h = m2|top + m2|gauge + m2|tree + m2|λ. (2.2)

If m2
h is negative, the vev squared is then

v2 =
m2|top + m2|gauge + m2|tree + m2|λ

2λh

. (2.3)

Significant fine tuning results when the left hand side of eq. (2.3) is much smaller

than the individual contributions to m2
h on the right hand side. However, note that

less cancellation is required between the individual contributions of m2
h if λh can be

made large without significantly affecting the m2
i ’s. In other words, one should try to

make the quartic λh large without introducing more fine tuning into the numerator

of eq. (2.3). In the twin Higgs models described above, both the quartic and mass

parameters are determined by the CW potential and are therefore not independent.

A simple way to increase naturalness is to introduce a tree level operator that

generates a quartic for the Higgs, but does not generate a corresponding mass term.
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In this scenario the numerator of eq. (2.3) is not significantly affected when the

denominator is made large.

How can one construct such a object? Let us first consider the U(4) fundamental

H in the mirror twin Higgs. |H|4 is a U(4) invariant, so it cannot generate any

potential at all for the SM Higgs. What about the mirror symmetric operator

λ(|HA|4 + |HB|4)? Recall that after removing the eaten fields in H we have

H = f















i h1

|h|
sin |h|

f

i h2

|h|
sin |h|

f

0

cos |h|
f















(2.4)

and

H†
AHA = f 2 sin2 |h|

f
= h†h − (h†h)2

3f 2
+ · · ·

H†
BHB = f 2 cos2 |h|

f
= f 2 − h†h +

(h†h)2

3f 2
+ · · · . (2.5)

|HA|4 will not generate a mass for the Higgs, but |HB|4 will since it is proportional to

f 4(1−h†h/f2 + · · · )2, which contains a mass term for the h. Therefore, to generate

the required quartic with a single H does not seem possible.

One possibility is to misalign the vevs of two different Higgs fields H and Ĥ.

Consider a new field Ĥ that transforms as a fundamental of U(4) and acquires the

vev 〈Ĥ〉 = (0 0 f̂ 0)T . Putting the eaten fields back in for completeness we have,

H =















ih1

ih2

C

f + iφ + h†h
f















+ · · · Ĥ =















iĥ1

iĥ2

f̂ + iφ̂ + ĥ†ĥ

f̂

Ĉ















+ · · · . (2.6)
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Now consider the mirror symmetric operator (|H†
AĤA|2 + |H†

BĤB|2). This operator

clearly only gives a mass to C and Ĉ, while also generating a quartic term for h and

ĥ. An operator of this form was studied in the case of the mirror twin Higgs [13]

and resulted in a significant decrease in the amount of fine tuning required in the

model.

Can this technique be incorporated into the left-right twin Higgs? Recall that

the symmetry breaking pattern in the left-right twin Higgs is SU(2)L × SU(2)R ×
U(1)B−L → SU(2)L×U(1)Y . With aligned vevs, SU(2)R×U(1)B−L breaks to U(1)Y .

However, with misaligned vevs, the SU(2)R×U(1)Y symmetry is broken completely.

Without an unbroken U(1) remaining, SU(2)L will also be broken completely, giving

the photon a mass. Since a massive photon is unacceptable, this simple operator

will not suffice.

What are the properties of the operator we seek? As above, it must generate a

quartic for the Higgs but not the corresponding mass term. At the same time, this

operator should preserve the same discrete symmetry that protects the Higgs mass

from receiving quadratically divergent contributions and does not break U(1)EM .

We showed in [15] that construction of such an operator is indeed possible. The

crucial observation is that there is more than one discrete symmetry which can be

identified as twin parity. Consider the operator

λ
(

|HT
Rτ2ĤR|2 + |H†

LĤL|2
)

. (2.7)

This operator is not invariant under the twin parity originally defined in the left-

right twin Higgs model. However, it is invariant under an alternative twin parity
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HL ↔ HR

ĤL ↔ τ2Ĥ
∗
R

Aa
LµT

a
L → Aa

RµT
a
R

QL → Qc
R. (2.8)

When H and Ĥ acquire the vevs 〈H〉 = (0 0 0 f)T and 〈Ĥ〉 = (0 0 0 f̂)T , this

operator will generate a quartic for the Higgs, but not the corresponding mass term.

Roughly speaking, the effect of misaligning the vevs is mimicked by τ2. Moreover,

since the vevs are aligned, U(1)EM is not broken. Most importantly, terms such as

(|HL|2 + |HR|2) and (|ĤL|2 + |ĤR|2) are invariant under the alternative twin parity.

Therefore the alternative parity also ensures that quadratically divergent terms have

an accidental U(4) invariant form, thereby protecting the Higgs mass.

The theory now contains two discrete symmetries, with each term in the La-

grangian breaking at most one of them. The quartic above breaks the original

twin parity, while the U(1)B−L gauge interactions break the alternative twin par-

ity. Individually, each of these discrete symmetries is sufficient to ensure that the

quadratically divergent contributions to the potential have a U(4) invariant form,

and therefore do not contribute to the potential for the Nambu-Goldstone bosons.

However, certain operators not invariant under either discrete symmetry may be

generated radiatively. These operators arise from graphs containing at least two

vertices, with each vertex breaking one of the discrete symmetries of the theory, so

that both symmetries are broken. Any operator that results from such a graph will

not be invariant under either discrete symmetry. In this case, quadratic divergences

will reappear because there is no longer any symmetry forbidding them. However,

this effect is typically postponed to two loops and does not pose a problem if one

is only concerned with addressing the little hierarchy problem. This phenomenon is

known as collective symmetry breaking and is used extensively in little Higgs theo-

ries. Interestingly, we found that this effect is actually postponed to three loops in
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the little twin Higgs model.

In the publication that appears in Appendix A, we discuss these and other topics

in more detail. We constructed a twin Higgs model based on left-right symmetry

with an order one tree level quartic for the SM Higgs. Our analysis showed that

electroweak symmetry breaking can happen naturally. For f̂ = 1.6 TeV, which is

the lower bound from the direct searches on heavy gauge bosons, the fine tuning

is found to be about 30% for Λ = 10 TeV. We also applied this mechanism to

the mirror twin Higgs model and found the fine tuning is about 20% for a 10 TeV

cutoff scale. In summary, we showed how to incorporate a tree level quartic into

the left-right twin Higgs model, leading to a substantial reduction in the amount of

fine-tuning required in this class of theories.

2.2 Lepton Number Violating Signals of the Top Partners in the LRTH

To identify the twin mechanism, it is crucial to observe the heavy top partner TH

and the right-handed gauge boson WR. It was shown in the introduction that the

most straightforward way to detect both of these particles is through the leptonic

decay of the heavy top. However, that discussion was for the case of a small but

reasonable value of M = 150 GeV. In the limit that M → 0, this approach fails

because the charged Higgses φ± decay purely to charm and strange quarks, leading

to an all jet final state for heavy top decay. Since there is no lepton in the final state,

it is difficult to observe this decay at the LHC. In this scenario, the true mechanism

of electroweak symmetry breaking may be beyond the reach of the LHC.

However, in previous studies it was assumed that the right-handed neutrino is

heavier than the right-handed gauge boson, WR. If the right-handed neutrino is

lighter than WR, new leptonic decay channels open allowing the discovery of both

WR and TH . In this case, it may be possible to identify the heavy top in a way that

is independent of the parameter M . Moreover, since the right-handed neutrino is

Majorana, half of these events are lepton number violating. This fact leads to same-

sign dilepton events without missing energy at colliders such as the LHC, which
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have no genuine SM background.

In the article submitted for publication in Appendix B, we consider a TeV scale

right-handed neutrino in the left-right twin Higgs model such that mνR
< mWR

,

and study its collider signatures. We show that this scenario leads to interesting

lepton number violating signatures at the LHC. Lepton number violating decays

of WR should be observable provided that WR and νR are not nearly degenerate.

Detection of the heavy top is also possible if mνR
> mTH

. These signals may be

used to complement other collider searches, and in the limit that M → 0, may be

the only way to observe the particles necessary for the cancellation of quadratic

divergences in the left-right twin Higgs.
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Twin Mechanism 

 
One Spontaneously Broken Global Symmetry That Contains Two 

Gauged Subgroups 

+ Twin Symmetry Between Gauge Groups 

! Goldstone Bosons Cannot acquire  

Quadratically Divergent mass  

 

Higgs is an SU(2) doublet ! The twin symmetry should be between 

two SU(2) gauge symmetries, for example, SU(2)A " SU(2)B. 

The simplest global symmetry in which to embed [SU(2) " U(1)]
2
 is 

U(4). 

Mirror Twin Higgs 

Twin symmetry exchanges SM fields with 

fields in mirror SM. 

 

SMA#SMB 

Double field content 

Fine-Tuning ~ 10% 

Extend top sector to U(4) symmetric form 

! top contribution is finite. 

 

Two additional quarks 

 

Fine-Tuning ~ 13 % 

 

Left-Right Twin Higgs 

Twin Symmetry exchanges left and right-

handed fields of the SM. 

 

L#R 

Requires the additional fields: ZR,WR,TH,$R 

 

Additional U(4) Higgs field added to avoid 

precision constraints on right-handed gauge 

bosons. 

 

Four additional Higgs fields. h
+
,h
0
,%
+
,%
0 

 

Fine-Tuning ~ 12 % 

Add tree level quartic that does not 

generate mass term to increase naturalness. 

 

No new fields required 

 

Fine-tuning ~ 20 % 

Add tree level quartic that does not 

generate mass term to increase naturalness. 

 

A second Higgs doublet and its mirror 

partner  

 

Fine-Tuning ~ 28 % 

Extend top sector to U(4) symmetric form 

! top contribution is finite. 

 

Two additional quarks, &L, &R 
 

Fine-tuning ~ 30 % 

Constraints on right-handed gauge 

bosons reintroduces fine-tuning. 

Mass parameter and quartic are 

correlated, limiting improvement. 

Identify twin symmetry with 

left-right symmetry  

Identify twin symmetry with 

mirror symmetry. 

Extend top sector to improve 

fine-tuning  

Extend top sector to improve 

fine-tuning  

Mass parameter and quartic are 

correlated, limiting improvement. 

Figure 2.1: Evolution of twin Higgs models. The fine-tuning quoted above is given
for a cutoff of 10 TeV.
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We present a twin Higgs model based on left-right symmetry with a tree level quartic. This is made

possible by extending the symmetry of the model to include two Z2 parities, each of which is sufficient to

protect the Higgs from getting a quadratically divergent mass squared. Although both parities are broken

explicitly, the symmetries that protect the Higgs from getting a quadratically divergent mass are broken

only collectively. The quadratic divergences of the Higgs mass are thus still protected at one loop. We find

that the fine-tuning in this model is reduced substantially compared to the original left-right twin Higgs

model. This mechanism can also be applied to the mirror twin Higgs model to get a significant reduction

of the fine-tuning, while keeping the mirror photon massless.

DOI: 10.1103/PhysRevD.76.115018 PACS numbers: 12.60.Cn, 14.80.Cp

I. INTRODUCTION

The standard model (SM) is so far the most successful

theory that describes physics at energies below the TeV

scale. Its predictions are consistent with all precision elec-

troweak (EW) measurements. However, the model is un-

satisfactory since the Higgs field, which plays a crucial role

in electroweak symmetry breaking, receives quadratically

divergent radiative corrections to its mass and thus desta-

bilizes the electroweak scale. Hence, it is unnatural to treat

the SM as an effective theory with a cutoff scale much

higher than a TeV. On the other hand, the cutoffs of non-

renormalizable operators that contribute to precision elec-

troweak measurements are required by experiment to be

greater than 5–10 TeV. Such a high cutoff tends to desta-

bilize the electroweak scale and leads to a fine-tuning of a

few percent. This problem is known as the little hierarchy

problem or the LEP paradox [1].

The idea that the Higgs is a pseudo-Nambu-Goldstone

boson (PNGB) corresponding to a spontaneously broken

global symmetry was proposed in Refs. [2,3]. Since the

mass of a PNGB tends to be lighter than the UV scale, this

idea explains why the Higgs is light. However, using this

idea to solve the little hierarchy problem is not quite

straightforward. A PNGB Higgs by itself is not sufficient

since the global symmetry is, by definition, not exact and

the couplings that break the global symmetry will still

generate a quadratically divergent mass to the Higgs.

Thus, the situation is no better than that in the standard

model and more structure is needed. The extra structure

required to achieve naturalness is the main challenge for

model building. One successful mechanism along this line

is known as the little Higgs [4,5]. In this class of models,

the Higgs mass is protected by two separate global sym-

metries and every term in the Lagrangian breaks at most

one of them. In order to break both global symmetries,

radiative corrections to the mass have to involve at least

two such terms and thus, quadratic divergences are post-

poned to two loops. This little Higgs mechanism is also

known as collective symmetry breaking. To achieve a

certain level of naturalness, a special operator is also

introduced to provide a tree level quartic without generat-

ing a tree level mass to the Higgs.

Another mechanism that has been shown to solve the

little hierarchy problem is the twin Higgs [6–9] (see also

[10–12]). The twin Higgs mechanism is quite different

from that of the little Higgs. In twin Higgs models, the

Higgs mass is protected by a discrete Z2, or twin, symme-

try instead of multiple global symmetries. The exact twin

symmetry guarantees that all gauge invariant dimensionful

terms have, up to all orders in perturbation theory, a form

which is invariant under a global SU(4) symmetry. The

mass of the PNGB Higgs is then protected from receiving

quadratically divergent contributions. It was shown that

this mechanism alleviates the little hierarchy problem to

about the 10% level for the cutoff scale ! ! 10 TeV

without introducing a tree level quartic.

In this class of models where the quadratic divergences

are naturally suppressed, one would expect less fine-tuning

if the quartic coupling of Higgs ! is large. In the original

twin Higgs models, both the squared mass and the quartic

for the SM Higgs come from the one-loop Colemann-

Weinberg (CW) potential [13]. The quartic coupling is

thus not a free parameter and loop suppressed. In order

to improve the naturalness, one should try to find a tree

level operator that will give the PNGB a quartic coupling

without giving it a tree level mass term. In order to not

upset the cancellation of radiative corrections, the tree

level operator one introduces must preserve the twin parity.

To summarize, in order to improve the fine-tuning, the

following criteria must be satisfied.

(i) A tree level operator that generates a quartic for the

SM Higgs, but not a mass.

(ii) This operator must preserve the discrete symmetry

that protects the Higgs mass.

(iii) Reduce as much as possible the mass squared that

arises at loop level. For example, reduce top contri-

bution by making the top Yukawa interaction SU(4)

invariant.

PHYSICAL REVIEW D 76, 115018 (2007)
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ABSTRACT

We present a twin Higgs model based on left-right symmetry with a tree level quar-

tic. This is made possible by extending the symmetry of the model to include two

Z2 parities, each of which is sufficient to protect the Higgs from getting a quadrat-

ically divergent mass squared. Although both parities are broken explicitly, the

symmetries that protect the Higgs from getting a quadratically divergent mass are

broken only collectively. The quadratic divergences of the Higgs mass are thus still

protected at one loop. We find that the fine tuning in this model is reduced sub-

stantially compared to the original left-right twin Higgs model. This mechanism

can also be applied to the mirror twin Higgs model to get a significant reduction of

the fine tuning, while keeping the mirror photon massless.

A.1 Introduction

The standard model (SM) is so far the most successful theory that describes physics

at energies below the TeV scale. Its predictions are consistent with all precision elec-

troweak measurements. However, the model is unsatisfactory since the Higgs field,

which plays a crucial role in electroweak symmetry breaking, receives quadratically

divergent radiative corrections to its mass and thus destabilizes the electroweak

scale. Hence, it is unnatural to treat the SM as an effective theory with a cutoff

scale much higher than a TeV. On the other hand, the cutoffs of nonrenormalizable

operators that contribute to precision electroweak measurements are required by

experiment to be greater than 5-10 TeV. Such a high cutoff tends to destabilize the
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electroweak scale and leads to a fine tuning of a few %. This problem is known as

the little hierarchy problem or the LEP paradox [1].

The idea that the Higgs is a pseudo-Nambu-Goldstone boson (PNGB) corre-

sponding to a spontaneously broken global symmetry was proposed in refs. [5, 6].

Since the mass of a PNGB tends to be lighter than the UV scale, this idea explains

why the Higgs is light. However, using this idea to solve the little hierarchy prob-

lem is not quite straightforward. A PNGB Higgs by itself is not sufficient since the

global symmetry is, by definition, not exact and the couplings that break the global

symmetry will still generate a quadratically divergent mass to the Higgs. Thus,

the situation is no better than that in the standard model and more structure is

needed. The extra structure required to achieve naturalness is the main challenge

for model building. One successful mechanism along this line is known as the little

Higgs [2, 3]. In this class of models, the Higgs mass is protected by two separate

global symmetries and every term in the Lagrangian breaks at most one of them.

In order to break both global symmetries, radiative corrections to the mass have to

involve at least two such terms and thus, quadratic divergences are postponed to two

loops. This little Higgs mechanism is also known as collective symmetry breaking.

To achieve a certain level of naturalness, a special operator is also introduced to

provide a tree level quartic without generating a tree level mass to the Higgs.

Another mechanism that has been shown to solve the little hierarchy problem

is the twin Higgs [6, 7, 8, 8] (see also [10, 11, 12]). The twin Higgs mechanism is

quite different from that of the little Higgs. In twin Higgs models, the Higgs mass is

protected by a discrete Z2, or twin, symmetry instead of multiple global symmetries.

The exact twin symmetry guarantees that all gauge invariant dimensionful terms

have, up to all orders in perturbation theory, a form which is invariant under a global

SU(4) symmetry. The mass of the PNGB Higgs is then protected from receiving

quadratically divergent contributions. It was shown that this mechanism alleviates

the little hierarchy problem to about the 10% level for the cut off scale Λ = 10 TeV

without introducing a tree level quartic.

In this class of models where the quadratic divergences are naturally suppressed,
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one would expect less fine-tuning if the quartic coupling of Higgs λ is large. In

the original twin Higgs models, both the squared mass and the quartic for the SM

Higgs come from the one-loop Colemann-Weinberg (CW) potential [13]. The quartic

coupling is thus not a free parameter and loop suppressed. In order to improve the

naturalness, one should try to find a tree level operator that will give the PNGB

a quartic coupling without giving it a tree level mass term. In order to not upset

the cancellation of radiative corrections, the tree level operator one introduces must

preserve the twin parity. To summarize, in order to improve the fine tuning, the

following criteria must be satisfied.

• A tree level operator that generates a quartic for the SM Higgs, but not a

mass.

• This operator must preserve the discrete symmetry that protects the Higgs

mass.

• Reduce as much as possible the mass squared that arise at loop level. For

example, reduce top contribution by making the top Yukawa interaction SU(4)

invariant.

One very simple operator which satisfies the first criterion has been constructed

and is used in the twin Higgs model [8]. The basic idea is a mismatched alignment

of two vevs. It was shown in ref. [8] that the mirror twin Higgs model [6] improves

when this type of tree level quartic is added. The mismatched alignment of the

vevs necessarily breaks the mirror SU(2)×U(1) gauge symmetry to nothing and so

the mirror photon becomes massive. Because of this feature, the mechanism seems

difficult to implement in the left-right twin Higgs model [8] since the mismatched

vev alignment would break U(1)EM and the SM photon would become massive.

However, there is actually more than one type of parity which can be identified

as a twin parity, i.e. the original twin parity, known also as P, and charge conjuga-

tion, C[14]. Under these parities, scalar and Dirac fermion in the left-right model
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transform as

P :







HL → HR

QL → QR







(A.1)

C :







HL → H∗
R

QL → CQ̄T
R







(A.2)

In this paper, we show that by using this fact and the idea of collective symmetry

breaking, a new type of quartic operator can be constructed. This new quartic

has all the properties we mentioned above, but does not break U(1)EM . Most

importantly, it preserves one of the parities that will maintain the cancellation of

quadratic divergences to one loop. The quadratic divergences are no longer protected

to all orders in perturbation theory as in the original twin Higgs model. However,

cancellation to one loop is sufficient to address the little hierarchy problem.

The paper is organized as follows: In section II, we review the twin Higgs mech-

anism and the left-right twin Higgs model. We then explore the possibilities in

introducing a tree level quartic and extend the top sector, making it SU(4) invari-

ant. In section III, we analyze the radiative corrections and electroweak symmetry

breaking. We then apply the same mechanism to the mirror model and reanalyze

its naturalness in section IV. In section V, some phenomenology is discussed and

our results summarized.

A.2 Construction of the Model

The scalar field H in twin Higgs models is in the fundamental representation of a

U(4) global symmetry. After acquiring a vev, 〈H〉 = (0, 0, 0, f), U(4) is broken to

U(3), which yields 7 Goldstone bosons including the standard model (SM) Higgs

doublet h = (h1, h2). The global symmetry is explicitly broken by gauging only a

subgroup SU(2)A ×SU(2)B (we ignore U(1) factors here since they are not relevant

to present discussion). Under this gauge symmetry, H can be represented by H =

(HA, HB) where HA,B transform as doublets of SU(2)A,B. Since the global symmetry



61

is broken explicitly by the gauge couplings and the breaking is ‘hard’, masses of

the Goldstone bosons will be radiatively generated and be quadratically divergent.

However, by imposing the discrete symmetry (twin parity) that interchanges the two

gauged SU(2) symmetries , the quadratic divergences cancel. The simplest way to

understand this is the following. First write down the most general gauge invariant

mass terms for the linear fields HA and HB

αAH†
AHA + αBH†

BHB, (A.3)

where αA,B are not required to be related by the gauge symmetry. After imposing

the twin symmetry on all the interactions, however, αA is forced to be equal to

αB and so the form given above is invariant under the global U(4) transformation.

Therefore, this term, which is quadratically divergent, does not contribute to poten-

tial of the Goldstone bosons. Higher order terms, the quartic term (|HA|4 + |HB|4)
for example, can contribute even though they preserve the twin symmetry since

twin symmetry does not require these terms to have a U(4) invariant form. These

contributions can have at most logarithmic divergences and so are under theoreti-

cal control. Additional interactions such as Yukawa couplings can be added to the

theory consistent with the discrete twin symmetry, and the argument above shows

that they do not lead to quadratic divergences.

The fine-tuning in twin Higgs theories can be further reduced if there are terms

in the Lagrangian which respect the twin symmetry and contribute to the quartic

self-coupling of the light pseudo-Goldstone Higgs but not to its mass. In the case of

the model discussed above, with a single Higgs field H, there are no such operators

consistent with the symmetries of the theory. However, such terms can be written

down in theories with more than one set of Higgs fields. We consider the theory

with an extra scalar field Ĥ, which has its vev residing in a different direction,

〈Ĥ〉 = (0, 0, f̂ , 0)[8]. After the global U(4) symmetry is spontaneously broken by f

and f̂ , and the massive radial modes are integrated out, we can write down a non-

linear sigma model which contains the interactions of the light degrees of freedom.

The light fields of the non-linear sigma model can be parametrized as
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H =















h1

h2

C

f + iφ − h†h
2f















+ · · ·

Ĥ =















ĥ1

ĥ2

f̂ + iφ̂ − ĥ†ĥ

2f̂

Ĉ















+ · · · (A.4)

Notice that a quartic term like |H|4 would give a mass term to the Goldstone boson

h because H contains a component ∼ (f − h2/2f + ...). The quartic operator |H|4

therefore contains a term like (f −h2/2f + ...)4, which gives a mass term for h. This

is why the second Higgs field Ĥ is required. With the mismatched alignment of vevs

as in eq. (A.4), the operator |H†Ĥ|2 gives mass only to C and Ĉ, and gives rise to

a quartic term for h and ĥ without a corresponding mass term.

The above discussion is general for twin Higgs models. The phenomenologi-

cal consequences of the additional vev f̂ , however, depend on the model’s U(1)

structure. In the mirror twin Higgs model, the gauged subgroup of global U(4) is

SU(2)A × U(1)A × SU(2)B × U(1)B. Two identical electroweak gauge symmetries

are introduced to two sectors of the model. Sector A is identified with the stan-

dard model and sector B is a mirror world of the standard model. An extra scalar

multiplet Ĥ = (ĤA, ĤB) is added to the model in order to implement the above

mechanism [8]. HB and ĤB are both singlets under SU(2)A × U(1)A and have the

same nontrivial charge under SU(2)B×U(1)B. The mismatched vevs thus break the

mirror SU(2)B×U(1)B gauge symmetry to nothing but preserve the entire standard

model SU(2)A × U(1)A. The mirror photon therefore becomes massive, in contrast

to the case in the original mirror twin Higgs model where the mirror photon remains

massless after U(4) symmetry is broken.

In the left-right twin Higgs (LRTH) model, the gauged subgroup is that of the

left-right model: SU(2)L × SU(2)R × U(1)B−L ×P[15]. There are two Higgs fields,



63

H = (HL, HR) and Ĥ = (ĤL, ĤR), both of which transform as a fundamental

representation under the SU(4) global symmetry. Under the gauge symmetry, these

scalars transform as

HL and ĤL : (2,1,1), HR and ĤR : (1,2,1) (A.5)

In this model, the scalar fields acquire the vevs, 〈HR〉 = (0, f) and 〈ĤR〉 = (0, f̂),

which break the SU(4) global symmetry as well as the gauge symmetry SU(2)R ×
U(1)B−L down to U(1)Y hypercharge. Without introducing any extra scalar fields,

can we apply the mismatched mechanism to this model to obtain a tree-level quartic

coupling to the pseudo Goldstone Higgs? The previous discussion seems to suggest

that we need to change the vev of ĤR to 〈ĤR〉 = (f̂ , 0). These new vevs would

break U(1)Y and hence, U(1)EM . Therefore, this mechanism can not be applied to

the left-right twin Higgs model in its simplest form. The question we would like to

answer is whether there exists a different operator or a certain assignment of charges

that achieves the same goal, while leaving U(1)EM unbroken.

A.2.1 Quartic for the Left-Right Model

The charge assignment for H and Ĥ given in eq. (A.5) is unique. All other charge

assignments which are consistent with the symmetry breaking SU(2)L × SU(2)R ×
U(1)B−L → U(1)EM and preserve the left-right symmetry are, up to a set of field

redefinitions, equivalent to this assignment. With this charge assignment, the vevs

that preserve the hypercharge U(1)Y is the one given in the original LRTH model:

〈H〉 = (0, 0, 0, f) and 〈Ĥ〉 = (0, 0, 0, f̂). In order to have a tree level quartic, we

add to the LRTH model the following terms that break the global SU(4) symmetry

∆V = λ(|(HT
Rτ2ĤR)|2 + |(H†

LĤL)|2). (A.6)

These two terms are not symmetric under the twin defined originally in the
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LRTH model

HL ↔ HR

ĤL ↔ ĤR, (A.7)

where the gauge and matter fields transform as

Aa
LµT

a
L → Aa

RµT
a
R

AB−L → AB−L

QL → Qc
R, (A.8)

in two-component Weyl notation. However, one can define an alternative twin parity

HL ↔ HR

ĤL ↔ τ2Ĥ
∗
R,

Aa
LµT

a
L → Aa

RµT
a
R

QL → Qc
R, (A.9)

It can be shown explicitly that the quartic terms given in eq. (A.6) preserve the

Z2 symmetry given in eq. (A.9), which is as powerful as the original twin parity in

protecting the Higgs mass from receiving quadratically divergent corrections. All

interactions in this model except the U(1)B−L gauge interaction and the new quartic

potential we introduced in eq. (A.6) preserve both of the parities given above. The

quartic potential breaks the first parity and the U(1)B−L breaks the second.

Since every term in this extended LRTH model breaks no more than one parity

defined in eqs. (A.7,A.8) and eq. (A.9), quadratically divergent masses of the PNGB

can only be generated when both parities are broken collectively. The quadratically

divergent contributions to the PNGB masses are generally expected to arise at two

loop. However, a more detailed analysis shows that two-loop contributions are also

absent, and that contributions begin at three loops. This conclusion can be under-

stood as follows. The leading diagrams that contribute to a quadratically divergent

mass have to break both types of parities defined above. Thus, the diagrams must
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involve the collection of vertices that break both symmetries. The vertices required

are the three point coupling of U(1)B−L to H, to Ĥ and the quartic coupling pro-

portional to λ. Note that the four point U(1) coupling to H actually preserves both

parities. With this minimal set of vertices, all diagrams one can construct vanish in

the Landau gauge for the same reason that the one loop CW potential vanishes with

both gauge and scalar particles running in the loop. Therefore, the leading contri-

bution must involve at least one more vertex, which results in the total number of

loops being at least three. Furthermore, the contribution is proportional to g2
B−L

which is parametrically a small number. We have thus succeeded in constructing a

tree level quartic without generating a large mass term for the Higgs.

A.2.2 SU(4) Invariant Top Yukawa Interaction

Since precision measurements prefer a light Higgs, mh < 200 GeV [16], a tree level

quartic by itself is not as useful as one might hope in addressing the LEP paradox.

In order to have a complete solution to the problem, a further suppression of Higgs

mass parameter is desirable. An obvious way to achieve this is to extend the top

sector to include a U(4) invariant Yukawa and terms that only break the global

symmetry softly. Then, the Higgs potential will receive only a finite contribution

from the top sector [6].

The top sector in the original LRTH model contains QL,R and TL,R charged under

SU(3)c × SU(2)L × SU(2)R × U(1)B−L as

QL = (3,2,1,1/3) QR = (3̄,1, 2̄,−1/3)

TL = (3,1,1,4/3) TR = (3̄,1,1,−4/3), (A.10)

where we are using two-component Weyl notation. The gauge invariant top Yukawa

terms can then be written down as

y(H†
Rτ2QRTL + HT

L τ2QLTR). (A.11)

Without introducing any more extra fields, all other quarks and charged leptons can



66

get their masses from non-renormalizable operators like

yu

Λ
(H†

Rτ2QR)(HT
L τ2QL) +

yd

Λ
(HT

RQR)(H†
LQL) (A.12)

Due to the smallness of the Yukawa couplings, these non-renormalizable operators

will not affect our discussion later of fine tuning. Even after we have modified the

Higgs sector by adding a new quartic term eq. (A.6), the charges of the Higgses and

their vevs remain the same as that were defined originally and thus these operators

remain valid to give masses to light fermions. We will ignore these operators for the

rest of this paper.

Notice that neither QR nor Qc
R, the complex conjugate of QR, can be combined

with QL to form an SU(4) multiplet due to the different charges under the gauge

or Lorentz groups. To complete the SU(4) representation, we need to introduce two

extra vector-like quarks

ΦR = (3,1,2,1/3) ΦL = (3̄,2,1,−1/3)

Φ̄R = (3̄,1,2,−1/3) Φ̄L = (3,2,1,1/3).

QL and ΦR form a 4 representation of SU(4) and similarly for ΦL and QR. The top

Yukawa term then becomes

Ltop = y(HT
L τ2ΦL + HT

Rτ2QR)TL

+ (HT
L τ2QL + HT

Rτ2ΦR)TR + h.c.. (A.13)

We also add the following soft masses to decouple the extra vector-like quarks,

MRΦ̄RΦR + MLΦ̄LΦL + M0TLTR + h.c.. (A.14)

For simplicity, we set M0 = 0 in the analysis below.

A.3 Radiative Corrections and EW Symmetry Breaking

In this section we determine the radiative corrections to the pseudo-Goldstone mass

and verify that electroweak symmetry is indeed broken by a light Higgs. In partic-
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ular, we will compute the CW potential [13] for the light fields, as given by

V = ±
∑

i

1

64π2
M4

i (ln
Λ2

M2
i

+
3

2
), (A.15)

where the sum is over all degrees of freedom. The sign is positive for fermions and

negative for bosons. At one loop the Yukawa couplings, gauge couplings and Higgs

self-couplings all contribute separately to the sum, simplifying the calculation. For

simplicity, we will work in the context of a model where the symmetry breaking

pattern is realized linearly, by the terms

η(|H|2 − f 2)2 + η̂(|Ĥ|2 − f̂ 2)2. (A.16)

We begin by considering the loop contributions from the self-couplings of the

scalar fields. Obviously, there can be no η or η2 contribution to the potential of

Goldstone bosons since all vertices in the relevant diagrams preserve SU(4). Hence,

these diagrams will only correct η, a free parameter. Also, to one-loop, the diagrams

with one mismatched quartic and one SU(4) invariant quartic (ηλ contribution) will

only generate corrections to η and λ, both free parameters. This can be understood

by the observation that

λ(|(HT
Rτ2ĤR)|2 + |(H†

LĤL)|2) (A.17)

= λ|H†
LĤL + H†

Riτ2Ĥ
∗
R|2 + λ|H†

LĤL − H†
Riτ2Ĥ

∗
R|2.

The first operator is invariant under an SU(4), which is also preserved by η, if

we arrange Ĥ = (ĤL, iτ2ĤR). The same holds for the second if we arrange Ĥ =

(ĤL,−iτ2ĤR). At one loop, the four-point diagrams that include the SU(4) invariant

quartic can only include one of these operators and thus are invariant under the

corresponding SU(4). Hence, the combination of the operators above will only

correct the tree level parameters η and λ. Therefore, when computing the one loop

radiative corrections to quartic terms in the Higgs potential, we can ignore the SU(4)

invariant term given in eq. (A.16).

The effective potential may however contain operators of higher dimensionality

involving η arising at one loop, but these operators will make only a finite contribu-

tion to the potential of the pseudo-Goldstone bosons. We will therefore neglect this
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contribution in our analysis. As mentioned in the previous section, new quadratic

contributions could arise from the combination of the quartics above and the U(1)

gauge coupling at the three loop level, which we will also ignore.

The vev that preserves U(1)EM can be written as

〈H〉 = f















0

i sin x

0

cos x















〈Ĥ〉 = f̂















0

i sin x̂

0

cos x̂















(A.18)

Expanding the tree level Higgs potential given in eq. (A.6) and keeping only the

mass terms we find

λ {|f̂ cos x̂HR1 − f cos xĤR1|2

+ |f sin xĤL2 − f̂ sin x̂H∗
L2|2

+ ff̂ sin x sin x̂(H†
LĤL + h.c.)}. (A.19)

For the right-handed fields, obviously three of them are massless and the last one

has mass squared λ(f̂ 2 cos2 x̂+ f 2 cos2 x). For the left-handed fields, the eigenvalues

are ±λff̂ sin x sin x̂, λf 2 sin2 x, λf̂ 2 sin2 x̂ and

1

2
λ(f̂ 2 sin2 x̂ + f 2 sin2 x)

±
√

f 4 sin4 x + f̂ 4 sin4 x̂ + 14f̂ 2f 2 sin2 x sin2 x̂.

It is now clear how the quadratically divergent mass terms for the pseudo-

Goldstone bosons vanish. The quadratic terms in the one-loop CW potential are

proportional to
∑

i M
2
i . From the masses given above, the trace is not zero but

independent of x and x̂, which are the two Higgs fields.

Note the presence of a negative mass squared. Once we add soft mass terms

(eq. (A.26)), this and all other masses can be made positive.

We now turn our attention to contributions arising from the top Yukawa cou-
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pling. The masses of fermions in the top quark sector are given by

1

2
(f 2 + M2 ±

√

(f 2 + M2)2 − 4M2f 2 sin2 x)

1

2
(f 2 + M2 ±

√

(f 2 + M2)2 − 4M2f 2 cos2 x), (A.20)

where we have imposed a left-right symmetry to the soft masses, so ML = MR = M .

Again, the sum of M2
i is independent of x.

Finally, we turn our attention to the gauge sector. The masses of the gauge

bosons are

m2
WH

=
g2
2

2
(f 2 + f̂ 2) − m2

W

m2
ZH

≈ g2
1 + g2

2

2
(f 2 + f̂ 2) − 2g2

1 + g2
2

g2
1 + g2

2

m2
W . (A.21)

To quadratic order, the CW potential is

V
(1)
2 = v2(Va + Vb cos2 β), (A.22)

where

Va =
1

32π2

{3

2
g4
2(f

2 + f̂ 2)(ln
Λ2

m2
WH

+ 1)

+3
2g2

1 + g2
2

4
g2
2(f

2 + f̂ 2)(ln
Λ2

m2
ZH

+ 1)

+2λ2(f 2 + f̂ 2)(ln
Λ2

λ(f 2 + f̂ 2)
+ 1)}, (A.23)

Vb =
1

32π2
12y2 M2

y2f 2 − M2

(y2f 2 ln
y2f 2 + M2

y2f 2
− M2 ln

y2f 2 + M2

M2
) (A.24)

and

v sin β = f sin x, v cos β = f̂ sin x̂. (A.25)
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To align the direction of the electro-weak symmetry breaking, we add the fol-

lowing soft mass terms

V (0) = m2H†
LHL + m̂2Ĥ†

LĤL

+ µ2(H†Ĥ + h.c.). (A.26)

The first two terms, which are invariant under a global SU(2) × SU(2) symmetry,

are introduced to tune the scale of electro-weak symmetry breaking. These two

terms do not involve the HRs and are thus insensitive to the alignment of the two

vevs. To make sure that the vevs are properly aligned, the last term proportional to

µ2 is needed. For large and negative µ2, the alignment of the vevs is guarantied, or

equivalently, the squared masses of all the scalar fields in HL and ĤL are positive.

We will take this into account when we analyze the potential numerically later in

this section.

Together with the SU(4) breaking quartic term given in eq. (A.6), the tree level

potential is given by

V (0) = λv4 cos2 β sin2 β

+ v2(m2 sin2 β + m̂2 cos2 β + 2µ2 sin β cos β)

+ 2µ2ff̂
√

A (A.27)

where A = (1 − v2

f2 sin2 β)(1 − v2

f̂2
cos2 β).

We now minimize the potential V = V (0)+V
(1)
2 to find v and sin β. The potential

V has the form

V = v2(a + b sin2 β + 2µ2 cos β sin β)

+ λv4 cos2 β sin2 β, (A.28)

where

a = m̂2 − µ2f

f̂
+ Va

b = m2 − m̂2 − µ2

ff̂
(f̂ 2 − f 2) + Vb. (A.29)
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After minimization, we find

sin2 β =
a

2a + b

v2 = −2a + b

λ
(1 +

µ2

√

a(a + b)
). (A.30)

The fine tuning is about 13% for f̂ = 2.0 TeV and about 18% for f̂ = 1.6 TeV,

with the feature that λ is much less than 1. Unfortunately, this is not significantly

better than the original twin model. Notice that a mass squared is generated at

loop level proportional to f̂ 2λ2 (See eq. (A.23)). Since f̂ must be greater than 1.6

TeV to evade the bound from direct Z ′ and W ′ gauge boson searches [17], the f̂ 2λ2

contribution to the mass squared could be large if we push λ too high, which will

tend to increase fine tuning. Thus, a small λ is preferred. However, with a smaller

λ, we should account for the one-loop contribution to the quartic, since it may no

longer be negligible. The largest loop contribution to the quartic is from the top

Yukawa and is given by

V
(1)
4 = λtv

4 sin4 β, (A.31)

where

λt =
3

16π2
y4M4

m4
T

{

ln
m2

T

m2
t

− 1

2
(A.32)

+ (
m2

T

2M2 − m2
T

)3 ln
M2

m2
T − M2

− 2(
m2

T

2M2 − m2
T

)2

}

and

m2
T = M2 + y2f 2, m2

t =
M2

m2
T

y2v2 sin2 β. (A.33)

After adding eq. (A.31) to eq. (A.28) and repeating the analysis above, we find

that a fine tuning of about 30% is easily achieved. Selected points are shown in

table (A.1).

A.4 Mirror Model

As far as addressing the little hierarchy problem, the mirror twin Higgs model with

a tree level quartic [8] provides an improvement over the original mirror model.
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Λ(TeV) f (GeV) f̂ (TeV) ML,R(TeV) mh(GeV) sin2 β Tuning
10 800 1.6 4 150/233 0.54 0.30 (y)

10 800 3.5 4 150/236 0.54 0.10 (f̂)
20 1600 1.6 4 163/213 0.66 0.11 (M)
10 800 1.6 10 147/266 0.51 0.19 (y)
5 800 1.6 4 150/233 0.54 0.30 (y)

5 800 3.5 4 150/236 0.54 0.16 (f̂)
10 1600 1.6 4 163/213 0.66 0.11 (M)

Table A.1: A summary of the Higgs mass and fine tuning, ∂ logM2
Z/∂ logf 2, for

sample points of parameter space. The two values of mh correspond to the masses
of the two neutral Higges. The most fine tuned parameter at each point is shown
in the parenthesis. At these points, the other parameters are µ2 = −(150 GeV)2,
λ = 0.5 and y =

√
2.

However, as shown in section II, in this theory the mirror photon is necessarily

massive. As a consequence, this theory has difficulty in explaining the absence

of a mirror electron relic density. In the absence of a massless mirror photon,

electrons cannot efficiently annihilate to photons. We now show that using the

same mechanism that was discussed in the previous section, this difficulty can be

avoided.

The gauge group in the mirror model is SU(2)A × U(1)A × SU(2)B × U(1)B

which is a subgroup of the global U(4) symmetry. The scalar fields are H and Ĥ

which have the same charge under the gauge group. The top sector is just the SM

top Yukawa plus its twin counter part.

Ltop = y(HT
L τ2QLtR + HT

Rτ2QRtL) (A.34)

We now calculate the CW potential in this model. The masses of heavy gauge

bosons are

m2
WH

=
g2
2

2
(f 2 + f̂ 2) − m2

W

m2
ZH

=
g2
1 + g2

2

2
(f 2 + f̂ 2) − g2

1 + g2
2

g2
2

m2
W . (A.35)

For the top sector, up to finite terms which do not significantly alter the fine tuning,

we can just take M = Λ to produce the results that correspond to the non-SU(4)
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invariant top sector. For the Higgs potential, we add the same tree level potential as

given in eq. (A.6). The CW potential due to this tree level potential is exactly the

same as that obtained in our previous analysis on the left-right model. To quadratic

order, the potential is

V
(1)
2 =

v2

32π2

{ 3

2
g4
2(f

2 + f̂ 2)(ln
Λ2

m2
WH

+ 1) (A.36)

+
3

4
(g2

1 + g2
2)

2(f 2 + f̂ 2)(ln
Λ2

m2
ZH

+ 1)

+ 2λ2(f 2 + f̂ 2)(ln
Λ2

λ(f 2 + f̂ 2)
+ 1)

− 12y4f 2 sin2 β(ln
Λ2

y2f 2
+ 1)}.

The one-loop quartic from the top sector is

V
(1)
4 =

3

16π2
y4[ln

Λ2

m2
t

+ ln
Λ2

m2
T

+
3

2
]

where

m2
T = y2f 2 , m2

t = y2v2 sin2 β. (A.37)

We then analyze the effective potential given by V = V (0) + V
(1)
2 + V

(1)
4 as in the

previous section. The fine tuning for this model is shown in table (A.2). We see

that the results represent an improvement over the mirror model. We expect that

further enhancement may be obtained by making the top Yukawa coupling SU(4)

invariant as in [6], but we leave this for further work.

A.5 Conclusion

We have constructed a twin Higgs model based on left-right symmetry with an order

one tree level quartic for the light Higgs. The structure of the electroweak symmetry

breaking is similar to that of two Higgs doublet model. We analyzed the model and

showed electroweak symmetry breaking can happen naturally. For f̂ = 1.6 TeV,
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Λ(TeV) f = f̂ (GeV) λ mh(GeV) Tuning
10 800 0.5 178/213 0.16 (y)
10 800 1 183/213 0.21 (y)

Table A.2: A summary of the Higgs mass and fine tuning, ∂ logv2/∂ logf 2, for
sample points of parameter space. The two values of mh correspond to the masses
of the two neutral Higges. The most fine tuned parameter at each point is shown
in the parenthesis. At these points, the other parameters are µ2 = −(150 GeV)2,
y = 1.2 and sin2 β = 0.69.

which is the lower bound from the direct searches on heavy gauge bosons, the fine

tuning is found to be about 30% for Λ = 10 TeV. The bound on f̂ gets stronger if we

also require the left-right symmetry on the first two generation quarks. The K0-K̄0

mixing puts a very strong constraint on the mass of WH which require f̂ > 3.5 TeV

[18]. In that case, the fine tuning is found to be about 10%.

The phenomenology of the model introduced in section II and III is not signif-

icantly different from that of the original left-right twin Higgs model[22, 20, 21].

The extra quarks introduced to complete the SU(4) multiplet could have masses of

about 4 TeV which is difficult to observe at the LHC. Among these extra quarks

there are some with electric charge Q = −1/3. These new down-type fermions in

the model might have sizable contributions to the D0 − D̄0 mixing depending on

their masses[22]. The current experimental bound can be used to put a bound on

the parameter M in the model. Another difference is that the parity we introduced

to make the ĥL stable, under which ĤL is odd and all other fields are even, is here

softly broken by the term H†
LĤL in eq. (A.26). Hence, ĤL is no longer a dark

matter candidate and will be produced and decay just like all other scalars in the

model. The phenomenology of the scalar sector of the original LRTH model has

been studied in ref. [22, 21]. Most of these studies have focused on the scalars in

the ‘right-handed’ HR and ĤR since all other scalars in the ‘left handed’ sector other

than the SM Higgs do not interact directly with fermions. In both of our new mod-

els, for the same reason that ĤL is no longer stable, all scalars in the ‘left-handed’

sector can interact with fermions and will behave just like the scalars of two Higgs

doublet model. This new phenomenon, probably in combination with some others,
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may be used to test the tree level quartic coupling introduced in these twin Higgs

models. We leave these studies for future work.

In summary we have shown how to incorporate a tree level quartic into the left-

right twin Higgs model, leading to a substantial improvement in fine-tuning. We

have further applied this mechanism to the mirror twin Higgs model and established

that the fine tuning is about 20% for a 10 TeV cutoff scale.
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ABSTRACT

We study the collider signatures of the left-right twin Higgs in the limit that the

right-handed neutrino mass is less than the mass of the right-handed gauge boson. In

this limit new leptonic decay chains open up, allowing the particles which cancel the

one-loop quadratic divergences of the Higgs, the right-handed gauge bosons and top-

partners, to be discovered. Half of these events contain same-sign leptons without

missing energy, which have no genuine standard model background and therefore

the backgrounds are purely instrumental. These signals may be used to complement

other collider searches, and in certain regions of parameter space, may be the only

way to observe the particles responsible for natural electroweak symmetry breaking

in the left-right twin Higgs.

B.1 Introduction

The standard model (SM) with a fundamental Higgs field suffers from an extreme

sensitivity to short distance physics. If the cutoff of the SM is taken to be the

Planck scale, this sensitivity leads to a tremendous fine tuning of the dimensionful

parameters in the Higgs potential and a large hierarchy between the weak and Planck

scales. If the cutoff of the SM is taken to be about 5 TeV, the minimum allowed

by precision electroweak data, an unnatural adjustment of parameters persists and

results in a “little hierarchy” [1]. This fact implies that new physics should exist at

the TeV scale which is responsible for resolving the little hierarchy problem. This is

an interesting observation as the Large Hadron Collider (LHC) at CERN has been
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built with the aim of detecting particles with TeV scale masses. Therefore, new

physics that is tightly connected to the nature of electroweak symmetry breaking

is expected to be within the reach of the LHC. The nature of the new physics

that cures the hierarchy problem, or the little hierarchy problem if the ultraviolet

cutoff is taken to be less than 5 TeV, is highly constrained. Electroweak precision

measurements have imposed very strong bounds on any new physics around a TeV.

These constraints pose a great challenge to designing models meant to address the

little hierarchy problem.

One class of theories that address the little hierarchy problem is the little Higgs

[2, 3, 4]. In these models, the SM Higgs doublet is a pseudo-Nambu-Goldstone

boson (NGB) of some spontaneously broken approximate global symmetry in which

the SM SU(2) electroweak symmetry is embeded [5, 6]. The Higgs mass vanishes at

tree level due to shift symmetry, but will be generated by radiative corrections when

interactions that break the global symmetry, such as gauge and Yukawa interactions,

are included. At one-loop, the Higgs mass is protected by multiple approximate

global symmetries, which together mimic the full global symmetry. A mass for the

Higgs can only be generated at 2-loops than one vertex is involved and the global

symmetry is collectively broken. Therefore the Higgs mass is generated at two loops

and is only logarithmically sensitive to UV physics. This class of models is able to

stabilize the elctroweak scale against the UV cutoff up to a scale of about 5 - 10

TeV.

Another class of theories that solves the little hierarchy problem by identifying

the Higgs as a pseudo-NGB are twin Higgs models [7, 8, 9]. Instead of protecting the

Higgs mass from receiving large radiative corrections by using several approximate

global symmetries, twin Higgs theories use a discrete symmetry in combination with

an approximate global symmetry to eliminate the quadratic divergences that arise at

loop level. Together with the gauge symmetries of the model, the discrete symmetry

mimics the effect of a global symmetry, thus stabilizing the Higgs mass.

In the left-right Twin Higgs model [8], the SM gauge symmetry is extended

to SU(2)L × SU(2)R × U(1)B−L, which is embedded into a global U(4) symme-
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try. The Higgs arises as a pseudo-Nambu-Goldstone boson (PNGB) when U(4) is

spontaneously broken to U(3). An additional Z2 “twin symmetry” ensures that the

quadratic terms in the Higgs potential have an accidental U(4) symmetry. Since

U(4) invariant terms cannot contribute to the potential for the Goldstones, the

Higgs is protected from receiving quadratically divergent contributions to its mass

parameter. To evade precision electroweak bounds on SU(2)R gauge bosons with-

out significantly affecting naturalness, an additional Higgs field Ĥ is introduced

that transforms as a fundamental under a new global U(4). This addition makes

the global symmetry of the theory U(4) × U(4). The new global symmetry does

not significantly alter the form of the SM Higgs potential, allowing electroweak

symmetry breaking to still happen naturally.

To identify the twin mechanism it is important to observe the heavy top quark

partner TH and the right-handed gauge boson WR. For a reasonable choice of

parameters, the most straightforward way to observe both of these particles involves

decays of the heavy top quark, which has a channel containing final state leptons

that can be used as a trigger. It may be possible to reconstruct these events and

observe the heavy top quark at the LHC [10]. However, this decay channel depends

on a free parameter M , which could be very small or zero. In this limit, the heavy

top quark can only decay hadronically [10], making these particles very difficult to

observe at the LHC due to the large QCD background.

In this paper, we study an alternative way to observe the heavy top quark and

the right-handed gauge boson WR. If a TeV scale right-handed Majorana neutrino

is realized in the left-right twin Higgs such that mνR
< mWR

, new leptonic channels

open up that may allow detection of WR and TH at the LHC. Moreover, because

the right-handed neutrino is Majorana, half of these decays are lepton number vio-

lating same-sign dilepton events without missing energy, which has no genuine SM

background. If M is small or zero, these lepton number violating signals may be

the only way to observe the heavy top quark and WR at the LHC.

This paper is organized as follows: In section II, we review the left-right twin

Higgs model and discuss its phenomenology in the decoupling case where the pa-
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rameter M is set to zero. In section III, we implement neutrino masses into the

model and discuss constraints on a TeV scale right-handed neutrino. We study the

collider phenomenology of the model in section IV, focusing on searches for WR and

the heavy top partner TH . We then conclude in section V.

B.2 Left-right Twin Higgs model

B.2.1 Matter Content

The fermionic content of left-right twin Higgs model is three generations of

QL = (u, d)L = (2,1,1/3) LL = (ν, e)L = (2,1,−1)

QR = (u, d)R = (1,2,1/3) LR = (ν, e)R = (1,2,−1) (B.1)

where the square brackets indicate the quantum numbers of the corresponding fields

under the SU(2)L×SU(2)R×U(1)B−L gauge symmetry of the theory. We see that in

addition to the SM fermions the theory includes right-handed neutrinos as required

by left-right symmetry. There are two sets of Higgs fields which have quantum

numbers [11, 12]

HL = (2,1,1) HR = (1,2,1)

ĤL = (2,1,1) ĤR = (1,2,1) (B.2)

The reason for introducing the extra set of Higgs fields Ĥ is to satisfy precision

electroweak constraints on SU(2)R gauge bosons. These constraints require the

symmetry breaking scale f of SU(2)R to be larger than about 2 TeV [13]. However,

for this value of f , contributions to the Higgs potential from the top sector are very

large since the top Yukawa is order one. This effect tends to reintroduce fine tuning

to the model, destabilizing the weak scale. By adding an additional Higgs field Ĥ,

which acquires a vev 〈Ĥ〉 = f̂ ∼ 2 TeV and does not couple to fermions, precision

electroweak constraints on SU(2)R gauge bosons can be satisfied without affecting

the top sector. This arrangement can be justified by imposing a discrete symmetry

under which Ĥ is odd while all other fields are even. This symmetry allows ĤL to
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be stable, making it a natural dark matter candidate. It has been shown that this

can account for the observed relic abundance of dark matter [14].

The Higgs potential is assumed to have an approximate U(4) × U(4) symmetry

of which the SU(2)L × SU(2)R × U(1)B−L sub-group is gauged. After breaking

the global U(4) and the gauged SU(2)R symmetries, the SM Higgs doublet, which

is among the NGBs, has no potential at tree level. However, a potential for the

Higgs potential will be radiatively generated at one loop. In this scenario, both

the mass and the quartic coupling of the Higgs are loop suppressed. To further

reduce fine tuning, a tree level Higgs quartic can be introduced without generating

a corresponding tree level mass term for the Higgs, as discussed in [9]. Since the

Higgs potential is not relevant to our discussion of neutrino masses or collider signals,

we shall not go into a detailed discussion of the Higgs potential.

The down-type Yukawa couplings of the SM emerge from non-renormalizable

couplings of the form
(

QRHRH†
LQL + LRHRH†

LLL

Λ

)

+ h.c. (B.3)

The up-type Yukawa couplings of the SM emerge from non-renormalizable couplings

of the form
(

QR H†
RHLQL + h.c.

Λ

)

. (B.4)

When the field HR acquires a VEV of order f breaking SU(2)R ×U(1)B−L down to

U(1)Y , these non-renormalizable couplings reduce to the familiar Yukawa couplings

of the SM. Unfortunately, this method of generating SM Yukawa couplings does not

work well in the top sector since the top Yukawa coupling is order one. This problem

is remedied by introducing the following vector like quarks, which transform as

TL = (1,1,4/3) TR = (1,1,4/3) (B.5)

under SU(2)L × SU(2)R × U(1)B−L. We can then write the following left-right

symmetric interactions

(

yQRH†
RTL + yQLH†

LTR + MTLTR

)

+ h.c. (B.6)
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The right-handed top quark of the SM then emerges as a linear combination of TR

and the third generation up-type quark in QR, while the orthogonal linear combi-

nation is heavy. Provided M . f and y is of order one the physical top Yukawa will

then also be of order one.

The parameter M controls the mixing of the left-handed top with the SU(2)L

singlet TL, and is therefore constrained by Z → b b̄. However, nothing prevents M

from simply being set to zero and therefore this is not a particularly tight constraint.

However, the collider phenomenology of this model will depend on the size of this

parameter. As we will see below, when M is small, with M = 0 as a extreme case of

this scenario, the heavy top becomes difficult to observe in a hadron collider since

it decays dominantly into an all jet final state.

B.2.2 Phenomenology

The left-right twin Higgs contains many new particles which may be observable at

the LHC. The new particles include the right-handed gauge bosons WR and ZR, a

heavy top quark TH , a right-handed neutrino N , and the Higgses ĥT = (ĥ+, ĥ0), φ±

and φ0. The gauge boson masses depend on the larger vev f̂ and range from about

1 - 4 TeV, while the heavy top is typically lighter, ranging from 0.5 - 1 TeV. The φ0

mass depends on a free parameter in the theory, but is usually taken to be about

100 GeV. The charged Higgs φ± mass ranges from about 200 - 400 GeV, while the ĥ

mass ranges from about 300 GeV to 1 TeV. The right-handed neutrino mass arises

from the operator

(LRĤRĤRLR + LLĤLĤLLL)

Λ
(B.7)

and is of order f̂ 2/Λ, which is about 1.5 TeV for f̂ ∼ 4 TeV and Λ ∼ 10 TeV. We

will have more to say about neutrino masses in section B.3.

What are the collider signatures of this model? The ZR decays to leptons pro-

viding a very clean signal, which may be observable at the LHC [10]. Detection

of WR however, is more subtle. For now assume that mνR
> mWR

and leptonic

decays of the WR are kinematically forbidden. This was the scenario studied in [10].
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b
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W ∗
R

TH

lR, q

νR, q̄

Figure B.1: Possible decays of the heavy top in the limit that M = 0.

In this case, the WR decays a large fraction of the time (20% - 30%) to a heavy

top and a b-jet [10]. Therefore the discovery potential of both the heavy top and

WR depend critically on how the heavy top decays. The heavy top is produced in

association with a b-quark, with a production cross section of about 500 fb [10].

For a reasonable choice of M = 150 GeV, TH decays most often to φ±b [10]. For

this value of M , the φ± then decays mostly to tb. It is then possible to trigger on

the leptonic decay of the top, giving the following decay chain

TH → φ±b → tbb → Wbbb → lνbbb. (B.8)

This scenario has been studied and shown to be detectable at the LHC with total

luminosity of 10 fb−1 [10].

M = 0: The Dark Side of the Model

The discussion above was for mνR
> mWR

and for a small but reasonable value of

M = 150 GeV. In this case, the decay of the heavy top had a leptonic final state,

which could be used as a trigger. However, the phenomenology changes significantly

when M is very small, less than about 10 GeV. The crucial difference in this case is

the decay of φ±, which previously decayed to a SM top quark which then decayed

leptonically. When M = 0, the φ± decays purely to charm and strange, leading to

an all jet final state for heavy top decay.

The reason φ± does not decay to the SM top quark can be understood as follows.

If φ± is thought of as the charged component of HR, then φ± couples directly only
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to bR and TL, which in the limit that M = 0 are identified as the right-handed SM

b quark and the left-handed heavy top, respectively. When M 6= 0, mixing between

TL and TR induces a coupling to the SM top quark that is proportional to M/f for

M << f . Therefore, in the limit M → 0, φ± cannot decay to a SM top quark.

What about other decay channels for TH? Two other decay channels are possible

and are shown in Fig. B.1. In the first decay channel, φ± will dominantly decay

to qq̄ because the leptonic decay channel is suppressed by the neutrino Yukawa

coupling constant. In the second decay channel, νR is kinematically unavailable and

therefore the leptonic channel is only available through an off shell νR, which is highly

suppressed. Therefore, in the limit that M → 0, TH can only decay hadronically,

leading to an all-jet final state for heavy top decay. Detection of the heavy top

at the LHC then becomes difficult. In this scenario, the model may become one

of those in which the true mechanism of natural electroweak symmetry breaking is

beyond the reach of the LHC.

Since the small M parameter space is large, technically natural, and does not

affect the twin mechanism, it is important to examine this possibility more closely.

The hope lies in the size of right-handed neutrino mass relative to the mass of the

WR. If mνR
< mWR

, leptonic decay channels of the heavy top open up and provide

a way to observe the heavy top partner that is independent of the parameter M .

As a preliminary, we discuss neutrino mass generation in the left-right twin Higgs

model in the next section.

B.3 Neutrino Mass Seesaw at the TeV Scale

There is more than one way to implement neutrino mass in the left-right twin Higgs

model. For a detailed study of neutrino mass generation in this context, see [15].

If lepton number is a good symmetry of the theory, the neutrino masses must be

Dirac. In this case, the smallness of the neutrino masses can be understood purely

as a result of their small Yukawa couplings. If lepton number is not conserved, the

neutrino masses can be Majorana. In this case, the lightness of the SM neutrinos
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can be understood as a result of the seesaw mechanism [16]. We will assume that

left-right symmetry is exact in the neutrino sector as in all other sectors of the

model. The most general collection of operators that generate neutrino masses are

the following: Dirac neutrino masses arise from the operators

yνLRH†
RHLLL/Λ + h.c. → yν

fv

Λ
ννR + h.c. (B.9)

= mD ννR

while the operators

y1(LRĤRĤRLR + LLĤLĤLLL)/Λ + h.c. → y1
f̂ 2

Λ
νRνR + h.c. (B.10)

y2(LRHRHRLR + LLHLHLLL)/Λ + h.c. → y2(
f 2

Λ
νRνR +

v2

Λ
νLνL) + h.c.

(B.11)

generate Majorana masses for the right-handed neutrinos νR and the left handed

neutrinos νL. One possibility is that we assume lepton number is not violated. In this

case, the operators in eq. (B.10) and eq. (B.11) are not present. The light neutrinos

ν = (νL, ν̄R) are Dirac fermions and the small neutrino masses are just the result of

small Yukawa couplings, which are around 10−12. The other possibility is that light

Majorana neutrinos are generated through a TeV scale seesaw mechanism. If we

no longer assume lepton number conservation, all the operators above are allowed.

This allows the SM neutrinos to obtain a Majorana mass of the right size if the

coupling constant yν is ∼ 10−5, which is of order the electron Yukawa coupling.

The Dirac neutrino case is straightforward and free of constraints, but the Ma-

jorana neutrino case is more subtle. Since the operator in eq. (B.11) gives both νR

and νL a Majorana mass, this term should be small, i.e. y2 < 10−11. To achieve

a seesaw with Yukawa couplings of order SM Yukawa couplings, the first term is

necessary with y1 ∼ O(1). We will follow this possibility from now on, and assume

y2 = 0. A Z4 symmetry where H is neutral may be used to justify this possibility.
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B.3.1 Constraints on Majorana Right-handed Neutrinos

Right-handed neutrinos with masses of order a TeV have recently been studied by

several authors [17]. What are the constraints on right-handed neutrinos? There

are severe constraints on light degrees of freedom from BBN. However, particles

that are heavier than an MeV which do not decay in the era of BBN are completely

free of this constraint. Another bound comes from tritium decay, but that also only

constrains light particles with masses less than about an MeV. There are stronger

restrictions on massive right-handed neutrinos from precision measurements of Z-

decay and single νR production [18, 19]. However, we will only consider right-handed

neutrino masses of order a few hundred GeV, which are free from these constraints.

If the right-handed neutrino is Majorana, the most stringent bound on its mass

is from neutrinoless double beta decay [20, 21]. The bound can be approximately

expressed as
mνR

p2 − m2
νR

∏

i=1,2

Vi,qVi,l

g2
2

(

m2
W

m2
xi

)

≤ eV

p2
, (B.12)

where mxi are masses of the particles that mediate beta decay and Vi,q and Vi,l are

the corresponding couplings to quarks and leptons, respectively. p is the typical

energy exchanged in the process, which is of order 100 MeV. For example, in an

extension of the SM with only right-handed neutrinos and the seesaw mechanism,

xi = W± and the couplings are Vi,l = g2δss where δss is the seesaw mixing factor,

δss ∼ mD

mνR

∼
√

mν

mνR

. For a TeV scale right-handed neutrino, δss ∼ 10−7. In

general, several diagrams may contribute to neutrinoless double beta decay and

various parameters will be constrained by experiment. For the left-right twin Higgs,

the diagrams with standard model W exchange will involve the seesaw mixing factor

and therefore are much more suppressed than those with WR exchange which, are

only suppressed by the mass of the WR. Other subdominant diagrams with charged

Higgs exchange will also be suppressed. The contribution from WR to neutrinoless

double beta decay therefore leads to the tightest constraint. Using the experimental

bound given in eq. (B.12), we find

mνR
m4

WR
≥ 0.4 TeV5. (B.13)
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The lower bound of the right-handed neutrino mass is then

mνR
≥ 60

(

1.6 TeV

mWR

)4

GeV, (B.14)

which is well below the range of mass we will be considering. We will from now on

treat the neutrino mass mνR
as a free parameter ranging from 500 - 1500 GeV and

study its collider phenomenology.

B.4 M = 0 Phenomenology

The phenomenology of the left-right twin Higgs has been studied by many authors

[10, 22]. We will focus on the limit where the top mixing parameter M is set to zero.

When M = 0 and the right-handed neutrino is heavier than WR, some of the new

particles including WR and heavy top partner TH are difficult to detect because their

decay channels are dominated by hadronic final states. Here we consider the limit

when the right-handed neutrino mass is less than the mass of WR. The search for

WR will then be much more effective due to the opening of leptonic decay channels.

Even better, the leptonic decay has a 50% chance of violating lepton number due to

the Majorana nature of νR. The same advantages will also apply to TH , but these

searches depend on the mass of νR relative to the mass of TH . There are the two

possibilities: (i) mνR
< mTH and (ii) mνR

> mTH
, which we consider separately. In

the following analysis we choose the following typical parameter set: f = 800 GeV,

which implies f̂ ≈ 4 TeV, mWR
≈ 1.9 TeV and TH ≈ 780 GeV for a reasonable choice

of soft parameters. A different choice of soft parameters will lead to a different set

of masses, so these are not strict mass relations. However, this will not qualitatively

affect our conclusions. Let us begin with a discussion of the search for WR, which

can be done independently from TH .

B.4.1 WR Search

The WR is dominantly produced via a Drell-Yan process and subsequently decays

leptonically to νR + l± with a branching fraction of about a 10% . νR then decays to
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p
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l±

νR
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Figure B.2: Diagrammatic view of WR production and its lepton number violating
decay channel.

l±+X through an off shell WR or an on shell charged Higgs φ±, as shown in Fig. B.2.

Here X represents any number of final state jets. Due to the fact that φ± only decays

hadronically and the leptonic decays of the off shell WR are kinematically forbidden,

X cannot contain any leptons. As argued in the section B.2.2, this is precisely why

the heavy top decays purely hadronically in the decoupling limit when νR is heavier

than WR. Since νR is Majorana, half of these events will contain same sign leptons.

The signal is therefore same-sign dilepton l±l±X events without missing energy,

which has no genuine SM background.

The production cross section at the LHC of νR + l±, where l = e, µ, is shown

in Fig. B.3 as a function of the right-handed neutrino mass mνR
. Half of these

events will be same-sign dilepton lepton events without missing energy. For exam-

ple, if mνR
= 1 TeV, the production cross section is about 300 fb, which leads to

approximately 4500 same sign dilepton events with 30 fb−1 of total luminosity. The

invariant mass distribution of all the final state particles should provide a clear sig-

nal of WR. Furthermore, the invariant mass distribution of the jets plus one lepton

should provide a signal of νR.

As mentioned above, there is no genuine SM background for the same sign lepton

signal and so the background at the LHC is purely instrumental. This mostly arises

from a mismeasurement of missing energy and/or lepton’s charge. The misiden-

tification of the lepton’s charge is expected to be around a few percent and the
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resolution of measuring missing energy is about a few tens of GeV [23]. The dom-

inant SM background for l±l±jj is pp → W±W±W±, which is about 0.04 fb after

making suitable cuts. [17]. We do not expect these cuts to reduce the lljj signal

and therefore the background should be less than 0.04 fb. Therefore, in this sce-

nario it should be possible to observe the right-handed gauge boson WR and the

right-handed neutrino νR at the LHC.
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Figure B.3: The left plot shows the production cross section of the right handed
neutrino νR + l± with an associated lepton (e± or µ±) as a function of mνR

. The
right plot shows the production cross section of the heavy top TH through the decay
of νR in association with same-sign leptons (e± or µ±) as a function of mνR

.

B.4.2 TH Search: mνR
> mTH

In this case, TH decays solely to b+φ± and results in an all jet final state. However,

TH can also be produced by the decay of νR through an off shell WR. The process

is

pp → lνR → llbTH → llbbjj (B.15)

with the cross section

σ(pp → TH llb) ≈ σ(pp → νRl±) × Br(νR → l±THb), (B.16)

which is a few fb, as shown in Fig. B.3. By requiring that the leptons be of the same

sign and b tagging, it should be possible to separate these events from background
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at the LHC. The invariant mass distribution of the two jets plus one b-jet should

provide a signal of TH .

As with the same sign lljj signal, the background for same sign pp → llbbjj is

purely instrumental. Since the background for the lljj final state can be reduced

to less than 0.1 fb, we expect the llbbjj background to be smaller than 0.1 fb.

Therefore, it should be possible to detect the heavy top partner TH at the LHC,

provided that mνR
> mTH

.

B.4.3 TH Search: mνR
< mTH

To observe the leptonic decays of the heavy top in this case, we must look for the

decays of TH to νR. Once produced via WR decay, TH can decay to νR + b + l±

through an off shell WR. However, there is another decay channel which does not

involve νR, TH → φ±+b. As discussed above, φ± decays to jets, so the signal is either

pp → llbbjj or pp → bbjj. The cross sections for these processes are determined by

the partial decay width of TH to these channels

ΓTH→νRl±b ∼ 10−5 GeV

ΓTH→bφ± ∼ 3 GeV. (B.17)

As expected, the two-body decay dominates the decay width, making the branching

fraction Br(TH → νRbl±) very small. The cross section for pp → THb → bblljj is

then about 10−3 fb, which is too small to be observed at the LHC. Therefore, in

this case it will not be possible to detect the heavy top partner TH .

B.5 Conclusion

In summary, we have shown that a TeV scale right-handed neutrino in the left-right

twin Higgs model leads to interesting lepton number violating signatures for WR

and TH at the LHC, provided that mνR
< mWR

. Lepton number violating decays

of right-handed WR should be observable provided that WR and νR are not nearly

degenerate. Detection of the heavy top is possible if mνR
> mTH

. These signals may
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be used to complement other collider searches for WR and TH . In the limit that

M → 0, these signatures may be the only way to observe the particles responsible

for natural electroweak symmetry breaking in the left-right twin Higgs.
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