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Abstract

We are entering an exciting era in gravitational wave (GW) astrophysics, with up-
coming space-based detectors like LISA set to explore the millihertz frequency band
enabling the detection of low-frequency sources such as massive black hole (MBH)
binaries and intemediate/extreme mass-ratio inspirals (I/EMRIs), offering unprece-
dented insights into the astrophysics of galaxy evolution and fundamental physics.
Realizing the full potential of these observatories requires significant advances in
computational modeling. This thesis develops and applies advanced numerical tech-
niques, particularly fast multipole methods (FMM) in N-body simulations, to study
the merger dynamics of massive black hole (MBH) binaries in nuclear star clusters
(NSCs). I investigate how collisional relaxation and mass segregation within NSCs
influence binary hardening timescales, and how NSCs affect the orbital evolution of
MBH seeds in post-merger galaxies, where dynamical friction may be inefficient, lead-
ing to long delays in binary formation and merger. I also explore whether GWs can
probe dark matter distributions by analyzing dephasing effects caused by dark mat-
ter spikes around intermediate-mass black holes. Finally, I present proof-of-concept
improvements to Hamiltonian splitting integrators, assessing the performance of a
fully GPU-resident N-body implementation as a step toward future high-performance
FMM-based GW source modeling frameworks.
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lated using FMM is compared to that produced by the Fokker–Planck
code at different times during evolution until core collapse. The di-
vergence between the codes at larger radii is caused by the dearth of
particles present at larger radii initially. Bottom: The density func-
tions of nine independent 4096-particle realizations compared to the
density function produced using the Fokker-Planck code at the time of
core collapse. The results show significant agreement between the two
codes. This also indicates that the density function agrees with the
theoretical power law of the density profile r−2.2. . . . . . . . . . . . . 36

2.8 The evolution of the Lagrangian radius for five N = 1024 simulations
is presented here, similar to Figure 2.6. We notice that, even while
using lower accuracy parameters, we arrive at a similar evolution of
Lagrangian radii of different mass fractions. Compared to the original
results, we find that the maximum relative difference in the Lagrangian
radii of individual simulations is of the order of 0.001%. . . . . . . . 38

2.9 The distance of the massive object (rBH) is presented as a function of
time (in Henon units) and the virial radius of the cluster. The curves
show the inspiral of massive objects of two different masses due to
dynamical friction. The solid and dashed curves indicate the median
distance of the massive object from the center of mass that was pro-
duced after running 30 independent realizations. The shaded regions
indicate the 95% confidence interval values of the median distance for
the FMM simulations. All values are binned over one N -body time
step. We notice that as we increase the mass of the massive object,
the agreement between the different methods improves significantly. . 39

2.10 Same as the MBH/Mstar = 20.0 case from Figure 2.9 but with two
different input force accuracies: ϵ = 10−3 and ϵ = 10−7. Even with an
input accuracy four times lower in magnitude compared to the original
FMM simulations, the massive particle inspiral time is reproduced very
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2.11 Heatmaps showing the distribution of wall-clock time as a function of
both p and ϵ. Both integration and Poisson step times are determined
for evolving a 105 star cluster to 1 timestep. Left : The total integra-
tion time. It essentially represents how long it takes for Taichi in
total. Right : This heatmap only reprsents the amount of time spent
computing the forces. . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.12 The wall-clock time for one integration step presented as a function
of the problem size. For N < 104 direct summation is more efficient.
However, owing to theO(N) scaling, for large N , FMM becomes highly
efficient. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.13 The overall speedup presented as a function of the number of physical
cores used. This determines the intranode scaling of the FMM force
determination algorithm. The Poisson step time has been used to
determine the scaling. The overall scaling follows the same pattern. . 44

2.14 The relative energy error as a function of the N -body time here for 10
Plummer model realizations. For this simulation we used the HOLD in-
tegrator and the same softening length and step size as that of Makino
et al. (2006a). We find that the symmetrization scheme helps remove
the energy drift, identical to Makino et al. (2006a) and Pelupessy et al.
(2012a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.15 The relative energy error is presented as a function of the relaxation
time for the evolution of a single N = 1024 Plummer model realization.
The softening lengths used in this simulation are 1/N and 0.01/N . The
energy drift in the former case is smooth, which is what is expected
when force softening is used. We find that the energy drift is virtually
similar for both Taichi direct and FMM and is about an order of
magnitude or two better than that of NBODY6. We find that for the
latter simulation, which uses a lower softening, there are jumps in
energy that are caused by close encounters. . . . . . . . . . . . . . . . 50

2.16 The relative energy error is presented as a function of the relaxation
time for the evolution of single N = 2048 and 4096 Plummer models.
The softening length used in this simulation is 1/N . The energy drift
is smooth, which is what is expected when force softening is used. This
is similar to what we found in Figure 2.15. . . . . . . . . . . . . . . . 51

2.17 The median distance of the massive object is presented as a function of
the time (in Henon units) and the virial radius of the cluster. Unlike
Figure 2.9, the shaded regions in this figure indicate the spread of
radius of the black hole particle from the center of mass of the cluster.
Presented here are the 90th percentile values of the distance. All values
are binned over one N -body time step. One can see the large spread
of radii, indicating the inherent stochasticity present in the simulation. 52
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3.1 The analytic density ρ(r) and the enclosed cumulative mass M(< r)
a function of r, the distance from the center of the cluster under the
presence of a 106M⊙ MBH at the center. The analytic profiles have
been computed using Phaseflow The differences in the relaxed and the
non-relaxed cases are evident with collisional relaxation implying mass
segregation. The relaxation produces a denser cusp near the 106M⊙
MBH and stellar mass black holes dominate the total mass for all radii
< 0.1 pc. The MBH is dominant in regions with r < 1 pc. . . . . . . 64

3.2 A scatter plot of the two NSCs with MBHs projected onto the x − y
plane at different points in time during the merger process. The sim-
ulation being pictured here is r q 0.1. As the simulation proceeds,
the NSCs belonging to the primary (black circle) and secondary (black
cross) are brought closer to each other by the combined effects of dy-
namical friction and tidal forces from stripped stars leading to a mix-
ture of the MS (blue, red dots) and BH particles (brown, yellow dots)
from both NSCs. The NSCs merge within ∼ 1.5 Myr resulting in the
formation of a hard binary at the center. . . . . . . . . . . . . . . . . 66

3.3 The evolution of the binary parameters as a function of time for the
circular orbit models. The dashed line represents the influence radius
of the binary and the dash-dotted line represents the hard-binary ra-
dius. Top: evolution of the separation (r) between the two MBHs as a
function of time. Middle: evolution of the eccentricity (e) as a function
of time. Bottom: evolution of the inverse semi-major axis (1/a) as a
function of time. The different evolutionary tracks between the non-
relaxed and the relaxed cases highlight the imprint of the surrounding
NSC on the dynamics of the MBH binary. We find that while non-
relaxed models reach hard binary radius and harden faster for q = 1.0,
the opposite happens for q = 0.01. . . . . . . . . . . . . . . . . . . . . 67

3.4 The initial density ρ(r) and relative density difference ∆ρ/ρ of MS
particles as a function of r, the distance from the center of the cluster
under the presence of a 106M⊙ MBH at the center. The dashed line,
dash-dotted line, and the dotted line represent the hard-binary radii
for the q = 1.0, 0.1, 0.01 models respectively. We find that for all
radii within the influence radius of the primary, the density of the MS
particles is lower in the relaxed models compared to the non-relaxed
models until we reach ∼ 0.1dinfl . . . . . . . . . . . . . . . . . . . . . 72
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3.5 The evolution of the Lagrange radius (rL) of different mass-fractions
as a function of time (t) for the relaxed models. The green curves
denote the separation of the MBHs as a function of time. For clar-
ity, only particles belonging to NSC 1 have been taken into account
here. From bottom to top the mass fractions are 0.1%, 0.3%, 1%,
3%, 10%, 30%, and 50%. Top: The evolution of the Lagrange radius
for the MS particles. Bottom: The evolution of the Lagrange radius
for the BH particles. We notice that as the mass ratio decreases, the
cusp is perturbed less, and mass-segregation is only partially reversed.
The results are qualitatively consistent with similar ones presented in
Gualandris and Merritt (2012a). . . . . . . . . . . . . . . . . . . . . 73

3.6 The evolution of the binary orbital parameters for the eccentric mod-
els as a function of time t in Myr. Top: ecc 1 models that are mildly
eccentric initially. Bottom: ecc 2 models that are highly eccentric ini-
tally. We find similar trends as we found for the circular orbit models
of q = 0.1 in Figure 3.3 for the binary hardening rates. We, however,
notice that the presence of the denser relaxed cusp affects the eccen-
tricity evolution of the binary. The relaxed cusp circularizes the binary
more than the non-relaxed cusp. This is more evident in the highly
eccentric scenario (bottom) where the binary in the relaxed cusp forms
at much lower eccentricity and does not show any growth over time. 76

3.7 The evolution of the inverse-semi major axis as a function of time in the
GW dominated phase for different mass-ratios. Left: Evolution and
coalescence in models with circular orbits. Right: same but with ec-
centric models. The evolution is carried by taking the results from the
simulations (solid lines) and evolving them semi-analytically (dashed
lines) using the Peters (Peters, 1964a) equation. In the circular models
(left), we find that the merger timescales for the non-relaxed models
are smaller than their relaxed counterparts for q = 1.0, 0.1 and opposite
for q = 0.01. In the eccentric models (right), we find that the binaries
in the non-relaxed cusps always merge faster. All models merge within
a Hubble time making NSCs a promising source of GWs. . . . . . . . 79

3.8 The density of particles ρ presented as a function of the distance r from
the center of mass of the binary at different points in hardening for r
simulations. The initial cusp is also presented for comparison. Top:
Density of MS particles. We can see that for q = 1.0 as the binary
hardens, a core is formed. This is not observed for q = 0.1. Bottom:
Density of BH particles. Similar observations are noted in this case. . 82
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3.9 The evolution of the velocity anisotropy for r q 1.0 model. The anisotropy
parameter (β) is plotted as a function of the distance from the binary
center(r). The shaded portions denote the standard error in calculating
the anisotropy parameter. The models start initially with an isotropic
distribution of velocity. As the binary hardens, it preferentially ejects
particles with radial velocities producing a tangentially biased velocity
structure near the MBH binary. . . . . . . . . . . . . . . . . . . . . . 83

3.10 The evolution of the inverse semi-major axis 1/a as a function of time
t for five independent realizations of nr q 1.0 and r q 1.0 simulations
but with a resolution of N ∼ 4 × 105 for computational constraints.
The solid lines represent the mean value of the inverse semi-major
axis and the shaded region represents the standard deviation from five
simulations. We find that our results are robust. This implies that the
discrepancies in the results arise out of physical rather than numerical
reasons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.11 Evolution of the binary parameters for the relaxed q = 0.01 model pre-
sented as a function of time for lower resolution and higher resolution
models. We find that although there are no differences in pre-binary
phase and the time of binary formation between the lower resolution
and higher resolution models, differences appear once the binary is in
the bound-binary and the hard binary phases. This is quite notable
for the evolution of eccentricity and the rate of hardening where the
lower resolution model demonstrates a higher value compared to the
high resolution model. The results are in contrast with Preto et al.
(2011) as we find the hardening rate depends on N indicating that the
effects of collisional loss-cone refilling cannot be discounted. . . . . . 90

3.12 Hardening rates of circular relaxed models with different resolutions
presented as a function of the mass-ratio q. The hardening rates have
been computed by taking the average of the hardening rates every 1
Myr after a hard binary has been formed. The error bars correspond
to the standard deviation. We find that the hardening rate strongly
depends on q and resolution. As the mass-ratio is lowered, the harden-
ing rate decreases as we increase N . Similar observations were noted
for the non-relaxed scenario. . . . . . . . . . . . . . . . . . . . . . . . 91

3.13 Evolution of the orbital parameters as a function of time for the q = 1.0
model presented in Ogiya et al. (2020a). Top: Evolution of binary
separation. Middle: Evolution of eccentricity. Bottom: Evolution of
inverse semi-major axis. Right: Evolution of the relative energy error.
We find the results between NBODY6++GPU and Taichi are consistent
with each other and Taichi is better at energy conservation by a factor
of ∼ 10 compared to NBODY6++GPU . . . . . . . . . . . . . . . . . . . . 92
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4.1 Visualization of the stellar density field of system 12 from the MAGICS-
II suite. Brightness represents density, while color indicates stellar age:
blue for younger stars and yellow for older stars. Overdense regions are
observed around the MBHs (crosses), marking the nuclei of the original
galaxies. These nuclei correspond to nuclear clusters surrounding the
MBHs, but they are less dense and less massive than realistic NSCs.
To assess the impact of denser and more massive NSCs, we introduce
NSCs (blue and purple particles in the zoomed-in circles) around the
two MBHs and continue their evolution in this study. . . . . . . . . 100

4.2 Visualization of the MBHs from kpc to mpc scales for system 12. Top:
Zoom-in of the ASTRID volume showing the galaxies hosting MBHs
(crosses), as resimulated in MAGICS-I and MAGICS-II. Middle: High-
resolution merger resimulation from MAGICS-II displaying two galax-
ies from ASTRID with brightness indicating density and color indicating
age (blue for younger stars, red for older). MBHs reach a separation
of ∼ 300 pc within∼ 300Myr. Bottom: Central 600 pc of the galaxy,
embedding two seeds inside NSCs (blue and purple spheres) within the
stellar bulge background (yellow). Interactions between NSCs enhance
MBH sinking, forming a hard binary by 388.8 Myr. Bottom left: Evo-
lution of the binary separation ∆r as a function of the time t. The
initial phase (brown line) is followed in MAGICS-I whereas the later
phase with the MBHs inside clusters (violet line) is followed in this
work. Insets show the evolution of the eccentricity e and inverse semi-
major axis 1/a after a bound binary has formed. Bottom right: Binary
visualization at a few mpc, showing the secondary’s orbit (purple line)
around the primary (blue line). Star colors indicate origins: blue (left
NSC), purple (right NSC), yellow (bulge). . . . . . . . . . . . . . . . 105

4.3 Visualization of two different models: sys2 FRe O and sys6 FRe O from
our suite of simulations. The color scheme is same as that used in
Figure 4.2. Top: sys2 FRe O, a fast shrinking system. Due to the
high stellar density of the surrounding galactic stellar medium and the
large NSC masses, the binary shrinks quickly forming a hard binary
with 15 Myr from the start of the simulation. As shown in the inset
axes, the formed binary reaches a high eccentricity of 0.95 by 368
Myr while hardening to a ∼ 10−3 pc. Bottom: sys6 FRe O, a slow
shrinking system. Contrary to the other system, the MBHs take 85
Myr to shrink to a bound binary stage in this case. The formed binary
is very eccentric (0.98-0.99) as the other model (sys2 FRe O) but the
hardening rate is about three orders of magnitude lower. Consequently,
the binary is only able to shrink to ∼ 100 mpc by the end of our
simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
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4.4 The evolution of the MBH separation ∆r as a function of time t for
all our models. Across all models, the binaries shrink to below the
hard binary radius (dashed line) indicating that NSCs are efficient
at accelerating MBH sinking times. The initial effective radii Reff of
the NSCs are fixed in the FRe models (purple lines) whereas they are
varied in the VRe models (grey) following equation 4.6. The VRe models
show qualitatively similar evolution to that of the FRe models with
differences of at most 1 − 2% in the sinking times. We notice that
our higher resolution models HI models (green) merge faster than their
original O resolution counterparts. Increasing the resolution leads to a
less efficient tidal stripping by the galactic environment and causes the
clusters to retain more mass. In both systems 3 and 12, the HI models
sink about 20% faster. The LOWM model (red line) shrinks to the largest
hard binary radius as the NSCs are about an order of magnitude less
massive than the FRe model. . . . . . . . . . . . . . . . . . . . . . . 110

4.5 The binary separation ∆r as a function of time t for sys10 FRe O model
with MBHs in NSCs (purple) and with the MBH masses boosted by the
amount of mass present in the respective NSCs (red). While the early
evolution is similar in both cases, indicating that it is dominated by
DF from the increased mass, the same cannot be said for t > 20 Myr.
The orbits shrink by roughly the same amount until the MBHs reach
∆r ∼ 50 pc, after which the tidal interactions between the NSCs drive
the MBHs to rapidly sink to the center of the merged NSC in < 0.5
Myr and form a hard binary. However, the boosted MBH mass model
does not demonstrate this rapid shrinking leading to a much longer
sinking timescale. This indicates that NSCs are a key ingredient of
rapid MBH binary formation. . . . . . . . . . . . . . . . . . . . . . . 112

4.6 The stellar density ρ(r) at the moment the NSCs merge as a function
of distance from the center of potential of the system r for our models
and the equivalent systems from ASTRID (black line). The different
line colors indicate the different models, similar to Figure 4.4. The
profiles are measured before any significant scouring effects due to the
formation of the hard MBH binary. The ASTRID stellar profiles are
more dense in the outskirts than our profiles as we neglect further
galaxy mergers. The stellar density in r < 10 pc is quite consistent with
observations (blue shaded region) of nucleated local dwarfs with similar
galactic stellar masses (Nguyen et al., 2017, 2018) as the galaxies in our
suite. We also calculate the slope extrapolation parameter γ, and the
extrapolated stellar density profile (black dashed line), extrapolating
the ASTRID density profiles from 1 kpc to the influence radius of the
binary (vertical line). Averaging across simulations, we find γ ≈ 2.04,
with denser NSCs having a slightly higher γ ≈ 2.1− 2.2. . . . . . . . 114
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4.7 The effective radius of the final NSC Reff as a function of the mass
of the NSC MNSC upon the merger of the two individual NSCs. The
blue circles represent values obtained from Georgiev et al. (2016) while
the larger circles are values obtained from our simulations, with the
color indicating the model type (similar to those from previous figures),
and the numbers indicating the system number. We find that Reff of
the merged NSCs are quite consistent with those from observations.
For the FRe models (purple circles), there is an inverse correlation
between Reff and MNSC. Thus the NSCs with MNSC ≥ 107M⊙ are
somewhat denser than the ones that are observed. In the VRe models
(grey circles), we find that Reff of the formed NSC is about a factor of
5 larger and more consistent with observations. We find that the effect
of resolution is subdominant with minor differences in Reff between the
original resolution O and higher resolution HI models (green circles).
For the LOWM model (red circle), we find that the merged NSC has Reff

that is about an order of magnitude larger than NSCs with similar
masses. This is a result of the large initial Reff , larger than what we
expect from observations. . . . . . . . . . . . . . . . . . . . . . . . . 117

4.8 Evolution of the stellar density ρ(r) as a function of the distance from
the MBH binary r over time as the MBH binary hardens. The binary
hardens by ejecting particles from the cusp leading to the slow scour-
ing of the initial cusp. Left: evolution of the density profile in the
sys10 VRe O model where the binary is evolved for a total duration of
26 Myr in the hard binary phase. Right: same but for the sys12 FRe O

model and the evolution is followed for 33 Myr. The mass of the binary
in this model is larger than that in sys10 VRe O while the NSC mass
is lower. This leads to a slower hardening and a larger erosion of the
cusp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.9 Relative change in the density ∆ρ/ρ at r = 1 pc as a function of the
binary hardening rate s. The circle number and color indicate the
system number and model type respectively, as in Figure 4.7. The
values are measured when the binary has hardened to a = rh/5. There
is an inverse correlation between ∆ρ/ρ and s. A faster hardening
implies a slower rate of erosion of the cusp as the initial cusp density is
higher and/or the mass of the binary is lower, similar to findings from
Merritt et al. (2007a). . . . . . . . . . . . . . . . . . . . . . . . . . . 120
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4.10 Left: The hardening rate s as a function of the density at influence
radius ρinfl. We find that s is strongly correlated to ρinfl and can be de-
scribed by a power law (green line). The shaded region represents the
uncertainty of our fit. Theoretically, we expect s to be a linear func-
tion of ρinfl/σinfl. In our simulations σinfl does not change a lot across
our models, allowing us to obtain a one-parameter fit between s and
ρinfl. The obtained values are consistent with those obtained from pre-
vious simulations with NSCs including Khan and Holley-Bockelmann
(2021) and Mukherjee et al. (2023) differences of factors of 2-3 at most.
Right: s but as a function of the influence radius rinfl. Here we observe
a negative correlation between s and rinfl which is consistent with our
expectations as a smaller rinfl implies a higher ρinfl. We also find that in
all but one case, the binary hardens primarily via three-body interac-
tions with stars from the NSC and the bulge. However, for sys12 LOWM,
rinfl ≈ 25.2 pc and we find that DM contributes twice as much as the
stars in the hardening rate. The black dashed vertical line represents
where the contribution due to DM and stars is equal. . . . . . . . . 122

4.11 Evolution of eccentricity across all our models. Left: The bound eccen-
tricity eb as a function of the unbound orbital eccentricity as calculated
using equation 4.11 of the pair measured at a separation of ∆r = 30
pc. eb is measured before the black holes form a hard binary and when
they are separated by a distance rbound as defined in equation 4.12.
Although the initial orbital eccentricity of all the black holes are 0.85-
0.95, eunbound shows a wide scatter with the mean around 0.75. eb is
correlated to eunbound but stochasticity associated with higher eunbound
produces a wide variety of eb. Right: eb as a function of the eccen-
tricity at the hard binary separation ehb. We notice that a higher eb
implies a higher ehb. During the hardening stage, we find sys3 FRe O,
sys12 FRe HI and sys6 FRe O are able to achieve almost radial or-
bits. The differences among HI and O models persist in this stage with
sys12 FRe O containing a binary with an eccentricity of 0.15 while that
in sys12 FRe HI is 0.95. . . . . . . . . . . . . . . . . . . . . . . . . . 125
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4.12 The merger timescale τmerge as a function of the density at influence ra-
dius ρinfl and the eccentricity at hard binary radius ehb. The diamonds
represent τmerge of our different models with the color and number
indicating type of model and system number respectively, similar to
that used in previous figures. Using ρinfl, we calculate the hardening
rate s using equation 4.10 which allows us to approximate the merger
time following equations 13 - 19. The contours are drawn approxi-
mating that the galaxy merger process begins at z = 9 and it takes
500 Myr for the MBHs to sink to hard binary radius. Under this ap-
proximation, we find that binaries that harden in environments with
ρinfl > 104.5M⊙pc−3 merge by z = 4. Eccentric binaries merge faster
and can lead to high redshift mergers even in somewhat lower density
environments. Nevertheless, we find that seed black holes require a
high stellar density environment to merge at high redshifts, suggesting
that most mergers that happen at high redshifts occur in NSC dom-
inated environments. We find in 8 of the 12 models we simulate, the
MBH binary merges before z = 4. . . . . . . . . . . . . . . . . . . . 127

4.13 The merger rate per year dN
dzdt

as function of the redshift z. We extract
the merger data from the ASTRID simulation for MBH pairs where
Mp ≤ 5×105 and Ms ≤ 2×105, and add a hardening delay time based
on different ρinfl using equation 4.10 and the semi-analytic approach
described in Section 4.6.1. For simplicity, we assume that the MBH
binaries have hard binary eccentricity ehb = 0.8. We find dense stellar
environments dominate high-z mergers at z > 4 strongly suggesting
that NSCs are the dominant channel for MBH seed mergers at high
redshift. In bulge-like environments with ρinfl = 103M⊙, the merger
rate is much lower by factors of 600 compared to ρinfl = 105M⊙ at
z = 4 and peaks at z = 1.67. Our calculation assumes that all mergers
take place in nucleated environments, which may not hold in reality.
However, for similar mass galaxies, Neumayer et al. (2020a) report
that 60% may be nucleated. This would imply that NSC dominated
evolution would be the primary channel for seed MBH mergers. . . . 130

5.1 A visual representation of an eccentric IMRI embedded in a DM spike.
The mass of the central BH is M1 and that of the inspiraling object
is M2. This figure has been inspired by Figure 1 of Kavanagh et al.
(2020). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

xx



5.2 The relative force accuracy |δf |/|f | of DM particles as a function of
their separation r from the central IMBH with mass M1 = 103M⊙.
The spike follows a γsp = 7/3 density profile. The inspiraling object,
whose mass is M2 = 1M⊙, is situated at an initial semi-major axis of
a0 = 2 × 10−8 pc. We find that in the region of interest, the force
accuracy is ≤ 10−5, which is comparable to the the force accuracy
obtained in tree/FMM based codes. . . . . . . . . . . . . . . . . . . 140

5.3 The characteristic strain of the IMRIs used as our initial conditions
as a function of the frequency f in vacuum for different mass-ratio
q models. The central IMBH has a mass of M1 while the inspiraling
object has a mass of M2. The binary is defined by its initial semi-major
axis a and eccentricity e. The luminosity distance is denoted as dL.
All of the IMRIs presented here have a merger time of ∼ 5 years. Since
eccentric binaries radiate in multiple harmonics, we have plotted the
strain from the second and third harmonics. In all of the scenarios, we
find that the second harmonic has an equivalent or higher strain than
the third harmonic. Even higher harmonics have lower strains and are
harder to detect using LISA but would be detectable using DECIGO. 143

5.4 The density of the DM spike ρDM as a function of the distance from the
central IMBH r. We use these density profiles to generate our N -body
initial conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
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5.5 A comparison of the binary parameters for different mass ratio mod-
els evolving in a γsp = 7/3 spike with rsp calculated using equation
5.8. The evolution in vacuum (purple line) is calculated using Pe-
ters (1964b) analytic formula, while the evolution calculated using the
Chandrasekhar DF formula assuming a static spike (orange line) is
calculated using IMRIPy. They are compared to the evolution from
our N -body simulations (green line). Left column: the mean orbital
frequency f as a function of time t in years. Middle column: the esti-
mated number of dephasing cycles of the second harmonic |∆N (2)| as
a function of the frequency f in Hz. Right column: the eccentricity e
as a function of the semi-major axis a. We notice that in higher mass
ratio models, the evolution of the binary is similar to that in vacuum.
For q = 10−2 model, there is a 100× reduction in the estimated number
of dephasing cycles compared to the evolution calculated using Chan-
drasekhar DF formula as the spike has been disrupted in a very short
time span. As we decrease the mass ratio, the disruption decreases.
We notice that in case of the q = 10−3 model, the dephasing is only re-
duced by 3× compared to the evolution calculated using IMRIPy. For
q = 10−4 model, we find that dephasing is a factor of 3 larger than
what we obtain using the Chandrasekhar formula, with little to no dis-
ruption of the spike. This signals that the Chandrasekhar DF might
be insufficient to explain the evolution of the binary in DM spikes. . 150

5.6 The dephasing of the second harmonic |∆N (2)| as a function of the
binary frequency f in Hz for a q = 10−3 binary embedded in a γsp = 9/4
spike. The color scheme is the same as that used in Figure 5.5. We
notice that similar to the γsp = 7/3 case, the amount of dephasing in
our N -body models is reduced by ∼ 3× compared to the DF models. 151

5.7 Binary frequency f as a function of time t for the q = 10−3, γsp =
1.5 model. We find that the low density of the spike results in no
discernable differences between the inspiral in vacuum and that in the
spike. This results in ≤ O(10) cycles which might not be detectable. 152
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5.8 The density of the DM spike ρDM as a function of the distance r from
the primary in pc for the q = 10−3 model in a γsp = 7/3 spike. The
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Chapter 1

Introduction

We stand on the brink of the most significant revolution in astronomy since the in-
vention of the telescope. While humanity has long possessed the ability to see the
cosmos, gravitational waves (GWs) now offer us the unprecedented ability to listen
to the universe and uncover its deepest mysteries. These waves hold the poten-
tial to answer profound questions about the universe’s expansion, the elusive nature
of dark matter (DM), and the formation and growth of supermassive black holes
(SMBHs). The advent of the James Webb Space Telescope (JWST) has opened an
observational window into the high-redshift universe, revealing early SMBH popula-
tions whose existence challenges our theoretical understanding of black hole formation
and growth. Disentangling this mystery requires the next frontier of GW astronomy,
where space-based detectors like the Laser Interferometer Space Antenna (LISA) will
play a pivotal role in probing the dynamical environments of merging massive black
hole binaries (MBHBs). However, maximizing the scientific return of LISA and future
detectors demands significant improvements in theoretical modeling, particularly in
understanding MBHB coalescence within their complex astrophysical environments.

This thesis explores two key aspects of this problem: the role of nuclear star
clusters (NSCs) in shaping MBH binary merger timescales and the potential im-
print of DM spikes on GW signals. By leveraging fast N-body methods such as the
fast multipole method, this work enables high-resolution simulations that capture
the intricate gravitational interactions governing MBHB evolution. These computa-
tional advances, coupled with zoom-in cosmological simulations, provide a powerful
framework for constraining merger rates and enhancing the science output of next-
generation GW observatories. Ultimately, this research seeks to bridge the gap be-
tween theory and observation, using GWs as a tool to unravel the nature of DM and
the pathways that drive the growth of SMBHs.
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1.1 Collisional N-body simulations

The collisional N -body problem, which models the gravitational interaction of N
particles over time, is one of the most computationally demanding challenges in
modern physics. Unlike collisionless N -body simulations—where close encounters
between particles are neglected and the system is treated in a mean-field approx-
imation—collisional simulations must explicitly account for two-body interactions.
These interactions drive the long-term evolution of dense stellar systems, including
open clusters, globular clusters, and nuclear star clusters (e.g., Spitzer, 1987). Col-
lisional relaxation plays a pivotal role in numerous astrophysical phenomena, such
gravo-thermal instability leading to core-collapse, and black hole mergers (Heggie
and Hut, 2003). Given that this thesis focuses on nuclear star clusters, which are
inherently collisional systems, a significant portion of this introduction is dedicated
to outlining the fundamental aspects of collisional N -body simulations.

Collisional N -body methods can be categorized based on how the gravitational
force acting on each particle is computed (e.g., Aarseth, 2003; Heggie and Hut, 2003;
Binney and Tremaine, 2011; Dehnen and Read, 2011). Direct N -body methods eval-
uate the total force on each particle by summing contributions from all other particles
in the system. The acceleration ai of particle i is given by

ai = G
N∑
j=1
j ̸=i

mj
rj − ri

|rj − ri|3
, (1.1)

where G is the gravitational constant, mj is the mass of particle j, and ri and rj denote
the positions of particles i and j, respectively. Although direct methods provide high
accuracy, their O(N2) computational complexity poses a significant bottleneck for
simulations with N ∼ 106—a regime necessary for modeling nuclear star clusters and
galactic nuclei. Running such large-scale simulations often requires months on state-
of-the-art computing hardware. Consequently, substantial effort has been dedicated
to developing more efficient approximate methods for gravitational force calculations.

1.1.1 Fast force calculation algorithms

To overcome the steep cost of direct summation, one widely used approach is to treat
long-range and short-range interactions differently, updating only the more rapidly
varying short-range forces at every time step. Such techniques have been used in
direct-summation based N -body codes such as NBODY6 (Aarseth, 1999) using the
Ahmad-Cohen (Ahmad and Cohen, 1973) scheme.

Beyond partial treatments of direct summation, approximate force solvers can
dramatically cut computational expense. One prominent example is the Barnes-Hut
(BH) tree (Barnes and Hut, 1986), which employs a hierarchical decomposition of
the simulation volume and uses multipole expansions to approximate forces. The
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algorithmic complexity of BH tree codes is typically O(N logN), representing a sub-
stantial improvement over direct summation. It is challenging to utilize tree-codes
for collisional simulations primarily for two reasons. The lower force accuracy in tree-
codes can lead to artificial effects leading to non-physical evolution. Additionally, the
integration with an individual timestepping scheme creates a bottleneck where the
tree has to be updated at every timestep. Nonetheless, particle-particle particle-tree
(P3T) codes that combine a partial direct force calculation (for nearby particles) with
a tree-based approximation (for distant particles) have recently emerged, demonstrat-
ing performance that can rival fully direct methods (Wang et al., 2020).

The fast multipole method (FMM)(Greengard and Rokhlin, 1987; Cheng et al.,
1999) offers another promising route for accelerating collisional N -body calculations.
Building on earlier applications of FMM to collisionless systems (e.g., Dehnen, 2000,
2002), Dehnen (2014) presented an optimized version specifically designed to handle
high-accuracy requirements, highlighting its O(N) or even sublinear scaling in special
cases. These efficiency gains, along with well-controlled error properties, make FMM
an attractive alternative to standard tree codes. However, fully adapting FMM for
collisional dynamics, which demands high accuracy and robust handling of individual
stellar interactions, remains an active area of research. As larger N -body problems
move beyond the reach of direct summation, advancements in methods like FMM are
crucial for simulating dense stellar systems such as nuclear star clusters.

1.1.2 Hierarchical Hamiltonian splitting integrators

While sophisticated force-calculation algorithms, as discussed in the previous section,
are crucial for efficient N -body simulations, the other key component is the choice
of time integration scheme. For large N , adaptive, individual timesteps are typically
introduced to maximize computational efficiency, ensuring that particles moving on
very short dynamical timescales are updated more frequently than those evolving
slowly.

Broadly, N -body integrators can be divided into symplectic and non-symplectic
schemes. Symplectic integrators preserve the volume of position-momentum phase
space, which translates into superior long-term energy conservation. Unfortunately,
when individual timesteps are adopted, this strict symplecticity is typically lost. For
instance, although the popular fourth-order Hermite (e.g., Aarseth, 2003) scheme is
widely used in many N -body codes, its incorporation of adaptive timesteps breaks
strict symplecticity, resulting in large long term energy errors. In particular, one
tries to numerically integrate the trajectory (r(t),v(t)) of a particle using a timestep
function τ(t). After integration, the particle reaches a new state (r(t + τ),v(t + τ)).
In this state, the particle has a new timestep τ ′. Under ideal circumstances, to
preserve the time-reversible properties of the Hamiltonian, integrating the particle
backwards in time using τ ′ should produce the original state of the particle. However,
due to numerical errors, τ ′ ̸= τ in general and the time reversible properties of the
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Hamiltonian are lost, leading to long term energy drift.
One approach to alleviate this loss of symplecticity is to instead preserve the

time-symmetric properties of the Hamiltonian (Hut et al., 1995; Dehnen, 2017). This
requires ensuring that the forward and backward timesteps remain identical at each
integration step. Using the previous notation, this condition is expressed as:

τ ′ = τ (1.2)

⇒ τ(τ(t) + t) = τ(t). (1.3)

Following Pelupessy et al. (2012a), we note that τ(τ(t) + t) represents a timestep in
the negative direction, whereas τ(t) represents a timestep in the positive direction.
Using the notation introduced in Pelupessy et al. (2012a), we rewrite the equation
as:

τ−(τ(t) + t) = τ+(t). (1.4)

A symmetrized timestep function satisfying the above condition can be introduced as
follows:

τ−sym = τ(t)/2 + τ(t− τ−sym)/2 (1.5)

τ+sym = τ(t)/2 + τ(t + τ+sym)/2 (1.6)

. Taylor expanding the second equation to first order in τ+sym and rearranging gives
us the timestep function

τsym =
τ(t)

1− 1
2
dτ
dt

(1.7)

We split the Hamiltonian into a fast subsystem, consisting of particles that timesteps
shorter than a threshold timestep, and a slow subsystem, containing the remaining
particles. By adopting symmetrized timesteps using the formulation derived above
based on freefall and flyby timescales, the algorithm achieves long term integration
accuracy. An example of a second-order decomposition built on this principle is the
HOLD integrator (Pelupessy et al., 2012a), in which both the fast subsystem and its
interaction with the slow subsystem are integrated via a leapfrog scheme and is pre-
sented in Listing 1.1. In the HOLD decomposition the kicks between the slow and fast
subsystems are symmetric leading to an exact conservation of total linear momentum.

func HOLD( system , t imestep , c a l c u l a t e t i m e s t e p ) :

i f ( c a l c u l a t e t i m e s t e p )
g e t t i m e s t e p s ( system )

slow , f a s t = s p l i t s y s t e m ( system )
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i f ( f a s t .N = 0)
simtime = simtime + timestep

i f ( f a s t .N > 0)
HOLD( fa s t , t imestep / 2 , f a l s e )

i f ( s low .N > 0)
d r i f t ( slow , t imestep / 2)

i f ( s low .N > 0)
k i ck s l ow ( slow , t imestep )

i f ( f a s t .N > 0)
k i c k s l o w f a s t ( slow , f a s t , t imestep )

i f ( s low .N > 0)
d r i f t ( slow , t imestep / 2)

i f ( f a s t .N > 0)
HOLD( fa s t , t imestep / 2 , t rue )

Listing 1.1: Psedocode for the second order HOLD decomposition scheme using a drift-
kick-drift leapfrog integrator. This leads to exact conservation of momentum.

More recently, fourth-order decomposition schemes such as HHS-FSI (e.g., Chin
and Chen, 2005; Rantala et al., 2021a) have gained popularity due to their use of
strictly positive timesteps. This contrasts with Yoshida-type schemes (Yoshida, 1990),
which require negative timesteps for fourth- or higher-order symplectic integrators.
A major challenge in higher-order schemes is the accurate evaluation of the force
gradient, which is necessary for higher-order corrections. The Taichi N -body code
(introduced in Chapters 2 and 3) implements both the second-order HOLD and the
fourth-order HHS-FSI integrators. In particular, our work employs HHS-FSI with an
additional modification inspired by Omelyan (2006) and Farr and Bertschinger (2007),
where the force gradient is computed using a position-extrapolation method. This
approach preserves the benefits of fourth-order accuracy while simplifying computa-
tions, eliminating the need for additional steps to evaluate the force gradient.

1.1.3 Few-body regularization

Even with higher-order integration schemes, accurately capturing the long-term dy-
namics of very tight or highly eccentric binaries can remain challenging (e.g., Wang
et al., 2020). Such hard binaries, which play a central role in this thesis, require
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specialized treatment to avoid significant energy errors over many dynamical times.
A fundamental problem in collisional N -body simulations is that the timestep tends
to zero as the separation between two strongly interacting particles approaches zero,
often leading to large energy errors and numerical instability (e.g., Aarseth, 2003, and
references within).

One strategy to address this involves introducing a fictitious time parameter s
through a coordinate transformation. In the well-known Kustaanheimo-Stiefel (KS)
regularization (Kustaanheimo et al., 1965), a Levi-Civita transformation is applied
to the system’s coordinates, removing the singularity and converting the system into
a four dimensional harmonic oscillator. KS regularization can be complicated to
implement and computationally expensive when generalized beyond a few particles.

An alternative approach, pioneered by Mikkola and Tanikawa (1999a) and Preto
and Tremaine (1999), is to use a time transformation function inversely proportional
to the gravitational potential. Combined with a leapfrog integrator in drift-kick-drift
(DKD) form, this method can achieve exact integration of a two-body Kepler orbit.
Consider the Hamiltonian H of a system:

H = T (p)− U(r, t), (1.8)

where T (p) is the kinetic energy and U(r, t) is the potential energy. Assuming U > 0,
we apply the time-transformation

ds = U dt, (1.9)

where s is the new regularized time for the system. The time-transformed Hamiltonian
Γ can be written as

Γ =
T − U + B

U
, (1.10)

with B = −E0, the negative of the system’s initial total energy. Here, B is the
conjugate momentum of time, which now becomes a coordinate itself. While this
Hamiltonian is non-separable, one notes that Γ = 0 in real systems (due to energy
conservation). Mikkola and Tanikawa (1999a) instead propose the following “log”
Hamiltonian:

Γ̃ = log
(
1 + Γ

)
. (1.11)

This version is separable, and the time evolution of the coordinates is:

p′ = −∂Γ̃

∂r
= − 1

1 + Γ

∂Γ

∂r
, (1.12)

B′ = −∂Γ̃

∂t
= − 1

1 + Γ

∂Γ

∂t
, (1.13)

r′ =
∂Γ̃

∂p
=

1

1 + Γ

∂Γ

∂p
, (1.14)

t′ =
∂Γ̃

∂B
=

1

1 + Γ

∂Γ

∂B
. (1.15)
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For an N -body system, using a DKD integrator, the DKD steps are modified as:

r1/2 = r0 +
(dt/2)

(
p0/m

)
T0 + B

, (1.16)

t1/2 = t0 +
dt/2

T0 + B
, (1.17)

p1 = p0 +
dt

U(r1/2)

∂U(r1/2)

∂r1/2
, (1.18)

r1 = r1/2 +
(dt/2)

(
p1/mk

)
T1 + B

, (1.19)

t1 = t1/2 +
dt/2

T1 + B
, (1.20)

where values with the subscript 1/2 indicate the half step, r & p indicate the positions
and momenta, and t represents the time. In the above equations, we utilize the fact
that U does not depend on time in the general Newtonian N -body equation.

However, for systems with N > 2, additional techniques are required to maintain
high accuracy. By combining a Bulirsch-Stoer (BS) integrator (e.g., Gragg, 1965;
Press, 1986) with chain coordinate transformations (Mikkola and Aarseth, 1990) for
close encounters, one can achieve near machine-precision accuracy for multi-body
systems-a technique often referred to as algorithmic regularization.

In our work, we combine algorithmic regularization with HOLD and HHS-FSI inte-
grators through the SpaceHub (Wang et al., 2021a) library, integrating it directly into
the Taichi N -body code to handle the evolution of highly eccentric massive black
hole (MBH) binaries. This approach ensures stable, precise long-term integration for
few-body subsystems.

1.1.4 Monte-Carlo methods and other alternatives

Because direct collisional N -body simulations scale asO(N2) and quickly become pro-
hibitive for realistic globular clusters, researchers have long exploited orbit-averaged
Monte-Carlo techniques that assume an underlying spherical potential. Pioneered in-
dependently by Hénon (1971a) and by Spitzer and Hart (1971), these algorithms ad-
vance every star through a smooth cluster potential for one dynamical time, then ap-
ply a stochastic velocity “kick” drawn from local diffusion coefficients before rebuild-
ing the global potential. All orbits can be evolved in parallel, yielding orders-of-magnitude
speed-ups. In the original Hénon implementation the diffusion step is estimated
from the exact two-body deflection with the nearest neighbor, a strategy adopted by
widely used cluster codes such as MOCCA (e.g., Hypki and Giersz, 2013) and CMC (e.g.,
Joshi et al., 2000; Pattabiraman et al., 2013); by contrast, the Spitzer–Hart formu-
lation, employed in RAGA (Vasiliev, 2015), derives the kicks from an orbit-averaged
local diffusion coefficients and couples them to a self-consistent-field expansion, al-
lowing the code to simulate non-spherical geometries. Complementary approaches
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integrate the Fokker–Planck equation directly on an energy–angular-momentum grid
with finite-difference schemes.

1.2 Fast multipole method

𝐱!
𝐱!! 𝐱"!

𝐱"

𝐱!

𝐱!!

𝐱!!! 𝐱"!! 𝐱"!
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Figure 1.1: Visualization of the cell-cell interaction in the FMM algorithm. Top:
interaction between two cells with no sub-cells. In this case, the position vector xij

can be decomposed as the sum of the position vectors xjj′ (source particle-cell-center
vector), xii′ (sink particle-cell-center vector), and xij (source cell-center – sink cell-
center vector). Bottom: in this case, the source and sink cells have to be subdivided
into four sub-cells. This leads to two additional shifts xj′′j′ (source sub-cell center -
source cell center vector) and xi′′i′ (sink sub-cell center - sink cell center vector).

As introduced in the previous section, FMM (e.g., Greengard and Rokhlin, 1987;
Cheng et al., 1999; Dehnen, 2014) is an approximate force solver that relies on mul-
tipole expansions to evaluate gravitational interactions efficiently. Unlike the BH
tree algorithm, which approximates distant groups of particles using a particle-to-
multipole approach, FMM exploits a cell-to-cell interaction scheme based on local
expansions of distant multipoles. This distinction allows FMM to capture long-range
forces with high accuracy while remaining scalable to very large numbers of particles.

Similar to BH tree codes, FMM begins with an octtree decomposition of the sim-
ulation volume. Each node (or cell) in the tree encloses a subset of particles, and
an opening angle criterion governed by an accuracy parameter determines whether
a node’s interaction with another node is approximated by multipole expansion or
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computed via direct summation. In practice, particles within the same or neighboring
cells are handled directly, ensuring high accuracy for close encounters. Meanwhile,
interactions between well-separated cells are evaluated through multipole and local
expansions, and a dual-tree walk efficiently identifies which cells require approxima-
tions.

The chief advantage of FMM over simpler tree algorithms is its optimal O(N)
or near-linear scaling. For large N , such an approach dramatically reduces the com-
putational expense compared to direct summation or even classic BH tree schemes.
Demonstrating that an FMM-based code remains viable for collisional N -body sim-
ulations, where accuracy requirements are stringent and individual time steps are
common, is a key goal of this thesis.

In the remainder of this chapter, we present the core components of our FMM
implementation. We begin by outlining how the multipole and local expansions are
defined and combined to compute the gravitational potential and force in a linear-time
algorithm. Although we introduce these expansions in terms of Cartesian coordinates
for clarity, our actual simulations employ solid spherical harmonics for enhanced ac-
curacy and computational efficiency. This foundational understanding of the FMM
kernels sets the stage for the more detailed discussion of our collisional N -body im-
plementation in the following chapters.

1.2.1 FMM in Cartesian coordinates

We begin by considering the Green’s function for gravitational interactions,

G(xij) =
1

|xi − xj|
, (1.21)

where xi and xj are the positions of particles (or cells). In Figure 1.1 (top), suppose
we have two well-separated cells, and we write

xij = xjj′ + xi′j′ + xii′ . (1.22)

Under the assumption

xi′j′ ≫
(
xjj′ + xii′

)
,

we can Taylor-expand G(xij) around xi′j′ to obtain

G(xij) =
∞∑
n=0

1

n!

(
xii′ + xjj′

)n∇(n)G(xi′j′). (1.23)
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Truncating this infinite sum at a finite order p and applying the binomial theorem
yields

G(xij) =

p∑
n=0

1

n!

n∑
k=0

n!

(n− k)! k!
xk
ii′ x

n−k
jj′ ∇(n)G(xi′j′), (1.24)

G(xij) =

p∑
k=0

1

k!
xk
ii′

p−k∑
n=0

∇(n+k)G(xi′j′)
1

n!
xn
jj′ . (1.25)

Within this framework, we identify three key steps associated with FMM:

Particle-to-Multipole (P2M). For a source cell, we define the multipole moments
by

Mn(xj′) =
N∑
j=1

1

n!
xn
jj′ qj, (1.26)

where xjj′ is the displacement of particle j relative to the cell center, and qj is the
mass (or charge, in a generic 1/r interaction).

Multipole-to-Local (M2L). The local expansion at the sink cell is given by

Lk(xi′) =

p−k∑
n=0

∇(n+k)G(xi′j′)M
n(xj′), (1.27)

where xi′j′ is the distance between the source and sink cell centers.

Local-to-Particle (L2P). Finally, each particle within the sink cell evaluates its
potential (or field) via

ui =

p∑
k=0

1

k!
xk
ii′ L

k(xi′). (1.28)

In a hierarchical decomposition scenario, as demonstrated by the bottom figure
in Figure 1.1, we follow two further steps. First, we note the relations

xj′′j = xj′′j + xj′j, xii′′ = xii′ + xi′i′′ , (1.29)

which indicate that two shifts are required instead of one. This naturally leads to
two additional FMM kernels:
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Multipole-to-Multipole (M2M).

Mn(xj′′) =
4∑

j′=1

n∑
k=0

1

(n− k)!
xn−k
j′′j′ M

k(xj′), (1.30)

where contributions from child cells at xj′ are aggregated into the parent cell at xj′′ .

Local-to-Local (L2L).

Ln(xi′) =
4∑

i′=1

p∑
k=n

1

(k − n)!
x k−n
i′i′′ Lk(xi′′), (1.31)

which transfers local expansions from parent cells to their children.

1.2.2 Dual-tree walk

The FMM algorithm typically works in tandem with a dual-tree walk algorithm
(Dehnen, 2000, 2002) to achieve its characteristic O(N) scaling. Unlike the single-tree
traversal in the BH approach, the dual-tree walk recursively descends into both the
source and sink octtrees. As illustrated in Listing 1.2, if the cells in question satisfy
a well-separation criterion, the algorithm performs cell-cell interactions for all pairs
of child nodes in the two cells. Otherwise, it subdivides one or both cells further,
continuing to recurse until the required separation criterion is met.

Within this framework, the particles are hierarchically arranged in an oct-tree
structure. Each leaf cell first gathers its multipole expansion via the P2M kernel.
These multipoles are then aggregated up the tree, from child nodes to their parent
nodes, using the M2M kernel. At the root, the algorithm has a complete multipole
description of all cells for computing far-field gravitational interactions. For well-
separated cell pairs, the approximate gravitational force is evaluated with a M2L
kernel. The resulting local expansions then propagate down the tree to the leaf cells
via the L2L kernel. Finally, each particle’s potential and force are determined from
the local expansion in its leaf cell by the L2P kernel. For particles not satisfying the
well-separation criteria, direct force summation is used instead.

func I n t e r a c t (A,B) :
t ry to perform the i n t e r a c t i o n between nodes A and B

i f ( i t cannot be performed )
i f (A = B)

f o r ( a l l p a i r s {a , b} o f c h i l d nodes o f A)
I n t e r a c t ( a , b ) ;

e l s e i f ( rmax(A) > rmax(B) )
f o r ( a l l c h i l d nodes a o f A)
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I n t e r a c t ( a , B) ;
e l s e

f o r ( a l l c h i l d nodes b o f B)
I n t e r a c t (A, b ) ;

Listing 1.2: Psuedocode (adopted from Dehnen 2002) that demonstrates the dual tree
walk algorithm for a set of two cells A and B

1.3 Massive black hole binary evolution

30-50 kpc 1kpc – 100 pc 1 pc – 0.001 pc

STAGE I STAGE II STAGE III

Figure 1.2: A visualization of the three-step process for MBHB coalescence described
in Section 1.3. Tidal interactions between the galaxies and dynamical friction from
the dark matter halo is key to sinking the MBHs in the first stage. In the second stage,
after the galaxies have merged, dynamical friction from gas, stars, and dark matter
plays a major role. In the third stage, after the MBHs have reached separations of
≲ 0.1 pc, three-body interactions with nearby stars play a more dominant role in
driving the merger process.

MBH binaries are among the most promising sources of millihertz GWs that will
be detectable by LISA. MBH binaries with masses in the range 104M⊙ − 107M⊙ are
primary targets for LISA (Amaro-Seoane et al., 2017) and TianQin (Luo et al., 2016),
which are expected to detect MBH mergers out to redshifts z > 20. Depending on
different seeding mechanisms, accretion models, and subgrid dynamical prescriptions,
large-volume cosmological simulations predict merger rates of 0.1− 2.0 yr−1 at z = 2
(see Figure 20 from Di Matteo et al., 2023, and references therein) . Observing
GWs from the final inspiral phase of these mergers not only provides insight into the
assembly history of galaxies but also constrains key dynamical properties of galactic
nuclei surrounding MBH binaries. Consequently, modeling the dynamical evolution
of MBH binaries within galactic nuclei is crucial for understanding both the galactic
environment and its influence on black hole growth and merger rates.
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Due to the wide range of conditions in which MBH binaries may form, their
evolutionary paths remain a topic of active debate. Broadly, the evolution of an
MBH binary can be split into three distinct stages (Begelman et al., 1980) before the
final, GW-driven coalescence:

1. Sinking Phase: When MBHs are separated by more than ∼ 100 pc, they ex-
perience dynamical friction as they move through a medium composed of stars,
dark matter, and gas. This motion induces an overdensity in their wake, which
exerts a gravitational drag force (Chandrasekhar, 1943), causing the MBHs to
lose energy and angular momentum, gradually sinking toward the center of the
merger remnant. While accurate estimation of the dynamical friction timescale
Tdf requires N -body simulations, following Binney and Tremaine (2011), we
obtain:

Tdf ∝
M

MBH

1

ln Λ
, (1.32)

where M is the total mass of the merged galaxy, MBH is the MBH mass, and ln Λ
is the Coulomb logarithm, typically ∼ 10. Smaller MBHs experience longer dy-
namical friction timescales and may “wander” within the merged galaxy without
efficiently sinking to the center (e.g., Ma et al., 2021).

2. Bound Binary Formation: Once the MBHs reach separations below ∼ 100
pc, they can form a gravitationally bound binary by ejecting mass from the
central region of the merger remnant. Using equation (8.78a) from Merritt
(2013), the mass that must be ejected, Mej, is given by:

Mej ≈ 2M12σ
2, (1.33)

where M12 is the total mass of the binary, and σ is the velocity dispersion of the
galaxy. Thus, an amount of mass comparable to the binary’s total mass must be
removed from the system for the MBHs to become bound. This mass ejection
occurs primarily through a combination of dynamical friction and three-body
scattering. Initially, dynamical friction dominates, but as the MBH separation
decreases, three-body scattering becomes increasingly significant.

3. Hard Binary Stage: When the binary reaches separations below ∼ 0.1 pc,
it enters the hard binary phase, where further orbital decay is driven primarily
by three-body interactions. Incoming stars that pass close to the binary can
undergo strong encounters, either being ejected from the vicinity or from the
galaxy entirely. These ejections extract energy from the binary, leading to
further orbital decay. Under the assumption of an abundant supply of such
stars, the change in the inverse semi-major axis 1/a of the binary follows:

d

dt

(
1

a

)
=

GHρ

σ
, (1.34)
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where H is a dimensionless number called the hardening rate and ρ is the
stellar density (Quinlan, 1996; Sesana et al., 2006). Typically H ≈ 1−10 Thus,
the binary loses energy at a constant rate. If the supply of scattering stars is
insufficient, the binary may stall at parsec-scale separations, leading to the so-
called “final parsec problem”—a barrier to further evolution via GW emission
(e.g., Milosavljević and Merritt, 2003).

Within the hard binary stage, the strong interaction between the MBH binary
and stars in its loss cone heavily influences the binary’s orbital decay. This loss cone
contains low-angular-momentum stars that can approach the binary closely enough
to be ejected in slingshot events, transferring energy and angular momentum to the
MBHs. In a spherical system, the loss-cone angular momentum Llc is given by

Llc ≈
√

2GM12K a, (1.35)

where M12 is the total mass of the MBH binary, K ∼ 1–2 is a dimensionless constant,
and a is the binary’s semi-major axis. The timescale for binary hardening can be
extremely sensitive to the supply of these stars, and in spherical, gas-poor galaxies,
the lack of efficient loss-cone refilling can lead to orbital decay times exceeding the
Hubble time. In spherical galaxies loss cone filled by collisional processes like two-
body relaxation leading to a long refilling timescale in systems with large number of
stars, like galactic nuclei. However, a wealth of numerical and analytical studies over
the past two decades indicate that non-sphericity (e.g., triaxial or clumpy structures)
can introduce torques that replenish the loss cone on much shorter timescales, thereby
circumventing the final parsec problem (e.g., Berczik et al., 2006; Khan et al., 2013;
Vasiliev et al., 2015; Vasiliev, 2017).

Another critical factor in binary evolution is the numerical resolution of simula-
tions (e.g., Sesana et al., 2011; Nasim et al., 2020; Khan and Holley-Bockelmann,
2021; Rawlings et al., 2023). If the number of particles is too low, collisional relax-
ation effects become artificially enhanced, leading to unphysically short GW merger
timescales (e.g., Merritt et al., 2007a). Faithfully resolving the relevant dynamical
processes requires N ≳ 106. While low particle numbers impact both the evolution
of the semi-major axis and eccentricity, the latter is more strongly affected, as it is a
second-order effect in angular momentum. Low-resolution simulations can artificially
produce more eccentric binaries, resulting in unrealistically short GW timescales.
Examining Figure 1.3, where we calculate the GW timescale of an eccentric binary
compared to a circular binary with the same mass ratio using the Peters (1964b)
formula, we find that at high eccentricities (e = 0.9), GW effects are significantly
enhanced, reducing the GW timescale by up to a factor of 100 compared to e = 0.
Detailed N -body simulations suggest that a mass ratio ≥ 50 (see Chapter 8 of Merritt,
2013a) between the incoming stellar particles and the smaller MBH is required for
statistically robust eccentricity evolution; however, stochastic effects make it difficult
to precisely constrain extreme eccentricities (e ≳ 0.99) (Nasim et al., 2020; Rawlings
et al., 2023).
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Figure 1.3: The ratio of GW timescale of an eccentric binary to that of a circular bi-
nary with the same mass ratio. We use Peters (1964a) equations to calculate the GW
merger timescale. We notice that the timescale is very sensitive to the eccentricity.
At e = 0.9, the GW timescale is 100× shorter than at e = 0.

In large-volume cosmological and zoom-in simulations, subgrid models for dynam-
ical friction (e.g., Tremmel et al., 2015a; Chen et al., 2022a; Ma et al., 2023), three-
body interactions, and accretion introduce additional uncertainties into merger rate
predictions. Consequently, high-resolution N -body simulations remain indispensable
for constraining MBH coalescence timescales and accurately modeling the structure
of galactic nuclei at parsec and sub-parsec scales. These simulations provide critical
insights into the stellar and dark matter distributions around MBH binaries—details
that remain beyond the resolution limits of large-scale cosmological simulations. A
wealth of literature is available on methods to resolve such substructures in galaxies
derived from large cosmological volumes. The GRIFFIN (e.g., Partmann et al., 2025)
project uses the KETJU code to perform zoom-in simulations to study the co-evolution
of the MBH with the surrounding stellar cluster. Additionally, multi-scale techniques
using a combination of N -body or Monte-carlo simulations in conjunction with cos-
mological simulations such as MOSAICS (e.g., Pfeffer et al., 2018) and FIRE (e.g.,
Rodriguez et al., 2023) to study the evolution of globular clusters in galaxies
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Figure 1.4: Relative change in angular momentum of stars in two NSCs during a
merger process. Tidally stripped stars gaining angular momentum (green) move out-
ward, while stars losing angular momentum (magenta) move inwards towards the
merger. The stripped stars steal angular momentum from the NSC system helping
the MBHs embedded in them shrink from 20 pc to ∼ 0.01 pc within ∼ 1 Myr. This
process is substantially faster than the DF timescale leading to efficient mergers (us-
ing data from Mukherjee et al. (2023)).

1.4 Nuclear star clusters

Nuclear star clusters (NSCs) rank among the densest stellar systems in the universe,
with mass densities reaching up to ∼ 106M⊙ pc−3. Surveys indicate that NSCs are
both common and diverse across galactic environments: Georgiev et al. (2016) find
that up to ∼ 90% of galaxies with stellar masses M∗ = 109M⊙ and ∼ 20% of those
with M∗ = 107M⊙ host NSCs. Current formation models suggest that these clusters
arise from a combination of in situ star formation, where gas in the galactic center
collapses to form new stars (e.g., Loose et al., 1982; Hopkins and Quataert, 2010, 2011;
Guillard et al., 2016; Brown et al., 2018), and ex situ processes, where massive clusters
(e.g., globular clusters) undergo orbital decay and migrate inward (e.g., Tremaine
et al., 1975; Hartmann et al., 2011; Antonini and Perets, 2012). This dual-origin
scenario is further supported by the presence of multiple stellar populations observed
in many NSCs.

Owing to their high density, NSCs can host runaway collisions capable of forming
large black hole (BH) seeds. Particularly in low-mass, or “dwarf”, galaxies, seed BHs
of up to 106M⊙ may form in merely ∼ 100 Myr (Kritos et al., 2023). Additionally,
numerical simulations of supermassive black hole (SMBH) binary formation through
galaxy mergers point to heightened gas compression and bursts of star formation
at pericentric passages, ultimately driving the formation of dense NSCs. In these
scenarios, newly merged SMBHs often become embedded in the central star cluster
during the last merger stages (Van Wassenhove et al., 2014).

Recent studies emphasize the critical role of NSCs in accelerating massive black
hole (MBH) mergers. For instance, Ogiya et al. (2020b) demonstrate that tidal in-

16



teractions between NSCs can strip stars and facilitate rapid MBH sinking, reducing
separations from tens of parsecs to milliparsec scales. As NSCs undergo tidal strip-
ping, the orbits of stripped stars expand, leading to a corresponding decrease in
the angular momentum of the MBH binary and accelerating its orbital decay. The
stripped material exerts a drag force on the binary, further enhancing the decay pro-
cess as visualized in Figure 1.4. This mechanism is particularly relevant for lower-mass
MBHs (e.g., 104M⊙), where dynamical friction alone may require gigayear timescales
to bring MBHs from separations of over 100 pc to the galactic center.

Beyond isolated NSC mergers, multiphysics simulations indicate that protoclusters
in high-redshift galaxies, which surround seed BHs, can undergo hierarchical merging,
further expediting MBH binary formation (Shi et al., 2024). These processes are
particularly important for understanding early-universe BH growth. Consequently,
high-resolution N -body simulations of NSCs provide crucial insights into how stellar
density, mass spectra, and orbital dynamics influence MBH binary formation and
coalescence.

This thesis focuses on two key aspects of MBH dynamics in NSCs. First, we
examine the impact of a realistic mass spectrum on MBH merger timescales. Many
previous studies have neglected detailed mass distributions within NSCs, despite the
fact that these clusters are collisional and subject to mass segregation. Second, we
explore the role of NSCs in assisting seed MBHs that must sink to galactic centers for
eventual binary formation. To investigate these processes at parsec-scale resolutions,
we employ high-resolution N -body simulations (Chapters 3 & 4), offering deeper
insights into the role NSCs play in shaping the fate of MBH binaries, particularly in
high-redshift environments.

1.5 Dark matter spikes

Beyond massive black hole binaries, intermediate or extreme mass ratio inspirals (IM-
RIs/EMRIs) also rank among the most promising gravitational-wave (GW) sources
for LISA. In many scenarios, a relatively small compact object (e.g., a stellar-mass
black hole) gradually inspirals into a more massive black hole, radiating GWs over
months to years in the LISA band. These long-lived signals are exquisitely sensitive
to the mass distribution near the central MBH.

Recent theoretical work suggests that MBHs growing adiabatically through dark
matter (DM) accretion can develop dense DM spikes (Gondolo and Silk, 1999). Such
spikes are expected to leave a discernible imprint on the GW signal emitted by IM-
RIs/EMRIs. The heightened gravitational potential of a spike effectively modifies the
orbital evolution of the inspiraling secondary, leading to additional dephasing that can
amount to ∼103–107 GW cycles (e.g., Eda et al., 2013; Eda et al., 2015; Kavanagh
et al., 2020; Becker et al., 2022; Becker and Sagunski, 2023). Over the course of a
year-long LISA observation, these cycles accumulate, making the DM spike’s effect
potentially observable.
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Recent literature proposes that the key mechanism behind the spike-driven orbital
modifications is dynamical friction (Chandrasekhar, 1943), arising from scattering
events between the inspiraling body and the DM particles constituting the spike.
While earlier studies (e.g., Eda et al., 2015) treated the spike as a static background,
(Kavanagh et al., 2020) demonstrated that the inspiral itself can substantially heat
and alter the spike, sometimes injecting energy comparable to its total binding energy.
Consequently, to accurately capture the feedback of the inspiral on the spike (and vice
versa), more realistic dynamical modeling is required.

In this thesis, we focus on improving such modeling by considering eccentric in-
spirals rather than purely circular orbits, given that eccentric orbits are common in
astrophysical environments. We employ N -body methods, which are often regarded
as the gold standard for dynamical simulations, to avoid relying on simplified as-
sumptions about the feedback mechanism. By directly calculating forces between the
inspiraling object and the spike particles, and incorporating post-Newtonian correc-
tions, we aim to provide a more self-consistent picture of how DM spikes affect IMRIs
and their observable GW signals.

1.6 Outline

This thesis focuses on the dynamical modeling of massive black hole (MBH) binaries
in nuclear star clusters (NSCs) and intermediate-mass ratio inspirals (IMRIs) in dark
matter (DM) spikes using N -body simulations. In Chapter 2, I introduce Taichi and
present optimizations to FMM FMM for accurately simulating collisional systems.
Chapters 3 and 4 explore the impact of NSCs on the evolution of embedded MBH
binaries. Chapter 3 focuses on improving the modeling of NSCs by incorporating a
two-component mass function. Using this framework, I investigate the differences in
MBH binary evolution between mass-segregated and non-segregated NSCs, making
GW timescale predictions. Chapter 4 extends this analysis to nucleated environ-
ments in high-redshift dwarf galaxies. Specifically, I examine how NSCs influence
the merger of seed MBHs, potentially circumventing the seed sinking problem. These
studies leverage realistic environments extracted from cosmological simulations, which
include the stellar bulge, dark matter halo, and gas dynamics.

In Chapter 5, I introduce a fast N -body code designed to simulate eccentric IMRIs
in DM spikes. Using this code, I identify the dynamical processes responsible for the
dephasing effect in gravitational wave signals and predict the number of detectable
dephasing cycles that LISA can observe over a five-year observation period. Addi-
tionally, I use these simulations to infer the conditions under which DM spikes can
form and persist in realistic astrophysical environments.

In Chapter 6, I introduce a version of the HOLD integrator that runs entirely
on NVIDIA general-purpose GPUs (GPGPUs). This proof-of-concept study aims to
explore the performance of N -body codes that operate exclusively on GPUs. While
further optimizations to the code are possible, this work demonstrates a fully GPU-
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based solution that can be integrated with FMM codes running entirely on GPUs,
paving the way for an efficient next-generation N -body code that runs directly on
GPGPUs.

The works in Chapters 2, 3, 4, and 5 have been published in peer-reviewed journals
(Mukherjee et al., 2021a, 2023, 2024, 2025).
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Chapter 2

Fast multipole methods for N-body
simulations of collisional star
systems

Diptajyoti Mukherjee1, Qirong Zhu1, Hy Trac1,2, Carl L. Rodriguez1

1McWilliams Center for Cosmology, Department of Physics, Carnegie Mellon
University, 5000 Forbes Ave, Pittsburgh, PA 15213

2NSF AI Planning Institute for Physics of the Future, Carnegie Mellon University,
Pittsburgh, PA 15213, USA

Abstract

Direct N -body simulations of star clusters are accurate but expensive, largely due
to the numerous O(N2) pairwise force calculations. To solve the post-million-body
problem, it will be necessary to use approximate force solvers, such as tree codes.
In this work, we adapt a tree-based, optimized Fast Multipole Method (FMM) to
the collisional N -body problem. The use of a rotation-accelerated translation oper-
ator and an error-controlled cell opening criterion leads to a code that can be tuned
to arbitrary accuracy. We demonstrate that our code, Taichi, can be as accurate
as direct summation when N > 104. This opens up the possibility of performing
large-N , star-by-star simulations of massive stellar clusters, and would permit large
parameter space studies that would require years with the current generation of di-
rect summation codes. Using a series of tests and idealized models, we show that
Taichi can accurately model collisional effects, such as dynamical friction and the
core-collapse time of idealized clusters, producing results in strong agreement with
benchmarks from other collisional codes such as NBODY6++GPU or PeTar. Parallelized
using OpenMP and AVX, Taichi is demonstrated to be more efficient than other CPU-
based direct N -body codes for simulating large systems. With future improvements
to the handling of close encounters and binary evolution, we clearly demonstrate the
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potential of an optimized FMM for the modelling of collisional stellar systems, open-
ing the door to accurate simulations of massive globular clusters, super star clusters,
and even galactic nuclei.

2.1 Introduction

The collisional N -body problem, in which the gravitational dynamics of N particles
in a system are modeled over time, is one of the most challenging problems in modern
computational physics. The stellar environments represented by such models, such
as open, globular, and nuclear star clusters, contain some of the highest known den-
sities of stars and compact objects and can produce many interesting astrophysical
systems and transients. Systems such as X-ray binaries (e.g., Clark, 1975; Davies and
Hansen, 1998; Ivanova et al., 2008; Hailey et al., 2018), recycled millisecond pulsars
(e.g., Rappaport et al., 1989; Kulkarni et al., 1990; Sigurdsson and Phinney, 1995;
Ye et al., 2019), cataclysmic variables (e.g., Ivanova et al., 2006; Pooley and Hut,
2006), and merging binary black holes (e.g., Portegies Zwart and McMillan, 2000;
Rodriguez et al., 2015) can be produced with orders of magnitude more efficiency
through dynamical encounters in dense star clusters than through typical stellar evo-
lutionary processes. The compact objects within globular clusters are believed to be
the sources of gravitational waves detected by LIGO (e.g., Abbott et al., 2020a,b,c,
2017). Collisions of stars and compact objects in the central region are thought to
be responsible for the formation of intermediate-mass black holes (e.g., Freitag et al.,
2006; Gürkan et al., 2006; Giersz et al., 2015), and possibly even the seeds of super-
massive black holes at high redshift (e.g., Ebisuzaki et al., 2001). These black hole
seeds grow along with their host galaxies and will be the targets of incoming space
detectors such as LISA (Amaro-Seoane et al., 2017) and Tianqin (Luo et al., 2016).

To circumvent the difficulties associated with a direct integration approach to
the N -body problem, approximate techniques such as Hénon-style Monte Carlo ap-
proaches (e.g., Hénon, 1971a,b; Giersz and Spurzem, 2000; Joshi et al., 2000; Pat-
tabiraman et al., 2013; Rodriguez et al., 2016; Hypki and Giersz, 2017), or approxi-
mate solvers of the collisional Fokker-Planck (FP) equation (e.g., Vasiliev, 2017), are
often used to follow the dynamics. The foundation of both approaches is a statisti-
cal treatment of uncorrelated two-body encounters over long time (Chandrasekhar,
1942). For these methods to work, the classic Chandrasekhar’s formulae for dynam-
ical friction (first-order) and diffusion (second-order) coefficients are derived under
somewhat strong assumptions, which neglects coherent motions of each individual
particles, i.e., resonances (Meiron and Kocsis, 2019) or self-gravity (Lau and Binney,
2019). Moreover, the uncertainties in the Coulomb logarithm need to be calibrated
against the numerical method (Merritt, 2013). Therefore, the most versatile and
adaptive method is direct integration of N -body system. However, direct N -body
modeling is notoriously expensive to run and difficult to interpret (e.g., Miller, 1964).

With the increase in computational power, direct N -body methods have become
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more accessible for performing larger simulations with N ∼ 106. This makes them
one of the preferred means to simulate star clusters today. Although accurate, the
simulations are computationally expensive owing to the O(N2) complexity of the
direct forces calculation algorithm. For example, the DRAGON simulations (Wang
et al., 2016) took ∼ 8600 hours using 160 Xeon-2560 cores and 16 K20m GPUs to
simulate a globular cluster containing 106 stars. Thus, solving the post-million-body
problem using direct N -body codes presents a considerable challenge and is of interest
to the astrophysical community.

One method that has been in widespread use is the differential treatment of long-
range and short-range interactions. The Ahmad-Cohen scheme (Ahmad and Cohen,
1973), which has been adopted in NBODY6 (Aarseth, 2003), allows the long-range
interactions to be updated less frequently compared to the short-range interactions,
thereby requiring fewer force calculations per average time. The alternatives to the
expensive direct summation method are approximate force solvers. Among those, the
Barnes-Hut (BH) tree (Barnes and Hut, 1986) is a natural candidate. Tree codes use
hierarchical decomposition and multipole expansions to calculate gravitational forces
between the particles. The latter results in an algorithmic complexity ofO(N log(N)),
which is a major improvement from that of direct summation methods. Although tree
codes have found widespread usage in collisionless dynamics, they have found limited
usage for collisional dynamics simulations so far (e.g., McMillan and Aarseth, 1993;
Aarseth, 1999), the primary reason being the concern of force accuracy. Iwasawa et al.
(2015) indicate that one of the other reasons may lie in the the fact that collisional
simulations adopt individual or block time stepping. This would decrease efficiency
since the particle tree would have to be reconstructed every time step. Despite this
issue, P3T (particle-particle particle-tree) codes which combine the force splitting with
the Barnes-Hut tree have come out recently (e.g., Iwasawa et al., 2015; Wang et al.,
2020). Wang et al. (2020) have demonstrated that their code is highly competitive
compared to the direct summation code.

BH tree codes are not the only option here. Dehnen (2014) describes a more
efficient approach compared to the traditional tree code by adapting the Fast Mul-
tipole Method ((FMM: ) Greengard and Rokhlin, 1987; Cheng et al., 1999) to col-
lisional dynamics. Dehnen (2014) presents various optimizations to the traditional
FMM algorithm, which makes it suitable for adoption into star cluster simulations.
An algorithmic complexity of O(N) and even sub-N complexity for special cases is
demonstrated. The efficiency and the well-behaved error properties of this approach
make it an attractive alternative to the tree codes. However, adaptation of FMM for
collisional dynamics is missing. FMM has been used for collisionless N -body simu-
lations before (e.g. Dehnen, 2000, 2002). Collisional simulations demanding higher
accuracies and proper treatment of individual particles complicated the adoption of
FMM.

An interesting question arises about whether a full-fledged N -body code using
FMM could be as accurate and efficient as direct summation codes. The issue with
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accuracy echoes same concern voiced by Press (1986). In this study, we adopt the
FMM algorithm presented in Dehnen (2014) into our code, Taichi (Zhu, 2021), to
perform various tests in collisional dynamics.

In Section 2.2 we describe briefly the modifications that were made to Zhu (2021)
to adapt Taichi to collisional simulations. In Section 2.3 we describe the tests per-
formed with the code. Section 2.4 goes into the results of the various tests and
discusses the significance of the results. It is followed by discussion in Section 2.5,
future work in Section 2.6, and conclusions in Section 2.7.

2.2 Taichi for Collisional Dynamics

As emphasized in the introduction, an efficient FMM algorithm is the core of our
study. Zhu (2021) implements a collisionless N -body with FMM and individual time
steps into a code called Taichi. In this work, we build on Zhu (2021) and make
important modifications to enable it to be used for collisional simulations. The modi-
fications are made in three different areas: usage of solid spherical harmonics instead
of Cartesian coordinates for the multipole expansion, inclusion of an explicit error
control algorithm, and, lastly, usage of rotation operators to speed up multipole ex-
pansions. In the following subsections we describe the overall structure of FMM and
the modifications over Zhu (2021) in more detail.

2.2.1 Dual-tree Walk

Figure 2.1 illustrates the flow of FMM adopted as a force solver in Taichi. The
particles are hierarchically arrange in an oct-tree. Each leaf cell first collects the
multipole expansion with a Particle-to-Multipole (P2M) kernel. The multipoles are
then passed recursively upward by the parent nodes until the root using a Multipole-
to-Multipole (M2M) kernel. At this point, we have a complete description of all the
cells for their far-field gravity if necessary.

Next, we pass the root to a dual-tree walk (Dehnen, 2000) and determine which
interactions can be approximated. Our implementation of FMM uses a task parallel
version of the dual-tree walk. Approximated gravitational force between the cells is
calculated with a Multipole-to-Local (M2L) kernel for well-separated pairs of cells.
The local expansions are then passed recursively down the nodes to the leaf cells.
This step is achieved with a Local-to-Local (L2L) kernel. Finally, the force and the
potential energy of each particle are determined based on the local expansions of
the leaf cells they reside in using a Local-to-Particle (L2P) kernel. To calculate the
near-field contribution to the leaf cells, which cannot be handled using multipole
expansions, a direct summation is carried out instead.
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body: m, x, p, f … 

cell: x, r, M[:], L[:]

leaf

root

M2L

…
P2M

M2M L2L

L2P
sources: sinks:

Figure 2.1: Flowchart (adapted from Yokota and Barba, 2012) illustrating various
working parts of the FMM algorithm. For information on the abbreviations, check
out section 2.2.3. The particles are arranged in an oct-tree, which provides a complete
and hierarchical description of a set of particles, and will be ready for calculating
the far-field of any cell consisting of a group of particles. The individual bodies
contain information regarding the mass, position, velocity, and force experienced.
The cells contain information regarding the position, radius, and multipole and local
expansions. For clarity, we show the left half of the tree, consisting of only sources,
and the right half, consisting of only sinks. The interaction list is obtained by a dual-
tree walk (Dehnen, 2002) to determine which pair of cells can use approximations.
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2.2.2 FMM with Solid Spherical Harmonics

We use the same architecture in Zhu (2021) for tree building, dual-tree walk, and
direct summation. The FMM implementation in Zhu (2021) is based on a Taylor
expansion in Cartesian coordinates (Dehnen, 2000), which is sufficient for collisionless
systems where a modest force accuracy is needed. In collisional systems, a more
stringent force accuracies are presumably necessary to follow changes to the particle’s
orbit over many dynamical times. While previous studies based on the BH tree
method indicate that quadrupole expansion with opening angle θ = 0.5 is sufficient,
a systematic study of force accuracies on the collisional dynamics is desired. To be
conservative, we consider that the approximate force aiming at the round-off level of
single-precision floating point arithmetic should be safe. To that end, we adopt the
approach using solid harmonics outlined in Dehnen (2014).

For 1/r interaction, the solid harmonics essentially form a complete and orthogonal
basis for all the multipole moments and their far-field potentials. Up to order p = 2,
the explicit expressions of these functions (table 3 in Dehnen, 2014) read

1, x, y, z, 3(x2 − y2), 6xy, 3xz, 3yz, 3z2 − r2; (2.1)

One can see that these are the traceless part of the the Cartesian expressions (see also
Coles and Bieri, 2020). We follow Equations (52), (53), and (54) in Dehnen (2014)
to generate the regular (Υm

n ) and irregular (Θm
n ) parts of solid spherical harmonics.

The former is used in the multipole moments

Mm
n =

∑
i

miΥ
m
n (ri), (2.2)

where the summation is taken over each particle i with mass mi and displacement
vector ri ≡ (xi, yi, zi). The latter is used in the expansion and translation operations.
For more detailed mathematical properties of Υm

n and Θm
n and their translations, we

refer the reader to Dehnen (2014). All the factorials present in the normalization
coefficients are precomputed in a look-up table. The adoption of the solid harmonics
enables us to truncate the expansion to a very high order, p ≫ 10, which would
otherwise become cumbersome for Cartesian expansions.

2.2.3 Error-controlled multipole-acceptance criteria

The second important modification is an error-controlled multipole-acceptance cri-
terion (MAC) over the conventional varying θ as in Zhu (2021). We aim at some
fractional force error for the force calculation: therefore, we adopt a scalar force as a
quick but reasonable approximation of the actual accelerations according to

fi =
∑
i ̸=j

Gmj

|xi − xj|2
. (2.3)
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Before the actual dual-tree walk, we first estimate the total scalar force f with
θ < 1. Each cell collects the contribution from far-field cells as

∑
Mc

r2
, where Mc is the

cell mass and r the separation between the cells. Next, the actual force calculation
proceeds with the following MAC:

θ < 1 ∧ EA→B
MA

r2
< ϵfB ∧ EB→A

MB

r2
< ϵfA (2.4)

where fA and fB are the minimum of scalar force f for those particles in cells A and
B respectively. The tolerance parameter ϵ directly controls the final force accuracies
by FMM. We note that the above criterion which slightly differs from Dehnen (2014),
additionally ensures that the forces among particles are symmetric at some extra cost.

The error coefficients EA→B and EB→A are entirely determined by the multipole
moments of A, B themselves. With Pn defined as the sum of all the (2n+1) multipole
terms on order n as

P2
n =

n∑
m=−n

(n−m)!(n + m)! |Mm
n |2 , (2.5)

where Mm
n are the multipole moments of the cell as in Eq. (2.2), and

EA→B =
8 max{rA, rB}

rA + rB

1

MA

p∑
k=0

p!

k!(p− k)!

Pk,Ar
p−k
B

rp
, (2.6)

where MA is the total mass of source cell A, i.e., its M0
0 moment, rA and rB are the

sizes of each cell, and r is their separation.

2.2.4 Rotation-accelerated M2L Operations

The last, but not the least, improvement is a fast M2L kernel. To speed up these
expensive operations, we adopt the rotation-acceleratedO(p3) approach (Cheng et al.,
1999; Dehnen, 2014). Additionally, we generate and save the swapping matrices for
expansion order p ≤ 30. These swapping matrices are essential for M2L translation
operations, where the new z-axis is aligned with the interaction direction as follows:
the multipole moments of the source cell are rotated in the z-direction, then with
its x and z coordinates swapped, rotated in z-direction again, and with its x and
z swapped again. The translation in the new coordinates featuresO(p3) complexity
instead of O(p4).

We use OpenMP to speed up the dual-tree walk using task model with atomic
clause used to update of multipole moments (Fortin and Touche, 2019). The near-
field contribution is handled by a direct summation kernel, which is vectorized using
AVX intrinsics as in Zhu (2021). Time integration closely follows the HUAYNO code
(Pelupessy et al., 2012a) with little changes. A brief overview of the integrator and the
time-symmetric time-stepping method used in Taichi is provided in the Appendix.

26



2.3 Tests

To measure how effective FMM is at simulating star clusters, we compare models of
idealized clusters to the results of other codes and theoretical predictions. We use
a homogeneous Plummer model (Plummer, 1911) to generate our initial conditions.
The initial conditions are generated using the tool MCLUSTER (Küpper et al., 2011).
Each test involves a number of independent realizations, and the results are derived
after taking statistical averages over these realizations. For comparison, NBODY6++GPU
(Wang et al., 2015) without GPU acceleration enabled is used to perform the direct
N -body simulations. The same tests are also performed using the direct version of
Taichi to ensure that the presence of the second-order HOLD integrator did not bias
the results in any manner. In addition, Fokker-Planck simulations are performed using
Phaseflow (Vasiliev, 2017) to compare density profiles over the course of evolution
until core collapse. For the dynamical friction tests, PeTar (Wang et al., 2020) is
used as a benchmark along with the other codes mentioned. In all of the tests Hénon
(Heggie and Mathieu, 1986) units are used. In these units, G = M = 1 and E0 =
−0.25, where M is the total mass and E0 is the initial total energy. A summary of
the input parameters used for the simulations has been provided in Table 1.

All tests are done on 28-core Intel Xeon E5-2635 v3 nodes. Taichi, NBODY6++GPU,
and PeTar are run with only OpenMP and AVX enabled.

2.3.1 Tests Performed

Three different tests are performed in order to examine how FMM compares to direct
N -body codes. In the first set of tests, we compare how accurate the FMM algorithm
is compared to the direct summation method by examining force discrepancies. In
the second set of tests, we evolve idealized Plummer models until core collapse to
measure global properties, including conservation of energy, evolution of Lagrangian
radii, core radii, and density function. Finally, we compare dynamical friction effects
via the inspiral of a massive particle in a field of smaller mass stars. We also perform
scaling tests to examine how Taichi scales with the number of cores within a node.
The tests are presented in more detail in the upcoming sections.

Force Accuracies

We compare how the forces on individual particles vary between the direct and FMM
versions of Taichi after a single time step. We construct a Plummer sphere with
105 particles using MCLUSTER and integrate it using both direct and FMM versions of
Taichi with different input accuracies and multipole expansions. The relative force
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accuracies are then computed using the L2 norm as follows:

δf = fdirect − ffmm (2.7)

δf

f
=
|δf |
|fdirect|

(2.8)

We look at how the distribution of relative force accuracies varies with changing
input parameters. Using the grid of simulations performed, we construct a heat map
plotting the median and 99.99th percentile fractional force accuracies and histograms
plotting the distribution of relative force accuracies. In addition, we look at the
time taken by the FMM simulations with different input accuracy and multipole
parameters to construct heat maps showing the variation of the integration time and
the Poisson step time with the change in input parameters.

Core Collapse of a Plummer sphere

MCLUSTER is used to generate three sets of 16 simulations each containing N = 1024,
2048, and 4096 particles. The clusters are evolved until core collapse (∼ 15trh) where
trh is the half-mass relaxation time, which for the Plummer model is defined as

trh = 0.206
a3/2N

log(γN)
(2.9)

where a is the characteristic scale or Plummer radius and log(γN) refers to the
Coulomb logarithm. All of the models start in virial equilibrium and do not con-
tain any primordial binaries.

Post-collapse treatment is unfeasible since Taichi does not include regularization
treatment for hard binaries, and as such the simulations take a long time to finish
post-collapse. Phaseflow is used to simulate Fokker-Planck models of the clusters.
The scale radius of the cluster is set to 0.59 which corresponds to Hénon units. The
Coulomb logarithm (log Λ ≡ γN) is calculated by setting γ = 0.11. This value is
representative of clusters with a uniform mass function (Giersz and Heggie, 1994).

Dynamical Friction

In order to measure whether FMM can accurately model dynamical friction, we seek
to reproduce the black hole inspiral test performed by Rodriguez et al. (2018). In this
test, a massive particle several times the mass of the stars in the cluster is introduced
on a circular orbit at the viral radius of the cluster. Its position relative to the center
of mass of the cluster is tracked. The time taken by the massive particle to inspiral
to the center of the cluster can be modeled analytically. For a massive particle with
mass m starting at a radius r with a circular orbit in a Plummer model, Rodriguez
et al. (2018) provide the rate of change of r as

dr

dt
=
−8πG2 log Λχmr

V 3
c

[
1 + 3(1 + r2

a2
)−1

] (2.10)
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where log Λ is the Coulomb logarithm, m is the mass of the massive object, Vc is the
circular velocity of the massive object at a distance r and a is the scale radius of the
cluster. χ ≡ erf(X)−2Xexp(−X2)/

√
π, X ≡ Vc/(

√
2σ(r)), where σ(r) is the velocity

dispersion at a radius r has been used in equation 2.10. In Hénon units, G = 1 and
a = 0.590. γ is set to be 0.01 in this equation (Rodriguez et al., 2018). These tests
can also be used to determine γ since the analytic solution is very sensitive to the
value of γ. More details on the derivation of this equation can be found in Rodriguez
et al. (2018) and (Binney and Tremaine, 2011, chapter 8).

Using MCLUSTER, 30 independent realizations containing 104 stars are generated.
The last star in the initial conditions is then replaced with either an object either
10 times more massive or 20 times more massive depending on the simulation. The
massive object is placed one virial radius from the center of mass of the cluster on a
circular orbit with velocity

Vc(rvir) =

√
GM(rvir)

rvir
, (2.11)

where M(rvir) is the mass contained within one virial radius. Note that Vc(rvir) ≈
0.799 when rvir = 1.

Code Input Parameters

Taichi

FMM

ϵ = 10−7

p = 20
η = 0.025

NBODY6
NNBOPT= 500
ηI = ηR = 0.01

PeTar

θ = 0.3
ηHermite = 0.1

∆ttree = Default

Table 2.1: Summary of the input parameters used for the different codes for the tests
mentioned above. Note that for the direct version of Taichi the same η was used.
The input parameters for NBODY6 were chosen in order to maximize the accuracy. In
case of PeTar the tree timestep parameter is calculated automatically by the code
from the changeover radius. Please note that these input parameters were also used
for the simulations performed in the Appendix.
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Figure 2.2: A histogram of the relative force error (δf/f). The particles are binned by
their relative force errors. The brown line represents the median value, the yellow line
represents the 99th percentile value, and the red line represents the rms value, and
the blue line represents the 99.99th percentile values of relative force error. Increasing
the multipole order shifts the distribution to the left and reduces outliers.

2.4 Results

2.4.1 Accuracy

The global energy error does not provide a full picture of the validity of the simula-
tions. As Dehnen (2014) mentions, even though in FMM the energy error is indicative
of the average force errors, it can cloak individual force errors that might be large
enough to question the validity of the simulations. Therefore, it is imperative that
we use another means to measure the validity of the simulations.

To determine the quality of force calculations, we look at the distribution of rela-
tive force errors for individual particles. In figure 2.2, we compare the distribution of
relative force errors after one time step while varying the input accuracy and the mul-
tipole expansion parameters. We find that the median of the distribution is always
better than the input accuracy and improves as we increase the multipole expansion
parameter. We also notice that the 99th percentile values of the distribution improve
after increasing the multipole expansion parameter. In fact, the 99th percentile value
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Figure 2.3: The relative force error distributions as functions of input accuracy (ϵ)
and mulipole parameter (p). Left: the median relative force error is presented in this
heat map. It is evident that the median fractional force error is extremely tightly
controlled. In fact, for a given input accuracy, the median error is several orders of
magnitude lower than it. Right: the 99.99th percentile fractional force error heat
map is presented here. Since this value is representative of the number of outliers, we
notice that the brighter patches indicate that the distributions contain more outliers
than the darker portions. Within each row, there appears to be a fixed p for which
the 99.99th percentile values are lowest.

is almost exactly equal to 10−7 when ϵ = 10−7 and p = 20. The right tails of the the
distribution plots show that the force errors can sometimes go as high up as 10−3.
However, further analysis shows that the particles at the high-error tail of the distri-
bution are located predominantly at large radii. For the particles at large radii, the
magnitudes of the forces are small, which can additionally lead to misleading large
fractional force errors (Dehnen, 2014). Also noted by Dehnen (2014), few of the par-
ticles at the high-error tail could also lie at the center of the cluster, where the forces
mostly cancel out, leading to a small force that contributes to a large fractional error.

We conclude that the input parameters can be tuned in order to reduce the force
discrepancy between the direct summation and the approximate values. To better un-
derstand how the parameters affect the distribution, we construct heat maps showing
the distribution of the median and 99.99th percentile force error values since this gives
us information about the distribution itself. Discrepancies between the two values in-
dicate the length of the right tail of the error distributions, giving us an idea about
the outliers. From the median value heat map in Figure 5.2 we find that force error
is well controlled by the the input accuracy parameter itself. Within any particular
row, we see that increasing the multipole expansion parameter increases the overall
force accuracy. The exception to this rule is seen in the lower left corner, where we
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have a combination of lower values of ϵ and p. For very low values of ϵ ≤ 10−13, more
cells are opened at low values of p rather than at relatively larger values of p because
of the error estimation algorithm. In such cases, a number of cells can contain at
most one particle, essentially reducing FMM to direct summation. This increases the
relative force accuracy compared to direct summation but also results in a lot more
pairwise force calculations, reducing efficiency. Thus, we find that the overall relative
force accuracy decreases when we move from lower to higher p values.

2.4.2 Core Collapse of a Plummer Sphere

As a preliminary check, we analyze the growth of energy errors over the long-term
evolution of the system as shown in Figure 2.4. We notice that the growth of energy
errors is relatively slow toward the beginning of the simulation and increases more
rapidly as the cluster approaches core collapse. For Taichi this is more evident
since the usage of a symmetrized time steps ensures that the energy error grows
more slowly in the beginning (Pelupessy et al., 2012a). However, due to the lack of
regularization, close encounters or few body interactions can lead to jumps in the
energy errors, especially close to core collapse. We present an analysis of energy
growth with softening enabled in the Appendix .

It should be noted that in the case unsoftened version of NBODY6++GPU, the energy
jumps are caused due to improper KS regularization switching as observed and noted
by Wang et al. (2020). The cumulative energy conservation in the long term for the
unsoftened version is typically O(10−4) for both Taichi and NBODY6++GPU. We notice
that this is true for both direct summation and FMM versions of Taichi. For the
softened version, we find that the energy conservation in the Taichi simulations is an
order of magnitude or two better than that of the NBODY6 simulations. However, we
should not only use the overall energy conservation as a measurement of the accuracy
or quality of the simulations (Dehnen, 2014; Wang et al., 2020). In fact, for tree and
FMM codes, it is a better idea to study the distribution of force errors (section 2.4.1)
along with the evolution of energy to get a better picture (Dehnen, 2014).

The first set of tests using the uniform mass Plummer model clusters reveal that
Taichi models the long-term evolution of the clusters properly. This is evident visu-
ally from Figure 5.1 where we see the formation of the core and from the overlap of
the Lagrangian radii curves in Figure 2.6. Here we have utilized AMUSE (Zwart et al.,
2009; Pelupessy et al., 2013; Zwart and McMillan, 2018) to calculate the Lagrangian
radius. For the N = 1024 model simulations, we find that the maximum relative dif-
ference between NBODY6 and Taichi FMM among all 16 realizations is about 4% for
the 1% mass fraction Lagrangian radius, but the average relative difference is about
1%. For the half-mass radius, the average relative difference is about 0.3%. The
agreement between Taichi direct and FMM versions is even better, with the maxi-
mum relative difference across all mass fractions being close to 10−7. As we increase
N the agreement between the two methods improves considerably. For example, for
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Figure 2.5: A cross-sectional scatter plot of an N = 4096 particle simulation run
with Taichi FMM. Left: the particles at the initial timestep. The zoomed in area
shows the region near the center of the cluster. Right: the particles right before
core-collapse. One can clearly see the core that has been formed.

the N = 4096 particle simulations, the maximum relative difference between NBODY6

and FMM in the Lagrangian radii across all four mass fractions is 0.9%, while the
averages range between 0.05% and 0.1%.

The core radius is calculated using the definition provided by Casertano and Hut
(1985). The core radius is defined as the density-square-weighted sum of the distance
from the density center to the particle. Then, the core radius becomes

rc =

√∑N
i=1 ρ

2
i |ri − rd|2∑N
i=1 ρ

2
i

. (2.12)

The density center is defined as

rd =

∑N
i=1 ρiri∑N
i=1 ρi

(2.13)

where ρi is the density and is calculated by using a cubic spline kernel over the 32
nearest neighbors from the particle. The density is calculated using HOPInterface

(Eisenstein and Hut, 1998) present inside AMUSE.
The core-radius curves in Figure 2.6 show agreement between all three codes.

For example, in the N = 1024 particle simulations, the maximum relative difference
in core radius is about 0.7%. With larger N the agreement becomes stronger with
smaller deviation between individual simulations. We find that for the N = 4096
simulations, the maximum relative difference decreases to 0.1%.
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Figure 2.6: Evolution of Lagrangian radius using NBODY6++GPU and Taichi direct
and FMM modes. From the bottom to the top, the curves represent 1%, 10%, 50%,
and 90% mass fractions, respectively. The curves have been produced by taking the
median of 16 independent realizations in each case. The shaded regions represent the
90th percentile values in each case. The rightmost plot shows the evolution of the
core radius. It can be seen that as N increases, the agreement between FMM and
the direct codes gets better.
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Figure 2.7: The density of the cluster ρ plotted as a function of the radius r. Top:
The density function of a single 4096-particle realization simulated using FMM is
compared to that produced by the Fokker–Planck code at different times during evo-
lution until core collapse. The divergence between the codes at larger radii is caused
by the dearth of particles present at larger radii initially. Bottom: The density func-
tions of nine independent 4096-particle realizations compared to the density function
produced using the Fokker-Planck code at the time of core collapse. The results show
significant agreement between the two codes. This also indicates that the density
function agrees with the theoretical power law of the density profile r−2.2.
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The agreement in the long-term evolution of the Lagrangian and core radii suggests
that the evolution of the cluster density should be in agreement. We show this in
Figure 2.7. Comparing the time evolution of the one realization of a 4096-particle
model, we find that the density as a function of the radius produced by Taichi using
FMM matches that of Phaseflow at different points during the evolution. Although
not presented here, we found a similar picture for simulations with smaller particle
numbers.

What becomes of considerable interest is the behavior of the density function
at core collapse. In order to pinpoint the moment of core collpase, we simulate
the evolution of an idealized Plummer model until core collapse using Phaseflow

and compare the density functions at the time indicated by Phaseflow as the core
collapse time. We compare nine independent realizations of the 4096 particle model
to the idealized density function and find that there is a considerable amount of
agreement between them. Some simulations could not be simulated to the core-
collapse time owing to the formation of hard binaries (discussed further in section
2.5.2). The idealized density profile follows the theoretical density profile ρ ∝ r−2.2

(e.g. Joshi et al., 2000) and thus the density profiles produced by simulating the
clusters using FMM also follow the theoretical density profile. This is significant
since this phenomenon is purely driven by two-body effects, indicating that Taichi

with FMM can model the two-body relaxation properly, a fundamental aspect of
collisional N -body simulations.

In order to examine whether there are significant changes with accuracy param-
eters, we run Taichi with ϵ = 10−3 and p = 10, 20. We run a set of five N = 1024
Plummer model simulations until core collapse to examine the evolution of the La-
grangian radius and compare it to the previous Taichi FMM results. We also note
the energy drift of the simulations using both the softened and unsoftened versions
of the code.

From Figure 2.8, we find that there is very little change in the overall evolution
of the Lagrangian radius compared to that of the more accurate simulations. This
suggests that even with lower ϵ and p, Taichi is properly able to reproduce second-
order relaxation effects. This is significant since simulations using lower accuracy
parameters are faster. Although not presented here, we find that for the p = 20
scenario, even though the overall relative energy error does not exceed 10−6 at any
point in time, the relative energy error between any two subsequent snapshots is larger
compared to the more accurate simulations. For the p = 10 scenario, the overall
relative energy errors are about 10x larger compared to the original simulations.

2.4.3 Dynamical Friction

Another important component of collisional simulations is dynamical friction, which
is a purely two-body effect. We can examine it in our tests via the inspiral of a massive
object in the field of less massive stars. The rate of inspiral can provide us a direct
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Figure 2.8: The evolution of the Lagrangian radius for five N = 1024 simulations
is presented here, similar to Figure 2.6. We notice that, even while using lower
accuracy parameters, we arrive at a similar evolution of Lagrangian radii of different
mass fractions. Compared to the original results, we find that the maximum relative
difference in the Lagrangian radii of individual simulations is of the order of 0.001%.

idea of the ability of a method to reproduce two-body dynamical effects properly.
In these tests, we emphasize that we are using the NBODY6 and PeTar results as a
benchmark rather than the analytic results. This is because of the inability of the
Chandrasekhar model to reproduce the position of the massive particle near the core.
This issue is discussed in detail later.

We notice from figure 2.9 that Taichi with FMM is statistically able to reproduce
the inspiral rates for both of the tests, agreeing with both the direct N -body results
and the analytic results. The agreement between individual simulations is, however,
not guaranteed. Individual simulations, even though they may agree at the beginning,
can vary significantly. For example, for the MBH/Mstar = 10.0 case, the average
relative difference between NBODY6 and Taichi with FMM for the positions of the
black hole at the end of the simulation was about 20%. Even individual simulations
performed can vary considerably over multiple runs. The same initial conditions
can produce different inspiral rates if simulated multiple times. It is an artifact of
the nonassociativity of floating point operations for multithreaded programs. Even
machine-precision errors (∼ 10−16) can grow exponentially over time, and results may
diverge after a couple of dynamical times. This is a result of Miller’s instability, and
this issue has been discussed in more length in a later section. It is thus imperative
to perform multiple simulations and use the statistical average of the results rather
than results from a single simulation.

The discrepancy between the N -body and the analytic results are toward later

38



t

0.0

0.2

0.4

0.6

0.8

1.0

r B
H

(r
v
ir

)

Analytic

Taichi Direct

Taichi FMM

t

0.0

0.2

0.4

0.6

0.8

1.0

r B
H

(r
v
ir

)

Analytic

NBODY6

Taichi FMM

0 50 100 150 200

t

0.0

0.2

0.4

0.6

0.8

1.0

r B
H

(r
v
ir

)

Analytic

PeTar

Taichi FMM

MBH/Mstar = 10.0

t

0.0

0.2

0.4

0.6

0.8

1.0

r B
H

(r
v
ir

)

Analytic

Taichi Direct

Taichi FMM

t

0.0

0.2

0.4

0.6

0.8

1.0

r B
H

(r
v
ir

)

Analytic

NBODY6

Taichi FMM

0 20 40 60 80 100

t

0.0

0.2

0.4

0.6

0.8

1.0

r B
H

(r
v
ir

)

Analytic

PeTar

Taichi FMM

MBH/Mstar = 20.0

Figure 2.9: The distance of the massive object (rBH) is presented as a function of time
(in Henon units) and the virial radius of the cluster. The curves show the inspiral
of massive objects of two different masses due to dynamical friction. The solid and
dashed curves indicate the median distance of the massive object from the center
of mass that was produced after running 30 independent realizations. The shaded
regions indicate the 95% confidence interval values of the median distance for the
FMM simulations. All values are binned over one N -body time step. We notice that
as we increase the mass of the massive object, the agreement between the different
methods improves significantly.

39



0 20 40 60 80 100

t

0.0

0.2

0.4

0.6

0.8

1.0

r B
H

(r
v
ir

)

Accuracy = 10−7

Accuracy = 10−3

Figure 2.10: Same as the MBH/Mstar = 20.0 case from Figure 2.9 but with two
different input force accuracies: ϵ = 10−3 and ϵ = 10−7. Even with an input accuracy
four times lower in magnitude compared to the original FMM simulations, the massive
particle inspiral time is reproduced very well.

time steps is caused by the “core stalling problem.” The issue has been noted by
Goerdt et al. (2006) and others (e.g. Inoue, 2009; Goerdt et al., 2010) performing N -
body simulations involving the inspiral of objects in gravitational systems with cores.
The stalling represents a flaw in the Chandrasekhar model of relaxation that assumes
a Maxwellian distribution of velocity and spherical symmetry that is not perfectly
reproduced in discrete models. According to Goerdt et al. (2006), the stalling is
caused by an orbit-scattering resonance in which the perturber and the background
reach a stable state. Semianalytic models can be used to correct for the stalling effect
(e.g., Petts et al., 2016; Silva et al., 2016).

The question whether Taichi FMM using a lower input accuracy and multipole
expansion order can reproduce similar inspiral times to that using higher accuracies
is interesting. For example, if we used ϵ = 10−3 and p = 10 instead of ϵ = 10−7

and p = 20, should we expect results that agree with those from earlier? Figure
2.10 suggests that we should in fact find that the results to be in agreement. This
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is a very important result that suggests that lower-order FMM can be used in cases
where we want to model dynamical friction on a few specific particles. Switching to
a lower order can save time. In fact, in our simulations, switching to a lower order
sped up the simulations by ∼ 2 − 3 times. This can have applications in modeling
supermassive black hole (SMBH) binaries in a field of smaller stars. We expect the
agreement to be good as long as the mass ratio of the massive object to that of the
field stars is high enough. Whether low-order FMM can model dynamical friction
in cases where the mass ratio is closer to 1 needs to be tested. However, results do
suggest that FMM can be used to simulate SMBH binaries and intermediate-mass
black hole binaries safely.

2.4.4 Scaling

We perform scaling comparisons and strong scaling tests for Taichi on a single 28-
core Intel Xeon E5-2635 v3 node. All of the wall-clock times have been averaged
over wall-clock times from five individual simulations of each realization. The OpenMP
parallelization in Taichi allows us to scale the code over multiple cores in a single
node. We run Taichi FMM with input accuracies of 10−7 and 10−3 and a multipole
expansion p = 20 and compare it to Taichi direct, NBODY6 and PeTar. They are
then used to perform simulations for 103, 104, 105, and 106 particles. The systems are
evolved until tfinal = 1/8192 N -body units. This was used to obtain quick results for
large-N systems. A summary of the input parameters has been provided in Table
2.2.

Code Input Parameters

Taichi

FMM

ϵ = 10−7, 10−3

p = 20
η = 0.025

NBODY6
NNBOPT= 200
ηI = ηR = 0.01

PeTar

θ = 0.3
ηHermite = 0.1

∆ttree = 1/8192

Table 2.2: Input parameters used for the scaling tests. Please note that in this case
the input parameters for both NBODY6 and PeTar have been changed slightly compared
to Table 2.1.

To find optimal input parameters, we construct integration and Poisson step time
heat maps as shown in Figure 2.11. We find that our choice of input parameters
(ϵ = 10−7, p = 20) is optimal. Looking at Figure 2.12, we notice that FMM is
inefficient for simulations with fewer than ∼ 104 particles. This is in part due to the
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Figure 2.12: The wall-clock time for one integration step presented as a function of
the problem size. For N < 104 direct summation is more efficient. However, owing
to the O(N) scaling, for large N , FMM becomes highly efficient.

tree building process, which proves to be inefficient compared to the direct algorithm
for a smaller number of particles. However, past that threshold, it becomes more
efficient. For instance, for the million-particle simulation, FMM using ϵ = 10−7 is
more than 10x faster than NBODY6. We also find that although FMM using ϵ = 10−7

is 1.7x as slow as PeTar for a million particles, the version using ϵ = 10−3 is 1.25x
faster than PeTar. We also find that FMM using smaller ϵ conserves energy to 1 part
in 1012 whereas the version using higher ϵ conserves energy to about 1 part in 109.
This is about an order of magnitude smaller than that of PeTar.

For the strong scaling test, we simulate a cluster containing 106 stars using
1, 2, 4, 8, 16, and 28 cores. An input accuracy of 10−7 and a multipole expansion
of p = 20 are used again. The speedup is computed as the ratio of the wall-clock
time of the single threaded simulation to that of the multithreaded simulation. As
is evident from Figure 2.13, Taichi FMM scales as dictated by Amdahl’s law. The
graph also indicates that the maximum speedup is not reached on 28 cores and is
therefore limited by the number of cores available to us.

43



1 2 4 8 16 28
Ncores

0

5

10

15
S

p
ee

d
-u

p

Strong Scaling
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cores used. This determines the intranode scaling of the FMM force determination
algorithm. The Poisson step time has been used to determine the scaling. The overall
scaling follows the same pattern.

2.5 Discussion

2.5.1 Parallelization and Miller’s instability

As briefly discussed in section 2.4.3 floating point arithmetic can play an important
part in the outcome of individual simulations. Floating point arithmetic is inherently
nonassociative in nature (e.g. Villa et al., 2009). This is particularly exacerbated in
the case of multithreaded floating point operations. For example, reduction operations
can lead to different round-off errors during different runs of the same program. In
iterative solvers, the results are propagated through various iterations and at the end
can produce different round-off errors (e.g., Villa et al., 2009). Force calculation relies
on iterating over particles and cells and at each time step. As such, any dynamical
change in the ordering of threads between two different runs of the same program can
lead to discrepancies in the results between two simulations. This is not a feature
of the FMM algorithm. This artifact is present in direct summation as well. In our
case, analysis reveals that for a simulation containing 1024 particles, the maximum
discrepancy between the forces calculated on individual particles between two runs is
O(10−16). Out of caution, the serial version of the code was also run multiple times,
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but no discrepancies were found. This is consistent with round-off errors resulting
from dynamical ordering of threads. Any single run of the force algorithm over all
particles results in errors of this order. However, even differences of such small order
can lead to major discrepancies between the positions and velocities of particles at
later times. This is triggered owing to Miller’s instability. Over the course of a
few dynamical times, the difference between the position and velocity of a particular
particle grows exponentially. Although not presented here, we noted that between
t = 1 to t = 10 for an N = 1024 particle simulation the maximum difference in the
position over all particles grows exponentially from 10−16 to 10−2. This is consistent
with Miller’s instability. This discrepancy only presents itself explicitly when we are
looking interested in tracking properties of individual particles. Global properties
like energy conservation, evolution of half-mass radius, etc., remain consistent over
simulations. This further reiterates the importance of performing multiple simulations
and drawing statistical averages rather than relying on single simulations.

2.5.2 Integration Issues

Due to a lack of a dedicated regularization scheme, the integrator is sometimes forced
to spend a lot of time integrating hard binaries in our test. This “slowing down” of
the simulation becomes more apparent as the simulation approaches core collapse or
if they contain primordial binaries. In the process of evolving some of our simulations
to core collapse, we noticed that the formation of even one hard binary significantly
increased the time required to evolve the system further. For example, in a particular
realization containing 1024 stars, we noticed that the simulation basically halted
after 297 time units. Further analysis showed that a binary, with stars having time
steps several orders of magnitude smaller than the average time step, was the culprit.
One way to alleviate this issue could be to include special treatment of isolated and
perturbed binaries such as regularization.

2.6 Future Work

In a cluster of a million bodies, many primordial binaries are weakly perturbed for
most of the time (or regarded as entirely isolated as in Monte Carlo codes), therefore
permitting an efficient treatment of their orbits. For an optimal treatment of binary
and few-body systems, we seek to integrate a regularization scheme with a future
version of Taichi. One of the potential regularization schemes includes Slow Down
Algorithmic Regularization (SDAR: Wang et al., 2020) which has been included in
PeTar.

Integration efficiency can also be improved by increasing the integration order,
which would allow the usage of larger time steps. A higher-order scheme could also
allow the usage of more optimized time step calculation schemes like the Aarseth
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scheme (Aarseth, 2003). Higher-order integration schemes would require the calcula-
tion of jerks which is nontrivial with the FMM algorithm.

We have implemented the approach by Dehnen (2014) to calculate the jerks, i.e.
the time derivative of forces. Therefore, FMM can be incorporated into a traditional
fourth-order Hermite codes tat updates the positions and velocities using the informa-
tion up to jerks. Alternatively, a hierarchical version of the force-gradient integrator
recently proposed by (e.g., Rantala et al., 2021a) is also promising.

As the Aarseth step function is widely used in the Hermite integrator, the adaptive
stepping is not time symmetric such that a secular energy drift is present (e.g. Hut
et al., 1995; Dehnen, 2017). This energy drift is present even if the time symmetric
version of Hut et al. (1995) is used. An implicit scheme by Makino et al. (2006a) is
proposed, but requires many iterations and is therefore unpractical. We adopted an
approximate time-symmetric method introduced in Pelupessy et al. (2012a), taking
the derivative of time steps into account. This approach can be generalized with the
recent method based on the tidal tensor by Grudić and Hopkins (2020) as the tidal
tensor can be easily calculated by FMM, as well as its time derivatives.

2.7 Conclusions

In this work, we have described a collisional N -body code, Taichi, which incorporates
a novel method of calculating forces using FMM. In our implementation, we split
up the forces into short range and long range. The former is calculated via direct
summation, whereas the latter is calculated using FMM. This results in an algorithmic
complexity of O(N) rather than the expensive O(N2). This makes post-million-body
simulations viable.

Through various tests, we demonstrate that Taichi can be used to perform colli-
sional stellar system simulations. In the first set of tests, we show that by tuning two
input parameters, the mutipole expansion order (p) and the input accuracy parameter,
(ϵ), we can tightly control the force errors. The median and 99th percentile values are
constrained by the input accuracy. The RMS error values are more weighted toward
outliers and can be reduced by increasing p for a given ϵ.

The second set of tests was used to compare long-term behavior of Taichi with
that of NBODY6++GPU. The relative energy error remained below 10−4 for Taichi

and only grew sharply as the simulations approached core collapse. The evolution of
Lagrangian radii for different mass fractions and core radius shows agreement between
both of the codes. This shows that using an approximate force solver like FMM is
as good as direct summation for reproducing global properties. Comparison of the
density profile with a Fokker-Planck code also shows agreement. At core collapse, the
agreement of the density profiles indicates that the realizations simulated with FMM
follow the theoretical density power law. This indicates that the approximate force
solver is able to reproduce two-body relaxation effects since the theoretical power law
is a result of the two-body effects.
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Dynamical friction tests allow us to arrive at the same conclusion. The median
inspiral times of objects several times the mass of the stars in the clusters closely follow
the analytic results and are in agreement with those of NBODY6++GPU. Furthermore,
we demonstrate that we can reproduce proper dynamical friction effects even with a
considerably lower input accuracy and multipole expansion order.

Compared to the direct version of Taichi, the FMM version speeds up the in-
tegration over 100 times for a simulation containing a million stars. We also find
that Taichi FMM is more than 10x faster than NBODY6++GPU on a 28-core machine.
However, in our current implementation, FMM becomes effective only for simulations
containing more than 104 stars. Several bottlenecks are also present in the code. The
lack of a proper regularization scheme makes simulations with binaries virtually im-
possible. The lack of a higher-order scheme also implies that the code takes smaller
time steps which hinders the efficiency. While close binaries or small-N subsystems in-
deed require extra care, we have shown that approximate force solvers are sufficiently
accurate to simulate collective effects due to the uncorrelated two-body encounters
in the sense of Chandrasekhar. It is foreseeable that FMM can be combined with
Ahmad-Cohen scheme for the regular force calculations.

2.8 Appendix

2.8.1 Time step symmetrization

We review the time integration based on the hierarchical Hamiltonian splitting here.
The Hamiltonian of the N -body system consists of the total potential term

V =
∑
i<j

∑
j

mimj

rij
, (2.14)

and the total kinetic term

T =
1

2

∑
i

p2
i

mi

. (2.15)

For most collisional systems, there exists a wide range of dynamical timescales, defined
by both the smooth orbit of a particle in the mean field potential and interactions
between individual particles. To speed up the calculations, individual time stepping
has been used since Aarseth (2003). In Pelupessy et al. (2012a), this was implemented
by splitting the Hamiltonian

H = HF +HS, (2.16)

where the original Hamiltonian H = V + T is decomposed into a fast and slow
subsystem based on the step size assigned to each particle. We adopt the step size
criteria from Pelupessy et al. (2012a), which is constrained by both the freefall time,

τfreefall = η

√
rij
aij

(2.17)
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and a flyby time

τflyby = η
rij
vij

. (2.18)

The slow system contains the contributions from both slow particles and the cross
interaction between slow and fast particles as

HS = TS + VSS + VFS, (2.19)

The fast subsystem now only consists of fast particles

HF = TF + VFF , (2.20)

where TF is the kinetic energy of fast particles and VFF consists of potential energy
solely from fast particles. Now, HF can be integrated separately from the slow system,
where the forces between the fast and slow systems need to be calculated at the pace
of the slow system. The integration then proceeds recursively to HF . The above
procedure leads to a second-order accurate and momentum-conserving scheme. One
subtle point is that the use of individual time steps breaks the time symmetry of the
leap-frog integrator, leading to a drift in the total energy. To counter this, we adopt
an approximate time-symmetric stepping function that is introduced by Pelupessy
et al. (2012a) which removes the iterations required by an implicit time-symmetric
scheme (Hut et al., 1995; Makino et al., 2006a). The idea is to incorporate the time
derivatives of Eq. (2.17) and (2.18) to construct a first-order-accurate estimate of
step size into the future according to

τsym = τ(1− 1

2

dτ

dt
)−1 (2.21)

As a result, this treatment removes a secular energy drift often associated with indi-
vidual time steps in long-term evolution of N -body systems. An alternative form to
Eq. 6.4 is given by Rantala et al. (2021a). In Figure 2.14, we simulate 10 different
N = 100 Plummer models to 50 N -body units and find that the time-symmetrized
version of the HOLD integrator conserves energy better than the unsymmetrized ver-
sion.

2.8.2 Energy error associated with hard binaries

NBODY6 has sophisticated treatment of binaries and multiples, which are absent in
Taichi. To access the impact of hard binaries, we modify the Newtonian gravity for
both NBODY6 and Taichi to incorporate a Plummer softening ϕ(r) = (r2 + ϵ2soft)

−1/2,
where ϵsoft is the softening length. We then simulate Plummer models of N =
1024, 2048, and 4096 with ϵsoft = 1

N
. This estimate of close encounter distance follows

from Dehnen and Read (2011), where ϵ2body = 2R
N

where R is a characteristic radius
of the system. In N -body units, 2R ∼ 1, so ϵ ∼ 1

N
.
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Figure 2.14: The relative energy error as a function of the N -body time here for 10
Plummer model realizations. For this simulation we used the HOLD integrator and the
same softening length and step size as that of Makino et al. (2006a). We find that
the symmetrization scheme helps remove the energy drift, identical to Makino et al.
(2006a) and Pelupessy et al. (2012a).

We find that when softening is enabled, the drift in energy is smooth over time and
is virtually similar for both Taichi direct and FMM. We notice this for all simulations
as shown in Figures 2.15 & 2.16. This signals that the jumps in energy observed
before are primarily related to close encounters. In the absence of close encounters,
FMM does not lead to any systemic bias in the energy drift compared to its direct
counterpart. In case of NBODY6 the relative energy error for the softened version is an
order of magnitude or two times larger than that of Taichi. We speculate that this
could be because of the lack of symmetrized time steps or because the code is not
optimized to run with softening enabled.

We also run a separate N = 1024 particle simulation with ϵsoft = 0.01
N

. A smaller
softening would allow closer encounters: hence, we should expect jumps in energy
similar to the unsoftened versions of the codes. This is indeed what we have observed.
The impact of different softening is is also reported in Maureira-Fredes and Amaro-
Seoane (2018), in a fourth-order Hermite N -body code with Plummer softening. Our
findings are consistent with Maureira-Fredes and Amaro-Seoane (2018). Nitadori and
Makino (2008) have conducted a comparison between fourth-, sixth- and eighth-order
Hermite schemes. The energy error jumps are absent in the eigth-order run, primarily
due to shortened step size in the outer region. Therefore, we suspect that the cause of
energy error jumps is a mismatch between those high-speed particles ejected after close
encounters and those particles assigned with large step size (i.e., in the outer region).
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This mirrors a well-known issue with SPH using individual time steps (Saitoh and
Makino, 2009). Interestingly, Löckmann and Baumgardt (2008) adapted a strategy
of detecting fast approaches and close encounters to prevent sudden changes in their
Hermite integrator. More studies are needed to verify this assertion.
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Figure 2.15: The relative energy error is presented as a function of the relaxation time
for the evolution of a single N = 1024 Plummer model realization. The softening
lengths used in this simulation are 1/N and 0.01/N . The energy drift in the former
case is smooth, which is what is expected when force softening is used. We find that
the energy drift is virtually similar for both Taichi direct and FMM and is about an
order of magnitude or two better than that of NBODY6. We find that for the latter
simulation, which uses a lower softening, there are jumps in energy that are caused
by close encounters.

2.8.3 Dynamical Friction

One important point that we noted from the dynamical friction test was that there
was a lot of stochasticity involved with the position of the black hole particle. This
is especially prominent in the case of the less massive black hole. The stochastic
nature of the inspiral has been observed and noted in Rodriguez et al. (2018) as
well. To present an idea of how the spread of the positions of the massive particle
vary with different masses and methods, we present Figure 2.17. We notice that
as the mass increases, the spread of the positions becomes smaller. This indicates
that the MBH/Mstar = 10.0 case is more sensitive to force discrepancies and round-
off errors. Indeed, we noticed that the discrepancy between direct-summation-based
N -body codes and codes using approximate solvers is more noticeable for that case.
Increasing the mass, however, reduces the difference.
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Figure 2.16: The relative energy error is presented as a function of the relaxation
time for the evolution of single N = 2048 and 4096 Plummer models. The softening
length used in this simulation is 1/N . The energy drift is smooth, which is what is
expected when force softening is used. This is similar to what we found in Figure
2.15.
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Figure 2.17: The median distance of the massive object is presented as a function of
the time (in Henon units) and the virial radius of the cluster. Unlike Figure 2.9, the
shaded regions in this figure indicate the spread of radius of the black hole particle
from the center of mass of the cluster. Presented here are the 90th percentile values
of the distance. All values are binned over one N -body time step. One can see the
large spread of radii, indicating the inherent stochasticity present in the simulation.
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Abstract

Massive Black Hole (MBH) binaries are considered to be one of the most impor-
tant sources of Gravitational Waves (GW) that can be detected by GW detectors
like LISA. However, there are a lot of uncertainties in the dynamics of MBH binaries
in the stages leading up to the GW-emission phase. It has been recently suggested
that Nuclear Star Clusters (NSCs) could provide a viable route to overcome the fi-
nal parsec problem for MBH binaries at the center of galaxies. NSCs are collisional
systems where the dynamics would be altered by the presence of a mass spectrum.
In this study, we use a suite of high-resolution N -body simulations with over 1 mil-
lion particles to understand how collisional relaxation under the presence of a mass
spectrum of NSC particles affects the dynamics of the MBH binary under the merger
of two NSCs. We consider MBH binaries with different mass ratios and additional
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non-relaxed models. We find that mass-segregation driven by collisional relaxation
can lead to accelerated hardening in lower mass ratio binaries but has the opposite
effect in higher mass ratio binaries. Crucially, the relaxed models also demonstrate
much lower eccentricities at binary formation and negligible growth during hardening
stages leading to longer merger timescales. The results are robust and highlight the
importance of collisional relaxation on changing the dynamics of the binary. Our
models are state-of-the-art, use zero softening, and high enough particle numbers to
model NSCs realistically.

3.1 Introduction

Observations in the past twenty years have demonstrated that Massive Black Holes
(MBHs), despite being point sources in the center of galaxies, play a vital role in
galaxy evolution and growth (e.g., Kormendy and Gebhardt, 2001; Kormendy and
Ho, 2013a). In the hierarchical growth of structures, galaxies frequently merge and
form larger systems (e.g., Rodriguez-Gomez et al., 2016). Upon the merger of galaxies,
two MBHs get the opportunity to come close to one another to form a bound pair.
Recent observation searches have revealed the presence of well-separated accreting
MBHs seen as multiple Active Galactic Nuclei (AGN) in a single galaxy, as well
as circumstantial evidence for bound Keplerian binaries (e.g., Komossa et al., 2003;
Komossa, 2006; Bogdanović, 2015).

MBH binaries are purported to be one of the strongest sources of Gravitational
Waves (GW) in the universe. Observations of GW during the final inspiral phase
of the binary would reveal information not only regarding the merger history of the
galaxy over time but also constrain dynamical properties of galactic nuclei surround-
ing the MBH binary. Therefore, modeling the dynamical evolution of MBH binaries
inside galactic nuclei is central to the astrophysical interpretation of galactic environ-
ment and dynamics. MBH binaries are expected to be sources of millihertz (mHz)
GW that will be detectable by future space based GW detectors like LISA (Amaro-
Seoane et al., 2017) or Tianqin (Luo et al., 2016).

Due to variances in galactic environments in which they are embedded in, the
dynamics of MBH coalescence is up for much debate. It is theorized that the merger
is a three step process before the the final GW-emission step (Begelman et al., 1980;
Merritt, 2013b, chapter 8). In the first step, the dynamical friction of stars and dark
matter and that of the interstellar gas play a role in reducing the angular momentum
of the black holes which then sink towards the center of the merged galaxy. When the
black holes get close enough, they form a bound binary which signals the beginning
of the second stage. This stage proceeds rapidly and the separation of the binary
decreases due to dynamical friction and three-body scattering events. The third
stage prior to GW-driven coalescence begins as the black holes form a hard binary.
Once that happens further orbital decay occurs via three-body scattering. If not
enough MBH binary-star scattering occurs, the orbital decay of the binary stalls
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before it can reach the GW-emission phase. This is called the final parsec problem
(e.g., Milosavljević and Merritt, 2003).

The timescale associated with the shrinkage of the binary in the hard binary
stage is unclear and heavily depends on the environment. For example, in spherical
gas-poor galaxies, simulations have shown that the orbital decay of the MBH binary
essentially halts due to the lack of stars in the loss-cone and the GW merger timescales
often exceed the Hubble time (e.g., Vasiliev et al., 2015). Additionally, in cosmological
simulations MBH seeds have been found to be inefficient at sinking to the center of the
nuclei leading to longer merger timescales (e.g., Ma et al., 2021). In case of merging
galaxies, however, the non-sphericity of the merger product introduces global torques
which can populate the loss-cone more effectively leading to a continued orbital decay
of the MBH binary system. Simulations have also shown that merger timescales in
such cases are less than the Hubble time (e.g., Berczik et al., 2006; Khan et al., 2013;
Vasiliev et al., 2015; Vasiliev, 2017).

One way to overcome the final parsec problem is by embedding the MBHs in Nu-
clear Star Clusters (NSCs). Nuclear Star Clusters (NSCs) represent some of the dens-
est stellar systems in the universe. They can have mass densities of ρ ≥ 106M⊙pc−3

(e.g., Neumayer et al., 2020b). As the name suggests, NSCs are found in galactic
nuclei. The masses and presence of NSCs correlate with the mass of the host galaxy.
Sánchez-Janssen et al. (2019) showed that their presence in galaxies depends on the
stellar mass of the host galaxies, with a peak of 90% at Mstellar ∼ 109M⊙. NSCs and
MBHs can coexist in many cases. In fact, the Milky Way galaxy contains an NSC at
the Galactic Center that has an MBH embedded in it (e.g., Ghez et al., 2008). Using
data from Sánchez-Janssen et al. (2019), Ogiya et al. (2020a) speculate that under
the assumption that all NSCs contain an MBH at the center, 50% of all Milky Way
sized galaxies should have both an NSC and and MBH present in their nuclei.

In Ogiya et al. (2020a), the authors show that if MBHs are embedded in NSCs
prior to merger, tidal effects from the merging NSCs accelerate the orbital evolution
timescale before and around the time the binary is formed, thus circumventing the
final parsec problem. In the presence of NSCs the formation of a hard binary occurs
faster and the whole process of decay into the GW regime is accelerated. The authors
found that the mergers were extremely efficient with lower mass ratio binaries merging
in ∼ 100 Myr while binaries with mass ratio of unity merging in 5 Gyr, which is still
less than the Hubble time.

Since NSCs are collisional stellar systems they undergo collisional relaxation even
under the presence of an MBH at the center. A collisionally relaxed state implies the
presence of a Bahcall-Wolf cusp (Bahcall and Wolf, 1976). If there is a mass spectrum
present, the more-massive objects form a steeper cusp than the less-massive objects
(Bahcall and Wolf, 1977; Alexander and Hopman, 2009). During the merger of two
galaxies containing NSCs, in the absence of MBH binaries, the cusp is expected to be
retained (Dehnen, 2005). The presence of MBH binaries leads to a partial or complete
disruption of the cusp (e.g., Dehnen, 2005).
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In Ogiya et al. (2020a), the authors considered a one-component mass function to
study the effect of NSCs on MBH binaries. Realistic NSCs, however, are comprised of
a spectrum of masses (e.g., Preto and Amaro-Seoane, 2010; Gualandris and Merritt,
2012a). The effects of a mass spectrum have been explored previously by Gualandris
and Merritt (2012a) and Khan et al. (2018) using a fixed binary mass ratio. However,
a systematic comparison of unsegregated versus segregated models as a function of
the binary mass ratio is missing. A segregated Bahcall-Wolf cusp could lead to en-
hanced hardening rates and could potentially accelerate the evolution to GW driven
coalescence stage. In addition, the effects of the relaxed cusp on the hardening rates
of the binary would be an interesting investigation. We, therefore, are motivated to
understand how collisionally relaxed NSCs, under the presence of a mass spectrum,
affect the dynamics of the binary in the stages leading up to GW driven coalescence.

In this work, we extend the models presented in Ogiya et al. (2020a) to understand
the effects of mass-segregation in NSCs on the dynamics of the MBH binary. With the
usage of higher mass resolution compared to previous studies and a two-component
mass function, our models are able to better represent realistic NSCs. We use the Fast
Multipole Method (FMM) (Greengard and Rokhlin, 1987; Cheng et al., 1999) based
N -body code Taichi (Zhu, 2021a; Mukherjee et al., 2021b) which has been shown to
reproduce collisional effects as accurately as direct-summation based N -body codes
while using a fraction of the computational time. To understand the effects of mass
segregation we use a two-component mass function: one consisting of objects roughly
a solar mass or less and the other consisting of heavier objects like stellar mass black
holes. We systematically study the effect of relaxed, segregated cusps on the dynamics
of MBH binaries with different mass ratios using a suite of N -body simulations and
discuss the role of the relaxed cusp in the merger process.

The paper is organized as follows: in section 3.2 we describe the numerical methods
and improvements made to Taichi to handle dense systems more accurately. In
section 3.3, we describe the models of the mergers. In section 3.4 we provide the
results and in section 3.5 we discuss the impact of stochasticity and compare our
results to those of previous studies. This is followed conclusions in section 3.6.

3.2 Numerical Methods

We perform a suite of N -body simulations using N ∼ 1.32×106 particles to study the
formation and evolution of the MBHs embedded in NSCs and their evolution after
the formation of the MBH binary. The simulation setup is similar to that presented
in Ogiya et al. (2020a) with changes to improve the resolution and the modeling of
the clusters to include a two-component mass species. The detailed description of the
models is provided in the next section.

To simulate the system, we utilize the FMM based code Taichi (Zhu, 2021a;
Mukherjee et al., 2021b). Mukherjee et al. (2021b) showed that Taichi can simu-
late systems as accurately as direct-summation based collisional N -body codes while
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scaling as O(N). The accuracy of the force calculation in Taichi can be tuned via
the usage of an input accuracy parameter (ϵ) which controls the opening angle and
a multipole expansion parameter (p) which controls the number of expansion terms
used in the force calculation. Using Taichi we can simulate large-N systems without
the usage of specialized hardware within a physically reasonable amount of time. In
this work, we extend Taichi to include a fourth-order force-gradient integrator and
regularization using the AR-Chain scheme (Mikkola and Tanikawa, 1999b). Addition-
ally, we improve the accuracy of the force solver in Taichi in this work. We briefly
detail the improvements below.

3.2.1 Updated Integration Scheme

Contemporary direct-summation based N -body codes use a fourth order time inte-
gration scheme like the Hermite method (e.g., Makino and Aarseth, 1992). In our
previous work (Mukherjee et al., 2021b) we adopted an integrator based on hierar-
chical Hamiltonian splitting which is only second-order accurate (Pelupessy et al.,
2012b). In this work, we extend Taichi to include a novel fourth-order force-gradient
integrator (Rantala et al., 2021b) which decomposes the system into slow and fast
subsystems based on the interaction timesteps of the particles. The fast subsystem
is then hierarchically split until the slow-fast split results in no particles in the fast
subsystem. We refer to this scheme as the HHS-FSI scheme hereafter. Hamiltonian
splitting integrators are suitable due to the large dynamical range present in our simu-
lations. Unlike conventional composition symplectic integrators presented by Yoshida
(Yoshida, 1990), HHS-FSI utilizes strictly positive sub-steps made possible by com-
puting an additional gradient term along with the Newtonian accelerations (Chin,
1997; Chin and Chen, 2005) which is only possible because the potential term does
not depend on momentum.

Unlike Rantala et al. (2021b) where the gradient term is calculated by direct sum-
mation, we utilize an extrapolation method described in Omelyan (2006) which uses
a fictitious middle step to approximate the gradient-force term. Tests by Omelyan
(2006) have shown this approach is indistinguishable from the Chin & Chen (Chin
and Chen, 2005) method. To do this, we follow the method (see also Farr and
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Bertschinger, 2007, section 3.1) where

p← p− h
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where h is the step-size, q is the position, p is the momentum and DV represents
the gradient of the potential V evaluated at the position given in the parenthesis. In
total, four calls to the Poisson solver are needed in one step.

The forward symplectic nature ensures more accurate and efficient integration
compared to that of the Yoshida scheme (e.g., Chin, 2007). The integrator is man-
ifestly momentum conserving and includes an individual symmetrized timestepping
scheme similar to that described in Mukherjee et al. (2021b). Despite the loss of sym-
plecticity due to the usage of individual timesteps, the usage of time symmetrization
ensures that there is no secular drift in the energy leading to much better energy
conservation (e.g., Makino et al., 2006b).

3.2.2 Algorithmic regularization

Even with the inclusion of a fourth order scheme, treatment of close encounters with
the MBH binary can prove to be computationally challenging. However, hierarchical
Hamiltonian splitting integrators are easy to modify to include regularization as a
result of clean separation of fast system from the slow system. This enables accurate
handling of close binaries and/or addition of post-Newtonian terms as one can plug-in
any accurate few-body solvers to evolve the Hamiltonian of the fast system. Therefore,
in order to handle the dynamics of the MBH binary and its interactions with scattering
particles more accurately, we include regularization in Taichi.

We have utilized the SpaceHub API (Wang et al., 2021b) which includes mul-
tiple regularization algorithms for accurate few-body integration. Taichi can be
used along with any of the integration schemes present inside SpaceHub. For this
work, we found that the AR-Chain-Sym6+ regularization scheme is the most opti-
mal. AR-Chain-Sym6+ is an updated AR-Chain scheme which is more accurate than
Mikkola’s (Mikkola and Tanikawa, 1999b) original implementation.

The improvements in AR-Chain-Sym6+ include an updated chain coordinate trans-
formation, which improves on the CPU time taken to perform the coordinate transfor-
mation, active round-off error compensation, and the usage of a sixth order symplectic
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integration scheme instead of the traditional GBS extrapolation scheme used in the
original AR-Chain (Mikkola and Tanikawa, 1999b) method. This method is extremely
efficient at handling highly eccentric systems. The usage of a fixed timestep main-
tains the time symmetry and as such helps achieve higher precision in round-off error
dominated regime. For the same relative tolerance parameter, Wang et al. (2021b)
found that the AR-Chain-Sym6+ is at least 1-2 orders of magnitude better at con-
serving energy. For more information, we refer the interested reader to Wang et al.
(2021b). Taichi can be configured to allow an arbitrary number of particles to be
treated by the regularization scheme. We performed tests and found that treating up
to 20 particles with the regularization scheme was optimal in terms of performance
and accuracy.

3.2.3 Updates to FMM based force solver

The multipole-to-local (M2L) kernel plays a crucial role in FMM by translating the
multipole moments to local expansions for approximated force calculations. In the
previous version of Taichi, the order of expansions in the M2L kernel is kept at p,
for both multipole moments and the derivatives of 1/r. After various optimizations,
it is found that M2L kernel is evidently memory-bound instead of compute-bound.
To increase the efficiency of this kernel, we increase the expansion order for 1/r
derivatives from p to 2p. This is called the double height M2L kernel (Coulaud et al.,
2008) as opposed to the single height formulation in our previous version. We found
that this modifications improves the force error by a factor of ∼ 10× for the same
settings compared to the single height version. As a result, we relax the force accuracy
parameter ϵ by the same factor if double-height M2L is used. For more information,
we refer the interested reader to Coulaud et al. (2008).

All of the improvements presented above enhance the accuracy and capability of
Taichi. We tested Taichi with the initial conditions from Ogiya et al. (2020a) and
compared the results from NBODY6++GPU (Wang et al., 2015) to ensure correspondence
between the two codes. The results are briefly presented in the Appendix. We found
that Taichi was able to simulate the systems as accurately as NBODY6++GPU. For the
purposes of our simulations, we found that an FMM input relative force accuracy
parameter ϵ = 2 × 10−5 and a multipole expansion parameter p = 12 was most
optimal. For more information on these parameters, we refer the reader to Mukherjee
et al. (2021b).

We ran tests with different values of ϵ and p and found no difference in the final
results. For our simulations we used a timestep parameter ηT = 0.3 unless more
accuracy was demanded. For most simulations this results in a relative energy con-
servation of the order of ∼0.01%. Under the presence of a dense segregated cusp, we
found that the total relative energy conservation was ∼ 0.1%-1%. We note that no
softening was used in the simulations. All of the simulations presented in this study
were performed using only 32 threads on an AMD Epyc 7742 node. The simulations
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took ∼ 14 − 18 days for N ∼ 1.32 × 106 to run to completion. The simulations
with highly eccentric binaries or extremely dense cusps took much longer due to the
formation of stable multiple systems.

3.3 Models

As mentioned in the previous section our choice of models is motivated by the work
described in Ogiya et al. (2020a). We are interested in MBHs whose coalescence will be
detectable by LISA and Tianqin. We set the mass of the primary M1 = 106M⊙. The
masses of the secondaries are generated such that we have mass-ratios q = 1.0, 0.1, 0.01
where q ≡ M2

M1
and M2 is the mass of the secondary. This enables us to systematically

study the effect of the secondary on the collisonally relaxed cusp and vice-versa.
To generate the two-component models we assumed that the stars, white dwarfs,

and neutron stars can be represented by a population of 1 M⊙ particles, which are
termed as the MS particles, while the heavier objects are represented using a popu-
lation of 10 M⊙ particles, which are called the BH particles. This is similar to the
values used in contemporary studies (Preto and Amaro-Seoane, 2010; Gualandris and
Merritt, 2012a). To determine the fraction of MS particles to that of BH particles we
consult Gualandris and Merritt (2012a) and Antonini (2014). Kroupa IMF (Kroupa,
2001) predicts that

NMS : NBH ∼ 1 : 0.001 (3.6)

However, we used values that are consistent with a top-heavy IMF (e.g., Maness et al.,
2007; Bartko et al., 2010). Spectroscopic data from late-type giants in inner parsec of
Galactic Center provides evidence of continuous star formation consistent with that
of a top-heavy IMF (Maness et al., 2007). In our simulations

NMS : NBH = 1 : 0.005, (3.7)

similar to the value used in Gualandris and Merritt (2012a). Some IMFs predict an
even higher fraction of BH particles (e.g., Chabrier, 2005). The effect of changing the
ratio of MS particles to BH particles would require further studies and is beyond the
scope of this work.

Each NSC in our simulation weighs 107M⊙ in total, comprised of both MS and BH
particles. Using the IMF number ratio from equation 3.7, we find that this implies
that MBH = 4.75×105M⊙ and MMS = 9.525×106M⊙. In each NSC there are NMS =
655360 and NBH = 3276 particles. Thus, we model the system using a total of N =
1317272 particles. Two additional particles are used to model the MBHs. To generate
the N -body representations of the models, we use the self-consistent galaxy modeling
toolkit Agama (Vasiliev, 2019a). In addition, Agama includes a Fokker-Planck code
called Phaseflow (Vasiliev, 2017) which we utilize to generate collisionally relaxed
density profiles near MBHs. We describe the models in more details below. A brief
summary of the initial conditions is provided in Tables 3.1 and 3.2.
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Parameter Value
NMS 655360
NBH 3276
N 1317272
MMS 9.525× 106M⊙
MBH 4.75× 105M⊙
Mpart;MS 14.5M⊙
Mpart;BH 145M⊙

Table 3.1: Summary of the initial parameters used in the generation of the N -body
models.
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3.3.1 Non-relaxed NSC Models

To generate both the non-relaxed and the relaxed models, we start off with the Dehnen
density profile (Dehnen, 1993) for both the MS and BH particles. The density profile
for each component i is given as:

ρi(r) = ρ0

(
r

r0

)−γi (
1 +

r

r0

)γi−4

(3.8)

where ρ0 is the normalizing factor, r0 is the scale radius and γi determines the inner
slope of the component i. We set r0 = 1.4 pc following Ogiya et al. (2020a). We
use γMS = γBH = 0.5 which is the lowest value of γ that can support an MBH at
the center with an isotropic velocity distribution (Baes et al., 2005). We truncate the
density profile at 1000 pc using an exponential truncation function. The distribution
functions of both the MS and BH particles are generated by using the density function
of each individual component and the combined potential of all components including
the MBH, with an isotropic velocity distribution. This is all done under the self
consistent framework of Agama.

3.3.2 Relaxed NSC Models

To generate the collisionally relaxed models, we have to follow a few more steps. We
input the non-relaxed density profiles of both the MS and BH particles along with the
mass of the MBH at the center. Then, we evolve the system using the Fokker-Planck
code Phaseflow until the system has evolved to a collisionally relaxed state. For the
model with a 106M⊙ MBH at the center, the relaxed state is achieved in ∼ 0.5 Gyr.
This occurs when the inner density profile of the BH particles falls off as ∼ r−2 and
that of the MS particles falls off as ∼ r−1.5 (Bahcall and Wolf, 1977; Hopman and
Alexander, 2006; Alexander and Hopman, 2009). The output from Phaseflow can be
easily used to generate isotropic models using Agama in a fashion similar to the one
described above. We present a comparison of the analytic density and mass profiles
in Figure 3.1 for the non-relaxed and the relaxed cases when we have a 106M⊙ SMBH
at the center. In both the non-relaxed and the relaxed cases, we verified the N -body
models accurately reproduced the analytic density and mass profiles.

3.3.3 Generating the Merger Models

To initialize the merger between two NSCs, we follow the steps outlined in Ogiya et al.
(2020a). The two NSCs and their corresponding MBHs are initially unbound and are
allowed to become bound over the course of the simulation. The initial separation
between the two MBHs is denoted as din. In our simulations we set din = 20 pc.
We verified that this is less than the effective radius of the NSCs. To generate the
initial relative velocity of the two NSCs, we use a free parameter ξ similar to the
parameter η described in Ogiya et al. (2020a) equation (9). ξ quantifies the initial
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angular momentum of the orbit. Smaller values of ξ imply a more eccentric orbit. In
our models, the relative velocity vin is defined as

vin = ξ

√
GM∗(din)

din
(3.9)

where M∗(din) accounts for the total mass (excluding the MBH masses) within a
distance of din from the center of each NSC. Once vin has been obtained, the NSC
of the secondary along with its MBH is placed at a position centered around rin =
(din, 0, 0) with a velocity vin = (0, vin, 0), while the other NSC is place at the origin
with zero bulk velocity. In each simulation, we verified that the initial relative velocity
was the same to maintain consistency. We found that using din = 20 pc, vin ≈ 55.5
km/s. Six simulations are generated with the relaxed and the non-relaxed NSCs with
ξ = 1.0. We label the simulations where relaxed NSCs are used as r simulations
and the simulations where non-relaxed NSCs are used as nr . To reduce the number
of simulations performed due to computational constraints we perform mergers of
relaxed NSCs with only other relaxed NSCs and non-relaxed NSCs with other non-
relaxed NSCs. We expect the results of mixed simulations to lie in-between the results
obtained in this study.

We expect most mergers to happen on eccentric orbits rather than circular. Thus,
it is imperative to understand the effects of initial eccentricity and its evolution under
the presence of relaxed and non-relaxed cusps. To understand the effects of an initially
eccentric orbit, we perform four additional simulations with q = 0.1, ξ = 0.5 and
q = 0.1, ξ = 0.1. The former simulations are labelled ecc 1 whereas the latter
simulations are labelled ecc 2 The circular orbit models are used to understand how
the evolution of the binary changes as a function of the mass-ratio while the eccentric
models are used to understand how the eccentricity is affected by the different density
profiles for a given mass ratio.

To demarcate the three stages of evolution, we need the influence radius and the
hard binary radius. In order to determine the influence radius and the hardening
radius, we consult Merritt (2013b) equation (8.71). We use the following definitions
which are more suitable for N -body simulations; once a bound binary is formed, an
influence radius of the primary can be defined as

dinfl ≡ renc(2M1) (3.10)

where renc is the radius enclosing the amount of mass in the parenthesis. The corre-
sponding hard binary radius can be defined then as

ah =
q

(1 + q)2
dinfl
4

. (3.11)

For more definitions, we refer the reader to Merritt and Szell (2006a).
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Figure 3.1: The analytic density ρ(r) and the enclosed cumulative mass M(< r) a
function of r, the distance from the center of the cluster under the presence of a 106M⊙
MBH at the center. The analytic profiles have been computed using Phaseflow

The differences in the relaxed and the non-relaxed cases are evident with collisional
relaxation implying mass segregation. The relaxation produces a denser cusp near
the 106M⊙ MBH and stellar mass black holes dominate the total mass for all radii
< 0.1 pc. The MBH is dominant in regions with r < 1 pc.

All the simulations were run for a total time of 10 Myr. In most simulations, this
was enough for the MBH binary to harden to ah/5 which is usually sufficient to study
the effects of core scouring as reported in previous studies (e.g., Merritt and Szell,
2006a).

3.4 Results

To visually examine the evolution of the MBH binary over time, we present snapshots
of the evolution over the first 1.5 Myr for the r q 0.1 model in Figure 3.2. The orbit
of the MBHs is in the x − y plane, and the plot’s origin is the center of mass. We
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Simulation ID γMS γBH q ξ
r q 1.0 1.5 2.0 1.0 1.0
r q 0.1 1.5 2.0 0.1 1.0
r q 0.01 1.5 2.0 0.01 1.0
nr q 1.0 0.5 0.5 1.0 1.0
nr q 0.1 0.5 0.5 0.1 1.0
nr q 0.01 0.5 0.5 0.01 1.0
r q 0.1 ecc 1 1.5 2.0 0.1 0.5
r q 0.1 ecc 2 1.5 2.0 0.1 0.1
nr q 0.1 ecc 1 0.5 0.5 0.1 0.5
nr q 0.1 ecc 2 0.5 0.5 0.1 0.1

Table 3.2: Summary of the model parameters used for the NSC-NSC merger simu-
lations. All of the above simulations use the same number of particles. The first six
models are on circular orbits initially and used to study the effect of relaxation as
a function of q and the last four models are eccentric and used to study the effect
of initial eccentricity and evolution of eccentricity at a fixed q. ecc 1 models are
moderately eccentric whereas ecc 2 models are highly eccentric.
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Figure 3.2: A scatter plot of the two NSCs with MBHs projected onto the x − y
plane at different points in time during the merger process. The simulation being
pictured here is r q 0.1. As the simulation proceeds, the NSCs belonging to the
primary (black circle) and secondary (black cross) are brought closer to each other by
the combined effects of dynamical friction and tidal forces from stripped stars leading
to a mixture of the MS (blue, red dots) and BH particles (brown, yellow dots) from
both NSCs. The NSCs merge within ∼ 1.5 Myr resulting in the formation of a hard
binary at the center.
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Figure 3.3: The evolution of the binary parameters as a function of time for the
circular orbit models. The dashed line represents the influence radius of the binary
and the dash-dotted line represents the hard-binary radius. Top: evolution of the
separation (r) between the two MBHs as a function of time. Middle: evolution of
the eccentricity (e) as a function of time. Bottom: evolution of the inverse semi-
major axis (1/a) as a function of time. The different evolutionary tracks between the
non-relaxed and the relaxed cases highlight the imprint of the surrounding NSC on
the dynamics of the MBH binary. We find that while non-relaxed models reach hard
binary radius and harden faster for q = 1.0, the opposite happens for q = 0.01.

67



find that the NSCs merge within ∼ 1.5 Myr leading to the formation of a hard
MBH binary. To quantitatively understand the dynamics in more detail, we plot the
evolution of the orbital separation, eccentricity, and inverse semi-major axis of the
binary over time in Figures 3.3 and 3.6. They helps us understand the differences
between relaxed and non-relaxed models as a function of the mass ratio q and the
initial eccentricity. We analyze each step of the evolution in the sections below. We
first present our analysis of the circular orbit models before moving on to the eccentric
ones.

3.4.1 Pre-binary phase (r > dinfl)

The first stage of evolution, the pre-binary phase, lasts until a bound binary has
formed. Examining the orbital elements in Figure 3.3, we find that this phase lasts
for the first ∼ 1.5 Myr for both relaxed and non-relaxed models across different q.
The NSCs merge in roughly ∼ 1.5 Myr bringing the secondary to within the influence
radius of the primary (∼ 1 pc) leading to the formation of a bound binary.

In this phase the evolution is dominated by the dynamical friction of the stars
and the drag force from the tidally stripped stars which help in reducing the angular
momentum of the MBHs (Ogiya et al., 2020a). The latter effect is more important
in this stage as dynamical friction typically acts on longer timescales. The process
involves the transfer of angular momentum from the NSC cores to the stripped stars
which expand their orbits. As demonstrated by Huang (1963) and later by Ogiya
et al. (2020a), if the two NSCs are considered to be part of a binary system, then in
the event of a mass loss, the change in specific angular momentum l can be written
as

δl = (ls − l)
δms

m
(3.12)

where m is the mass of the NSC binary system and ms and ls are the mass and specific
angular momentum of the stars that have been tidally stripped from the NSC. δms

is large in the early phase of the dynamical evolution, while it can be negligible in
the later phase. Under the assumption that the eccentricity of the stripped stars has
not changed and that the mass loss through tidal disruption is negligible compared
to that of the mass of the NSC binary, we can write the expressions for the specific
angular momentum of the NSC binary and that of the stripped stars as follows:

l =
√

Gma(1− e2) (3.13)

ls =
√

Gm(a + δa)(1− e2). (3.14)

In order to satisfy the condition that δms < 0 and δl < 0, we find that δa > 0.
Thus, as the expansion of orbit is associated with an increase in angular momentum,
and the total angular momentum remains conserved, the distances between the NSC
cores, and MBHs embedded in them, shrink as a result. This mechanism is especially
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important for lower q cases as dynamical friction works inefficiently to decay the
orbit of less massive BHs (Ogiya et al., 2020a). The results are consistent with
those presented in Ogiya et al. (2020a). This is not surprising since we compared
the amount of mass losing and gaining angular momentum between simulations and
found that they were equivalent. This leads to negligible differences in the evolution
during this period. However, we warn the readers that the effect of tidal stripping
would be reduced in realistic galaxies. Interestingly, we find that the time of binary
formation, which is dictated by the tidal effects, is consistent amongst simulations
performed with N = 4 × 105 and N = 1.32m (see appendix 3.7.1) suggesting that
a lower resolution is sufficient enough to resolve tidal stripping effects and time of
binary formation. A systematic study of the effect of resolution on tidal stripping is
beyond the scope of this work.

3.4.2 Bound binary phase (dinfl < r < ah)

In the second phase of evolution, after a bound binary has formed, orbital decay occurs
due to a mix of dynamical friction and three-body scattering events. When the two
MBHs are sufficiently far apart, dynamical friction acts on each body independently
to shrink the binary (Merritt, 2013b, section 8.2.2). When the binary gets closer,
hardening via scattering becomes more important and the efficiency of scattering
depends on the binary mass ratio q (e.g., Merritt, 2013b, section 8.2.2).

Examining Figure 3.3 we find that for q = 1.0, 0.1, the combined phase proceeds
extremely quickly leading to the formation of the hard binary immediately after the
end of the first phase. The evolution in the q = 0.01 models is more gradual. In
addition, we find some notable differences in this phase between the relaxed and the
non-relaxed models that depend on q. We notice from the evolution of the inverse
semi-major axis that in nr q 1.0, the binary is able to settle at a smaller separation
than in r q 1.0. This is quite surprising since intuitively we would expect the denser
relaxed cusp to yield a faster orbital decay. As the mass ratio is lowered, the situ-
ation changes and in the q = 0.01 case, we find that the the relaxed model actually
accelerates the transition to the hard binary stage. Since the orbital energy of the
binary is given as

Ebinary = −GM1M2

2a
(3.15)

where a is the semi-major axis of the binary, we deduce that for for the q = 1.0 case,
the binary is able to lose more energy in the non-relaxed model compared to that in
the relaxed model. As we lower the mass ratio, the energy loss in the relaxed models
increases. We seek to understand the processes in work that change the results across
mass-ratios.

In order to understand the differences, we first approximately quantify the amount
of energy lost by dynamical friction and scattering. We follow Merritt (2013b) equa-
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tions (8.73) and (8.74) which state

dE

dt

∣∣∣∣
df

≈ −4.4
G2M2

2ρ(r)ln(Λ)

σ
(3.16)

and
dE

dt

∣∣∣∣
s

= −H(a)

2q

G2M2
2ρ(r)

σ
(3.17)

where dE
dt

∣∣
df

and dE
dt

∣∣
s

are the energy losses from dynamical friction and scattering
respectively, ln(Λ) is the Coulomb logarithm, σ is the velocity dispersion and H(a)
is the dimensionless scattering rate. As the binary hardens, the energy losses via
scattering become more important as the scattering efficiency increases as q−1. Phys-
ically, this makes sense since the larger the mass of the secondary MBH, the more
energy would have to be extracted by the intruder to harden the binary by a fixed
amount.

From equations 3.16 and 3.17 we notice that dE
dt
∝ M2

2 . Thus, the rate of loss
of energy is faster for binaries with larger secondary mass, which explains why the
combined phase proceeds rapidly for q = 1.0, 0.1 in contrast to the q = 0.01 case.
Dynamical friction is less efficient in the q = 0.01 models leading to a more gradual
orbital decay. However, this does not explain why the orbital decay is more efficient
in the nr q 1.0 model compared to the r q 1.0 model.

To understand the differences in evolution of the inverse semi-major axis between
the non-relaxed and relaxed models we note that dE

dt
∝ ρ(r). Therefore, we focus on

the differences in the initial density profile of the non-relaxed and the relaxed models.
For clarity, we compare the density profile for the MS particles in the case where the
central MBH mass is 106M⊙ in Figure 3.4. Since the total mass of the MS particles
is much more than that of BH particles, we expect any major discrepancies to arise
out of differences in the MS density and mass profiles.

Looking at all radii < 10 pc, we find that in the relaxed models, the density of
MS particles is lower than that of the non-relaxed models for all radii > 0.1 pc. Since
the NSC mass across our models is fixed and the relaxed models have higher central
density, the density in the outskirts decreases. This counter-intuitive result was also
reported in Gualandris and Merritt (2012a). To explain it, the authors accounted
for the effect of the BH particles on the MS particles near the SMBH. Since the
BH particles are more massive than the MS particles, they dynamically heat the
MS particles leading to a lower density in the above-mentioned region. However,
Gualandris and Merritt (2012a) showed that at smaller radii, due to the scattering
effects of the BH particles, the MS particles end up forming a denser, Bahcall-Wolf
cusp. This cusp has a higher density only for very small radii, typically ∼ 0.1dinfl.

As the MBH binary hardens to ah and energy loss due to scattering becomes more
dominant, differences in evolution appear between the non-relaxed and the relaxed
models. We find that ah = 0.205 pc for q = 1.0, the largest amongst all our models.
This lies in the region where the density ρ(r) for the relaxed models is lower than that
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of the non-relaxed models implying that the energy loss in the non-relaxed models
must be higher for nr q 1.0.

The situation changes as we lower the mass-ratio and the hard-binary radius
decreases. We find that the total density ρ increases after r ∼ 0.1 pc. Owing to
the higher density, the binary is able to compensate or even more than compensate
for the differences in the energy loss in the beginning of the combined stage in the
q = 0.1, 0.01 models. This is quite evident while comparing the evolution of the binary
separation for non-relaxed and relaxed q = 0.01 models. The initial inspiral of the
secondary is slower in r q 0.01 compared to nr q 0.01. Once the secondary is about
∼ 0.1 pc away, the inspiral accelerates and it reaches the hard binary radius faster
than the non-relaxed model. The situation is quite similar to the RUN3 model in Khan
et al. (2015) where the authors found that initial inspiral of the secondary for the
more centrally concentrated model to be slower in the beginning. In the semi-analytic
model developed in Gualandris et al. (2022), the authors found that the inspiral due
to dynamical friction was slower in the models with steeper inner cusps due to lower
stellar density in the outskirts.

Incidentally, for the chosen set of initial conditions, r q 0.1 and nr q 0.1 show
almost identical evolution of binary parameters. For q ≤ 10−1, higher central concen-
tration drives the binary towards faster inspiral. For really low mass ratio binaries
this has the potential to accelerate transition to hard-binary stages even faster but
further studies with higher resolution models are required.

As a back-reaction to the shrinkage of the binary due to dynamical friction and
scattering, energy is induced into the particles nearby leading to an expansion of their
orbits and therefore, a disruption of the cusp. Figure 3.5 provides a visual description
of said expansion. Comparing the Lagrange radii, i.e. the radii enclosing a particular
fraction of the total mass, plots of both MS and BH particles, we find that in the
combined phase, higher mass ratios inject more energy into the surrounding particles
leading to a rapid expansion and disruption of the cusp, which also leads to reversal
of mass-segregation. The disruption is less-violent in q = 0.01 case because of the
lower mass of the secondary.

Since the MBHs form a bound binary, we can also examine the evolution of eccen-
tricity during this stage. For the larger mass-ratio models we find that the binary’s
orbit is approximately circular as it reaches the hard binary radius. We see similar
trends in both relaxed and non-relaxed models for q = 1.0, 0.1. This is similar to the
observation made by Gualandris and Merritt (2012a) in their circular orbit models.
For q = 0.01, the story is a little different. While the binaries initially start circu-
lar, the growth of eccentricity is more stochastic in this case because of the lower
mass of the secondary. However, we find that evolution of eccentricity is generally
in the direction of higher eccentricity. This was also noted in Merritt (2013b) for
Intermediate Mass Black Holes (IMBHs) in this mass range. Curiously, we find that
for r q 0.01, the binary is able to reach a higher eccentricity in this phase compared
to nr q 0.01. Intuitively, we would expect the opposite because because when the
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periapsis of the binary falls within the denser, relaxed cusp, it should circularize the
binary. The increase in eccentricity happens around the time the secondary reaches
the distances where the mass is dominated by BH rather than MS particles. The
secondary hardens by having more encounters with the BH particles. In asymmetric
MBH binaries the eccentricity growth is mostly driven by the companion-perturber
mass ratio Sesana et al. (2008). A larger intruder mass in the relaxed model results
in growth of eccentricity. This may not be physical because in realistic NSCs, the
mass of the perturbing BH particles would be smaller.

We also noted that the evolution of eccentricity for q = 0.01 model is quite de-
pendent on resolution. We found that a simulation using N ∼ 4 × 105 particles
(see appendix 3.7.1) resulted in the MBH binary reaching extremely large values of
eccentricity (0.9) in both non-relaxed and relaxed models. It highlights the impor-
tance of using larger resolution to estimate binary evolution parameters, especially
for lower mass ratio binaries. Our results for this mass range are quite similar to
those presented in Arca-Sedda and Gualandris (2018) where the authors found that
unless the IMBH starts off in an highly eccentric orbit, it is not able to reach large
values of eccentricity. We caution against consulting single simulations to track the
evolution of eccentricity with the current resolution. Unlike semi-major axis, the
evolution of eccentricity is a second order effect in angular momentum and subject
to more stochasticity and more simulations are needed to model the evolution more
realistically.

3.4.3 Hard-binary phase (r < ah)

The last phase before the GW emission state is the hard-binary phase where the
binary hardens by three-body scattering. We investigate the differences in hardening
rates between the relaxed and non-relaxed models. In the full loss-cone regime the
binary should harden at a fixed rate. This would imply that,

d

dt

(
1

a

)
= s (3.18)

where s is some constant. To find the value of s, we fit straight lines to the inverse
semi-major axis plots. For q = 1.0, 0.1 we fit the lines to the values between 5 Myr and
10 Myr. For q = 0.01, we do it between 7 Myr and 10 Myr since the binary reaches
the hard binary radius a little before 7 Myr. We notice that there is a sharp jump
in the evolution of the inverse semi-major axis in the r q 0.01 model around ∼ 8
Myr. Jumps in the evolution of the inverse semi-major axis was also noted in Khan
et al. (2018). The authors attributed them to the ejection of an intruder following
the formation of a triple system between the MBH binary and a third heavy particle.
In our instance, this third particle happened to be a BH particle. The jumps do not
dominate the overall evolution. To ensure consistency, the average value of s in the
non-jump regions is taken to be the hardening rate in this particular scenario.
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Simulation ID s [pc−1Myr−1]
r q 1.0 1.90
r q 0.1 13.9
r q 0.01 46.6
nr q 1.0 2.6
nr q 0.1 14.6
nr q 0.01 39.4
r q 0.1 ecc 1 8.2
nr q 0.1 ecc 1 9.2
r q 0.1 ecc 2 16.2
nr q 0.1 ecc 2 15.7

Table 3.3: Summary of the slopes of the inverse semi-major axes of the various
simulations. We find that hardening rates between relaxed and non-relaxed models
are within ∼30% of each other contrary to the findings of Khan et al. (2018). In
addition, we find that nr models harden faster for q ≥ 0.1 whereas the opposite is
observed for q = 0.01

The values of s found for the different simulations are reported in Table 3.3. For
the q = 1.0 models, the hardening rate in non-relaxed scenario is ∼ 35% higher than
that in the relaxed scenario whereas in the q = 0.1 models the hardening rates of both
relaxed and non-relaxed models are within ∼ 10% of one another. In the q = 0.01
models, the hardening rate of the non-relaxed model is 22% lower than that in the
relaxed model. We notice that the value of s does not change much between relaxed
and non-relaxed models indicating that even though the cusp might be disrupted
less in lower mass cases, the primary mode of evolution in this phase is collisionless
and dependant on the geometry of the merger product. The lower hardening rate in
r q 1.0 is quite interesting. To understand it, we looked at the density profile during
the hardening phase and found that the density profile in r q 1.0 was ∼20% lower
than that in nr q 1.0 at the influence radius (∼ 1 pc) of the binary. Since this is
where the stars in the loss cone arise out of, the lower scattering rate is caused to to
fewer particles in the loss cone in the r q 1.0 model.

We also examine the growth of eccentricity during this phase of evolution. q =
1.0, 0.1 models remain roughly circular whereas the q = 0.01 models show stochastic-
ity in the evolution of eccentricity. We find that nr q 0.01 shows some mild growth
resulting in a final eccentricity of 0.2 by 10 Myr whereas the eccentricity actually
decreases in r q 0.01. This is quite curious and we leave the investigation to a future
study.
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3.4.4 Eccentric Orbital Parameters

Realistic galaxy mergers are more likely to happen on eccentric orbits. The afore-
mentioned parameter ξ can be changed to change the initial amount of angular mo-
mentum. Reducing the parameter can lead to more eccentric orbits. We studied the
effect of eccentric initial conditions and how they interplay with relaxed and non-
relaxed models. Figure 3.6 shows that the evolution of the separation and the binary
hardening is qualitatively identical to the initial conditions of ξ = 1 and q = 0.1. The
hardening rates between the relaxed and the non-relaxed models are within 10% of
each other and is not affected by the initial eccentricity of the orbit. This indicates
that the hardening rate is dependent on morphology of the merger product rather
than the density of the central cusp. For the mildly eccentric orbits (ecc 1), we ob-
serve that the hardening rates are lower than that in the circular case whereas in the
highly eccentric orbit models (ecc 2) demonstrate a larger hardening rate. This is
due to the differences in the structure of the final merger product.

The presence of a relaxed cusp affects the evolution of eccentricity. The relaxed
cusp leads to a lower eccentricity at binary formation. For r q 0.1 ecc 1 the eccen-
tricity at binary formation is almost 0.0 even though the initial orbit was eccentric.
Even for highly eccentric initial orbits like in the r q 0.1 ecc 2 scenario, we find
that the eccentricity at formation is about 0.3. The situation for the non-relaxed
models is quite different as nr q 0.1 ecc 1 and nr q 0.1 ecc 2 models demonstrate
eccentricities of 0.19 and 0.55 at binary formation respectively. A This is because,
in the presence of the relaxed cusp, the dynamical friction is able to circularize the
binary leading to lower eccentricity as also explained in the previous section. A higher
initial eccentricity results in a higher eccentricity at binary formation in our models.
Gualandris et al. (2022) also report similar findings where the eccentricity at binary
formation for the models with steeper cusps is systematically lower than that in the
models with shallow cusps.

In the hard binary phase, the non-relaxed models demonstrate a slight growth in
eccentricity whereas in the relaxed models, the eccentricity remains roughly constant.
This was also observed in Gualandris and Merritt (2012a) where the authors found
that the eccentricity evolution was roughly constant with time in the model with
initial eccentricity. nr q 0.1 ecc 2 is able to reach a high eccentricity of 0.8 by 10
Myr whereas its relaxed counterpart only reaches 0.3. The eccentricity evolution in
this stage is consistent with the findings of Sesana (2010) where the author report
that shallower cusps with q ≈ 0.1 demonstrate growth in eccentricity. The evolution
of eccentricity in this phase has important consequences on determination of MBH
merger timescales. Binaries that are able to reach high eccentricities can merge order
of magnitudes faster than those on circular orbits. We plan on systematically studying
the evolution of eccentricity as a function of the binary mass ratio in relaxed and non-
relaxed models in a future study.
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3.4.5 GW Emission from SMBH Binaries

We follow the evolution of the MBH binaries into the GW coalescence phase semi-
analytically after the simulations have been stoppedat t = 10 Myr. To do so, we
assume that the evolution of the inverse semi major axis is constant, i.e. that the
hardening due to stellar scattering takes place in the full loss cone limit. This has
been the strategy adopted in previous studies (e.g., Gualandris and Merritt, 2012a;
Ogiya et al., 2020a). Under this assumption,

d

dt

(
1

a

)
∗

= s→
(
da

dt

)
∗

= −a2(t)s (3.19)

where s is a constant and can be figured out from the inverse semi-major axis data
by fitting a straight line through it and measuring its slope. The overall evolution of
a can be written as follows

da

dt
=

da

dt

∣∣∣∣
GW

+
da

dt

∣∣∣∣
∗

(3.20)

Peters (1964a) provides the rate of change of the orbital elements due to the
emission of GW. The rate of change of semi-major axis and eccentricity are given as
a set of coupled differential equations

da

dt
= −64

5
β
F (e)

a3
(3.21)

de

dt
= −304

15
β
eG(e)

a4
(3.22)

where

β =
G3

c5
(M1M2 (M1 + M2)) (3.23)

G(e) = (1− e2)−5/2

(
1 +

121

304
e2
)

(3.24)

F (e) = (1− e2)−7/2

(
1 +

73

24
e2 +

37

96
e4
)
. (3.25)

We numerically solve the coupled differential equations for both a and e using
the orbital elements obtained at end of the N -body integration. We do not take
into account the growth of eccentricity due to stellar scattering while solving the
differential equations.

From Figure 3.7, we find that in all cases with q ≥ 0.1, the MBH binary in the non-
relaxed models merge faster. We find that the nr q 1.0 model undergoes coalescence
almost 23% faster compared to the r q 1.0 model. This is due to the fact that the
binary separation itself is lower in the non-relaxed case along with the fact that the
scattering rate is also larger because of the reason explained in the previous section.
In the q = 0.01 case, the binary in the relaxed model is at a smaller separation and
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hardens faster resulting in almost 15% faster coalescence compared to its non-relaxed
counterpart. Since all of our models are roughly circular by the end of the integration
time, we expect the timescales presented in 3.7 to be the upper-limit on the GW
merger timescales.

Interestingly, the coalescence timescale for r q 1.0 and nr q 1.0 simulations is
comparable to the relaxation timescale of those systems. It is reasonable to expect
the erosion of the non-spherical nature of the system over such timescales in addition
to the occurrence of mass-segregation which can affect the hardening rate at later
stages for equal mass ratio binaries. However, this is beyond the scope of this study
but presents a novel area that merits further investigation in future studies.

We know that the coalescence timescale of the binary depends sensitively on the
eccentricity. As such, we expect the binary in the non-relaxed eccentric models to
merge faster. Figure 3.7 shows that this is indeed the case. The MBH binary in
nr q 0.1 ecc 1 merges by 320 Myr whereas its relaxed counterpart takes around
360 Myr. The effect is stark when considering binaries on highly eccentric orbits.
nr q 0.1 ecc 2 merges within 95 Myr but r q 0.1 ecc 2 takes 2× longer. Binaries
that form in very eccentric orbits thus more efficiently merge in galaxies where the
central densities are lower. Our results are in line with those found by Gualandris
et al. (2022) where the authors found that models with shallower slopes are more
efficient at merging binaries. Our results also underscore the importance of including
a mass-spectrum in N -body simulations as it can affect collisional relaxation in the
NSC which in turn can affect the coalescence timescales.

3.4.6 Core Scouring

As the binary hardens, it displaces particles from the cusp. The effects of the bi-
nary can be strong enough to disrupt the cusp entirely and create a flat core. To
understand the effects of the hardening of the binary on the particles, we plot the
density profile of both the MS and BH particles in the merged system at different
points of hardening. Due to computational limitations, we study the effects up until
the time the binary hardens to a semi-major axis ah/5 for r q 1.0 and r q 0.1 and
upto ∼ ah/2 for r q 0.01. The latter model is extremely computationally intensive
to evolve longer because of the formation of stable multiple systems in the cusp. Im-
proving the integration scheme to handle secular systems more efficiently (Rantala
et al., 2022) can alleviate this issue.

In the q = 1.0 scenario, we find that the inner cusp is completely disrupted and a
large flat core is produced as the binary hardens from ah to ah/5. This is seen in the
density profiles of both the MS and BH particles. The effective density of the core is
∼ 105M⊙pc−3 signalling that the effects of the binary were so strong that the NSC
itself was partially disrupted.

The situation is different for lower mass ratio binaries. For q = 0.1, the cusp of
MS particles is partially disrupted as the binary hardens from ah to ah/3 but further

80



disruption is not seen with more hardening. The original cusp is not retained. In fact,
for the MS particles, the density profile of the merged system has a faint γMS = 0.5
inner slope. For the BH particles, we find a faint γBH = 0.7 slope. For q = 0.01, the
effects are even more minuscule. However, since the binary could not be evolved to
ah/5 due to computational limitations, we exclude it from this analysis.

The partial retention of the cusp has implications on the regrowth of the Bahcall-
Wolf cusp post MBH binary coalescence. Whereas the time required to achieve the
collisionally relaxed state for q = 1.0 may exceed the Hubble time because of the
presence of a flat core in both the MS and the BH particles (Merritt, 2010), the
same cannot be said for q = 0.1, 0.01 which will have faster regrowth. Crucially, we
would need to understand how regrowth inter-plays with the galaxy geometry post
merger. As such, N -body simulations are required to quantify the exact amount of
time required for the regrowth of cusps.

Since Extreme Mass Ratio Inspiral (EMRI) rates are usually extrapolated under
the assumption of a Bahcall-Wolf cusp at the center, we would expect EMRIs to
arise out of galaxies that have undergone mergers with lower mass ratios. However,
multiple mergers even with lower mass ratios can lead to the formation of a core and
the exact number of mergers leading to the formation of a core as a function of q
requires further studies. The time dependent rate of EMRIs post merger would be
interesting to understand as well and we plan on exploring this in future studies.

How does the disruption of the cusp affect the velocity distribution? To analyze
that, we plot the velocity anisotropy parameter for the r q 1.0 model in Figure 3.9
during different stages of hardening. The velocity anisotropy parameter is defined as

β = 1− σ2
t

2σ2
r

(3.26)

where σr is the radial velocity dispersion and σt is the tangential velocity dispersion.
We find that as the binary hardens, the velocity profile, which was initially isotropic,
becomes tangentially biased . This is caused because the MBH binary preferentially
ejects particles on radial orbits. The anisotropy parameter can act as an observational
evidence for the presence of an MBH binary because of this reason. This was also
noted in previous studies like Merritt and Szell (2006a).

3.5 Discussion

3.5.1 Impact of stochasticity

As there is inherent stochasticity involved while generating N -body samples, one may
be curious as to whether the results mentioned in the previous sections are robust and
reproducible. To understand the effect of stochasticity on the results, we generate
four additional statistically independent merger models for the r q 1.0 and nr q 1.0

simulations. To save computational resources, we only perform the simulations for
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Figure 3.8: The density of particles ρ presented as a function of the distance r from
the center of mass of the binary at different points in hardening for r simulations.
The initial cusp is also presented for comparison. Top: Density of MS particles. We
can see that for q = 1.0 as the binary hardens, a core is formed. This is not observed
for q = 0.1. Bottom: Density of BH particles. Similar observations are noted in this
case.
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83



the q = 1.0 models up to a termination time of 5 Myr with a resolution of N ∼ 4×105.
This should be sufficient to study any discrepancies in the three phases of evolution
despite the lower resolution. The impact of resolution for higher mass ratio binaries
is minimal and is also further discussed in the next section and appendix 3.7.1.

In Figure 3.10, we plot the mean and standard deviation of the evolution of the
inverse semi-major axis from the five simulations. We find that the results from the
original simulations are reproducible and the stochastic scatter for the evolution of
the separation and semi-major axis is low. This indicates that the differences in the
results of the non-relaxed and relaxed models arise out of physical and not numerical
reasons.

We caution the reader that such agreement might not be present for other orbital
elements like eccentricity. Previous studies like Nasim et al. (2020) have highlighted
this issue and found that it stems from insufficient numerical resolution. The stochas-
ticity of the stellar encounters with the MBH binary affect eccentricty more leading
to larger scatter among random realizations. This can potentially affect GW merger
timescales since they are sensitive to the eccentricity of the binary. However, the
resolution used in this work is sufficient to study the evolution of the semi-major axis
and separation.

3.5.2 Comparison with previous studies

Gualandris and Merritt (2012a) and Khan et al. (2018) used a non-uniform mass
function to model the galaxy mergers. The resolution used in our simulations is lower
compared to that in Gualandris and Merritt (2012a) but is comparable to that used
in Khan et al. (2018). Although our set up is quite different compared to Gualandris
and Merritt (2012a) we find qualitatively similar results. Comparing Figure 7 from
Gualandris and Merritt (2012a) to Figure 3.5 in our study, we observe that for the
expansion of Lagrangian radius is quite sudden for mass ratios between 0.1 − 1.0.
Due to the energy injected into the cusp by the MBH binary there is an expansion in
the orbits of stars leading to the destruction of the cusp as explained in the previous
sections. Our work also suggests consistency with the evolution of the density profile.
Although not directly comparable, we find that the effect of binary leading to core
scouring presented for q = 1/3 in Gualandris and Merritt (2012a) lies between results
from our q = 0.1, 1.0 simulations.

Our results are in contrast with those presented in Khan et al. (2018) where the
authors found that the hardening rates in mass segregated cases were significantly
higher than those in the non-mass segregated cases, which was not found in our case.
The discrepancy could result from the usage of a different initial mass function in
Khan et al. (2018) or the usage of a different mass ratio of the binary. The authors
admit that the effects of relaxation in their work could be enhanced because of the
lower resolution used while the galaxy itself is relaxing prior to the merger. This
effect would be negligible in our case since the collisionally relaxed models have been
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85



generated from Fokker-Planck simulation rather than N -body simulations. It could
also occur from different galaxy merger shapes. The interplay between triaxiality
and mass segregation has not been properly studied and presents a further avenue of
research.

We find similar results compared to Ogiya et al. (2020a). This verifies that the
effect of NSCs in accelerating the orbital decline of MBH binaries is robust as indicated
by Ogiya et al. (2020a). Our models are characterized by an initial shallow cusp (non-
relaxed) or a dense cusp (relaxed), so the results are not directly comparable. The
upper limit on the coalescence timescale in our simulations is ∼ 700 Myr for the
q = 1.0 models whereas that found in Ogiya et al. (2020a) is ∼ 5 Gyr. This could be
because the presence of a cusp rather than a core leads to a more efficient hardening.
However, Khan and Holley-Bockelmann (2021) found coalescence timescales similar to
ours for large mass-ratio mergers and attributed the discrepancy is to better resolution
of the three-body scattering process with higher mass resolution. Nevertheless, we
find that the merger timescale depends on the mass ratio of the binary with q = 0.01
mass ratio binaries merging in ∼ 150− 170 Myr. Interestingly, this is in contrast to
the upper limit to the timescales found in Ogiya et al. (2020a).

We noted that the timescales for lower mass ratio binaries (q ≤ 10−2) is quite sen-
sitive to the resolution. Lower resolution simulations with N ∼ 4×105 (see appendix
3.7.1) resulted in merger timescales of ∼ 90− 100 Myr for the q = 0.01 merger sim-
ulations. This is almost half the merger timescale found using the higher resolution
simulations with N ∼ 1.32× 106. As the mass ratio of the binary was increased, the
discrepancies between the lower and the higher resolution simulations decreased. This
is in contrast to the findings of Preto et al. (2011) where the authors noted that in
MBH binaries formed in galactic mergers, the triaxiality of the non-spherical merger
product ensured that the hardening rate is independent of N . However, our results
seem to be in line with that presented in Vasiliev et al. (2015) where the authors
found that in triaxial galaxies the hardening rate asymptotically reaches a fixed value
as the resolution is increased. According to Vasiliev et al. (2014) collisional effects
account for a non-trivial portion of the hardening rate and cannot be neglected while
considering the hardening rates of MBH binaries. Since NSCs are collisional systems,
it highlights the importance of resolving collisional effects properly for a proper de-
termination of LISA timescales for MBH binaries, especially for q ≈ 0.01. This would
require the usage of even higher particle numbers, even for simulations where the
initial orbit is circular. To determine the minimum resolution required, we need to
perform more simulations with varying N , which is beyond the scope of this study.
We plan on investigating the asymptotic limits of hardening rates as a function of the
resolution in future studies. We would like to stress, however, that the binaries merge
efficiently well within the Hubble time in line with the conclusions made in Ogiya
et al. (2020a) about NSCs being potentially important sources for LISA detections.
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3.6 Conclusions

MBH binaries are touted to be one of the most important sources of GW signals
detectable by future generation of GW detectors like LISA. The presence of NSCs
surrounding the MBHs can accelerate their evolution to the hard-binary and therefore,
the GW emission phase. However, the dynamics of the binary can be quite sensitive
to the composition of the NSC. The presence of a mass spectrum can lead to mass
segregation since the NSC is a collisional system and can affect the evolution of the
binary in non-intuitive ways.

In this work we have explored the effects of mergers of collisionally relaxed NSC
on the dynamics of MBHs embedded in them. Using a suite of N -body simulations,
we have demonstrated the non-intuitive ways in which a collisionally relaxed nuclei
with a two-component initial mass function can affect the overall dynamics depending
on the mass ratio of the binary. For simplicity, we considered the mass of the lighter
objects to be 1M⊙ representing stars, white dwarfs, and neutron stars and the mass
of heavier objects to be 10M⊙ representing stellar mass black holes.

Through the usage of a Fokker-Planck code, we evolved the NSCs to the collision-
ally relaxed state under the presence of an MBH at the center. We then set up the
mergers with different MBH mass ratios and for comparison, also evolved mergers
with non-relaxed NSCs.

During the three stages of evolution, we found that the dynamics during the pre-
binary phase is similar amongst simulations, even with different mass ratios and is
consistent with results from Ogiya et al. (2020a). However, due to changes in the
density profile between relaxed and non-relaxed systems, differences arise during the
combined phase.

The presence of a heavier mass species leads to a decline in the density profile of
the lighter species for all radii greater than ∼ 0.1dinfl within the sphere of influence of
the primary. As a result, in larger mass ratio binaries, the binary is able to settle at a
lower separation in the non-relaxed models after the combined phase compared to the
relaxed models. However, this trend slowly changes with the mass-ratio of the binary
as the scattering efficiency of the binary increases with the decrease in mass-ratio
and the binary is able to lose more energy by scattering the particles that are more
tightly bound to the MBHs. For q = 0.1, we find that the evolution in the relaxed
and non-relaxed models are similar and for q = 0.01, we find that the presence of the
denser cusp actually accelerated the evolution of the binary to the hard binary stage.

In the hard binary stage, the evolution is similar amongst non-relaxed and relaxed
models. The binaries harden at a fixed rate consistent with previous studies on
NSC and galaxy mergers. This indicates that even when the cusp is disrupted less,
the primary mode of evolution is collisionless where the loss-cone of the binary is
populated by stars on centrophillic orbits. This is driven by the shape of the merger
product rather than by any relaxation effects. However, we do find that the hardening
rate depends on the particle number N in contrast with some previous studies. This
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underscores the importance of accounting for properly accounting for collisional effects
as they plan a non-trivial role in the evolution of MBH binaries in collisional systems
like NSCs.

Crucially, we find that the relaxed cusp plays a big role in the determination
of the eccentricity at the binary binding and hardening stages. Non-relaxed cusps
show higher eccentricities at binding stage and show growth in eccentricity which is
absent in relaxed cusps. The eccentricity “suppression” is quite large in the relaxed
models and binaries on highly eccentric initial orbits can merge almost 2× faster in
non-relaxed cusps.

The expected GW coalescence time for all of our models (relaxed and non-relaxed)
is significantly less than the Hubble time, making merging NSCs a promising GW
source. In addition, we find that the expected coalescence time for the non-relaxed
models is lower than their relaxed counterparts for all models with q > 10−2. The
eccentricity evolution of the MBH binary is strongly affected by the initial density
profile of the NSCs with relaxed models exhibiting lower eccentricity. This under-
scores the importance of properly modeling the initial conditions of the NSC including
the usage of a realistic mass-spectrum. Generation of LISA waveforms will require
proper modeling of the environment surrounding the binary.

While our initial conditions are idealized in the sense that only two mass species
are used, we demonstrate the necessity of modeling NSCs with multiple mass species
as collisional relaxation can often evolve the density and mass profiles in non-intuitive
ways which can affect the dynamics of the MBH binary. Our simulations open up
avenues of further exploration with regards to IMBH-MBH mergers and the impact
of triaxiality on mass segregation. We also demonstrate the effectiveness of Taichi
at handling problems of this resolution and scale. Taichi is among the first N -body
codes built with a fourth-order symplectic integrator with time symmetric step solver
and regularization. Nevertheless, some of the simulations from this work clearly show
that directly integrating over many orbits of the hard binaries can be computationally
demanding. A proper treatment of stable hierarchical systems (e.g., Wang et al.,
2020; Rantala et al., 2022) is worth the investment. With further improvements,
Taichi presents an effective method to simulate galaxy mergers, MBH binaries and
simulations of NSCs.

3.7 Appendix

3.7.1 Effect of resolution

To understand the effect of resolution on the results, we simulate lower resolution
models of mergers on circular orbits with N = 4 × 105. For clarity, we have only
presented the full evolution for the q = 0.01 models. Looking at Figure 3.11, we do
not find any differences in the pre-binary phase indicating that the lower resolution
simulations are able to simulate the tidal stripping process as accurately as the higher
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resolution simulations. The time of binary formation is consistent among the two
sets of simulations as well. However, once the binary has formed, differences appear
between the lower resolution and the higher resolution simulations. In simulations
with N = 4× 105, we find that the binary is able to reach large values of eccentricity
which is not observed in the simulations with N = 1.32 × 106 particles. This was
only observed in the q = 0.01 models but not in the larger mass-ratio models. In
addition, as mentioned before, the hardening rate in the lower resolution simulation
is about 2× higher than that in the higher resolution simulation. To understand how
the resolution plays a role in the hardening rate, we plot the average hardening rate
as a function of the mass-ratio in Figure 3.12. We find that the hardening rates are
consistent among the lower and higher resolution simulations for q = 1.0. As the mass
ratio is lowered, the higher resolution models demonstrate lower rates of hardening.
This indicates that although the primary method for loss-cone scattering in the hard
binary phase may be collisionless, driven by the non-spherical nature of the merger
product, collisional effects cannot be discounted, especially in collisonal systems like
NSCs. The dependence of hardening rate on N is more prominent for models with
lower q. This is in line with the observations of Vasiliev et al. (2014) where the
authors found that even in non-spherical galaxies, collisional loss cone refilling can
play a significant part.

3.7.2 Comparsion between NBODY6 and Taichi

We use the initial conditions for the q = 1.0 model directly obtained from Ogiya
et al. (2020a) to test Taichi against NBODY6++GPU. We present the evolution of the
orbital elements and show that using the parameters chosen in this study, Taichi is
able to simulate the system as accurately as NBODY6++GPU. Even without the usage
of specialized hardware such as GPUs, Taichi is able to simulate the systems 2×
faster than NBODY6++GPU using 2 GPUs. The energy conservation at the end of
the simulation for Taichi was ∼ 0.1% whereas that for NBODY6++GPU was ∼ 1%.
For these simulations, the number of particles was the same as that used in Ogiya
et al. (2020a), N = 131072. We find that there are no systemic differences between
the evolution of the binaries using the two codes. We find the differences in the
evolution of binary separation are minuscule. Even though the eccentricity evolution
is inherently stochastic, qualitatively the evolution is similar in both cases. From the
plot of the inverse semi-major axis, we deduce that in both scenarios the binary is
hardening at similar rates. This indicates that Taichi is able to model both collisional
and collisionless processes as accurately as NBODY6++GPU and is suitable to handle the
class of problems mentioned in this work.

89



10 3

10 2

10 1

100

101

d 
[p

c]
Low Resolution
High Resolution

0.0

0.2

0.4

0.6

0.8

1.0

e

0 2 4 6 8 10
t [Myr]

0

100

200

300

400

500

600

1/
a 

[p
c

1 ]

Figure 3.11: Evolution of the binary parameters for the relaxed q = 0.01 model pre-
sented as a function of time for lower resolution and higher resolution models. We
find that although there are no differences in pre-binary phase and the time of bi-
nary formation between the lower resolution and higher resolution models, differences
appear once the binary is in the bound-binary and the hard binary phases. This is
quite notable for the evolution of eccentricity and the rate of hardening where the
lower resolution model demonstrates a higher value compared to the high resolution
model. The results are in contrast with Preto et al. (2011) as we find the hardening
rate depends on N indicating that the effects of collisional loss-cone refilling cannot
be discounted.
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Figure 3.12: Hardening rates of circular relaxed models with different resolutions
presented as a function of the mass-ratio q. The hardening rates have been computed
by taking the average of the hardening rates every 1 Myr after a hard binary has
been formed. The error bars correspond to the standard deviation. We find that the
hardening rate strongly depends on q and resolution. As the mass-ratio is lowered,
the hardening rate decreases as we increase N . Similar observations were noted for
the non-relaxed scenario.
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Figure 3.13: Evolution of the orbital parameters as a function of time for the q = 1.0
model presented in Ogiya et al. (2020a). Top: Evolution of binary separation. Middle:
Evolution of eccentricity. Bottom: Evolution of inverse semi-major axis. Right:
Evolution of the relative energy error. We find the results between NBODY6++GPU and
Taichi are consistent with each other and Taichi is better at energy conservation
by a factor of ∼ 10 compared to NBODY6++GPU .
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Abstract

Merger rate predictions of Massive Black Hole (MBH) seeds from large-scale cos-
mological simulations differ widely, with recent studies highlighting the challenge of
low-mass MBH seeds failing to reach the galactic center, a phenomenon known as the
seed sinking problem. In this work, we tackle this issue by integrating cosmological
simulations and galaxy merger simulations from the MAGICS-I and MAGICS-II res-
imulation suites with high-resolution N -body simulations. Building on the findings
of MAGICS-II, which showed that only MBH seeds embedded in stellar systems are
able to sink to the center, we extend the investigation by incorporating nuclear star
clusters (NSCs) into our models. Utilizing N -body resimulations with up to 107 par-
ticles, we demonstrate that interactions between NSCs and their surrounding galactic
environment, particularly tidal forces triggered by cluster interactions, significantly
accelerate the sinking of MBHs to the galactic center. This process leads to the for-
mation of a hard binary in ≲ 500 Myr after the onset of a galaxy merger. Our results
show that in 8 out of 12 models, the high stellar density of the surrounding NSCs
enhances MBH hardening, facilitating gravitational wave (GW) mergers by redshift
z = 4. We conclude that at z > 4, dense NSCs serve as the dominant channel for
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MBH seed mergers, producing a merger rate of 0.3–0.6 yr−1 at z = 4, which is ap-
proximately 300–600 times higher than in non-NSC environments. In contrast, in
environments without NSCs, surrounding dark matter plays a more significant role
in loss-cone scattering.

4.1 Introduction

The formation and evolution of massive black holes (MBHs) stand as one of the most
intriguing phenomena in astrophysics, playing a pivotal role in shaping the cosmic
landscape from the early universe to the present epoch. Supermassive Black Holes
(SMBHs) are quite ubiquitous, as observations suggest, and present in almost all
galactic centers in local galaxies (e.g., Miyoshi et al., 1995; Tremaine et al., 2002;
Kormendy and Ho, 2013b). Intermediate Mass Black Holes (IMBHs) ranging from
103M⊙ to 106M⊙ have also been found to exist at the centers of several local dwarf
galaxies (e.g., Reines et al., 2013; Greene et al., 2020). Observations, particularly
from the James Webb Space Telescope (JWST), have unveiled a wide population of
MBHs with masses 106M⊙− 108M⊙ in the high redshift universe (e.g., Larson et al.,
2023; Übler et al., 2023; Kocevski et al., 2023; Harikane et al., 2023; Goulding et al.,
2023; Maiolino et al., 2023, 2024; Matthee et al., 2024). Scaling relations derived
from local galaxies show that these MBHs are typically overmassive compared to
their hosts (Pacucci et al., 2023; Goulding et al., 2023) and pose new challenges to
our understanding of the formation and growth of MBHs in the high redshift universe.

In recent years, significant strides have been made in understanding the origins
of MBHs, suggesting that they may originate from a seed population at z ∼ 20− 30
(Barkana and Loeb, 2001) which then grows in mass via mergers and accretion (e.g.,
Dayal et al., 2019; Pacucci and Loeb, 2020; Piana et al., 2021; Bhowmick et al., 2024).
These seeds can form from the direct collapse of pristine gas clouds (e.g., Begelman
et al., 2006; Mayer et al., 2010) or from the collapse of massive PopIII stars and
runaway growth in dense stellar systems (e.g., Portegies Zwart et al., 1999) such as
nuclear star clusters (NSCs) (e.g., Devecchi and Volonteri, 2009; Lupi et al., 2014;
Das et al., 2021; Askar et al., 2023; Kritos et al., 2023) or young star clusters (e.g.,
Di Carlo et al., 2019, 2021). However, reconciling theoretical predictions of different
seeding models with observations remains a challenge due to the low masses of these
seeds and their faint electromagnetic signatures (Pacucci et al., 2017).

With the advent of gravitational wave (GW) astronomy using LIGO-Virgo in-
terferometers (e.g., Abbott et al., 2017, 2020c,b,a) and Pulsar Timing Array (PTA)
(Mingarelli et al., 2017; Kelley et al., 2018; Agazie et al., 2023a,b), a new pathway has
emerged to understand and constrain various seeding models in the early universe,
if seed BHs can form MBH binaries and merge. In particular, MBH binaries with
masses 104M⊙− 107M⊙ are one of the main targets of the space based GW detectors
like LISA (Amaro-Seoane et al., 2017) or TianQin (Luo et al., 2016) which should
be able to detect mergers of MBHs out to z > 20. However, the dynamics of these
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103M⊙− 106M⊙ MBH seeds are notoriously difficult to model as they involve resolv-
ing processes that can bring them from kiloparsec scales to coalescence, producing a
wide range in theoretical predictions for merger rates.

The process leading to the GW coalescence of MBH binaries is often conceptu-
alized as a three-step journey (Begelman et al., 1980; Merritt, 2013a). Initially, the
dynamical friction (DF) (Chandrasekhar, 1943) exerted by stars, dark matter (DM),
and interstellar gas comes into play, reducing the angular momentum of the MBHs,
leading them to sink to the center of the merged galaxy. When the two MBHs get
close enough, they form a bound binary, marking the onset of the second stage. Dur-
ing this phase, the binary’s separation reduces due to a combination of dynamical
friction and three-body scattering events. In the penultimate stage, further orbital
decay ensues, primarily driven by three-body scattering processes. However, if insuffi-
cient scattering interactions between MBH binaries and stars occur, the orbital decay
of the binary can stall before the binary can coalesce via the emission of GWs (e.g.,
Milosavljević and Merritt, 2003; Vasiliev et al., 2015). This highlights the importance
of the environment surrounding the MBH binary on its fate.

The self-consistent evolution of MBH seeds and their galactic environments is
generally treated using cosmological simulations, which offer a comprehensive frame-
work for understanding the intricate processes governing seed growth and mergers
(see Amaro-Seoane et al., 2023, for a review). However, large-volume cosmological
simulations lack sufficient resolution at scales of ≲ kpc. Physical processes like dy-
namical friction are usually treated in a subgrid fashion (Tremmel et al., 2015a; Chen
et al., 2022a; Ma et al., 2023; Damiano et al., 2024) leading to uncertainties in the
dynamics of MBH seeds, especially at separations of ≤kpc from the galactic centers.
A number of recent studies have found that MBH seeds are inefficient at sinking to
the center of the galaxy leading to longer merger timescales than previously expected
(Pfister et al., 2019; Ma et al., 2021; Partmann et al., 2023), creating the so-called
“seed-sinking problem”. Crucially, large softening lengths and lower mass resolution
in cosmological simulations prevent the resolution of dense stellar systems such as
NSCs, which can play a major role in the formation and evolution of MBH seeds
(e.g., Devecchi and Volonteri, 2009; Das et al., 2021; Lupi et al., 2014; Askar et al.,
2021).

NSCs are some of the densest known stellar systems, and galaxies hosting both
NSCs and MBHs at their centers are quite prevalent across galaxy masses and mor-
phologies (Neumayer et al., 2020a). Due to the large stellar density at their centers,
they provide an ideal environment for the formation and growth of MBH seeds. Using
semi-analytical models, Kritos et al. (2023) find that NSCs in dwarf galaxies can pro-
vide suitable environments for the production of MBH seeds of masses up to 106M⊙.
In the densest and most compact NSCs, runaway growth and gas accretion can lead
to formation of 106M⊙ MBHs in ∼ 100 Myr.

Shi et al. (2024) perform multi-physics simulation and find that low mass MBH
seeds present in star clusters hierarchically merge, leading to the formation of a proto-
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bulge or a dense NSC. The star clusters surrounding the seeds help them migrate
efficiently to the center of the galaxy, resulting in a rapid formation of seed MBH
binaries with separations ≤ 1 pc. The process is much faster than the DF timescale
of such MBH seeds, if they were isolated. On a similar note, recent works have found
that MBHs embedded in NSCs undergo accelerated mergers(Ogiya et al., 2020b;
Khan and Holley-Bockelmann, 2021; Mukherjee et al., 2023; Chen et al., 2024). The
additional mass surrounding the MBHs helps them sink more efficiently to the galactic
center. Once these MBHs reach a separation of ≲ 50pc, tidal interactions of the NSCs
help them sink from 20-50 pc to a few milliparsec in a span of ∼ Myr, leading to the
formation of a hard binary faster than the DF timescale.

Recent studies have systematically explored favorable conditions under which
MBH seeds can merge, leveraging multi-scale examinations. Large-volume cosmo-
logical simulations, such as ASTRID (Bird et al., 2022; Ni et al., 2022; Chen et al.,
2022b), along with galaxy merger re-simulations like MAGICS-I (Chen et al., 2024),
have demonstrated that galaxy mergers, particularly those involving dwarf galaxies,
play a critical role in driving MBH seed mergers in the high-redshift universe. Build-
ing on MAGICS-I, MAGICS-II (Zhou et al., 2024) employs higher-resolution models
of galaxies, and incorporates an AR-chain integrator (Mikkola and Tanikawa, 1999c;
Rantala et al., 2017, 2020) and finds that only MBH seeds embedded within extended
stellar systems (which remains largely unstripped during the merge) can effectively
migrate BHs to the center of the merged galaxy, where they may form a binary. In
contrast, significant tidal stripping during the initial infall of the MBH host galaxy
lead to naked MBH seeds in a merger remnant. In this case, MBHs stall at dis-
tances of 0.1 - 1 kpc (Zhou et al., 2024).Therefore, stellar structures, such as NSCs
surrounding the MBHs, are crucial for creating conditions that facilitate MBH seed
mergers. However, the resolution limits of MAGICS-II preclude the proper examina-
tion of realistic nuclear structures around MBHs, such as NSCs, highlighting the need
for high-resolution N-body simulations to accurately capture the detailed dynamics
of MBHs within dense stellar environments.

There is a wealth of literature available on modeling stellar clusters in cosmological
simulations. While this is hard to do self-consistently, studies such as E-MOSAICS
(e.g., Pfeffer et al., 2018) and FIRE (e.g., Rodriguez et al., 2023) have employed multi-
scale techniques combining high resolution simulations with cosmological simulations
to study the evolution of globular clusters in galaxies. In the same vein as these
previous works, we employ high resolution N-body models informed from cosmological
simulations in this work. Upon the merger of two galaxies, the NSCs present in either
galaxy would be subject to the tidal effects from the stellar bulge or the DM halo
as they sink to the center, resulting in mass loss over time and thereby affecting
their sinking efficiency. A systematic study of the effect of MBH seed mergers due to
NSCs in realistic galactic environments is missing. Our work, therefore, is primarily
motivated to understand the efficiency of MBH seed mergers embedded in NSCs in
galactic environments informed by cosmological and galaxy merger simulations.
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In this work, we introduce the MAGICS-NSC suite of high-resolution N -body
simulations, using up to 107 particles, to study the evolution of MBH seeds from a
separation of hundreds of parsecs to GW emission stage under the influence of NSCs.
Our models are directly informed from the MAGICS-I (Chen et al., 2024, hereafter
MAGICS-I) and MAGICS-II (Zhou et al., 2024, hereafter MAGICS-II) suite of galaxy
merger resimulations . We use the Fast Multipole Method (FMM) (Greengard and
Rokhlin, 1987; Cheng et al., 1999) based N -body code Taichi (Zhu, 2021b; Mukherjee
et al., 2021a, 2023) which has been shown to be as accurate as direct-summation based
N -body codes while using a fraction of the computational time. Our simulations
are state-of-the-art and present an effort where the evolution of the seeds is traced
accurately from kiloparsec to milliparsec scales, including not only the stellar bulge
but the surrounding DM halo.

We begin by introducing the MAGICS-I and MAGICS-II resimulation suites in
section 4.2 and then briefly describe the computational methods in section 4.3 and
our models in section 4.4. This is followed by the results in section 4.5. We then
describe some of the implications of this work in section 4.6 and conclude in section
4.7.

4.2 The MAGICS Project

The simulations in this work are based on the initial conditions of galaxy mergers in
MAGICS-I and MAGICS-II, which are directly informed by the MBH mergers in the
ASTRID cosmological simulation. Here we briefly describe ASTRID and, MAGICS-I
and MAGICS-II simulation suites.

ASTRID is a cosmological hydrodynamical simulation with 250h−1Mpc per side
and 2×55003 initial tracer particles comprising dark matter and baryons (Bird et al.,
2022; Ni et al., 2022). The simulation includes a full-physics, sub-grid models for
galaxy formation, SMBHs and their associated supernova and AGN feedback, as well
as inhomogeneous hydrogen and helium reionization. BHs are seeded in haloes with
Mhalo > 5 × 109h−1M⊙ and M∗ > 2 × 106h−1M⊙, with seed masses stochastically
drawn from a power-law distribution within the mass range between 3 × 104h−1M⊙
and 3×105h−1M⊙, motivated by the direct collapse scenario proposed in (e.g.; Lodato
and Natarajan, 2007).

The stellar mass criterion for seeding in ASTRID ensures that there is some cold gas
remaining in the halo which is crucial to form and grow the MBH. Recent experiments
involving simulations of dense stellar environments find that they provide the ideal
environment to grow MBHs of masses ≥ 103M⊙ (Partmann et al., 2024). A dense
environment is necessary to anchor and grow light MBH seeds. Additionally, in
ASTRID the stellar component is a crucial source for providing DF force onto the
BHs. Thus, the halo mass criterion is chosen so that the BHs are only seeded in
haloes that have sufficient stellar mass to provide sufficient DF force to the BH seeds.
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The gas accretion rate onto the black hole is estimated via a Bondi-Hoyle-Lyttleton-
like prescription (Di Matteo et al., 2005). The black hole radiates with a bolometric
luminosity Lbol proportional to the accretion rate Ṁ•, with a mass-to-energy conver-
sion efficiency η = 0.1 in an accretion disk according to Shakura and Sunyaev (1973).
5% of the radiated energy is coupled to the surrounding gas as the AGN feedback.
Dynamics of the black holes are modeled with a sub-grid dynamical friction model
(Tremmel et al., 2015b; Chen et al., 2022c), yielding well-defined black hole trajecto-
ries and velocities. We boost the dynamical mass of the black holes to 1.2× 107M⊙
for gravitational interactions to alleviate the artificial dynamical heating from other
particle species. Two black holes can merge if their separation is within two times
the gravitational softening length 2ϵg = 3 ckpc/h and they are gravitationally bound
to the local potential.

ASTRID has the largest MBH merger population at high-redshift (Chen et al.,
2022a) with MBH masses in the range 5 × 104M⊙ < MBH < 5 × 1010M⊙. In
MAGICS-I, we select 15 out of 2107 z ∼ 6 MBH mergers from ASTRID to perform
high-resolution resimulations. The resimulations have a dark matter and gas particle
mass of 8000M⊙ and a stellar particle mass of 2000M⊙. The gravitational softening
is 80 pc for dark matter and gas, 20 pc for stars, and 10 pc for black holes (the inter-
species softening length is the maximum value of the two species). The subgrid
physics models in MAGICS-I are similar to those of ASTRID , except that we alleviate
the boost in the MBH dynamical mass due to the much higher particle resolution.
The dynamics of MBH pairs are also followed to smaller separations (2ϵg,BH = 20 pc)
compared with ASTRID .

To trace MBH binary dynamics down to smaller scales, MAGICS-II uses the KETJU
code (Rantala et al., 2017; Mannerkoski et al., 2023) to study 6 merging systems iden-
tified in MAGICS-I. KETJU replaces the leapfrog integration with the algorithmically
regularized MSTAR integrator (Rantala et al., 2020) in regions around each MBH.
In these regions, interactions of BH-BH, BH-star, and BH-DM are unsoftened. Post-
Newtonian (PN) corrections up to the order of 3.5 (Mora and Will, 2004) are included
to account for general relativistic effects on the MBH binary. In principle, this could
resolve MBH evolution down to separations of tens of Schwarzschild radii. Particle
splitting is implemented in MAGICS-II. All particles, including DM, gas and stars,
within 1 kpc from the binary center of mass are split to 500 M⊙. The gravitational
softening is 20 pc for gas particles, and 5 pc for DM, stellar, and BH particles.

4.3 Computational Methods

To simulate large-N systems within a reasonable amount of time, we utilize the
FMM (e.g., Greengard and Rokhlin, 1987; Cheng et al., 1999) based code Taichi

(Zhu, 2021b; Mukherjee et al., 2021a, 2023). Mukherjee et al. (2021a) showed that
Taichi can simulate systems as accurately as direct-summation based collisional N -
body codes while scaling as O(N). The accuracy of the force calculation in Taichi
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can be tuned via the usage of an input accuracy parameter (ϵ) which controls the
opening angle, and a multipole expansion parameter (p) which controls the number
of expansion terms used in the force calculation. Using Taichi we can simulate large-
N systems without the usage of specialized hardware within a physically reasonable
amount of time. Mukherjee et al. (2023) extended Taichi to include a fourth-order
force-gradient integrator using the HHS-FSI scheme (Rantala et al., 2021c) and reg-
ularization using the AR-Chain-Sym6+ scheme (Mikkola and Tanikawa, 1999c; Wang
et al., 2021a) using the SpaceHub library. Taichi includes adaptive, individual time-
symmetrized timesteps which help conserve energy better than non time-symmetrized
schemes (Pelupessy et al., 2012b).

When the separation between the MBHs, ∆r, is > 30 pc, we set ϵ = 2 × 10−5,
p = 12, and a timestep parameter η = 0.3. In this stage, we do not use regularization
to save on computational expenses. Our experiments find that regularization does not
make a significant difference in this era. For smaller separations with ∆r ≤ 30 pc, we
set ϵ = 2×10−6, p = 15, and a timestep parameter η ≤ 0.1 and enable regularization.
This ensures an accurate evolution of the MBH binary in the three-body hardening
stage.

The interactions of the MBHs with other particles are never softened. However,
we soften the interactions between particles other than the BHs using a Plummer-
type softening. Different particle types have different softening lengths. The softening
length for interactions between particle types i and j, εij, is determined as:

εij =

√
εi2 + εj2

2
(4.1)

where εi is the softening length of particle type i and εj is the softening length of
particle type j. We do extensive experimentation to understand the effect of softening
and find that there are minimal differences in the orbit of the MBHs in the simulations
that use softening versus those that do not. We re-emphasize that the interactions of
MBHs with other particles are never softened in either case. The values of softening
used for different particle types are provided in table 4.1 in section 4.4.

Despite the average simulation containing 4m−8m particles, our simulations take
about 7-14 days of wall-clock time to run, which includes the evolution in the hard
binary stage. All simulations presented in this study were performed using 48-64
threads on an AMD Epyc 7742 node. Energy in all of our simulations is conserved
to the order of 0.01% - 0.1%. Extra care is taken to ensure that the energy error is
always at least an order of magnitude below the fraction of hard binary’s energy to
the total energy of the system.

4.4 Models

Our initial conditions are derived directly from the MAGICS-I and MAGICS-II suites
of galaxy merger resimulations. The positions and velocities of all particles are ex-
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NSC 2

NSC 1

Figure 4.1: Visualization of the stellar density field of system 12 from the MAGICS-II
suite. Brightness represents density, while color indicates stellar age: blue for younger
stars and yellow for older stars. Overdense regions are observed around the MBHs
(crosses), marking the nuclei of the original galaxies. These nuclei correspond to
nuclear clusters surrounding the MBHs, but they are less dense and less massive than
realistic NSCs. To assess the impact of denser and more massive NSCs, we introduce
NSCs (blue and purple particles in the zoomed-in circles) around the two MBHs and
continue their evolution in this study.
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tracted from the MAGICS-I N -body data. Once the data is set up and the NSCs are
added, our simulations proceed in two stages: STAGE-I where the system is evolved
until the MBHs reach a separation of ∆r ≈ 30 pc, and STAGE-II where the MBHs
subsequently form a hard binary and shrink further via three-body interactions. To
determine the hard-binary radius rh, we first find the influence radius rinfl. Following
Merritt (2013a) equation (8.71), the influence radius of the binary rinfl is defined as

rinfl ≡ renc(2(Mp + Ms)) (4.2)

where Mp and Ms are the masses of the primary and secondary MBHs respectively,
and renc is the radius enclosing twice the mass of the binary. We note that M1 and
M2 are also used to denote the masses of the MBHs in the simulations. When the
MBHs get sufficiently close to begin the process of formation of a bound binary, we
switch to Ms and Mp. The hard binary radius rh can then be determined as

rh =
q

(1 + q)2
rinfl
4

. (4.3)

where q ≡ Ms

Mp
is the mass-ratio of the MBH binary.

Dynamical processes such as DF and three-body hardening are sensitive to the
MBH mass to particle mass ratio (e.g., Pfister et al., 2019; Genina et al., 2024).
To ensure that the ratio is large enough, we perform particle splitting in the same
manner as Khan et al. (2012, 2016). We then add the NSCs around the MBHs,
assuming that they follow the Dehnen (1993) density profile with a shallow γ = 0.5
cusp. We describe the steps used to generate the initial conditions in further details
below.

4.4.1 System and snapshot selection

We select a subset of 6 systems from the original MAGICS-I set where the MBH
binaries merge within 1.2 Gyr. We also simulate an additional system, system 6,
from the MAGICS-I set in order to expand the range of environments in which the
mergers happen. Once the systems are chosen, we identify the time when the sep-
aration between the MBHs is greater than 300 pc and the gas density is about an
order of magnitude lower than the stellar and DM density within a kiloparsec from
the potential center of the galaxy. This is done since Taichi cannot handle gas ef-
fects. The gas particles in our simulations only interact via gravity. The lower gas
density ensures that active star formation in the inner few hundred parsecs does not
significantly affect our results.

4.4.2 Particle splitting

The stellar, gas, and DM particle masses in the resimulations suite are 2×103M⊙, 8×
103M⊙, and 8× 103M⊙ respectively. This is somewhat insufficient to resolve DF and
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three-body hardening effects directly. To increase the particle mass resolution, we
split each particle into more particles. Particle splitting is performed in the same
manner as Khan et al. (2012, 2016). Each DM or gas particle is successively split
over a uniform sphere of radius equaling its softening length until the mass of each
split particle is 500M⊙ − 1000M⊙ while each stellar particle is split until the mass
of each split particle is 250M⊙ − 500M⊙. The split particles are assigned the same
velocity as that of the parent particle. This conserves energy and momentum. In
each system, the mass ratio of the least massive MBH to the particle mass is ensured
to be greater than 100.

Splitting increases the number of particles in the simulations by factors of 5 −
20. To ensure that the simulations can be performed within a physically reasonable
amount of time, splitting is only performed within 1 kpc from the potential center of
the galaxy. Afterwards, radial cut at a distance of 2 kpc is performed. Experiments
are performed to ensure that the radial cuts did not significantly affect the dynamics
of the binary or the overall mass profile in the region of interest. The above procedures
result in each system containing N ≈ 4×106−8×106. The systems are evolved until
the MBHs reach ∆r = 30 pc. This marks the end of STAGE-I of our simulations.

When the MBHs reach ∆r = 30 pc, STAGE-II begins. We perform a radial
truncation of the particle dataset at 1 kpc from the minimum potential center and
perform particle splitting again to ensure that all particles are 250M⊙ − 500M⊙. In
our higher resolution models, the stellar particles are split until they have a mass of
62.5M⊙. The three-body evolution is sensitive to the mass-ratio of the particle to
the secondary, necessitating the particle splitting procedure for all particles. This
results in a sufficient resolution to resolve the binary binding stage and the three-
body interactions that lead to hardening of the binary over time. In most models,
this leads to Nhb ≈ 3.5 × 106 − 7.5 × 106, where Nhb is the number of particles
in the hard binary stage. Across our suite of simulations, we are able to achieve
102 < MMBH/M∗ < 1.5 × 103 The mass ratio of the secondary MBH to that of the
stellar particles is comparable to the values provided in Khan and Holley-Bockelmann
(2021). For most models, the evolution of the MBHs is followed down to a semi-major
axis a ≤ rh/10.

The split particles are assigned softening values as denoted in table 4.1 whereas
the unsplit particles in STAGE-I of the simulations retain the softening values from
the original MAGICS-I set. The NSC stars are assigned zero softening.

4.4.3 Generating the nuclear star clusters

In MAGICS-II, the authors find that the presence of extended stellar systems sur-
rounding the MBH seeds are critical to the sinking process. These stellar systems
represent the unstripped nuclei of the original galaxies that grow over time due to
star formation. A visualization of these stellar systems for system 12 from their
simulations is provided in Figure 4.1. The authors find that when the extended stel-
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Simulation stage Particle type Softening length

STAGE-I

Bulge stars
NSC stars
Gas
DM

5 pc
0 pc
5 pc
20 pc

STAGE-II

Bulge stars
NSC stars
Gas
DM

0.01 pc
0 pc
0.01 pc
10 pc

Table 4.1: List of inter-particle softening values used for different particle types that
undergo splitting in our simulations. Plummer-type softening is incorporated into
the force calculations. The interactions between the NSC stars are never softened. In
STAGE-II we reduce the softening to better resolve loss-cone scattering. We remind
the reader that the interactions between MBHs and other particles are never softened.
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ASTRID

MAGICS I + II

MAGICS NSC

10 kpc

1 kpc

Figure 4.2: Visualization of the MBHs from kpc to mpc scales for system 12. Top:
Zoom-in of the ASTRID volume showing the galaxies hosting MBHs (crosses), as resim-
ulated in MAGICS-I and MAGICS-II. Middle: High-resolution merger resimulation
from MAGICS-II displaying two galaxies from ASTRID with brightness indicating den-
sity and color indicating age (blue for younger stars, red for older). MBHs reach a
separation of ∼ 300 pc within∼ 300Myr. Bottom: Central 600 pc of the galaxy,
embedding two seeds inside NSCs (blue and purple spheres) within the stellar bulge
background (yellow). Interactions between NSCs enhance MBH sinking, forming a
hard binary by 388.8 Myr. Bottom left: Evolution of the binary separation ∆r as
a function of the time t. The initial phase (brown line) is followed in MAGICS-I
whereas the later phase with the MBHs inside clusters (violet line) is followed in this
work. Insets show the evolution of the eccentricity e and inverse semi-major axis
1/a after a bound binary has formed. Bottom right: Binary visualization at a few
mpc, showing the secondary’s orbit (purple line) around the primary (blue line). Star
colors indicate origins: blue (left NSC), purple (right NSC), yellow (bulge).105



lar systems surrounding the MBH seeds are fully stripped, the MBHs stall at large
separations and are unable to efficiently sink to the center to form a binary.

The finite particle limit and force softening hinder the accurate resolution of nu-
clear substructures such as nuclear star clusters (NSCs) and their dynamical effects
in MAGICS-II. The limited mass resolution introduces mass loss, primarily due to
artificial stripping caused by two-body interactions. This energy loss is proportional
to ln(N)

N
, where N is the number of particles. Consequently, achieving a more accurate

estimation of stellar system mass loss over time necessitates higher particle numbers.
Additionally, the softening length employed for stellar particles results in a cored den-
sity profile within 4 × ϵs (∼ 100 pc), where ϵs denotes the softening length. Studies
have shown that such cored density profiles are subject to enhanced tidal stripping
(e.g., Errani and Navarro, 2021; Du et al., 2024), leading to a significant reduction
in density after a few orbits. In contrast, in the presence of an NSC, we expect a
cuspy profile in the central few parsecs of the nucleus. These cuspy profiles are more
resistant to tidal stripping and tend to retain a significant fraction of their mass,
suggesting that, under ideal conditions, the NSC would survive. The aforementioned
limitations lead to the presence of an extended stellar system only surrounding system
12. A detailed analysis of the stellar profile of system 12 shows that the mass ratio of
the two galactic nuclei is initially equal. In contrast, other systems with unequal mass
ratios experience complete disruption of the less massive nucleus during the merger
process, leading to the formation of a naked MBH seed. However, this outcome is
an artifact of force softening, as the presence of initial cusps, representative of NSC,
would have resulted in their survival. This observation motivates further investigation
into the effects of NSCs in systems that experienced stripped nuclei in this work.

As a first step, we analyze system 12 from MAGICS-II to determine the mass
contained within 50 pc of each MBH when they are more than 100 pc apart. We
find that roughly 3.5 × 105M⊙ is contained within each nucleus. We, then, assume
the mass represents an NSC and follows the Dehnen (1993) density profile which is
defined as

ρ(r) = ρ0

(
r

r0

)−γcl
(

1 +
r

r0

)γcl−4

(4.4)

where ρ0 is a normalization parameter, r0 is a scale radius, and γcl controls the slope
of the inner density profile. We set γl = 0.5 indicating a shallow inner cusp, and
r0 = 1.4 pc. r0 is related to the effective radius Reff of the NSCs as

Reff ≈ 0.75r0
(
21/(3−γcl) − 1

)−1
. (4.5)

For our choice of r0, we find Reff = 3.3 pc.
The NSCs are generated taking into account the cluster potential and the MBH

potential. We perform experiments to understand the effect of the galactic potential
on the stability of our profiles and we find that our NSCs remain sufficiently stable as
the galactic potential is subdominant compared to the cluster and MBH potentials.
The NSCs are assumed to be spherical and isotropic initially and are generated using
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Agama (Vasiliev, 2019a). They are then placed around the MBHs. We note that
while the mass of each NSC in this case is determined from MAGICS-II, the positions
and velocities of other particles, including the MBHs, are determined from the same
system in the MAGICS-I set. This is done in order to be consistent with the other
models. This method produces a lower bound on the mass estimates for the NSCs
and this model is labeled as sys12 LOWM. The mass of each NSC particle is set to
62.5M⊙ for this particular model. Given that the effective radii of typical NSCs
are comparable to, or less than the stellar softening length used in the MAGICS-II
simulations, the mass estimates are a lower bound on NSC masses.

To better ascertain the masses of the NSCs used in other models, we follow a
simple prescription using the particle dataset from MAGICS-I. We ensure that our
masses are informed from the galactic environment by assuming that the total initial
mass of both NSCs is equal to the mass contained within 100 pc from the center of
mass of the MBH binary at the end of MAGICS-I resimulations. We compare the
obtained NSC mass MNSC to the galaxy stellar mass M∗,gal for each model to ensure
that it is physically realistic. We find that the total NSC mass is on the upper end of
the M∗,gal −MNSC mass relation from Neumayer et al. (2020a) and is also consistent
with the M∗,gal −MNSC relationship from Pechetti et al. (2020).

Once the total mass in NSCs for each system is found, we then determine the mass
of each individual NSC in a particular system. The masses of the two NSCs, MNSC,1

and MNSC,2, are based on the mass ratio of the inner 100 pc of the stellar bulge of
each galaxy right before the galaxies merge. This helps capture some information
related to initial star formation in the centers of each galaxy. Once the mass of each
individual NSC has been found, we follow the same steps as before to generate N -
body representations assuming a Dehnen (1993) density profile with a γ = 0.5 cusp.
For simplicity we first generate models where we set r0 = 1.4 pc for all clusters,
thereby fixing the effective radius. We label these models as FRe models indicating
all such NSCs have an initial fixed Reff . Although Reff stays constant as a function of
MNSC, the generated clusters are consistent with observed NSCs with similar masses
(e.g., Georgiev et al., 2016). To understand the effect of changing Reff as a function of
NSC mass, we perform simulations on a subset of systems, systems 2 and 10, where
we calculate the initial Reff of the clusters using the following relation from Pechetti
et al. (2020):

log

(
Reff

pc

)
= 0.33log

(
MNSC

106M⊙

)
+ 0.36. (4.6)

These models are labeled with VRe indicating that the NSCs have a varying Reff .
While the overall generation of the clusters is not fully self consistent since we are
adding extra mass to the initial system, we find that in absence of tidal interactions
between clusters, the NSCs remain quite stable. The added NSC mass varies between
2-4% of the overall stellar mass in the galaxy and does not affect the global potential.

For most of our models, the mass of each individual NSC particle is set to be
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Model N [106] Ms/M∗
sys1 FRe O 4.49 240
sys2 FRe O

sys2 VRe O

5.16
5.46

266

sys3 FRe O

sys3 FRe HI

4.19
7.59

104
825

sys6 FRe O 4.08 250
sys7 FRe O 3.89 173
sys10 FRe O

sys10 VRe O

4.19
4.15

390

sys12 FRe O

sys12 FRe HI

sys12 LOWM

3.86
10.2
7.46

175
1401
1401

Table 4.3: Initial conditions for STAGE-II of our simulations. Once the MBHs reach
a separation of ∆r ≤ 30 kpc, the second stage of our simulation begins. We perform
further truncation to 1 kpc and ensure all particles have a mass of 500M⊙ (250M⊙
for sys 1 FRe O) in the O models. For the HI models, all stellar particles are split
until they have a mass of 62.5M⊙. The mass ratio of the secondary to the stellar
particles Ms/M∗ is always greater than 100 for a sufficiently smooth evolution in the
hard-binary stage.

500M⊙. For better resolution, we set the NSC particle mass to be 250M⊙ for system
1. These models are labeled with O suffix. For two of our systems, systems 3 and 12,
we generate higher resolution NSCs to test the convergence of our results. The mass
of each NSC particle in these models are set to be 62.5M⊙. The higher resolution
models are labeled with HI suffix. In all of our models, the NSC particles are set to
have zero softening. The initial conditions for all our models for both stages of the
simulations are summarized in tables 4.2 and 4.3.

4.5 Results

4.5.1 Initial evolution and sinking of the MBHs

Our simulations all start roughly when the MBHs are ∆r ≈ 300 pc apart. We
present visualizations of the sinking process for two of our models, sys2 FRe O and
sys6 FRe O, in Figure 4.3. In sys2 FRe O, we find that the process is extremely
efficient with the MBHs forming a bound binary and sinking to ∼ 10−3 pc within 16
Myr from the start of the simulation. The fast sinking is aided by the high stellar
density of the surrounding bulge and the large mass of the NSC hosting M2 with
MNSC,2 ≈ 7.2× 106M⊙. In fact, sys2 FRe O is the fastest sinking model amongst all
of the models simulated. This is in contrast to sys6 FRe O where the MBHs take 85
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Figure 4.3: Visualization of two different models: sys2 FRe O and sys6 FRe O from
our suite of simulations. The color scheme is same as that used in Figure 4.2. Top:
sys2 FRe O, a fast shrinking system. Due to the high stellar density of the surrounding
galactic stellar medium and the large NSC masses, the binary shrinks quickly forming
a hard binary with 15 Myr from the start of the simulation. As shown in the inset
axes, the formed binary reaches a high eccentricity of 0.95 by 368 Myr while hardening
to a ∼ 10−3 pc. Bottom: sys6 FRe O, a slow shrinking system. Contrary to the other
system, the MBHs take 85 Myr to shrink to a bound binary stage in this case. The
formed binary is very eccentric (0.98-0.99) as the other model (sys2 FRe O) but the
hardening rate is about three orders of magnitude lower. Consequently, the binary is
only able to shrink to ∼ 100 mpc by the end of our simulation.109
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Figure 4.4: The evolution of the MBH separation ∆r as a function of time t for all
our models. Across all models, the binaries shrink to below the hard binary radius
(dashed line) indicating that NSCs are efficient at accelerating MBH sinking times.
The initial effective radii Reff of the NSCs are fixed in the FRe models (purple lines)
whereas they are varied in the VRe models (grey) following equation 4.6. The VRe

models show qualitatively similar evolution to that of the FRe models with differences
of at most 1−2% in the sinking times. We notice that our higher resolution models HI
models (green) merge faster than their original O resolution counterparts. Increasing
the resolution leads to a less efficient tidal stripping by the galactic environment and
causes the clusters to retain more mass. In both systems 3 and 12, the HI models
sink about 20% faster. The LOWM model (red line) shrinks to the largest hard binary
radius as the NSCs are about an order of magnitude less massive than the FRe model.
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Myr from the start of the simulation to form a bound binary. The NSC hosting M2 is
only 17% as massive as that in sys2 FRe O model. The central stellar density is also
10× lower than that in sys2 FRe O reducing the efficiency of DF leading to a longer
inspiral.

We examine the evolution of ∆r as a function of time in Figure 4.4 for all models,
finding that the MBHs are able to sink and form a hard binary, shrinking significantly
below rh. In all but one model, sys1 FRe O, the MBHs sink within 100 Myr from
the start of our simulations. sys1 FRe O is unique in that it takes ≈ 300 Myr for
the MBHs to sink to below the hard binary radius. This is primarily caused due
to the fact that the NSC hosting the secondary is only 1.5 × 106M⊙ and the initial
separation of the MBHs is slightly larger than that in other simulations. Incidentally,
Zhou et al. (2024) find that system 1 also ends up stalling at the largest scale (≳ 400
pc) amongst all systems studied in MAGICS-II.

While the sinking time is dependent on the galactic environment and the masses
of the MBHs, it is still informative to examine the mean sinking time τsink,avg across all
our simulations. To calculate τsink for each model, we note the time when the MBHs
reach ∆r = 0.1 pc, close to the average of influence radii across all systems. Using
only the data from the FRe models to be consistent, we find that, τsink,avg ≈ 540 Myr.
We compare this to the average sinking time for the MBHs derived from MAGICS-I
suite and find that the our sinking times are 20 % shorter. However, we emphasize
that the the sinking time in the MAGICS-I suite is calculated when the MBHs reach
∆r ≈ 20 pc. Thus the actual sinking time without the NSCs may be substantially
higher. This is corroborated by comparing our models to those from the MAGICS-II
suite where the authors follow the evolution down to sub-pc scale and find sinking
times of the order of ∼Gyr in simulations where the binary does not stall.

One might ask whether this accelerated sinking is caused due to the additional
mass of the NSCs surrounding the MBHs which enhances the DF force experienced
by the MBH+NSC system or if it is due to the tidal interactions between the NSCs
and the galactic environment. To examine this, we perform an experiment with
sys10 FRe O where, instead of adding the NSC surrounding the MBHs, we boost the
mass of the MBHs by the same amount and plot the evolution of the MBH separation
in Figure 4.5. We find that when the MBHs are separated by ∆r ≳ 100 pc, the orbits
shrink by roughly the same amount. There are only minor differences between the
orbits in the first 20 Myr. This indicates the primary phenomenon driving the orbital
shrinkage in this case is DF from the additional mass. However, once the MBHs reach
a separation of ≈ 50 pc, there is a period of rapid orbital shrinkage when the MBHs
are surrounded by NSCs. This is driven by the tidal interactions between the two
NSCs which exert torques on the MBHs leading to a rapid decrease in their angular
momentum and energy. The MBHs form a hard binary at the end of this phase,
which is very rapid and lasts ≤ 1 Myr. This is consistent with the findings of Ogiya
et al. (2020b) where the authors note that tidal interactions dominate over DF at
separations of ∆r ∼ 50 pc. In the boosted MBH mass case the binary continues to

111



0 10 20 30 40 50 60 70 80
t [Myr]

10 3

10 2

10 1

100

101

102

r [
pc

]

sys10_FRe_O model

Boosted MBH mass
Clusters

Figure 4.5: The binary separation ∆r as a function of time t for sys10 FRe O model
with MBHs in NSCs (purple) and with the MBH masses boosted by the amount of
mass present in the respective NSCs (red). While the early evolution is similar in
both cases, indicating that it is dominated by DF from the increased mass, the same
cannot be said for t > 20 Myr. The orbits shrink by roughly the same amount until
the MBHs reach ∆r ∼ 50 pc, after which the tidal interactions between the NSCs
drive the MBHs to rapidly sink to the center of the merged NSC in < 0.5 Myr and
form a hard binary. However, the boosted MBH mass model does not demonstrate
this rapid shrinking leading to a much longer sinking timescale. This indicates that
NSCs are a key ingredient of rapid MBH binary formation.
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shrink due to DF and is only able to reach ∆r = 10 pc in 85 Myr. This indicates the
importance of extended stellar systems such as NSCs in accelerating the formation
of bound MBHs. We also perform an additional simulation where we only embed
the secondary MBH in system 12 in an NSC and find that the MBHs do not form a
binary within ≳ 200 Myr.

sys12 LOWM takes substantially longer to sink than its more massive counterpart,
sys12 FRe O . This is caused due to the low mass of the NSCs, almost a factor of 10
smaller than that in sys12 FRe O. Nevertheless, a hard binary forms around ≈ 500
Myr. The binary settles to separation of ≲ 1 pc and continues further hardening via
three-body interactions. We compare the sinking time between this model and the
equivalent system from the MAGICS-II and find that they are similar. Zhou et al.
(2024) find that the MBHs sink to ∼ 1 pc around 600 Myr from the beginning of
their simulation. The similarity in the sinking separations and timescales indicates
the consistency between our simulations.

4.5.2 Density profile of the formed NSC

Once the two NSCs have merged and before a hard binary has formed, we measure
the overall stellar density profiles and compare them to observations of known NSCs.
We choose the set from Nguyen et al. (2017, 2018), which includes density profiles
of M32, NGC5102, NGC5206, NGC404, and NGC205, as well as sets from Pechetti
et al. (2020) and Georgiev et al. (2016). All these sets contain local NSCs, while our
galaxies are present in the high redshift universe. Nevertheless, these comparisons
allow us to understand how our models relate to present-day NSCs in similar mass
galaxies. We first provide a comparison of our formed NSCs against the Nguyen et al.
(2017, 2018) set as the galaxy stellar masses used in that set are comparable to those
in our models.

Comparing density profiles across our models to the set from Nguyen et al. (2017,
2018) in Figure 4.6, we find that stellar density in the inner 10 pc is quite consistent
with that from Nguyen et al. (2017, 2018). For sys2 FRe O , we notice ρ1 pc ≈
2×106M⊙pc−3, highest among all our models and about a factor of 10 larger than the
densest cluster from Nguyen et al. (2017, 2018), M32. This is caused due to the high
initial density of the NSC harboring the primary MBH. However, we notice that the
VRe counterpart for the same system produces a density profile that is in agreement
with the observations over the entire radii. sys6 FRe O produces the least dense cusp
among all our models (other than the LOWM model), with ρ1 pc ≈ 4 × 103M⊙pc−3.
This is unsurprising given the low initial masses and densities of the NSCs in that
particular case.

The densities in the VRe models are systematically lower than their FRe coun-
terparts in the inner parsec, although they are higher in the outer parts at r ≳ 10
pc. This is caused due to the fact that the VRe models have a lower central density.
Since the masses of the NSCs are not changed between the FRe and VRe models, they
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Figure 4.6: The stellar density ρ(r) at the moment the NSCs merge as a function of
distance from the center of potential of the system r for our models and the equivalent
systems from ASTRID (black line). The different line colors indicate the different mod-
els, similar to Figure 4.4. The profiles are measured before any significant scouring
effects due to the formation of the hard MBH binary. The ASTRID stellar profiles are
more dense in the outskirts than our profiles as we neglect further galaxy mergers.
The stellar density in r < 10 pc is quite consistent with observations (blue shaded
region) of nucleated local dwarfs with similar galactic stellar masses (Nguyen et al.,
2017, 2018) as the galaxies in our suite. We also calculate the slope extrapolation
parameter γ, and the extrapolated stellar density profile (black dashed line), extrap-
olating the ASTRID density profiles from 1 kpc to the influence radius of the binary
(vertical line). Averaging across simulations, we find γ ≈ 2.04, with denser NSCs
having a slightly higher γ ≈ 2.1− 2.2.
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have higher densities in the outskirts. Our higher resolution NSC models, the HI

models, produce profiles that are in strong agreement with their original resolution O

counterparts. We compare the density profiles at various radii between the O and HI

models and find that the profiles differ by a factor of 2-3 at r ∼ 1 pc at most. The
HI models retain more mass than their O counterparts, leading to a slightly higher
density in certain parts.

We do notice that our stellar bulge density to NSC density is somewhat larger
than the observations from Nguyen et al. (2017, 2018). This is primarily caused by
our initial NSC generating prescription which produces slightly more massive NSCs
compared to the galaxy stellar mass. However, core scouring caused by the MBH
binary can lead to significant erosion (e.g., Merritt and Szell, 2006b; Merritt et al.,
2007a). As we will show in the next section, it can lead up to a 70% decrease in the
density profile at r = 1 pc which can produce density profiles that are more consistent
with observations.

In typical cosmological simulations, stellar profiles can only be reliably measured
up to approximately 1 kpc. Post-processing studies often extrapolate the stellar
density profiles using a fixed power law to calculate the density at the influence
radius, ρinfl, of the binary (Chen et al., 2022b). This is crucial because the hardening
timescales are sensitive to ρinfl. The extrapolated profiles are defined by the slope
parameter γ, which determines how the density ρextra ∝ r−γ behaves. For clarity, we
note that the extrapolated γ present here is different from γcl, the inner slope of the
initial density profile of the clusters. Typically, γ values between 1.5 and 2 are used,
producing a wide range in the binary’s hardening timescales. Here, we investigate
the γ parameter obtained from our simulations, which resolve the density down to
sub-pc scales. We use the original stellar profiles from ASTRID for the same systems
and measure γ based on ρinfl from our SR models and ρ1 kpc calculated from ASTRID.
Examining γ and the extrapolated density profiles in Figure 4.6, we find that for most
systems γ ≳ 2.0. For system 6, we find a lower gamma on account of two factors: the
ASTRID profile is denser at 1 kpc since the galaxy undergoes more mergers in the full
volume simulation, and the NSC is less dense compared to NSCs in other systems.
The galaxies in system 6 undergo more mergers than other systems as the MBHs are
recorded as merging at a later snapshot in ASTRID compared to the other systems.
This results in a lower γ = 1.73 extrapolated profile. Taking the average across all
systems, we find γavg = 2.04. For post-processing in cosmological simulations, we
recommend using this value to account for the effects of dense nuclear structures.

We also compare the stellar density in our models at r = 5 pc with the ρ−M∗,gal
relationship provided in Pechetti et al. (2020) derived from a volume-limited sample
of 27 galaxies. According to Pechetti et al. (2020),

log

(
ρ5 pc

M⊙pc−3

)
= (0.61± 0.18)

(
M∗,gal

109M⊙

)
+ (2.78± 1.68). (4.7)

Using the M∗,gal values from our models, we find that ρsim
ρobs
∼ 5 when M∗,gal ≤ 5 ×
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108M⊙ but increases to ∼ 20 for M∗,gal ∼ 109M⊙. However, our values are within
the limits of the uncertainty in the Pechetti et al. (2020) relation. In future studies,
we plan on investigating the effect of choosing MNSC more conservatively to try and
better replicate the observed relationship from our simulations. sys12 LOWM produces
a density profile that is lower than that calculated using equation 4.7 by a factor of
3. This indicates that a realistic NSC mass lie in between our O and LOWM models.

We compare the effective radii Reff of our formed NSCs to those from Georgiev
et al. (2016) in Figure 4.7. The simulated NSCs across various models match obser-
vations. For the FRe models, we find that Reff is negatively correlated with the mass
of the merged NSC MNSC. For MNSC ≤ 107M⊙, we produce NSCs that are slightly
underdense than observed ones whereas for MNSC ≥ 107M⊙, we produce NSCs that
are denser than the ones observed. Nonetheless, our simulations produce NSCs with
Reff that lie within the limits of the observations. The VRe counterparts for systems 2
and 10 produce NSCs are on average more consistent with the observed data. While
they are less dense than their FRe counterparts, they still sink in roughly the same
amount of time. This indicates that despite the lower density, NSCs are still efficient
at accelerating MBH mergers. The higher resolution HI models produce NSCs that
have very similar Reff as their O counterparts indicating that our results are convergent
and robust.

4.5.3 Core scouring

The formation of a hard binary and the subsequent hardening process can lead to
a substantial decrease in the central density of the formed cluster (e.g., Merritt and
Szell, 2006b; Merritt et al., 2007a). The binary undergoes complicated scattering
events with the stellar matter surrounding it leading to a complete or partial ejection
of the particle from the system. This leads to a mass deficit in the center of the
formed cluster. In order to examine how the density profile evolves as a function
of the binary’s semi-major axis a, we plot the density profile for sys10 VRe O and
sys12 FRe O at several times in Figure 4.8. These models were chosen since they had
been evolved for sufficiently long time in the hard binary phase. For the sys10 VRe O

model, we find that the formation of the binary and subsequent hardening to a =
rh/30 leads to a significant decrease in the central stellar density profile. At r = 1 pc,
the scouring effect of the binary leads to a 5× decrease in the density. A qualitatively
similar observation is made for the sys12 FRe O model. However, we find that the
scouring of the density profile is more prominent here as a≈ 7× decrease in the density
profile is observed by the time the binary hardens to a = rh/10. sys12 FRe O, in fact,
shrinks more slowly than the sys10 VRe O model caused due to the larger binary mass
and lower density of the NSC. This implies that a larger amount of mass needs to be
ejected for the binary to shrink by the same amount as that in sys10 FRe O model
leading to a more significant erosion of the stellar density within the same amount of
time.
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Figure 4.7: The effective radius of the final NSC Reff as a function of the mass of the
NSC MNSC upon the merger of the two individual NSCs. The blue circles represent
values obtained from Georgiev et al. (2016) while the larger circles are values obtained
from our simulations, with the color indicating the model type (similar to those from
previous figures), and the numbers indicating the system number. We find that Reff

of the merged NSCs are quite consistent with those from observations. For the FRe

models (purple circles), there is an inverse correlation between Reff and MNSC. Thus
the NSCs with MNSC ≥ 107M⊙ are somewhat denser than the ones that are observed.
In the VRe models (grey circles), we find that Reff of the formed NSC is about a factor
of 5 larger and more consistent with observations. We find that the effect of resolution
is subdominant with minor differences in Reff between the original resolution O and
higher resolution HI models (green circles). For the LOWM model (red circle), we find
that the merged NSC has Reff that is about an order of magnitude larger than NSCs
with similar masses. This is a result of the large initial Reff , larger than what we
expect from observations.

117



To understand how core scouring varies across all of our models, we compute the
relative change in density ∆ρ/ρ computed at r = 1 pc as a function of the binary
hardening rate s. ∆ρ is computed by taking the difference between the initial density
profile and that when the binary has hardened to rh/5 across all the models. The
hardening rate s is defined as

s ≡ d

dt

(
1

a

)
. (4.8)

We calculate s from our simulations by fitting straight lines to the evolution of the
inverse semi-major axis 1/a as a function of time every 0.3 Myr after the formation
of the hard binary and then taking the mean value. Plotting ∆ρ/ρ as a function of
s in Figure 4.9, we find that, a lower hardening rate correlates to a larger relative
change in the density profile. For our slowest shrinking model a ≳ 70% decrease in
density is observed whereas for the fastest shrinking model, it only leads to a change
of ≲ 10%. This is qualitatively similar to the findings from Merritt et al. (2007a)
where the authors find that the relative rate of mass loss is inversely proportional to
the hardening rate. While our slower shrinking systems form a large flat core by the
time they shrink to GW dominated stage, whereas for the denser systems, a cusp,
albeit shallower, might still remain. Core scouring can also play a role in lowering the
density such that our simulated systems match observations better. For example, for
the sys12 FRe O model, we observe that ρ5 pc reduces by a factor of 2 by the time the
binary has hardened to rh/10. This reduction in density leads to more consistency
between the observed Pechetti et al. (2020) relation and our simulated systems.

One can also calculate the total mass deficit by taking the difference between the
final and initial density profiles and then integrating over some radius. We follow this
procedure for a variety of radii and calculate the mass deficit Mdef by finding where
the curves peak. To be consistent among models, we calculate the mass deficit when
the binaries have hardened to ah/5. We find that the deficit is quite independent of
the density profile used. For the bulk of our models we find that Mdef ≈ 1.4 ×Mbin

while for one of our models it peaks at 1.81Mbin. This is qualitatively similar to the
results from Khan and Holley-Bockelmann (2021) although they find higher Mdef in
their models. Incidentally, similar to Khan and Holley-Bockelmann (2021) we find
that the Mdef does not peak at rinfl but rather at distances greater than rinfl. This
indicates that stars beyond rinfl also contribute significantly to the hardening process,
necessitating the inclusion of the bulge and DM halo.

4.5.4 Evolution of the hard binary

After the formation of a hard binary, we follow the evolution down to a ≲ rh/10 for all
models other than the LOWM model. In this stage, the binary hardens via three-body
interactions with the surrounding material. Under the full-loss cone approximation,
we expect the MBH binary to harden at a fixed rate. Accordingly, we determine the
hardening rate s ≡ d

dt

(
1
a

)
as mentioned in the previous section and study its evolution
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Figure 4.9: Relative change in the density ∆ρ/ρ at r = 1 pc as a function of the
binary hardening rate s. The circle number and color indicate the system number
and model type respectively, as in Figure 4.7. The values are measured when the
binary has hardened to a = rh/5. There is an inverse correlation between ∆ρ/ρ and
s. A faster hardening implies a slower rate of erosion of the cusp as the initial cusp
density is higher and/or the mass of the binary is lower, similar to findings from
Merritt et al. (2007a).
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over time. We find that the hardening rate remains roughly constant, as expected,
indicating that the binary loss-cone is filled by particles on centrophillic orbits. This
is primarily caused due to the non-spherical geometry of the merged product which
produces a torquing effect, leading to replenishment of the loss-cone.

Quinlan (1996); Sesana et al. (2006) provide a description of the energy loss during
the hardening process. The hardening rate can be represented as

d

dt

(
1

a

)
=

GHρ

σ
(4.9)

where σ is the velocity dispersion, and H is a dimensionless hardening parameter that
is almost constant once the binary is sufficiently hard. Sesana et al. (2006) performed
three-body scattering experiments to numerically determine the hardening rate and
found that H ≈ 16 − 20. To determine the value of H from our simulations, we
measure ρ and σ at the influence radius rinfl of the binary as done in Sesana and
Khan (2015). We find that H ≈ 10 for all our simulations. This is about 40% lower
than the theoretically predicted value of 16 but consistent with the findings from other
N -body simulations (e.g., Fastidio et al., 2024). This implies that although loss-cone
interactions drive the binary towards GW stage, the binary does not harden in the
full loss-cone regime (Vasiliev, 2019b). We also compare the effect of resolution on the
the value of H by comparing the calculated values from the O and the HI models. For
sys3 FRe O, we find that H = 9.03 whereas for sys3 FRe HI, we find H = 9.48, only
about 5% larger. Similarly, for sys12 FRe O, we find H = 11 while for sys12 FRe HI

we find H = 12.9, about 17% larger. This indicates that the dimensionless hardening
parameter is only weakly sensitive to the resolution and is convergent in our FRe

models. We do note that slight variations between ρ and σ among the O and HI

models are present which affect the overall hardening rate s. Owing to the slightly
higher density in the HI models, we find that s is larger by a factor of 2 in those
models compared to the O models.

Given the diverse environments in our simulations, we aim to understand how
the hardening rate s compares across different models. In Figure 4.10 we compare
s as a function of ρinfl and find a strong correlation between the hardening rate and
the density at the influence radius across all our models. The model sys2 FRe O

hardens the fastest with s = 450.8Myr−1pc−1 which is unsurprising given its ρinfl =
2.1 × 106M⊙pc−3. Similarly, we find s = 0.04Myr−1pc−1 for sys12 LOWM given the
very ρinfl = 11M⊙pc−3. Zhou et al. (2024) find a hardening rate of ≈ 0.02Myr−1pc−1

for system 12 from their simulations. Despite substantial methodological differences,
the similarity in hardening rates between the two sets of simulations underscores the
robustness of our results. Recently Khan et al. (2024) performed simulations of IMBH
binary mergers in non-nucleated dwarfs. Their D1.5C model is has similar ρinfl as our
sys12 LOWM model and we find hardening rates comparable to their results.

For models with intermediate ρinfl such as sys7 FRe O, s = 37.1Myr−1pc−1. We
find that the relationship between s and ρinfl can be described by a simple power-law.
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We fit the values obtained from our simulations and find the relationship to be

log10

(
s

Myr−1pc−1

)
= (0.761± 0.028)log10

(
ρinfl

M⊙pc−3

)
+(−2.121± 0.144).

(4.10)

Interestingly, Khan et al. (2024) in simulations of IMBH binaries in non-nucleated
dwarfs, find a linear relationship between ρinfl and s in the low ρinfl regime. We addi-
tionally compare our values to those obtained from previous simulations with NSCs
and find that for similar ρinfl, our hardening rates are consistent with those obtained
from previous works. Khan and Holley-Bockelmann (2021) study the hardening of
IMBH binaries in a variety of nucleated dwarf galaxies, taking into account the ef-
fect of the bulge and NSC. We find that for ρinfl ≥ 105M⊙pc−3, the hardening rates
predicted by our simulations are fully in agreement with those from Khan and Holley-
Bockelmann (2021). For example, the authors find that s = 49Myr−1pc−1 for NGC
404 where ρinfl = 1.1 × 105M⊙pc−3. For similar ρinfl such as in sys2 VRe O where
ρinfl = 8.3 × 104M⊙pc−3, we find s = 45.9Myr−1pc−1. At lower densities, there are
differences of at most factors of 2− 4. For NGC 5206 Khan and Holley-Bockelmann
(2021) find ρinfl = 2 × 104M⊙pc−3 and s = 3.73Myr−1pc−1, whereas in sys3 FRe O,
we obtain s = 15Myr−1pc−1 for a similar ρinfl. These differences may be caused due
to the differences in initial conditions and resolution. We also compare our results to
those from Mukherjee et al. (2023) where the authors studied the effect of MBH merg-
ers in mass-segregated NSCs and find that our results are quite consistent especially
for higher ρinfl. The differences at lower ρinfl are, again, at most factors of 2-3. These
could be caused due to differences in initial conditions, or due to the lack of a stellar
bulge in Mukherjee et al. (2023) as Khan and Holley-Bockelmann (2021) showed that
a non-trivial amount of the hardening is caused to the bulge stars, especially for equal
mass ratio binaries. Theoretically we expect a linear relationship between s and ρinfl

σinfl
.

We fit s versus ρinfl
σinfl

and find that s ∝
(

ρinfl
σinfl

)0.96±0.04

in agreement with theory.

Since we have both stars and DM in our simulations, an interesting question one
might ask is which component contributes more to hardening. Examining Figure
4.10 where we compare the s as a function of the influence radius rinfl, we find that
most of our systems harden by scattering with stars. The hardening rate is nega-
tively correlated to rinfl implying that binaries with large s harden by scattering with
particles closer to the binary. Examining where Mdef peaks along with rinfl values,
we find that stars mainly from the cluster contribute more to the hardening of the
binary for systems with large s. However, in particularly low density environments
such as sys6 FRe O and sys12 LOWM, the situation is different. For the latter, we find
that rinfl ≈ 25.2 pc. Here ρDM,infl = 11M⊙pc−3 while ρ∗,infl = 2M⊙pc−3. Comparing
the hardening rates of different components using equation 4.9, we find that the DM
contributes 2× as much to the hardening rate as stars. Therefore, in DM dominated
dwarf galaxies lacking dense NSCs, the effect of the DM halo cannot be neglected
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as the binary primarily hardens by scattering with DM, consistent with the findings
from Partmann et al. (2023). Therefore, we expect DM to dominate the hardening
in non-nucleated dwarfs and the effect of the DM halo cannot be neglected. The
addition of the DM halo could potentially alleviate the issue of non-mergers of IMBH
binaries in non-nucleated dwarf galaxies as noticed by Khan et al. (2024).

We also study the evolution of the eccentricity during this stage. The MBHs are
initially on highly eccentric orbits given that Chen et al. (2024) find that a combina-
tion of high eccentricity and central stellar density is essential for the MBHs to sink
sufficiently. Before the MBHs become bound, the orbital eccentricity using Keplerian
elements is undefined for the pair. Thus, in order to measure the unbound eccentric-
ity of the pair in the global potential, we use the pericenter and apocenter distances.
The unbound orbital eccentricity is measured as

e =
rapo − rperi
rapo + rperi

(4.11)

where rapo and rperi are the relative apocenter and pericenter distances. Initially,
the MBH pairs have unbound orbital eccentricities of 0.75− 0.95 across all systems.
The mean eccentricity initially is 0.86 with a standard deviation of 0.06. During the
DF phase, we notice a systematic decrease in the eccentricity of the pairs, similar to
Gualandris et al. (2022). By the time the MBHs are 30 pc apart, the mean eccentricity
reduces to 0.67. This is caused due to the the circularizing effect of DF (Gualandris
et al., 2022). However, we notice that this phase introduces a lot of scatter in our
eccentricity values, increasing the standard deviation to 0.2. This is unsurprising
given stochasticity introduced due to our finite resolution. Nasim et al. (2020) find
that this scatter is introduced by the merger process and affects binaries with e > 0.9
more substantially. This makes inferring bound binary eccentricities as a function of
the initial eccentricity challenging.

To understand how the eccentricity of the bound binary behaves as a function
of the unbound eccentricity, we measure the unbound eccentricity eunbound when the
MBHs are separated by 30 pc and compare it to the bound eccentricity eb in Figure
4.11. The latter is measured according to equation 6 from (Gualandris et al., 2022)
where the eccentricity is measured at a separation rbound where

Menc(rbound) = 0.1(Mp + Ms) (4.12)

For the former, we choose to measure the unbound eccentricity at ∆r = 30 pc as we
find that the initial eccentricity produces a wide range of eb erasing any correlations.
Similar findings were also noted by Fastidio et al. (2024) where the authors found
a wide range of eb when the initial eccentricity e0 was greater than 0.9. Examining
Figure 4.11, we notice that eunbound is correlated to eb but there is significant scatter
in eb when the eunbound is high. In sys10 FRe O we find both eunbound and eb are
greater than 0.9, the situation for sys2 FRe O and sys2 VRe O are different where
the pair has eunbound ≈ 0.9 but eb is significantly lower. We also note that there
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Figure 4.11: Evolution of eccentricity across all our models. Left: The bound eccen-
tricity eb as a function of the unbound orbital eccentricity as calculated using equation
4.11 of the pair measured at a separation of ∆r = 30 pc. eb is measured before the
black holes form a hard binary and when they are separated by a distance rbound as
defined in equation 4.12. Although the initial orbital eccentricity of all the black holes
are 0.85-0.95, eunbound shows a wide scatter with the mean around 0.75. eb is cor-
related to eunbound but stochasticity associated with higher eunbound produces a wide
variety of eb. Right: eb as a function of the eccentricity at the hard binary separation
ehb. We notice that a higher eb implies a higher ehb. During the hardening stage,
we find sys3 FRe O, sys12 FRe HI and sys6 FRe O are able to achieve almost radial
orbits. The differences among HI and O models persist in this stage with sys12 FRe O

containing a binary with an eccentricity of 0.15 while that in sys12 FRe HI is 0.95.
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are differences between the formed binary among our O and HI models. While both
sys3 FRe O and sys3 FRe HI have similar eunbound and eb, the same cannot be said
for the sys12 FRe O and sys12 FRe HI. In sys12 FRe O, the bound binary has a low
eccentricity of 0.2 whereas in the sys12 FRe HI, the bound binary has an eccentricity
of 0.9. Our investigations reveal that NSCs in sys12 FRe HI merge somewhat earlier
when the unbound orbital eccentricity is still large. In the O model, the pair undergoes
circularization before the NSCs merge leading to a lower bound eccentricity. This is an
unfortunate effect of stochasticity, especially for initially eccentric binaries, making
inferences of bound binary eccentricity from the unbound eccentricity challenging
, which is consistent with Rawlings et al. (2023). On the other hand, examining
the right panel of Figure 4.11, we find there is a tighter correlation between the
hard binary eccentricity ehb and eb. For binaries with eb < 0.6, we find that ehb
remains nearly the same as eb, whereas for higher eb, we notice a slight increase in
the eccentricity. Longer evolution reveals that binaries with high eccentricities grow
their eccentricity over time in the hard binary phase, leading faster mergers via the
emission of GWs.

The evolution of eccentricity is also affected by the slope of the cusp in the original
NSCs. Gualandris et al. (2022) find that for denser cusps, the eccentricity of the
formed binary is systematically lower. Similarly, due to collisional relaxation under a
two-component mass species, Mukherjee et al. (2023) find that relaxed systems which
have denser cusps, form binaries with lower eccentricities. In our models, the density
profile of the NSCs initially follows a shallow γ = 0.5 cusp. Thus eccentricities of
our formed binaries can be considered to be an upper limit. In future studies, we
plan on varying the initial cusp of the NSCs, and/or incorporating a mass function
to understand how that affects our results.

4.6 Discussion

4.6.1 Gravitational wave timescales

We use a semi-analytic method similar to that used in previous studies (e.g., Gualan-
dris and Merritt, 2012b; Gualandris et al., 2022) to calculate the GW merger timescale
τmerge of our models. We assume that the hardening rate s remains constant and that
there is no change in eccentricity. Under this assumption, we can write the change in
semi-major axis a due to three-body hardening over time as

da

dt

∣∣∣∣
∗

= −s2a. (4.13)

Then, the overall evolution of a can be written as follows:

da

dt
=

da

dt

∣∣∣∣
GW

+
da

dt

∣∣∣∣
∗

(4.14)
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Figure 4.12: The merger timescale τmerge as a function of the density at influence
radius ρinfl and the eccentricity at hard binary radius ehb. The diamonds represent
τmerge of our different models with the color and number indicating type of model and
system number respectively, similar to that used in previous figures. Using ρinfl, we
calculate the hardening rate s using equation 4.10 which allows us to approximate
the merger time following equations 13 - 19. The contours are drawn approximating
that the galaxy merger process begins at z = 9 and it takes 500 Myr for the MBHs
to sink to hard binary radius. Under this approximation, we find that binaries that
harden in environments with ρinfl > 104.5M⊙pc−3 merge by z = 4. Eccentric binaries
merge faster and can lead to high redshift mergers even in somewhat lower density
environments. Nevertheless, we find that seed black holes require a high stellar density
environment to merge at high redshifts, suggesting that most mergers that happen at
high redshifts occur in NSC dominated environments. We find in 8 of the 12 models
we simulate, the MBH binary merges before z = 4.
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We use Peters (1964c) equations to determine da
dt

∣∣∣∣
GW

and de
dt

∣∣∣∣
GW

. According to Peters

(1964c),

da

dt

∣∣∣∣
GW

= −64

5
β
F (e)

a3
(4.15)

de

dt

∣∣∣∣
GW

= −304

15
β
eG(e)

a4
(4.16)

where

β =
G3

c5
(MpMs (Mp + Ms)) (4.17)

G(e) = (1− e2)−5/2

(
1 +

121

304
e2
)

(4.18)

F (e) = (1− e2)−7/2

(
1 +

73

24
e2 +

37

96
e4
)
. (4.19)

We solve the set of coupled differential equations assuming that the initial semi-
major axis and eccentricity for the differential equations are ahb and ehb respectively.
Equation 4.10 allows us to to calculate τmerge as a function of ρinfl by fixing ehb. For
simplicity, we calculate τmerge as a function of ρinfl and ehb assuming Mp = 105M⊙ and
q = 0.5. To simplify our calculations, we estimate τmerge by starting from a = 0.02
pc. This is roughly close to the mean of ahb across the models considered in this
study. We present τmerge as a function of ρinfl and ehb under these set of assumptions
in Figure 4.12 with merger timescales from our models overlaid. We note that τmerge

is measured from the time the binary reaches ahb. We also draw contours assum-
ing that the galaxies merge at z = 9, and that the MBHs take 500 Myr to sink to
form a hard binary. Examining Figure 4.12 we find that mergers at z > 4 require
ρinfl > 104.3M⊙pc−3 even for moderately eccentric binaries with ehb = 0.8, indicat-
ing that high redshift MBH seed binaries with masses ≲ 2 × 105M⊙ merge only in
NSC dominated environments. Among our models, binaries embedded in high den-
sity NSCs such as sys2 FRe O or those with ehb > 0.9 such as sys12 FRe HI merge
before z = 4. One caveat of this calculation is that we do not consider the growth
of eccentricity during the hard binary phase which may lead to faster mergers. Ad-
ditionally, recent studies have shown that rotation in galactic nuclei can affect the
eccentricity of the binary at formation (Rasskazov and Merritt, 2017). Nuclei counter-
rotating with respect to the binary can lead to an almost radial binary at formation
accelerating merger timescales by factors up to 10 whereas nuclei co-rotating lead to
systematically lower eccentricities (e.g., Mirza et al., 2017). Nevertheless, our results
strongly suggest that high-z mergers happen in dense stellar environments that are
only possible in NSCs. Additionally, our results coupled with those from MAGICS-II
suggest that naked seed MBHs do not even make it to the galactic center efficiently.
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Zhou et al. (2024) find that in only one of the six systems simulated the MBHs seeds
form a binary. This is attributed to the presence of the nuclei around both MBHs.
Even a low mass NSC such as that present in our LOWM model helps the MBHs sink
efficiently. Such stellar structures around the seeds were neglected in previous stud-
ies (Ma et al., 2021; Partmann et al., 2023) and the authors found that the sinking
process of seeds, especially low mass ones, is highly erratic. Our study in association
with Zhou et al. (2024) corroborates this but finds that in the presence of extended
dense stellar systems such as NSCs, the seed sinking problem can be resolved. Low
mass seeds are more likely to be formed in such high density environments indicating
that future studies cannot neglect the effect of NSCs.

4.6.2 Implications for future detection

What do our results imply for future detection? Using the results from our simula-
tions, we can estimate the effect of different environments on the merger rate. We use
the mergers recorded in the ASTRID simulation (Ni et al., 2022; Bird et al., 2022) and
select a subset where the MBH masses are: Mp ≤ 5.5 × 105M⊙ and Ms ≤ 2 × 105.
We record the redshift of the mergers and add a delay time based on the hardening
timescale of the binary by calculating s from ρinfl using equation 4.10. For simplicity
we assume ehb = 0.8 and ahb = 0.02 pc. This calculation does not take into account
the time delay due to DF as the mergers in ASTRID are recorded when the MBHs
are ∼ kpc apart from each other. As noted in previous sections and in Zhou et al.
(2024), the delay time due to DF dominated sinking can be of the order of ∼ 100
Myr for MBH seeds surrounded by NSCs whereas for naked MBH seeds it is larger.
Nevertheless, our calculation provides an upper limit on merger rate in a particular
environment. Following Chen et al. (2022b), once the delay time has been added, we
calculate the merger rate as a function of the redshift dN

dzdt
as

dN

dzdt
=

d2n(z)

dzdVc

dz

dt

dVc

dz

1

1 + z
(4.20)

where Vc is the comoving volume. To calculate d2n(z)
dzdVc

from the simulation, we approx-
imate it as

d2n(z)

dzdVc

=
N(z)

∆zVsim

(4.21)

where ∆z is the width of the redshift bin, N(z) is the total number of mergers in
that particular bin, and Vsim is the volume of the simulation. For ASTRID, Vsim =
(250Mpc/h)3. We add the delay time based on ρinfl = 103, 104, and 105M⊙pc−3 and
present the merger rate in Figure 4.13. We find that at z = 4, dN

dzdt
= 0.63yr−1 when

ρinfl = 105M⊙, dN
dzdt

= 0.33yr−1 when ρinfl = 104M⊙, and dN
dzdt

= 10−3yr−1 when ρinfl =
103M⊙. This suggests that most, if not all, detectable high redshift seed mergers
happen in dense stellar environments, similar to the conclusions found by Khan et al.
(2024). In non-nucleated bulges stellar density is typically ≲ 103M⊙ which results in

129



2 3 4 5 6 7
z

10 4

10 3

10 2

10 1

100

dN
/d

zd
t [

yr
1 ]

Mp 5 × 105M , Ms 2 × 105M
ehb = 0.8

ASTRID
infl = 105M pc 3

infl = 104M pc 3

infl = 103M pc 3

Figure 4.13: The merger rate per year dN
dzdt

as function of the redshift z. We extract
the merger data from the ASTRID simulation for MBH pairs where Mp ≤ 5× 105 and
Ms ≤ 2× 105, and add a hardening delay time based on different ρinfl using equation
4.10 and the semi-analytic approach described in Section 4.6.1. For simplicity, we
assume that the MBH binaries have hard binary eccentricity ehb = 0.8. We find
dense stellar environments dominate high-z mergers at z > 4 strongly suggesting
that NSCs are the dominant channel for MBH seed mergers at high redshift. In
bulge-like environments with ρinfl = 103M⊙, the merger rate is much lower by factors
of 600 compared to ρinfl = 105M⊙ at z = 4 and peaks at z = 1.67. Our calculation
assumes that all mergers take place in nucleated environments, which may not hold
in reality. However, for similar mass galaxies, Neumayer et al. (2020a) report that
60% may be nucleated. This would imply that NSC dominated evolution would be
the primary channel for seed MBH mergers.
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three orders of magnitude fewer mergers at z = 4. We also find that when ρinfl =
105M⊙, the merger rate peaks at z = 2.76 with a rate of 1.52yr−1, while for ρinfl =
104M⊙ the rate peaks at z = 2.33 at a rate of 1.66yr−1. In low density environments
such as ρinfl, we find that mergers peak later around z = 1.67 at a rate of 2.01yr−1.
Our calculations are approximate as we do not consider the fraction of galaxies that
have nucleation and additional effects such as hierarchical three-body hardening which
can also accelerate mergers. For the former, observations suggest anywhere between
20% to 60% of the galaxies with M∗ = 108 − 109M⊙ may be nucleated (Neumayer
et al., 2020a). We will present a more detailed analysis of mergers taking into account
the DF time delay, evolution of eccentricity, and nucleation fraction in a future work.
Despite this, the implications of our work are robust and we find that the seed sinking
problem can be resolved if the MBH seeds are embedded in NSCs. Additonally, our
results suggest that high-redshift MBH seeds are an important source of GWs for
future GW missions such as LISA which should be able to detect a few such mergers.
This would be crucial to further constrain MBH seeding models.

4.7 Conclusions

MBH seeds are one of the most important sources of gravitational waves (GWs)
that will be detectable by future low-frequency GW detectors like LISA. The merger
rates of MBH seeds at high redshifts can shed light on, and constrain seeding models.
Previous studies have shown that the process by which MBH seeds sink to the centers
of galaxies is inefficient, a phenomenon known as the seed-sinking problem. However,
these analyses overlook the influence of extended stellar systems, such as nuclear star
clusters (NSCs) surrounding the seeds. Combined with the findings of MAGICS-II,
which highlight the importance of these stellar systems in aiding the sinking process,
our results strongly indicate that NSCs are a critical factor in accelerating both the
sinking and merger of MBH seeds.

In this study, we utilize high-resolution N-body re-simulations of MBH seeds em-
bedded in NSCs within high-redshift dwarf galaxies, employing up to 107 particles
using the FMM-based code Taichi. Our objective is to examine how NSCs influence
the sinking and merger dynamics of MBH seed binaries, motivated by the findings
of MAGICS-II, which demonstrated that only MBH seeds retaining extended stellar
systems around them are capable of sinking and forming binaries in high-z dwarf
galaxies. Building on MAGICS-I and MAGICS-II, we analyze the detailed dynamics
of MBH seeds within NSCs orbiting the remnant host galaxy. For these models, we
adopt a simple prescription for determining NSC masses, following MAGICS-I and
MAGICS-II, where the total mass of both NSCs is set equal to the mass enclosed
within the central 100 pc of the nucleus of the merged galaxy. The resulting NSCs in
our simulations have masses ranging from 3×105M⊙ to 3×107M⊙ and are spherically
symmetric, isotropic, and follow the Dehnen (1993) density profile with a shallow cusp
near the MBH.
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The main conclusions of our work can be summarized as follows:

• MBHs that are embedded in NSCs of all masses and sizes investigated in this
study form a hard binary. NSCs assist MBH seeds in sinking to sub-pc scale. For
more massive and denser NSCs, this process is extremely efficient, with MBHs
sinking to ≲ 0.1 pc within 15-20 Myr from the start of our simulation. The
overall sinking times are, on average, 20% faster than those found in MAGICS-
I. When the NSCs reach a separation of ≈ 50 pc , we observe an accelerated
decline in separation due to tidal interactions between the NSCs, leading to
the formation of a hard MBH binary in ≲ 0.5 Myr. Notably, this effect is
absent when the MBH masses are boosted by the same amount, indicating that
tidal effects of NSCs are crucial in helping MBHs form bound binaries. In the
absence of NSCs surrounding either MBH seed, we find that the sinking process
is inefficient. Our results converge upon increasing the resolution and we find
that higher resolution models sink 10− 20% faster.

• The density and effective radius of the central NSC produced after the merger
are consistent with those of observed NSCs. Specifically, our density profiles
fall within the range of known nucleated dwarfs drawn from Nguyen et al.
(2017, 2018). Additionally, the density of our NSCs aligns with the ρ −M∗,gal
relationship from Pechetti et al. (2020). While the final effective radii of the
merger product are somewhat smaller than expected for more massive NSCs
in models using a fixed initial effective radius, our investigations reveal that
selecting the initial effective radius based on Pechetti et al. (2020) mitigates
this issue. This paves the way for future studies to investigate more realistic
models of NSCs derived from observational relations.

• We find that binaries harden efficiently when embedded in sufficiently dense
NSCs. As expected from theoretical predictions, the hardening rate s is pro-
portional to the density at the influence radius ρinfl. In our densest model,
s ≈ 450Myr−1pc−1, while in the least dense model, s ≈ 0.04Myr−1pc−1. Com-
paring our hardening rates to recent studies of MBH binaries in NSCs, we find
consistent results, with differences of at most 2-4 when ρinfl ∼ 104M⊙pc−3. Al-
though three-body interactions with stars from the NSCs and bulge primarily
drive the hardening, dark matter (DM) plays a dominant role in low-mass clus-
ters. In our lowest mass model, the hardening rate due to DM is twice that due
to stars. Based on our initial conditions, half of our models yield bound bina-
ries with high eccentricity (e > 0.9). Although the average unbound eccentricity
decreases during the initial dynamical friction stage, substantial stochasticity
makes predicting the bound binary eccentricity from the initial orbital eccen-
tricity challenging.

• We follow the evolution of the binary into the GW merger stage using semi-
analytic methods, assuming that the hardening rate s remains constant and

132



incorporating GW effects via the Peters (1964c) equations. Using the s − ρinfl
relationship derived in this work, we determine the merger timescales of seed
binaries with Mbin ≈ 1.5 × 105M⊙ in various environments. We find that a
combination of high eccentricity and high stellar density is necessary for seeds
to merge at high redshifts (z > 4). Even with a hard binary eccentricity of
∼ 0.9 our models predict that ρinfl should exceed 3 × 104M⊙pc−3, achievable
only in nucleated environments. We find that 8 out of 12 of our models merge by
z = 4. Combined with the conclusions from Zhou et al. (2024), which indicate
that naked MBH seeds do not sink efficiently to the center, our findings strongly
suggest that NSCs are a crucial component in the seed sinking process. We also
predict the merger rate of MBH seed binaries using data from ASTRID and add
a hardening delay time based on different ρinfl, finding that detectable mergers
at high redshifts would originate from sources embedded in dense nuclei. For
ρinfl = 103M⊙pc−3, our results predict that the merger rate is 2-3 orders of
magnitude lower than when ρinfl ≥ 104M⊙pc−3 .

While our NSC models are idealized and do not account for gas effects, accretion,
or MBH spin, this work lays the groundwork for more comprehensive future studies.
Our findings highlight the critical role of NSCs in shaping the dynamics and evolution
of seed MBHs, demonstrating that the seed sinking problem can be mitigated by the
presence of extended stellar systems. With future integration of MBH spins, GW
recoil, and enhancements to the FMM kernels, Taichi stands out as a powerful tool
for addressing the complex problem of MBH mergers in galactic nuclei.
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Abstract

Recent studies suggest that dark matter (DM) spikes around intermediate-mass
black holes could cause observable dephasing in gravitational wave (GW) signals from
Intermediate Mass Ratio Inspirals (IMRIs). Previous research primarily used non-
self-consistent analytic methods to estimate the impact of DM spikes on eccentric
IMRIs. Our study provides the first self-consistent treatment of this phenomenon
using N -body simulations, incorporating Post-Newtonian effects up to the 2.5 order
for accurate and robust results. Contrary to prior works, which posited that the
cumulative effect of two-body encounters (dynamical friction; DF) is the primary
mechanism for energy dissipation, we reveal that a three-body effect (slingshot mech-
anism) plays a more significant role in driving the binary system’s energy loss and
consequent orbital shrinkage. We find that binaries counter-rotating with respect
to the DM spike merge faster, while co-rotating binaries merge slower, contrary to
expectations from the DF theory. Using Fokker-Planck methods, we also assess the
presence and detectability of spikes in realistic environments. When interacting with
surrounding materials, DM spikes can have shallower slopes and lower densities than
previously considered, leading to smaller signals and lower detection prospects via
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dephasing. Our results suggest that ‘deshifting’ rather than dephasing might be a
more optimistic signature, as it is more robust even in low-density environments.

5.1 Introduction

The nature of dark matter (DM) remains one of the most pressing mysteries in modern
astrophysics. While its existence has been inferred through a range of indirect ob-
servations such as galaxy rotational curves (e.g., Rubin and Ford, 1970; Rubin et al.,
1978, 1980; Persic et al., 1996), and gravitational lensing of galaxy clusters (e.g., Tyson
et al., 1990; Hammer, 1991; Fort et al., 1992; Le Fevre et al., 1994), its properties
and interactions remain largely unknown. Cosmological simulations suggest that DM
resides in galactic halos and is distributed according to the Navarro-Frenk-White pro-
file (Navarro et al., 1996; Bertone, 2010, see second reference for a review). Galaxies,
and therefore galactic halos, often contain massive black holes (MBHs) at the center.
Gondolo and Silk (1999) proposed that the adiabatic growth of these MBHs would
modify the dark matter profile near them and create extremely dense density spikes.
The density profile of these DM spikes ρDM is parameterized as a power-law profile
and is given as (e.g., Gondolo and Silk, 1999; Eda et al., 2013; Kavanagh et al., 2020)

ρDM(r) = ρsp

(rsp
r

)γsp
(5.1)

where r denotes the distance from the central MBH, ρsp is a normalization factor for
the density profile, γsp characterizes the power-law profile of the spike and rsp is a
characteristic radius of the spike.Usually γsp is taken to be between 2 to 2.5. For a
central MBH with a mass of 103M⊙, under these parameters, rsp ≈ 0.5pc and the
density 10−6 pc from the MBH is ∼ 1015M⊙pc−3.

Although the authors showed that such spikes would typically form around Su-
permassive Black Holes (SMBHs) with MBH ≥ 106M⊙, where MBH is the mass of
the black hole (BH), later work (e.g., Ullio et al., 2001; Merritt et al., 2002; Merritt,
2004; Bertone and Merritt, 2005) found that spikes could be depleted via different
astrophysical processes such as galaxy mergers, scattering with nearby stars, and off
center seed BHs. While SMBHs are expected to undergo many mergers, the same
cannot be said about Intermediate Mass Black Holes. DM spikes around Intermedi-
ate Mass Black Holes (IMBHs) with 103 ≤ MBH ≤ 106 are expected to survive as
they undergo fewer mergers (Zhao and Silk, 2005; Bertone et al., 2005). Additionally,
Ferrer et al. (2017) showed that spinning IMBHs could form denser spikes. Thus,
IMBHs are expected to be the predominant source for black holes surrounded by DM
spikes.

The advent of gravitational wave (GW) astronomy using LIGO-Virgo interfer-
ometers (e.g., Abbott et al., 2017, 2020c,b,a) and pulsar timing array (PTA) (e.g.,
Mingarelli et al., 2017; Kelley et al., 2018; Agazie et al., 2023a,b) has opened up
new avenues to detect and explore the properties of DM. In particular, it has been
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suggested that the effects of a DM spike could be imprinted on the GW signal of
an Intermediate Mass Ratio Inspiral (IMRI) and has drawn a lot of interest (e.g.,
Eda et al., 2013; Eda et al., 2015; Yue and Han, 2018; Yue et al., 2019; Kavanagh
et al., 2020; Becker et al., 2022; Dai et al., 2022). A visual representation of such a
system can be seen in Figure 5.1. IMRIs, formed from the inspiral of compact objects
such as white dwarfs or neutron stars, or stellar mass black holes into IMBHs, will
be detectable by future space based mHz GW detectors like LISA (Amaro-Seoane
et al., 2017) and TianQin (Luo et al., 2016) or deciHz GW detectors like DECIGO
(Kawamura et al., 2019) or MAGIS (Abe et al., 2021). GWs emanating from such
systems are expected to be in the LISA and DECIGO band for periods of months
to years allowing environmental effects, including DM spikes, to play a major role in
modifying the signal. Since matched filtering relies on a careful determination of the
simulated signal to a few cycles over hundreds to thousands of cycles, it is impera-
tive to take into account the environmental effects while numerically calculating the
simulated GW signal (e.g., Eda et al., 2013; Macedo et al., 2013; Zwick et al., 2022;
Coogan et al., 2022; Baumann et al., 2022; Zwick et al., 2023; Cole et al., 2023a,b)

Eda et al. (2013) and Eda et al. (2015) first proposed that the gravitational ef-
fects of the spike could leave an imprint on the GW signal of an IMRI. The spike
particles would get scattered by the inspiraling object leading to an extra drag force
experienced by the inspiraling object. This drag force has been attributed to dy-
namical friction (DF; Chandrasekhar, 1943) on the inspiraling object. Although the
DM mass contained in the spike is quite small relative to the mass of the central
IMBH and the inspiraling object, it has been shown that the gravitational drag can
lead to a phase shift in the GW signal over thousands of cycles. Recent studies have
shown that dephasing due to DF can lead to anywhere between 103−107 fewer cycles
which would be above the signal to noise detector theshold for LISA and could be
detected and distinguished as an imprint of the DM spike surrounding the IMBH
(e.g., Eda et al., 2015; Kavanagh et al., 2020; Becker et al., 2022; Dai et al., 2022).
Different models of DM can lead to different spike parameters and as such change
the amount of dephasing itself, which can be detected and distinguished. As such,
GW astronomy provides a unique pathway to ascertain the presence and nature of
DM itself. Detection of even one DM spike modified signal would be effective towards
eliminating other theories of gravity such as modified Newtonian dynamics and can
help constrain the particle nature of DM (Hannuksela et al., 2020).

A careful determination of the the expected dephasing, therefore, is vital. While
initial studies (e.g., Eda et al., 2013; Eda et al., 2015) used a static DM background,
Kavanagh et al. (2020) showed that the inspiral of the IMRI can inject energy into
the spike itself, often comparable to the binding energy of the spike. As such the
feedback of the IMRI onto the spike cannot be ignored. Through a semi-analytic
framework called HaloFeedback, Kavanagh et al. (2020) showed that the including
the back reaction from the IMRI can lead upto 100× reduction in expected amount
of dephasing. Therefore, it is necessary to self-consistently follow the dynamics of the
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binary in order to calculate the amount of dephasing. While HaloFeedback relies on
the assumption that the binary is on a circular orbit at all times, studies (e.g., Yue
and Han, 2018; Yue et al., 2019; Cardoso et al., 2021; Dai et al., 2022) showed that
such an assumption might not hold in reality. A self-consistent framework has only
been developed for binaries on circular orbits and studies including eccentric binaries
neglect the backreaction from the binary to the spike (e.g., Becker et al., 2022; Dai
et al., 2022). The feedback can not only affect the evolution of the semi-major axis
but also the eccentricity which has a major impact on inspiral times due to GW
emission. The rate of circularization of the IMRI has also recently been suggested
as a signature of the spike (Becker et al., 2022) which would require a self-consistent
framework that takes into account the effects of the feedback from the binary onto
the spike and vice versa to be determined accurately.

Additionally, recent work has shown that the analytic Chandrasekhar approxima-
tion may lead to inconsistent evolution of semi-major axis and eccentricity due to
the lack of inclusion of drag force from fast moving particles, which can be signifi-
cant in certain cases (Dosopoulou, 2023). As it is difficult to create a self-consistent
analytic/semi-analytic framework to include these effects, we have to resort to N -body
simulations.

N -body simulations, although expensive, are considered to be the gold standard of
dynamical modelling. Previous approaches have rarely relied on N -body simulations
as they are extremely computationally expensive. Kavanagh et al. (2020) report that
a simulation of 150 orbits of a 1 M⊙ - 100 M⊙ binary takes about 3 days using the
N -body code GADGET-2 (Springel, 2005). This is very computationally expensive to
study long term effects of the IMRI on the spike over tens of thousands of orbits.
Therefore, in order to study the secular effects of the IMRI on the spike, different
strategies are required.

In our study we describe a novel N -body code that is over 100 times faster than
traditional N -body codes for simulating IMRIs embedded in DM spikes. Using our
code, we present self-consistent results from eccentric IMRIs embdedded in DM spikes.

In addition, we also study the effect of rotation in the DM spike which has not been
done before. We argue that the inclusion of rotation is important since conservation
of angular momentum would dictate that DM spikes should rotate upon formation
from rotating galactic halos. Spinning IMBHs can also transfer angular momentum
to the surrounding spike, making it rotate (Ferrer et al., 2017). We systematically
study the effects of the different post-Newtonian (PN) terms including precession and
radiation reaction terms upto 2.5PN .

We begin by describing our computational methods in Section 5.2, followed by
the models of the IMRIs embedded in DM spikes in Section 5.3. The results are then
described in Section 5.4, followed by discussions of our results and assumptions and
conclusions in Sections 5.5 and 5.6 respectively.
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𝑀!

𝑀!

Figure 5.1: A visual representation of an eccentric IMRI embedded in a DM spike.
The mass of the central BH is M1 and that of the inspiraling object is M2. This figure
has been inspired by Figure 1 of Kavanagh et al. (2020).
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5.2 Computational Methods

The numerical evolution of the IMRI using N -body methods is an extremely com-
putationally challenging problem owing to the enormous density of the spike near
the central IMBH and the O(N2) pairwise force calculations. An accurate evolution
requires fine tuned time-steps for the particles near the central IMBH (primary) and
inspiraling object (secondary) to resolve the scattering effects accurately. Previous
studies have all relied on analytic/semi-analytic methods for long term simulations
of the inspiraling IMRI. To the best of our knowledge, only Kavanagh et al. (2020)
performed N -body simulations of the binary embedded in a spike. However, the sim-
ulations were stopped after a period of ∼ 100 orbits. To understand realistic effects
of the spike on the IMRI (and vice-versa) and to calibrate semi-analytic methods, we
need long term N -body simulations. Here we present a novel N -body code 1 that is
specifically tuned for simulations of IMRIs in DM spikes.

A close analysis of the N -body simulation reveals that the bulk of computational
time is spent calculating the forces of DM particles near the primary. Since the mass
of DM in the region of interest is very small compared to the mass of the primary and
the secondary, the self-gravity of the spike can be neglected. This allows us to safely
neglect the interactions between the DM particles themselves. Full force calculations
are only required for the primary and the secondary. Neglecting the self interaction
of the spike effectively reduces the number of force calculations to O(N), speeding
up the simulations massively. The mean relative force accuracy between a full O(N2)
calculation and our approximate method is ≤ 10−5 in the region of interest as shown
in Figure 5.2, on par with the force accuracies obtained by current Barnes-Hut tree
(Barnes and Hut, 1986) or Fast Multipole Method (FMM) (Greengard and Rokhlin,
1987; Cheng et al., 1999; Dehnen, 2002; Zhu, 2021c) based N -body codes. To verify
the accuracy of our method, we compare the evolution of a 100M⊙ − 1M⊙ binary in
a DM spike with the FMM based code Taichi (Zhu, 2021c; Mukherjee et al., 2021a,
2023) and this method and find negligible differences after ∼ 1500 orbits.

To evolve the particles, we use a 2nd order hierarchical Hamiltonian splitting
based integration scheme HOLD in a Drift-Kick-Drift (DKD) fashion with symmetrized
timesteps (Pelupessy et al., 2012a). The usage of symmetrized timesteps ensures that
there is no secular drift in energy and renders better energy conservation than other
timestepping schemes (e.g., Makino et al., 2006a; Pelupessy et al., 2012a; Mukherjee
et al., 2021a). For more information on the integration scheme, we refer the reader to
Pelupessy et al. (2012a). The timesteps are controlled by a timestepping parameter η
which is proportional to the analytically calculated timestep. In our simulations, we
set η = 0.025. This results in a relative energy error of ≤ 10−10 per orbit, sufficient
to follow the dynamics over few hundreds of thousands orbits.

To account for relativistic effects, we add PN terms to the equations of motions
for the primary and secondary. The PN equations of motion can be added to the

1https://github.com/dipto4/falcon_dm/
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Figure 5.2: The relative force accuracy |δf |/|f | of DM particles as a function of their
separation r from the central IMBH with mass M1 = 103M⊙. The spike follows
a γsp = 7/3 density profile. The inspiraling object, whose mass is M2 = 1M⊙, is
situated at an initial semi-major axis of a0 = 2× 10−8 pc. We find that in the region
of interest, the force accuracy is ≤ 10−5, which is comparable to the the force accuracy
obtained in tree/FMM based codes.
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standard Newtonian equation of motion as follows:

a = aNewtonian +
1

c2
a1PN +

1

c4
a2PN +

1

c5
a2.5PN + ... (5.2)

where anPN represents the nth PN term. We include up to 2.5PN terms in our calcu-
lations following equation 203 from Blanchet (2014). While the 1PN and 2PN terms
only lead to precession of the binary’s orbit, the 2.5PN term leads to GW radiation
resulting in shrinkage of the orbit. The DM particles experience the Newtonian poten-
tial of the primary and the secondary. In principle this is not fully self-consistent since
the DM particles will also experience PN effects in interactions with other DM parti-
cles. One can use the Einstein-Infield-Hoffman equations (e.g., Will, 2014; Portegies
Zwart et al., 2022) to self-consistently simulate the PN evolution of all the particles
but this is beyond the scope of this study.

A problem arises when adding velocity dependent forces like PN precession and
radiation reaction terms since a leapfrog-like explicit splitting of the Hamiltonian is
not achievable with velocity dependent forces. In such a scenario, the simple DKD
integration scheme cannot be utilized. An implicit method suggested by Mikkola
and Aarseth (2002) is popular but is quite inefficient. The implicit scheme requires
multiple iterations to solve for the force. For highly non-linear vector fields, it proves
to be quite computationally expensive. Hellström and Mikkola (2010) show that
using a clever mathematical trick one can create an explicit DKD-like scheme by
extending the phase space of variables by introducing an auxiliary velocity w. An
updated integration between step t and t + 1 using the auxiliary velocity w can now
be written as:

xt+1/2 = xt +
h

2
vt (5.3)

wt+1/2 = wt +
h

2
f
(
xt+1/2,vt

)
(5.4)

vt+1 = vt + hf
(
xt+1/2,wt+1/2

)
(5.5)

wt+1 = wt+1/2 +
h

2
f
(
xt+1/2,vt+1

)
(5.6)

xt+1 = xt+1/2 +
h

2
vt+1 (5.7)

where x is the position, v is the velocity, f is the force and h is the timestep. We
note that w0 = v0.

To test the integration scheme, we simulate the evolution of a 1000M⊙ − 1M⊙
binary in vacuum and compare the evolution of the eccentricity and semi-major axis
to those derived using Peters’ equations (Peters, 1964b) and find that the results are
consistent with one another. We also compare the evolution of the binary against
that from the publicly available regularization code SpaceHub (Wang et al., 2021a)
which also includes PN terms upto 2.5PN and find no differences.
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For three-body simulations, we utilize the 15th order Gauss-Radau integrator
IAS15 (Rein and Spiegel, 2015) from the rebound package (Rein and Liu, 2012).
IAS15 can handle close encounters and is extremely accurate allowing for a closer and
in-depth analysis into the dynamics of the scattering process of the binary with a DM
particle. The energy is conserved to machine precision.

All simulations are performed on the Vera computing cluster utilizing AMD Epyc

7742 nodes. The majority of the full N -body simulations take about 100-120 core
hours to finish to completion using a single core. The interactions between the sec-
ondary and DM particles are set to have zero softening while we set a relatively
conservative softening value of 10−10 pc between the primary and DM particles in
our simulations. This is equal to the Schwartzchild radius for the 103M⊙ IMBH and
one-tenth that for the 104M⊙ IMBH. For the three-body simulations, all interactions
are unsoftened. A set of simulations were run with softening between the DM parti-
cles and the secondary and no major differences were noticed between the simulations
that used softening and those that did not. A small value of softening was necessary
to prevent some particles near the primary from taking extremely small timesteps.
The interaction between the primary and the secondary object is not softened.

5.3 Models

We are interested in scenarios wherein the IMRI is visible in the LISA/DECIGO
band for a duration of ∼ 5 years. To understand the effects of varying eccentricity,
primary and secondary masses, and density, we generate physically motivated models
corresponding to IMRIs in vacuum where the GW signal is in the LISA/DECIGO
band for ∼ 5 years and above the LISA/DECIGO signal to noise threshold. We define
the mass-ratio of the secondary to the primary q as q ≡ M2

M1
where M1 is the mass of

the primary and M2 is the mass of the secondary. We choose M1 = 103M⊙, 104M⊙
and M2 = 1M⊙, 10M⊙, representing three different scenarios with mass ratios q =
10−2, 10−3, 10−4 as depicted in Figure 5.3. M2 = 1M⊙ is representative of a scenario
the inspiraling object is similar to a white dwarf of a neutron star whereas M2 = 10M⊙
represents a scenario where the inspiraling object is a stellar mass black hole. The
initial properties of the binary are characterized by its initial semi-major axis a0 and
eccentricity e0. We set a0 = 2×10−8 pc for q = 10−2, 10−3 models and a0 = 5×10−8 for
the q = 10−4 model. We also set e0 = 0.4 for q = 10−2 model, e0 = 0.75 for q = 10−3

model, and e0 = 0.65 for q = 10−4 model. Figure 5.3 provides a representation of the
strain versus frequency curves of the models superimposed over the strain-frequency
curves for LISA and DECIGO.

5.3.1 Non-rotating models

To generate the N -body realizations of the DM spike, we utilize the galactic modeling
toolkit Agama (Vasiliev, 2019a). Following previous studies (e.g., Eda et al., 2015;
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Kavanagh et al., 2020), we use equation 5.1 as our density profile. This profile is
valid for all for all radii r > rISCO where rISCO is the innermost stable circular orbit
(ISCO) for the central IMBH. The density profile is taken to be 0 where r < rISCO.
Furthermore, rsp is not considered to be a free parameter but is, instead, calculated
as

rsp ≈
(

(3− γsp)0.23−γspM1

2πρsp

)1/3

. (5.8)

For all our simulations we set ρsp = 226M⊙/pc3 following Kavanagh et al. (2020).
Using equation 5.8, we find rsp ≈ 0.54 pc when M1 = 103M⊙ and rsp ≈ 1.17 pc when
M1 = 104M⊙. Additionally, for most of our simulations we set γsp = 7/3. Such a
spike profile can arise out of adiabatic growth of an IMBH in an NFW halo (Eda
et al., 2015). However, this is not universal and γsp depends on how the DM spike
originates. For example, primordial BHs have been shown to produce a γsp = 9/4
spike around them (Boudaud et al., 2021). To understand how the dephasing changes
as γsp changes, we run a set of simulations with γsp = 9/4. Furthermore, to understand
how the dephasing changes at a fixed density profile for different q, we perform a set
of simulations with M1 = 104M⊙, rsp = 0.54pc and γsp = 7/3. However, it is hard to
robustly predict the existence of such dense spikes. In realistic environments where
effects of stars cannot be neglected, DM “crests” are more likely. Such “crests” are
formed due to the scattering of DM particles by the more massive more massive
stellar particles and have been shown to produce a γsp = 1.5 profile (Merritt et al.,
2007b). To understand if such profiles produce any observable dephasing effects, we
perform a set of simulations with γsp = 1.5, M1 = 103, 104M⊙ and M2 = 1M⊙. The
density spikes considered in our simulations have been plotted in Figure 5.4. To
generate models with finite total mass, we use an exponential truncation function
with a truncation radius of 10−5 pc for q = 10−2, 10−3 models and 10−6 pc for the
q = 10−4 model. We verify that our choice of truncation radius does not affect the
mass profile of the spike in the region of interest. We also compare our initial N -body
profiles to those from Kavanagh et al. (2020) and find that the density profiles in the
region of interest and the velocity profiles match. Additionally, we ensure that the
density profile remains stable for the duration of the simulations.

The mass of the DM particle, mDM, is chosen carefully. Since M1 ≫ M2, the
dynamics of inspiral is dependent on the mass ratio of the secondary to the mass of
the DM particle (e.g., Merritt, 2013a, chapter 8 and references therein). We define
the mass-ratio of the secondary to the DM particle as qDM ≡ mDM

M2
. Three-body

simulations show that using qDM ≤ 10−2, the results are convergent. The energy,
angular momentum, and ejection time distributions are consistent between all of the
models where qDM ≤ 10−2. Such a low mass ratio is desirable since it reduces any
spurious three-body effects leading to sudden jumps in the evolution of the semi-major
axis or eccentricity and ensures that the evolution is smooth. Accordingly, based
on resolution and computational expenses, we choose mDM = 5 × 10−5M⊙ for the
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Figure 5.4: The density of the DM spike ρDM as a function of the distance from
the central IMBH r. We use these density profiles to generate our N -body initial
conditions.
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simulations using γsp = 7/3 and 10−5M⊙ when γsp = 9/4. This results in ≈ 8k− 10k
particles in the simulation. Extra care is taken to ensure that the region surrounding
the secondary have a sufficient number of particles to resolve the scattering process.
Since the scattering process is quite stochastic, results from an individual N -body
simulation are unreliable. Accordingly, five independent realizations of every model
are generated and simulated.

For most of the simulations, only the 2.5PN term is added to the equation of
motion of the binary. This is done in order to provide a direct comparison to previous
studies such as Kavanagh et al. (2020) and Becker et al. (2022) where the effects of
relativistic precession are neglected. In general, we do not expect the dephasing to be
affected by any precession effects. However, the net precession can itself be affected
by the Newtonian precession of the binary in the potential of the spike in addition
to the relativistic precession, which can also be a signature of the spike (Dai et al.,
2022). It can, also, potentially affect the exchange of angular momentum between the
spike to the IMRI. In order to understand if relativistic precession affects our results,
we run a set of simulations with all PN terms enabled up to 2.5PN for q = 10−3

models. We leave a more systematic study of precession effects to future work. A
summary of the initial conditions for the non-rotating models can be found in Table
5.1.

We evolve the q = 10−2, and 10−3 models to merger. This is defined as the time
when a < rISCO. The simulations where q = 10−4 are extremely computationally
expensive. We only achieve an evolution to 2.5 yr in 15-20 days of computing time.
This results in about 2× 106 orbits of the secondary around the primary. We calcu-
late the dephasing cycles by extrapolating the rest of the evolution in vacuum to save
on computational resources. To verify if the extrapolation produces valid results, we
run a set of lower resolution simulations with 1024 DM particles to completion and
compare our extrapolated results to the results from our lower resolution simulations.
The extrapolated results can be seen as a lower limit on the number of dephasing cy-
cles. We compare our results against the vacuum evolution computed using the Peters
(1964b) analytic formula and also against those calculated using the Chandrasekhar
DF assuming there is no backreaction on to the spike from the IMRI. This is done
using the publicly available code IMRIPy (Becker et al., 2022; Becker and Sagunski,
2023; Becker, 2023). The IMRIPy results are denoted as “Static DF” in the results
section. Unfortunately, we could not use HaloFeedback (Kavanagh et al., 2020) for
our purposes since it can only simulate circular binaries.

5.3.2 Rotating models

As mentioned in the introduction, we aim to understand the effect of rotation in
the DM spike and its effect on the IMRI. If the DM halo surrounding the IMBH is
rotating, angular momentum conservation will dictate that DM spike should rotate
as well. Additionally, spinning IMBHs will transfer angular momentum from the
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IMBH to the spike, torquing the spike up or down depending on the direction of the
primitive rotation of the spike (Ferrer et al., 2017). In a rotating spike, exchange of
angular momentum between the IMRI and the spike will be enhanced compared to
the non-rotating models and the eccentricity of the IMRI can be significantly affected.
We aim to understand this effect in our study. To the best of our knowledge, there is
no literature available quantifying the level of rotation in the spike and its correlation
to the galactic halo rotation or the spin of the central IMBH. Therefore, we caution
the reader that our rotating models are somewhat ad hoc and therefore exploratory.
However, they are still useful in understanding the qualitative effects a spike that
is in a counter-rotating motion (retrograde motion) or co-rotating motion (prograde
motion) with respect to the binary.

To include rotation, we follow the Lynden-Bell trick (Lynden-Bell, 1960). This has
been motivated by several studies which use the method to generate rotating models
of galactic nuclei (e.g., Holley-Bockelmann and Khan, 2015; Khan et al., 2020; Khan
and Holley-Bockelmann, 2021; Varisco et al., 2021) to examine the effects of rotation
upon the dynamics of MBH binaries. In this method, we flip the z-component of the
angular momentum of the DM particles, Lz,DM , to generate prograde or retrograde
models. We note that the z-component of the angular momentum of the IMRI, Lz, is
always positive. Accordingly, to generate co-rotating or prograde models, we reverse
the direction of the x and y components of the velocity for all DM particles which
satisfy Lz,DM < 0. To generate counter-rotating or retrograde models, we do the
same, except with particles with Lz,DM > 0. This leaves the density and velocity
profiles of the spike unchanged. In principle, this is not a fully self-consistent method
of generating rotating models. Rotation is expected to flatten out the models to
some extent so it is somewhat ad hoc to include rotation in spherical spikes. One
can construct a distribution function f(E,Lz) as a function of the energy E and z-
component of the angular momentum Lz as is done in Wang et al. (2014) to generate
self-consistent rotating models which are flattened. However, this is beyond the scope
of this work. Irrespective of that, our models are able to qualitatively understand
the effect of rotation on the IMRI. In future studies, we plan on investigating self-
consistent models of rotating DM spikes to understand how the geometry of the spike
affects the dynamics.

We denote the ratio of retrograde particles to the total number of particles as
F . In our retrograde simulations, F = 1, indicating that all particles are moving
in a retrograde motion with respect to the binary, and in our prograde simulation,
F = 0, which is opposite of the previous scenario. Realistic spikes are expected to
have 0 ≤ F ≤ 1. Since the simulations are quite expensive even with our fast N -body
code, we restrict our study only to the F = 0, 1 cases. This helps us put limits on
the dephasing effect and compare the rotating models to fully isotropic non-rotating
models. We note that the Lynden-Bell method is not the same as introducing rigid
body rotation into the DM spike. The latter generates much stronger rotation whereas
our method introduces a weaker level of rotation.
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We generate prograde and retrograde rotating versions of all of the models pre-
sented in Table 5.1 and create five independent realizations for each configuration. All
models were evolved to merger, except in the case where M1 = 104M⊙ as explained
in the section above.

5.4 Results

Owing to the inherent stochasticity present due to the discrete nature of N -body
simulations, we note that the results presented here are calculated after taking the
average of the quantities across all five independent realizations. In all of the cal-
culated values, we noticed a maximum of 1 percent difference between results from
individual simulations This does not affect our overall results and indicates the ro-
bustness of our simulations. We first present the results from the non-rotating models
before moving on to the rotating models.

5.4.1 Non-rotating models

The mean orbital frequency of the binary f can be written as

f =
1

2π

√
GM

a3
(5.9)

where M = M1 +M2. We calculate the amount of dephasing by taking the difference
between the number of GW cycles completed by the binary with and without the
spike. Following Becker et al. (2022), we write the number of GW cycles N (n)(t0, tfinal)
for the nth harmonic between some initial time t0 and final time tfinal as follows:

N (n)(t0, tfinal) = n

∫ tfinal

t0

f(t)dt (5.10)

We can, then, calculate the difference in the number of GW cycles ∆N (n)(t0, tfinal),
or dephasing, as:

∆N (n)(t0, tfinal) = N (n)
vacuum −N

(n)
spike (5.11)

In our calculations, tfinal is taken to be the time of merger For comparison amongst
different models, we choose n = 2, as has been the strategy in previous studies.
Eccentric binaries radiate in multiple harmonics and the dephasing will be larger for
larger n. However, these higher harmonics are harder to detect.

We present a comparison of the evolution of the mean orbital frequency of the
binary f , the absolute value of number of dephasing cycles of the 2nd harmonic
|N (2)|, and the evolution of eccentricity of the binary e as a function of its semi-major
axis a using N -body models and IMRIPy for the non-rotating models in γsp = 7/3
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Figure 5.5: A comparison of the binary parameters for different mass ratio models
evolving in a γsp = 7/3 spike with rsp calculated using equation 5.8. The evolution in
vacuum (purple line) is calculated using Peters (1964b) analytic formula, while the
evolution calculated using the Chandrasekhar DF formula assuming a static spike
(orange line) is calculated using IMRIPy. They are compared to the evolution from
our N -body simulations (green line). Left column: the mean orbital frequency f as
a function of time t in years. Middle column: the estimated number of dephasing
cycles of the second harmonic |∆N (2)| as a function of the frequency f in Hz. Right
column: the eccentricity e as a function of the semi-major axis a. We notice that in
higher mass ratio models, the evolution of the binary is similar to that in vacuum.
For q = 10−2 model, there is a 100× reduction in the estimated number of dephasing
cycles compared to the evolution calculated using Chandrasekhar DF formula as the
spike has been disrupted in a very short time span. As we decrease the mass ratio, the
disruption decreases. We notice that in case of the q = 10−3 model, the dephasing is
only reduced by 3× compared to the evolution calculated using IMRIPy. For q = 10−4

model, we find that dephasing is a factor of 3 larger than what we obtain using the
Chandrasekhar formula, with little to no disruption of the spike. This signals that
the Chandrasekhar DF might be insufficient to explain the evolution of the binary in
DM spikes.
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Figure 5.6: The dephasing of the second harmonic |∆N (2)| as a function of the binary
frequency f in Hz for a q = 10−3 binary embedded in a γsp = 9/4 spike. The color
scheme is the same as that used in Figure 5.5. We notice that similar to the γsp = 7/3
case, the amount of dephasing in our N -body models is reduced by ∼ 3× compared
to the DF models.

spike with rsp calculated using equation 5.8 in Figure 5.5. Examining the q = 10−2

model, our N -body simulations predict that the binary merges 19 days earlier if it
is embedded in a DM spike than in vacuum. It takes about ≈ 104 fewer GW cycles
than in vacuum to merge. Comparing the N -body model to the DF model with
a static spike, we find a 100× reduction in the number of dephasing. The binary
disrupts the spike almost completely within the first 0.1 years of inspiral leading to
a drastic reduction in the amount of dephasing. This is unsurprising as the mass
ratio of the binary is large which injects a substantial amount of energy ejecting DM
particles around the secondary leading to the disruption of the spike. As such, the
circularization rate of the binary is similar to that in vacuum as is evident from the
a− e plot.

As we lower the mass ratio to q = 10−3, the binary merges earlier. It takes about
141 fewer days to merge in the γsp = 7/3 N -body model than its vacuum counterpart.
This creates a larger amount of dephasing. In a γsp = 7/3 spike, the dephasing with
respect to vacuum is ≈ 2×105, only 3× lower than what is predicted by the DF with
static spike model. Although not directly comparable, we highlight the fact that this
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Figure 5.7: Binary frequency f as a function of time t for the q = 10−3, γsp = 1.5
model. We find that the low density of the spike results in no discernable differences
between the inspiral in vacuum and that in the spike. This results in ≤ O(10) cycles
which might not be detectable.

is much larger than the 100× reduction for the same mass ratio found by Kavanagh
et al. (2020) in the semi-analytic HaloFeedback models but with the secondary on
circular orbit. Since the self gravity of the spike is minimal, we should expect a ∼ 3×
reduction in the amount of dephasing compared to the static DF models irrespective
of the density profile. To verify that, we compare the dephasing cycles in the γ = 9/4
model with q = 10−3 in Figure 5.6. We find that |∆N (2)| ≈ 1.8 × 105 for the static
DF models whereas |∆N (2)| ≈ 5.2 × 104, consistent with the ∼ 3× reduction we
expected. The rate of circularization is quite similar between the vacuum, static DF,
and the N -body models. Nevertheless, we find that the eccentricity of the binary as a
function of its semi-major axis for the N -body models lies approximately in between
the static DF and the vacuum cases.

For the γsp = 1.5, q = 10−3 case representing perturbed DM “crests”, our findings
are less optimistic. We note that such crests can also be formed due to adiabatic
growth in an off-center IMBH (Zhao and Silk, 2005). In Figure 5.7 we plot the
evolution of the binary frequency f as a function of time for this model. We find that
the frequency evolution in the N -body models practically overlaps with that from the
vacuum model. Unsurprisingly, the calculated dephasing is ≤ O(10) which is larger
than the limits of uncertainty from our N -body simulations. Such a small dephasing
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Figure 5.8: The density of the DM spike ρDM as a function of the distance r from
the primary in pc for the q = 10−3 model in a γsp = 7/3 spike. The different colors
represent the evolution of the density profile over time with darker colors representing
earlier times and lighter colors representing later times. We notice that the inspiral of
the IMRI leads to a significant disruption in the spike near the semi-major axis a of
the IMRI. The density of DM in that region is reduced by a factor of 100 compared to
the original density after an inspiral time of 2 years. This is qualitatively consistent
with the findings from Kavanagh et al. (2020). However, we find that the disruption
to the spike due to the IMRI in our N -body is much slower than what is found by
Kavanagh et al. (2020) who find that the spike is significantly disrupted within 0.1
years.

would also be much harder to detect than those from the denser spike models. Since
the formation of the DM crests are more robust than that of DM spikes, our findings
pose an important question of whether the spike models are overly optimistic. This
is discussed further in the section 5.5.3.

We examine the evolution of the density profile in the q = 10−3, γsp = 7/3 model
over time due to the effect of the binary in Figure 5.8. The binary injects energy
into the spike by scattering the DM particles, thereby reducing the density of the
spike. It preferentially interacts and scatters particles near itself, so we expect a drop
in the density profile near the binary over time. The local efficiency of scattering
will depend on the orbital parameters of the binary and density profile near the
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secondary. During a 2 year time span, we notice that the binary has drastic effects
on the density of the spike. There is up to a factor of 100 reduction in the density
of DM particles near the initial semi-major axis of a = 2 × 10−8. The density of
DM particles reduces from ∼ 1020M⊙pc−3 to ∼ 1018M⊙pc−3. The binary effectively
carves out a flat core near its semi-major axis. Since the secondary spends a larger
time near its apoapsis than its periapsis, we expect the scattering to be most effective
near the apoapsis carving out a core. The apoapsis of the secondary is 3.75 × 10−8

pc. We notice that the flat core extends from ∼ 10−8 pc to 4 × 10−8 pc consistent
with the hypothesis. The impact further away, and near the periapsis is smaller.
This has important implications for the survival and detectability of DM spikes and
is discussed at length in section 5.5.3. Similar findings were noted in Kavanagh et al.
(2020) in case of circular binaries. However, Kavanagh et al. (2020) find that the
disruption happens quite quickly, effectively within 0.1 yr from the beginning of the
simulation for q = 10−3, whereas in our case the disruption is much slower, by almost
20×. This leads to a much larger dephasing effect compared to the HaloFeedback

models. Notably, the evolution of the density profile does not show the presence
of a wake or a density “bump” behind the secondary, which is present in the self-
consistent HaloFeedback models. According to the authors, the “bump” is caused
due to scattering of DM particles near the secondary which give rise to the DF effect.
The absence of the “bump” and the longer spike disruption time suggests that DF
theory is inconsistent with the results from our N -body simulations. Additionally,
we find that the effect of softening is minimal on the feedback time and effects on
the density profile. When a softening of ≈ 10−10 pc is used between the secondary
and DM particles, we find that the feedback at r < 10−8 pc is decreased but the
differences between the density profiles in that region between non-softened and the
softened sims never vary substantially.

For our q = 10−4 non-rotating model with rsp = 1.17 pc, examining Figure 5.5, we
notice a very surprising result. While the binary in the static DF model merges 60.3
days faster then the vacuum case, the binary in the N -body model merges 169 days
faster. This leads to dephasing effects that are almost 3× larger than the DF model.
Whereas in the static DF case we find that |∆N (2)| ≈ 6×104, our N -body simulation
suggests that |∆N (2)| ≈ 1.5 × 105. Since the results are extrapolated beyond 2.5
years using the Peters (1964b) equation, we compared them to those obtained from
set of lower resolution simulations which are run to completion. We find that the
extrapolated results are consistent with those from the lower resolution simulations.
The extrapolated results fall within a standard deviation of the results from the
lower resolution simulations. For the models where we fix rsp = 0.54 pc, similar to the
q = 10−2 and 10−3 models, we notice a decrease in the amount of dephasing compared
to the rsp = 1.17 pc model. We present the dephasing in q = 10−4, rsp = 0.54 pc
model in Figure 5.9 and find that the N -body and the IMRIPy simulations predict a
similar amount of dephasing, with |∆N (2)| = 3 × 104. This is ≈ 6× lower than that
obtained in the rsp = 1.17 pc models which is unsurprising given the lower density in
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Figure 5.9: Similar to Figure 5.6 but for q = 10−4 binary embedded in a γsp = 7/3,
rsp = 0.54pc spike. We notice that the net dephasing predicted by the N -body
simulation is comparable to that predicted by the IMRIPy simulation, although at
higher frequencies the dephasing falls off faster in the N -body models. The density
in the region of interest for this particular model is about 6 times lower than that for
the q = 10−4, rsp = 1.17pc model and we notice a similar decrease in the amount of
dephasing in this scenario compared to that model.
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the rsp = 0.54 pc models. The density in the region of interest is 6.1× lower in the
model with rsp = 0.54 pc compared to the model with rsp = 1.17 pc, which explains
the factor of 6 reduction in the dephasing. This, along with the results from the
q = 10−3 models, strongly suggests that the dephasing is proportional to the local
density of the profile at the position of the secondary. Similar to our findings from
the q = 10−3 model, we find the spike plays a very little role in dephasing if γsp = 1.5
even when M1 = 104M⊙. The dephasing is again ≤ O(10), and below our uncertainty
thresholds.

The results obtained for the rsp = 1.17 pc case for the q = 10−4 binary is a factor
of 15 greater than what was found by Kavanagh et al. (2020) in their HaloFeedback
simulations for similar models on circular orbits. We also compare the spike density
profiles at the beginning and end of our simulation and find that there is no degra-
dation in the density profile of the spike, while the reduction of the DM density is
observed in the HaloFeedback models even with such low mass ratios. This, along
with our previous results, suggests that previous analytic/semi-analytic calculations
using DF underestimated the total number of dephasing cycles by a factor of one to
ten (or even larger) for lower-mass ratio binaries. This is especially evident while
comparing the N -body simulations to the HaloFeedback simulations, where we find
a difference of ten to hundred times. We use three-body simulations in section 5.4.3
to show that three-body scattering provides a better description of the dynamics of
the binary in the spike and could explain the inconsistency observed in this section,
while showing that the impact of DF is subdominant.

5.4.2 Rotating models

We now move on to the analysis of the binary inspiral in the rotating models. From
DF theory, we would expect the inspiral of the binary in counter-rotating or retrograde
models to be slower than that in co-rotating or prograde models. This is caused due
to the fact that in the prograde models, the relative velocity of the DM particles
is smaller than that in the retrograde models. Since the force of DF is inversely
proportional to the relative velocity of the interacting particles, we would expect the
DF force to be larger in the prograde scenario, resulting in a faster inspiral.

Examining the properties of the binary over time in both the prograde models
and retrograde models in Figure 5.10 we notice a very surprising result. We find
that in all of the cases, the retrograde models merge faster than the prograde and
even the non-rotating models. Even more astonishing is the fact that the prograde
models are slower to inspiral than the vacuum models. This is the opposite of what
we would have expected from DF. Examining the q = 10−2 models, we find that the
expected amount of dephasing increases by almost 4× compared to its non-rotating
counterpart. Since we are plotting the abolute value of the number of dephasing
cycles with respect to vacuum, we find that the prograde model has a larger amount
of dephasing, almost 1.5× that of the non-rotating model. However, we want to stress
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that the prograde model actually take longer to inspiral than the vacuum model. So
it actually takes 1.5× 104 more GW cycles than the vaccum model to merge.

As we lower the mass ratio, we notice the same trend. In the q = 10−3 models,
we find that |∆N (2)| ≈ 7 × 105 in the retrograde model, whereas |∆N (2)| ≈ 2 × 105

in the non-rotating model, almost 3.5× lower. Similar to the 10−2 model, we find
that the prograde model takes 4.5× 105 more GW cycles to merge than the vacuum
model. Interestingly, we also notice that the retrograde model eccentrifies quickly in
the beginning, before circularizing later due to GW effects. The opposite is observed
in prograde models. There is an accelerated circularization in the beginning, followed
by a period of circularization led by the emission of GW.

As we lower the mass-ratio to q = 10−4, we notice that the eccentrification and
circularization effects increase. Examining the eccentricity as a function of the semi-
major axis, we find that the evolution in the retrograde and prograde models diverge
quickly. The binary eccentrifies quickly, reaching a maximum eccentricity of 0.67
before circularizing. The opposite happens in the prograde models where the binary
circularizes quickly, within the first one year time span, reaching an eccentricity of
0.61. This eccentrification and circularization lead to accelerated or deccelerated
inspiral due to GW emission since the GW emission is very sensitive to the binary
eccentricity. This leads to the larger dephasing we see in retrograde models. We find
that the retrograde model merges about 550 days earlier compared to the vacuum
model, whereas the prograde model takes 484 days longer. In the retrograde models,
this produces a dephasing effect that is 2.5 times as large as the non-rotating models,
with the binary taking 5×105 fewer cycles to merge compared to the vacuum models.
The opposite effect is noted in the prograde models with the binary taking 3.5× 105

more cycles to merge. Interestingly, in all of our simulations we find that the ratio
of dephasing cycles in retrograde rotating to non-rotating models is between 2.5− 3.
Similarly for prograde models, we find that the ratio of dephasing cycles in rotating
to non-rotating models is about 1.5− 2, independent of the density profile and mass
ratio. This is likely to be an artifact of our chosen initial conditions rather than a
fundamental property of rotation itself.

We also compare the density profiles of the non-rotating to the rotating models
over time to understand if the feedback from the binary to the spike changes upon
the inclusion of rotation. Surprisingly, we find that the density profiles are consistent
among the rotating and non-rotating models. Although rotation changes the dynam-
ics of the binary significantly, the effect of binary on the spike is consistent among
non-rotating and rotating models.

5.4.3 Three-body simulations

The results obtained in the previous section suggest that DF theory is insufficient at
explaining the long term dynamics of the binary. In fact, this is not a very surprising
result as it has been known that upon the formation of a hard binary, three- body
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Figure 5.10: A comparison of the binary evolution parameters for different mass ratio
models inspiraling in a γsp = 7/3 spike similar to Figure 5.5 but also including the
evolution from rotating models. We notice that the in all of the retrograde models,
the binary merges faster than in the prograde and even the non-rotating models.
This leads to a major enhancement in the number of dephasing cycles, by as much
as 3× that of the non-rotating model in the case of q = 10−4. Since we are plotting
the absolute value of the number of dephasing cycles, the dephasing in case of the
prograde models appears to be positive. However, the prograde models actually merge
slower than even the vacuum models and ∆N (2) is actually negative (indicated by the
dashed lines) . Thus the number of GW cycles in prograde models is larger than that
in vacuum. We also find that in the retrograde models, the binary circularization rate
is slower than that in the prograde models. In the latter scenario, the circularization
is enhanced leading to a slower inspiral. As the mass ratio decreases, the effect
of rotation becomes more prominent suggesting that transfer of angular momentum
between the spike and the IMRI contributes majorly and cannot be ignored.
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scattering becomes more effective than DF at dissipating energy, similar to SMBH
binaries (e.g., Begelman et al., 1980; Merritt, 2013a). A binary is said to become a
hard binary when the separation between the primary and secondary falls below the
hard binary radius ah which is defined as

ah =
q

(1 + q)2
dinfl
4

, (5.12)

where dinfl is the influence radius of the primary and is defined as the radius that
encloses twice the mass of the primary (e.g., Mukherjee et al., 2023). For our models,
we find that ah ranges from 6.75× 10−3pc in the q = 10−2 model to 1.46× 10−4pc in
the q = 10−4 model. Therefore, all of our binaries are in the hard binary limit at the
beginning of our simulations.

In the three-body scattering scenario, the binary undergoes a complicated three-
body interaction in which the incoming particle interacts with the binary multiple
times. This results in the ejection of the particle eventually, leading to shrinkage
of the binary’s orbit. This process has been called the slingshot mechanism and
is fundamentally different from Chandrasekhar DF which is a cumulative effect of
two-body encounters.

To understand which of the two above-mentioned processes dominate, we can
analyze the N -body simulations and compare the efficiency of three-body scattering to
that of dynamical friction. The DM particles are orbiting the primary and are bound
to it initially. This allows us to obtain the semi-major axis aDM and eccentricity eDM

of each particle. From our q = 10−3 model with γsp = 7/3, we select a subset of DM
particles which satisfy 0.5a0 ≤ aDM ≤ 1.5a0, where a0 is the initial semi-major axis
of the binary. In principle, all particles interact with the binary, but particles with
semi-major axis close to the binary’s interact strongly. We, then, calculate the initial
and final energies of the selected particles at the beginning and end of our simulations
to calculate the change in energy of the DM particle (∆EDM). We find that all of the
selected particles are ejected from the spike by the end of the simulation.

The selected particles are evolved from their initial positions along with the bi-
nary individually using IAS15 for the same duration as the full N -body simulations.
The energy of each particle is recorded at the beginning and end of the simulation.
The difference in energies provides an estimate of the change in energy due to three-
body effects. On the other hand, calculating the energy dissipation due to dynamical
friction from the N -body simulations is somewhat non-trivial. According to Chan-
drasekhar (1943), as M2 moves through the medium of DM particles, it experiences
a number of two-body encounters that change the velocity of the secondary in a di-
rection parallel and opposite to the initial velocity of the secondary. Each particle
contributes a net change in the velocity of the secondary giving rise to dynamical
friction force over time. We can estimate the dynamical friction force due to each in-
dividual particle using the method described in Ma et al. (2023). The energy change
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Figure 5.11: The distribution of the normalized energy change ∆Ẽ of strongly inter-
acting DM particles from our N -body simulations compared to that from three-body
scattering simulations and dynamical friction approximation. We find that the dis-
tribution of energy change of strongly interacting particles is consistent between the
N -body simulations and the three-body simulations but not with the calculated val-
ues using the dynamical friction approximation. This confirms our hypothesis that
three-body scattering, and not dynamical friction is responsible for dissipating energy
from the binary.

due to dynamical friction attributed to the ith DM particle Ėi,df can be written as

Ėi,df = M2ai,df · v2 (5.13)

where ai,df can be calculated using equation 9 from Ma et al. (2023) and v2 is the
velocity of the secondary. We calculate Ėi,df using the saved snapshots and integrate
over time to find the net energy change due to dynamical friction. The results from
our simulations are stored at a fine enough time resolution that this method is able
to provide a good approximation of the dynamical friction energy loss.

We present the relative distribution of the energy change of the selected particles
from the N -body simulation, and compare it to the energy change due to three-body
effects and dynamical friction in Figure 5.11. For clarity, we present the normalized
change in energy ∆Ẽ where we normalize the change in energy with respect to the
binding energy of the DM particle with aDM = a0. We find that the distribution of
the change in energy from the N -body simulations matches that from the three-body
simulations but is inconsistent with the energy change due to dynamical friction.The
N -body and three-body simulations show that each selected particle experiences, on
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average, a normalized energy change of 1.0-1.5. In the dynamical friction scenario, the
average energy loss per particle is about 10× lower. Additionally, we find that, akin
to the N -body simulations, all particles are ejected from the system in the three-body
simulations. From the estimates of the dynamical friction force, we find that only 10-
20 per cent of the particles would be ejected from the system entirely, consistent with
the findings from Kavanagh et al. (2020), but is in tension with the findings from
the N -body simulation. This confirms our hypothesis that three-body scattering,
and not dynamical friction is the predominant method of energy dissipation in our
simulations. Although not presented here, we find a similar story across all of the
models used in this study. Interestingly, as the mass ratio is decreased, the fraction of
energy loss due to the three-body scattering increases. This is consistent with Merritt
(2013a) where the three-body scattering efficiency is proportional to q−1. We find a
similar distribution in the change in energy of the particles from both the three-body
and full N -body simulations in our q = 10−4 models as well. Our results also highlight
that our N -body simulations are robust, accurate, and consistent with results from
the extremely accurate IAS15 integrator where the net energy is conserved to machine
precision.

What causes the counter intuitive results from our rotating simulations? Merritt
et al. (2009), Iwasawa et al. (2011), and Sesana et al. (2011) hold clues that are
able to shed some light on this mystery. During a three-body encounter, the binary
exchanges energy and angular momentum with the particle in a complicated fashion.
Iwasawa et al. (2011), in mergers of MBH binaries in galactic nuclei, noted that
counter-rotating stars are much more effective in extracting angular momentum from
the binary during the three-body scattering phase. As explained by Merritt et al.
(2009) and Sesana et al. (2011), this is caused due to the torquing mechanism of
the binary’s potential on to the particle which leads to a secular evolution of the
particle’s eccentricity and inclination. This mechanism converts the counter-rotating
particles to co-rotating which are then preferentially ejected by the binary (Iwasawa
et al., 2011). This results in a larger change in angular momentum of the particle
and as such, counter-rotating particles are able to extract angular momentum from
the binary more efficiently compared to co-rotating particles. This process becomes
more efficient for more eccentric binaries.

To understand if the mechanism mentioned above is able to explain the counter-
intuitive results from the previous sections and to provide a better description of
the dynamics of the binary, we perform three-body simulations. This is done to
understand the transfer of energy and angular momentum during the scattering of a
DM particle by the binary. We follow the similar steps as in Sesana et al. (2011) to
set up our simulation with some differences.

We first generate a N = 1M particle realization using Agama containg a primary
with mass M1 = 103M⊙ and γsp = 7/3 and then use the Lynden-Bell trick to generate
prograde and retrograde models. We then place the secondary with mass M2 = 10M⊙
at a0 = 2 × 10−8 pc with varying eccentricity. We ensure that the binary lies in the
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Figure 5.12: Top: probability distribution of the normalized energy change ∆Ẽ of
2500 DM particles from the three-body simulations performed until the particle is
ejected by interactions with the binary for both prograde and retrograde rotation
models with two different binary eccentricities e. We notice that in both prograde
and retrograde models, the distribution of the normalized energy is similar and does
not change with the binary eccentricity. Bottom: similar to top but the probability
distribution of the normalized angular momentum ∆L̃z of 2500 DM particles after
ejection. We notice that there are major differences in the distribution of ∆L̃z between
prograde and retrograde models. In particular, in the retrograde models, the angular
momentum of the particle is larger than that in the prograde models, especially for
more eccentric binaries. This suggests that retrograde particles are more efficient at
“stealing” angular momentum from the binary, especially at larger e.
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x − y plane. From the generated initial model, we only select DM particles which
have aDM ≈ a0. This results in ∼ 2500 DM particles being selected. We, then, evolve
each particle with the binary individually, running 2500 three-body simulations using
IAS15, until the DM particle is completely ejected from the system. We record the
initial and final values of the energy and angular momentum of the particle and the
binary. We note that the simulations are purely Newtonian.

The eccentricity of the binary can be written as follows:

e =

√
1− 2EL2

GM2µ3
=

√
1− 2EL2

z

GM2µ3
(5.14)

where E is the binding energy of the binary, L is the angular momentum of the binary,
M = M1 + M2, and µ = M1M2

M1+M2
. The last equality follows from the fact that our

binary is in the x − y plane. As such, L = Lz. Differentiating equation 5.14 as is
done in Sesana et al. (2011) provides us with the change in eccentricity ∆e, which we
find to be:

∆e = −1− e2

2e

(
∆E

E
+

2∆Lz

Lz

)
=

1− e2

2e
χ (5.15)

where ∆E is the change in E, ∆Lz is the change in Lz and χ, called the eccentrification
parameter, has been defined using the last equality. We find that for χ > 0, the
binary becomes more eccentric after the encounter with the DM particle, and for
χ < 0, the binary becomes more circular. Since the energy and angular momentum
in the simulation are conserved to machine precision, we expect that the change in
energy and angular momentum of the binary are equal and opposite to the change in
energy and angular momentum of the DM particle. Therefore,

∆EDM = −∆E (5.16)

∆Lz,DM = −∆Lz (5.17)

For the sake of clarity, we use the normalized change in energy ∆Ẽ (as defined
previously), change in angular momentum ∆L̃z, and eccentrification parameter χ̃ in
our calculations which are defined as follows:

∆L̃z =
∆Lz,DM

Lc
z,DM

(5.18)

χ̃ = χ
M2

mDM

(5.19)

where Lc
z,DM is the angular momentum of a DM particle on a circular orbit with

aDM = a0, and EDM is the binding energy of the DM particle.
To understand how the retrograde and prograde families contribute differently to

the change in energy and angular momentum of the binary, we plot the distribution
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of ∆Ẽ and ∆L̃z for a binary with e = 0.1, 0.7 in Figure 5.12. Quite surprisingly,
we find that the energy exchanged during the scattering process is similar between
the retrograde and prograde models with relative differences of at most 1− 2 percent
between them. This is in tension with the DF theory where we would expect the
retrograde family to have a much lower final energy than the prograde family owing
to the larger relative velocity in the former case. ∆Ẽ is always positive signaling
that all particles contribute to dissipating energy from the binary, even fast moving
particles with velocities larger than the velocity of the secondary, in contrast with
the assumptions made in previous studies (e.g., Kavanagh et al., 2020; Becker et al.,
2022). Additionally, we note that the distribution of energy exchanged does not
change substantially as the eccentricity is increased. Although not presented here,
we find that the mean energy exchanged ∆Ẽmean remains almost constant across all
values of e, consistent with the findings from Sesana et al. (2011).

Contrary to the distribution of ∆Ẽ, we find major differences between the retro-
grade and prograde models while comparing the distribution of ∆L̃z. We find that
the distribution of angular momentum exchanged always skews towards lower values
for prograde models compared to the retrograde models. The mean angular mo-
mentum exchanged is almost 37% lower for the prograde family than the retrograde
family when e = 0.1. As the eccentricity increases, the differences become even more
drastic. At e = 0.7, the mean angular momentum exchanged by the retgrograde
family is almost 10× larger than the prograde family. Thus, we find that counter-
rotating particles are more efficient at stealing angular momentum from the binary
than co-rotating particles, especially for more eccentric binaries.

We calculate the mean values of ∆Ẽ and ∆L̃z across different binary eccentrici-
ties to calculate the eccentrification parameter using equation 5.15. We present the
normalized eccentrification parameter χ̃ as a function of e in Figure 5.13 for both
the retrograde and prograde models. Consistent with Sesana et al. (2011), we find
that χ̃ is always positive in retograde models while it is always negative in prograde
models. Thus, in our retrograde models, the binary always undergoes eccentrification
as a result of interaction with the spike, whereas the binary undergoes circularization
in the prograde scenario. This is consistent with findings from Fokker-Planck models
of binary evolution in rotating nuclei. According to Rasskazov and Merritt (2017)
equation 84a,

⟨∆e⟩ =
ρGaKH

σ
(5.20)

where ⟨∆e⟩ is the mean change in eccentricity, H is the dimensionless binary harden-
ing rate, and K is the dimensionless eccentricity growth rate (Quinlan, 1996; Sesana
et al., 2006). Using Fokker-Planck methods, Rasskazov and Merritt (2017) find that,
in rotating nuclei,

K = 1.5e(1− e2) (0.15− (2η − 1)cos(θ)) (5.21)
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Figure 5.13: Top: the normalized eccentrification parameter χ̃ as a function of the
eccentricity e of the binary. Bottom: the mean time of ejection of the DM particle
tej in units of the number of orbits of the binary as function of the eccentricity of
the binary. We notice that for retrograde models χ̃ is always positive and always
negative for prograde models. This results in an eccentrification of the binary in case
of retrograde rotation and circularization of the binary in case of prograde rotation.
We also notice that the time of ejection of the DM particle is almost uniform for the
prograde case across different values of e. For retrograde scenario, for larger values
of e, tej is similar to that in the prograde case. However, it rapidly increases as e
decreases.
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Figure 5.14: The mean ejection time tej as a function of the binary mass ratio q.
The dots represent the values calculated from the three-body simulations whereas
the dashed line represents the best fit to the datapoints. We find that tej ∝ q−1.5.
This implies that for any q < 4.8 × 10−4, tej > 5 yr, larger than the inspiral time
of a LISA detectable IMRI. For q = 10−4 or lower, the ejection time is much larger
implying that the backreaction on to the halo is expected to be minimal. This is
consistent with the findings from our full N -body simulations for q = 10−4 where we
did not find any substantial feedback on the DM density profile.

where θ is the orbital inclination of the binary and η is the fraction of prograde to
retrograde particles (as opposed to F which is the ratio of retrograde to prograde
particles). Since our binary inclination is 0, cos(θ) = 1. For a retrograde rotation,
η = 0 and we find, K > 0 so the binary eccentrifies as a result of interactions with
DM particles. In the prograde case, η = 1 and K < 0 and the binary circularizes due
to three body interactions. This explains why the binary eccentrifies or circularizes
quickly at the beginning of our full N -body simulations. The rate of circularization
is lower in the retrograde models than in the non-rotating and the prograde models,
resulting in a faster inspiral as the effects of GW radiation are stronger at larger
eccentricities. The inspiral is the slowest in prograde models as the binary circularizes
faster than in non-rotating and even vacuum scenarios. While not presented here, we
verified that our results are valid across the mass-ratios considered in this study.

One can also use the three-body simulations to understand how long it takes for
the three-body interactions to disrupt the spike significantly. For a fixed mass ratio
of q = 10−2, looking at Figure 5.13, we find that for lower eccentricity binaries, the
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mean ejection time tej is larger for particles on retrograde orbits than prograde orbits.
As the eccentricity is increased, the ejection time becomes similar for both prograde
and retrograde orbits. Since the particles are preferentially ejected when they are
co-rotating with the binary, we postulate that difference between the prograde and
the retrograde models across eccentricity is caused due to the fact that a less eccentric
binary exterts weaker torques on the particle leading to a longer secular timescale over
which the binary converts the particle from retrograde to prograde. For moderately or
highly eccentric binaries, the conversion from retrograde to prograde rotation happens
quickly, leading to a similar ejection time between the two models.

We can also study the ejection time as a function of the mass ratio. We take a
non-rotating version of the model generated above and run multiple simulations with
different mass ratio binaries with a0 = 2×10−8pc, e0 = 0.7 and plot the mean ejection
time tej as a function of the mass ratio q in Figure 5.14. We find that the relationship
between the ejection time and the mass-ratio can be described by a power-law. We
find that tej ∝ q−1.5. The proportionality constant is a function of the central IMBH
mass, semi-major axis, and eccentricity of the binary.

As pointed in section 3.2, we caution the reader, that our models are somewhat
unphysical as F , the fraction of counter-rotating particles to the total number of
particles, is 0 (prograde models) or 1 (retrograde models). The eccentrification or
circularization sensitively depends on this fraction F . Sesana et al. (2011) find that
when this fraction is greater than 0.5, the binary eccentrifies as a result of three-body
interactions. This suggests that in our non-rotating models, the binary undergoes
mild eccentrification as a result of interactions with the spike. A systematic study of
the change in the rate of circularization as a function of F is left for a future study.

The three-body simulations are easier to parallelize, and faster to run than the N -
body simulations which can provide the foundation for a more extensive parameter
space study in the future. We can also use the three-body simulations to derive
the distribution of the energy and angular momentum changes as a function of the
binary semi-major axis and eccentricity which can later be used in semi-analytic
models like HaloFeedback. Future work might also involve considering the binary’s
angular momentum to be tilted relative to the angular momentum of the DM spike.

5.4.4 Precession effects

We present a brief analysis of the effects of relativistic precession on the results from
both our rotating and non-rotating models. Relativistic precession is included by
using the PN1 and PN2 terms in a set of rotating and non rotating q = 10−3 models
in γsp = 7/3 spikes. We plot the mean orbital frequency of the binary f as a function
of the inspiral time t in Figure 5.15 for the rotating and the non rotating models.
Comparing the evolution of the non rotating model in Figure 5.15 to that in Figure
5.5, we find that there are minimal differences in the evolution with and without
relativistic precession. On the other hand, we immediately notice that the inclusion
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Model |∆N (2)|
Non rotating 2.4× 105

Retrograde rotation 2.6× 105

Prograde rotation 1.9× 105

Table 5.2: An estimate of the dephasing in the second harmonic |∆N (2)| of the GW
signal for q = 10−3 models in γsp = 7/3 spike when relativistic precession effects are
included. We find that the net dephasing for the non-rotating model is consistent
among the non-precessing simulations and the precessing simulations. However, the
effects of rotation are significantly dampened upon the inclusion of rotation leading
to lower estimates of dephasing than before.
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Figure 5.15: Evolution of the mean orbital frequency of the binary f in Hz as a
function of time t in years for q = 10−3 in a γsp = 7/3 spike. We find that precession
dampens the effects of rotating spikes substantially. In the non-precessing scenario
the difference in dephasing between the non-rotating and rotating models was O(105)
GW cycles, whereas in the precessing scenario that difference drops to O(104) GW
cycles. Nevertheless, we find that the prograde rotation model takes longer to merge
than the non-rotating model while the retrograde rotation model merges faster. This
indicates that the results of our rotating models are robust, at least qualitatively.
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of precession severely dampens the effect of the rotational effects that were evident
in the non precessing simulations. Although, we find the same qualitative effects
as in the non precessing simulations, i.e., retrograde model merges faster than the
prograde and non rotating model, the results indicate that precession reduces the
effects of rotation. Whereas in the non-precessing retrograde model, the binary takes
433.4 fewer days to merge compared to the inspiral in vacuum, in the precessing
retrograde model, the binary takes 145.4 fewer days to merge. In the non-precessing
prograde models, we found that the binary actually took 227.8 days longer to merge
than in vacuum but we find that upon the inclusion of precession it merges 105 days
earlier than in vacuum. We note that this is still ∼ 38 days slower than the non
rotating model. The changes in the inspiral time are also reflected in the amount
of dephasing over the 5 year inspral timespan. We present the number of dephasing
cycles of the second harmonic |∆N (2)| over the course of the full inspiral in Table
5.2. The amount of dephasing for the non rotating model is consistent among both
sets of simulations, i.e. precessing and non precessing, but we notice differences in
the rotating models. In the non-precessing retrograde model |∆N (2)| ≈ 7 × 105 but
in the precessing retrograde model that drops to 2.4× 105. We note that in the non
precessing prograde models, we required 5× 105 more cycles compared to vacuum for
the binary to merge but due to the decreased effect of rotation, the binary merges
faster, taking about 1.9× 105 fewer cycles. The differences in dephasing between the
non rotating and rotating models in the non-precessing case was O(105) but upon
the inclusion of relativistic precession, that difference drops to O(104).

The reason for the drastic changes in the rotating models upon the inclusion
of precession is unclear. Sesana et al. (2011) noted that in self-consistent N -body
simulations where Newtonian precession of an extended gravitational system played
a role, the effects of rotation were dampened. Here we observe a similar effect but with
relativistic precession indicating the similarities between the two scenarios. Notably,
the effect of the eccentric binary on the secular evolution of a particle can be described
through the lens of the eccentric Kozai-Lidov effect (e.g., Merritt et al., 2009; Merritt,
2013a). Recent simulations of hierarchical MBH triplets have found that inclusion
of PN effects can diminish or even extinguish the Kozai-Lidov evolution of the inner
binary (Tanikawa and Umemura, 2011; Bonetti et al., 2018; Mannerkoski et al., 2021;
Koehn et al., 2023). These simulations may hold clues to understanding the effect of
precession and how it affects our results. However, a more thorough analysis requires
future work.

Although the effects of rotation are decreased in the q = 10−3 models, we expect
rotation to still play a significant role in lower mass ratio binaries where the mass
enclosed within the orbit of the binary would be larger. In such a case, the Newto-
nian precession of the spike could also play a part and the net change in precession
could be used as an indicator for the presence of DM. However verifying this requires
simulations that are beyond the scope of this current study.
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5.5 Discussion

5.5.1 Accretion effects

The secondary is also expected to accrete from the spike during the inspiral. For
the parameters considered in our simulations, the accretion effect is expected to be
quite minimal, especially when M2 = 1M⊙. For the stellar mass BH scenario with
M2 = 10M⊙, we can estimate the rate of accretion assuming that the secondary
undergoes Bondi-Hoyle accretion (Bondi and Hoyle, 1944; Edgar, 2004; Macedo et al.,
2013; Mach and Odrzywo lek, 2021). Following Yue and Han (2018), the change in
mass of the secondary over time (dM2

dt
) can be written as

dM2

dt
=

16πG2M2
2ρDM

c2v

(
1 +

v2

c2

)
(5.22)

where v is the velocity of the secondary. Assuming that ρDM ∼ 1020M⊙pc−3 near the
secondary, and v ∼ 2× 104kms−1, we find that dM2

dt
∼ 0.005M⊙yr−1. Since the spike

gets disrupted within the first 0.1 yr, we expect the accretion onto the secondary to
be of the order of 10−4M⊙ having minimal effects on our results. One can imagine
that in lower mass ratio scenarios where the spike is not disrupted as much, the
accretion effects might be larger, but still subdominant compared to dephasing due
to three-body scattering.

We note that dM2

dt
∝ 1

v
. Since the relative velocity between the DM particles is

lower in prograde rotating models than isotropic or retrograde models, the accretion
effects could be larger. An estimate of the difference is beyond the scope of this
current study but will be considered in the future.

Nichols et al. (2023) recently explored a self-consistent treatment of accretion in
IMRIs with stellar mass BHs as the secondary and found that inclusion of accretion
can lead to difference of 100−1000 GW cycles compared to the models where accretion
is not included. Although this represents about < 1 per cent difference in the number
of dephasing cycles in our q = 10−3 and 10−4 models, future studies will need to
account for accretion to generate LISA waveforms since matched filtering requires a
proper waveform determination over a few cycles. More importantly, the change in
eccentricity due to accretion would also need to be studied considering the large effect
eccentricity plays in GW radiation dominated binary evolution, as demonstrated in
this work.

5.5.2 Dark matter annihilation and EM signatures

In addition to modifying GW signals of IMRIs, DM spikes are considered to be a
source of gamma radiation as a result of DM annihilation. Thus, they provide strong
indirect signatures of weakly interacting DM particles and allow us to probe DM
microphysics (e.g., Gondolo and Silk, 1999; Ullio et al., 2001; Fields et al., 2014;
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M1[M⊙] ⟨σv⟩[cm3s−1] ρpl[M⊙pc−3] rpl[pc]
103

104 10−27 8.4× 1014 2.2× 10−6

4.8× 10−6

103

104 10−30 8.4× 1017 1.1× 10−7

2.5× 10−7

103

104 10−33 8.4× 1020 5.9× 10−9

1.3× 10−8

Table 5.3: The annihilation radius rpl and annihilation plateau density ρpl under
different DM cross sections ⟨σv⟩ for a γsp = 7/3 spike with a central BH with mass
M1.

Shapiro and Shelton, 2016; Lacroix, 2018). In our work we do not consider the effect
of DM annihilation on the spike profile. Our models are, therefore, representative
of the non-annihilating DM case. Nevertheless, we provide estimates on how the
spike profile can be changed and discuss how that would affect our results in case of
annihilating DM.

For self-annihilating DM, the spike profile is significantly depleted due to the
interactions between DM particles. It has been suggested that near the central MBH,
a flat plateau, or core forms as a result of DM annihilation (Gondolo and Silk, 1999,
but see also Vasiliev (2007); Shapiro and Shelton (2016)). The density of this plateau
ρpl is given as

ρpl =
mχ

⟨σv⟩T (5.23)

where mχ is the mass of the DM particle, ⟨σv⟩ is the interaction cross section, and T
represents the age of the MBH. The interaction cross-section of the DM particles is
considered to be a constant in standard thermal weakly interacting particle (WIMP)
models. Assuming a scenario with mχ = 1TeV, and T ≳ 106yr we can calculate
the density of the plateau and the radius of the plateau (rpl) by setting ρDM(rpl) =
ρpl(rpl) for various values of ⟨σv⟩. We present this information in Table 5.3. We
find that unless the DM annihilation cross section is very small, the density of the
plateau is lower than the density of the spike where the binary is situated. The
lower density would lead to a smaller amount of dephasing. Since the dephasing is
proportional to the density of DM near the binary, as argued before, when ⟨σv⟩ =
10−27 and 10−30cm3s−1, the dephasing would be reduced by factors of 50−5×105. In
such a case, the dephasing would be significantly reduced, and non-detectable in the
⟨σv⟩ = 10−27cm3s−1 case. However, it should be noted that, according to MAGIC
Collaboration (2016) the upper limit on the cross-section is ∼ 10−25cm3s−1 and the
annihilation cross-section in reality could be much lower. In such a scenario, one
could observe GW dephasing in tandem with an EM signature.
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We note that the above mentioned case is an optimistic scenario. Under a different
scenario, we consider T ∼ 1010yr, typical for the ages of nearby galaxies. Using more
conservative values of mχ = 35GeV and T = 1010yr leads to a plateau density of
2.9×109M⊙pc−3 (assuming that ⟨σv⟩ = 10−27cm3s−1) which would leave no imprints
on the GW signal. It should be noted, however, that over such a long duration, the
system is not expected to be isolated.

Alternately, one could use the detection of GW signals from DM spikes to put
upper-limits on the annihilation cross section of DM. Setting ρpl = ρDM, we get

⟨σv⟩ ≤ mχ

ρsp( rsp
rpl

)γspT
(5.24)

where we used equation 7 for ρDM. For M1 = 103M⊙ with a γsp = 7/3 spike, rsp ≈ 0.5
pc. As in our previous approximations, we take ρsp = 226M⊙pc−3. We assume that
the annihilation radius rpl ∼ a = 2×10−8 pc, the semi-major axis of the binary. Since
the dephasing due to three-body scattering depends on the local density as mentioned
in previous sections, we should expect to obtain a similar amount of dephasing in
the annihilation scenario as in the non-annihilating scenario. We, then, obtain the
following upper-limit on the cross section:

⟨σv⟩ ≲ 1.71× 10−32cm3s−1
( mχ

1TeV

)(
106yr

T

)
. (5.25)

Similar analysis can be performed with different spike parameters and central IMBH
masses. We point to the reader, however, that a lower amount of dephasing than
expected can arise from different DM properties that lead to a larger annhilation,
or from dynamical factors such as rotation, as pointed in this study. In such a
scenario, a different signature, possibly electromagnetic would be needed to break the
degeneracy. In any case, as Hannuksela et al. (2020) points out, any detection of DM
spike using GWs will be in strong tension with current thermal WIMP models and
place constraints on the mass of the particle.

Other models can suggest a lower cross section allowing for the co-existence of EM
signals along with GW signals from the spike (e.g., Shelton et al., 2015). However,
Hannuksela et al. (2020) report that in such a case, even in the most optimistic
scenario with M1 = 106M⊙, the electromagnetic counterpart will be detectable only
up to a distance of 90 Mpc by detectors such as ASTROGAM (de Angelis et al., 2018),
FERMI, or CTA. Only a few IMRI events would happen in such a small volume and
an EM counterpart would require a large fraction of IMRIs to be embedded in DM
spikes. Since the luminosity of the gamma radiation L is proportional to the squared
density of the DM spike profile ρ2DM, the EM signals from IMBHs are expected to be
weaker and the prospects for finding EM counterparts are more pessimistic.
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5.5.3 Implications for binary inspiral in realistic environ-
ments

As we have seen in the previous sections, the amount of dephasing is sensitive to the
density profile near the IMBH. Furthermore, the actions of the inspiraling compact
object can have a drastic effect on the spike, completely unbinding it. This implores
us to ask an important question: how realistic are the spikes considered in this study
and previous studies? How do realistic spikes affect the dephasing of an inspiraling
compact object? While a comprehensive study to understand spike profile in realistic
environments is beyond the scope of this work, we present a brief analysis of the
impact of surrounding environments and past inspirals on the spike density profile.

In a non-isolated environment interactions between the spike and the surrounding
material can reduce the density of the spike compared to isolated adiabatic growth
models. Previous works have only considered the effect of stars surrounding the spike
(e.g., Merritt et al., 2007b). Using the Fokker-Planck code Phaseflow (Vasiliev, 2017)
we study, for the first time, the effect of stellar mass BHs along with stars on the
final DM spike profile. Here we only consider the case where the central SMBH has
a mass of 106M⊙ and the total mass of the stellar mass BH particles is 1% of that of
the total mass of stars in the galactic nucleus. The total stellar mass in the nucleus
is set to be 107M⊙. We note that this excludes the bulge mass. Our two-component
model is consistent with the expectation from the Kroupa initial mass function (IMF)
(Kroupa, 2001) The stellar mass BH particles are given masses 10 times larger than
that of the star particles. The DM halo has a Hernquist profile initially representing
a γ = 1 slope in the center and the stars and BHs in the nuclei are given a shallow
γ = 0.5 cusp.

In Figure 5.16, we plot the slope of the DM component at different times and
find that in an equilibrium state the spike reaches a γ = 1.5 profile near the MBH.
This is similar to what is observed in a stars only model. However, due to mass
segregation in the presence of a two component mass spectrum, the rate of growth
of the spike is enhanced. Comparing our two component mass model to that from
a single component model, we find that presence of two mass species accelerates the
growth by a factor of 4. In fact, this is quite sensitive to the IMF and the initial
density profile of the nuclei. A top-heavy IMF (e.g., Chabrier, 2005) results in an
even faster growth. This can have major implications for the time taken by the
spike to regrow after it has been disrupted. A detailed study of regrowth time after
disruption will be considered in a future work.

A major caveat of the above result is that we do not consider the effect of stellar
evolution on relaxation. Stellar evolution can lead to mass loss and kicks to compact
objects over time which reduces their population and therefore affects the relaxation
timescale. We consider the effect of stellar evolution in an approximate manner by
evolving a population of stars drawn from a Kroupa IMF with different metallicities
and in different environments using SSE (Hurley et al., 2000). In a dense environment
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Figure 5.16: Slope of the DM profile γ as a function of distance r from the central
MBH at various times. The time is presented in N -body units with 1 time unit
corresponding to ≈ 14.9 Myr. The initial profile of the DM surrounding the MBH
is a γ = 1 model, representing a Hernquist type halo. The DM profile is embedded
in a nuclei consisting of stars and stellar mass BHs, drawn from a Kroupa IMF, and
the subsequent evolution is performed using a Fokker-Planck model. We find that,
similar to the stars only model, the spike reaches a γ = 1.5 profile at the center, near
the MBH. However, unlike the stars only model, two body relaxation is enhanced due
to the presence of a two component mass function, leading to an accelerated growth.
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such as a galactic nucleus where the escape velocity is higher, we find the mass-ratio
of BH particles approaches MBH/M∗ ∼ 10−3 of the mass of stellar particles after 5
Gyr of evolution when the metallicity Z = 0.1Z⊙ where Z⊙ is the solar metallicity.
This drops to MBH/M∗ ∼ 10−4 when Z = Z⊙. The decrease in mass is due to
stellar evolution mass loss and random kicks imparted by SSE onto compact objects
during their formation. In a globular cluster like environment with a total mass of
106M⊙, the escape velocity is lower and we find heavier compact objects are hardly
retained (MBH/M∗ ∼ 0). This affects the timescale of growth of the DM spike. Using
Fokker-Planck models with the evolved profile, we find that when MBH/M∗ ∼ 10−3

, the timescale of spike growth increases by 40% compared to the two-component
model without stellar evolution where MBH/M∗ ∼ 10−2. When MBH/M∗ ∼ 10−4, the
timescales increases by a factor of 2 compared to the non-stellar evolved model. This
highlights the importance of inclusion of a mass-species which accelerates the growth
of a spike even when the population of the heavier mass species is much smaller than
lower mass species.

Once a spike has been disrupted, the regrowth happens on timescales that are on
the order of collisional relaxation time within the sphere of influence of the MBH.
The relaxation time is affected by the mass species surrounding the MBH. In a single
component model, relaxation takes longer than when a mass spectrum is present, as
evident from our results above. We can estimate the relaxation time trelax in a stellar
only environment as follows (e.g., Babak et al., 2017; Becker, 2024) :

trelax =
5

ln(Λ)

( σ

10kms−1

)(
rinfl
1pc

)2

Gyr (5.26)

where ln(Λ) is the Coulomb logarithm,σ is the velocity dispersion, and rinfl is the
influence radius of the MBH. σ can be estimated from the well known M − σ rela-
tionship (e.g., Gültekin et al., 2009; Kormendy and Ho, 2013c) or from density profiles
of galactic nuclei. Since we focus on IMBHs in this work, we refer to the density pro-
files of known dwarfs from Nguyen et al. (2017, 2018) to calculate σ and rinfl. Taking
ln(Λ) ∼ 10, σ ∼ 50kms−1, and rinfl ∼ 0.1 pc ,we find trelax ≲ 0.025 Gyr for a 104M⊙
IMBH. This is representative of relaxation time in a high density environment. On
the other hand, in a low density environment, rinfl is going to be larger. Assuming
rinfl ∼ 0.5 pc in that case, we find trelax ≲ 0.6 Gyr. The inspirals happen on timescales
over which two-body relaxation depletes the cusp by driving the compact objects on
loss cone orbits. The depletion timescale td is estimated as follows (e.g., Babak et al.,
2017; Becker, 2024):

td =
20

1 + R

(
m

10M⊙

)−1(
MMBH

106M⊙

)1.19

Gyr (5.27)

where R is the ratio of plunges to inspirals, and m is the characteristic mass of the
compact object. Taking R = 0 to find the upper limit and m = 10M⊙ representing
BHs , we find that td ≲ 0.1 Gyr. Thus, the time between inspirals is comparable to
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Figure 5.17: Density of a pristine γsp = 7/3 DM spike ρ as a 10M⊙ BH is in. Even at
larger separations, we find that the inspiraling object forms a core extremely rapidly.
This suggests that dense spikes of the form of γsp = 7/3 can only be present if there
were no prior inspirals.

the two body relaxation time in high density environments and is shorter in the low
density environments. As such, we expect the spike to not exist in its equilibrium state
in low density environments. However, under the presence of a mass spectrum the
relaxation time decreases in which case td ∼ trelax which can lead to the spike existing
in the equilibrium γ = 1.5 state, even in low density environments. This highlights
the importance of examining the spike growth embedded in a realistic mass spectrum.
We note one caveat of this calculation is that relaxation times after depletion of a spike
a larger than the ones calculated from the above equation. Therefore, our relaxation
timescale should be considered as a lower limit.

A big question also lingers regarding the starting point of the compact object in the
simulations. In a realistic scenario, a compact object would be unbound initially and
become bound over time due to the effect of dynamical friction, two-body relaxation,
and hardening in the stellar and DM environment. In a stellar dominated environment
the compact object is going to be driven to inspiral orbits mainly due to the effects
of two-body relaxation. In such a case, we would expect the initial inspiral to cause
minimal disruption to the spike. However, in such a case, the spike profile would have
a γsp = 1.5 slope which we showed produces minimal dephasing effects for the systems
considered. This was also highlighted in Becker (2024) where the author found that
GW signals from the spikes in this case would be hardly detectable. On the other
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hand, in an isolated environment with no erosion, the compact object is going to
inspiral due to the effect of dynamical friction and three body hardening from the
DM environment. In such a case, the formation and inspiral itself would produce a
flat core that can massively reduce dephasing effects. As an example, we produce
the impact on the density profile from a simulation with a γsp = 7/3 spike where the
compact object now starts at an initial semi-major axis of a0 = 2× 10−3 pc in Figure
5.17. Within 0.1 Myr, we find a core has formed with a density of ∼ 107M⊙pc−3.
According to Merritt et al. (2007c), the formation of a hard binary is accompanied
by an ejection of mass comparable to the mass of the binary. Therefore in DM only
environments, we expect the density to be even lower and the core to be larger. The
relaxation time of the spike in this isolated environment is so long that we do not
expect a regrowth within a Hubble time. This indicates that the simulations with
the γsp = 7/3 models represent optimistic scenarios where the spike exists in isolation
and has not undergone a previous inspiral. This is a major caveat of our work and
that of previous works. Additionally, on account of their lower masses, IMBHs can
be off-center where the adiabatic growth of the spike can be diminished. In such a
scenario, a γ = 1.5 is typically formed, as noted by Zhao and Silk (2005). All of
the above noted issues are pertinent and we emphasize the need to understand spike
growth in realistic environments. We leave this as a future study.

5.5.4 Prospects for GW detection

As shown in Figure 5.3, IMRI sources are promising for multiband GW astronomy
with LISA and potential decihertz detectors. Several formation scenarios have been
proposed for the formation of IMRIs in DM spikes, including host sites such as the
nuclear star clusters of dwarf galaxies (Yue et al., 2019) and merger remnants of el-
liptical galaxies (Vázquez-Aceves et al., 2023). The merger rate of such systems with
and without DM spikes, however, is still uncertain. More detailed population syn-
thesis of these sources with either semi-analytic models, cosmological simulations, or
some combination thereof would provide more insight into what merger rates might
be possible. Conversely, the GW detection of IMRI sources and constraints on po-
tential DM environments would provide tests of astrophysical population models in
addition to DM physics.

In light of the critical examination of realistic spike profiles from the previous
section and Becker (2024), the prospects for dephasing due to DM spikes on IMRIs
appear to be somewhat not optimistic. However, we emphasize that a full parameter
space study is required before we can conclusively determine whether spikes would
have tangible dephasing impact on GWs from IMRIs. On the other hand, Dai et al.
(2022, 2023) and Becker (2024) noted that inspirals often happen on highly eccentric
orbits with larger semi-major axes. In such a case, the DM spike can lead to a periapse
precession in addition to the relativistic precession. The Newtonian precession of the
spike is opposite in direction to the relativistic precession and the net effect can be
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quantified as a deshifting index (Becker, 2024), which is a measure of the change in
GW cycles due to change in pericenter precession from the DM spike. Dai et al.
(2023) noted that deshifting can be present even in low density environments. Our
preliminary analysis suggests that deshifting may be a more optimistic signature than
dephasing. Unfortunately, for the set of models considered in this work, we were not
able to quantify deshifting. In the future, we plan on studying an extended parameter
space where we study dephasing as well as deshifting across spike models.

A potential space-based decihertz GW detector provides a significant advantage
for boosting the IMRI detection rate as well as breaking parameter degeneracies that
might be encountered with just LISA data. In addtion, if the inspiral phase of IMRIs
is at a sub-threshold level in LISA data, the resolved merger phase in a space-based
decihertz GW detector can provide priors to search for the subthreshold inspiral
phase in archival LISA data. This is similar to how LIGO and 3G/XG ground-based
detectors like Einstein Telescope or Cosmic Explorer may provide prior information
on stellar-mass BH binary mergers to search for potential inspiral counterparts in
archival LISA data (Ewing et al., 2021).

In addition to the proposed tests of dynamical friction and accretion on gravita-
tional waveforms, one can also test for the presence of three-body/loss-cone scattering
for a potential IMRI event. One caveat for testing the presence of such effects might
be that nonlinear feedback and DM-spike relaxation may complicate waveform pa-
rameterization. Though this certainly motivates more numerical simulations of IMRIs
in DM spikes in order to explore the parameter space more comprehensively and to
inform waveform parameterizations that are interpretable.

5.6 Conclusions

IMRIs are considered among the most crucial sources of low-frequency gravitational
waves (GWs) that future space-based GW detectors like LISA and DECIGO can po-
tentially detect. Recent studies have suggested that if the intermediate-mass black
hole (IMBH) in these systems is surrounded by a dark matter (DM) spike, the gravi-
tational effects of the spike may induce dephasing in the observed GW signal, serving
as a distinctive signature of the DM spike. Prior investigations have predominantly
employed analytic methods to model the interaction between the spike and the bi-
nary, treating the gravitational impact of the spike on the binary through dynamical
friction (DF). However, these approaches neglect the influence of the binary on the
spike itself, a factor that can significantly affect the dynamics and, consequently, the
degree of dephasing.

In our study, we employ N -body methods to delve into the complex dynamics
involved in eccentric IMRIs embedded in both non-rotating and rotating DM spikes,
evolving the system self-consistently. Our work represents the first attempt at mod-
eling such systems using N -body simulations. The simulations reveal that, contrary
to previous assumptions, the primary mode of dissipating energy from the system
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is not DF, a cumulative effect of two-body encounters, but rather three-body scat-
tering, similar to stellar loss-cone scattering in SMBH/MBH binaries. We note that
during the submission of this work, Kavanagh et al. (2024) also finalized their work
on N -body simulations employing methods similar to ours. They qualitatively find
similar behavior of the IMRI but find that the interactions can be described using
a semi-analytic method combining dynamical friction loss with the time dependent
potential of the binary. While their simulations are run for a shorter duration than
ours, the combined effect which they propose is of three-body nature and similar to
what we describe in this work.

The main conclusions of our work can be summarized as follows:

• The evolution of the non-rotating models reveals that in larger mass ratio cases,
the binary is highly efficient at rapidly degrading the spike, resulting in minimal
dephasing effects. Depending on the mass-ratio of the binary, our dense spike
models with γsp = 7/3, 9/4 show that dephasing of O(104) − O(105) can be
expected. However, in lower density γsp = 3/2 spikes produced in a collisional
environment, we find minimal dephasing of ≤ O(10).

• We find that all of our simulations with dense spikes (γsp = 7/3, 9/4) predict
that the dephasing is much larger, by factors of 10-100, than that predicted by
the self-consistent semi-analytic method HaloFeedback for similar binaries in
circular orbits. This indicates that DF theory is unable to fully capture the
dynamics of the binary.

• In our rotating models with dense γsp = 7/3 spikes, we find that, spikes that
counter-rotate with the binary lead to faster inspirals compared to spikes that
co-rotate with the binary, which lead to slower inspirals, even slower than inspi-
rals in vacuum. This leads to dephasing effects that are 2.5− 3.5 times higher
in the retrograde/counter-rotating cases than their non-rotating counterparts.

• We use three-body simulations to investigate the nature of the interaction of
the binary with spike particles and find that the binary primarily dissipates
energy via three-body interactions rather than DF, a two-body effect. The
impact of DF in all of our simulations is sub-dominant shedding some light
on the discrepancy between our results and those obtained in previous studies.
Additionally, three-body simulations reveal that in rotating spikes, particles on
retrograde motion eccentrify the binary whereas particles on prograde motion
circularize the binary. This indicates that rotation in spikes cannot be neglected
and should be the subject of further investigations in the future.

• We conduct simulations to investigate the impact of relativistic precession on
dephasing in our q = 10−3 models. Our findings indicate that precession has
minimal to no effect on dephasing in the non-rotating models but significantly
diminishes the effects of rotation.
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• By examining our initial models with Fokker-Planck methods, we assess the
presence and detectability of spikes in realistic environments. Our results sug-
gest that non-isolated environments have DM spikes with shallower slopes than
previously considered, leading to smaller signals and lower detection prospects
via dephasing. We show that the densest DM spike models with γsp = 7/3 rep-
resent scenarios where the spike is isolated and has not undergone any previous
inspirals, as any inspiral leads to the formation of a low-density core where the
regeneration of the spike takes much longer than the Hubble time. In the pres-
ence of lower density γsp = 3/2 spikes, present in non-isolated environments,
dephasing is minimal and non-detectable. High stellar and stellar-mass black
hole densities can accelerate the growth of γsp = 3/2 spikes, but a more exten-
sive parameter space study is needed to determine which E/IMRIs embedded
in such spikes can produce detectable dephasing signatures. Our preliminary
analysis, coupled with recent studies, suggests that ”deshifting” rather than
dephasing might be a more optimistic signature, as it is more robust even in
low-density environments (Dai et al., 2022; Becker, 2024).

Although our work uses idealized models, it provides a foundational exploration
that paves the way for more comprehensive analyses in the future. Despite critical
uncertainties, particularly regarding the growth, retention, and population of DM
spikes around IMBHs, our research highlights the promise and potential benefits of
delving deeper into this intricate problem. We demonstrate the need to consider more
realistic environments, as detection prospects depend sensitively on spike density,
which is influenced by the surrounding environment. Our work also underscores
the importance of multiband GW astronomy and the need for a dedicated decihertz
detector. By enhancing our approach to include accretion onto the inspiraling object
and incorporating higher-order post-Newtonian terms, our N -body code emerges as
an effective method for simulating the evolution of IMRIs embedded in DM spikes.

5.7 Appendix

5.7.1 Comparison to Taichi, PH4, and HaloFeedback

To verify the accuracy of our method, we run a set of five simulations with M1 =
100M⊙, M2 = 1M⊙, a0 = 3 × 10−8 pc and e0 = 0. We compare the results to those
obtained from N -body codes Taichi (Zhu, 2021c; Mukherjee et al., 2021a, 2023),
and ph4 from AMUSE (Portegies Zwart et al., 2013; Portegies Zwart and McMillan,
2018) where the self gravity of the spike is not neglected. Taichi is run in the
direct force summation mode with the fourth order Hamiltonian splitting integrator
HHS-FSI while. The simulations are run for a duration of 1500 orbits of the secondary
around the primary. Additionally, we compare our results to those obtained from
HaloFeedback (Kavanagh et al., 2020) as well since our binary is in a circular orbit
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Figure 5.18: The evolution of the relative change in the semi-major axis ∆a/a0 as a
function of the number of orbits of the binary. The solid lines indicate the average
of five independent simulations whereas the shaded region indicates the standard
deviation. We find that the results from method presented in this work (purple line)
agree with that from Taichi (orange line), ph4 (green line), N -body codes where
the self-gravity of the spike is not neglected. This indicates that the effect of the
DM-DM interactions is minimal and can be safely ignored, validating our method.
Also presented is the evolution of the same system using HaloFeedback (black line).
While the results from HaloFeedback and the N -body codes agree over the first 100-
150 orbits, they diverge after that. The spike is able to dissipate more energy from
the binary in the N -body models compared to the HaloFeedback models since the
impact of DF is subdominant compared to three-body effects.
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initially. We note that we do not include the relativistic terms in the above-mentioned
simulations.

As a test of the validity our method, we present the evolution of the relative change
in the semi-major axis ∆a/a0 from the N -body code used in this work, Taichi, ph4,
and HaloFeedback in Figure 5.18. The solid lines represent the mean values obtained
from the five simulations whereas the shaded regions represent the standard deviation.
We find that the evolution using our approximate force N -body method is consistent
with that obtained from Taichi and ph4 where the DM-DM interactions are not
neglected. This indicates the effect of the self gravity of the spike is minimal and can
be safely neglected. However, we find major differences between the results from the
N -body codes and HaloFeedback. The three methods produce consistent results for
the first 150 orbits after which the HaloFeedback results deviate because the binary
enters the hard binary phase in which three-body interactions play a dominant role.
The binary stalls at ∆a/a0 ≈ −5×10−4 in the HaloFeedback models whereas a longer
evolution indicates that the binary actually stalls at ∆a/a0 ≳ −2×10−3 in the N -body
simulations. This is almost 4× larger than what is predicted by HaloFeedback. As
a result of this discrepancy, the dephasing obtained from the HaloFeedback models
should be smaller than those obtained from the N -body models, a fact discussed in
the results section. The discrepancy arises from the fact that DF is subdominant
to three-body scattering as we showed in section 4.3. Moreover, the three-body
effects occur over longer timescales, indicating that semi-analytic methods should be
validated against long term, secular N -body simulations.
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Chapter 6

A hierarchical Hamiltonian
splitting N-body code that runs
entirely on GPUs

Diptajyoti Mukherjee1, Hy Trac1

1McWilliams Center for Cosmology, Department of Physics, Carnegie Mellon
University, 5000 Forbes Ave, Pittsburgh, PA 15213

Abstract

Solving the post-million particle N -body problem presents a formidable computa-
tional challenge. The advent of highly parallel hardware, such as Graphics Processing
Units (GPUs), has garnered significant attention within the astrophysics community
as a means to address this challenge. While GPUs can offer impressive speedups over
traditional CPUs, developing a fully-fledged N -body code optimized for GPUs re-
mains non-trivial. In particular, for discrete GPUs, data transfers between the CPU
and GPU can become a major performance bottleneck. To mitigate this, we develop
a fully GPU-resident code for collisional dynamics. Our implementation employs a
GPU-resident version of the second-order Hamiltonian splitting HOLD integrator,
incorporating individual symmetrized timesteps and zero softening. We detail the
algorithmic modifications required to ensure that all components of the HOLD inte-
grator remain resident on the GPU, completely eliminating CPU-GPU data transfers
during the integration process. Compared to a highly optimized and parallelized
CPU version of the same algorithm, our GPU implementation achieves a 4× speedup
for N ∼ 106. This work lays the foundation for constructing a fully GPU-resident
collisional N -body code based on the fast multipole method.
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6.1 Introduction

The computational intensity of both direct and approximate N -body methods nat-
urally motivates the use of highly parallel hardware to handle the computational
challenges they pose. Traditionally, large-scale N -body simulations have relied on
distributed-memory parallelism (MPI) or shared-memory parallelism (OpenMP), both
of which are limited to CPU-based architectures. However, the advent of CUDA in 2007
significantly streamlined the development of Graphics Processing Unit (GPU) appli-
cations, making high-performance GPU computing more accessible to the broader
computational astrophysics community (e.g., Bédorf and Portegies Zwart, 2012).

GPUs offer dramatic speedups compared to conventional CPUs by harnessing
thousands of cores on a single chip, making them especially well-suited to problems
such as N -body simulations, which are naturally parallelizable. While CPUs rely on a
relatively small number of cores optimized for serial performance, GPUs achieve high
throughput by scheduling many light-weight threads that can operate concurrently.
When one warp (a group of GPU threads that execute in parallel) is stalled waiting
for data to be fetched from memory, the scheduler can seamlessly switch execution to
another warp that is ready to perform numerical operations. This strategy, known as
latency hiding, allows the GPU to achieve high floating-point throughput, provided
there is enough parallel work to keep the hardware busy.

A critical consideration for exploiting GPU performance is arithmetic intensity
which is defined as the the ratio of floating-point operations to memory transfers.
The classical N -body problem stands out in this respect because, while each particle
needs to load its state from memory, the force calculation itself involves O(N) or even
O(N2) arithmetic operations, depending on the method. Moreover, GPUs feature a
configurable on-chip cache known as shared memory, which allows for tailored data
reuse strategies and further boosts performance. This combination of abundant par-
allelism, high arithmetic intensity, and flexible memory hierarchies makes GPUs an
ideal platform for modern N -body codes.

Numerous GPU-accelerated N -body frameworks have already emerged—HiGPUs

(Capuzzo-Dolcetta et al., 2013), Phi-GPU (Berczik et al., 2011; Khan et al., 2011),
Bonsai (Bédorf et al., 2012), and FROST (Rantala et al., 2021a, 2022), among oth-
ers—often running on multi-GPU clusters to tackle large-scale simulations of gravita-
tionally interacting particles. Such frameworks have been instrumental in performing
simulations with N ≳ 106, crucial for many dense stellar systems. Even many legacy
N -body codes such as NBODY6 (Aarseth, 1999; Wang et al., 2015) which utilize force
decomposition into a short and a long range part have been modified to utilize GPUs
for the long range force calculation and have benefited from improved performance.

GPUs broadly fall into two categories: discrete and integrated. Discrete GPUs,
commonly employed in high-performance computing clusters and servers, maintain
their own dedicated memory-often referred to as global memory or VRAM. Because
these GPUs lack direct access to the system’s main memory (DRAM), simulation
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data must be explicitly transferred between the CPU and GPU memory before com-
putations can begin. In contrast, integrated GPUs share the same memory space as
the CPU, eliminating the overhead of CPU–GPU data transfers but often providing
lower overall memory bandwidth. While discrete GPUs have traditionally dominated
large-scale scientific computing, emerging architectures such as AMD’s MI300X and
Apple’s M-series system-on-chip are popularizing integrated designs in exascale su-
percomputers, potentially bridging the gap between performance and ease of memory
access.

A major performance bottleneck in many GPU-based codes that utilize discrete
GPUs lies in the memory transfer between CPU and GPU. As mentioned above, in
discrete GPU systems, the GPU cannot directly access host memory (DRAM), re-
quiring data to be copied back and forth. This overhead can significantly hamper
speedups relative to CPU-based implementations, especially if the data has to be
transferred on a high frequency. Fortin and Touche (2019) note that the fast multi-
pole method (FMM) algorithm (Greengard and Rokhlin, 1987; Cheng et al., 1999)
utilizing the dual tree walk (Dehnen, 2000, 2002) has a higher performance per cost
on integrated GPUs versus discrete GPUs. Consequently, a promising approach is
to offload the entire integration process to the GPU, thereby minimizing or eliminat-
ing CPU–GPU data transfers. The success of frameworks like Bonsai and HiGPUs

demonstrates the viability of this approach. Bonsai uses a BH tree approach and a
second order symmetrized leapfrog integrator (Hut et al., 1995) and is primarily used
for collisionless simulations, while HiGPUs uses a fourth order Hermite integrator with
block timesteps and is primarily used in collisional simulations.

Motivated by these advances, we seek to understand whether a hierarchical Hamil-
tonian splitting based N -body method for collisional dynamics would be viable ex-
clusively on GPUs and compare its performance against a highly optimized CPU
version of the same algorithm. To this end, we implement a version of the HOLD
(Pelupessy et al., 2012b) integrator that runs exclusively on GPUs 1, requiring no
data transfer between CPU and GPU during the entire simulation. Our code is
fully collisional, and features an individual, adaptive time-stepping scheme based on
symmetrized timesteps. Unlike HiGPUs, our code utilizes zero force softening. By
designing the algorithm to remain on the GPU throughout the integration, we aim to
optimize performance while preserving the accuracy and flexibility offered by Hamil-
tonian splitting methods for large-scale N -body simulations.

We begin by introducing the standard force calculation algorithm on GPUs using
CUDA in section 6.2. This is followed by a discussion of the HOLD integrator on
GPUs in section 6.3 and results in section 6.4. We then discuss our results and
challenges with implementing the HOLD algorithm in section 6.5 which is followed
by conclusions in section 6.6.

1https://github.com/dipto4/parallel-hhs/
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6.2 Force calculation on GPUs
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Figure 6.1: Visualization of the Nguyen (2007) algorithm for force calculation on
GPUs. Each big square represents a block that contains a group of p threads. Each
small square represents a thread. A thread within each block reads N/p particles from
the global memory and stores it on the on-chip shared memory for faster access. Each
thread in the block then calculates the force between a particular particle and the
group of N/p particles. Once the calculation for the particular tile of N/p particles is
over, another tile of N/p particles is loaded until the forces from all N particles have
been calculated. This leads to an efficient force calculation algorithm.

The most computationally expensive task in an N -body code is typically the
pairwise force calculation. Fortunately, this component is also highly parallelizable,
making it an ideal target for GPU offloading. Many modern N -body implementations
therefore focus their efforts on accelerating this force-evaluation kernel, drawing on
the approach outlined by Nguyen (2007) for efficient GPU usage.

On GPU architectures, threads are organized into blocks, each of which has access
to a dedicated pool of shared memory and a synchronization mechanism. Shared
memory sits closer to the GPU’s compute units and is roughly two orders of magnitude
faster to access compared to global (VRAM) memory. A common strategy to leverage
this high bandwidth is:

1. A grid of thread blocks is created. Each thread within a thread block handles
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the force calculation for a single sink particle. Each thread, known as a sink
thread, loads the position and velocity information of one sink particle into its
private registers. Registers are the fastest storage available to a thread.

2. Each block of p threads collectively loads a subset of N/p source particles from
global memory into shared memory.

3. Every sink thread in the block computes the interaction between its assigned
sink particle and the N/p source particles currently resident in shared memory.

4. Once all threads have finished processing the forces from the current batch of
N/p particles, the next batch is loaded into shared memory, and the process
repeats.

By iterating in this fashion, the total number of costly global memory accesses is
reduced, as particle data is fetched once per batch and then reused by each thread
in the block. This approach takes full advantage of the GPU’s high parallel through-
put and shared-memory bandwidth, significantly increasing performance over näıve,
global-memory-based methods. A visualization of this algorithm is provided in Figure
6.1.

6.3 HOLD on GPUs

Although offloading just the pairwise force calculation to the GPU can significantly
boost performance, memory transfers between the CPU and GPU can become a
significant bottleneck. In Figure 6.2, we compare the time spent on computation
against the time devoted to data transfers. For N ≲ 104, more than 20% of the
runtime is typically consumed by copying particle data back and forth. At smaller
particle counts on the order of 103, these transfers can account for over half of the
total simulation time.

Further insights come from Figure 6.3, which illustrates the distribution of par-
ticles across integration levels in the HOLD scheme (see Section 1.1.2 for an intro-
duction to the HOLD scheme). These levels are governed by a timestep parameter
η, and we observe that for both “long” (η = 0.2) and “short” (η = 0.02) timesteps,
at least 95% of the integration levels involve ≤ 8192 particles. In other words, most
integration steps process a relatively small number of particles, yet each step still re-
quires sending data to (and potentially retrieving data from) the GPU. Consequently,
frequent CPU-GPU transfers can overshadow the gains achieved by GPU-accelerated
force computations.

These observations underscore the efficiency gains possible when offloading every
stage of the integration process to the GPU. By avoiding repetitive data transfers for
small subgroups of particles, a fully GPU-resident approach can drastically reduce
overhead and exploit the parallel resources of modern GPUs more effectively.
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Figure 6.2: Ratio of the host to GPU and GPU to host memory transfer time tmemcpy

to the total time (force calculation + memory transfer) ttotal. We find that when
N = 103, ∼ 50% of the total time is spent in memory transfers. Even when N = 104,
20% of the time in spent in memory transfer leading to inefficiencies. At much higher
particle numbers, the memory transfer time becomes subdominant. At N = 106,
roughly 1% of the time is spent in memory transfers.

N 8192 95.0%
8192 N 655364.3% N 655360.7%

= 0.2, N = 262144

N 8192 96.5%
8192 N 655362.3% N 655361.2%

= 0.02, N = 262144

Figure 6.3: Piechart of the number of particles per level of the HHS splitting algorithm
using N = 262144 particles and integrating to tfinal = 0.0625. We notice that over
95% of the levels using both a high timestep parameter (η = 0.2) and a low timestep
parameter (η = 0.02) involve particle numbers ≤ 8192. At N ≤ 8192, memory
transfers consume a significant portion of the total computational time. Performing
memory transfers at every level would thus lead to performance bottlenecks.
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Following Listing 1.1 in Chapter 1, we note that the main components of the
HOLD integration scheme are the split, drift, find timesteps, and kick routines.
In this section we outline the different components of the HOLD integration scheme
and the changes made to adapt them to GPUs. Further references to these routines
can also be found on the github repository.

split This routine subdivides the system into slow and fast subsystems based on a
prescribed threshold timestep. Particles whose timesteps exceed the threshold form
the slow subsystem, while those whose timesteps lie below or equal to the threshold
form the fast subsystem. This division is a crucial part of the HOLD integrator. On
a CPU, it is straightforward to rearrange particles with a single thread, but such an
approach is inefficient on a GPU due to its parallel execution model.

To exploit GPU parallelism, we apply an algorithm called stream compaction
(Nguyen, 2007), which selects elements matching a given condition by using the Blel-
loch scan (also known as exclusive scan). Although a detailed derivation of the
Blelloch scan is beyond our scope, we refer interested readers to Nguyen (2007) for a
thorough explanation.

In our split routine, we create two buffer arrays of particles: one for slow parti-
cles and one for fast particles. First, we check each particle’s timestep relative to the
threshold and build a predicate array containing 1 if the particle’s timestep is below
or equal to the threshold and 0 otherwise. Next, we perform an exclusive scan on this
predicate array. In essence, the exclusive scan computes, for each position, the sum
of all preceding predicate values. If the predicate at a given position is 1, the corre-
sponding particle is placed into the fast buffer at the index specified by the scanned
value. A similar process fills the slow buffer with particles whose timesteps exceed
the threshold. Figure 6.4 provides a visual overview of this algorithm, illustrating
how stream compaction enables efficient, fully parallel partitioning of particles into
slow and fast subsystems on the GPU.

drift This routine updates each particle’s position according to the equation

x1
2
,i

= x0,i + 0.5 dtv0,i, (6.1)

where x0,i and v0,i denote the position and velocity, respectively, of the ith particle at
the initial step. The operation is performed independently for each particle, making
it straightforward to parallelize: every GPU thread can simply compute the new
position for a single particle, thereby distributing the workload efficiently across the
device.

find timesteps This routine calculates and updates each particle’s timestep us-
ing a symmetrized approach. We adopt the step-size criteria from Pelupessy et al.
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(2012a), which are constrained by both the freefall time,

τfreefall = η

√
rij
aij

, (6.2)

and the flyby time,

τflyby = η
rij
vij

. (6.3)

To incorporate time-symmetrization, we use the time derivatives of these expressions
to construct a first-order accurate estimate of the future timestep:

τsym = τ
(
1− 1

2
dτ
dt

)−1
. (6.4)

Because both timestep criteria depend on interparticle distances and velocities, the
overall calculation scales as O(N2). A procedure similar to the one described in
Section 6.2 can be employed with minimal modification. Note that the actual timestep
for particle i is taken to be the minimum of its freefall and flyby timesteps.

kick This routine updates each particle’s velocity according to

v1,i = v0,i + dt a0,i, (6.5)

where v0,i and a0,i represent the velocity and acceleration, respectively, of the ith

particle at the initial step. The velocity “kick” relies on pairwise force calculations,
which are performed using the O(N2) method outlined in the previous section. Once
the accelerations have been computed, each GPU thread can independently update
the velocity of a single particle.

update system This routine is unnecessary in the CPU version because slow and
fast particles are not stored in separate arrays. However, in the GPU version, particles
are split into distinct slow and fast buffers, requiring a mechanism to propagate
updates between integration levels. The HOLD algorithm works recursively to update
the fast subsystem and its interactions with the slow subsystem at each integration
level. Although the positions and velocities for the particles in the current level are
updated, these changes must be reflected in the parent system at the previous level
for correct integration. To accomplish this, each particle in the slow and fast buffers
is assigned a parent ID that indicates its corresponding index in the parent array.
After a full DKD step, this routine is invoked to retrieve these parent IDs and update
the parent system, ensuring that all relevant particle states remain consistent across
integration levels.
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Figure 6.4: The splitting algorithm as described in section 6.3.1. We utilize a tech-
nique called stream compaction (Nguyen, 2007) to select particles that have only
have timesteps smaller than a threshold timestep dt. To do so, we first check each
particle’s timestep relative to the threshold and build a predicate array containing
1 if the particle’s timestep is below or equal to the threshold (dt) and 0 otherwise.
Then an exclusive scan is performed to get a scanned predicate array which is then
used to extract particles that belong to the fast and slow subsystems. The algorithm
helps split the total system into two subsystems fast and slow as required by the
HOLD algorithm. The fast subsystem contains particles with timesteps smaller than
dt whereas the slow subsystem contains particles with timesteps larger than dt.
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Figure 6.5: The ratio of the time taken per GPU routine to the total time taken as
a function of the particle number N . We find that the find timesteps routine is
consistently the most expensive routine, taking up ∼ 80% of the total time, given the
O(N2) scaling and the branching inefficiency in the GPU kernel. The kick routine
is the next most expensive routine as it also involves pairwise calculations, taking up
about ∼ 10− 15% of the total time. All other routines are subdominant at large N .
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6.4 Results

All tests were performed on an A100 GPU on the Vera computing cluster using fp32

precision. All kernels utilized a blocksize of 128 threads per block. For the CPU runs,
we utilized CPU threads on an Epyc 7742 node on the Vera computing cluster. Both
pieces of code were compiled with -O3 optimization flag.

6.4.1 Cost per module

Figure 6.5 shows the ratio of each routine’s runtime to the overall simulation time.
We find that timestep determination is by far the most expensive component, ac-
counting for approximately 83% of the total runtime. This is not surprising given
the O(N2) complexity of evaluating pairwise interactions in conjunction with condi-
tional expressions that introduce branching. Because GPUs are generally less efficient
when dealing with branch-heavy kernels, adopting a simpler timestep criterion (e.g.,
the Aarseth condition) or reducing the number of conditionals could alleviate this
bottleneck.

The next most time-consuming operation is the kick routine, which contributes
10-15% of the total runtime. Consequently, the combination of timestepping and kick
routines dominates the computational budget. For smaller systems (N ∼ 103), the
drift and split modules can each constitute up to 5-10% of the overall runtime, but as
N grows, these contributions become negligible relative to the cost of timestepping
and kicking. Finally, the update system routine remains consistently efficient, never
exceeding 1% of the total execution time.

6.4.2 Scaling and comparison with CPU version

To assess how our HOLD GPU implementation scales with the number of particles N ,
we perform a series of simulations using a Plummer model with an isotropic velocity
distribution. We adopt code units such that G = M = a = 1, where M is the total
mass of the system and a is its scale radius. The timestep parameter is fixed to
η = 0.2, and each run proceeds until a final time of tfinal = 0.0625.

As a reference, we compare our GPU code against a highly optimized CPU version
of the HOLD integrator, also implemented in Taichi with direct force summation.
The CPU version leverages OpenMP plus AVX2 vector instructions and runs on 64
threads. Our results indicate that the GPU code outperforms the CPU version for
all tested N . For N > 105, the wall-clock time twall scales approximately as ∝ N2,
but the GPU implementation consistently maintains a speedup factor of roughly 4×
over the CPU-based HOLD code. In comparison to a purely serial implementation
(not shown here), our GPU approach can be over 200× faster.

To verify correctness, we measure the relative difference in particle positions after
tfinal, finding a discrepancy on the order of 10−6. This level of precision is consistent
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Figure 6.6: Wall-clock time twall taken to integrate to a final time of tfinal = 0.0625
for our GPU version of HOLD (blue) and a highly optimized CPU version of HOLD
in the N -body code Taichi. The latter was run with AVX2 support with 64 OpenMP
threads. We find that our GPU code performs consistently better than the CPU
version with a speed-up of 4× at N > 105.
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with both single-precision arithmetic and the inherent miller instability in collisionless
N -body systems. Overall, these tests confirm that our full-GPU HOLD integrator
achieves both efficiency and accuracy, comparing favorably with a state-of-the-art
CPU-based code.

6.5 Discussion

6.5.1 Performance bottlenecks and potential improvements

The present GPU implementation of the HOLD integrator serves primarily as a proof-
of-concept, demonstrating that the entire algorithm can run efficiently and exclusively
on GPUs. However, several inefficiencies remain. The most significant arises from the
timestep determination process: ideally, we would want the bulk of the computational
time to be spent in force evaluations, but the timestepping kernel currently involves
multiple branching operations for symmetrization and for selecting the global mini-
mum timestep. Because GPUs handle branch divergence poorly, a simpler criterion
(e.g., the Aarseth condition) or an approach without symmetrization could mitigate
this issue. Additional optimizations—such as manually unrolling kernels to process
multiple particles per thread and reducing shared-memory bank conflicts—could fur-
ther boost performance.

Another performance bottleneck stems from the way we manage slow and fast
buffers at each integration level. For very small timestep parameters (η), the HOLD
scheme produces a large number of integration levels, leading to multiple buffer cre-
ations (cudaMalloc calls) that both consume run-time and risk exhausting the GPU’s
available VRAM. Indeed, experiments reveal that for N > 524,288 and η = 0.02, the
GPU can run out of memory even with 40 GB of VRAM. One straightforward so-
lution is to maintain only two sets of buffers—one for the current level and one for
the previous level—by allocating a fixed set of four global arrays (slow and fast sub-
arrays for each of the two levels). We plan to explore this strategy in future work to
determine whether it substantially enhances performance.

6.5.2 Future work

Although the current GPU-exclusive HOLD implementation represents a step for-
ward, several promising avenues for further development remain:

1. Multi-GPU Scaling: Adapting the code to run on multiple GPUs in parallel
would enable simulations with N ≳ 107 particles. A logical approach here is
to employ CUDA-aware MPI to handle inter-GPU communication efficiently,
potentially scaling to clusters or exascale systems.

2. GPU-Based FMM Solver: Replacing the current direct summation force
solver with a FMM) implementation could drastically reduce computational
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cost, particularly for large N . Atkinson (2021) have demonstrated a fully GPU-
resident FMM code using a custom task-stealing scheduler, highlighting the
feasibility of this approach. However, achieving sufficient accuracy for collisional
dynamics may require careful optimization of the multipole acceptance criteria
and specialized adjustments for small-scale interactions.

3. Higher-Order Integrators: A natural extension of our second-order HOLD
scheme would be a fourth-order generalization using HHS-FSI (Chin and Chen,
2005; Rantala et al., 2021a). This would preserve the general spirit of Hamil-
tonian splitting while offering improved energy conservation, particularly for
long-term integrations of collisional systems.

Exploring these directions could unlock even greater performance gains and scientific
reach for GPU-accelerated N -body simulations, particularly in the realm of dense
star clusters and massive black hole dynamics.

6.6 Conclusions

In this work, we have demonstrated the feasibility of a fully GPU-resident N -body
integrator based on a second-order Hamiltonian decomposition. Our principal findings
are summarized as follows:

• Memory Transfer Bottlenecks. By keeping the entire integration process
on the GPU, we eliminate most CPU–GPU data transfers. This is especially
crucial for the low-N regime, where more than 95% of the integration levels
contain fewer than 104 particles.

• Timestep Overhead. In our implementation, the timestepping routine ac-
counts for over 80% of the total wall-clock time, largely due to its O(N2) com-
plexity and the branching operations required to symmetrize the timesteps.

• Minor Cost of Other Modules. Remaining modules (e.g., drift and split
operations) collectively consume under 5% of the total runtime, indicating that
timestepping optimizations would yield the largest performance gains.

• Comparison with CPU Parallelization. Our GPU-based HOLD scheme
retains O(N2) scaling but delivers a roughly 4× speedup relative to a highly
optimized CPU version featuring OpenMP and SIMD parallelization.

Several opportunities exist for further optimization, including a more efficient
timestepping criterion and reducing branching in kernel code. Moreover, combining
our GPU integration framework with recent developments in fully GPU-resident fast
multipole methods (FMM) could pave the way for a comprehensive, high-accuracy
collisional N -body code running exclusively on GPUs.
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Chapter 7

Conclusion

In this thesis, I develop and test a state-of-the-art fast multipole method (FMM)-
based N -body code tailored for collisional dynamics, which is then used to study
the evolution of massive black hole binaries (MBHBs) within dense nuclear star clus-
ters (NSCs). Building on this, I construct an approximate N -body code with post-
Newtonian corrections to explore intermediate mass ratio inspirals (IMRIs) in dark
matter (DM) spikes, probing the detectability of gravitational waves shaped by such
dense DM environments. Finally, I present a proof-of-concept Hamiltonian splitting
integrator running entirely on GPUs, delivering performance exceeding a parallelized
CPU-based implementation.

The collisional N -body code, Taichi, achieves O(N) scaling by splitting forces
into short-range (direct summation) and long-range (FMM) components. By tuning
the expansion order p and accuracy parameter ϵ, force errors remain well-controlled,
and global properties, such as Lagrangian radii, density profiles, and dynamical fric-
tion times, agree with both direct-summation results and analytic predictions. While
FMM becomes efficient only for N ≳ 104, it provides over 100× speedup compared
to direct summation and runs more than 10× faster than NBODY6++GPU on a 28-core
system.

Building on these developments, we upgrade Taichi with a fourth-order forward-
symplectic integrator and few-body regularization to resolve hard binaries. Using this,
I study how collisional relaxation and mass segregation in NSCs affect MBH binary
merger timescales across various mass ratios. With a two-component mass function
in N -body simulations, we find that relaxed cusps modify density profiles and lead
to unexpected trends, such as lower binary separations in non-relaxed systems for
q > 10−2 and suppressed eccentricities in relaxed cases. For circular orbits, relaxed
cusps slow down coalescence for higher q, but accelerate it for q ≤ 10−2, highlighting
the importance of incorporating realistic mass spectra and dynamically evolved NSCs.
For eccentric orbits, MBHBs merge 50 − 100%faster in non-relaxed models. Across
all cases, the merger times remain below the Hubble time, underscoring the need for
high-resolution collisional modeling in MBH merger and waveform predictions.
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Motivated by these accelerated mergers, I examine MBH seed dynamics in high-
redshift dwarf galaxies using initial conditions from the ASTRID cosmological simu-
lation. High-resolution N -body simulations (up to 107 particles) with Taichi reveal
that dense NSCs help MBHs reach sub-pc scales within a few tens of Myr, forming
hard binaries much faster than when MBHs lack extended stellar envelopes. The final
NSCs match observed nucleated dwarfs in density and size. Hardening rate analysis
shows stellar encounters dominate in denser clusters, while DM plays a larger role in
lower-mass systems. Bound binary eccentricities reach e > 0.9 in half of the models,
though stochasticity makes outcomes sensitive to initial conditions. Semi-analytic
extrapolations show that high-eccentricity MBHs in dense NSCs can merge before
z = 4, emphasizing the role of NSCs in resolving the seed-sinking problem. Alongside
prior findings that “naked” MBHs do not sink effectively, this highlights the crucial
role of NSCs in enabling MBH coalescence.

Recent studies suggest dense DM spikes can form around IMBHs, potentially al-
tering GW signals via phase shifts. I investigate IMRIs in both non-rotating and
rotating DM spikes, focusing on how the spike’s self-consistent response affects bi-
nary evolution. N -body simulations show that three-body scattering—rather than
dynamical friction—drives most orbital decay, resulting in ≥ 104 dephasing cycles
in steep spikes (γsp = 7/3, 9/4) but only ∼ 10 in shallower, collisional environments
(γsp = 3/2). Rotating spikes show enhanced eccentricity growth and 3× more de-
phasing cycles than non-rotating ones, while prograde motion has the opposite effect.
Relativistic precession has minimal impact on non-rotating cases but suppresses rota-
tional effects. A preliminary Fokker–Planck analysis suggests real-world spikes likely
have lower densities (γsp = 3/2 or less) due to prior inspirals and environmental evo-
lution, thus producing weaker dephasing. However, “deshifting” remains potentially
detectable under moderate conditions, reinforcing the value of multi-band GW detec-
tors and the need for simulations with higher-order post-Newtonian effects, accretion,
and spike-regeneration.

Lastly, I showcase a second-order Hamiltonian decomposition HOLD N -body in-
tegrator running entirely on GPUs, eliminating CPU–GPU data transfers and ben-
efiting low-N systems, where over 95% of integration levels involve fewer than 104

particles. The timestepping kernel dominates the runtime (over 80%) due to itsO(N2)
complexity and branching overhead, while drift and split modules remain under 5%.
Compared to a highly optimized CPU version using OpenMP and SIMD, the GPU im-
plementation achieves a 4× speedup. Further gains may come from optimizing the
timestepping routine and reducing branching, with future extensions incorporating
GPU-resident FMM to deliver a fully GPU-based, high-accuracy N -body code for
large-scale collisional simulations.

This thesis presents several computational advancements in N -body methods and
theoretical modeling, specifically tailored to the study of MBH binaries and IMRIs.
It lays the foundation for future investigations into the role of NSCs in shaping the
MBH merger landscape, particularly at high redshifts, and underscores the necessity
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of realistic DM spike modeling for accurate GW dephasing predictions. Our findings
emphasize the pivotal role of NSCs in driving the dynamical evolution of MBHs,
especially seed MBHs, demonstrating that the long-standing seed-sinking problem
can be significantly alleviated by the presence of extended stellar environments. With
future improvements to Taichi, such as enhancements to the FMM kernels, full GPU
implementation using the framework developed in this thesis, and the incorporation of
additional physics, such as post-Newtonian effects and GW recoil, we establish Taichi

as a powerful and versatile tool for studying dense collisional N -body systems.

199



Bibliography

Fazeel Mahmood Khan, Peter Berczik, and Andreas Just. Gravitational wave driven
mergers and coalescence time of supermassive black holes. A&A, 615:A71, July 2018.
doi:10.1051/0004-6361/201730489.

P. C. Peters. Gravitational Radiation and the Motion of Two Point Masses. Physical
Review, 136(4B):1224–1232, November 1964a. doi:10.1103/PhysRev.136.B1224.

Diptajyoti Mukherjee, Qirong Zhu, Go Ogiya, Carl L. Rodriguez, and Hy Trac. Evolution of
massive black hole binaries in collisionally relaxed nuclear star clusters - Impact of mass
segregation. MNRAS, 518(4):4801–4817, February 2023. doi:10.1093/mnras/stac3390.

Rio Yokota and Lorena A Barba. A tuned and scalable fast multipole method as a pre-
eminent algorithm for exascale systems. The International Journal of High Performance
Computing Applications, 26(4):337–346, 2012.

Walter Dehnen. A hierarchical o (n) force calculation algorithm. Journal of Computational
Physics, 179(1):27–42, 2002.

Junichiro Makino, Piet Hut, Murat Kaplan, and Hasan Saygın. A time-symmetric block
time-step algorithm for N-body simulations. New A, 12(2):124–133, November 2006a.
doi:10.1016/j.newast.2006.06.003.
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Nadine Neumayer, Anil Seth, and Torsten Böker. Nuclear star clusters. A&A Rev., 28(1):
4, July 2020a. doi:10.1007/s00159-020-00125-0.

Bradley J. Kavanagh, David A. Nichols, Gianfranco Bertone, and Daniele Gaggero. De-
tecting dark matter around black holes with gravitational waves: Effects of dark-matter
dynamics on the gravitational waveform. Phys. Rev. D, 102(8):083006, October 2020.
doi:10.1103/PhysRevD.102.083006.

P. C. Peters. Gravitational Radiation and the Motion of Two Point Masses. Physical
Review, 136(4B):1224–1232, November 1964b. doi:10.1103/PhysRev.136.B1224.

Hubert Nguyen. Gpu gems 3. Addison-Wesley Professional, 2007.

Lyman Spitzer. Dynamical evolution of globular clusters. 1987.

201

https://doi.org/10.48550/arXiv.2409.19914
https://doi.org/10.33232/001c.116179
https://doi.org/10.3847/1538-4357/aa5cb4
https://doi.org/10.3847/1538-4357/aabe28
https://doi.org/10.1093/mnras/stw093
https://doi.org/10.1086/522691
https://doi.org/10.1093/mnras/stab2646
https://doi.org/10.1007/s00159-020-00125-0
https://doi.org/10.1103/PhysRevD.102.083006
https://doi.org/10.1103/PhysRev.136.B1224


Douglas Heggie and Piet Hut. The Gravitational Million-Body Problem: A Multidisciplinary
Approach to Star Cluster Dynamics. 2003.

Sverre J Aarseth. Gravitational N-body simulations: tools and algorithms. Cambridge
University Press, 2003.

James Binney and Scott Tremaine. Galactic dynamics. Princeton university press, 2011.

Walter Dehnen and Justin I Read. N-body simulations of gravitational dynamics. The
European Physical Journal Plus, 126(5):1–28, 2011.

Sverre J Aarseth. From nbody1 to nbody6: The growth of an industry. Publications of the
Astronomical Society of the Pacific, 111(765):1333, 1999.

A Ahmad and L Cohen. A numerical integration scheme for the n-body gravitational
problem. Journal of Computational Physics, 12(3):389–402, 1973.

Josh Barnes and Piet Hut. A hierarchical o (n log n) force-calculation algorithm. nature,
324(6096):446–449, 1986.

Long Wang, Masaki Iwasawa, Keigo Nitadori, and Junichiro Makino. petar: a high-
performance n-body code for modelling massive collisional stellar systems. Monthly No-
tices of the Royal Astronomical Society, 497(1):536–555, 2020.

Leslie Greengard and Vladimir Rokhlin. A fast algorithm for particle simulations. Journal
of computational physics, 73(2):325–348, 1987.

Hongwei Cheng, Leslie Greengard, and Vladimir Rokhlin. A fast adaptive multipole algo-
rithm in three dimensions. Journal of computational physics, 155(2):468–498, 1999.

Walter Dehnen. A very fast and momentum-conserving tree code. The Astrophysical Journal
Letters, 536(1):L39, 2000.

Walter Dehnen. A fast multipole method for stellar dynamics. Computational Astrophysics
and Cosmology, 1(1):1, 2014.

Piet Hut, Jun Makino, and Steve McMillan. Building a Better Leapfrog. ApJ, 443:L93,
April 1995. doi:10.1086/187844.

Walter Dehnen. Towards time symmetric n-body integration. Monthly Notices of the Royal
Astronomical Society, 472(1):1226–1238, 2017.

Siu A. Chin and C. R. Chen. Forward Symplectic Integrators for Solving Gravitational
Few-Body Problems. Celestial Mechanics and Dynamical Astronomy, 91(3-4):301–322,
March 2005. doi:10.1007/s10569-004-4622-z.

Antti Rantala, Thorsten Naab, and Volker Springel. FROST: a momentum-conserving
CUDA implementation of a hierarchical fourth-order forward symplectic integrator. MN-
RAS, January 2021a. doi:10.1093/mnras/stab057.

202

https://doi.org/10.1086/187844
https://doi.org/10.1007/s10569-004-4622-z
https://doi.org/10.1093/mnras/stab057


Haruo Yoshida. Construction of higher order symplectic integrators. Physics Letters A, 150
(5-7):262–268, November 1990. doi:10.1016/0375-9601(90)90092-3.

I. P. Omelyan. Extrapolated gradientlike algorithms for molecular dynamics and
celestial mechanics simulations. Phys. Rev. E, 74(3):036703, September 2006.
doi:10.1103/PhysRevE.74.036703.

Will M. Farr and Edmund Bertschinger. Variational Integrators for the Gravitational N-
Body Problem. ApJ, 663(2):1420–1433, July 2007. doi:10.1086/518641.

Long Wang, Keigo Nitadori, and Junichiro Makino. A slow-down time-transformed sym-
plectic integrator for solving the few-body problem. MNRAS, 493(3):3398–3411, April
2020. doi:10.1093/mnras/staa480.

P. Kustaanheimo, A. SCHINZEL, H. DAVENPORT, and E. STIEFEL. Perturbation theory
of kepler motion based on spinor regularization. Journal für die reine und angewandte
Mathematik, 1965(218):204–219, 1965. doi:doi:10.1515/crll.1965.218.204. URL https:

//doi.org/10.1515/crll.1965.218.204.

Seppo Mikkola and Kiyotaka Tanikawa. Explicit Symplectic Algorithms For Time-
Transformed Hamiltonians. Celestial Mechanics and Dynamical Astronomy, 74(4):287–
295, August 1999a. doi:10.1023/A:1008368322547.

Miguel Preto and Scott Tremaine. A Class of Symplectic Integrators with Adaptive
Time Step for Separable Hamiltonian Systems. AJ, 118(5):2532–2541, November 1999.
doi:10.1086/301102.

William B. Gragg. On Extrapolation Algorithms for Ordinary Initial Value Problems. SIAM
Journal on Numerical Analysis, 2(3):384–403, January 1965. doi:10.1137/0702030.

W. H. Press. Techniques and Tricks for N-Body Computation, volume 267, page 184. 1986.
doi:10.1007/BFb0116411.

Seppo Mikkola and Sverre J. Aarseth. A chain regularization method for the few-body
problem. Celestial Mechanics and Dynamical Astronomy, 47(4):375–390, January 1990.

Yi-Han Wang, Nathan W. C. Leigh, Bin Liu, and Rosalba Perna. SpaceHub: A high-
performance gravity integration toolkit for few-body problems in astrophysics. MNRAS,
505(1):1053–1070, July 2021a. doi:10.1093/mnras/stab1189.
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U. Löckmann and H. Baumgardt. Tracing intermediate-mass black holes in the Galactic
Centre. MNRAS, 384(1):323–330, February 2008. doi:10.1111/j.1365-2966.2007.12699.x.

John Kormendy and Karl Gebhardt. Supermassive black holes in galactic nuclei. In J. Craig
Wheeler and Hugo Martel, editors, 20th Texas Symposium on relativistic astrophysics,
volume 586 of American Institute of Physics Conference Series, pages 363–381, October
2001. doi:10.1063/1.1419581.

John Kormendy and Luis C. Ho. Coevolution (Or Not) of Supermassive Black Holes
and Host Galaxies. ARA&A, 51(1):511–653, August 2013a. doi:10.1146/annurev-astro-
082708-101811.

Vicente Rodriguez-Gomez, Annalisa Pillepich, Laura V. Sales, Shy Genel, Mark Vogels-
berger, Qirong Zhu, Sarah Wellons, Dylan Nelson, Paul Torrey, Volker Springel, Chung-
Pei Ma, and Lars Hernquist. The stellar mass assembly of galaxies in the Illustris sim-
ulation: growth by mergers and the spatial distribution of accreted stars. MNRAS, 458
(3):2371–2390, May 2016. doi:10.1093/mnras/stw456.

S. Komossa, V. Burwitz, G. Hasinger, P. Predehl, J. S. Kaastra, and Y. Ikebe. Discovery of
a Binary Active Galactic Nucleus in the Ultraluminous Infrared Galaxy NGC 6240 Using
Chandra. ApJ, 582(1):L15–L19, January 2003. doi:10.1086/346145.

S. Komossa. Observational evidence for binary black holes and active double nuclei.
Mem. Soc. Astron. Italiana, 77:733, January 2006.
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lor, Karla A. Álamo-Mart́ınez, Alessandro Boselli, Michele Cantiello, Jean-Charles Cuil-
landre, Pierre-Alain Duc, Patrick Durrell, Stephen Gwyn, Lauren A. MacArthur, Ari-
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Adi Zitrin, Ricardo O. Amoŕın, Denis Burgarella, Caitlin M. Casey, Óscar A. Chávez
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mons, Alexander de La Vega, Benjamin J. Weiner, Stephen M. Wilkins, L. Y. Aaron
Yung, and Ceers Team. A CEERS Discovery of an Accreting Supermassive Black Hole
570 Myr after the Big Bang: Identifying a Progenitor of Massive z ¿ 6 Quasars. ApJ,
953(2):L29, August 2023. doi:10.3847/2041-8213/ace619.
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B. Patricelli, M. Á. Pérez-Garćıa, M. Persic, G. Piano, A. Pichel, M. Pimenta, C. Pit-
tori, T. Porter, J. Poutanen, E. Prandini, N. Prantzos, N. Produit, S. Profumo, F. S.
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