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Abstract

The most general black hole solution of Einstein—-Maxwell theory has been discovered by
Plebanski and Demianski in 1976. This thesis provides several steps towards generalizing
this solution by embedding it into N = 2 gauged supergravity. The (bosonic fields of the)
latter consists in the metric together with gauge fields and two kinds of scalar fields (vector
scalars and hyperscalars); as a consequence finding a general solution is involved and one
needs to focus on specific subclasses of solutions or to rely on solution generating algorithms.

In the first part of the thesis we approach the problem using the first strategy: we
restrict our attention to BPS solutions, relying on a symplectic covariant formalism. First we
study the possible Abelian gaugings involving the hyperscalars in order to understand which
are the necessary conditions for obtaining N = 2 adS, vacua and near-horizon geometries
associated to the asymptotics of static black holes. A preliminary step is to obtain covariant
expressions for the Killing vectors of symmetric special quaternionic-Kéhler manifolds. Then
we describe a general analytic solutions for 1/4-BPS (extremal) black holes with mass, NUT,
dyonic charges and running scalars in N = 2 Fayet—Iliopoulos gauged supergravity with a
symmetric very special Kédhler manifold.

In the second part we provide an extension of the Janis—Newman algorithm to all bosonic
fields with spin less than 2, to topological horizons and to other dimensions. This provides
all the necessary tools for applying this solution generating algorithm to (un)gauged super-
gravity, and interesting connections with the N = 2 supergravity theory are unravelled.

Résumé

La solution des équations d’Einstein—-Maxwell décrivant le trou noir le plus général a été
découverte par Plebanski et Demianski en 1976. Cette these accomplit plusieurs étapes en
vue d’intégrer une généralisation de cette solution en supergravité jaugée N = 2. Le contenu
bosonique de cette derniere comprend la métrique assortie de champs de jauge et de deux
types de champs scalaires (appelés scalaires-vecteurs et hyperscalaires) ; cela implique qu’il
est beaucoup plus compliqué de trouver une solution générale et ’on doit se restreindre a des
classes particulieres de solutions ou bien utiliser des algorithmes pour générer des solutions.

Dans la premiere partie de cette thése nous approchons ce probleme gréace a la premiere
stratégie en nous restreignant aux solutions BPS. Dans un premier temps nous étudions
les jaugeages abéliens qui impliquent les hyperscalaires afin de comprendre quelles sont
les conditions nécessaires pour obtenir des vides N = 2 adS, ainsi que des géométries de
proche-horizon associées a des trous noirs statiques. Par la suite nous décrivons une solution
générale et analytique pour des trous noirs (extrémaux) 1/4-BPS qui possédent une masse,
une charge de NUT, des charges dyoniques et des champs scalaires non-triviaux dans le
contexte de la supergravité N = 2 jaugée a la Fayet—Iliopoulos.

Dans la seconde partie nous obtenons une extension de l’algorithme de Janis-Newman
afin de prendre en compte tous les champs bosoniques de spin inférieur a 2, les horizons
topologiques et le cas des autres dimensions. Ainsi cela met a disposition tous les outils
nécessaires pour appliquer cet algorithme a la supergravité (jaugée ou non).
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Introduction

0.1 Background

0.1.1 Quantum gravity and string theory

Finding a theory of quantum gravity is a major goal of theoretical physics. Indeed the
20th century has seen the discovery of two great theories — quantum field theory (QFT)
and general relativity (GR) — that both work extremely well in their respective domains of
application but which cannot be reconciled on the overlap. The main difficulty resides in
the fact that QFT rely heavily on the concept of renormalization in order to obtain sensible
results from the computations that would otherwise yield divergences. On the other hand
GR is non-renormalizable and leads to incurable divergences.

A theory of quantum gravity is needed in order to answer some of the most important
questions concerning our universe. In particular primordial cosmology and the origin of the
universe can be properly address only within this context as they touch the very nature
of spacetime and the latter require a complete theory of quantum gravity to be properly
understood. Similarly black holes are objects formed by a huge concentration of matter and
they cannot be properly described in general relativity. For the moment these problems get
only partial answers by using semi-classical methods. Both cases are linked to the presence
of singularities (the Big-Bang and the center of the black hole) that should be resolved by
a proper quantum treatment of gravity.

Another interesting quest is the unification of the forces and the understanding of the
very nature of interactions and matter. The current knowledge culminates in the standard
model of particle physics which describe all matter and non-gravitational forces that have
been measured. But this theory is still unsatisfactory for several reasons: there are many
free parameters (19 plus 7-8 neutrino masses) that are lacking theoretical interpretation.
Similarly the hierarchy problem states that the Higgs mass should be of the same order
of the cut-off scale where new physics appear (or the Planck mass otherwise), and in the
current framework this value can be understand only by a very fine-tuning of the parameters,
which is not natural. Another problem is the prediction of a huge value for the cosmological
constant. The two last points are related to the question of naturalness which asks that
parameters have natural values (in the correct units). Finally the standard model does not
explain why there are three generations of fermions, the mass of the neutrinos nor why the
gauge group is

SU(3) x SU(2) x U(1). (0.1.1)

A satisfying theory should be able to provide the derivation of the parameters from more
fundamental properties (for examples through the dynamics of background fields) and to
explain why one observes this field content. A first possibility is to unify the gauge group
into one unique group at higher energy which would reduce the number of gauge couplings
and unify matter families (through the embedding into representations of this group).

String theory is a promising candidate for a consistent quantum gravity theory which
provides a grand unification framework at the same time. In this theory the fundamental
constituents are strings and the usual fields appear as excitation modes of these strings.
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The interactions of the strings are non-local in spacetime and this smearing reduces the
UV divergences as interactions cannot be concentrated at a point. The very existence of a
fundamental string puts very stringent constraint on the structure of spacetime: supersym-
metry is necessary for having a consistent theory, and spacetime should have 10 dimensions
(for the five possible superstring theories). Hence one needs to hide these dimensions, either
by compactification (with Kaluza—Klein dimensional reduction) or by using a braneworld
scenario [1-3]. On the bright side string theory is unique and it describes quantum gravity
unified to matter and interactions, and there are no free parameters (before compactifica-
tion).

For decades the developments of string theory were limited to a perturbative analysis.
Recently the understanding of string theory has been deepened by a series of discoveries
concerning its non-perturbative structure: all five superstring theories (type II A and B,
type I and two heterotic) are related by dualities to each other, and to an 11-dimensional
theory called M-theory. The latter is unique and is believed to be the fundamental theory,
but its definition is not known, and only some of its aspects are understood in some limits.
Finally the previous analysis yielded the existence of branes which are extended objects
generalizing particles and strings. They proved to be fundamental in the realization of black
holes from string theory.

0.1.2 Supersymmetry and supergravity

In order to pursue the goal of unification one could ask if the internal gauge symmetry can
be unified with spacetime symmetries. A no-go theorem from Coleman and Mandula [4]
stated that it was impossible and the symmetry group is necessary a direct product

conformal x internal (0.1.2)

(in general one considers the Poincaré subgroup of the conformal group). But Haag, Y.o-
puszanski and Sohnius discovered a loophole in the argument [5]: the above group can
be extended into the superconformal group (which includes the super-Poincaré group) by
adding anticommuting generators. This group contains an automorphism subgroup called
the R-symmetry group that acts both on the fermionic generators and as an internal sym-
metry.

Supersymmetry is generated by fermionic generators ) and it relates bosons to fermions,
and conversely

Q |fermion) = |boson) , @ |boson) = |fermion) , (0.1.3)

and the anticommutator of these generators is equivalent to a translation

{Q.Q} ~ P. (0.1.4)

Fields of different spins are gathered into multiplets that transform irreducibly under super-
Poincaré transformations. A theory with supersymmetry is characterized by the number N
of fermionic generators; in d = 4 the condition that no spin higher than 2 are generated
implies that N < 8 (when N > 2 one speaks about extended supersymmetry). This sym-
metry is very powerful and imposes constraints — the higher N is, the more severe they are
— on the theory. For example N =1 is already sufficient for curing some of the problems of
the standard model (even if these extensions suffer from other problems): the Higgs mass
is stabilized as it inherits the mass protection from its partner. For extended supersymme-
try exact solutions could be derived, see for example the work of Seiberg and Witten on
N = 2 [6, 7] and the integrability of N = 4 [8-10]. The reason is that the scalar fields ¢’
parametrizes a non-linear sigma model

1 o
L= 5 0i(6) 090 (0.1.5)



whose target manifold with metric g;; is very constrained by supersymmetry, and other
fields of the multiplets inherits these properties. In particular the isometry group of this
manifold translates (mostly) into the global symmetry of the Lagrangian.

Interestingly local supersymmetry includes general relativity: indeed the fact that the
anticommutators of two supersymmetries close on the momentum implies that one can-
not make local supersymmetry without making local the Poincaré group. This theory is
called supergravity. In this context the R-symmetry group is made local and provides gauge
interactions: this leads to a unification of spacetime and internal gauge symmetries!

As seen in the previous section, supersymmetry is necessary ingredient of string the-
ory for including fermions in the spectrum and for removing inconsistencies (such as the
tachyons). In this case supergravity corresponds to the low-energy approximation of super-
string theories.

In this thesis we focus on N = 2 supergravity. The latter admits three main multiplets:
the gravity multiplet (containing the metric and a vector field called the graviphoton), the
vector multiplet (containing a vector field and a complex scalar field) and the hypermultiplet
(containing four real scalar fields). This theory has more symmetries than N = 1 and the
additional structures facilitate the computations, but it is also less constrained than higher
N theories (such as the maximal N = 8 supergravity) and as a consequence it has a richer
dynamics and admits more different models. The scalar manifold in N = 1 is only Kéhler,
while in NV = 2 additional conditions imply that it is a direct product

special Kahler x quaternionic, (0.1.6)

and there is little freedom in their definition (for example a unique holomorphic function
is sufficient to define a special Ké&hler manifold). Finally the scalar manifolds of N > 2
supergravity are all symmetric and fixed once the number of vector multiplets is given
(hence the manifold is unique for N > 4). These spaces possess very interesting geometrical
properties which all have an interpretation from supersymmetry.

Currently supersymmetry has not been found in nature, which means that it should
be broken at an energy higher than those accessible in the current experiments. From the
phenomenological point of view theories with a low number of supersymmetries (N = 1, 2)
are preferable since they are closer to the standard model. Moreover N = 2 supergravity
corresponds to the effective action of the low-energy limit of type II string theory compact-
ified on a Calabi—Yau manifold. These models present some interest because they are very
similar to the N = 1 theories resulting from the compactification of the heterotic string
theory on a Calabi-Yau manifold [11-13].

The simplest version of these theories are called ungauged theories because the only local
symmetry corresponds to the local super-Poincaré group. The N = 2 theory is quite simple
in this case as some fields decouple from the others due to the absence of scalar potential
(this also imply a vanishing cosmological constant). In order to get a richer dynamics
one needs to deform the theory by using some of the vector fields as gauge fields for a
local gauge symmetry — one then obtains a gauged supergravity. In the context of string
compactification, this corresponds to some p-forms which are not vanishing along cycles of
the internal manifold.

Finally supergravity is interesting by itself as a theory of quantum gravity: it is known
that supersymmetry improves the ultraviolet behaviour of a theory. For example N = 4
super Yang—Mills is perturbatively finite. There is hope that a similar property is true
for the maximal N = 8 supergravity: in particular recent studies have shown by explicit
computations that expected loop divergences (from symmetry arguments) do not appear,
for example at 3-loops in N = 4 (see for example [14-17]).

0.1.3 Black holes

General relativity is the theory of gravitational phenomena. It describes the dynamical evo-
lution of spacetime through the Einstein—Hilbert action that leads to Einstein equations.

Xi



The latter are highly non-linear differential equations and finding exact solutions is a no-
toriously difficult problem. There are different types of solutions but this thesis will cover
only black-hole-like solutions (type-D in the Petrov classification) which can be described
as particle-like objects that carry some charges, such as a mass or an electric charge.

Black holes are very specific entities that put a lot of strain on theories of quantum
gravity, and as such they are useful sandboxes where one can test the properties and the
predictions of the theory. Rotating black holes are the most relevant subcases for astro-
physics as it is believed that most astrophysical black holes are rotating. These solutions
may also provide exterior metric for rotating stars.

They resemble a lot a particle in the sense that they do not seem to have a structure:
they are defined by few parameters — such as the mass, the electric charge or the angular
momentum —, and any perturbation of a black hole dies off quickly. The most general solution
of this type in pure Einstein-Maxwell gravity is the Plebanski-Demianski metric [18; 19]: it
possesses six charges: mass m, NUT charge n, electric charge g, magnetic charge p, rotation
j and acceleration a.

Classically a black hole is a region delimited by an horizon where the gravitational field is
so strong that nothing can escape from it (not even light), and they can be formed from the
gravitational collapse of a supermassive star. At the center of the black hole is a singularity
where the curvature of spacetime becomes infinite. Such divergence indicates a breakdown
of the theory: indeed gravitational effects are so important close to the origin that classical
GR is not sufficient and one needs a full quantization of gravity in order to account for
quantum effects.

Bekenstein and Hawking discovered that a black hole behaves like a thermodynamical
system in the sense that it has a temperature 7', an entropy S, and each charge is associated
to a potential. A black hole emits a perfect black body radiation at the temperature T'
which is related to the gravity on the horizon (called the surface gravity). Then the entropy
can be derived from the first law using the relation between the mass and the energy. This
picture explains the apparent simplicity of black holes: a statistical ensemble made of a
great number of particles moving in a box is determined only by few parameters (temper-
ature, pressure... ). Statistical physics teaches us that entropy is related to the number of
microstates of a system, and it is very natural to ask from a theory of quantum gravity
what are these states for the black holes. A specific subclass consists of extremal black holes
which have a vanishing temperature.

Usual systems have accustomed us to think that the entropy of a system should be
proportional to its volume. This is not the case in gravity where the entropy follows an area
law

Aky

=@ (0.1.7)

where A is the area of the horizon. This means that there is far less degrees of freedom than
what one would think, and these would live on the horizon of the black hole. This suggests
the existence of an holographic principle which states that (some) gravitational systems can
be entirely described by data on their boundary. This principle has seen a nice realization
within string theory under the adS/CFT correspondence.

Black holes are such special that it is always useful to classify all possible black hole
solution that can be found in a given theory or in its low-energy limit. Hence studying black
holes in supergravity gives indirect clues on the structure of string theory. In their seminal
paper [20], Strominger and Vafa set up a framework where the microstates were identified
with branes. The agreement between the microscopic counting and the macroscopic entropy
computed in the corresponding supergravity have been shown to hold for many BPS or
extremal black holes.
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0.1.4 BPS solutions and adS black holes

A BPS solution of supergravity is a solution of the equations of motion which preserves
some supersymmetry (indicated as a fraction), i.e. it is annihilated by the action of some
supersymmetry generators and it defines a background with its own supersymmetry algebra.
Extremal black holes form long BPS representations and the action of supersymmetry is
well defined, which is not the case for finite temperature black holes [21, p. 8], and for this
reason they share similar properties.! These solutions are very useful because some of their
properties are protected by non-renormalization theorem due to supersymmetry, and this
makes it possible to infer their behaviour at strong coupling. In particular this last property
is essential for comparing the entropy with the microstate counting.

Extremal black holes can be seen as solitons, i.e. solutions interpolating between two
vacua, one sitting at the radial infinity (called the UV), the other being the near-horizon
geometry (the IR) — both are solutions of the BPS equations. They are subject to the
so-called attractor mechanism [22-26]: the scalar fields take on the horizon constant values
which depends only of the electromagnetic charges of the solution. This is as if the fields were
forgetting everything about their radial evolution outside the black hole, and in particular
the corresponding values do not depend on the values at infinity.

We will mainly focus on adS black holes which have a negative cosmological constant. The
first motivation is to provide solutions that can be used in the context of the adS/CFT corre-
spondence, and in particular for the application to condensed matter through adS/CMT [27-
29]. Moreover solutions with a negative cosmological constant are more natural in the con-
text of gauged supergravity and string theory. AdS black holes present a richer thermo-
dynamics [30, 31] than their asymptotically flat cousins; this results from the cosmological
constant which acts as a space cut-off, the black hole does not feel the entire spacetime and
is more stable as a consequence. Another interesting property of adS space is that a field
can have a negative mass without being unstable if it satisfies the BreitenLohner—Freedman
(BF) bound [32, 33].

Strictly speaking adS black holes are not asymptotic to adS space: if magnetic charges
are present then the asymptotic space is deformed to the so-called magnetic adS (madsS).
It can be shown that to each madS vacuum is associated an adS vacuum. 1/2-BPS black
holes are asymptotically adS but they correspond typically to a naked singularity, and for
this reason we will concentrate on 1/4-BPS black holes.

0.1.5 Taub-NUT spacetime

The Taub-NUT spacetime is very peculiar and Misner said it was “a counterexample to
almost anything” believed in general relativity. For example it can be BPS without being
extremal. This solution is characterized by the NUT charge n which plays the same role as
the magnetic charge in electromagnetism (in this analogy the usual mass corresponds to the
electric charge) and for this reason one also refers to it as a magnetic mass.

This spacetime is a solution of the vacuum Einstein equation with no cosmological con-
stant. In this case the space is not asymptotically flat and it is characterized by the value
of n, the off-diagonal component of the metric giving a vector potential

Ay ~ grp = 2n.cosb. (0.1.8)

This is recognized as being the potential of a magnetic-like monopole. On the other hand
the solution can also include a mass m which asymptotically gives the usual scalar potential

1 m

¢~ 5L —gu)=—— (0.1.9)

which is the potential of an electric-like point source. Then the Taub—NUT solution with
mass is a gravitational dyon.

IMoreover a static BPS black hole is necessarily extremal.
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The metric does not have any curvature singularity, in particular the space is regular at

r = 0. But the metric suffers from a worse pathology which is the presence of Misner strings

due to wire-like singularities (this is similar to the Dirac strings that one introduces with

magnetic monopoles). These strings can be removed by using two patches of coordinates,

but as a consequence closed timelike curves appear, with the periodicity of the time given
by

At = 8mn. (0.1.10)

Closed timelike curve may not appear for hyperbolic black holes if the NUT charge lies in
some range [34, 35].

The solution is better behaved in Euclidean signature. There it corresponds to a gravi-
tational instanton, which is a non-singular solution of the equations of motion with a finite
action that contributes to the computation of the partition function in the saddle point
approximation.

The NUT charge can be incorporated in more general solutions, for example in super-
gravity and with a non-vanishing cosmological constant.

0.2 DMotivations

0.2.1 Supergravity

The last decades has seen a lot of works on N = 2 gauged supergravity for its applications
on string phenomenology, holography and black holes. While many the ungauged theory
has been deeply studied and understood, much less is known on the gauged version. For
example a complete classification of BPS solutions exist [36-39], the attractor mechanism
has received a lot of attention [40-42]), and fairly general non-extremal solutions have been
found [43, 44].

The first step is to study the vacua that can be obtained in this theory. In particular
the most natural one is the N = 2 adS, vacua which have been discussed in [45-49], while
adS, vacua with less supersymmetries were found in [48, 50, 51]. Another important type
of vacua consists in the near-horizon geometries adSy x ¥, where 3, is a Riemann surface
of genus g, and it has also received attention recently [46, 49, 52, 53]. Some steps towards
a classification of the BPS solutions have been taken in [54-57]. The equations for more
specific ansatz have also been studied, for example static black holes [58-63] or maximally
supersymmetric solutions [47]. The supersymmetry algebras associated to BPS solutions
were worked out in [64, 65]. Finally the attractor mechanism also takes place in these
theories [52, 58, 66-71].

As reviewed above the archetypal black hole of Einstein—-Maxwell theory with cosmolog-
ical constant is the Plebainiski-Demianski (PD) solution [18, 19] which contains six charges:
mass m, NUT n, electric ¢ and magnetic p charges, spin j and acceleration a. In the
context of supergravity on adS space and of adS/CFT it is natural to consider topological
horizons, which are not only spherical, but also flat or hyperbolic (or a compact Riemann
surface obtained by quotienting with a discrete group) [72-74]; indeed the usual wisdom
about horizon topology in asymptotically flat spaces does not hold for adS spaces [75]. The
supersymmetry of the (topological) PD solution and its truncations has been studied in [31,
75-78] by embedding it into pure N = 2 gauged supergravity, which is equivalent to taking
constant scalars. Non-BPS solutions with running scalars have been studied in the STU
model (which includes three vector multiplets) and its truncations [79-83]. Constructing
the general solution with non-constant scalars in general N = 2 gauged supergravity is an
outstanding goal, and a first step is to look at the BPS subclass which is simpler to study.

In ungauged supergravity static black holes are 1/2-BPS. The corresponding solutions
in gauged supergravity are naked singularity (but there are regular 1/2-BPS rotating black
holes) and cannot have magnetic charges [60, 61, 63, 75]. A static 1/4-BPS black hole with
constant scalars was found in [59] where it was put forward that the solution is regular
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only if the horizon is hyperbolic. An important step has been taken by Cacciatori and
Klemm who found the first regular 1/4-BPS black holes with running scalars in the STU
model [58], and it was generalized to any symmetric very special manifold in [46] in the
case of vanishing axions. In particular it was shown in [52, 60] that spherical horizons are
possible if the scalars are non-trivial. These solutions have no flat space limit and are thus
very different from the 1/2-BPS solutions [60]; as explained above they have a madS vacua.
Finally the general analytic 1/4-BPS solution of Fayet—Iliopoulos (FI) gauged supergravity
with a symmetric scalar manifold (with an arbitrary number of vector multiplets, running
scalars and dyonic charges) was built in [84] using a formalism developed in [85] which rely
heavily on the properties of very special Kéhler manifolds. A 1/4-BPS black hole with
NUT and magnetic charges was constructed in the case of only one vector multiplet [86].
All the previous discussion apply to FI gauged supergravity, but very few solutions with
hypermultiplets have been found: recently an analytic BPS solution have been described
in [67], while some numerical 1/4-BPS solutions were built in [62] (1/2-BPS solutions with
pathological behaviour have been discussed in [61]). Finally 1/8-BPS solutions were classified
in [57].

Solutions with a NUT charge are interesting in the fluid/gravity correspondence where a
NUT charge in spacetime translates to vorticity in the dual fluid [87-90]. Another interesting
path is to perform a Wick rotation and to compare the free energy with the result in the
dual CFT using localization. Indeed it was put in evidence in a series of papers by Martelli
and collaborators on minimal N = 2 gauged supergravity that the NUT charge and the
acceleration correspond to the two squashing parameters of the boundary S3 [91-94].

0.2.2 Demianski—Janis—Newman algorithm

As the complexity of the equations of motion increase, it is harder to find exact analytical so-
lutions, and one often consider specific types of solutions (extremal, BPS), truncations (some
fields are constant, equal or vanishing) or solutions with restricted number of charges. Then
it is interesting to find solution generating algorithms which are procedures which transform
a seed configuration to another configuration with a greater complexity (for example with
a higher number of charges).

An algorithm which is on-shell is very previous because one is sure to obtain a solution
when starting with a seed configuration which solves the equations of motion. On the other
hand off-shell algorithms do not necessarily preserve the equations of motion, but they are
nonetheless very precious: they provide a motivated ansatz, and it is always easier to check
if an ansatz satisfy the equations than solving them from scratch. Even if in practice this
kind of solution generating technique does not provide so many new solutions, it can help to
understand better the underlying theory (which can be general relativity, modified gravities
or even supergravity) [95] and it may shed light on the structure of gravitational solutions.

Janis—Newman (JN) algorithm is one of these (off-shell) solution generating techniques,
which — in its original formulation — could be used to generate rotating metrics from static
ones. It was used by Janis and Newman to give another derivation of the Kerr metric [96],
while shortly after it has been used again to discover the Kerr-Newman metric [97].

This algorithm provides a way to generate axisymmetric metrics from a spherically sym-
metric seed metric through a particular complexification of radial and (null) time coordi-
nates, followed by a complex coordinate transformation. Often one performs a change of
coordinates to write the result in Boyer-Lindquist coordinates. The original prescription
uses the Newman—Penrose tetrad formalism, which appears to be very tedious since it re-
quires to invert the metric, to find a null tetrad basis where the transformation can be
applied, and lastly to invert again the metric. In [98] Giampieri introduced another formu-
lation of the JN algorithm which avoids gymnastics with null tetrads and which appears to
be very useful for extending the procedure to more complicated solutions (such as higher
dimensional ones). However it has been so far totally ignored in the literature and the
first published and widely accessible paper on this topic is [99]. We stress that all results
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are totally equivalent in both approaches, and every computation that can be done with
Giampieri’s prescription can be done with the other.

In order for the metric to be still real, the seed metric functions? must be transformed
such that reality is preserved.?> Despite that there is no rigorous statement concerning
the possible complexification of these functions, some general features have been worked
out in the last decades and a set of rules has been established. Note that this step is
the same in both prescriptions. In particular these rules can be obtained by solving the
equations of motion for some examples and by identifying the terms in the solution [100].
Another approach consists in expressing the metric functions in terms of the Boyer—Lindquist
functions — that appear in the change of coordinates and which are real —, the latter being
then determined from the equations of motion [101, 102].

It is widely believed that the JN algorithm is just a trick without any physical or math-
ematical basis, which is not accurate. Indeed it was proved by Talbot [103] shortly after its
discovery why this transformation was well-defined, and he characterizes under which con-
ditions the algorithm is on-shell for a subclass of Kerr—Schild (KS) metrics (see also [104]).4
KS metrics admit a very natural formulation in terms of complex functions for which (some)
complex change of coordinates can be defined. Note that KS metrics are physically inter-
esting as they contain solutions of Petrov type II and D. Another way to understand this
algorithm has been provided by Schiffer et al. [105] who showed that some KS metrics can
be written in terms of a unique complex generating function, from which other solutions can
be obtained through a complex change of coordinates. In various papers, Newman shows
that the imaginary part of complex coordinates may be interpreted as an angular momen-
tum, and there are similar correspondences for other charges (magnetic. ..) [106-108]. More
recently Ferraro shed a new light on the JN algorithm using Cartan formalism [109]. A
recent account on these points can be found in [110].

Other solution generating algorithm rely on a complex formulation of general relativ-
ity which allows complex changes of coordinates. This is the case of the Ernst potential
formulation [111, 112] or of Quevedo’s formalism who decomposes the Riemann tensor in
irreducible representations of SO(3,C) ~ SO(3,1) and then uses the symmetry group to
generate new solutions [113, 114].

The JN algorithm has been used to find new solutions as well as to show that known
solutions could be derived in this way. For instance it has been applied to dilatonic grav-
ity [115], interior solutions [101, 102, 116-121] and other dimensions [122-124].5 The list is
short because the algorithm could be used only to derive the metric, and all other fields had
to be found using equations of motion. Moreover many works [125-130, 131, sec. 5.4.2] (to
cite only few) are wrong or not reliable because they do not check the equations of motion
or they perform non-integrable Boyer—Lindquist changes of coordinates [99, 121, 132, 133].

The algorithm has later been extended to what we call the Demianski-Janis—Newman
(DJN) algorithm, when Demiariski (and partially Newman) showed that other parameters
can be added [100, 134], even in the presence of a cosmological constant.%

More recently it has been investigated whether the JN algorithm can be applied in
modified theories of gravity. Pirogov put forward that rotating metrics obtained from the
JN algorithm in Brans—Dicke theory are not solutions if aw # 1 [138]. Similarly Hansen and

2We call a "seed /stationary metric function" a function that appears in the seed/stationary metric. The
term "stationary" is used to describe the metric resulting from the DJN algorithm, which generically is
non-static.

3For simplifying, we will say that we complexify the functions inside the metric when we perform this
transformation, even if in practice we "realify" them.

41t has not been proved that the KS condition is necessary, but all known examples seem to fit in this
category.

5A general strategy for interior solutions is the following: find the stationary metric, and then describe
the fluid stress-energy tensor that allows to solve the equations of motion. Note that here the fluid is in
general not present and the algorithm is just seen as a way to provide a motivated ansatz for the metric. As
a consequence one can also add angular momentum with non-vanishing cosmological constant, despite the
Demianski’s result [100] (more details later).

6Demianski’s metric has been generalized in [135-137].
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Yunes have shown a similar result in quadratic modified gravity (which includes Gauss—
Bonnet) [139].7 These do not include Sen’s dilaton—axion black hole for which o = 1
(section 16.3.4), nor the BBMB black hole from conformal gravity (section 16.2.3). Finally
it was proved in [140] that it does not work either for Einstein-Born-Infled theories. We
note that all these no-go theorem have been found by assuming a transformation with only
rotation.

Detailed reviews on generalizations and explanations of the JN algorithm can be found
in [110, 142, chap. 19, 101, 131, sec. 5.4] (see also [143]).

0.3 Content

0.3.1 Supergravity

An important motivation of this work is to study black holes which can be embedded into
M-theory, such as the STU model with a specific choice of gaugings which is a dimensional
reduction of d = 11 supergravity on S”. In presence of a NUT charge the holographic duals
correspond to the ABJM theory on a curved manifold. In particular after the Euclidean
continuation these contain Seifert spaces (given by a U(1) bundle over 3,), including the
Lens spaces S3/Z,, where supersymmetry has been preserved by twisting the theory with
respect to a general U(1) C SU(4)g x U(1)g. From an N = 2 point of view this includes
flavour as well as R-symmetries.

The goal of this work is to deepen the understanding of BPS solutions in (matter-coupled)
N = 2 gauged supergravity with abelian gaugings. When there are no hypermultiplet this
corresponds to Fayet—Tliopoulos (FI) gauging.

In the case where hypermultiplets are present, the hyperscalars are the only scalar fields
to be charged. Fortunately the isometries of homogeneous (symmetric or not) special quater-
nionic manifolds have been classified by de Wit and van Proeyen [12, 144-146]. These man-
ifolds are constructed as a fibration over a special Kdhler manifold through the c-map, and
some isometries of the latter can be lifted to the full quaternionic spaces. In this work we are
building on these results to provide symplectic covariant expressions for the Killing vectors
and prepotentials for symmetric spaces only. This helps to clarify a conceptual point on the
so-called hidden Killing vectors: they must act symplectically on the coordinates of the base
special Kéhler space and this was not evident in the analysis of de Wit and van Proeyen.
Symmetric manifolds are coset spaces for which all possible isometries are realized and form
a semi-simple Lie algebra.

The holonomy group of quaternionic manifolds contains an SU(2) factor which corre-
sponds to the SU(2) R-symmetry of the N = 2 super-Poincaré algebra. A Killing vector
does not need to preserve the SU(2) connections and it can induce a rotation given by a
3-vector called the compensator. It was already known that a necessary condition for get-
ting a N = 2 adS, vacua is that at least one isometry with a non-trivial compensator be
gauged [48, 50]. In particular we list the isometries with such compensators, and all of them
are model-dependent (the isometries of the Heisenberg algebra associated to the Ramond
scalars).

We also analyse adS; x X, vacua. In the case of FI gaugings this was solved in [53].
Since the equations for the vector and hyperscalars are decoupled we find that the entropy
is given by the same formulas in both cases, except for the replacement of the FI parameters
by the Killing prepotentials.

The idea in these two cases is to first solve the problem in FI supergravity by treating
the prepotentials as constants. This provides a solution for the vector scalars in terms of

"There are some errors in the introduction of [139]: they report incorrectly that the result from [138]
implies that Sen’s black hole cannot be derived from the JN algorithm, as was done by Yazadjiev [115]. But
this black hole corresponds to @ = 1 and as reported above there is no problem in this case (see [141] for
comparison). Moreover they argue that several works published before 2013 did not take into account the
results of Pirogov [138], published in 2013...
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the charges, gauging parameters and hyperscalars which can be fed into the other equations.
We give examples for models which correspond to consistent truncations of M-theory.

Solutions with less charges are easier to find and we focus on NUT charged ones. The
addition of this charge is very natural because it preserves the SU(2) isometry and the hope
is that BPS equations are not much different from the static case. The simple adS-NUT
Schwarzschild black hole can be obtained from a limit of the PD solution, and there are two
BPS branches preserving a half and quarter of the supersymmetry. An intriguing property
in the presence of a NUT charge is the existence of BPS solutions that are not extremal and
without horizons. On the other hand if there is an horizon then the solution is necessarily
extremal. We discuss the root structure of the metric functions in order to clarify the
different possibilities.

Then we compute the 1/4-BPS equations for NUT black hole in FI gauged supergravity
and we look for solutions by using the techniques of [84]. In the case of extremal black hole
we arrive at an analytic solution with running scalars and dyonic charges which generalize
the one of [84]. In particular the near-horizon geometry does not feel the NUT charge. We
were not able to find the general solution in the case where the black hole is not extremal,
and it is not known if there are solutions with different near-horizon geometries or if they
would simply be without horizons. Nonetheless we construct the constant scalar solutions
in this formalism.

Symmetric K&hler manifolds are endowed with a invariant symmetric 4-tensor because
the isometry group are of type E; [147, 148]. This quartic invariant appears in the expres-
sions of the Killing vectors of symmetric special quaternionic manifolds, of the black hole
entropy and the radius of adSy, of the BPS equations and of the analytic solutions for static
and NUT-charged dyonic 1/4-BPS black holes [53, 84, 144, 149-151].

In conclusion the achievements of the current work are:

e symplectic covariant expressions for the quaternionic isometries;

e BPS equations with magnetic gaugings for matter-coupled N = 2 gauged supergravity;
 a framework for studying N = 2 adS; and adS, x ¥, vacua with abelian gaugings;
 quite generic solution for 1/4-BPS black holes with FI gaugings;

As a future direction one can extend the analysis of the BPS black holes (both static and
with a NUT charge) in order to include hypermultiplets. A simpler intermediate goal would
be to find an analytic solution of the scalars in terms of the charges for the vacua. Another
topic which has recently benefited from the study of quaternionic isometries is inflation in
N = 2 supergravity where it was shown that at least one hidden isometry needs to be gauged
in order to construct a physical model [152, 153].

Despite the fact that it would be very interesting to find the most general 1/4-BPS
NUT solution when the horizon is not adSs x X4, it may be more important to look first to
solutions with rotation and acceleration® or at 1/2-BPS NUT solutions with running scalars.

With more supersymmetry it would be easier to compute the microstates of these black
holes.

It is not clear how the solution of Chow and Compére [80] is related to the known 1/4-
BPS solutions and this point calls for an explanation. Finally computing the holographic
free energy of the NUT charged solution is an interesting problem.

In all cases keeping the symplectic covariance of the equations by considering the general
case was a key step in order to build the solutions by exploiting the power of the special
geometry, and in particular of the quartic invariant. In the same idea it would be useful to
extend the symplectic covariance of the Killing vectors to the case of homogeneous spaces
and for non-abelian gaugings.

81n particular solutions with acceleration has been discovered recently [154, 155], and the rotating black
holes from [79, 80] may give some intuitions. Also in this case the near-horizon geometries will certainly be
different and a first analysis would be to look at these solutions.
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0.3.2 Demianski—Janis—Newman algorithm

As explained in the previous section, the JN algorithm was formulated only for the metric
and all other fields had to be found using the equations of motion (with or without using an
ansatz). For example neither the Kerr—Newman gauge field or its associated field strength
could be derived in [97]. The solution to this problem is to perform a gauge transformation
in order to remove the radial component of the gauge field in null coordinates [99]. It is
then straightforward to apply the JN algorithm in either prescription.’

Another problem was exemplified by the derivation of Sen’s axion—dilaton rotating black
hole [157] by Yazadjiev [115], who could find the metric and the dilaton, but not the axion
nor the gauge field. The reason is that while the JN algorithm applies directly to real scalar
fields, it does not for complex scalar fields (or for a pair of real fields that can naturally be
gathered into a complex scalar). Then it is necessary to consider the complex scalar as a
unique object and to perform the transformation without trying to keep it real [158].

Hence this completes the JN algorithm for all bosonic fields with spin less than 2.

Demianski’s analysis reveals itself to be very useful in order to find the most general
transformation. We have extended its analysis to Einstein—Maxwell gravity and to topo-
logical horizons [159], fixing also some errors that appeared in his work due to an hidden
hypothesis. This has also been the occasion to provide very generic formulas for the configu-
rations obtained after performing the DJN algorithm. A long standing issue of this analysis
was to find how one should complexify the metric function: the usual rules do not work in
presence of a NUT charge, and if there is no way to obtain the function by complexification
it would imply that the most general transformation are useless because they can not be
used in other cases (except if one is willing to solve Einstein equations, which is not the goal
of a solution generating technique). We have found that it is necessary to complexify also
the mass and to consider the complex parameter m -+ in [158, 159]. Similarly configurations
with magnetic charges were out of reach, and we have shown that one needs to consider the
complex charge ¢ + ip [158]. Such a complex combination is quite natural from the point
of view of Plebaniski-Demianski solution [18, 19]. It is to notice, that the appearance of
complex coordinate transformations mixed with complex parameter transformations was a
feature of Quevedo’s solution generating technique [113; 114]. Yet it is unclear what the link
with our approach really is, despite the fact that it may probably provide some clues for
generalizing further the DJN algorithm (higher dimensions, cosmological backgrounds.. . ).

Hence the final metric may contain (for vanishing cosmological constant) five of the six
Plebanski-Demiariski parameters [18, 19] along with Demianiski’s parameter. It is intriguing
that one could get all Plebanski-Demianski parameters but the acceleration, which appears
in the combination a + ia.

We also comment the group properties that some of the DJN transformations pos-
sess [159]. This observation can be useful for chaining several transformations or to add
parameters to solutions that already contain some of the parameters (for example adding a
rotation to a solution that already contains a NUT charge).

We also extended the algorithm to five dimensions [160], where the key idea is to perform
the transformation only on the metric parts that describe the rotation plane that we are
looking for. We also give a proposal for the metric in higher dimensions but we could not
transform the function itself.

Finally a very general Mathematica package has been written for the DJN algorithm in
Einstein —-Maxwell theory and it is available on demand.

All these results provide a complete framework for most of the theories of gravity that are
commonly used. A major playground for this modified Demianiski-Janis-Newman (DJN)
algorithm would be (gauged) supergravity where many interesting solutions remain to be
discovered.

As a conclusion we summarize the features of our new results:

9 Another solution has been proposed by Keane [156], but it is applicable only to the Newman—-Penrose
coefficients of the field strength.
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« all bosonic fields with spin < 2;

¢ topological horizons;

« charges m,n,q,p,a (with a only for A = 0);

e group properties;

o extend to d = 3,5 dimensions (and proposal for higher).

Here is a list of new examples that have been derived using the previous results (all in 4d
except when said explicitly):

o Kerr—-Newman—-NUT};

e dyonic Kerr—-Newman;

o Yang-Mills Kerr—Newman black hole [161];

e adS-NUT Schwarzschild;

o ungauged N = 2 BPS solutions [36];

o mnon-extremal solution in 7% model [157] (partly derived in [115]);
o SWIP solutions [162];

o charged Taub-NUT-BBMB with A [35];

o 5d Myers—Perry [163];

« 5d BMPV [164].

We also found [160] a more direct derivation of the rotating BTZ black hole (derived in
another way by Kim [123, 124]). Moreover Klemm and Rabbiosi showed how to recover the
NUT charged black hole in gauged N = 2 sugra with F' = —i X°X! from [82].1° Note that
all these examples appear to be related to N = 2 supergravity.

Despite the fact that the JN algorithm is partly understood, a better understanding is
called for. In particular it seems linked with (N = 2) supergravity and it is possible that
a natural explanation could be found in supersymmetry. Another interesting application
would be to derive generating functions (e.g. the fake superpotential in N = 2 supergravity)
for rotating black holes from static ones. Moreover another question is to understand which
1/4-BPS static black holes from section 12.3 can be mapped to the solutions of section 13.4.
Finally the question of acceleration remains open.

0.4 Structure

In part I we review the ungauged and gauged N = 2 supergravity: it describes the mul-
tiplets, the bosonic Lagrangian, the supersymmetry variations and the gauging procedure.
These chapters are mostly self-contained and include a minimal description of the scalar
manifolds. Next in part II we describe the properties of the scalar manifolds: this corre-
sponds to a special Kéhler manifold for the vector scalars, and to a quaternionic manifold
for the hyperscalars. We describe the Riemannian properties of these manifolds and we
build the isometries, focusing particularly on symmetric spaces. Then in part III we look
at the BPS equations and their static and NUT charged solutions. We start this part with
a chapter on the general properties of adS—NUT black holes. Finally part IV is devoted
to the Demianski—Janis—Newman algorithm. We start by a simple presentation of the al-
gorithm before giving general formulas for all fields with spins less than two. Conventions,
background informations, long formulas and computations are relegated in appendix V.

10Private communication by D. Klemm.
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N = 2 supergravity



Chapter 1

Introduction to N =2
supergravity

Four-dimensional N = 2 supergravity can be obtained as the low-energy effective action of
type II superstring theory compactified on Calabi-Yau 3-fold [165, sec. 21.4.3, 166, sec. 5]
or on a N = (2,2) superconformal theory with ¢ = 9 [12, 13, 167]. This case is interesting
because heterotic string theory can be compactified on these manifolds and give rise to N = 1
supergravity in four dimensions, and some details of the resulting theory are independent of
the number of supersymmetries [12, 13]. Finally N = 2 supergravity can also be found from
M-theory on a 7-dimensional manifold with SU(3) structure [168, 169]. If fluxes are present
then one gets gauged supergravity and we address this topic in the next chapter.

In this section we present the supersymmetry algebra and the corresponding multiplets.
We then display the Lagrangian that describes the interaction of the hyper-, vector and
gravity multiplets and we comment the electromagnetic duality of this theory. Finally we
present the main details of the manifolds described by the scalar fields — the special Kéhler
and quaternionic geometries — which described in more details in later chapters.

General introductions can be found in the classical references [165, 170-172].1 Several
thesis have been written recently on the topic [173-175].

1.1 Algebra and multiplets

The N = 2 supersymmetry algebra corresponds to [165, app. 6A]

[JHV7PP] :nupPV_anPu; (111&)
[J,Lwa Jpa] = nupr]ua - np,ajup + nyp:]ua‘ — UVGJ,upv (1 llb)
{Qa. Q°} = féaaﬂ Py, PP, {Q%,Qp) = fééaﬁ PrA, P, (1.1.1¢)
{Qa,Qs} =0, {Q*,Q°} =0, (1.1.1d)
[Pana] :0; [Pu;Qa] :07 (1.1.16)
[Juana] = _%'YMVQOM [Juu;Qa] = _%’YMVQO(, (1.1.1f)
1 1 _
{Qa, Qs} = —5casPr 2 {Q~,Q%}) = —isaﬂPR Z, (1.1.1g)
(R, Qa) = (UM, Qs,  [R*,QY] = (U*4Q", (1.1.1h)
[T, 1" = f*, T, (1.1.1i)

'n particular an summary of the historical works may be found in [170, sec. 4].



where P, and J,,,, generate translation and Lorentz transformations and form the Poincaré
algebra, Q, are the fermionic generator of supersymmetry, R4 are the generator of the
U(2)r R-symmetry represented by the matrices U4, T are generators of the internal sym-
metry, and finally Z is the central charge. The index « corresponds to the fundamental
representation of U(2)g.

Note that J,,, and P, describe the Poincaré subalgebra. The commutators of J,, with
respectively itself, P, and @, show that they behave as an antisymmetric 2-tensor, a vector
and a spinor. Two supersymmetric transformations close on a translation: as a consequence
if supersymmetry is made local, so are the translations and one cannot have local supersym-
metry without gravity. The R-symmetry group corresponds to the automorphism group:
this is the only internal group that does not commute with the supersymmetry generators.

The algebra is given in terms of Weyl spinors (Qq, @) where the position of the index
gives the chirality (see appendix A.5)

Qa=PLQa, Q%=PrQ" (1.1.2)

Poincaré fields are organized into multiplets in this extended algebra. One of the con-
straint for building these representations is that the highest spin should not exceed s = 2
as interacting higher-spin theories (with a finite number of fields) are not counsistent. The
different multiplets are summarized in table 1.1. Using the table A.2 one can see that the
bosonic and fermionic on-shell degrees of freedom match in each multiplets.

There are additional multiplets that we will not discuss, the tensor (or hypertensor,
scalar-tensor) multiplet [49, 176-182], the double tensor multiplet [178] and the vector-
tensor multiplet [176, 177, 183, 184]. While it is possible to always dualize the tensor into
scalars in ungauged supergravity (where the vector-tensor and (double) tensor multiplets give
respectively the vector and hyper-multiplets), this is not the case in gauged supergravity
where the coupling of the multiplets with and without tensors are different. For example the
masses of the tensor multiplets give magnetic gaugings. These multiplets have their interest
in the context of flux compactifications where p-forms naturally arise.

multiplet  Smax | s=2 s=3/2 s=1 s=1/2 s=0

gravity 2 1 2 1

3/2 1 2 1
vector 1 1 2 2
hyper 1/2 2 4

Table 1.1 — N = 2 supergravity multiplets and spin content.

We consider the following field content:

e Gravity multiplet

{9 Yo, Upts AY Y- (1.1.3)
e n, vector multiplets _ o
{AL XL 7Y, (1.1.4)
with 7% € C.
o np, hypermultiplets
{¢*, Car "}, (1.1.5)

with ¢* € R.

The fields 14, A\** and ¢A are respectively called gravitini, gaugini and hyperini. The
ranges of the indices are

a=1,2, i=1,....,ny, u=1,....4n,, A=1,... 2ns. (1.1.6)

The index « corresponds to the fundamental representation of SU(2) ~ Sp(1) and A to the
fundamental of Sp(ny,).



1.2 Lagrangian
It is natural to gather gauge fields into one vector of dimension n, + 1
AN = (A0, AY), A=0,...,n,. (1.2.1)

The bosonic part of the Lagrangian is given by

R 1 1
Libos = B + 1 ImN(T)AZ Flfu e g ReN(T)Az;

Vg (1.2.2)
3 =7 1 u v o
= giz(1) Opr* OM T — ) huv(q) 0uq" 0" q

where the field strengths are defined by
FA =dA>, (1.2.3)

All fields are minimally coupled to gravity (through the factor /—g in the action). Both
vector- and hyperscalars describe a non-linear sigma model since the coefficient of the ki-
netic term is field-dependent. Moreover the gauge fields are coupled to the vector scalars
through the period matrix A: the imaginary and real parts correspond respectively to a
generalization of the gauge coupling and of the topological #-term. Finally the hyperscalars
do not interact with the gauge fields nor the vector scalars.

Supersymmetry dictates the form of the various functions that appear. In particular the
period matrix A/ and the metric g;; can be derived from a unique holomorphic function F'
called the prepotential (see section 1.4).2

All the kinetic terms should be positive definite [185, sec. 2], and this imposes some
restrictions on the scalar fields. The normalisation of the curvature term corresponds to
a gauge choice.> Moreover the kinetic term for the gauge field has the correct signature
because Im N is negative definite (see section 4.4).

The Lagrangian is invariant under the local R-symmetry with gauge group U(2)g for
which there are two composite gauge fields A, (7, 7) and V};(¢) with = 1,2, 3. Their origin
can be seen most clearly from the superconformal tensor calculs. The scalar fields are neutral
under this group.

We are not interested in the fermionic part of the Lagrangian but we will comment
some of its properties. Fermions are coupled to the gauge fields through Pauli terms Fy)
(and so on) which give rise to anomalous magnetic moments — in particular for the gaugini
they are given by the quantity Wiji (see section 4.5) [171, sec. 4.3]. Moreover the fermions
are minimally coupled to the composite U(2)g gauge fields. The Lagrangian includes four-
fermion terms, but there are no mass terms.

The full Lagrangian is invariant under supersymmetry variations, we will give them only
in the case of gauged supergravity (section 2.4).

1.3 Electromagnetic duality

Electromagnetic duality with and without scalars was studied in full generality by Gaillard
and Zumino [187] (see also [21, sec. 3]). For a review of this topic see [170, sec. 2, 188, sec. 3,
189, 186, sec. 2, 165, sec. 4.2].

Recall that the field strength are determined from the gauge potential by

FA = dAM, (1.3.1)

2There are formulation of the theory without prepotential but we will not worry about this subtlety.
3In particular the term which appears before gauge fixing is —i <V, 1_}> R, and we recover R by setting

<V,1_/> =1 as in (4.2.25) [186, sec. 4].



Dual (magnetic) field strengths are given by

oL
Gp = * ( 5;XS> = ReMNyy FA + Im N5 «F2. (1.3.2)
It is also possible to introduce magnetic gauge potential Ay such that

Gp = dA,. (1.3.3)

Both types of field strengths and gauge fields form together a symplectic vector

FodA= (gi) . A= (ﬁz) . (1.3.4)

The self-dual and anti-self-dual field strength is defined by

FE = Z(F TixF), (1.3.5)

1
C2
and similarly for G*. Using equation (4.3.3) one finds

Gt =NF*, G- =NF". (1.3.6)

Using these fields the kinetic term for the gauge fields can be rewritten as [170, p. 5, 165,
p. 446]

1 ) )
Lyec = 3 Im(NAzFJrAF"’Z) = fiNAzF*'AFJrE +c.c.= 7% GXF+A + c.c. (1.3.7)

This can be proven using the fact that

1
FLFHw = E(FWF”” — iF, *xF"), (1.3.8)
then one ends up with
1
Lyee = —7 Re (iNAg;(FWF‘“’ —iF, *FW)). (1.3.9)

Maxwell equations and Bianchi identities
dFr =0, dGA=0 (1.3.10)

can be gathered as
dF =0. (1.3.11)

Note also that they can be traded for their dual
d+F* =0,  dxGy=0= d+F =0. (1.3.12)

They can also be rewritten as
dIm F* = 0. (1.3.13)

These equations are invariant under linear transformations from GL(2n, + 2,R), which
reduces to symplectic transformations

A B

F —UF, “:(c b

) € Sp(2n, + 2,R) (1.3.14)

if one wants to preserve the relation between F' and G

Gpr = NpsF* = G, = N} F'™*. (1.3.15)



This is a consequence of the fact that a symplectic transformation of the various sections
will induce a diffeomorphism of the scalar manifold, and the action will be of the same form
only if both transformations are consistent together. The fact that both scalar and gauge
fields transform can be seen as a consequence of supersymmetry which relates both fields:
indeed if only the vector fields were transforming then the supersymmetry transformation
would not be consistent anymore.

In presence of matter the dualities of the full equations of motion are restricted to a
subgroup G C Sp(2n, + 2, R), called the U-duality group, because the self-interaction terms
are not invariant under the full symplectic group (see section 1.4).

It is important to note that the equations of motion — but not the action — are only
covariant with respect to these symplectic transformations (called also duality-rotations or
field-redefinitions), and as a consequence these are not symmetries of the action. [170, p. 7].
Symmetries of the equations of motion (and Bianchi identities) correspond to the subgroup
of the symplectic transformation that leaves the equations invariant, and they are called
duality transformations. We used this word duality because in general the action is not
invariant, only the equations of motion are [165, p. 84].

The gauge field Lagrangian (1.3.7) transforms according to [170, p. 7, 186, p. 3]

2Lyec = Im(G{FY) — Im(GF F'*) = Im (G{ Ft* + 2F~C*'BG~ (13.16)
+F C'AF~ + G DBG"). o
Then a symmetry of the Lagrangian is possible only if B = 0 since the last term was not
present in the original Lagrangian — these symmetries are called electric. Moreover it seems
that we would have to require also C' = 0, this is not necessary if one asks only for a
symmetry of the action: the term (C*A),sF~*F~*, which corresponds to a constant shift
of N

N — ATINATL oAy (1.3.17)

is a topological density since the coefficient is constant. Nonetheless this term would have
a quantum effect as it modifies the f#-angle of the theory. In particular the path integral
is invariant only if the coefficients are integer multiples of 27, which restricts the U-duality
group G to a discrete subgroup [170, p. 27]. In the case C' # 0 the prepotential is shifted [165,
sec. 21.1.2], from (5.1.22)

1
SF = 5 XS'QX. (1.3.18)

The transformation for which B # 0 are non-perturbative because they mix the electric
and magnetic field strengths into the Lagrangian which does not involve the latter. From
the microscopic point of view this is equivalent to exchanging the electric and magnetic
currents, and then the elementary states with the soliton states [170, p. 28].

The electric and magnetic charges gy and p® contained in a volume V with boundary ¥

are defined by
A 1
p
= = F. 1.3.19
< <QA) Vol(%) /z: ( )

The charges are defined as densities to avoid infinite charges in the case of non-compact
surfaces. For compact horizons one takes

Vol(X) = Vol(S?) = 4. (1.3.20)

Note also that the charges are a priori not constant. Since the charges Q are obtained by
integrating the field strengths F, they also transform under symplectic transformations [186,
sec. 2]. Let us stress that identifying charges as being magnetic or electric is a frame-
dependent question as a consequence of the previous point.

The graviphoton dressed field strength 7" and its (anti-)self-dual parts are defined by

TH=—(V,F"), T =—(V,F) (1.3.21)



since [165, p. 478] B
WV, FFy=W,F7)=0. (1.3.22)

Similarly one defines the dressed field strengths T of the vector multiplet fields as

3

T = —(U;, F, 77 = (U, F7), (1.3.23)

while the tensors with the upper index are "t = ¢ T:" and T"~ = g 7T} .
Important quantities are the central and matter charges defined by

1 1
z:--/T‘, Zz:——/T[- (1.3.24)
2 b 2 3

If ¥V does not depend on the coordinates on ¥, one can move )V outside the integral in
(1.3.24). Then the central and matter charges correspond to the components of Q along the
basis (V, U;) following (4.4.14)

Z=T(Q)=(V,Q), 2 =D;Z=(U;Q). (1.3.25)

1.4 Scalar geometry

Scalar fields describe a non-linear sigma model with target space
M = M, (") x My(q") (1.4.1)

where supergravity imposes constraints on the manifold holonomies which determine their
types:*

o M,: special Kdhler (SK) manifold (chapter 4), dimg = 2n,, [167];
e My quaternionic Kéhler (QK) manifold (chapter 8), dimg = 4ny, [190].
The R-symmetry group of the supersymmetry algebra can be split as
U(2)r =SU(2)gr x U(1)Rg, (1.4.2)

and this is mirrored in the structure of the multiplets: SK manifolds have a U(1) bundle
while QK manifolds have an SU(2) bundle. In particular if the manifolds M, and M, are
cosets G/H, then their maximal compact subgroup H contains respectively a factor U(1)
or SU(2).

In considering the fields as coordinates for the non-linear sigma model all relevant for-
mulas are obtained through a pull-back, in particular

dr’ = 9, 7" da*, dq" = 9,¢" da". (1.4.3)

1.4.1 Isometries

The isometry group®
G =ISO(M) (1.4.4)

of this manifold translates into an invariance of the scalar kinetic term which is just the
pullback of the metric on M. On the other hand through its embedding into the symplectic
group (as explained in section 1.3) it defines the global symmetry group of the equations
of motion and it is called the U-duality group. A subgroup of G can be gauged in order to
generate new interactions, and this is the topic of chapter 2.

According to the discussion of section 1.3, an isometry can be of one of the three following
types [170, sec. 6, 189]:

4The manifold described by the scalars of n; vector-tensor multiplets is real.
5We will also use the notations G, = ISO(My) and G}, = ISO(My,).
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¢ Classical symmetries: the matrix U is block diagonal

U= <‘g A?_1>, (1.4.5)

(where the lower component follows from the constraints (5.1.3)), and it is a true
symmetry of the Lagrangian.

o Perturbative symmetries: the matrix U is lower triangular

U= (g A?l) . (1.4.6)

At the classical level the action is invariant, while at the quantum level only the path
integral is invariant for a subgroup G(Z) C G(R).

o Non-perturbative symmetries: the matrix U has the general form (1.3.14)

U= (g g) (1.4.7)

and they are symmetries of the quantum theory but they cannot be defined perturba-
tively.

Isometries of the scalar manifold extend to a symmetry of the Lagrangian if all cou-
plings are diffeomorphism invariant, which means that they depend only on the metric, the
curvature and Christoffel symbols [170, sec. 7.1].

In d = 4 all symmetries of the scalar manifold extend to symmetries of the full Lagrangian
(as opposed to d = 5) [144, 191] and this is a consequence of supersymmetry.°

If one considers models obtained from compactification of type II, then the corresponding
SK manifold M, is symmetric and the QK is special, which means that it entirely specified
by another SK manifold M, which is also symmetric. Moreover the manifolds M, and M,
are interchanged when compactifying type II A and B on the same manifold [144].

We review the main properties of these manifolds and we refer the reader to part II for
more details.

1.4.2 Special Kiahler manifolds

A special Kéahler manifold is a Kéhler manifold with a bundle with group Sp(2n, + 2,R).
SK manifolds are better described in terms of projective coordinates X* where
;X!
Then the prepotential is a holomorphic function F = F(X?) of weight 2. The gradient of
the prepotential gives a set of functions

oF
Fy = —+ 1.4.
AT axA (1.4.9)
that together with X* form a section of the symplectic bundle
XA
v= <FA) . (1.4.10)
Then the Kéhler potential reads
K =—Ini(X"F) — X"F)) (1.4.11)

6This was proved only for cubic prepotentials, but no counter-example is known [144, p. 15].
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from which derives the metric

It is always possible to describe the SK manifold in terms of a prepotential and we will
focus on this case [186]. But this does not mean that symplectically rotated theories are
equivalent (for example different theories with the same geometry may have different gauge
groups, and partial symmetry breaking from N = 2 to N = 1 in FI gauged supergravity is
impossible if a superpotential exists) [186, sec. 4.2].

The pull-back of the U(1) connection (3.2.46) is

A, = _%(Kiaﬂi — K,0,7"). (1.4.13)

1.4.3 Quaternionic manifolds

The quaternionic manifold with metric h,, has a triplet of structures J* satisfying the
quaternionic algebran SU(2) ~ Sp(1)

JEJY = —§%Y 4 gTYZ J7 (1.4.14)

where z = 1,2,3 is the vector representation of SO(3) ~ SU(2). They define a triplet of
2-forms

K* =J% dg* Adq”,  J% = huw(J),"- (1.4.15)

The manifold has an SU(2) bundle with connection w® and a curvature proportional to
the quaternionic 2-forms
O = Vw® = \K* (1.4.16)

These forms are covariantly closed
VQ* =VK* =0. (1.4.17)
Finally one can introduce vielbeine
Py = CapeapgUSAUBS, (1.4.18)

where the indices A and « run respectively in the fundamental representations of Sp(ny)
and Sp(1), where the corresponding symplectic metrics are C and e. This splitting of the
indices is a consequence of the holonomy of the manifold.

In supergravity one has the restriction [171, p. 6, 192, p. 719]

A=-1 (1.4.19)
which implies that the quaternionic spaces have negative curvature
R = —8np(np, + 2). (1.4.20)

The pull-back of the SU(2) connection corresponding to the composite SU(2)r gauge
field is
Vi =—wy, 0uq". (1.4.21)

In most of the cases that are of interest to us the quaternionic manifold is special (see
chapter 8.5) and all its properties are given by a special Kdahler manifold M, of dimension
2(np — 1) with prepotential G. These manifolds are constructed from the c-map: d = 4
supergravity is reduced to d = 3 where all vectors can be dualized to scalar fields. Since there
are only scalar fields (coming from the original vector and hypermultiplets, and from the
reduction) the geometry can only be quaternionic. Then the manifold that are constructed
in this way can be used for M, in d =4 [12, 13, 145]. The idea is that dualities of the d = 4



equations of motion will translate into invariance of the d = 3 Lagrangian since there are no
more gauge fields [12, 144, sec. 2.3].

In this case the fields are denoted by (¢, 0, £4,€4) where A =0, ..., nj, — 1. Physically ¢
is the dilaton (coming from the metric), o is the axion (coming from dualization of the NS

B-field) and the (€4,£4) corresponds to the RR scalars (coming from the reduction of the
RR forms) [50, p. 5].
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Chapter 2
Gauged supergravity

A gauged supergravity is obtained from an ungauged theory by using some of the gauge
fields in order to introduce a local gauge symmetry. In this chapter we describe the two
main possibilities which consists in gauging a subgroup of the isometry group of the scalar
manifolds or in introducing Fayet—Iliopoulos gaugings (both are not exclusive). The gauging
procedure is described in [170, sec. 7, 165, chap. 21, 174, chap. 2, 175, chap. 1] (see also [57,
193]).

Gauged supergravities typically appear in flux compactifications which refers to com-
pactifications where some p-form field of the higher-dimensional theory has a value along a
(non-trivial) cycle of the internal manifold [166, sec. 5, 194, sec. 4].

In order to understand the details of the gauging one needs to understand the isometries
of the SK and QK scalar manifolds, which are the topics of chapters 7 and 7. Our study of
the BPS solutions will rely heavily on a symplectic covariant formalism: this requires us to
introduce magnetic gaugings in order to treat equally electric and magnetic field strengths.
Constructing a Lagrangian with magnetic gaugings is a difficult task and we will restrict
ourselves to a simple case involving only the equations of motion/BPS.

2.1 Generalities

Since the Lagrangian (1.2.2) is invariant under the global isometry group G of the scalar
manifold M (section 1.4) one can gauge a subgroup K of the global symmetry group G such
that part of the symmetries are made local

KcaG. (2.1.1)
The group should be at most n, + 1, which corresponds to the number of gauge fields
m=dimK <n, + 1. (2.1.2)

This produces typically a non-abelian theory with gauge fields A% in the adjoint represen-
tation, and by supersymmetry the fields X also sits in the adjoint representation. Vector
scalar and hyperscalars are minimally coupled to the gauge fields through the Killing vectors
of SK and QK geometries respectively, and they are in some representation of the gauge
group. The fermions are coupled through the Killing prepotentials (or moment maps) act-
ing as a deformation of the composite U(2)g connections and derivatives of the SK/QK
Killing vectors for the gaugini/hyperini. If the SK P{ and QK P{ moment maps are non-
zero then the fermions are charged respectively under the U(1)r and SU(2)p factors of the
R-symmetry which are gauged by physical gauge fields (in particular this is the only cou-
pling for the gravitini), while only non-dynamical gauge fields were gauging it in ungauged
supergravity [165, sec. 19.5, 193].
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If only QK isometries are made local then the gauge group is necessarily abelian
K=Uumm, m < dim GYy,. (2.1.3)

Indeed since the fields X are in the adjoint representation, non-abelian gaugings are possible
only if a subgroup of G, is gauged.

If there are hypermultiplets then the quaternionic moment maps are fully determined
from Killing vectors. On the other hand if n;, = 0 then the quaternionic moment maps
can still be (non-vanishing) constants called Fayet—Iliopoulos parameters. They correspond
to the coupling constants of the gravitini to the gauge fields using the R-symmetry group
SU(2)g.! If one is not gauging a subgroup of G,, then the resulting group is abelian and for
each gauge field this amounts to consider a U(1) inside the SU(2)g

U(1) C SU(2)g. (2.1.4)
Then one often considers the maximal case with
K =U(@)"™*, (2.1.5)

(it is convenient to consider the diagonal U(1) inside SU(2)g), which is referred to as
Fayet—Iliopoulos gauging. Minimal gauged supergravity is constructed in this way.

Gauging adds complexity to the theory and additional terms are generated in order to
preserve supersymmetry:

o a scalar potential V (7, q);
o (scalar-dependent) fermion masses;
o Chern-Simons terms for A®.

The hypermultiplets are not spectators anymore and the dynamics is much richer. Moreover
a non-trivial potential is necessary for obtaining AdS, vacua.

In section 1.4.1 we explained that the isometry group is embedded into the symplectic
group, and that different types of symmetries can be distinguished. In particular within the
current formalism it is possible to gauge only isometries which correspond to perturbative (or
electric) symmetries, i.e. those which have a lower triangular embedding into the symplectic
group; this issue will discussed further in section 2.5.

Hence the choice of the symplectic frame is important for determining the gauging. In
particular it is always possible to find a frame where the gaugings are electric. On the other
hand a prepotential may not exist in this frame, or it can be ugly, and there is a trade-of
between having electric gaugings and the existence of a prepotential [165, sec. 21.2.2].

As soon as the theory is gauged, models related by symplectic transformations are not
equivalent anymore because the gauging breaks the symplectic invariance. Indeed even if
the bosonic part of the Lagrangian is invariant, minimal coupling of the gauge fields to the
fermions breaks this duality invariance [195].

2.2 Gaugings

2.2.1 Isometries

Except in the FI case, the gauging is encoded by n, + 1 Killing vectors

ka = ki (7) 0; + k) (T) Or + k} (q) Ou (2.2.1)

1We stress that this is compatible with the previous option of gaugings a sugroup of G,,. This procedure
amounts to gauge the R-symmetry by physical gauge fields furthermore with constant couplings.
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which act on the fields as

6t = kL (1), 5q" = a™k¥(q). (2.2.2)

where o are the parameters of the gauge transformation. The vectors {k%, KL kY cor-

respond to linear combinations of the Killing vectors generating the isometries of M, and
M,
ky=0%ke, a=1,...,dimG. (2.2.3)

The coefficients 6% of the linear combination are called the gauging parameters and the
vectors k,, span the algebra of the full isometry group.
The Killing vectors form a Lie algebra

[kn, ks] = fas ko (2.2.4)

where f AEQ are the structure constants. This provides constraints for the gauging parame-
ters which are not all independent [194, sec. 3.1, 179, sec. 3]: the constraints can be worked
out by using the explicit algebras g, and g, on the LHS and by identifying the coefficients
with the RHS. In particular if no isometries of M, are gauged then the Killing vector alge-
bra is necessarily abelian (but this does not mean that the isometries of the manifolds are
abelian: only their linear combination needs to be abelian, see section 2.6 for an example).
The isometry induces a symplectic T = o*T) and a Kahler f = o f5 transformation

YV =TV+ f(r)V, (2.2.5)
where T}y is lower triangular

A 0
TA = <Ci At1> ’ (226)
A

and C is symmetric. This transformation needs to be consistent with the transformation
of the field strength F* under a non-abelian gauge transformation [165, p. 474]

SFN = o' FE fro M (2.2.7)

In particular this justifies the restriction to electric gaugings with By = 0, and this indicates

that T, should be o
*fA 0 *fAz; 0
Ty = = . 2.2.8
A ( Cax  fx Caso [ro™ ( )

These generators satisfy the Lie algebra under the conditions

C(AZQ) = 0, (2.2.9&)
fEQFCpAg = QfA[EFCQ]EF + QfE[EFCQ]AF. (2.2.9b)

If the second term is present it induces a Kéahler transformation
6K = o™(fa + fa). (2.2.10)
This implies the constraint
kpOifs — k0ifa = fax fa. (2.2.11)

In the kinetic term of the scalar fields the partial derivatives are modified to covariant
derivatives through minimal coupling

D, =0, — Ajk. (2.2.12)
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The fact that only the electric gauge field A are introduced implies that one breaks the
symplectic covariance. Moreover the field strengths of the gauge fields are modified by a
non-abelian piece

b, = 0,A) — 0,A) + fuo AL A (2.2.13)

Moment maps are real functions that can be built from special and quaternionic Killing
vector _

PR =i(k\O;K — fa), Py = kYigw® + WY (2.2.14)

where fa is the shift of the Kéahler potential and W7 the SU(2) rotation of the triplet of

hyperkéhler structures induced by the isometry.
There are two important relations

EiLA =0,  PMA=o0. (2.2.15)

The Kéhler U(1) connection (1.4.13) is modified to

A

i i -7 1 F
—5(1(1-1)“7 - K;D,7") — i AN (fa — fa) (2.2.16a)
f% (Kidu7' — K:0,7) — % AMPY, (2.2.16b)

while the SU(2) connection becomes

xT x U 1 xr
Vi =—wiDug" + 5 AN (2.2.17a)

1
—wy g = 5 APy (2.2.17b)

The fact that spinors are charged implies Dirac-like quantization conditions on the Killing
prepotentials
pP*PlczZ,  p*PicZ. (2.2.18)

where p® are the magnetic charges.
One defines the prepotential charges (also called the superpotential)

L% = —PLA (2.2.19)

(see (2.5.5) for a symplectic covariant definition).

2.2.2 Fayet—Iliopoulos gauging

A good reference is [83, sec. 2] (see also [165, sec. 21.5.1]).
In Fayet—Tliopoulos (FI) gauging the fermions become charged under a subgroup Ky of
the R-symmetry group
Kpr C SU(Q)R (2.2.20)

This corresponds to constant quaternionic moment maps % called the F1 parameters
X = Py = cst, (2.2.21)

which is possible only if np = 0 (otherwise they are determined by the quaternionic geome-
try and they are non-constant). These moment maps can be non-vanishing even if n, = 0
because there is always a compensating hypermultiplet, which was fixed during the con-
struction of the theory. If one gauges also a subgroup K C G, then a necessary condition
is [174, p. 35]

Kr C K. (2.2.22)

If one considers abelian isometries, then the equivariance condition (8.3.26) reads

eV YR =0, (2.2.23)
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As a consequence it is possible to choose a direction for the SU(2) vector

€k =(0,0,94) (2.2.24)

which corresponds to
U(1) c SU2)r (2.2.25)

(U(1) being the diagonal subgroup). The parameters g are the electric charges of the
gravitini under this U(1) symmetry: the gauge fields are coupled to the gravitini through
the linear combinations gy A%, and the two gravitini have opposite charges g5. Note that
the vector scalars are neutral. In general speaking about FI gauging refers to this latter
case.

Pure supergravity is a subcase of (abelian) FI gauged supergravity.

2.3 Lagrangian

2.3.1 General case
The bosonic part of the Lagrangian is given by
R

1 A Suv 1 A b
EbOS:§+ZImN(T)AZF#UF K *gReN(T)AEﬁF#VFPU
- -1
- gij(T) D#TZD#%J - 5 huv(q) D,uquD'qu (231)
2 eMVPT A g =, 3 E 4yl -
+ g CA7EE ﬁ AHAV (6PAU + g fQF AP AG’ — V(T,T, q)

The term proportional to Cpayq is necessary to compensate the transformation of the
matrix N
SNas = —a'' (fra"Neq + frs"Nag + Crax). (2.3.2)

under a gauge transformation.
The scalar potential reads

V = (frg"7f7 — 3BLALP) PR PE + LAL® (2 huwki kS + gigki k). (2.3.3)
Note that there is only one negative term in the potential. Another expression for the
potential is

1 _ _
V= (_5 Im VA% — 4LAL2) PEPE + 2L AL hyo ki kS + 2Tm FA¥ P P (2.3.4)

using (4.3.6) to rewrite the first term and writing the SK Killing vectors in terms of their
prepotentials [165, p. 475].

We will not describe the full Lagrangian which is complicated and instead we refer the
reader to [170, sec. 8, 165, sec. 21.3]. We are only interested in the mass terms of the
fermions

1 - 1 — s _— 1 _ _
Lm =5 Sas Yyl - 5 mi NNy — mot A% Ca — 2 MAB (AP = X +cc. (2.3.5)
In the last term x® corresponds to the gravitini

1 .
X' =3 WP AL +2 NG¢A (2.3.6)
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The various mass matrices are given by

2.3.7a

—~

Sap =1 I_/APKO‘JEQ’YE,Yﬁ,

i T _
mf}ﬂ =3 kg AP e 0" P 4 e gkl £} 2.3.7h
méi = 2“@1{ EaﬁUEAfTiAa

mas = —2L* e®PUY 4UlV vkun,

e B ST

7 10

NG = —iCap USBEYL .

—~

2.3.7c
2.3.7d
2.3.7e
2.3.7f

—~

—~
— — ~— ~— T ~—

—~

Another expression for Wiaﬁ is

web — 75aﬁgijkiLA — Py Ea’YwaﬁfiA (2.3.8)

K2

These masses are related to the fermion shift that appears in the supersymmetric variations.
Through Ward identities for supersymmetry the superpotential is also given by [170, sec. 9]

V% = =388, 5+ W7 g Wy, + ANGNZ. (2.3.9)

2.3.2 Fayet-lliopoulos gaugings

The scalar potential reads

V(r,7) = (g7 f} 7 = 3L L”) gags. (2.3.10)

2.3.3 Minimal gauged sugra

Pure supergravity corresponds to n, = n, = 0. Its bosonic action is equivalent to Ein-
stein—-Maxwell theory. Its prepotential reads [165, ex. 21.3]

i

F=- (X2 (2.3.11)
Gauge fixing gives
1
X0 =— 2.3.12
7 ( )
which gives the value of N/
N = —i, (2.3.13)
which implies in particular
G = —«F. (2.3.14)
The T),, tensor equals simply the field strength up to a factor
Ty = 2V2Fy,. (2.3.15)
The scalar potential is constant
V = A= —6g* (2.3.16)

with A the cosmological constant.
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2.4 Supersymmetry variations

The bosonic part of the supersymmetry variations with parameter e of the fermionic fields
is given by

A (- a « 1 «
oYy = Dpe® =Dye® — 3 T b’yug BEB + 3 TuS Bgﬂ, (2.4.1a)
. . 1 ) R
0y =Dyt ea + 4 Ty 'Yabgaﬁgﬂ + 9" Wigac”, (2.4.1b)
5CA = % USAD,q" o + N, (2.4.1¢)

The additional terms are quadratic in the fermions and can be found in [170, sec. §].
We denote by D, the supercovariant derivative. The gauge and spacetime covariant
derivatives are

D% = V,ue® +iVio™se’, (2.4.2a)
(0% 1 a - [e3
Ve = (GM + 7 WnavY b ZAH) e, (2.4.2b)

The (bosonic part of) the anti-self-dual field strengths T, and T7’, were defined in (1.3.21)
T-=-WVF), TI7=—g"(UpF). (2.4.3)

Finally the composite U(1) and SU(2) connections were given in (2.2.16) and (2.2.17).

A BPS solution is a field configuration that solves the equations of motion and which
preserves some amount of supersymmetry, which is equivalent to the invariance of the con-
figuration under supersymmetry variations. Moreover for classical solutions the fermionic
fields typically vanish which ensures that the variations of the bosonic fields are zero. Then
we just need to compute the variations of the fermionic fields (if they were not vanishing
they would acquire a non-zero value after a supersymmetry transformation)

oy = ON = 5¢A = 0. (2.4.4)

These equations will typically separate into matrix equations, which project out some com-
ponents of the parameter ¢,, and scalar equations, which can be differential or algebraic.
Together with Maxwell equations they provide a solution to the equations of motion.

The condition for € to be a Killing spinor is equivalent to ¢* being covariantly constant
with respect to the supercovariant derivative. In particular by taking the commutator of
this equation one obtains the integrability condition

(DD ] % = Rupe® =0 (2.4.5)

which is necessary but not sufficient. This equation is non-differential and gives constraints
and projectors.

2.5 Magnetic gaugings

In order to obtain symplectic covariant expressions it is also possible to introduce magnetic
gauging parameters such that the magnetic gauge fields A, from (1.3.4) will be coupled to
the scalars through the covariant derivatives. A Lagrangian description of this theory is
quite involved as one needs to introduce new (tensor) fields and gauge invariances, and this
is better formulated with the embedding tensor formalism [49, 179, 194]. When gaugings are
abelian another possibility is to work directly with the BPS equations and the equations of
motion since on-shell quantities are easier to deal with: these equations are completed such
that they become symplectic covariant [52, 149]. For other works on magnetic gaugings, see
also [176, 178, 180, 196].
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2.5.1 Generalities

Introducing magnetic Killing vectors k* that are paired with the electric ones k, into a
symplectic vector

A . _
K = (i ) K= Ki ; + K7 0+ K" O, (2.5.1)
A

the covariant derivative of the scalar fields becomes
D, = 0, — A QK = 0, — Alky + Ap k" (2.5.2)

in order to respect symplectic covariance [169, sec. 4.2, 196, sec. 3]. The Killing vectors can
be expanded on the set of Killing vectors k, generating the isometries of M (these are the
same as the one appearing at the beginning of section 2.2.1)

9041\
K = 0°k,, @a< a). (2.5.3)
9/\

Hence the coefficients of the linear combination are symplectic vectors, and §** and 0%
being respectively the magnetic and electric gauging parameters.

The Killing vectors satisfy constraints from closure of the algebra. There are three
possibilities, depending if the vectors are both electric, both magnetic, or one electric and
one magnetic.

The symplectic Killing prepotentials are given by

PT = K wi — W?, (2.5.4a)

or in components
Pt = phugr A pr = T — WE, (2.5.4b)

One defines the prepotential charges (also called the superpotential)
L=V, P,  Li=(Uy,P"). (2.5.5)

In the case of FI gauging (section 2.2.2), one adds the constants g* which correspond to
the magnetic charges of the gravitini under the local U(1). The symplectic vector is denoted

by
A
G=P® = <§A) . (2.5.6)

2.5.2 Constraints from locality

To ensure the existence of a Lagrangian and, more importantly, of an electric frame (since
we derived the BPS equations from an electric frame, before doing a symplectic rotation), we
must impose locality conditions on the parameters [179, sec. 3]. Then the locality constraints
read [149, sec. 6.1, app. C] (see also [169, sec. 2])

(6,07) = 0. (2.5.7)

It is necessary to impose this condition only when the gauge group is abelian, which is the
case here [49, sec. 5]. This constraint is also a consequence of the Ward identity from which
the scalar potential (2.3.9) is obtained [180].
The constraints imply that
(K, P*) = 0. (2.5.8)

First we denote by k% the generic set of Killing vectors such that
KY =0%ky, WE = 0% w), (2.5.9)
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then using the formula (2.5.4) for the prepotential we have
(K, P*y = (K", K wi — W?)
= kY (wiky —w}) (0%,07),

and this vanishes from the locality constraint.

2.6 Quaternionic gaugings

In this section we consider only abelian gaugings of the isometries of special quaternionic
manifolds [149].
The Killing vector k9, can be expanded on the basis of Killing vectors on M}, (studied
in section 9.1)
ko = {ku, ke, ke, ky, ko, k_} (2.6.1)
with the coefficients
0% = {Ua, n, Qa, €a+; €r0s €2- 1}, (2.6.2)

using the notations of [12, 144, 145] for the parameters. Note that crp and @ are symplectic
vectors (of the base SK space M) of dimensions 2ny,

_(d ax = (@4 _aan) (2.6.3)
QA = QAN 5 apN = A_CAAN) - .0.
Explicitly this reads
ka = ki 8y = ky, + o\ Che + a4Che + exnky + conko + e_ak_. (2.6.4)

k“Y and all the magnetic parameters have

Similarly the magnetic Killing vector is written
the index A up.

All these parameters are not independent and consistency conditions impose relations
between them (see also appendix E.2). The number of constraints can be much greater than
the number of parameters, showing that some of these constraints are redundant.

The Killing algebra is abelian if the right hand side of (2.2.4) vanishes. From the algebra

with electric/electric Killing vectors we derive the following constraints [149, sec. 6.1, app. C]

0 =T(ap,bas) — T(as, &a), (2.6.5a)
0=—(Upax — Usap) + (eoaas — €onan) + (4a0x — €45an), (2.6.5b)
0= (Upax — Usayp) + (e_pax — e_sap) + (egalx — €0sQn), (2.6.5¢)
0 = o, Cax + 2(erxegn — €4 a60%), (2.6.5d)
0 = (@4 Cax — o,Cax) + 2(e4xe_A — €1p6—3%), (2.6.5¢)
0 = aiCax + 2(egpe_x — €oxe_a)- (2.6.5f)

And we recall the definition of T, 4 from (9.2.4a) We have defined
T(ap, ds) = (af\(C@g)(dtzcag) S. (2.6.6)

For the details of the computations, see appendix F.2. It is straightforward to obtain all
the other constraints (electric/magnetic and magnetic/magnetic) from the electric/electric
ones.

Without hidden vectors it reduces to

0 =Upasx — Usaa + eoaas — eosap, (2.6.7a)
0= OéR(COéE + 2(6+260A — 6+A602) (267b)
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and for egp = 0 furthermore to

0= [UAOQ; — UEO(A, (2.6.8&)
0 = o\ Cas, (2.6.8b)

which can be found in [169, eq. (2.20)].
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Part 11

Kahler geometries
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Chapter 3

Hermitian and Kahler manifolds

In N = 2 supergravity the manifold described by the vector scalars is special Kahler: hence
we first start by describing separately the Kédhler manifold and the more generic Hermitian
and complex manifolds of which a Kahler manifold is a subcase. Then in chapter 4 we will
explain what are the additional conditions for making a Kéahler manifold special.

Great references for this section and the next one are [165, chap. 13, 197, chap. 8] (see
also [198, sec. 9.A, 199]).

3.1 Hermitian manifold

3.1.1 Definition and properties

Consider a manifold (M, g) of (real) dimension 2n and with metric
ds? = gap do*de®, a=1,...,2n, (3.1.1)
endowed with a torsionless Levi—-Civita covariant derivative, i.e.
Dygi; = 0. (3.1.2)

Definition 3.1 (Almost-complex manifold) The manifold M is almost-complex if it
admits an almost-complex structure J,%(¢) which square to —4§,°
J,cJl =50 (3.1.3)

An almost-complex manifold is necessarily even-dimensional (in fact it can be shown that
any such manifold is almost-complex). The definition (3.1.3) implies that the eigenvalues of
J are +i (and of equal numbers).

From the almost-complex structure one defines the Nuijenhuis tensor
T

No© = J, 0,y — 1,0, (3.1.4)

The qualifier "almost" is used to indicate that J may not be defined globally.

Definition 3.2 (Complex manifold) An almost-complex manifold (M, J) is said to be
complex if J is integrable, i.e. if it can be defined globally.

For a complex manifold the Nijenhuis tensor vanishes

N,,¢ = 0. (3.1.5)
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Definition 3.3 (Hermitian manifold) A manifold (M, J) is said to be hermitian if J is
compatible with the metric

T Gea Tyt = gap = JgJ' = g. (3.1.6)
Using the metric to lower an index produces the antisymmetric tensor
Jab = J,Gen, Jab = —Jba (3.1.7)
as can be seen by multiplying (3.1.6) by .J,°
9abSe" = Jea,
Ja 9ea Ty 1" = =J,90a0 " = gapde" = — T, gee = —Jae

(in one word, hermicity implies antisymmetry). Thus it defines a 2-form called the funda-
mental form of M, denoted by (2

Q= —Jup do® A deP. (3.1.8)

Note that € is real.
Since Q" is a (2n)-form nowhere vanishing it can serves as a volume element on the
manifold [197, sec. 8.4.2].

3.1.2 Complex coordinates

Locally it is possible to introduce complex coordinates
" = (1°,7), i,i=1,...,n (3.1.9)
such that the metric reads
ds? = g;;dridr? + gp; d7'd7? = 2 gz dridF. (3.1.10)
Note that this metric is real since it was in the original coordinates, and as a consequence
9i7 = 9j7- (3.1.11)

A generic complex manifold that is not hermitian cannot be set in this form [165, sec. 13.1].
Conversely it can be shown that in coordinates where J is diagonal, the definition (3.1.6)
implies that g;; and its conjugate vanish. In matrix form one has

_ (0 gy
Jab = (gjz 0 ) . (3.1.12)

The index ¢ and 7 are called holomorphic and antiholomorphic. The convention is to write
the holomorphic index first. Moreover it is always possible to use the metric to convert a
(anti)holomorphic index into its counterpart. For example one can use the metric on 4,7 to
get Aij B

Aij = gjinJ (3113)

or O; to &'. Vectors of dimension n, will sometimes be denoted in boldface, for example 7.
In these coordinates the almost-complex structure takes the diagonal form

J,b = idiag(s;, —6,7). (3.1.14)

Inserting this expression into (3.1.8), one obtains the fundamental form in complex coordi-
nates

Jij = —1 9i7, (3115&)
Q = 2ig;;dr AdF. (3.1.15b)
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Due to the hermicity some Christoffel symbols vanish

=T =0 (3.1.16)

The Dobeault operators are defined by
d=09+9, 0 =dr' o, 9 = d7 o;. (3.1.17)

A useful relation is

20 = f%d(afa). (3.1.18)

3.2 Kahler manifold

3.2.1 Definition

Definition 3.4 (K&dhler manifold) A hermitian manifold M is said to be Kéhler if the
fundamental form (2 is closed
dQ = 0. (3.2.1)

In this case 2 is also called the Kéahler 2-form.
This is equivalent to J being covariantly constant!
Dy Jij = 0. (3.2.2)

A Kaihler manifold has a holonomy group U(n). The K&hler form is a symplectic form,
and as such Kéhler manifolds also have a symplectic structure [199, p. 20].

Example 3.1 Examples of Kédhler manifolds include:

o Calabi-Yau manifolds, for which the holonomy is restricted to SU(n). They have a
vanishing first Chern class ¢; and admit a non-vanishing holomorphic n-form [199,
sec. 5].

e All Hermitian manifolds of real dimension 2 due to the fact that any 2-form in 2
dimensions is closed [199, p. 20].

e The complex projective planes CP™.

In complex coordinates the condition (3.2.1) translates to
dQ = —i(9;g,5 — 9;g;;)dT" A dTT A A7 +ce. =0 (3.2.3)
where the expression (3.1.15) of Ju, was used. Then the Kéhler form is closed if
&'gj,; — 09,z =0. (3.2.4)

The latter implies the existence of a real function K(7,7) called the Ké&hler potential that
determines the metric

gi; = 0;0;K. (3.2.5)

This presents a huge simplification since a single function gives the full metric. The Kdhler
cone is defined as the range of coordinates 7¢ for which the metric is positive definite.

ndeed if a form is closed, then one gets derivatives of the components which can be transformed to
covariant ones since the Christoffel symbols will vanish by antisymmetry.
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This function is not unique as shifts — called Kéhler transformations — by holomorphic
and antiholomorphic functions f(7) and f(7)

K(1,7) — K(1,7) + f(1) + f(7) (3.2.6)

leave the metric invariant. Moreover K does not need to be defined globally, and the Kéhler
potentials on various patches are related by Kéahler transformations

Kj(1,7) = Ki(7,7) + fij (1) + fi;(7). (3.2.7)
Using Dobeault operators (3.1.17) one can write the Kahler form as

Q = 2i 00K. (3.2.8)

3.2.2 Riemannian geometry

Recall that ' )
because the manifold is hermitian. Additional symbols vanish because of the Kéhler condi-

tion

=T =0 (3.2.10)

Then the only non-vanishing symbols are
I = %0910 = 970,000, K (3.2.11)
and their conjugates. The trace of the Christoffel is particularly simple
I — 9
IV,;=0;Indetg. (3.2.12)

Similarly only the component R,;; of the Riemann tensor and its permutations do not
vanish

Ry 7= —0" (3.2.13a)
Rizei = 0i0395 — 97" 059,32 Oign (3.2.13b)
= 0,0,000;K — g™ (0,070, K )00 01, K. (3.2.13¢)
The Ricci tensor -
Ry = RFyy; = =" Ry (3.2.14)

can be obtained directly from
Rij = 7(91'(‘%*111 det g. (3215)
3.2.3 Symmetries

To each symmetry of the manifold preserving both structures g (in order to be an isometry)
and J corresponds an holomorphic Killing vector £ which generates infinitesimal transfor-
mations (or holomorphic isometries) through Lie derivative [170, sec. 7.1, 200, sec. 2]: its
Lie derivative acting on g and J should vanish

Lygij = Vaky + Vpke =0, (3.2.16a)
Ek‘]ab = Jcbvakc - Jacvcka =0. (3216b)

Together these implies the invariance of the Kéhler form

L =0. (3.2.17)

25



In fact the last requirement is more fundamental than the vanishing of L Jij , since it means
that the volume is invariant (the Lie derivative of the volume element Q™ vanishes) and we
will see that a condition similar to L) = 0 is the correct on in the case of quaternionic
manifold.

Using the explicit formula (A.2.11) for £ and the fact that dQ = 0 gives

dixgQ = 0. (3.2.18)

Then the Poincaré lemma states that it exists a (real) function P called the moment map
(or Killing potential) such that
i = —2dP;. (3.2.19)

Py is not unique as it can be shifted by a constant (note that it depends on k)
Py, — P, +&. (3.2.20)

In the rest of this section we omit the index k.
In complex coordinates the condition (3.2.16b) gives the constraints

Osk? =0, Ok? =0, (3.2.21)

which mean that the Killing vector (with the index up) splits into a holomorphic and an

antiholomorphic parts ' )
k=k%(¢)0q = k'(7)0; + k' (T)0. (3.2.22)

Then a variation of the coordinates with parameter 6 reads
6Tt =0k (1), 57 = 0k (7) (3.2.23)

and the transformation preserves the split in holomorphic and antiholomorphic coordinates.
On the other hand the Killing equation (3.2.16a) gives two conditions

Vikj +Vjki =0,  Vik;+ Vik; = 0. (3.2.24)

The first equation is trivial since

Vikj = g,z VikF = g;70:k" =0 (3.2.25)

In coordinates the definition (3.2.19) of the moment map reads (from now on we remove
the index k denoting the vector)

ki =gk’ =i 0P, ky = —i O;P. (3.2.26)

Then the second equation of (3.2.24) is immediately satisfied. An equation for P can be
obtained from the first condition in (3.2.24)

V:0,P = 0. (3.2.27)

Kéhler manifolds are simpler than arbitrary manifolds because a Killing vector is fully
determined by one unique real function, mirroring the fact that the metric is given by the
Kéhler potential.

In general the Kéhler potential is not invariant under Killing transformation which can
induces a Kéhler transformation

LiK = (KO + k'O K = f + f, (3.2.28)

which leaves the metric invariant. This makes possible to find an explicit expression for P.
Indeed using the expression of the metric, (3.2.26) can be rewritten as

ky = gigh' = K'0:05K, (3.2.29)
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and comparing with (3.2.26) gives
P=i(k'o;K —r) (3.2.30)
where r = (7). This last function can be identified by requiring the reality of P
P+P=2P= (k0; +k'O)K =1 +T. (3.2.31)
Then the equation (3.2.28) implies that » = f and one obtains
P=i(k'o,K — f) = —i(k'0; K — f). (3.2.32)

In particular any constant shift £ of the prepotential can be taken into account by shifting
f to f+ €. There will be an ambiguity only for U(1) factors.
In general a metric admits several Killing vectors kj that generate a non-abelian group
with Lie algebra
[ka, ks] = fastka. (3.2.33)

All quantities then get a A index. The bracket does not mix holomorphic and antiholomor-
phic vectors, and in components they read

05k — kLOKY = fas Stk (3.2.34)
with ﬁA = EkA-
For a simple non-abelian group the moment map can be shifted by the constants such
that they transform into the adjoint
LAPs = (K0 + k\0;) Py = fr" Pa. (3.2.35)
This last condition, which is also called the equivariance condition, can be rewritten as
kagishy, — ksgigky = ifas® Pa. (3.2.36)

There are four families and two exceptional cases of symmetric Kahler space [165, p. 270]

SU(p, q) SO*(2n) Sp(2n) SO(n,2)
SU(p) x SU(q) x U(1)’ U(n) U) = SOm) xS0R2)" 55 a7
E6,—14 E7 _25

SO(10) x U(1))  EgxUQ1)

3.2.4 Kaihler-Hodge manifold

Kéahler-Hodge manifolds (or Kdhler manifold of restricted type) are discussed in [171, sec. 2,
170, sec. 4.1, 4.2, 186, sec. 4.1, 165, sec. sec. 17.3.6, 17.5.1, app. 17A]. In the context of
supergravity, the presence of fermions implies a Dirac-like quantization condition on the
Kahler form and this is equivalent to the Hodge condition [186, sec. 4.1].

Definition 3.5 (Kdhler-Hodge manifold) A Ké&hler—-Hodge manifold M is a Kéhler
manifold for which it exists a line bundle £ — M such that the first Chern class is equal to
the (de Rham) cohomology class of the Kéhler form

a(L) =[] (3.2.38)
Given a metric h(z%, z%) on the fiber, the connection reads?

0 =0Inh=h"'0h (3.2.39)
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and similarly for §. Then the cohomology class is

c1(L) = 2 [00] = 2i [001n h). (3.2.40)
Recalling (3.2.8) ~
Q =2i 00K, (3.2.41)
the definition implies that the metric is given by the exponential of the Ké&hler potential
h=ef = 0 =0K. (3.2.42)

Note that a Kéhler transformation corresponds to a gauge transformation on 6
0 — 0+ 0f, (3.2.43)
since the derivative of the Kéhler potential transforms as
0K — 0K+ 0;f. (3.2.44)

Then the transition function between two patches if given by e/ which corresponds to
a Kéahler transformation. A line bundle can be mapped to a U(1) bundle & — M, and the
corresponding transition function is exp(i Im f). The connection on the line and on the U(1)
bundles are related by

A=Tm0= % 0 —0). (3.2.45)

A way to motivate this result is that 0;f = 2i9; Im f, whereas taking the real part would
give a total derivative and thus a vanishing curvature [165, p. 379]. Using the expression for
f, one obtains

A= =2 (0K dr' — 0K dF'). (3.2.46)
In real coordinates this can be written

1
A =3 J Lo K. (3.2.47)

A field 9 (corresponding to a section of U) is said to be of weight (p, p) if it transforms
as .
W — ot = e 3SRy (3.2.48)

under a Kéhler transformation (3.2.6). Then the covariant derivative is
Dyl = O + 17 gk + g BK W, Dyl =0 + g O K . (3.2.49)

Moreover the conjugate field 15; has weight (—p, —p). In general one has p = —p from the
fact that the derivative of a section ¢ on U is
D¢ = (d + ip A)¢. (3.2.50)

Then one can map the sections of U into sections of £ through

U= e 5Ky, (3.2.51)
such that the covariant derivatives are
DU = 9,0 417, UF 4 p O, K 0, Dy’ = ;0. (3.2.52)
If 4 is holomorphic then the field ¥? is covariantly holomorphic
ol =0 = D;¥/ = 0. (3.2.53)
Note also that
Riy = [Di,Dj] = igi; = —Ji3 (3.2.54)

meaning that the curvature of the bundle is the Kédhler form.

2h is just a function since the line is 1-dimensional, such that h=! = 1/h.
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Chapter 4

Special Kiahler geometry

Special Kéhler (SK) manifolds appear as target spaces of non-linear sigma models of the
vector scalars in N = 2 supergravity. These spaces correspond to Kédhler—Hodge manifolds
endowed with a symplectic bundle. The U(1) bundle associated to the Hodge condition has
the interpretation of the U(1)gp R-symmetry of the supersymmetry algebra. The simplest
formulation is using projective coordinates which are necessary for using a symplectic covari-
ant formalism, which can then be used to formulate more efficiently the N = 2 theory. In
particular many analytic results for BPS and non-BPS solutions rely heavily on this formu-
lation, and additionally some quaternionic Kéahler (QK) manifolds — and more specifically
most of those of interest in IV = 2 supergravity — can be described as a fibration over a SK
manifold (see chapter 8.5). Finally both for SK and QK manifolds the isometries are more
easily understood using symplectic covariant expressions. For these reasons we propose to
review these manifolds in some details: we first start by defining the manifold, its projective
parametrization and its Riemannian properties. Then in the following chapters we cover in
details other important aspects such as the symplectic invariants, the classification of the
homogeneous spaces and the most important models (called quadratic and cubic) and at
the end the isometries.

The first axiomatic definition was given in [167], and it was refined in [186] (see also [201]).
Major references on the topic are the book [165] and the papers [170, 188, 189].

4.1 Definition

Definition 4.1 (Special Kdhler manifold) A special Kdhler (SK) manifold (M,,g) of
real dimension 2n, with complex (or special) coordinates {7,7'}, i = 1,...,n,, is a Kih-
ler—Hodge manifold equipped with a (flat) holomorphic vector bundle with group Sp(2n, +
2,R), and for which there exists a section v such that the exponential of the K&hler potential
is given by

K = —1In(—i (v,0)) (4.1.1)

where (-, -) denotes the symplectic inner product [170, sec. 4, 186, sec. 4.2.2, 167, sec. 4]. An

additional necessary property is
(v,0;v) = 0. (4.1.2)

Other equivalent definitions can be found in [186, sec. 4.2]. Since this manifold is Kéh-
ler—Hodge it satisfies all the properties from chapter 3.

The line and vector bundles are respectively denoted by £ — M, and SV — M,,. The
section v is an element of the tensor bundle £ ® SV.

IThis condition was missing in [167].
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The metric is written

ds* = 2 g;zdridr, i=1,...,m, (4.1.3)

4.2 Homogeneous coordinates and symplectic structure

4.2.1 Vectors

Let’s denote the components of the section v by

XA
U(FA>’ A=0,...,n,. (4.2.1)

The X* are called homogeneous coordinates (or projective) coordinates and they provide a
projective parametrization of the manifold such that
Xi
The special coordinates are left unchanged by rescaling of the homogeneous coordinates X*.

As a consequence the section v are defined up to rescaling

v — e My, (4.2.3)

Ti

(4.2.2)

A convenient gauge choice is?

X=1, Xi=r1 (4.2.4)

The transformation properties of this section will be addressed in more details in section 5.1.

We restrict ourselves to the case where the components F can be derived from a pre-
potential F' which is an homogeneous (holomorphic) function of order 2 in the X

F(AX) = M2F(X). (4.2.5)
Then one has OF
One can write [170, sec. 4.5, 185, sec. 5]
F(X% 1) = (X°)*f(r) (4.2.7)

where f(7) is invariant under rescaling of the coordinates due to the property (4.2.5).
More generally a symplectic vector A of dimension 2(n,, + 1) is defined by

A= <2‘i> , (4.2.8)

where the upper and lower components are distinguished only by the positions of the index
(and from the vector itself by the presence of the index).
The symplectic 2-form € reads explicitly

0— <_01 (1)) _ (4.2.9)

It defines a scalar product

(A,B) = A'QB = A*B) — BMA,. (4.2.10)
Sometimes we will need to write explicitly the symplectic indices
AM = (ﬁA) , Qun = ( 01 (1)) , M=1,...,2(n,+1). (4.2.11)
A _
With these notations the symplectic product is
(A, B) = AMQ)nBY. (4.2.12)

2Sometimes the name "special coordinates" is used to designate explicitly this gauge choice.
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4.2.2 Metric and Kahler potential
The Kahler potential is

K =—In(—i (v,9)) = —Ini(X Fy — X F)). (4.2.13)

This definition can be understood from the following fact: the inner product between v
and its conjugate transforms as

(v,0) — eI~ (,3), (4.2.14)

under rescaling of v (4.2.3), and one recognizes in the exponential a possible Kéhler trans-
formation [188, p. 4, 167, sec. 2].
The metric is derived from the Kéhler potential

gi; = 0;0;K. (4.2.15)
An expression in homogeneous coordinates is given by [165, p. 445]
gi7 = 2Im Fpy; 0, X20; X >, (4.2.16)
The metric is invariant under Kéahler transformations
K—K=K+f+/. (4.2.17)

Let’s come back to the condition (4.1.2): despite that v is a section of the bundle, the
covariant derivative is not necessary because

(v, Djv) = (v, 0;v) (4.2.18)

since the symplectic product is antisymmetric [186, sec. 4.2.2].

4.2.3 Covariant holomorphic fields
The manifold is K&dhler-Hodge which means that there is a U(1) bundle (see section 3.2.4
for more details). The section v has weight p = 1
1
D;,v =0;v+ 5 0; Kv (4.2.19)
and is holomorphic
A =0, (4.2.20)

such that one can define the holomorphic section

x (LA
V=e2v= (MA) (4.2.21)
and its covariant derivative _
_py=(/a
U,=D;V = (hiA . (4.2.22)
One then has
D,V = 0. (4.2.23)

Note that the coordinates 7° can also be written as
I

Moreover the section V is invariant under Kéahler transformations by construction (see the
previous section).
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Taking the exponential of the Kéhler potential (4.2.13) and using the expression of the
sections (4.2.21) give the normalizations

YVy=i, (U,U;) = —igy (4.2.25)

The last relation can be used to obtain the metric if one knows Uj;.
Decomposing V into its real and imaginary part, (4.2.25) implies that

1 _ 1
(ReV,ImV) = —3 <Re U;,Im UJ—> =3 9ii- (4.2.26)

The symplectic product of a vector A with V and U; are defined by
T'(A)=(V,A), I;(4) =D;I'(A) = (U;, A) (4.2.27)

and similarly for the complex conjugates I'(A) and T;(A). Note that these operators are
linear and T';(A) can be defined only if the vector A is independent of 7%. In particular one

has .
(V) =i, F(ReV):%, F(ImV):—%, I(U;) = 0. (4.2.28)

Note that as a consequence of the previous relations one has

D.T(A) =0,  D;D,['(A) = g;; T(A). (4.2.29)

4.2.4 Prepotential properties
The nth derivative of the prepotential is

oF

Fayen, = OXM . 9X AN

(4.2.30)

The homogeneity of the prepotential implies several identities for its derivatives [185,

sec. 2, 165, p. 433]

XA By oa, =B =n)Fa, o, , (4.2.31)
(for n =1 we define Fy, 5, = F) and in particular [12]
F= %FAXA, Fy = Fs X7, FysaX2 =0. (4.2.32)
The special case n = 3 implies the following relation
dFp = FppdX™> (4.2.33)
since
dFy = d(FrsX™) = FAxdX® 4+ XPdFpy = FApdX™ 4+ XEZErsdX . (4.2.34)

Two prepotentials that differ by a quadratic polynomial in X* with real coefficients are
equivalent as they do not contribute to the Kéhler potential [202, p. 5, 144, p. 5]. Moreover
such terms can be removed/added by a symplectic transformation (see section 5.1).

4.3 Homogeneous matrices

4.3.1 Hessian matrix

The Hessian matrix F of the prepotential F' is written
Fps, = OpFy = OsF)y. (4.3.1)

In section 4.4 we will prove that Im F has n, positive and one negative eigenvalues.
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4.3.2 Period matrix
The period matrix® [165, p. 448]

Im Faa Im Fss X2AXE

Nis = Fas +2i — = P XAXE (4.3.2)
is symmetric and is an object that allows to lower the index of LA as
My = NysL*. (4.3.3)
On the other hand f} and h;y are related by
hin = Nas i (4.3.4)

This means that A is not a metric for A index. Note also that Z is negative definite, which
is a consequence of the positivity of the metric. The real and imaginary parts of this matrix
are written as R and 7

Nas = Ras + i Ips. (4.3.5)

The inverse of the matrices is denoted with upper indices.
There are some useful identities

_ 1 1
LMpe LY = 3 s fr = —35 9i7 LATys f7 =0, (4.3.6a)
_ 1 _
UAS _ f{\g”f? — ,§IAE _IALE, (4.3.6b)

4.4 Symplectic matrices

Let’s denote by Tax a symmetric matrix of dimension (n, + 1), and define its real and
imaginary parts?
T=R+:iT. (4.4.1)

Then the (real) symplectic matrix M(T) is defined by [203, sec. 3.2, 40, sec. 1] (see also [52,
p. 5, 165, p. 514, 46, app. A, 53, app. A])

- T L) (k- (R ) s

of dimension 2(n, + 1), where 1 denotes the identity matrix of dimension (n, + 1). The
matrix is symmetric since R and Z are symmetric. It is also symplectic because it satisfies
the relation

MOM=Q = MOM=2Q, (4.4.3)

the second relation following from the symmetric shape of the matrix.
The product® of  with this matrix M

I'R -1
M =— (I+ RI7'R RZl) (4.4.4)
is also symplectic
QM) Q(OM) = Q. (4.4.5)
Two matrices of this type are of interest
Mi= M) =M, M_=M(F), (4.4.6)

3This expression could also be given in terms of L* because it has weight 0.
4Later we will use normal letters instead of curly ones for the real and imaginary parts.
5Some authors call this product M [169, sec. 2.2].
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where F and A are respectively the period (4.3.2) and Hessian (4.3.1) matrices. Similarly
by convention R and Z without further specifications are the real and imaginary parts of
N.

The product QM defines a complex structure on the bundle [52, sec. 2.2]

QMY =iV, QMU; = —iU;. (4.4.7)
For this reason eigenvalues of QM are +i (n, + 1 of each). This matrix squares to —1
(OM)? = —1. (4.4.8)
This last expression gives the inverse of QM as
QM) = -aMm (4.4.9)
and this can be rewritten (4.4.5) as
(QM)IQ = —Q(QM). (4.4.10)
Since M and QM are symplectic they preserve the inner product and they can be moved
e (OMA, QMB) = (A, B), (OMA, B) = (A,QMB). (4.4.11)
Since the vectors (V,V, U;, U;) form a complete basis of M, [204, app. A], the identity
and M can be expanded
1=iVVQ— iV —ig" U;UI0 + i g U;ULQ, (4.4.12a)
—OM = VV'Q + VYO + g7 U U + g7 ;U (4.4.12b)
The decompositions of 2 and M are straightforward. These relations can be checked by
multiplying them on the right by V and U; and their conjugates before using the orthonor-

mality (4.2.25) (implying that only one term of the sum contributes) and the properties of
the complex structure (4.4.7); as an example multiply the second one by V

MY = —iV =VVIQV. (4.4.13)

In particular any (real) vector A on can be expanded on the basis (V,V, U;, U;) through
(4.4.12a) [53, app. A]

A=i(V, AV —i(V,A)V+ig7(U;,A)U; —ig”? (Us, A) U, (4.4.14a)
=iT(A)V —iT(A)V+ig"Ti(A) U; —ig¥ T:(A) U; (4.4.14b)
=2Im (V(4,)V) —2¢7Im ((U;, A) U;) (4.4.14c)
=2Im ([(A) V) — 297 Im (T;(A) U;). (4.4.14d)

From Q and M another matrix can be defined [52, sec. 2.2]
1
C= 5(./\/1 —eq i) (4.4.15)

This matrix is hermitian [205, sec. 3]
ch=c. (4.4.16)

and from (4.4.7) it satisfies the twisted self-duality
CV = —£qiQV. (4.4.17)
Using equation (4.4.3) one can show that

COC = eqiC. (4.4.18)
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Taking a symplectic vector A, the decomposition (4.4.12b) implies the sum rule [203,
sec. 3.2]

- % APMA = [D(A)? + Ta(A)2. (4.4.19)

Hence M defines a quadratic form which is negative definite if the metric is positive defi-
nite [165, p. 448], which reflects the fact that Im A/ is negative definite. This is a consequence
of the fact that R does not play any role since, defining the vector

A= (-173 (1)) A, (4.4.20)

one can rewrite the previous relation as

ATMA = A (g Iol) A (4.4.21)

Similarly M(F) defines a quadratic form through another sum rule
1
) A M(F)A = [T(A)]? — T5(A)%. (4.4.22)

This shows that Im F has one negative and n, positive eigenvalues.
Note also the relation

- % AM(F)A = % AMA +2|D(A). (4.4.23)

4.5 Structure coefficients

For a summary of this section, see [170, sec. 4.3, 206, sec. 4] (and also [171, sec. 2, 167,
sec. 2]).
The structure constant of the SK space is a symmetric 3-tensor defined by

Cijr = (DiUj, Uy) (4.5.1)
and it is covariantly holomorphic of weight 2
D Cijr = 0. (4.5.2)

(this covariant derivative does not involve Christoffel symbol). Notice that, as it is a 3-tensor,
the covariant derivative reads explicitly

DiCjké = aicjkﬂ + (&K)Cju + Fmijcmkﬂ + Fmiijm[ + mec_jkm (453)

(this expression is symmetric in i), and we recall the expression of the Christoffel symbol

Fljk = _gwajgké- (4.5.4)
From this tensor one defines the rescaled structure constant

Wik = e X Ciji (4.5.5)

which satisfies
OmWijr = 0. (4.5.6)

The complex conjugate is written C}J-,;, and the quantities with upper indices are obtained
from o o o o
ngk —_ g”g]Jgkaijk7 Cz]k —_ g”g]Jgka;j];- (457)
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The corresponding rescaled quantities are

Witk = giagiighkily, . — o=K ik, (45.5)

As a consequence one finds )
DiU]‘ = ’L'Cijkgkkﬁ]; (459)

which implies )
D;D,;T(A) = i Cyjrg"™Ti(A). (4.5.10)

Given a vector A the so-called cubic norm reads [207, sec. 2.1, 40, sec. 5]
N(A) = Cij, TH(ATI(AT*(A),  N(A) = C T (AT (A)F(A). (4.5.11)

Note that
N(WV)=0= NReV)=N(ImV)=0 (4.5.12)

because of the orthogonality conditions (4.2.25).
One defines finally the rank 5 E-tensor
m mm 1 =
E™ ke = 97" Emijkes Erijke = 3 DaDiCie. (4.5.13)

It is symmetric in all covariant indices. An explicit expression can be computed

4 o _
E™ ke + 3 Clijudpy™ = g™ 9" g™ C(i5CrtypCrmini- (4.5.14)

4.6 Riemannian geometry

The Riemann geometry of SK manifolds is described in [202, 185, sec. 2, 167, sec. 2], and
additional details on symmetric spaces are in [40, sec. 5, 144, 208].

4.6.1 General properties

Since the space is Kéhler, the expressions from section 3.2.2 can be used. But the additional
properties give alternative expressions.
The Riemann tensor read

Rz = 9i39n7 + 9529%5 — 9" Cikm Cizi (4.6.1)

the sign being chosen such that R < 0 [206, sec. 4]. In the rigid limit only the last term
survives.
Contracting with the metric gives the Ricci tensor

Riz = ngRiij = —(ny + 1)gi; + gkzgmﬁcikmcj—zﬁ- (4.6.2)
And finally one finds the curvature
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4.6.2 Symmetric space
The space M,, is symmetric if the Riemann tensor is covariantly constant
Din Rz, = 0. (4.6.4)

This implies that®
D(Ciji. = D Ciyjie = 0, (4.6.5)

and as a consequence the E-tensor (4.5.13) vanishes

From (4.5.14) this implies the relation

4 o _

3 Cljkgom = 9" 9" C(i5 CroypCrmaps (4.6.7)
and thus )

9" Rim11aCnlke) = —3 9Gim O jke) - (4.6.8)

6Note that the next two equations are necessary conditions for the manifold to be symmetric, but they
are not sufficient [206, sec. 4].
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Chapter 5

Symplectic transformations and
invariants

The description of SK manifolds in terms of the section and its derivative is symplectic co-
variant and we are free to change the parametrization of the bundle section V by performing
a Sp(2n, +2,R) rotation. This means that the expressions are not invariant when written in
coordinates (for example the prepotential changes) but they keep the same form when given
in terms of symplectic vectors. This can be compared to general relativity where expressions
are covariant/invariant with respect to diffeomorphisms/isometries. A given basis is called
a (symplectic) frame.

The next question is to construct objects that are invariant under isometries. It appears
that a quartic symmetric tensor exist for SK symmetric manifolds G/H since the group G
is of type E;. This invariant tensor plays an important role in many places, such as the
definition of isometries of special quaternionic manifolds (see chapter 9), in the construction
of analytic solutions to the BPS equations or in some important quantities defining the
black holes, such as the area of the adSy radius. This structure is most clearly seen using a
symplectic covariant formalism, which also simplifies the formulation of the equations and
of the Lagrangian.

5.1 Symplectic transformations

References include [170, sec. 2, 188, 189, 186, sec. 2, app. A].

5.1.1 Holomorphic section

A matrix U is symplectic if
UOU = Q. (5.1.1)

Parametrizing the matrix as
(8 8- (5 2D
this implies the following constraints
Q'S — S'Q =0, R'T —T'R=0, QT — S'R=1. (5.1.3)
From these one can determine the dimension of the group [165, p. 85]

dim Sp(2n,, + 2,R) = (n, + 1)(2n, + 3). (5.1.4)
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The matrix U acts on V as

V=uy = {L/A = Q5L+ R Ms, (5.1.5)
M) = S\s L¥ + T\ *Ms.
Since the matrix is constant it acts in the same way on U;
Ul =UU; = D;UV). (5.1.6)
In order to preserve the relation (4.3.3) in the new frame
My = NpsLl® = M) =Ny L™ (5.1.7)
it is necessary for the matrix N to transform as
N'=(S+TN)@Q+RN)™". (5.1.8)
For this one needs to replace My in (5.1.5)
L'=(Q+ RN)L, M =(S+TN)M =N'L". (5.1.9)
For some applications it is convenient to consider infinitesimal transformations
U=e'~144 (5.1.10)
where 4 € sp(2n, + 2,R) and one writes
5V = UV. (5.1.11)
The condition (5.1.1) translates into
U+ Q8 =0, (5.1.12)
or as
t=—¢', r=rt s=s' (5.1.13)

in terms of the parametrization

= <(SJ Z) (5.1.14)

5.1.2 Section and coordinates

The variation of the homogeneous coordinates can be written as [185, sec. 6, 209]
SXA = AL XT 4 ATy, = (qAE + TAEFEZ)XE (5.1.15)

using the homogeneity of F. One sees that 6X° # 0 which implies that the two sets of

special coordinates

) Xi . X/i

L 7= (5.1.16)
XO XIO

are not equivalent anymore, i.e. the transformation does not preserve the gauge choice

imposed on X° for defining the special coordinates. For this reason one needs to rescale the

coordinates X by multiplying by X’0/XY. Infinitesimally this implies
g

T

o1 — (qiz n riEFEZ)TZ i (qoE n TOEFEE)TE (5.1.17)
where 70 = 1.
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A first condition on these transformations is that [144, app. C]

aX/A

0xX*>

is non-singular, which means that the transformation of X’* in terms of X* (with F) taken
as a function of X*) is invertible.

If one wants to keep the same class of Lagrangian — derivable from a prepotential — then

one also needs that it exists a function F’ such that

_ OF'(X')

40 (5.1.18)

Fy = XA (5.1.19)
This is the case when
, _ OF}
Frs = XS (5.1.20)
is symmetric.
The new prepotential F’ is obtained by using the relation
1
F' = 3 130G (5.1.21)
and the explicit expression for F{ and X'*.
The expression for the new prepotential is
1 1
F'(X')=F(X)+ XS'"RF + 3 XS'QX + 3 FT'RF (5.1.22)

where all F' except in the first term are denoting the vector Fy.
It is always possible to find a frame where a prepotential exists [186, sec. 4.2].

5.2 Symplectic invariants

Any quantity made from symplectic products behaves as a scalar under symplectic trans-
formations — and by an abuse of language we write sometimes "symplectic invariant". This
corresponds to H-invariance [210, sec. 1]. In particular this is the case of the structure
constant (4.5.1) since it is defined as a symplectic product, and — given a vector A — of the
products I'(A) and I';(A), and of the cubic norm N(A), given by (4.2.27) and (4.5.11).

If the manifold is a coset M, = G/H, then symplectic scalars with no free (anti)holo-
morphic indices are only H-invariant if the coordinates are fixed. Conversely H-invariant
expressions are also symplectic covariant.

In the following invariants associated to a vector A are built, and we write I' = T'(A),
I'i = Ty(A) and N(A) = N. The independent invariants were listed in [40, sec. 5] (see
also [210, 42, sec. 2]). Two invariants are given by

1
L(AV) = =5 ATMs = INEES VI (5.2.1)
They can be written in terms of the two invariants
iy =|T?, (5.2.2a)
ip = |Tif*. (5.2.2b)
Two others can be introduced
1 _
iz = 30 (TN +TN), (5.2.2¢)
ig = % (N —T'N), (5.2.2d)
along with the Poisson bracket
; N 7 ON ON i A TipkTik
is={N,N} =g % r7 = 9 ik Gy TITFTITE, (5.2.2¢)
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5.3 Duality invariants

In this section we assume that the SK space is symmetric

G
= — . .1
My = 7. (5.3.1)
where G is called the duality group.
5.3.1 General definition
A duality invariant
I, = I,(A,V) = I,,(I'(A),T;(A)) (5.3.2)

(where A is any symplectic vector) is a homogeneous polynomial of order n which is invariant
under G-transformations (i.e. under the isometries). One consequence is that it does not
depend on the manifold coordinates [40, 210, footnote 1]

Oil, =0 < I, = I,(A). (5.3.3)

In d = 4 duality invariants for all symmetric manifolds G/H are quartic,! i.e. n = 4.
This is a consequence of the fact that the group G is always of type E; [148, 151, 211].

Definition 5.1 (Er-type Lie group) A group of type E7 is a Lie groups for which there
exists a representation R such that (A; € R in the following) [147, sec. 4, 148, sec. 2.1]:

1. R is symplectic, which means that the singlet 1 sits into the antisymmetric product
1=(R xR),, (5.3.4)

and the associated invariant tensor C corresponds to the symplectic metric (skew-
symmetric 2-form). The latter defines a symplectic product for vectors in R

(A1, Ap) = CpyyAM ALY (5.3.5)

2. There exists a unique invariant symmetric 4-tensor ¢ (called a primitive G-invariant
structure)

1=RxRxRXxR),, (5.3.6)

and then one can define the map I, : R* = R
I4(Ay, Ay, As, Ay) = tanpoAM AY AV AS. (5.3.7)
3. The trilinear map I} : R® — R defined by
(I3(A1, Az, Az), Ag) = 1(Ar, Ag, As, Ay), (5.3.8)
satisfies

(I3(A1, Ay, Ay, I (Ag, Ag, Ay)) = —214(Ay, Ay, A, Ag) (Ar, Ag). (5.3.9)

These properties are linked to the connection between Jordan algebras (and Freudenthal
triple system) and special K&hler manifolds. They imply various identities for the quartic
invariant.

TAs we will see later, the groups are degenerate for quadratic prepotential, and there is a quadratic
invariant.
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5.3.2 Quartic invariant

A quartic invariant can be defined for symmetric SK manifold [40, sec. 5] (for other refer-
ences, see [207, sec. 2.1, 151, sec. 4, 212, sec. 4.3, 85, app. A])

Iy = (iy —i2)* — 4ig —i5 (5.3.10a)
or using explicit expression
2 242 21 - — i — — = = T
Ii= (TP = 03f°)" - 3 (TN =T N) — " CijpCry TVT*TIT. (5.3.10b)

This expression does not depend of the symplectic frame and is invariant under diffeomor-
phisms of M, (detailed in section 7) [151, sec. 4].

The above general expression is sometimes said to be given in the complex basis [207] (as
opposed to its expression for cubic prepotentials which is real). In [212; sec. 4.3] it is called
the "entropy functional". This quartic invariant can be built directly from the generators of
the group G [213, sec. 3, 211].

5.3.3 Invariant tensor

Then one can define a symmetric 4-tensor [151, sec. 4, 85, app. B|

4
tMNnpPQ = 8AM68A%2/}4>P8AQ' (5.3.11)
Explicit expressions for this tensor can be found in [212, sec. 4.3].
Then one can define a function I that takes four arguments
I,(A,B,C,D) = tynpoAMBNCP D@ (5.3.12)
along with its gradient
IL(A,B,OYM = QME 1 pn po AN BPCO (5.3.13)
where 2 is used to get a vector and not a form.
Finally one defines the formulas for equal arguments
L4(A) = %Q(A,A,A,A), I4(A) = %IZL(A,A,A). (5.3.14)

Since Ij defines a vector it is possible to nest expressions. These expressions can be
simplified using identities for the product ¢y npoQMt psry, which depend on the type of
the manifold under consideration (magical, cubic non-magical and quadratic models) [148,
sec. 2] (see also [147]).

By definition one has

<A1,L’1(A2,A3,A4)> :I4(A1,A2,A3,A4). (5315)

From (4.2.25) one finds that
1
using (4.2.28) and the fact that all other terms vanish.
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5.3.4 Freudenthal duality
The Freudenthal dual f(A) of a vector A is defined by [151]

M MNa ’ I4(A)‘
f(A)™ =Q T AN (5.3.17)
This operator § is an anti-involution and preserves the quartic invariant
f(f(A) = —A,  L(§(A) = L(A). (5.3.18)

Then § is a complex structure.

5.4 Non-symmetric spaces
The function I, can be defined for non-symmetric spaces, but then it depends on the scalars

and does not provide an invariant. Nonetheless it can be useful.
For an example with cubic prepotential, see section 6.3.4.
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Chapter 6

Special Kahler classification.
Quadratic and cubic
prepotentials

We provide elements concerning the classification of homogeneous symmetric and non-
symmetric spaces, and we give more details on quadratic and cubic models. Both these
models appear frequently in N = 2 supergravity and they contain all the possible symmet-
ric spaces: we will use them frequently in our study of BPS solutions and we will also classify
the isometries in these two cases.

6.1 Classification of spaces

Spaces with cubic prepotentials are referred to as very special Kéhler spaces. They are
obtained from the dimensional reduction of d =5 N = 2 supergravity for which the scalar
manifold is real; this operation is called the r-map. As a consequence they have real structure
constants.

The classification of symmetric spaces have been done in [208, 214], while homogeneous
spaces were described in [13, 215] (see also [144-146]). Other useful references include [152,
p. 78, tab. 2, 165, p. 443, tab. 20.5].

6.1.1 Symmetric spaces

For all symmetric SK spaces there exists a symplectic basis where the prepotential is
quadratic or cubic [40, p. 29]. Properties of the Riemann tensor and the curvature of
theses spaces are described in [208].
Spaces with quadratic prepotentials correspond to complex projective spaces (see sec-
tion 6.2) [208]
o~ S0 D)
SU(n,) x U(1)

(for n, = 1 there is only one U(1) in the denominator). They originally appeared in [216].

Giinaydin, Sierra and Townsend obtained all symmetric spaces with cubic prepotentials
by studying the link between Jordan algebra and symmetric real geometriesind =5 N = 2
supergravity and reducing to d = 4 [214]. It was proven by Cremmer and van Proeyen that
this list was indeed complete, using a classification of symmetric Kahler spaces (3.2.37) and
imposing the "special" conditions [208] (see also [185, sec. 5, app.]).

(6.1.1)
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There is an infinite family of cubic spaces (sometimes called the generic Jordan se-
quence [206])
SU(1,1) SO(ny, 2)
UL) " SO(ny) x SO(2)
(for n,, = 1 there is only the first factor), along with four exceptional cases (sometimes called
magical models) [208, 214, sec. 5]

(6.1.2)

Sp(G) SU(3,3) SO*(12) E77_25
U(3)’ SU(3) xSUB) x U(1)" SU(6) x U(1)" Eg x U(1)

(6.1.3)

for n, = 6,9,15,27 respectively (related to the magic square — they are linked with the
division algebras R,C,@Q, Q). An interesting point of the generic sequence is that they are
the only SK spaces with a direct product structure [170, p. 11].
Note that
SU(1,1) ~ SL(2,R). (6.1.4)

The cubic case n, = 3 (called the STU model) is very special because [165, p. 452]

M, =

3
SU(1,1) 50(2,2) <SU(1’ 1)) (6.1.5)

UL) “SO(2) x SO(2) U

This implies that the geometry will factorize and this manifold exhibits very interesting
properties.

In the case n, = 1, the manifolds are SU(1,1)/U(1) for both the quadratic and cubic
prepotentials, but they are different since they have different curvature [208, p. 451]

Rquad = —2, Reubic = —; (6.1.6)
Symmetric spaces are also Einstein
Ri; = Agiy, A= %, (6.1.7)
where [206, sec. 5]
Aquad = —(ny + 1), Acubic = ng+7zv+3, Amagic = *% Ny (6.1.8)

6.1.2 Homogeneous spaces

The classification of homogeneous SK spaces with cubic prepotential was started by Ce-
cotti [215] and completed by de Wit and van Proeyen [13]. As reviewed in section 8.5, QK
manifolds can be obtained from SK manifolds through the c-map. Homogeneous quater-
nionic spaces were classified by Alekseevskii and Cecotti used this fact to obtain homoge-
neous SK manifolds as the inverse of the c-map. In their paper de Wit and van Proeyen
discovered new SK spaces, showing that Alekseevskii’s classification was incomplete (since
new QK manifolds could be derived from the c-map).

De Wit and van Proeyen found interesting links with Clifford algebras, while Cecotti
showed that these spaces were related to T-algebras, which are a generalization of Jordan
algebras.

6.2 Quadratic prepotential

For references see [212, sec. 4.2, 165, sec. 13.3].
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Quadratic prepotentials

F= % s XAXE (6.2.1)
correspond to the complex projective spaces CP™
SU(ny, 1)
My = c—= 6.2.2
SU(ny,) x U(1) ( )
which are maximally symmetric. The flat metric on this space is given by
nas = diag(—1,1,...,1). (6.2.3)

The coefficients of F' are imaginary because real quadratic terms are irrelevant as seen in
section 4.2.4.

Because the isotropy group is SU(n,) x U(1) there is a natural split between the timelike
direction A = 0 and the spacelike ones A = 1.

6.2.1 General formulas

In special coordinates [149, app. A.1]

XM = (1) (6.2.4)

the F) are given by
-

Fr=inasX¥ =i (1) (6.2.5)

The "spatial" indices are raised and lowered with d,; and §*.
The Kahler potential is given by

e K =201 -1) (6.2.6)

where T is the vector with components 7¢. The metric reads

0i7 TiTy
@] il]
gis = 2 —. (6.2.7)
L—|r]" (A —|r[")?
The structure constants vanish
Cijr =0 (6.2.8)

and for this reason these models in supergravity are called minimally coupled. This implies
that three invariants from (5.2.2) are zero [148, sec. 8.4]

ig =14 =15 = 0. (6.2.9)
The curvature of these spaces is read from (4.6.3)
R = —ny(n, +1). (6.2.10)

Quadratic spaces can be obtained as a truncation from symmetric cubic spaces since [148,
sec. 8.3]
SU(ny, 1) SU(1,1) SO(2n,,2)
SU(ma) x U(1) = U(1) ~ SO(2n,) x SO2)

(6.2.11)
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6.2.2 Quartic and quadratic invariants

The groups SU(n,, 1) are degenerate groups of type E7, as is seen in the vanishing of the
structure constants [148]. As a consequence the quartic invariant I, becomes the square of
a quadratic invariant I [12, p. 227, 149, sec. 3.2]

I(A) = I(A)?. (6.2.12)
The quadratic invariant reads [148, sec. 8.4]
I = i1 — iy (6.2.13)

and one denotes by 05,y the associated tensor

1 0%15(A)
Ir(A1, Ag) = Oy AY AY OMN = 5 S 214
2(A1, A2) = 0N AT Ay MN = 5 SAMPAN (6 )
The quartic tensor (6.2.12) can be derived from this 2-tensor
tunpg = 4 0unOpo. (6.2.15)
Using (4.4.22) I can also be written
1
I(A) = -5 A'M(F)A, (6.2.16)

where M(F') was defined in section 4.4.
Writing explicitly the components with Q = (p*¢a ), the quadratic invariant is [40, sec. 5,
149, sec. 3.2, 212, sec. 1]
i

i
I(Q) = 5 ph s p” + 5 e (6.2.17)

Note that Is can be rewritten as

1 =
I(Q) = 3 T T2 ppanss, Tas = p™¢® — ™. (6.2.18)
This implies
_ i (s 0,
0= B (OAZ nAE) : (6.2.19)

The gradient defines a new vector
I(AM = QMNgyp AP, (6.2.20)

Because of the existence of I5, the Freudenthal operator (see section 5.3.4) becomes [148,
sec. 10]

0Ix(A)
AM = QMN 2.21
i(4) L (6221)
while using the definition of the gradient gives
1

f(A) = 3 I3 (A). (6.2.22)
It preserves the quadratic invariant

L(5(A)) = I>(A). (6.2.23)

In this context the operator I} also defines a complex structure (up to a normalization) since
we have seen that f defines one.
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6.3 Cubic prepotential

6.3.1 General case

Manifolds with cubic prepotential are called very special Kdhler manifolds or d-geometries.
These manifolds can be obtained by reducing d = 5 supergravity to d = 4 through the
r-map.

For details see [206, 185, sec. 5, 144, p. 7, sec. 4, 149, sec. 3.1, app. A].

For space with cubic prepotential there is a frame where F can be put in the form®

X' Xixk
F =—Di —x0 (6.3.1)
where D is a symmetric 3-tensor. The associated f function is
f(r) = =Dijpr'rI 7. (6.3.2)
We will use the abbreviations
DT — D'r'r'r = Dijk TiTka, D'r,i = Dijk Tka (633)
and similarly for other quantities like D,, (y being the imaginary part of 7).
The (rescaled) structure constant are given in terms of the D-tensor
and it is convenient to define the tensor D* [149, sec. 3.1]
Nijk 1 il _jm _kn
D = ﬁ 9 37" g"" Dpmn (635)
Yy

which corresponds to 2! W#* up to a normalization. The tensor D; i (and hence W) is
always constant, but this is not necessarily the case for D% [50, app. D]. Since D is real
we use also holomorphic indices.

In special coordinates, the conjugates are

D,
Fy = <_3 Dﬂ) . (6.3.6)

The Kahler potential is
e ® =2(Im f + 2iIm 7' Re(9; f)) = 8 D, (6.3.7)
since

e X = —i(X*Fy — X*F)) =i(D; — D7) — 3i(Dyrz — D77,)
= —2Im D, +6Im D,+ = 2(Dy — 3 Dyyy) + 6(Daay + Dy).

The metric is [84, app A.1]

3 Dy ij 9 Dyi Y,J
= —— J Z J J 6.3.8
95="57p, "1 D2 (6:3.8)
The Riemann tensor is
i i i 9 Siem
R',* = 6150 + 0500 — 6 D*™ D, ik (6.3.9)

1The minus sign is conventional, other factors can be found in the literature, such as £1, 44, along with
some different normalization, for example 1/3! [42, 185].
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The E-tensor (4.5.13) reads [149, sec. 3.1]
i ik 64
Ejklm =D Dj(@man)k - ﬁ d (mané)- (6310)

If M, is symmetric, then DU entries are constant and they satisfy

Nij 16 i i

D Dot Dyt = 3 (5¢Dmnp n 35(man)¢) (6.3.11a)
o 64

D% D (4m Drpyie = > 8(¢ Dmnp)- (6.3.11b)

6.3.2 Generic symmetric models

As explained in section 6.1.1, the generic cubic symmetric models are the manifolds

SU(1,1) SO(ny, 2)
UL)  ~ SO(ny) x SO(2)°

M, = (6.3.12)
In this case again there is a natural split between the timelike direction A = 0 and spacelike
ones A = i because the isotropy group is SO(n,) x SO(2) .

6.3.3 Jordan algebras and quartic invariant

The existence and the form of the quartic invariant for symmetric very special Kéhler man-
ifolds is related to Freudenthal triple systems and the associated Jordan algebra; good
references includes [148, 207] (for a mathematical paper, see [147]).

For symmetric cubic spaces the quartic invariant is given by [207, sec. 2.1, 40, sec. 5,
149, sec. 3.1, 144, p. 26] (see also [147, sec. 3])

1 Nij i g 9 Nij m
14(Q) = —(qap™)* + Epo D% q;q;qr — 4 g0 Dijip'p’p* + 5P % Dyemaiq; p'p™  (6.3.13)

with Q@ = (p*, qn).
The explicit components of the tensor tyrnpg are [50, app. D, 84, app. A.3]

. . 9 .
t = —4, 1o =-267, ;=456 + T Dy DM,
3 (6.3.14)
ijk ~i
to” :ngJ’“, tiin =24 Dijp.
A fundamental identity is [207, sec. 2.1, 85, app. B]
I(I3(A), A, A) = —8 AI4(A) (6.3.15)

which is called the Freudenthal identity and is a consequence of the Jordan algebra structure
of the space. Some identities that are satisfied by combinations of the invariant evaluated
with two vectors are given in the appendix E.1.

One of the most useful identity is [85, app. B

(A, ITm VY, ImV) = -4 (ImV, A)ImV — 8 (Re V, A) Re V — QMA. (6.3.16)
ans from it one deduces the relation
I} (Im V)
2/ L (Im V)

It is remarkable that none of these identities changes when V is multiplied by a phase.

ReV = —2I,(ImV) = — (6.3.17)

49



6.3.4 Non-symmetric spaces

As shown in [202, 206], spaces with a cubic prepotential have a least the isometry group
G =850(1,1) x R™ (6.3.18)

where the first factor is related to overall rescaling while the second corresponds to n, shifts
of the axions Re7?. As we will see in the section 7.2, these isometries correspond to the
universal transformations associated to parameters {0, bi}. As a consequence the quartic
function can depend only on the dilatons Im 7¢, and the terms that are scalar-dependent
will be proportional to the E-tensor (4.5.13)

. , oD
LA, 7)) ~ L (A) + (D)PE™. . 0 0"l gy ——2 6.3.19
4( ) T ) 4( )+( y) z]kép P P dmq Gplap" ( )

with I,(A) is the quartic invariant (6.3.13).
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Chapter 7

Special Kahler isometries

The main motivation of this chapter is to understand the isometries of the quadratic and
cubic models. This is an important step in order to construct gauged supergravities based
on these models as one needs to know the correspoding Killing vectors that appear in the
covariant derivatives. Moreover some isometries of the QK manifolds are inherited from its
base SK space.

7.1 General case

Special Kéhler isometries were worked out in [185, sec. 6, 12, p. 222, 146] (see also [149,
sec. 3]).

Isometries (also called duality transformations) on special Kdhler manifolds are given
by symplectic transformations (see section 5.1) that are consistent with the symplectic vec-
tors [165, p. 450, 209]. In particular this means that the duality transformation of F) agrees
with the transformation induced by the fact that F is a function of X [12, p. 222]. For
homogeneous spaces some isometries are constrained while other are universal and their ex-
istence is always guaranteed. In the case of symmetric spaces all isometries are realized [12,
p. 222]. These isometries are generated by holomorphic Killing vectors since the manifold
is Kéhler, and all the properties described in section 3.2.3 also apply.

The isometry group is denoted by

G, =ISO(M,). (7.1.1)
The variation of the section is
v =4Uw (7.1.2)
with
= <§ 2) € sp(2n, +2) (7.1.3)
and the constraints
t=—q", r=rt s=s" (7.1.4)

Consistency of the transformation of the vector v with the expression Fi (X ) implies that
the prepotential keeps the same functional form [144, p. 6, app. C|

F'(X') = F(X"). (7.1.5)

In supergravity this condition implies that the Lagrangian is invariant. Note that this does
not mean that the function itself is invariant, and one finds that [185, sec. 6]

SF(X)=F(X') - F(X)=i (XSX - i FrF) . (7.1.6)
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As said in section 4.2.4 pure imaginary quadratic terms have no effect.
This is equivalent to the chain rule

N

0F\ = X

SX* = FpsdX>. (7.1.7)

Contracting this equation with X* and using the homogeneity of F gives
XAF) = F XM (7.1.8)

This last condition is sufficient to classify all the isometries and it reads explicitly [185,
sec. 6, 12, p. 223]

X2 s X® = 2X2 (") \FFs — FAr® Fy = 0. (7.1.9)
From the relation 1
F=3 Frx™ (7.1.10)

one obtains the variation

OF = — (6FA XM + FA0X™) = 6F\ X" = FAo X", (7.1.11)

N | —

the last two equalities coming from (7.1.8).

The number of isometries is given by the number of independent parameters w™ in the
matrix 4 and they can be found by expanding (7.1.9) in 7¢. Then the Killing vectors and
the symplectic matrix can be written as linear combinations

k' =wmk U=wmiUy, (7.1.12)

where each k%, and ,, generates an independent isometry.
Also the Kéhler potential (4.2.13)

e K = —i (v,0) (7.1.13)

is obviously invariant under isometries since it is written only in terms of symplectic invariant
quantities, but this does not need to be the case in special coordinates: there may be a
compensating Kéhler transformation

LiK =2Re fi (7.1.14)

associated to the transformation with Killing vector k. The reason is that a transformation
may change X° = 1 to another value X’° # 1, and one needs to perform a compensating
Kihler transformation in order to set X0 =1 [186].

7.2 Cubic prepotential
Let’s consider the cubic prepotential

Xixixk

F==Dijr —3

(7.2.1)

The isometries were studied in [185, sec. 6, 13, 144] (see also [149, sec. 3.1]).
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7.2.1 Parameters

The matrix  is parametrized as [149, sec. 3.1, 144, p. 7, sec. 4.2]

A N a;
s =—(t") <z i, 1 i),

(7.2.2)
O 0 0 AAS 0 9
AR TN0 —6D; bk ) \0 —ZDkqy )"
In special coordinates the variation of 7% is given by
i i 25 i i LYo o0 gk
5T:b7§ﬂ7' +BjT—§Rjk 7% ay (7.2.3)
and the Killing vector is
k= k'0; = ks +b ko +ai ki + B (kp),. (7.2.4)

The unconstrained symmetries associated to 3 and b* generate respectively a rescaling
and a shift of the axions.

The other rescaling symmetries associated to B’; are constrained by!

¢

K2

Djiye = 0. (7.2.5)
Finally the non-linear symmetries must satisfy
@i E g =0 (7.2.6)

where the E-tensor is given by (4.5.14) or (6.3.10). This condition is necessary and sufficient
for having D% ay, = cst (which is needed because the matrix ${ is constant) [144, sec. 4.2].

If M, is symmetric, then D% is constant and E' 54 = 0 such that a; is unconstrained.
Then the symmetry group will be a simple Lie algebra, with b* and a; being associated to
lowering and raising operators, while (3, sz) are associated to Cartan elements.

7.2.2 Lie derivative
Transformation associated to S and a; induce a Kahler transformation of the potential
with [149, sec. 3.3, app. A.1] _

f=B+aT". (7.2.7)
7.2.3 Algebra
The algebra can be found in [185, sec. 6, 144, sec. 4.2]

2 . 2 . , _
[k, ko] = 3 o IR -3 ko ki, k] = 6% kg + R F (k)" (7.2.8a)
((ke)? o] = Bt e, (k) KE] = — R R (7.2.8b)

where 9
R, =R+ 3 556,.". (7.2.9)

Due to the form of the algebra the existence of a transformation with parameter a; imply
one of the form B,”.

IThis constraint is discussed more deeply in [13, 144, sec. 5] in which the authors study which dijk
satisfy it, and this has some link with Clifford algebra.
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The algebra g, of G, can be decomposed in eigenspaces associated to the symmetry
B [144, sec. 2.2]
gv = 9—2/3 + 0o + g2/3 (7.2.10)

where
k5, 8a] = a ga. (7.2.11)
The space gg contains 8 and Bij while gg/3 contains b%, and as a result

Hidden symmetries a; are in g_,/3 and the associated roots are located on the left of the
root diagram, while the dimension of the space

dim 972/3 S m (7213)

According to the denomination of [144, sec. 2.2], symmetries associated to a; are hidden
ones. This bound is saturated — meaning that a; exist — for symmetric spaces, in which case
the curvature and D¥* are constant, or equivalently when E’;,, = 0. Otherwise the Lie
algebra is not semisimple.

7.3 Quadratic prepotential

Now one considers quadratic prepotentials

F= %mz XAXE, (7.3.1)

7.3.1 Parameters

The solution to the constraints (7.1.9) is given by [149, sec. 3.2, app. A.1]

sax = —maz = s, TIA(EQAE) =0 (7.3.2)

where there is no sum on A in the last constraint (i.e. all diagonal elements are vanishing).
The second constraint is equivalent to

¢ =do,  dj=-ds "y =0. (7.3.3)
The variations of the coordinates is given by
57t = Aio + (Aij — Aooéij)Tj — AOjTjTi (7.3.4)

where
A=q+irn. (7.3.5)

Looking at the variation of 7%, the trace of A and A%, have the same action and one
should be removed, and this is equivalent to removing one of them for r. The number of
parameters contained in each matrices is

1 1
T E(nv+1)(nv+2)—1, q: inv(nv—l)—i—nv, (7.3.6)

giving a total number of n,(n, + 2) which agrees with the number of Killing vectors on
Cpm™.

7.3.2 Lie derivative
A Kahler transformation is induced for some of the isometries [149, sec. 3.3, app. A.1]

F=24%7 (7.3.7)
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Chapter 8

Quaternionic geometry

Quaternionic Ké&hler manifold (QK) manifolds form the target manifold of hypermultiplets
in N = 2 supergravity. These manifolds possess a SU(2) bundle which correspond to the
SU(2)g symmetry of the supersymmetry algebra, and as a consequence there is a triplet
of complex structures that obey the quaternionic algebra. After giving the definition of
these manifolds we describe their geometrical properties followed by a general description
of isometries. In particular we describe the SU(2) compensator which is interpreted as a
rotation of the complex structures under a transformation, and it will be an important
ingredient in the construction of BPS vacua. Finally we describe the special quaternionic
manifolds that are constructed as a fibration over a SK manifolds and which are simpler
than generic QK spaces, and in the following chapter we build the isometries of these spaces.
General references include [170, sec. 5, 171, 165, chap. 13 and 20, 217, sec. 2] (see
also [218, 199, sec. 5]). Some historical and mathematical references are [200, 219-224].

8.1 Definitions

Definition 8.1 (Quaternionic manifold) A quaternionic Kéhler (QK) manifold (M, h)
is a 4nj-dimensional real manifold with metric

ds? = hy, dgdg?, u=1,...,4ny (8.1.1)

endowed with three (almost-)complex structures J%, & = 1,2, 3, satisfying the quaternionic
algebra
JEJY = =§%Y 4 5V 2, (8.1.2)

Alternatively a QK manifold is characterized by its holonomy group [220, 221]
Hol(Mpy) =H -Sp(1) = H x Sp(1)/Za, H C Sp(ng). (8.1.3)

Locally the coordinates g* can be gathered into quaternions, but in general this is not
possible globally [200, p. 126-127]. Similarly these spaces are not Kéhler strictly speaking
in general and this is an abuse of language.

We note that Sp(np) C SO(4ny) and it is the subgroup that leaves invariant the J*.
Sp(np) - Sp(1) is a maximal subgroup of SO(4n) [220]. We recall that Sp(1) ~ SU(2).

The connection 1-form of the SU(2) factor is denoted by

w” = (w*), dg", (8.1.4)
and the associated curvature is

1
Q" = Vw* = dw” + 3 e WY N w*. (8.1.5)
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Moreover the metric must be hermitian with respect to the three J* (denoted collectively
as J), i.e.

Ve JEh(J%) =h (8.1.6)

(no sum over z) and they should be covariantly constant
Vuod,' =Dyd,” + 2wy, xJ,” =0 (8.1.7a)
V’w(‘]m)uv = Dw(‘]z)uv + Ezyz(wy)w(Jz)uv = 0’ (817b)

where D,, is the covariant derivative associated to h.,. This relation means that the J* are
covariantly constant with respect to D,, up to an SU(2) rotation with vector (w®),,(q).
The triplet of hyperkéhler 2-forms

K® = J% dg" Adg®,  J%, = huw(J%),". (8.1.8)
have to be closed with respect to Sp(1) connection
VK® =dK® 4 *¥*wy AN K* = 0. (8.1.9)

For a quaternionic manifold the SU(2) curvature 2-form needs to be proportional to the
hyperkéahler 2-form
OF = AK*. (8.1.10)

In supergravity A = —1 [171, p. 6], but we will keep it general for two reasons:
e some authors use different normalizations;
e the limit A = 0 corresponds to hyperké&hler manifolds and rigid supersymmetry.

Because of the connection the covariant exterior derivative does not square to zero but
to [200, sec. 4, 224, sec. 4]
V2T = ™Y = (8.1.11)

for any p-form f*.
The fundamental (quaternionic) 4-form is defined as [219, 221, 224]

xT xT 1 xT xT
N=K*NK ZEQ A Q7 (8.1.12)
it is globally defined, non-vanishing and covariantly closed (i.e. parallel)

V=0 (8.1.13)

since it is invariant under Sp(np) - Sp(1) [219, 222] (or in the opposite sense, a manifold is
quaternionic if {2 is covariantly closed). This implies that {2 is closed and harmonic (this is
equivalent to K* = AQ¥) [200, sec. 4]

AR =0, AR=0. (8.1.14)

This is automatic for ny = 1 since {2 = 3¢ (& being the volume form of the space, not to be
counfounded with £7¥%) [224, sec. 2]. Recall that the laplacian on forms is defined by

A =dj+4d (8.1.15)

where § is the codifferential.
We want to prove that (2 is closed. Using the definition (8.1.5) of Q% we have

1 1
)\2 ) = (dwz + 5 eTYZ Y /\wz> A (dwx 4 5 gTuUY U /\wv)
= dw® Adw® + e"2dw” A wY Aw® + PHeTVEWY AW A wY A WL
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The last term vanishes because the ¢ will give a symmetric factor, so we have [225, sec. 3]
1
M0=d (wm A dw® + 3 e AwY A wz) . (8.1.16)

This implies that (2 is closed as announced. For nj; > 2 this is a necessary and sufficient
condition for the manifold to be quaternionic and df2 determines entirely V{2, while for
np = 2 we need to take some care [224, sec. 2, app. A].

The volume element on M}, is given by §2"».

Closely related to the quaternionic manifolds are the hyperkédhler ones, for which the
SU(2) bundle is trivial, and the holonomy group is contained in Sp(np).

8.2 (Geometry

8.2.1 Vielbein
Let’s introduce the vielbein 1-form U*A
UeA = ustdgt (8.2.1)
such that
oy = CapeasUSAUBS. (8.2.2)

The flat coordinates have been split in two indices due to the fact that the holonomy group
is Sp(np) - Sp(1): A and « runs respectively in the fundamental representations of Sp(ns,)
and Sp(1)

a=1,2, A=1,...,2n, (8.2.3)

where the corresponding symplectic flat metrics are C and & (see the appendix A.3 for
conventions)

€af = —E€Ba; Cas = —Cpu. (8.2.4)
The inverse vielbein U} , is defined such that
UgAUY =6,  UgAUY =6,"6," (8.2.5)
and it obeys the reality condition
(U*A)* = Uy = CapeasUPP. (8.2.6)
These conditions imply
2USAUS 4 = 6,0, +i0"5%(J"),", (8.2.7a)
(J7)" = =0, P USAUY 4. (8.2.7b)
Other relations are satisfied, such as
Cas(USAUPB + USAUPP) = B by, (8.2.8a)
1
eap(USAULP + USAULP) = — CAB B (8.2.8b)
h

The vielbein is covariantly constant
Vo UG = 0,Ue" + w3 U + A g USE — T, USA =0, (8.2.9)
where w and A are the SU(2) and Sp(n;) (Lie algebra valued) connections
w® = w, 5" dg" = iw” o5, At = A, gdgY, (8.2.10)

and w?® is the connection (8.1.4).
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8.2.2 Curvature

Due to the holonomy of the manifold the Riemann tensor factorizes. Its precise form can
be found from (8.2.9) and it reads

Ruvws = a.AUsaB Ruv_AB - sz : qu, (8211&)
Ruwa® = 2008 5™ +2 A0 A5 (8.2.11b)
Quy = 20[,wy) + 2wy X wy (8.2.11c¢)

where Q% is the SU(2) curvature (8.1.5), and we recall that it is proportional to the hyper-
kéhler 2-form (8.1.10).
Quaternionic manifolds are Einstein [224]

Ryy = — hyy 8.2.12
- (3:2.12)

and thus have constant curvature. Moreover the latter is related to the coefficient of pro-
portionality between 2% and K7

R

= S T (8.2.13)

Even stronger one can prove that the Riemann tensor decomposes as (we omit the in-
dices) [165, p. 455, 200, sec. 4]
R =2XRup + Ry (8.2.14)

where Rygp is the curvature on quaternionic projective space, and Ry is the Ricci-flat cur-
vature part (related to the Weyl tensor) of Sp(ny) (it behaves as a curvature tensor for a
Riemannian manifold whose holonomy is a subgroup of Sp(ny)).

8.3 Symmetries

As for the case of Kéhler manifold a Killing vector k acts with a Lie derivative to generate
isometries. It should preserve the metric h,, and the fundamental 4-form 2 [200, sec. 4],
that is

Lihyy = L2 =0. (8.3.1)

We have proved that df2 = 0 so we have
L2 =digf2=0. (8.3.2)
Invoking the Poincaré lemma, it exists a 2-form Py such that [224, sec. 4]
ix2 = dPy (8.3.3)
generalizing the moment map from the Kéhler manifolds. We can decompose it (locally) as
P, = PQ". (8.3.4)

Instead of continuing on this path, we introduce the definitions as in [170, sec. 7.3]. We
assume that the action of the Lie group generates triholomorphic isometries, which means
that Ly acts on % and w® [192]

LyQF = "V WIQP, Lyw®” = VW (8.3.5)

where W} is an SU(2) compensator.! The reason is that the Sp(1) curvature being nonzero,

we cannot trivialize the Sp(1) bundle: then all quantities that transform under this group

'With respect to [170, 192] we have W — —W since they define it by £,Q% = e*V=QUIVZ.

58



(such as K7) are defined on this bundle, and not just on the quaternionic base space, and
thus they are subject to local Sp(1) gauge transformations [226, sec. 1] or, said another way,
they must transform covariantly.

In the same way we associated a prepotential to a Killing vector of Kahler manifolds, we
would like to introduce triholomorphic prepotentials (or moment maps) P? satisfying [224,
sec. 4]

K =VP. (8.3.6)

We can express them in terms of the hyperkéhler forms (under certain conditions of regu-
larity) [200, sec. 4]. Introduce first the 1-form

1
BY =i, K* = " i) = VP, (8.3.7)
and take its covariant derivative
VBT = VQP,f = dpT 4+ e"VFWY A B = e"VEQY P (8.3.8)

using (8.1.11). Applying i and noting that ix3% = 0 since i3 = 0 (and irf = 0 for f a
0-form) we get
1rdfT + V5 0wY 7 = "V, QY PE. (8.3.9)

We can introduce the Lie derivative in the first term since
1dB* = i dipgQ® = i, L7 (8.3.10)
again because i = 0. The we use (8.3.5) to replace the Lie derivative
idf® = "W iy Q7 = MW iy, 57 (8.3.11)
Replacing i, QY = ABY in the last term and switching y and z, we finally find
eEWY 4+ ipw? B + AP!)B3* = 0. (8.3.12)
Under certain condition on i;Q* [200, sec. 4] this implies

P = %( — i — W,g). (8.3.13)

We deduce that any isometry is associated to a triplet of moment maps, and moreover we
can rewrite (8.3.5) as [226, sec. 2]

LiQF = ™2 (1w — APy )Q7, (8.3.14)
In terms of the triplet of complex structures this gives
L =2\J x Py. (8.3.15)

The statement (8.3.5) that a Killing vector is triholomorphic means that its covariant
derivative commutes with all three complex structures (we omit the index k in the rest of
the section)

Vuk®J,,' = J,° V,k* (8.3.16)

In coordinates equation (8.3.6) reads
AV, P? = kY Q. (8.3.17)
The moment map can also be found from

Anp P =J,° V, k" (8.3.18)
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From Killing equation
using the commutator
[Vu, Vo] k¥ = R, K° (8.3.20)

and the explicit value of the Ricci, one finds that k" satisfy a Poisson equation [218, app. A]
Vo VUEY + 2X(ny, + 2)k* = 0. (8.3.21)

Then using the relation with the prepotentials implies that the latter also satisfy a Poisson
equation (but with different eigenvalues) The prepotentials are harmonic functions

V. VUP* +4np A P* = 0. (8.3.22)
Note that the commutator on P* yields
[V, V] P* = 2e"2QY P, (8.3.23)
Then the Poisson equation can be used to find a direct expression for the Killing vector
1
kY = ——= h"'Q5, VY PT. 8.3.24
6)\2 vw ( )

Let’s denote by {ka } the set of Killing vectors generating the isometries on M, (we will
use an index A as a shortcut for kj in the compensator, etc.). Then one has the cocycle
identity

LAWS — LsWR 4+ e"VWIWE = fry,"W2E (8.3.25)
where f AZE are the structure constants of the algebra. There is also an equivariance condi-
tion

T .U 1.V 1 Q px A Yz DT PY
Ju’uk/\k‘Z: §fAZ PQ+§€ v PAPZ' (8326)

8.4 Classification of spaces

Homogeneous QK manifolds have been classified by Alekseevsky [227], but it was shown by
de Wit and van Proeyen that it was incomplete [13, 228]. The symmetric manifolds (called
Wolf spaces) were given by Wolf [229] (see also [190, 222]). Useful references include [170,
p. 77, tab. 2, 152, p. 78, tab. 2, 165, p. 443, tab. 20.5].

The symmetric spaces that are special (i.e. which can be obtained from the c-map, see
chapter 8.5) consist in two families

SU(np, 2) SO(np, 4)
SU(np) x SU(2) x U(1)’ SO(np) x SO(4)’
(when njp, = 1 the factor SU(ny) is not present) given respectively by the quadratic and
cubic models (section 6.1.1), and five exceptional cases
Ga2 Faq Eg,2
SO(4) x SO(2)” USp(6) x SU(2)” SU(6) x SU(2)
E7 5 Eg,_24
SO(12) x SU(2)” Ey x SU(2)
for np = 7,10, 16, 28 respectively. The first of these exceptional spaces corresponds to the
c-map with a cubic model since the spaces of the two families are isomorphic for n;, = 2 and
it is given by a quadratic model [169, p. 5, tab. 2]. Note that SU(2) C SO(4).

Finally the only symmetric spaces that cannot be obtained from the c-map are the
projective quaternionic manifolds

(8.4.1)

(8.4.2)

Sp(nn, 1)

Hp = — P\l
Sp(na) x Sp(1)

(8.4.3)
and recall that Sp(1) ~ SU(2).
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8.5 Special quaternionic manifolds

Special (or dual) quaternionic manifolds M, are a subclass of quaternionic manifolds which
fully specified by a special Kéhler manifold M, [11, 13, 144, 165]. The map M, — M,, is
called the c-map. The latter is useful for determining the isometries of the QK manifold; in
particular if M, is symmetric then My, is also symmetric [12, pp. 222, 224].

8.5.1 Quaternionic metric from the c-map

We recall that dim M}, = 4n;. A special quaternionic manifold is made of a base special
Kéhler manifold M, of dimension 2(nj, — 1) with a fibration. Homogeneous coordinates on
M., are denoted by Z4, and the fibers are (¢, 0, &4, €4) where

A=0,...,n, —1. (8.5.1)

Physically ¢ is the dilaton (coming from the metric), o is the axion (coming from dualization
of the B-field) and the (¢4, 3 4) corresponds to the NS scalars (coming from the reduction
of the NS forms).

The explicit construction can be found in [11, 152, sec. 4].

Sometimes we will parametrize the dilaton as

p=e 2 (8.5.2)
The special coordinates are

a ZG’

=g a=1,...,n — 1. (8.5.3)

Finally we group the Ramond coordinates into a symplectic vector

¢ = (;) (8.5.4)

Before describing the metric and other geometrical objects we set up the notation for
the base special Kéhler manifold.

8.5.2 Base special Kiahler manifold

The properties of this embedded manifold are exactly the same as the ones described in
chapter 4. In this section we are just recalling the main quantities and defining the notations:
instead of curly letters A we will use blackboard bold letter A.

The prepotential is denoted by G and its derivatives together with Z4 form the sym-

plectic vector
ZA
Z = (GA> . (8.5.5)
The symplectic metric is C.
We obtain the Kéhler potential from
K.=-In(—iZ2'CZ) = —i(Z*Ga — Z*G4) (8.5.6)

from which we obtain the metric
Gop = 005 K. (8.5.7)

We obtain the period matrix

ImGAC ImGBD ZCZD

Nap =G 2i
AB AB + 21 Im Gepy 202D

(8.5.8)
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and the complex structure

M — ImN+ ReN(ImN)"!ReN —ReN(ImN)~!
- —(ImN)~!ReN (ImN)~!

Cubic prepotentials will be written as

VAVAVA

G = *dabc 70

The associated manifolds are called very special quaternionic.

8.5.3 Geometrical structures

The metric My, is given by
ds? = d¢? + g,; dzdz" + L gao <da +1 fth§>2 _ L 20 getae.
@ 4 2 4
Note that the second term in parenthesis can be rewritten as
§'CAE = 1dEq — EadE™.
The spin connection w? is given? by [169, sec. 4.2, 62, sec. 3.1, 51, sec. 4]

wh = V2 T2 ZCdg,

2¢ 1 =
w3 = 67 (da + 3 «Et(Cdf) —2ef: Im (ZA Im GABdZB)-

where we defined

+

wF=wl+iw?

(8.5.9)

(8.5.10)

(8.5.11)

(8.5.12)

(8.5.13)

(8.5.14)

which are complex conjugate. These expressions are not invariant under SU(2) transforma-

tions.
We can also rewrite [149, app. B]

_ 1 _
Im (ZA Im GABdZB) = $ ZCdZ +cc.

since

(8.5.15)

_ 1 _ _ 1 _ _
I (24 Tm GpdZ”) = Tm (2—1 ZMGap — GAB)dZB> = —5 Re (GadZ* — 2dGa)

1 - _ - _
= —(GadZ" = 24424 + GadZ" — 774G 4)
where we used the homogeneity of G (4.2.31)

GapZP =G4, GapdZ® = dG4.

2Note that this involves a choice of SU(2) basis. Other possibilities are also fine.
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Chapter 9

Quaternionic isometries

In this chapter we focus on the isometries of special quaternionic manifolds. As reviewed
in the chapter 7 on SK isometries, knowing the Killing vectors of the target space of the
non-linear sigma models involved in the N = 2 supergravity is necessary in order to write
the gauged theory. Since there is a base SK space we are able to use symplectic covariant
expressions which simplify the construction of the Killing vectors and which provide a nice
interpretation of them.

The isometries of special quaternionic manifolds were classified by de Wit and Van
Proeyen [12, 144-146]. There are three kinds of isometries [144, 149]:

e duality symmetries, inherited from the base special Kéhler manifolds;
e extra symmetries, whose origin is seen directly from the gauge transformations;

e hidden symmetries, which are not generic and whose existence depends on specific
properties of the manifold.

9.1 Killing vectors
We will denote the isometry group by
G =ISO(My). (9.1.1)

In order to simplify the notation, we define

_ aA _ _ 0 A_ o _ 0
We will also make use of
= o 1.3
<C85 ={2a, ) (9. . )
Similarly we write
_ (0Oza 0 0
82 - (aGA) ) aZA - 97A’ aGA = aGA (914)

9.1.1 Duality symmetries

Isometries of the base SK space (described in section 7) can be lifted to the full quaternionic
space by adding a transformation of the fibers [12, p. 223]. They consist in symplectic
(infinitesimal) transformations U € sp(2ng, R) that leave invariant the prepotential. Since
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the metric is made only of symplectic products, it is easy to see that the Killing vector on
the full space is [169, sec. 4.2]

ky = ([UZ)t 0z + ([UZ)t dz + (Uf)taf. (9.1.5)
Writing explicitly the product gives
ky = (UZ2)2044 + (UZ) a0, + (UE)A04 + (UE) 402 + c.c. (9.1.6)

In order to use conventions similar to the other Killing vectors we should write this vector
as a linear combination of each Killing vector associated to independent parameters, but
this is not the usual approach taken in the literature.

The matrix U is parametrized by (see section 7)

vy 148 AB _ ,BA A A

U= b B> "7 =177, sap=spA, V' 'p=—upg (9.1.7)
SAB Uy

where the constraint are equivalent to

U'C +CU = 0. (9.1.8)

We refer to section 7 for more details on the classification of duality isometries. Since
the parameters are subject to the constraints not all these symmetries are universal.

9.1.2 Extra symmetries

These symmetries act on the Heisenberg fiber: they originate from the gauge symmetry of
gauge fields that have been dualized to scalar fields [12, p. 223]. Only the derivative of the
scalar fields that have been dualized from vector fields appear, and shift symmetries result
from this.

The first symmetry is a translation of the axion [169, sec. 4.2]

ky =0y (9.1.9)

In general nothing depends on the axion and everything is invariant under shift of this field.
Then there is a scaling symmetry of all the fields

ko = 8¢ - 2080 - §t8£. (9110)
Expanding the product gives explicitly
ko = 0y — 200, — E40" — €404, (9.1.11)

Finally there are 2n;, translations of the Ramond fields £ accompanied by a transforma-
tion of o [169, sec. 4.2] (this is really a 2nj,-dimensional vector)

ke =<C65+%§ag (9.1.12)

or more explicitly®
EA =04 + % £49,, (9.1.13a)
ka=—04+ % £A0s. (9.1.13b)

The shift of the fibers can be written
1
k§:C3§+§§&,. (9.1.14)

All these symmetries are universal and do not depend on the model.

INote that k4 gets a minus sign with respect to the definition in [169, sec. 4.2].
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9.1.3 Hidden vectors

There are several hidden symmetries [12, 144, 145, sec. 3]. In [149, sec. 4] these vectors have
been expressed in a symplectic covariant form.?

Since the quaternionic metric does not contain linear term in dz%, any isometry of the
full space needs to be an isometry of the base SK space when the vector is restricted to the
latter

Lihy, =0 = £k|Mzgal_) =0. (9.1.15)

In particular this implies that the transformation of the homogeneous SK coordinates are

of the form
57 =SZ (9.1.16)

where S € sp(2np,) and it satisfies the equivalent of (7.1.9). In particular this matrix can
depend on all the fields of the fiber

S = S(¢,0,64,€4) (9.1.17)

as they are just constant from the point of view of the base SK space, but it appears that
S depends only on &.
The first vector is given by

ko =—00y+ (0% — ™1 — W), + (0 — COW)! 0 — (SZ)'Dz + c.c. (9.1.18a)

Then there are 2n;, vectors

-~ 1 1 1
ke = *55(% + <%§ §C8£W> O0s +0CO¢ + <§ £ - C@g(@@gW)t) ¢

(9.1.18D)
— (COS Z)taz +c.c.
Explicitly they are given by
kA = —l§A8¢+ ZeAo Yorw)a, +oot + lgf“gfcagaf“w tag
2 2 2 2 (9.1.18¢)
— (018 2)t9z + c.c.
Tam—réao,+ (Zéat+Toaw) o, —coa+ (L8 g+caawta
AT TG T QAT Ol J 0o maOAT | 554 €04 ¢ (9.1.18d)
+(04S Z2)'07 + c.c.
We have used several quantities
1 1
W= h(e) -5 e 2% e'CMI, (9.1.19a)
1 1
S=3 (££t+§H) C, (9.1.19b)
040%h  —040h
— t __ B
H= (Cag((cagh) = <—6Ath aAth > . (9.1.19C)

h is a homogeneous quartic polynomial constructed from the quartic invariant [151, sec. 4],

while S is a symplectic matrix
S* = CSC. (9.1.20)

H is a symmetric matrix.
Some of the quantities involved are homogeneous in &:

2 Also this paper provides corrections to the expression from [144] that were incorrect.
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e h: order 4;
e S, H: order 2.

This means that
0ch =4h,  0:H =2H,  £'0:S=2S. (9.1.21)

When the space is symmetric the quartic invariant h is independent of the fields 2° [144,
pp. 13, 17]. In particular it is possible to obtain conditions by taking derivatives. If h depends
on z' then some symmetries of g_; /2 can still exist if some linear combinations of dah and
04h are independent of z*. For this last reason it t may be interesting to keep parameters in
Killing vectors since the Killing vectors k4 and k 4 may not exist by themselves, but only
linear combinations.

Some interesting results on possible hidden vectors are proved in [144, sec. 4.3] for M,
with cubic prepotential. For example &y always exists, whereas @° exists only for symmetric
spaces, and the others exist if

Ejabcdeae = 05 Eabcdeaa =0. (9122)

Note that the second constraint coincides with the one for the existence of a,, such that if
the later exist, then there also exist symmetries such that a, o a,.

Cubic prepotential

For cubic prepotential the quartic invariant is given by (6.3.13)

hE &) = — (a8’ + sod“”csasbgc—zxeodabcg v + d“‘“dcdegasbsdﬁe (9.1.23)

The parameters of the matrix S as written in section 7.2 are

% (306" + £.6%), (9.1.24a)
% (2 _ d@’)@gb,gc) , (9.1.24b)
% (2€%€, + 6 dupe£¢°) (9.1.24c)
BY, % <§ @, E.£¢ — d“ddb egdge) (9.1.24d)

Quadratic prepotential

For quadratic prepotential the quartic invariant is given by (6.2.12) and (6.2.17)

hEE) = 0(E)?, L= 5 Anap B+ = gAnABég (9.1.25)

The parameters of the matrix S as written in section 7.3 are

1

PP =L (P (T + O D)) (9-1.26a)
sap = —5 (E'€% +iD(E, &) nap — (1)AE)p) (9.1.26)
I = s (€ 07O ). (9.1.260)
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Some relations

For later computations we look at various expressions involving the previous objects.

The ¢ derivative of W is equal to

OpW = e~ 20 ¢'CML.

(9.1.27)

W is not homogeneous (since it has quadratic and quartic pieces) but using the last

equation we have
(670 — 0 )W = AW,

or written in various other ways
1
E9eW = 2W + 3 h = 4W + e72? ¢'CME = 4W + 9, W.
Similarly for the derivative of W we get
(€0 — 04)0cW = 30:W

or differently

(£'0¢)0W =W + % Och = 30:W + % ¢72% 0 (€'CME) = 30:W + e~20 CME

using the relation (9.1.32) proved below.
The derivative with respect to & of the second term in W reads

e 9¢(9yW) = ¢ (€'CME) = 2CME

since

O¢ (€'CME) = CME + ¢'CM = CME — MC¢ = 2CME.

Equivalently
(COe)(€'CME) = —2ME.

Taking the derivative a second time gives
O[O0 (€'CME)]" = 2CM,  CO¢[CO¢(¢'CME)]" = —2CM,
On the other hand we defined
H = CO¢(Coeh)*

so we get that

CO(COW)t = H — 2~ 2PCM = —2£€" — 4SC — 2 2P CM.

9.1.4 Summary

As a summary, the list of all the Killing vectors is
ku=(UZ)' 0z + (UZ)" 07 + (V)" 0,
ke :caﬁ%ga,,,

k’o = 6¢, — 2080 — Etag,
k+ :80—,
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(9.1.32)

(9.1.33)

(9.1.34)

(9.1.35)

(9.1.36)

9.1.37a

9.1.37b

—_~ o~

9.1.37c
9.1.37d
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for the normal symmetries and

k= —004+ (0% — e —W)D, + (0€ — COW)'0e — (SZ)'0z + c.c., (9.1.37e)

Re= 5605+ (% - %cagw) 9, + 0 Co; + (% eet - cag(cagvv)t) De (9.1.37F)
(€S 2) 0y + c.c.

for the hidden symmetries.
We have used several quantities

1 ~ 1
W= h(€A,€4) — 5 e 29 ¢ICME, (9.1.38a)
1 1
S = 3 (ggt +3 H) C, (9.1.38b)
0498 —0495h
_ t_ B
H—Cag((cagh) = <—8Ath dA0ph > . (9.1.38C)
9.2 Algebra
We define the commutator of two vectors of Killing vectors k; and ks, as
[k, k5] = kikb — (k1kS)". (9.2.1)

Another possibility is to introduce one parameter for each Killing vector which turns the
previous matrix commutator into a normal scalar commutator

[Eikl, 65]432} = €§k1]€§62 - €§(k1k§)t€1 (922)

and specific commutators can be extracted by taking all parameters to zeros except those
we are interested in which are set to one.?
The non-vanishing commutators of the algebra are [149, sec. 4.3, 144, sec. 3]

[kOa k+] = 2k+7 [kOa kf] = kfa [kfv ké‘} = (Ck+7 [kUa k{] = kaa
ko k-] = —2k_, {ko,@} = ke, [ko kel = ke,
- - - 9.2.3
(kt, k-] = —ko, {kﬁkf} = ke, {km,kg} = Uk, ( )
-~ ~ 1
t| __ ~t t _ ~
[/{35,/{34 —Ck_, [a ke, o /{34 = JaCako +kr, ,
with
1 1
Ta,a = (a'C)(&'CO) S = -3 Claa’ + ad') + 1 H] ,C, (9.2.4a)
H(Z,d = C@g(@@ghg,d)t = (at(Cc‘?g)(&tC@g)H, (9.2.4b)
i o = (a'CO¢) (&' COe)h. (9.2.4c)

Some commutators are computed in appendix F.1, others have been checked with Mathe-
matica.
We see that there are two Heisenberg subalgebra, one generated by {k¢, k4 } [169, sec. 4],

the other by {ke, k_}.

3The same idea is used for supersymmetry where eQ can be used to turn anticommutators into commu-
tators.
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The algebra gj, corresponding to these Killing vectors can be decomposed into eigenspaces
of kg [12, pp. 222-223, 144, sec. 2.3]

gh =9-1+9-1/2+ 80+ g1/2 + 91 (9.2.5)
where the Killing vectors contained in g, satisfy
k0, 0] = a ga. (9.2.6)
We note that the dimensions of extra symmetry subspaces are
dim gy /o = 2np, dimg; =1 (9.2.7)
while for hidden symmetries the dimensions are

symmetric Mp: dimg_; =1, dim g_y /2 = 2np, (9.2.8a)
otherwise: dimg_; =0, dimg_; /o < np. (9.2.8b)

Note that the algebra of M, is contained in gg. As a conclusion very special quaternionic
manifolds have at least 2nj, + 2 isometries (ko, ke and k4) [11]

dimg > 2n, + 2. (9.2.9)

Using the algebra we can obtain some information about the number of symmetries that
will be realized. For example if for a given A the symmetries k 4 and KA exist, then from
the algebra we deduce that k_ exists also and the space is symmetric [12, p. 228]. Similarly
the bound on the dimension of g_; /5 is obtained from the commutators with ky, so if we
have one symmetry of this subspace we can build other by taking the commutator.

Projective quaternionic space

Sp(nn, 1)
M, = — 2P ) 9.2.10
" Spm) < Sp(1) (9:2:10)
are associated to the algebra C} are not in the image of the c-map since
dimg; =3 (9.2.11)

which is in contradiction with what we have seen above [144, p. 12].

9.3 Compensators

The expressions for the compensators are not invariant under SU(2) transformations, and
they depend on the choice of the spin connection.
We recall that the compensators are defined by

Lrwt =dWF —iwt W2 +iw* W, (9.3.1)

and also
wt = V2 e?TK=/2 ZtCdg. (9.3.2)

In homogeneous coordinates, w; is explicitly invariant and the compensator vanishes
W* =0. (9.3.3)

Then for getting their expressions one needs to compute the Lie derivative in special coor-
dinates.
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Figure 9.1 — G5 root diagram [144, sec. 2.3], see [230, sec. 3.1] for the construction. This
corresponds to ny = 2, and in this case B, = 0.

9.3.1 Duality symmetries
Cubic prepotential
The only non-zero compensator is [149, sec. 5.1.1, app. B.3.1]

Wi = a.Im 2°. (9.3.4)

from
Lywt = —ia.Imzwt. (9.3.5)

Quadratic prepotential

The only non-zero compensator is [149, sec. 5.1.1]
Wi =Im(A%2%) = ¢ Im 2* + 7 Re 2° (9.3.6)

from
LywT = —i(¢% Imz* +r*°Rez*) w. (9.3.7)

9.3.2 Hidden symmetries
Compensators for hidden symmetries are [149, sec. 5.1.2; app. B.3.2]

9.3.8d

Wt =2iv2 =% ZC¢, (9.3.8a)
W3 = -Ws — e72, (9.3.8b)
W = -Co.WH, (9.3.8¢)

)

W =—-2Co.W?.

—~
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9.4 Prepotentials

The expressions for the prepotentials are not invariant under SU(2) transformations, and

they depend on the choice of the spin connection.
We recall that Killing prepotentials are given by

Py = kjws — W§
and they are real. We will sometimes use
pPE=p'+ip

The prepotentials for the universal symmetries are

1
_ 3 _ 2
Pt =o, Pl=ge ’,

Py = V2 e/ Ze, P} = —0e*,

PH=v2 M2t 7 P = Loy

b 2 )

while those for the base SK isometries are

1 1 1 _
Py = 3 ef=/2t0 cCUZ, P} = I e €CUE + 3 = ZCUZ,

and those for the hidden isometries are
n 1 _2g o2 2 1 x5
P_:—§e +7€ (2W—£85W)—562Z(CSZ,
P3 =2 K24 (5 ZCE 4 Z0:W),

1
P = NG eK=/24 (ZCe) € + Co: PT,

J % 29 £ 4 CO:P3.
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Part 111

BPS equations for black holes
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Chapter 10

Generalities on AAJS—NUT black
holes

10.1 Ansatz

In this section we consider asymptotically adS and adS—-NUT black holes. The goal is to
provide an overview of the structure of these solutions [150].
We take the following ansatz for the metric and the gauge fields

ds? = — U (dt + 2n H(0) dg)” + e 2V dr? 4 2V=U) dx2, (10.1.1a)
AN = @M (dt + 2n H(0) dg) + 5™ H(0) do. (10.1.1b)

The functions U, V,§ and p depend only on r, and n is the NUT charge. The space 3, is
defined in section A.7

—cosf k=1,
2 2 2 3.2
d¥; =do + H'(6)% d¢”, H(#)=<6 k=0, (10.1.2)
coshf k= —1.

We mainly work with K = +1, but one can check that key equations are also valid for
k = 0, possibly with a rescaling of the Maxwell and NUT charges.

10.2 Motivation: constant scalar black holes

10.2.1 Solution

In order to motivate our general analysis let us start with the adS-NUT charged black hole
in Einstein-Maxwell theory with a cosmological constant A = —3g2, which corresponds to
minimal gauged supergravity with coupling g (n, = n = 0), following [150, sec. 2].

The metric and the gauge field read [76]

2 e’V 2 r?4+n? 5 o 1o
ds® = ———s (dt +2n H(0)d¢)” + 2 4+ (7 ) dxy, (10.2.1a)
Qr —nP
A= =55 (At +2n H(0)dg) + P H(0)do. (10.2.1b)
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using the functions

eV = g?(r? +n?)? + (k +4¢*n?) (r* —n?) — 2mr + P? + Q% (10.2.2a)
V=0 =2 2 (10.2.2b)

. Qr—nP
q= T2 + n2 ) (1022C)
p=P. (10.2.2d)

The ¢-component of the gauge field reads
P(r2 —n?) 42

A, = BT =n) 2@ ) (10.2.3)

72 4+ n?

The parameters P and ) are the magnetic and electric charges, and m is the mass. The
ADM mass and charges depend on the genus of the surface [75, p. 5].

It it well-known that Taub-NUT spacetimes have closed timelike curve (which are present
in order to avoid Misner strings), and the periodicity is related to the NUT charge [231, 39,
chap. 9]. The only exception to the previous statement is for K = —1 where there is a range
for n where the solution is free of closed timelike curves [34]

0<2¢°n? < 1. (10.2.4)
When the NUT charge is set to zero the solution corresponds to the adS Reissner—

Nordstrom.

10.2.2 Root structure and supersymmetry

The supersymmetric properties of adS black holes (n = 0) were first studied by Romans in
its seminal paper [31]. He found two classes of BPS solutions

1
5BPS m=Q|, P =0, (10.2.5a)
1 1

~-BPS : = P=+— 10.2.5b
-BPS m =0, 2 (10.2.5b)

and only @ is not constrained. The 1/2-BPS solution has a naked singularity for any ,
while the 1/4-BPS solution also has a naked singularity, except for Kk = —1 and @ = 0, in
which case it has a horizon adSy x HZ2.

This has been generalized in [76] which found again two classes

1
i_BPS : m = |Q| vk + 4g>n?, P = +n+/k + 4g°n?, (10.2.6a)

1 4 2,2
Z BPS m = |2gnQ), p—itiomn (10.2.6b)
4 2g
where ¢ and n are not constrained.
On these two BPS branches the root structure corresponds to
' =g? (r — 1) (r — 1) (r —13)(r —13), (10.2.7)
where
1 .
5-BPS rE = 21 (\/n " 4g2n? + \/k + 8g2n% + 4ng) , (10.2.8a)
g
1 1
—-BPS: rF=i(n+— Vk+4¢92n2 +2i ) 10.2.8b
: £ i (vt o VR A 20 (10.2:80)
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and in both cases one has 13 (Q) = —ri(—Q).
The 1/4-BPS branch has a real root only if

Q% = —2n*(k + 2¢*n?), (10.2.9)

which requires kK = —1. Then the solution possesses an extremal horizon located at

e ke L (10.2.10)
Ty =Ty = . 2.

1 2 2\/59

Note that the squareroot is well defined only if n is situated in the range (10.2.4) where
there is no closed timelike curve according to [34]. One can see that if one of the root is

real, then another root is automatically real and the black hole is extremal.
On the other hand for the 1/2-BPS solution a real root exists if

Q* = —n*(k + 4g°n?) (10.2.11)
but this is in contraction with the requirement that the magnetic charge is real
K+ 4g*n? > 0. (10.2.12)

In this case the spacetime can reach negative r and there is no horizon. This should be
contrasted with the Euclidean analysis where the associated solutions have a single root
(corresponding to a bolt). This quantitative difference is due to the fact that one continues
also the NUT charge when performing the Wick rotation from Lorentzian to Euclidean
signatures.

10.3 Root structure and IR geometry

In general €2V could be any function; nonetheless from known examples it seems that the
most general form is a quartic polynomial [150, sec. 4] (see for example [18, 19, 76])

4
eV = w17 (10.3.1)
p=0

The root structure of this functions is particularly important as it determines the existence
and the location of horizons, along which other properties such as extremality. Before pro-
ceeding remember that it is possible to shift the radial coordinates. Finally the temperature
of the black hole is proportional to (e")’.

The various possibilities are:

o Naked singularity: pair of complex conjugate roots, vs = 0.

The solution has no horizon.

e Black hole: two real roots, vg = 0.

There is at least one horizon and the black hole has a finite temperature.

o Extremal black hole: real double root, vg = v; = 0.

Two horizons of the previous case coincide, which implies that the first derivative
vanishes, and the temperature is zero. We also recall that static BPS black holes are
extremal.

o Double extremal black hole [58]: pair of real double roots, vg = v1 = 0 and vz = |/v204.

o Ultracold black hole [31, sec. 3.1]: real triple root, vg = v1 = vy = 0.

(6]



It is implicit that the other roots are different, and they may be real (giving additional
horizons) or in complex conjugate pairs. Shifting r has been used to set vg = 0 — which is
equivalent to move one of the root to r = 0 — when at least one root is real, or to set v3 = 0.
It is possible that for some special values of the v; the class of a black hole changes, as we
have seen in the previous section.

Extremal black holes which have

Vo = V1 = 0, (%) 7é 0 (1032)

possess a near-horizon geometry of the form adS; x 3, with respective radii R; and Ry.
They are related to the metric functions by

R
62‘/ ~0 U2 7’2, 62(V7U) ~0 R%, Vg = —2 (1033)
Ry
Plugging these functions into (10.1.1a) gives
2 r’ 2 RE o, 2 1312
ds? = "' (dt +2n H(0)do)” + —5 & + Ry dxy (10.3.4)
which approaches adS; x X, after the rescaling
r—> er, t —> t/e, (10.3.5)

followed by € — 0.
In order to find BPS solutions without NUT charge, Cacciatori and Klemm used an

ansatz with two double roots [58]
2

eV = % —v (10.3.6)

where R is the radius of the asymptotic adS4 vacua, and v > 0 is fixed by the near-horizon
geometry [84]. Hence the function V' is completely fixed by the boundary conditions in the
IR and in the UV. Solutions in this category include [46, 58]; in the symplectic frame where
the gaugings are electric they have magnetic charges.
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Chapter 11

Static BPS equations

We are looking for static %—BPS solutions of N = 2 matter-coupled gauged supergravity. As
it is well known [57, 69], BPS equations imply the equations of motion for the metric and
for the scalar fields, but not Maxwell equations which need to be solved separately.®

11.1 Ansatz

The ansatz for the metric and for the gauge fields are

ds® = —e?Vdt’ + e 2Vdr? + V"V dx?, (11.1.1a)
AN = gt dt — p*F(0)dg. (11.1.1b)

The functions U, V, § and p depend only on r, while X, is a Riemann surface of genus g (see
appendix A.7) with metric

sinf k=1,
d¥y =do* + H'(9)*d¢®,  H'(6) =11 k=0, (11.1.2)
sinhf k= —1.

All scalars are function only on r
P, g =), (11.1.3)

We consider only abelian gaugings.
The magnetic field strength reads

Ga = RAsF® — Iy xF>. (11.1.4)

The electric and magnetic charges are given explicitly by

1
== FA (11.1.5a)

4 » ’
1 _ -
n = E/ Gr = — V") Ix5q™ + k Rasp™. (11.1.5b)
Eg

The latter can be used for deriving an expression for ¢

§* = UV A (Roap® — g5). (11.1.6)

'n this section we follow the conventions of [62, 149].
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The central and matter charges are?

Z=(QV)=p"Mr—aqal",  Z =(QU). (11.1.7)
Similarly one defines the prepotential charges
LY = (P" V)= -P{L",  Lf=(P"U). (11.1.8)
Another expression for the central charge is

Z =L s (VDG 4 p¥). (11.1.9)

11.2 Equations

BPS equations for N = 2 matter-coupled gauged supergravity have been derived in [62,
sec. 2.2, app. B] (see also [149, app. DJ).
For deriving the equations one choose a frame where the gaugings are purely electric

P =0 (11.2.1)
such that
L = P (11.2.2)
The Killing spinor reads _
£a = V262 g, (11.2.3a)

where €q,, is a constant spinor satisfying the two projection conditions

€0a = 17%0pE0 (11.2.3b)
0o = —pAPf\” 701010/3505. (11.2.3¢)
Each projection halves the number of independent components. If pA = 0 then the second
projection is removed and one obtains 1/2-BPS solutions.
There are algebraic equations

(p*P¥)? = K2, (11.2.4a)
prEL =0, (11.2.4b)
Re(e ™ L%) pA P = —2UV) Im(e ¥ 2Z) (11.2.4¢)
and differential equations
Pt =0, (11.2.4d)
Y = —A, +2p PY eV Re(e L"), (11.2.4e)
(eV) = —p*P¥ Tm(e L) + 2 U=V Re(e ¥ 2), (11.2.4f)
(V) = —2eV"UpA Py Tm(e ™ L"), (11.2.4g)
7= e Vg (2V-VID,Z —iph Py D;L"), (11.2.4h)
" =—2e Y "9, (p" Py Im(e™ ¥ L"), (11.2.4i)
)

gh=2e7 Y2V b, kikS Re(e VL), (11.2.4j

the primes denoting the radial derivative, and A, is the composite U(1) connection. The
equation (11.2.4a) corresponds to Dirac quantization condition (2.2.18) for the particular
cases where the integer of the RHS is +1. The last equation (11.2.4j) corresponds to Maxwell

2There is a minus sign with respect to the notations of appendix A.6.
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equation: the fact that its RHS is non-trivial implies that some electric charges will not be
conserved (they correspond to massive vector fields).
The equations for the vector scalars can also be written in terms of £ and Z;.
Combining the equations n, (complex) equations for 7¢, the one for U and the one for
1, one can obtain n, + 1 complex equations for the sections [84]

2e2Y9, ( eV Im( e_iwLA)) = —2U=V)pA 4 pApz [AE pz (11.2.5a)
— 8p~PZ& Re(e ™ L") Re(e ™ LA),
26T(eU Re( ewaA)) = 2WU-VAS R\ pA — [Ny, (11.2.5b)

One can also derive equations for My
2¢?V9,(e"VIm(e " My)) = — e V=V)gy + p” PE Rax I"=PE (11.2.6a)
— 8p* P& Re(e L") Re(e ™ My),
20, (eV Re(e ™ My)) = 2U~V) (RAEIEA (Razp™ —qx) + IAZPE) +p”PE P

(11.2.6b)
which are not independent.
One finds that .
¢ =2eYRe(e™™LY). (11.2.7)
Let’s define
Py =p"Py. (11.2.8)

Then if p™ # 0 one can use a local SU(2) transformation in order to set [149, app. D]
1_ p2 _
Pl =p? =0, (11.2.9)

which is a weaker condition than setting P{ = Pf = 0 as was done in [62]. This is possible
only because p” is constant. Then all remaining P/{ and PI% in the BPS equations disappear,
and the above equations can be rewritten uniquely in terms of P* = PX (this should not be
confound with the momentum map of the SK gauged symmetries), and similarly we write
L=L3

Then the Dirac condition can be rewritten as

p Py =epk (11.2.10)

with ep = £1 (a common choice is ep = —1 [52, 149]). Replacing this in all equations one
sees that k only appears in the Dirac condition, meaning that solutions are independent of
the curvature of the horizon, but regularity does depend on it [46, p. 6].

If p» = 0 then the Dirac condition should not be imposed.

11.3 Symplectic extension

In this section we introduce magnetic gaugings by performing a symplectic transformation
(see section 2.5). Most parts of the equations (11.2.4) are already written in a symplectic
form.

One can see that ¢’ from (11.1.6) corresponds to the first row of the —QMQ, where M
was defined in (4.4.2). Then symplectic equations can be obtained from the replacement

7t = — AUV QM)A (11.3.1)

Similarly terms involving the electromagnetic charges and the gaugings, such as I~'P, can
be replaced (missing terms due to the fact we had P* = 0 can be guessed).
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We now list the symplectic algebraic equations

(Q,P) =epk, (11.3.2a)

(Q,K*) =0, (11.3.2b)

ep Re(e™L) = —e2U="V) Im(e ¥ 2) (11.3.2¢)
and differential equations

(V) = —ep Im(e™ L) + 2U=V)Re(e ™ 2), (11.3.2d)

(') = —2¢p eV VIm(e L), (11.3.2¢)

7= e Ve (2VVID;Z —iepD;L), (11.3.2f)

q" =—2ep eV B9, (Im(e " L)), (11.3.2g)

Q' =2 VeV K¥ Re(e ™™ (V,KY)), (11.3.2h)

Y =—A,. +2ep eV Re(e™™L). (11.3.2i)

)

We note that the symplectic Maxwell equations correctly reduce to (11.2.4d) and (11.2.4j
in a symplectic frame since kA = 0.

Instead of working with the real and imaginary parts of e~ e~UV as independent
equations as in (11.2.5), one can combine (11.2.5a) and (11.2.6a) in the symplectic equation

262V, Im(e™ ™ e UV) = —2U"Y)IQ 4 ep QOMP —8ep Re(e ™ L) Re(e™ V). (11.3.3a)

We stress that this equation is totally equivalent to (11.3.2d), (11.3.2f) and (11.3.2i). Then
the remaining equations are combined as

28, Re(e™™ V) = —2U"V)IQMQ + ep P (11.3.3b)

and they are redundant since Im V already exhausts the 2n,, + 2 variables 7¢, 1 and U. Here
it is useful to have the equations (11.2.6b) for M because the second term is not visible in
(11.2.5b).

For a future purpose we want to obtain another form of (11.3.3a). Multiplying by
e2(V=U) we want to rewrite the LHS with a factor eV inside the derivative

eV, Im(e e V) = V9, Im(e eV VV) — eV UIm(e V)9, e"
= "9, Im(e eV UV) 4 2¢p V"D Im(e L) Im(e™ V),
and this combines with the RHS as

2V, Im(e" eV "UV) = —Q+ ep 2V V) (QAMP — 8 Re(e L) Re(e V)
| | (11.3.4)
— 4 Re(e™¥L) Re(e’“pV)).

Equation (11.3.2¢) can be directly integrated to get the phase in terms of £ and Z [52,
eq. (2.39)]
. Z—i 2V=-U)p
X 21D e = (11.3.5)
Z+iep 2V-UIL
This is obtained by writing explicitly the real and imaginary parts in order to get a second
order equation for e*¥, which then can be solved.

11.4 Symmetric M, with FI gaugings

In this section we consider only FI gaugings such that P = cst. A seminal approach de-
veloped in [85] allows to greatly simplify the equations and this lead to complete analytical
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solution of a full 1/4-BPS black hole in [84]. The idea is to rewrite the equations in terms
of the quartic invariant (and its gradient) and to exploit the power of special geometry.
First let’s define a rescaled section

V=2e""Ve Wy (11.4.1)
The equation (11.3.4) can be simplified using relation (E.1.2¢)
2e¢V0, ImV = —Q + ep [}(P,Im V, Im V). (11.4.2)
In these terms equation (11.3.2e) reads
(&) = —2¢p (V,P), (11.4.3)
while the constraint (11.3.2¢) becomes
2¢p L(ImV, Im V, Im V, P) = <Im v, Q> (11.4.4)
using (E.1.2b) to replace Re V
ReV =2 U=V 11 (Im V). (11.4.5)
A more convenient form for this equation can be achieved by writing
L(ImV,ImV,Im PV, P) = <Im V. I,(ImV,Im V, P)> (11.4.6)
and by inserting (11.4.2)
NG <Im17, o, 1m17> - <Im v, Q> . (11.4.7)

Let’s summarize the equations that have been obtained

2¢V0,ImV = —Q + ep [1(P,Tm Y, Im V), (11.4.8a)

(V) = =25 (V,P), (11.4.8b)

v <Im V.0, Im17> - <Im v, Q>, (11.4.8¢)
(Q,P) =epk. (11.4.8d)

The main advantage of these equations is that they do not involve Re IN), U or v, they only
contain ImV and V (as dynamical objects). Another useful point is the removal of the
matrix M whose explicit form is involved in the general case. All other objects can be
deduced from them, for example one can obtain ReV from (11.4.5).
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Chapter 12

Static BPS solutions

We will focus on solutions that are black holes interpolating between a (magnetic) adSy (of
radius R) for r — oo and a topological horizon of Bertotti-Robinson type adSs x ¥, (with
respective radius R; and Rp) for r — 0. Both these spacetimes are also BPS solutions and
can be studied separately, and for this reason the full black hole can be seen as a soliton (or
a domain wall) [84].

12.1 N =2 adSy
An anti-de Sitter vacua is characterized by constant scalars and vanishing charges
) =71 ¢“(r) =g, Q=0 (12.1.1)

which implies in particular Z = 0. The metric functions are

2
eV = %, eV = % (12.1.2)
giving the metric
2 e BE L, 1P 2
ds :—ﬁdt +T—2d7’ +§d2g (12.1.3)

As discussed in the previous section vanishing charges imply that the solution is 1/2-
BPS. Moreover in the case of adS4 vacua there is a special enhancement of supersymmetry
which increases it to a full BPS solution. Moreover one cannot use the trick of the SU(2)
rotation to set P! = P? = 0.

Typically the asymptotic geometry of a 1/4-BPS black hole will be a madS vacua. There
is a one-to-one relationship between adS and madS vacua.

From (11.3.2f) one gets the equation

LY =(U;, P*) =0. (12.1.4)
In a frame where the gaugings are purely electric, this equation is equivalent to
PEA =o. (12.1.5)

In the space spanned by the n, + 1 directions of A, f represents n, vectors indexed by i.
Then the previous equation implies that, for fixed x, Py is orthogonal to these n, vectors
and thus

Py = c"(q") Pa. (12.1.6)

Then a local SU(2) rotation can be used to set

ct=c*=0. (12.1.7)
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Note that the latter equations must be enforced as they are not a generic consequence of
the theory. We then denote P = P3 and £ = £3 as usual.
The BPS equations are

Re(e L) =0, (12.1.8a)
Im(e L) = %, (12.1.8b)
L£; =0, (12.1.8c)
Y =0, (12.1.8d)
v, k") = 0. (12.1.8¢)
From (11.3.2h) one obtains
Re(e™™ (V,K")) =0, (12.1.9)

while the derivative in (11.3.2g) can be used to replace the prepotential by the Killing vector
Im(e™ ™ (V,K")) = 0. (12.1.10)

Combining both equations gives (12.1.8e).
The equations for the sections are

2Re(e™™V)=RP, 2Im(e” V)= ROMP. (12.1.11)
Using the matrix C defined in (4.4.15) this can be rewritten as
e” WY =i ROCP. (12.1.12)

All the equations but the last one in (12.1.8) do not involve the Killing vectors. Hence
a strategy to solve these equations is to consider P as a constant (which is the case for the
FI gaugings P — G and n; = 0) and to solve for the vector scalars in terms of P. Then the
remaining equation (12.1.8e) can be used to solve for the hyperscalars which can be replaced
at the end in the vector scalars.

Following this strategy we first analyse the equations for the vector scalar sector [46,
sec. 3]. Equation (12.1.8d) means that the phase is constant

¥(r) = vo. (12.1.13)

We rewrite (12.1.8b) as _
L= ;—% et (12.1.14)

Because of (12.1.8¢) the prepotentials have components only in the direction of V and its
conjugate _
P =—-2Im(LV). (12.1.15)

Note that these equations are identical to those of the adS, x S? near-horizon in ungauged
N = 2 supergravity, with the replacement P — Q, which can be solved explicitly in some
cases (such as symmetric cubic M) [232]. The value for the phase is taken to be

Yo = _g (12.1.16)
which implies
1
L=— 12.1.17
R’ ( )
and also 5
P = ;) ImV. (12.1.18)
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These equations are consistent with (12.1.11).
Let’s turn to the last equation (12.1.8¢)

VK% =0 (12.1.19)

following the analysis of [149, sec. 2.2].

First we want to clarify this equation. Using the results of section 8.3, the spin connec-
tion w® is invariant under symmetry transformation generated by k only up to an SU(2)
transformation (we consider only the electric frame here)

Lyw® = VWi (12.1.20)

where W7 is an SU(2) vector called the compensator. This allows to relate directly the

Killing vector and prepotential
P* = k'wl + W?*. (12.1.21)

Contracting (12.1.8e) with w® and plugging this last result gives
e WL — e (VW) =0. (12.1.22)

If the compensator vanishes W = 0 one obtains a singular solution since £ = 0 implies
R — o0o. Then a necessary condition for having a N = 2 adS; vacua is that at least one
isometry with a non-trivial compensator is gauged [48, 50]. In the case of special quaternionic
manifold, isometries with compensators are not generic as only the isometries inherited from
the base special Kahler space and the hidden symmetries have compensators (see section 9).
It may seem that (12.1.8e) are too many equations since there are 2n; equations (V
being complex) for the n, variables ¢*. But in fact the imaginary part is already implied

by (12.1.18)
ImV,K") ~ (P,K") =0 (12.1.23)

where the last equality follows from the locality constraints (2.5.7). Then the only equations
that we need to solve are
(ReV,K") =0. (12.1.24)

We restrict ourselves to the case of symmetric very special Kahler manifold (section 6.3).
Using the relation (6.3.17)

ReV = fé I;(ImV) (12.1.25)
the previous equation can be rewritten as
(I;(Im V), K*) = L4(K*, ITm Y, Im V,Im V) = 0 (12.1.26)
and then as
L(K*,P,P,P) ~V“I,(P)=0 (12.1.27)

thanks to (12.1.15).
As a summary the equations to solve for are

P = —2Im(LV), (12.1.28a)
1

L= — 12.1.28b
R’ ( )

0= V“I4(P). (12.1.28¢)

The first two equations in the case of FI gaugings were explicitly solved in some cases in [46].

84



12.2 Near-horizon adS; x X,

These equations have been studied with n;, = 0 and FI gaugings in [58, sec. 4, 52, sec. 3],
and further in [53] (see also [46, sec. 5]). For nj, # 0 they were studied in the electric frame
in [62, sec. 2.3] and in general in [149, sec. 2.3].

There is a supersymmetry enhancement at the horizon because there are two extra
superconformal charges [149, p. 6].

Denoting the horizon radius by rj, and by rj the radius where the scalars 7% vanish, the
solution is regular only if rj > ry for all A [46, p. 15].

Scalars and charges are constant for near-horizon geometries

(r) = 73, qa“(r) = q§, Q = cst. (12.2.1)
The metric functions are R
U r v 2
= — = — 12.2.2
e R e 7 r ( )
giving the metric
2 o RE O, 2 132
ds® = @ dt” + 2 dr® + R; d¥; (12.2.3)
1
The BPS equations are
(Q,P) =epk, (12.2.4a)
Im(e” ™ Z) = ep R2 Re(e L), (12.2.4b)
. R?
Re(e ™ 2Z) = 2_1%21’ (12.2.4¢)
ep Im(e™™ L) = L (12.2.4d)
2Ry’
Zi = ’L'ED R% Ei, (12.2.46)
R .
W =2ep — Re(e VL), (12.2.4f)
r
(Q,K") =0, (12.2.4g)
(V,K*y =0. (12.2.4h)

We can adopt the same strategy as in the previous section: all equations except the
last two do not contain the Killing vectors, such that they can be solved as if P was con-
stant, giving a solution for the vector scalars in terms of the charges, the gaugings and the
hyperscalars

T =14(P,Q,q"). (12.2.5)

Then the remaining equations can be used to solve for the hyperscalars in terms of the
charges and the gaugings

“=q¢"(P,Q), = 7' =7(P,Q). (12.2.6)
From the equations one can also write
Re(e ™ 2Z) = —ep R3 Im(e L), (12.2.7)
Combining this with (12.2.4b) gives
Z=iepR3 L. (12.2.8)

Since R2 is real this means that the phases of Z and £ differ by 7/2 [52, p. 12]. Plugging
the relation (12.2.8) into (11.3.5) implies that ¢ is a multiple of =

Y(r) =m. (12.2.9)
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Another way to see this is by taking the imaginary part of (12.2.8): this is consistent with
(12.2.4b) only if v = w. Then inserting this result into (12.2.4f) gives

Re(e ™™ L) =0=Im(e ™ Z) =0, (12.2.10)
and as a consequence
z- BB (12.2.11)
T 2Ry’ — "Pagry -

Instead of working with (12.2.4e) it is easier to work with the sections. Using the previous
elements one has

2R3 9
1

2R3 9
1

Adding the two equations gives
R
1% :i2—]$2 QC(Q + ep RZQMP) (12.2.13)
2

where C was defined in (4.4.15). Note the similarity with (12.1.12).
Another way to derive the equation for the section is to contract (12.2.4e) with QM.
Using the relation (4.4.7)
QMU; = —il; (12.2.14)

one obtains

0= (U;, Q) —iep R3 (U;, P) = (U, Q) + ep R3 (QMU;, P)
= <Uz, Q> +€p R% <UZ,QMP> = <UZ, Q+ep R% QMP>

because of (4.4.11). As a consequence the quantity Q + ep R2 QMP has no components
along the direction U; in the basis (V,U;) such that

Q+ep R3QMP = —2Im((V, Q + ep R QMP) V). (12.2.15)
Now we can introduce the central charge and after using the relation (12.2.8) one obtains
Q+ep REQMP = —4Im(ZV). (12.2.16)

This is equivalent to (12.2.12a) once Z is replaced by its value.
Contracting (12.2.16) with P gives

(Q,P) +ep R3S (QAMP,P) = —4Im(Z L), (12.2.17)

while with Q one gets
(QMP, Q) = 0. (12.2.18)

Then using the relation (12.2.8) modifies the first equation to
(Q,P) — ep R3PMP = dep RS |L]?, (12.2.19)
and using (4.4.23) one obtains [52, p. 13]
73 (QP) = =PMFP = 21Lf - L), (12.2.20)
A similar relation for Z follows directly
ep RS (Q,P) = —OM(F)Q =2(12° - |Zi]%). (12.2.21)
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These formulas are helpful for understanding why it is not possible to find asymptotically
adS, solutions with spherical horizon and constant scalars: the adS, vacua has £; = 0 from
(12.1.8b), and the previous equations give

R

€D
R:=—"— (Q,P)= ——. 12.2.22
2 9 |£|2 ( > 9 |£|2 ( )
The latter is positive only for k = —1.
As a summary the equations to solve are

Q +iep R3 QMP— = —4Im(Z V), (12.2.23a)
= R_% (12.2.23b)

2Ry’ -
(Q,P)=epk, (12.2.23c)
(Q,K*) =0, (12.2.23d)
YV, K%y =0. (12.2.23e)

The first two equations were solved for FI gaugings with cubic M, explicitly in the case of
symmetric spaces and implicitly otherwise in [62]. Note that for P = 0 it reduces to the
attractor equations of ungauged supergravity.

After some work one can see that the vector scalar equations imply [149, p. 7, 53]

Li(Q —iR3P) =0. (12.2.24)

In particular this gives the radius of £, (and hence the entropy)

RY = I(Im V) = ﬁ (1(Q.Q.P.P)+ VI(Q QP PP~ L(QL(P)).  (122.25)

At this point P depends on ¢“, which needs to be solved for using the other equations.
The entropy is
S =nR: =m\/L,(Im V). (12.2.26)
One finds also the constraint

0=4L(P)4(P,Q,Q,Q)* +414(Q)1+(Q,P,P,P)* (12.2.27)
— I4(P,Q,9,9)14(P, P, Q,Q)14(Q,P,P,P). o

12.3 General solution

A general solution to the set of BPS equations for FI gauged supergravity (11.4.8) was
provided in [84]. We will only give the most important details of the analysis.

As explained in section 10.3, BPS static black holes are extremal and we are considering
near-horizon geometry adSs x ¥,. As a consequence the ansatz for e is

2V = r2(047% + v37 + va). (12.3.1)

This root structure and the degenerate double extremal case are the only ones allowed for
this type of black holes [150, p. 11].
The ansatz for Im ) is more involved

ImV = eV (A3r® 4+ Agr® + A7) (12.3.2)

where the A; are symplectic vectors.
The next steps is to expand each of the equations (11.4.8) in powers of r and to identify
the coefficients. In principle one should be able to find the constraint (12.2.27) from the
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analysis, but this did not appear feasible, and for this reason it is used as an input for
simplifying the equations, using it for replacing I4(P, P, Q, Q).

Note also that the system contains much more equations than variables, and there is a
lot of redundancy. In particular (11.4.8b) implies the following relations

4

The UV boundary condition can be read from (11.4.8a) and gives

_ne
374 14(7)), 4fR§de 1,(P). (12.3.4)

The overall normalization was not fixed and it was determined by comparison with [46].
The solution for Ay and Ajs is found by expanding these vectors on the basis (E.1.1),
and it can be found that only third order terms are non-vanishing

Explicit formulas can be found in [84, sec. 3], and one needs to use the identities of ap-
pendix E.1. _
The real part of V can be found from

ReV =2 U=V [/(Im V), (12.3.6)
then the function U from 1
L(ImV) = T V-0, (12.3.7)
and finally the physical scalars from B
X
= = (12.3.8)
70

(the overall rescaling are cancelling).

The solution has 2n, charges since Q has 2n, + 2 components and there are two con-
straints, the Dirac condition (11.4.8d) and the constraint (12.2.27). This is the maximum
number from the near-horizon analysis from [53].

As a conclusion, it is much easier to find a general solution using a symplectic formalism
where the underlying structure simplifies the computations rather than choosing a particular
model with electric gaugings.

12.4 Examples

In this section we work through two examples of gauged supergravity theories which arise
from M-theory and which have Mj, = Gy(2)/SO(4), reproducing the N = 2 adS, vacuum
and then look at black hole horizons. It is well known that when a FI-gauged supergravity
theory (i.e. with nj, = 0 and U(1) g gauging) admits an N = 2 adS, vacuum it also admits a
constant scalar flow to adSs x H?/T (one can find a very general proof of this in [52]). With
the addition of hypermultiplets, one can set them also constant and then the only additional
constraints are (K*, Q) = 0. Subject to this condition being solved, the hypermultiplets
decouple and the constant scalar flow is also a solution of the theory with hypermultiplets.
We demonstrate this in our two examples.

Our first example was obtained in [169] corresponding to the invariant dimensional re-
duction of M-theory on V5. Our second example comes from [233] and corresponds to a
consistent truncation of the dimensional reduction of maximal gauged supergravity on the
Einstein three-manifold M3z € {H3/T', T3, 53}, where I is a discrete subgroup of SL(2,C).
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12.4.1 Vi,

The invariant reduction of M-theory on seven-dimensional cosets was performed in [169]
where in addition the general reduction on SU(3)-structure manifolds was found. All the
resulting four dimensional gauged supergravity models found in that work fall into the class
studied here, namely the hypermultiplet scalar manifold is a symmetric space which lies in
the image of a c-map. Black hole solutions in many of these models were studied in [62].
We restrict ourselves to the example where M, = /SO(4) corresponding to the reduction
on ‘/512.
The following data specifies the four dimensional supergravity theory [169]

SU(1,1) (X1)3 A 1
v =1, = —— F=—— X4 = 12.4.1
" Me="50) X0 T (12.4.12)
Go(2) SU(1,1) (Z1)? A (1
= 2, M = B z = 7” G = — 5 Z = .
"t "=som M Tom 70 2
(12.4.1b)
The non-vanishing electric gaugings are given by
bl = i 6AO alp A — —i 6AO E4N = —€0 5AO- (1242)
A \/g 9 s \/g )
The non-vanishing magnetic gauging is given by
e} = —26™. (12.4.3)

The constant ey has its origin in the M-theory three-form with legs in the external four
dimensional spacetime which has been dualized to a constant [169].

We note that the gaugings which specify this model were incorrectly reported in [169]
to have vanishing compensator W§¥. This of course is incompatible with the existence of a
supersymmetric adS, vacuum. The solution is that the Killing vectors ky with a; # 0 have
non-trivial compensators and we now see this is nontrivially gauged. In fact this is the only
gauging with a non-trivial compensator in this reduction.

AdS,; vacua

The Killing prepotentials PAi are set to vanish by the condition

A=E€4=0 (12.4.4)
Then from (K4, ImV) = 0 (in the direction of M) we get
KA =0= 2=1iV3, (12.4.5)
and from (K7, Im V) = 0 (in the direction of the axion o) we get
- |8 (12.4.6)
€o

while the axion is unfixed. As a result we have the Killing prepotentials
PP =(1,0), P =(0,-6/e). (12.4.7)
The vector multiplet scalars are then given by

2=0, y= %0 (12.4.8)

and the adS, radius is given by

_12V6
T3/2
€o

(12.4.9)
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AdS; x ¥, vacua

There is a related adS; x H? /f vacuum at the same point on the scalar moduli spaces
My x My, The charges are

Q= (1/4,0,0,e0/8) (12.4.10)
and the radii are
6(3)/4 6(3)/4
= gonrgm 1= g (12.4.11)

12.4.2 SO(5) gauged supergravity on M;

The maximal gauged supergravity in seven dimensions has been dimensionally reduced on
three-dimensional constant curvature Einstein manifold and consistently truncated to a four
dimensional gauged supergravity theory in [233]. The resulting theory is given by the fol-
lowing data

_ _ Su@, 1) o, A_ (1
Ny = 1, MU = W, F=—-4 X0 5 X4 = ’ (12412&)
_ _ G _Su(L, 1 _ @ a_ (1
nh—2, Mh—SO(4), MZ—W, G—— ZO y Z = 2 .
(12.4.12b)

We have computed the gaugings in our terminology by careful comparison with [233].
We find that k1 = 0 and the non-vanishing electric components are in kg

33/4¢

%y ==, b0 = 334, 0=~ (12.4.13)

Likewise we find that £° = 0 and the non-vanishing magnetic components are in k!

1
al=———. 12.4.14
1 2\/5 ( )

The integer £ = {—1,0,1} corresponds to the reduction on M3 = {H3/T', T3, S3} respec-
tively. The gauging from &g provides the non-trivial compensator required to have a
supersymmetric adS, vacuum.

We write
z=x+ie %% (12.4.15)

This yields the magnetic Killing prepotentials
31/4 31/4 31/4

PZ7O = 0, P171 = T e¢+3l’ax, P2’1 = Te¢+‘,ﬁ’ P371 = T€2¢§1 (12416)
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and the electric Killing prepotentials

Py = | — 9"t + 2x(% 7 — 8) + 392 (66°(6" — 1) (12.4.17a)
+ e ( =20+ € +27°¢") + L1&" - 6% + 6x(€1)2))]

P2 = 43%/4 | gettep 2e_¢_3“’(e2¢(3 ) (12.4.17b)
+32 (3! (—x&” +€1)7) — (€97 - 66“0))}

Py = oy | 18VB (& — &) + o2 (dof2 + 8Y2(€")?) — o1’ (12417
+3%/2(£,6%" +2(1)° - 2050))]

Pr—0. (12.4.17d)

AdS,; vacua
The supersymmetric adS, vacuum is at

i

A_§F g _ _

P =a=x=0=¢=0, e“afm, 772—\/5 (12.4.18)
and in particular requires ¢ = —1, corresponding to a reduction on H?/T". The adS, radius
is 1

R=—. 12.4.19
7 ( )

Evaluated at this vacuum the Killing prepotentials become

1
Pi=pPi=P""=pP¥ =0, P}= -7 P22 =

)

1
—. 12.4.20
AdS, x ¥, vacua

The adS; x X, vacuum is located at the same point on the scalar manifold. The charges are
given by

P=-1, pl=0, g0 =0, = 7; (12.4.21)
The radii are given by
Ry = 23—1/4 Ry = 21—1/4 (12.4.22)
When lifted to M-theory this is a solution of the form
adSy x H?/T x (H? x,, §%) (12.4.23)

where the S? is fibered non-trivially over H3. It arises as the IR of a domain wall adS, —
adSy x H? where the scalar fields take constant values along the whole flow.
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Chapter 13

BPS AdS—NUT black holes

We focus on 1/4-BPS adS-NUT black holes. BPS equations for N = 2 FI gauged super-
gravity and several classes of analytical solutions were derived in [150].

13.1 Ansatz

We consider the ansatz from section 10 where the metric and for the gauge fields are
ds? = — 2V (dt + 2n H(0) dg)” + e 2V dr? 4 21 52, (13.1.1a)
AN = M (dt +2n H(0) dg) + p™ H(0) do. (13.1.1b)

The functions U, V, ¢ and p depend only on r, while X, is a Riemann surface of genus g (see
appendix A.7) with metric

sinf k=1,
dvj =do* + H'()*de®,  H'(6) =11 k=0, (13.1.2)
sinhd k= —1.

All scalars are function only on r
F=r), g =), (13.1.3)

We consider only abelian gaugings.
The magnetic field strength reads

GA = RAsF® — Iy xF>. (13.1.4)

The electric and magnetic charges are given explicitly by

1
. 4_/ A = 5 ang, (13.1.5a)
iy P
1
qa = e Gpr = — e2V=U) IAzq/E + HRAZPE- (13.1.5b)
ZQ

Using these expressions one can rewrite the gauge field as
AN = g dt + p® H(6) do, (13.1.6)
and finds again an expression for ¢’

G = U=V (AR (REAPA _ qz:)- (13.1.7)

n this section we follow the conventions of [150]. The main difference is the replacement of Q by —Q.
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The central and matter charges are?

Similarly one defines the prepotential charges

LF=(P*V),  LP=(P"U). (13.1.9)

13.2 BPS equations

For the following we consider FI gaugings and n; = 0.
The Killing spinor has the same form (11.2.3) as for n =0

£, = eU/2ei¥/2 €0as (13.2.1a)
€0a = 17% 568, (13.2.1Db)
00 = —pAPf\” Olamaﬂsog, (13.2.1¢)

€0 being a constant spinor.
The symplectic covariant equations are

(Q,G) +4n Y Re(e ™ L) = ep , (13.2.2a)

ep Re(e L) = AUV Im(e ¥ 2) + nedV—2 (13.2.2b)
2€2V6T(e_U Tm( e_in)) = (4n eV —8ep 2(V-U) Re( e—iwﬁ)) Re(e~ V)

- Q—ep VMG, (13.2.2¢)

(eV) =—2epe’VIm(e L), (13.2.2d)

Q' = -2nU"V)IoMQ. (13.2.2¢)

At the end one finds Maxwell equations, while the first one is a generalization of the Dirac
condition.
We also have the equation for the real part of V

20, (e Re(e™™V)) = -G — 2U"V)aMOQ. (13.2.3)

Finally we recall the equations for 1/, U’ and 2"

' =—A, —2e YRe(e L) —ne2U-V), (13.2.4a)

(V) = —epIm(e L) + XU~V Re(e ™ 2), (13.2.4b)

(") = e Vg (2U=V)D;Z +iD;L). (13.2.4c)

The equation (13.2.2¢) can be modified using (F.3.30e) to include one factor e" inside

the derivative

2¢Y0, ( eV v Im( e_in)) =4 (n eV —22(V-U) Re( e_iwﬁ)) Re( e_i’/’V)
— 42V Im(e ™ L) Im(e™ V) (13.2.5)
-0 - V-Uamg.

One can also use Maxwell equation (13.2.2e) to rewrite (13.2.3) as

20, (e Re(e™™V)) = %Q’ -g. (13.2.6)

2There is a minus sign with respect to the notations of appendix A.6.
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It is then straightforward to integrate this equation
ane’ Re(e V)= Q —2nGr — Q (13.2.7)

where @ is the integration constant

Q= (gi) . (13.2.8)

In turn one can use this to get the expression for Q if one knows the other quantities.
Moreover plugging this result into Dirac quantization equation (F.3.30a) gives

<@, g> —epk (13.2.9)

where the LHS is constant and @ corresponds to the conserved charges.

Finally one can use this expression for Q in order to rewrite the equations for ImV
(13.2.2¢)

QGQV@(G*U Im( efin)) = 8(n eV —ep 2V7U) Re( efwﬁ)) Re( e"WY)

—omGr—0—cp 2V-UIQMG. (13.2.10)
and (13.2.5)
26V, (VU Im(e~ V) = 8 (n eV — eXV=U) Re( e~ L)) Re(e™ V)
— 42V (e L) Tm(e V) (13.2.11)

—omGr— Q- 2V-UIQMg.

The main advantage is that Q has been replaced by the constant @, while the extra term
G r is not a big problem.

Note that we can use (13.2.2b) in order to get an expression for e’¥. This last expression
will not help to solve the equation since it is complicated, but it means that we can always
integrate the differential equation for the phase (13.2.4a), and we can obtain the expression
if we know all other quantities. The result is®

, 3U—2V 3U—-2V 2 rpaie2U-VZ
L (L, YW (N ) _&Fre - (13.2.12)
L—ie2U-V)Z L—ie2U-V)Z L—ie2U-V)Z
which is a consequence of the second order equation
v (E_ — ie2(U_V)Z_) —2me3U =2V el ¢ (£+ ie2(U_V)Z) =0 (13.2.13)

obtained by writing explicitly the real and imaginary parts. For n = 0 it reduces to (11.3.5).

13.3 Symmetric M, with FI gaugings

Using techniques similar to section 11.4 one obtains the following equations for symmetric
cubic M,

2¢V8, ImV = —Q + ep I}(P,Im V, Im V) + 2nPr, (13.3.1a)
(V) = —2¢p <Im17,79>, (13.3.1b)
eV <Im V,8, Im l~)> = <Im V, @> +3ne¥ +4nr <’P, Im l~)> , (13.3.1¢c)
(Q.P)=epx (13.3.1d)

where we defined B
V=2e""Ve ™y, (13.3.2)

3To lighten notations we take gpp* = k.
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13.4 Solutions

In this section we are looking for solutions of the previous equations. Following section 10.3
and the example of section 10.2, we will consider first extremal black holes (of general and
CK types), and then solutions with complex roots. Indeed other cases do not seem to appear.

The derivation uses techniques that are similar to those described in section 12.3. In
particular one imposes the near-horizon constraint (12.2.27), and the identities from ap-
pendix E.1 are used.

13.4.1 Pair of double roots

When there is a pair of double roots our ansatz is:

eV = r2(v4r2 + 2/ vaug T + v2), (13.4.1)
- 1
mV=——— A + Asr (13.4.2)
€ 2 <g,A1>

where (A;, A3) are symplectic vectors which we must determine and we include a sign
€ = %1 to keep track of both branches of the square root. We have introduced this particular
normalization of A; to make contact with expressions elsewhere. The IR and UV asymptotics
completely fix the solution, the BPS equations then over-constrain this ansatz and for a
solution to exist there must be significant cancellations.

We first solve the second equation of (13.3.1b) to get

V2 = eV/2(G, A1), Jui= (G, As), (13.4.3)

and then expand the BPS equations (13.3.1a) in r to get

0=1I4(G, A3, A3) — 2(G, A3) As, (13.4.4a)
0 = L’L(g, Al, Ag) —2 <g, A1> Ag + NKEy/ 2 <g, A1> g, (1344b)
0= L’l(g, Al, Al) -2 <g, A1> Q (1344C)

The constraint (13.3.1c) is also expanded and we get
0=+v2(A1,A3) —nke\/(G, A1), (13.4.5a)
0=(Q, A1) +2(A1, 4s), (13.4.5b)
0= Vanre (G, A1)™? + (G, A3) (Q A1) +2(G, A1) ((Q 4s) + (A1, 4s) ), (13.4.5¢)
0=1(9,4;). (13.4.5d)
All the free parameters are fixed by the UV and IR asymptotics. From the UV we get

13(9)

= W, Vg = I4(g) (1346)

3

where we have appealed to [53] to fix the normalization of As. The solution for A;, found
from the IR equation (13.4.4c), is the same as in [84]

A =a11,(G,G,G) + a2 I4(G,G, Q) + a3 I4(G, Q,Q) + as I}(Q, Q, Q) (13.4.7)
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43 1L(6,2,0.9)
m=—5 16650 (13.4.81)
as 14(G,G,G,9)14(G, Q, Q, Q)?
_ 4.
= 1:(G.6,G, 0)°11(Q) — 1(G)11(G, O, 0, 0)2 (13.4.8)
e — 9(14(g7 Q,09,0)14(G) — 14(G,6G,G, Q)M(Q)) (13.4.8¢)
5 14(g7 Q; Q7 Q)I4(g) Q7 Q; Q)(<Iz/1(g7 g) g)7 Iz’;(Q7 Q; Q)> + HI4(g) g7 Q; Q)), o
0= 22 119,9.6,Q) (13.4.8d)

3 1,(G,Q,0,9)

The effect of the NUT charge is through (13.4.4b) as well as the constraints (13.4.5a) and
(13.4.5¢). We find that these three equations are redundant and there is a single non-trivial
constraint on the system

714(ga g7 ga Q)2I4(g7 Q; Q7 Q) %

e 14472 1,(G) 1/
o 18(G,Q) 14(G6,6,Q,Q) — (11(Q,9,9),11(6,G6,7))
(I.(G)14(G, Q,Q, Q)* — Iu(G,G,G, Q)14(Q))” + 1614(G, G, G, Q)*1,(G, Q, Q, Q)®

(13.4.9)

When n = 0 then (13.4.9) is solved by I4(G,Q,Q,0Q) = I4(G,G,G,Q) = 0 and the
solutions reduce to those in [46, 58, 85].

13.4.2 Single double root

Only a single double root is required in eV in order to have an adSy x Y4 vacuum in the

IR but this more general solution is somewhat more complicated. We found that in order
to have a pair of double roots, there is a relation between the NUT charge and the electro-
magnetic charges (13.4.9), whereas there is no such constraint when requiring a single double
root. The only constraint is that for adSs x ¥, vacua (12.2.27).

We take the same ansatz as in section 12.3

62 = 12(uy + var + var2) (13.4.10)
ImV=cVA4 (13.4.11)
A= Ayr+ Agr? + Agr® (13.4.12)

where A; are constant symplectic vectors whose dependence on G and Q we seek to deter-
mine.
We first solve (13.3.1b) with

4

=—7(G.4), =234 (13.4.13)

Vi1
The symplectic vector of BPS equations (13.3.1a) is then

262V A — (VYA =1TI,G,A A+ &V (2nGr — Q) (13.4.14)
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which breaks up into five components from different powers of r

0=1I,(G, A3, A3) — 2 (G, A3) As, (13.4.15)
0=1I4(G, Az, A3) + nk (G, A3) G — 2 (G, A3) As, (13.4.16)
0=2I(G, Ay, A3) + I}(G, Az, A3) — 8(G, A1) A5 — (G, A3) Q (13.4.17)
£2(0, 45) A1 + 3 (0, A2} (26— A2),
0=TI4(G, A1, A2) + 2 (G, A1) (nkG — As) + (G, A2) (A1 — Q), (13.4.18)
0=1TI,(G, A1, A)) —2(G, A)) Q. (13.4.19)
We also need to the expansion of the single real constraint (13.3.1c)
O(r*): 0=2(Ay, A3) —nr (G, A3), (13.4.20)
O(r®): 0=2(A1, A3) +(Q, As), (13.4.21)
O(r?): 0= (A1, A2) +nk (G, A1) + (Q, Ay), (13.4.22)
O(r')y: 0=2(Q,A;). (13.4.23)

Note that once again, the highest order in r components of (13.4.14) and (13.3.1c) are
independent of the NUT charge and therefore the solution for Az can be taken from [84]

_ 1 L(9) T
Ag = 4 I4(g), Vg = I4(g) (13424)
We solve these equations with the ansatz
AL =a113(G,G,G) + a2 I4(G, Q, Q) + a3 I}(G, Q, Q) + a4 I1(Q, Q, Q), (13.4.25)
Ay =b114(G,G,G) + b2 I4(G, Q, Q) + b3 I4(G, Q, Q) + ba I4(Q, Q, Q), (13.4.26)

where {a;, b;} are real constants with a non-trivial dependence on (G, Q). The IR conditions
which give a; in terms of (G, Q) are the same we obtained for the case when e?V had a pair
of double roots and are thus given by (13.4.8a)-(13.4.8d).

Then from (13.4.18) we find the solution for {b1,bs,bs} in terms of bs

_ b314(Q)14(6,6,G,Q)  2b314(G,Q, 9, Q) L nxly(G, Q, Q, Q)

by — 13.4.27
YT BL(6)L(G,0.9,9) 314(6,G,6G,Q) 181135 ( 2)
+ b3’il4(gv ga gv Q)I4 (gv Qa Q7 Q)2
5414(G)5 ’
14(G,6,G, Q) (6n14(G)14(Q) — b3lly)
bo = 13.4.27b
2 6]4(Q)H3 ’ ( )
b4 _ 714(g5 Q7 Qa Q) (3n14(g) + b314(gv ga gv Q)K’) ) (13427C)
913
Finally from (13.4.17) we solve for b3 and find the rather lengthy expression
by
by = a

where the numerator and denominator are given by
by = 6nk14(G)14(G.G,G, Q)14(G, Q, Q, Q)* (I4(6.6,G), I1(Q, Q, Q)) II;
+3| — L(9)*?14(G.6G,G, Q)14(G, Q, Q, QU315 | — 181,(G)I13
+ (8 +4n?L(G)Y*)14(G, 6,6, Q)2 14(G, Q, Q, Q)I1;
— 8n21,(G)%/? [144k14(Q)*14(G, 6. G, Q) — k14(G,G,G, Q) 1.1(G, Q, Q, Q)°
+ 2119, 0.2.0m] ||
(13.4.28)
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and
by = 814(G) |14(G,G. G, Q) [21-@14(Q)I4(g, G,G, 0)*(1441,(Q)*14(G,6,G, Q)
—14(6,9,9,9)*) + I.(G,G,G, Q) 14(G, Q, Q, Q)(28814(Q)*14(G,G, G, Q)
- 14(G,9,9,9)°) (11(6,6,9),11(2, 2, Q)
+90k14(Q)14(G, G, G, QL(G, Q, Q, Q)* (I,(G, G, 6), I,(Q, Q, Q))°
+914(G, Q. Q,Q)* (14(6,6,9), [;(Q, 2, Q)" | + 18x14(9)14(G, Q, Q, Q)]
—4k14(G,G,G, Q)*14(G, Q, Q, Q)II;.

(13.4.29)
We have used the notation

I, = 14(G, Q, Q, Q) (I1(G), I(Q)) + 2k14(G,G, G, Q) 14(Q), (13.4.30a)
I, = 1,(G,G,G, Q) (I4(G), I(Q)) + 2kI4(G, Q, Q, Q)14(Q), (13.4.30Db)
5 = I,(G, Q,Q, Q) (I4(G), I(Q)) + 4rI4(G,G, G, Q)14(Q), (13.4.30c)
My = 2614(Q)14(G,G,G, Q) + 1,(G, Q, Q, Q)T (13.4.30d)
s = I,(G, Q,Q, Q) (I4(G), I}(Q)) + 2kI4(G,G, G, Q)14(Q), (13.4.30e)
g = 1,(G,G,G, Q) (I4(G), I,(Q)) + 2kI4(G, Q, Q, Q)14(G), (13.4.30f)
7 = 2614(G)14(G, Q, Q, Q)% + 14(G, G, G, Q)II;, (13.4.30g)
g = 2k14(G)14(G,G,G, Q)* + 1,(G, Q, Q, Q)Il,. (13.4.30h)

These expression are fairly lengthy but in fact their derivation in Mathematica starting
from (13.4.15)-(13.4.23) is quite straightforward when using the identities in appendix E.1.
The n — 0 limit of these expressions agrees with those found in [84].

13.4.3 Four independent roots

While extremal black holes necessarily have a double real root in e?, more general con-

figurations are possible. For example we could have one or two pairs of complex conjugate
roots. A natural ansatz for such solutions is

e?V = vy + vir 4 var? 4 vard, (13.4.31a)
Imy = ¢ VA, (13.4.31b)
A= Ag+ Air + Asr? + Asr®. (13.4.31c)

We have used a shift symmetry in r to set v3 = 0 but one cannot in general use a real shift
in r to set vg = 0.
An example of such solutions is the constant scalar asymptotically adS, solution of
section 10, corresponding to the STU-model with
P'=Q, =P, Qo=—-P' =Q. (13.4.32)
In our formalism we find this constant scalar example to be given by the following data

nk(P —1) neK _,

Ao = T g+ 8 I4(9), (13.4.33a)
_ Q P — 3gn® /
Al - % g + T 14(g), (13433b)
Ag = % g, (13.4.33¢)
1;(9)
Ag = —Z— 13.4.33d
WA ( )
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and the metric is given by
Q2(V=U) 2 4 2 (13.4.34a)
e =2(P?+ Q%+ g*n" — 2gn®P + 4gnkQr + 2(3gn® — gP)r* + gr*).  (13.4.34D)
The phase of the spinor is given by
singy = eV 72V (gr® + (=P + 3gn®)r + nxQ). (13.4.35)

We have tried to obtain generalizations of this solution using the ansatz (13.4.31a)-
(13.4.31c) but have not managed to decouple the set of algebraic equations. However this
should not be seen as evidence that such solutions do not exist. Such solutions would not
necessarily correspond to black holes since that requires the existence of a horizon. Since
we expect BPS black holes to have extremal horizons, these solutions are covered by our
analysis in section 13.4.2. Nonetheless looking ahead to possible extensions to Euclidean
solutions, it is of some interest to have more general solutions with single real roots of e?V.

13.5 Examples
13.5.1 T2 model

We now write down a non-trivial example by restricting to the 7 model and allowing for
dyonic charges. One might first try to find the solution with the same charges (p!, qo) = (0,0)
as Cacciatori-Klemm solution [58] but we find quite straight-forwardly that this requires
n = 0 and thus does not admit a generalization with NUT charge.

For simplicity, such that the resulting expressions are not too cumbersome, we set p! = 0.
We can solve the constraint (12.2.27) with

0 . \3/2
o= (13.5.1)

2p0
then the imaginary parts of the sections are given by
~ 0 2 _ /0. /0 _
Im VO = 461) + ﬂ7 Im VZ - € p p ql I (1352)
VIV +3g V2 V89V/5p° + 3¢
iy = VY a0 o)
V891/p0/5p0 + 3¢1 2,/9v/50° + 3q1

and the metric components are given by

eV =2 [2\/§ggr+e\/§\/5p0+3q1]2. (13.5.4)
The NUT charge is given by the relation

3/2 (0 _ 4.\3/2
nke = 2 v —a) (13.5.5)

2/p° /5p7 + 31

and the BPS Dirac quantization condition is

+ (13.5.3)

g°r
\/§a

— k=g +3q). (13.5.6)

When € = +1, the horizon is at » = 0 and we find that regular solutions exist for both
k = £1. When ¢ = —1 the horizon is at

Vor + 30 (13.5.7)

95/2\/8

99

T =



and for the absence of zeros in Im Y we need
g’ +3q1) >0 (13.5.8)

which implies k = —1.

13.5.2 Constant scalar solution

One can observe the limit p! = gy which gives the constant scalar solution. The combination
of constant scalar fields and a pair of double roots in eV forces n = 0 and as is well-known

we have a hyperbolic horizon kK = —1. The solution data is given by
~ ~ 1 ~ ~
ImV° =ImV; = ——(2¢°r + /), ImVy=ImV; =0, (13.5.9)
2v2g
and the metric components are
1
e?V = 2v/2r? (¢°r+ \/pog)Z, VU = ;(2937" + \/pog)2. (13.5.10)

13.5.3 F=-XX!

We can write quite explicitly the solution when

P=-aq, p'=w =0, G=0 (13.5.11)
which is equivalent to considering the prepotential
F=-XX! (13.5.12)

and allowing for four arbitrary charges. The solution to the constraint (12.2.27) is taken to
be

=== (13.5.13)

and we then find the following data:

0_ _ _ ¢@(p* — q0)?
(o) =~ =~ T ) e + D@ T B (13.5.14)

x (g5 — 6)°@ + (P*)* (@5 + 49042 + ¢3) + 20207 (265 — qog2)],

2 _ 3 _ p2(l’2 - QO)QQO(D
o (P~
_ _ 3(p® — @)* y
o)z = = (o) 2((p?)2 + ¢3)(P%q0 + 43) (a5 + 43) (13.5.17)

X (g5 +43)%(P*)* + 2p°q2 (5 — 205) + 45 (45 — 49092 + 43)].-
The NUT charge is given by
B g% (0 + a3) (0?0 + 3) (a8 + 63)
2(g2 — q0) +p*(q0 + ¢2) 2¢>

and the metric components can be obtained from

nk =

(13.5.18)

v = (g pg)\/2gq2[(p2)2qg +4p2(p? — q0)q0q2 + ((P?)? + ¢3)43 + 4(p? — )43 + 43
2 — 0 —
(*)? + @) (P?q0 + 63) (@ + 43)
(13.5.19)

and
vy = V8g°. (13.5.20)
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Part 1V

Demianski—Janis—Newman
algorithm
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Chapter 14

Janis—Newman algorithm

In this chapter we recall the original Janis—-Newman algorithm, followed by Giampieri’s
prescription [99]. We stress that both prescriptions are perfectly equivalent and each step
can be matched; in particular the only arbitrary point — present in both approach — is the
complexification of the metric function.

Then we describe the complexification of the gauge field in both prescriptions [99], show-
ing that a simple gauge transformation brings the field in a form compatible with the algo-
tihm. In this context the transformation cannot be performed directly on the field strength.

For flat space the JN algorithm reduces to a change of coordinates, from spherical
to oblate ones. Finally we review the transformation from Reissner—Nordstrém to Kerr—
Newman.

14.1 Original prescription

In their original paper [96], Janis and Newman demonstrated how to recover the Kerr metric
from the Schwarzschild one, and they extended it to discover the Kerr—Newman metric
in [97].

In this section we outline the procedure with the seed metric

ds® = —f(r)dt* + f(r)" ' dr® +72dQ%,  dQ® = d6” +sin® 0 d¢”. (14.1.1)

This simple model is sufficient to illustrate the main features of the algorithm, while more
general transformations, metrics and matter contents will be the topic of the chapters 15
and 16. This approach relies on the Newman—Penrose null tetrads formalism and more
details can be found in [96, 97, 101, 110, 131].

The algorithm proceeds as follows (explicit formulas are given in the next section):

1. Introduce the null coordinate
du=dt — f~dr. (14.1.2)

The metric becomes
ds? = — fdu® — 2dudr + r* dQ?. (14.1.3)

2. Find the contravariant form of the metric, introduce a set of null tetrads
Zt = {tt,n* mt m"} (14.1.4)

with expressions

102



and rewrite the inverse metric under the form
g =t Z1ZY = —tnY — ('t mP Y 4 mt i, (14.1.6)

with the flat metric

0 -1 0 0
w_|-1 0 00

=1%o o o1 (14.1.7)
0 0 1 0

At this point r is real such that 7 = r, the latter is introduced in view of the next
steps.

. Allow the coordinates v and r to take complex values together with the conditions:

e (# and n* must be kept real;
e m* and m* must still be complex conjugated to each other;
e one should recover the previous basis for u,r € R.

The previous conditions imply that the function f(r) should be replaced by a new
function f(r,7) € R such that f(r,r) = f(r). This step is the hardest to perform be-
cause there is no a priori rule to choose any particular complexification and one needs
to check systematically if Einstein equations are satisfied. Examples have provided a
set of rules that can be used [96, 97, 99, 101]

1
r—> 5(7" +7) =Rer, (14.1.8a)
1 1/1 1 Rer
s 4l == 14.1.8b
T 2 (T + f) >’ ( )
2 — . (14.1.8¢)

All other functions can be reduced to a combination of them. For example 1/r? is
complexified as 1/ |r|*.
. Carry out a complex change of coordinates
u = +iacosf, r=1" —iacosb, 0 =0, ¢ = ¢, (14.1.9)
a being a parameter (with the interpretation of angular momentum per unit of mass),
with the restriction that 7/, u’ € R. The tetrads transform as vectors
/,
7y =97,
oxv

and now f = f(r',#) (but note that the 6 dependence is not arbitrary and comes
solely from Imr).

(14.1.10)

Explicitly one gets (forgetting the primes on the coordinates for convenience)

P — 5 n/u:(gu_igu
. a . B (14.1.11)
o iz B iasi w_ i
" V2(r +iacos6) (69+sin0 0 — dasind (o 6T))'

. Construct the metric g" from the new set of tetrads and obtain its covariant expression
guv by inverting it.

. Eventually change the coordinates into any other preferred system, e.g. Boyer—Lind-
quist. If the transformation is infinitesimal then one should check that it is a valid
diffeomorphism, i.e. that it is integrable.

The two last steps are common with Giampieri’s prescription and will be detailed in the
next section.
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14.2 (Giampieri’s prescription

In the former approach it is very tedious to invert twice the metric and find out the right
tetrad basis. In an essay submitted only to the Gravity Research Foundation [98], Giampieri
proposed a simplification to this algorithm: the complexification of u and r and the change
of coordinates are done directly in the metric. Then all complex ¢ factors are removed using
a specific ansatz for the coordinate transformation. It is important that both approaches
are equivalent since the ansatz can be recovered by direct comparison with the tetrad com-
putations [98, 99].

Giampieri applied his method only to the Schwarzschild metric, thus it is worth to detail
it in the more general context of (14.1.1) with arbitrary f. The procedure is the following:

1. Introduce the null coordinate u

ds? = — fdu® — 2dudr + r? dQ%. (14.2.1)

2. Allow the coordinates u and r to take complex values and complexify the metric
(14.2.1) to
ds”? = — fdu? — 2dudr + |r|* dQ2, (14.2.2)

using the rules (C.1.1c) for the coefficient of dQ? and where again f = f(r,7) is the
real-valued function which is replacing f. At this step the metric continues being real.

3. Apply the change of coordinates (14.1.9)
u=1u+iacosi, r=1r"—iacosy, =0, ¢ = o, (14.2.3)

where a new angle ¢ is introduced. This amounts to embedding the spacetime in a 5-
dimensional complex spacetime and the final metric will correspond to a 4-dimensional
real slice. The differentials read

du = du’ — iasiny dip, dr = dv’ + iasiny dip, (14.2.4)
and one gets the metric

ds” = —f(du — iasiny dy)? — 2 (du — iasin e dyp)(dr + iasinp dih)

14.2.5
+ (r? 4 a® cos® 0) dQ2. ( )

4. As one can easily notice, this metric cannot be correct because it has to be real.
Giampieri found that this metric reduces to the result from the original formulation if
one uses the ansatz

1dy) = siny do (14.2.6a)

followed by the replacement
v =0. (14.2.6b)

Deleting all the primes, the metric obtained in the Kerr coordinates [96] is
ds? = —f (du — asin®0d¢)? — 2 (du — asin® 6 d@)(dr + asin® 8 de) + p2dQ? (14.2.7)

where we have introduced
p® = 1?4+ a®cos® 6. (14.2.8)

5. Finally one can go to Boyer-Lindquist coordinates with

du = dt’ — g(r)dr, d¢ = d¢’ — h(r)dr. (14.2.9)
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The conditions g; = gr¢ = 0 are solved for

77‘24—@2
g= A

h= (14.2.10)

where we have defined ~
A= fp? +a’sin 6. (14.2.11)

As indicated by the r-dependence this change of variable is integrable provided that
g and h are functions of r only. However A as given in (14.2.11) could in principle
contain a dependence on 6, thus it is absolutely essential that one checks that this is
not the case.

Given this condition one gets the metric (deleting the prime) [234, p. 14]

- 2 2 -
ds? = —fdt* + % dr? + p2de* + = sin? @ d¢? + 2a(f — 1)sin® 0 dtde  (14.2.12)

with
2

by
v =72 +a® + agiy. (14.2.13)
The rr-term has been computed from

P

—asin®0h = . 14.2.14
g—asin“fh A ( )

We stress that the order of the steps should be respected, otherwise the ansatz (14.2.6)
cannot be consistently applied. The second important point is that JN and Giampieri’s
prescriptions differ only in the computation of the metric since the rules (C.1.1) are identical
in both cases. Therefore this new approach is not adding nor removing any of the ambiguity
that is already present and well-known in JN algorithm. In particular the ansatz (14.2.6) is
a direct consequence of the fact that the 2-dimensional slice (6, ¢) is given by

d0? = d6? +sin? 0 d¢?, (14.2.15)

the function in the RHS of (14.2.6) corresponding to 4 /g$¢ (where g is the static metric) as

can be seen by doing the computation with ¢dy) = H(¢)d¢ and identifying H at the end
(in particular see section 15.2.1).

Another peculiar feature of this approach is that one should consider the complexification
of the differentials and the complexification of the metric functions as two different processes:
one can derive general formula as we did by taking f arbitrary while the differentials are
transformed. From this point of view the r? factor in front of dQ? can also be considered as
a function with its own complexification.

Comparing (14.2.1) and (14.2.7) makes clear that the effect of the ansatz (14.2.6) can be
reduced to modifying the formula (14.2.4) into

du = du’ — asin® 0 dg, dr = dr’ + asin? 6 d¢. (14.2.16)

Using directly these expressions allows to avoid introducing the angle v altogether. Al-
though some authors [109, 119] mentioned the equivalence of these formulae and the result
from the tetrads as a curiosity, it is surprising that this direction has not been followed
further.
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14.3 Validity

It is not necessary to specify the action for performing the algorithm as one needs only the
expressions of the various seed fields, but one must check that the result is a solution of the
equations of motion. Indeed it is not fully understood under which conditions the algorithm
will send a solution to another solution since the complex transformation does not preserve
Einstein equations in general.

Another important point is to check that the Boyer—Lindquist transformation (14.2.10)
is integrable, i.e. that the function g and h depends only on r.

14.4 (Gauge field

As already mentioned in the introduction, the authors of [97] face serious difficulties while
trying to derive the field strength of the Kerr-Newman black hole from the Reissner—
Nordstrém one. Indeed, in the null tetrad formalism, the field strength is given in terms of
Newman—Penrose coefficients and problems arise when trying to generate the rotating solu-
tion since one of the coefficients, vanishing in the case of Reissner—Nordstrém, is non-zero
for Kerr-Newman.

Three different prescriptions have been proposed recently: two works in the Newman—
Penrose formalism — one with the field strength [156] and one with the gauge field [99] —
while the third extends Giampieri’s approach to the gauge field [99].

Our formulation is much more natural because it is more convenient to work with the
gauge field rather than using the field strength or its Newman—Penrose coefficients (for
example in view of matter coupling). Moreover it is also closer to the original spirit of the
algorithm as one works with contravariant components (written with tetrads) for both the
metric and the gauge field, and the transformation follows the same pattern.

Let’s consider the simple gauge field

A= fa(r)dt, (14.4.1)

the most general case being discussed in chapter 15 and in section 16.2.

14.4.1 Giampieri’s prescription

We show that using Giampieri’s prescription allows to circumvent the problem in a very
simple way.
Expressing the gauge field (14.4.1) in terms of the (u,r) coordinates gives

A= fa(du+ f71dr). (14.4.2)

The second term actually does not contribute to the field strength since A, = A, (r) and
one can remove it by a gauge transformation, getting

A= fadu. (14.4.3)
Applying the transformations (14.2.16) gives
A = fa(du — asin®0dg). (14.4.4)

Going to Boyer—Lindquist coordinates, using (14.2.10), provides
2

A= fa (dt - % dr — asin® 9d¢) (14.4.5)
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where the relation (14.2.14) has been used. Generically the only 6-dependence of the function
fa isin a factor 1/p? which cancels the one in front of dr. Then we are left with A, = A’(r),
and it can again be removed by a gauge transformation, leaving (omitting the prime)

A= fa(dt —asin®0dg). (14.4.6)

Notice that before the transformation A,/A; = g, = f~!, while after the transformation
AL/AL = gp. = p?/A.

14.4.2 Newman’s prescription

Expression (14.4.3) for the static gauge potential — after the gauge transformation — can be
rewritten as

A= fadl. (14.4.7)

Using the inverse of the metric (14.2.1) with function (14.5.3) one obtains the contravariant
expression

AP = ) 61 = — fql" (14.4.8)

where (¥ = §#, see (14.1.5).
The JN transformation applied to the previous expression yields

Al = ol = —fa 0t (14.4.9)
with ¢/# = ¢# is defined in (14.1.11). Finally the 1-form
A" = fa (du — asin® 0 dg) (14.4.10)

is retrieved using the metric (14.2.7) with the function (14.5.5).

The result is identical to the one derived with Giampieri’s formalism, showing again
that the two approaches are totally equivalent, and that it was not necessary to use the
null Lorentz rotation from [156]. It is possible to check that the transformation cannot be
performed without first removing the r-component with the gauge transformation.

14.4.3 Keane’s prescription

It is worth mentioning that another solution was recently proposed in [156], where a null
Lorentz transformation on the tetrads is used to obtain the correct Newman—Penrose coef-
ficients for the field strength.

14.5 Examples

14.5.1 Flat space

It is straightforward to check that the algorithm applied to the flat Minkowski metric —
which has f = 1 — in spherical coordinates

ds? = —dt® + dr? + 12 (d92 + sin? @ d¢2) (14.5.1)

gives again the Minkowski metric but in spheroidal coordinates (after a Boyer—Lindquist
transformation) (B.2.9)

2

ds? = —dt* + T dr? + p2d6? + (r* + a?) sin? 0 d¢?, (14.5.2)
r

a?

recalling that p? = 72 + a2 cos® §. The metric is exactly diagonal because g = 0 for f =1
from (14.2.12). Hence for flat space the JN algorithm reduces to a change of coordinates,
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from spherical to spheroidal coordinates (the 2-spheres foliating the space in the radial
direction are deformed to ellipses).

This fact is an important consistency check that will be useful when extending the
algorithm to higher dimensions (chapter 18) or to other coordinate systems (such as one
with direction cosines). Moreover in this case one can forget about the time direction and
consider only the transformation of the radial coordinate.

14.5.2 Kerr—Newman black hole

In this section we apply the formalism to the Reissner—Nordstrom black hole in order to
get the Kerr-Newman rotating black hole [97, 156], both of which are solutions of Ein-
stein—-Maxwell theory.

The seed solution corresponds to the metric

ds® = —f(r)dt* + f(r) " dr? +72dQ%, f(r)=1-"—"+ (14.5.3)

and to the gauge field
A=2q (14.5.4)
r

where the parameters m and ¢ correspond respectively to the mass and to the electric charge.

Metric

Using the rules (C.1.1b) and (C.1.1c) for the second and third terms respectively, the function
f can be complexified as

2
~ q‘ —2mr
f(r,@):1+T

(14.5.5)
where we recall that p? = |r|* = 72 + a2 cos? 6.

As already described in [97, 101], plugging this function into (14.2.12) gives the well-
known Kerr—-Newman metric

N 2 2 N
ds? = —fde? + %er + p2de? + F sin? 0 d¢? + 2a(f — 1) sin? 0 dtdo, (14.5.6)

where functions A and ¥ are given by

32 2 -2
— = r? +a? - q72mr a?sin? 0, (14.5.7a)
p p

A =1%—2mr+a® + ¢, (14.5.7b)

and it is to point out that A depends only on 7 so that the transformation (14.2.10) to
Boyer—Lindquist coordinates is well defined.

Gauge field

Applying the recipe of section 14.4, the potential (14.5.4) of the Reissner—Nordstrom black
hole leads directly to

2
A= Z—Z <dt — % dr — asin? 9d¢> , (14.5.8)

where as usual p? = r? 4+ a?cos?d. The prefactor has been transformed using the rule
(C.1.1b). Finally, the factor p? in front of dr cancels with the prefactor, and we are left with

A= (14.5.9)

il
A
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which depends only on r. After a gauge transformation one obtains the traditional form of
the electromagnetic gauge field for the Kerr-Newman black hole

A=2L 4t - asin?0dg). (14.5.10)

02
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Chapter 15

Extended algorithm

In the previous chapter we chose a very specific complex change of coordinates (14.1.9). A
natural question is to ask whether one can perform other changes of coordinates, and to find
how to interpret them. Demianiski gave an answer by considering a transformation with two
unknown 6-dependent functions and by solving the equations of motion in a simple case [100]
— we will call this version the Demianski-Janis—Newman (DJN) algorithm. Then one can
hope that these transformations will be the most general ones (under the assumptions that
are made), and one can use these transformations in other cases without having to solve
the equations. The latter claim can be justified by looking at the equations of motions
for more complex examples: even if one cannot find directly a solution, one finds that the
same structure persists [159] (this is also motivated by the solutions in [136, 137]). Another
strength of this approach is to remove the ambiguity of the algorithm since the functions
are found from the equations of motion, and this may help when one does not know how to
perform precisely the algorithm (for example in higher dimensions, see chapter 18).

In his analysis, Demianski finds that very few transformations can be done: they contain
three parameters (rotation a, NUT charge n and ¢) when the cosmological constant is zero,
and only one for non-vanishing cosmological constant (NUT charge n). At this point a new
problem arises: when the transformation implies the NUT charge the usual rules (C.1.1) are
not sufficient to transform the seed function. This lack would seriously reduce the utility
of this improved algorithm because one cannot use it to discover new solutions without
solving the equations of motion, which is not the goal of the algorithm. We demonstrate
in section 15.4 that the transformation can be achieved by a complexification of the mass
together with a shift of the horizon curvature [159)

/ . 4A 2
m=m +1iKn, K — K= —-n (15.0.1)
establishing that Demianski’s transformations can be interpreted as an extension of the usual
JN algorithm.

Demianski’s paper [100] is short and results are extremely condensed and we explain in
more details his approach. In particular we uncover an hidden assumption on the form of
the metric function which explains the error in his formula (14) [113, 159]. A generalization
of this hypothesis leads to other equations that we could not solve analytically, but this
would lead to another solution. A result from Demianski’s analysis is the impossibility to
find Kerr—AdS from the DJN algorithm and it is often quoted as a no-go theorem. But this
outcome relies on the assumption that no parameter already present in the static metric is
complexified, which may not be justified.

One of the obvious generalization is the inclusion of a gauge field which is needed to
obtain (electrically) charged solutions [159]. It appears that the analysis is left unchanged,
the Maxwell equations being also integrable within Demianski’s ansatz. This solution was
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already found in [136] but we demonstrate how to perform the full computation using the
DJN algorithm, having in mind the possible generalizations to other cases.

Another improvement of the DJN algorithm that results from our analysis is the gen-
eralization of all formula to topological horizons [159]. In particular all existing formula
can be straightforwardly generalized to the case of hyperbolic horizons,! and we prove all
formula by solving explicitly Einstein equations. Topological horizons are of particular in-
terest in supergravity models since asymptotically AdS black holes can possess non-spherical
horizons.

We end the introduction by describing our ansatz. We consider the most general seed
metric for which (0, ¢)-section are 2-dimensional maximally symmetric spaces (it can be the
sphere S? or the hyperboloid H?). Similarly the gauge field contains only one unknown radial
function and it is purely electric. The DJN algorithm generates a stationary metric coupled
to a gauge field for a total of six unknown functions (with only five being independent).
We provide several formula in (u,r) and (¢,r) coordinates that should be suitable for any
application of the DJN algorithm.? Similar formula for subcases have been obtained
in [101, 102, 121, 131]. All these computations are gathered in a Mathematica file (available
on demand) which includes the computations of Einstein—Maxwell equations. We insist on
the fact that all these results can also be derived from the tetrad formalism.

15.1 Setting up the ansatz

Einstein—-Maxwell gravity with cosmological constant A reads [165, chap. 22]

S/d‘lz\/_g(z—;(Rm\)%FQ), (15.1.1)

where »? = 87G is the Einstein coupling constant, g is the metric with Ricci scalar R and
F = dA is the field strength of the Maxwell field. In our conventions the spacetime signature
is mostly plus and in the following we set k to 1.

The associated equations of motion are

Guw + Mgy = 2Ty, YV, =0, (15.1.2)
where the stress—energy tensor for the electromagnetic field is
1
T = FupF," = 4 g F2. (15.1.3)
The static electromagnetic one-form is taken to be
A(r) = fa(r)dt. (15.1.4)

This ansatz is purely electric since only the time component is non-zero.
The static metric ansatz in coordinates (¢,r, 0, ¢) reads

ds® = —fi(r) de® + f,(r) dr® + fo(r) dQ2. (15.1.5)

One of the functions is redundant since we are free to redefine the radial coordinate.

The (0, ¢) sections correspond to 2-dimensional maximally symmetric spaces, which are
the sphere S2, the euclidean plane R? and the hyperboloid H? respectively for positive,
vanishing and negative curvature [76].> Defining x as the sign of the surface curvature, the
uniform metric dQ? is given by

dQ? = d6* + H(0)* d¢? (15.1.6)

IWe do not treat the case of flat horizon but this could be obtained from some easy reparametrization.

2We stress that at this stage these formula do not satisfy Einstein equations, they are just proxy to
simplify later computations.

3The convention are slightly different from the one in the appendix A.7. One needs to make the replace-
ment (H,H') — (—xH', H).
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with

in 0 =1
HEO) =" T (15.1.7)
sinhf &= -—1.

We focus on k = £1, the case k = 0 can be deduced easily.
Introducing the null coordinates u through the change of coordinates

dt = du + \/Edr, (15.1.8)
Tt

ds® = —fydu® — 2v/fi f, dudr + fo (46 + H? d¢?), (15.1.9)

while the gauge field (15.1.4) is found to be

the static metric (15.1.5) becomes

A= fu <du—|— %dr) . (15.1.10)

t

Since the component A, depends only on r it can be removed by a gauge transformation [99]
such that
A= fudu. (15.1.11)

This step is primordial for having a consistent DJN transformation.

15.2 Demianski—-Janis—Newman algorithm

In this section we apply the Janis—Newman algorithm to the ansatz of the previous section.
Using arbitrary functions for the complex transformation and for the functions inside the
metric, we obtain a very general ansatz; then we will solve Einstein—-Maxwell equations in the
next section in order to find their forms. We will directly use Giampieri’s prescription [98,
99] in order to avoid the introduction of tetrads and the computation of the contravariant
components of the metric and of the gauge field.

15.2.1 Janis—Newman transformation

The Janis—Newman algorithm can be summarized as the following sequence of steps:
1. Start with a seed metric in (u,r) coordinates.
2. Let the coordinates v and r become complex.

3. Replace the functions inside the metric by other functions depending on r and its
conjugate.

4. Make a change of coordinates (r,u) — (/,u’), the new coordinates being real.
5. Apply Giampieri’s ansatz to recover a real metric.

The complex change of coordinates is given by* [100]

r=r+iF0), u=u+iG(H), (15.2.1)

4Similar transformations have been studied by Talbot [103].
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where u’,r" € R, and F(#) and G(f) are two arbitrary functions.” Usually these functions
are taken to be
F(0) = —acos®, G(0) = acosb, (15.2.2)

but here they are kept general and the most general transformation will be determined by
Einstein equations.
As given by
dr =dr’ +i F'(0) dé, du = du’ +iG'(0) db, (15.2.3)

(the prime on F and G denoting the differentiation with respect to ), the differentials
of the coordinates are complex which is not coherent with having a complex metric. The
(generalized) Giampieri’s ansatz consists in the replacement

idf = /g3, do = H(0) d¢, (15.2.4)

where the RHS is given by comparison of the final result with the tetrad formalism [98; 99,
109]. As a consequence the transformation of the differentials are

dr =dr’ + F'(0)H(0) do, du = du’ + G'(0)H(0) d¢. (15.2.5)
Finally the four functions
f’b(r) :{ftvfrafﬂva} (1526)
are transformed to ~ o
fi(raf) = {ftafrafﬂafA}‘ (1527)
There are only two conditions that we impose on these functions
fi=fitr,r) = [i(r' . F(0)) €R,  [i(r',0) = fi(r"). (15.2.8)

The first relation means that the dependence in 6 is solely contained in the functional
dependence of F(A).° On the other hand we do not try to get the functions f; from the
complexification of the static functions [100]; this is the topic of section 15.4.

As a consequence the f-derivative of f; reads

dofi = F' O f; (15.2.9)

such that it is sufficient to obtain the dependence of f; in term of F.
Note that general conditions that need to be satisfied by F' and G can be found in [110,
sec. 2.3, 103].

15.2.2 Metric

Applying the transformations (15.2.1) and (15.2.5) and replacing the functions, the resulting
stationary metric in Eddington—Finkelstein coordinates is

ds? = — fy(du + adr + wH d¢)* + 28drde + fo(d6? + o H?dp?) (15.2.10)
where we defined the quantities

sz'—i—M%F', 0—2=1+QF’2, a= % B=f F'H. (15.2.11)
t

Q t

The transformation

du = dt — g(r)dr, d¢ = d¢' — h(r)dr (15.2.12)

51n his paper [100] Demianski considers functions that depend on @ and ¢, but he drops the ¢-dependence
at an intermediate step. In our case we want to keep the U(1) isometry so we do not consider this case.
6This assumption is not explicit in Demianski’s paper [100].
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can be used to set the coefficient g, and g,4 to zero and to cast the metric in Boyer-Lindquist
(BL) coordinates. The solution to these two conditions is

ffr - .f -G F’
o) = YU — M= s (15.2.13)
with N -
PN + F? = Ja o (15.2.14)

We stress that the functions g and h cannot depend on 6, otherwise the change of variables
(15.2.12) is not integrable. It is thus necessary to check for given functions fi, F and G that
all the 6-dependence cancels.

Finally the metric in (¢,7) coordinates can be written (removing the prime on ¢)

ds? = = fi(dt +wH dg)” + %’ dr? + fo(d6? + o2 H?d¢?). (15.2.15)
15.2.3 Gauge field
Applying the DJN transformations (15.2.5) to the gauge field (15.1.11)

A= fadu (15.2.16)

gives’

A= fa(du+ G'Hdg). (15.2.17)

Using the explicit formula (15.2.13), the previous expression becomes in Boyer—Lindquist
coordinates

A= fA <dt - fifi dr+G'H dqﬁ) . (15.2.18)
\% ftfrA
Here the function o
A fAfQ _ 9rr At

Vida Vi
may depend on # in which case it would not be possible to remove it by a gauge transfor-
mation.®

(15.2.19)

15.3 Charged topological solution

In this section we solve Einstein-Maxwell equations (15.1.2) for the system

fi=Ff =" fa=r% (15.3.1)

First the static solution is recalled for later comparison — it corresponds to the static limit
of the stationary solution. The stationary solution is derived in (u,r) coordinates in order
to avoid the question of the validity of the Boyer—Lindquist transformation and because the
metric looks simpler.

"This may also be derived from the tetrad formalism [99, 110, 156].
8In several examples where BL coordinates exist, A, depends only on 7. This seems to be the generic
case.
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15.3.1 Static case

Consider the static metric (15.1.5) and gauge field (15.1.4).
Only the (t) component of Maxwell equations is non trivial

2fy+rfa=0, (15.3.2)

the prime being a derivative with respect to r, and its solution is

falr) =~ (15.3.3)

where ¢ is a constant of integration that is interpreted as the charge (we set the additional
constant to zero since it can be removed by a gauge transformation).
The only relevant Einstein equation is

2

7‘{—2 —k+ P A+ fHrf =0 (15.3.4)
whose solution reads N
2
Fr) =k — o q_2 — =2 (15.3.5)

r r
m being a constant of integration that is identified to the mass.

We stress that we are just looking to solutions of Einstein equations and we are not
concerned with regularity (in particular it is well-known that only x = 1 is well-defined for
A=0).

15.3.2 Simplifying the equations

The component (rf) gives the equation
HI
F' (G” + 2 G’) = 9FF' (15.3.6)

which depends only on 6 and it allows to solve for G in terms of F. If F’ # 0 it implies the

equation (rr) which is
U

H
G" + 7 G' = L£2F. (15.3.7)

If F/ = 0 this last equation should be used instead and the sign can be absorbed into F’
since it is an arbitrary constant. As a result the equation in both cases is
!

H
G"+ 5 G'=2F. (15.3.8)

The r-component of the Maxwell equation can be integrated to

qr r2 — F?
+ « .
T2+F2 T2+F2

fa= (15.3.9)
We can remove the constant o by matching with the static case in the limit F' — 0, but we
can also get this result from the #-equation

aF' =0. (15.3.10)
The (tr) equation contains only r-derivative of f and it can be integrated to?

_2mr —¢® +2F(k F + K) ér2+F2)—ﬂF2+8A Ft

i p——— 15.3.11
r2 4 F? 3( 3 3 r24F2 (15.3.11)

F=x

9In [100] the last term of f is missing [113], as can be compared with other references on
(A)dS—Taub-NUT, see for example [76].
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where again m is a constant of integration interpreted as the mass. The function K is
defined by

!/

H
2K =F" + T F'. (15.3.12)

This implies the equations (r¢) and (66).

As explained in section 15.2.1 the #-dependence should be contain in F(6) only. The
second term of the function f contains some lonely # from the H(6) in the function K:
this means that they should be compensated by the F', and we therefore ask that the sum
kF + K be constant!?

KF'+K'=0=kF+K=kn. (15.3.13)

The parameter n is interpreted as the NUT charge.
The components () and (0¢) give the same equation

AF' =0. (15.3.14)

Finally one can check that the last three equations (tt), (t¢) and (¢¢) are satisfied.
Let’s summarize the equations

H/
2F =G+ — G, (15.3.15a)
kn=rkF+K, (15.3.15b)
0=AF (15.3.15¢)

and the function f

. 2mr —¢> +2F(k F+ K) A
f=r- e —g(r2+F2)—

4A A F*
_F2+8

— . (1531
3 3 e (15:315d)

We also defined e
2K =F" + T F'. (15.3.15e)

As explained in the introduction, a major issue of Demianski’s approach is the impos-
sibility to obtain — at least in a direct manner — the stationary f function (15.3.15d) as a
complexification of the static f function (15.3.5). Not being able to reproduce the stationary
function from the static one is equivalent to a failure because it would not be possible to
apply the algorithm to other cases. This is one of the reason explaining why applications
of the JN algorithm have been limited to adding a rotation parameter. We address this
question in section 15.4 and show how to recover f from f.

In the next sections we solve explicitly the equations (15.3.15), and because the case
A =0 and A # 0 are really different we consider them separately.

15.3.3 Solution for A # 0
Equation (15.3.15¢) implies that F’ = 0 and then
F(0)=n (15.3.16)

by compatibility with (15.3.15b) and since K(6) = 0.
Solution to (15.3.15a) is
H(0/2)

G0)=c1 —2knIlnH(0) + c2In T0)2) (15.3.17)

10Tn section 15.3.5 we relax this last assumption by allowing non-constant «F' + K. In this context the
equations and the function f are modified and this provides an explanation for the error in f of Demianski’s
paper [100].
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where ¢; and ¢ are two constants of integration. Since only G’ appears in the metric we
can set ¢; = 0. On the other hand the constant co can be removed by the transformation

du = du' — ¢y dé. (15.3.18)
We summarize the solution to the system (15.3.15)
F(0) =n, G(0) = —2knIn H(0). (15.3.19)

The function f then takes the form

= 2mr — ¢® +2kn% A, 5. 8N nt
f=Kr-— 2 02 — 5(7" +5n°) + 3 m (15.3.20a)
2mr — ¢? +2kn? A r* +6n2 — 3n?
=K-— - = . 15.3.20b
" r2 +n? 3 r2 +n? ( )

The transformation to BL coordinates is well defined (and h = 0)

r? +n?
A )
As noted by Demianski the only parameters that appear are the mass and the NUT

charge, and it is not possible to add an angular momentum for non-vanishing cosmo-

logical constant.!’ As a consequence the JN algorithm cannot provide a derivation of
(A)dS-Kerr—Newman.

A
g= A = kr? = 2mr+ ¢® + An* — 3 r* —n?(k + 2A77%). (15.3.21)

15.3.4 Solution for A =0
The solution to the differential equation (15.3.15b) is

F(9) naH’(9)+nc<1+H’(9) In %) (15.3.22)

where a and ¢ denote two constants of integration.
We solve the equation (15.3.15a) for G

G() =1 +raH'(0) —cH'(6) m% — 2knIn H(0)
Y (ate)l H(0/2) (15.3.23)
S )

and c1, co are constants of integration. Again since only G’ appears in the metric we can set
c1 = 0. We can also remove the last term with the transformation

du = du’ — (co + a)dé. (15.3.24)
We arrive at
H(0/2)
H(0/2

G)=raH'(0) —rkcH'(f) In % —2nln H(0). (15.3.25b)

The Boyer—Lindquist transformation is well defined only for ¢ = 0, in which case

2 2 2

g= %, h= %, A = kr? —2mr + ¢® — kn? + ka®. (15.3.26)

HTn [95] Leigh et al. generalized Geroch’s solution generating technique and also found that only the
mass and the NUT charge appear when A # 0. We would like to thank D. Klemm for this remark.
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The function f reads [76, sec. 2.2]
2 /
F=r— 2”"; ¢ , rnln - o) il (15.3.27)
P P

The constant a corresponds to the angular momentum (and one recognizes the usual
JN algorithm). The interpretation is difficult because there is a wire-like singularity that
extends to infinity [110, sec. 2.3, 235, sec. 5.3]. The spacetime is of type IT if ¢ # 0, otherwise
it is of type D.

This solution was already found in [136] for the case kK = 1 by solving directly Ein-
stein—-Maxwell equations, starting with a metric ansatz of Demianski’s form. In our case we
wish to show that the same solution can be obtained by applying Demianski’s method on
all the quantities, including the gauge field.

15.3.5 Hidden assumptions in Demianski’s paper

Demianski’s paper is short and results are extremely condensed. In particular we uncover a
hidden assumption on the form of the metric function which explains the error in his formula
(14) [113].

In section 15.3.2 we obtained the equation (15.3.15b)

H/
RE+K=rn, 2K =F'+—F (15.3.28)
by asking that the function (15.3.15d)
5 2mr — > +2F(k F+ K) A o 4N _, 8N F*
=K— - = F)— —F S w—— 15.3.29
f=x 2y 2 TR T gy )

depends on 6 only through F(6).
A more general assumption would be that kF + K is some function y = x(F)

kF+ K =rx(F). (15.3.30)
The (t6)-component gives the equation
4N F?F' = F' Opx. (15.3.31)
If F/ =0 or A =0 we found that
Orx=0=x=n (15.3.32)

which reduces to the case studied in section 15.3.2.
On the other hand if F’ # 0 then the previous equation becomes

Opx = 4A F? (15.3.33)
which can be integrated to
4
X(F)=n+ 3 AF3 (15.3.34)

(notice that the limit A — 0 is coherent). Plugging this function into equation (15.3.30) one
obtains

KF+K =g <n+ %AF3>. (15.3.35)

This differential equation is non-linear and we were not able to find an analytical solution.
Nonetheless by inserting the expression of x in f we see that the last term is killed

2mr —¢> +2snF A 4A
r2+ F? 3 3
One can recognize the function given by Demiariski [100]. Then this function is valid at the

condition that equation (15.3.15b) is modified to (15.3.35), but in this case the solution is
not the general (A)dS-Taub-NUT anymore.

f=x

(r* + F?) — — F2 (15.3.36)
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15.4 Finding the complexification

At the end of section 15.3.2, we mentioned the issue of finding the complexification of
the stationary function from the static one. The rules (C.1.1) continue to apply with the
parameter ¢, but they are not sufficient when one is considering the NUT charge n. Indeed
the last case also requires the complexification of the mass parameter. In what follows we
ignore the electric charge since it does not modify the discussion.

15.4.1 A=0
The static Schwarzschild function (15.3.5)
2
f=n-2 (15.4.1)
T
is complexified as
. T 2 Re(mr
Fono (E n E) _ o — 2Relmr) (15.4.2)
r T |7
Performing the transformation
m=m'+irkn, r=r"+iF (15.4.3)
gives
z 2mr + 2knF

which corresponds to the correct function (15.3.15d).

15.4.2 A#0

The procedure is less straightforward in this case and we only give some preliminary steps
towards the solution.
The static Schwarzschild function (15.3.5)

f=k———571 (15.4.5)

is complexified as
2Re(mr) A e
- T

The complexification of the mass parameter is'?
4A
m=m'+in (m iy n2) : r=r"+in. (15.4.7)

Moreover comparing the imaginary part of m with the previous case (15.4.3) suggests the
replacement of the curvature sign'® (only in the one appearing in f, not the one in (15.4.7))

4A
K — Kk — —n?, (15.4.8)

3
Note that the x which appears in F' and G are not shifted.

12The imaginary part of the new mass term appears in other contexts [18, 114, 236, 237]. In particular
this corresponds to a condition of regularity in Euclidean signature.

I3Notice that AdS-Taub-NUT (for x = —1, m = 0) is supersymmetric for n = +1/(2g) where g% =
—A/3 [76, tab. 1].
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Presented in another way, the algorithm is to first perform the transformation (15.4.3)
followed by the above replacement for x everywhere

m=m'+ixn, K— K= — n?. (15.4.9)

One can notice that the limit A — 0 agrees with the previous section (upon replacing n by
F). 3
Inserting these transformations into f gives the result

= 2mr + 2kn? A 8A nt
f:H—W—g(TQ‘FESHQ)-F?m (15.4.10)

and we retrieve (15.3.20).
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Chapter 16

Algorithm with matter fields

Supergravity rotating solutions is an intense field of research, and it is surprising that the
(D)JN algorithm has almost never been applied in this context (with the exception of [115]).
One explanation is that such theories present a number of gauge fields and complex scalar
fields that could not be transformed in the original formulation of the DJN algorithm. For
instance, Yazadjiev [115] showed that it was possible to obtain the metric and the dilaton
of Sen’s dilaton—axion charged rotating black hole [157] (non-extremal solution of the 7
model), but did not succeed in finding the axion nor the gauge field.

Each of these problems possess a different explanation. First of all, it was not known
how to perform the transformation on the gauge field until recently, where two different
prescriptions have been proposed [99, 110, 156].

The second problem is that you cannot transform independently the dilaton and the
axion because they are naturally gathered into a complex scalar field. In particular the
axion is vanishing for the static configuration, while it is non-zero for the rotating black
hole. Moreover the usual transformation rules cannot be applied to complex scalar fields
because they include a reality condition which is a too strong requirement for transforming
complex fields, and one of our goal is to show how to modify the original prescription to
accommodate this new fact [158]. We will illustrate this proposal on several examples, all
taken from N = 2 ungauged supergravity, completing Yazadjiev’s analysis [115] of Sen’s
rotating black hole, and showing how some BPS rotating black holes from [36] can be
obtained (which include solutions from pure supergravity and from the STU model).

Another issue arises when one considers the NUT charge n. Indeed the usual rules (C.1.1)
do not hold and it was shown in [159] that one needs to complexify the mass as m = m/ +in
(see section 15.4).

A related case concerns dyonic solutions with electric and magnetic charges ¢ and p,
which can be used as a seed metric. It is necessary to follow the recipe of the previous
examples, since the original JN rules are failing again. This is related to the fact that the
electric and magnetic charges are naturally associated into the (complex) central charge
Z = q + ip. In this way we succeed in performing the JN algorithm to a solution with
magnetic charges.

First we describe explicitly the Kerr—-Newman—-Taub-NUT solution to recall the methods
of the previous section, and then we turn to the more interesting dyonic Kerr—-Newman—
Taub-NUT and charged Taub-NUT-BBMB with A [35].

Finally let’s note that Kerr—Newman solution and its extensions can be embedded into
N = 2 supergravity [76, 77]. Another interesting point is that most of the examples presented
in this chapter are truncations of the Chow—Compeére black hole [44], and it would be useful
to understand in which cases the DJN algorithm can be applied to this solution.

Moreover we describe two results which did not appear elsewhere before: the discus-
sion of the Yang-Mills Kerr-Newman black hole [161] and Taub-NUT-BBMB solution of
section 16.2.3.
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16.1 Real scalar fields

Given a set of real scalar fields x,(r), they are complexified and transformed exactly as a
metric function, see section 15.2.1

Xa(r) — Xa(r,0). (16.1.1)

16.2 (auge fields

16.2.1 Kerr—Newman—Taub—NUT black hole

A long-standing difficulty of Demianiski’s extension of the JN algorithm [100] was the impossi-

bility to find the complexification of the metric function that was leading from Schwarzschild

to Kerr—Taub—NUT. In this section we recall the solution to this problem that we gave in a

previous paper [99], where we extended Demianiski’s result to Kerr—-Newman—Taub-NUT.
Reissner—Nordstrom metric is given by

ds? = —f(r)dt* + f(r)"tdr® +72dQ%,  f(r)=1-—+

r

2 q>
ok (16.2.1a)
m and ¢ being the mass and the electric charge, and the electromagnetic gauge field reads
A=21qr (16.2.1b)
T

As explained in section 15.4 it is necessary to complexify the mass. In this case the
function f is complexified as

v/ |7
and performing the transformation
m=m' +in, r=r"+iF (16.2.3)
gives (omitting the primes)
f=1- QWP%Q"F, p? =12+ F2 (16.2.4)

Considering the transformations (16.2.3) leads to

- 2mr — q* + n(n — acos )
f=1- P2 ’

The metric and the gauge fields in BL coordinates can be read from (C.3.3) to be

0> =712+ (n—acosh)>. (16.2.5)

B 2
ds® = —F (dt + Qde)? + pZ dr? + p2(d6? + o2H2d¢?), (16.2.6a)
A= % (dt ~ (asin20 + 2n cose)d¢) + A, dr. (16.2.6b)

One can check that A, is a function of r only
A= —— (16.2.7)
and it can be removed by a gauge transformation. The various quantities that appear are
given by
A
fr*
This corresponds to the Kerr—-Newman—Taub-NUT solution [76].

Q= —2ncosf— (1 — fHasin?0, o? A = fp? + a®sin® 6. (16.2.8)
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16.2.2 Dyonic Kerr—-Newman black hole

The dyonic Reissner—Nordstrom metric is obtained from the electric one (16.2.1) by the
replacement [238, sec. 6.6]

¢ — 2" =" +p? (16.2.9)
where Z corresponds to the central charge [706]
Z=q+ip. (16.2.10)

This is particularly useful when looking at the dyonic RN as a solution of pure N = 2
ungauged supergravity. Then the metric function reads

f(r)12—m+|f—2|2. (16.2.11)
On the other hand the gauge field receives a new ¢-component [76]
A:gdt—l-pcosedqﬁ:gdu—i—pcostqb (16.2.12)
(the last equality being valid after a gauge transformation).
For simplifying the computations we only consider the case n = 0 with
F = —a cosb, G = a cos, (16.2.13)

but the general case n # 0 follows directly. The transformation of the metric is totally
identical to the previous case (section 16.2.1) and one needs only to focus on the gauge field.
One has to rewrite first the gauge field as

Z
A =Re (—) dt + pcosfde (16.2.14)
T
before performing the JN transformation. The first term is complexified as
Z Ad
Re <—) _ Re( 2” (16.2.15)
r Ir|

and inserting the above transformation gives

qr — pacosf
2

After changing coordinates into the BL system, the A, term is

A= (du — asin® 0 d¢) + pcosf de. (16.2.16)

- 0
w p* —pacosh = —qr (16.2.17)
p

(A(r) is the denominator of the BL functions, not the Laplacian). Since A, = A,(r) one
can remove it and obtains finally

A, =—

qr — pacosf

A= 5 (dt — asin® 6 d¢) + pcosf de. (16.2.18)
p
Using the fact that
a’sin?0 = r? + a* — p? (16.2.19)
we rewrite it as
qr — pa cos qar- ., p(r? + a?)
A=———"——dt+|(—F5asin®0+——5—= cosf | d¢o (16.2.20a)
p P P
qr . pcost
= F(dt — asin® 0d¢) + e (adt+ (r* +a®)do) (16.2.20Db)

as it is presented in [76, 238, sec. 6.6].
The Yang-Mills Kerr—-Newman black hole found by Perry [161] can also be derived in
this way.
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16.2.3 Charged BBMB-NUT black hole with cosmological con-
stant

We consider Einstein—-Maxwell theory with cosmological constant conformally coupled to a
scalar field [35]

S = % /d4z V=9 (R —2A— % R¢? — (99)* — 2a¢" — F2) : (16.2.21)

where « is a coupling constant, and we have set 87G = 1.

For F,a, A = 0, the Bocharova—Bronnikov—Melnikov—Bekenstein (BBMB) solution [239,
240] is static and spherically symmetric — it can be seen as the equivalent of the Schwarzschild
black hole in conformal gravity.

The general charged solution with cosmological constant and quartic coupling reads

ds? = —f de? + f—l dr? + 2 dQ2, (16.2.22&)
A
A=2q, o=y -2 (16.2.22b)
r 6 r—m
A _ 2
fo Ay om) (16.2.22¢)
3 r?

where dQ? is S? or H? (see section 15.1). There is one constraint on the parameters

q® = km? <1 + %) (16.2.23)

and one has aA < 0 in order for ¢ to be real.
In order to add a NUT charge one performs the DJN transformation’

u=u"—2nln H(0), r=r'+in, m=m'+in (16.2.24)
together with the shift (15.4.8)
AN,
K— k= —5n" (16.2.25)

Using the result (C.3.5) one obtains the metric (omitting the primes)
ds? = —f(dt — 2nH'dg)” + F~1dr® + (r* 4+ n%) d0? (16.2.26)

where the function f is

= A 4A (r —m)?
f= -3 (T2 + n2) + <I€ iy n2> m, (16.2.27)

where the term r — m is invariant. Similarly one obtains the scalar field

A /m2 + 7’L2

=4/— 16.2.28
¢ 6a r—m ( )
where the m in the numerator as been complexified as |m/.
Finally it is trivial to find the gauge field using the formula (C.3.3b)
q
A= 5 (dt —2ncosfdg) (16.2.29)
and the constraint (16.2.23) becomes
4A A
= (n - n2> (m? + n?) (1 + %) : (16.2.30)

IDue to the convention of [35] there is no & in the transformations.
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An interesting point is that the radial coordinate is redfined in [35] when obtaining the
stationary solution from the static one.
Note that the BBMB solution and its NUT version are obtained from the limit

Aa—0, with — A 1, (16.2.31)
(0%

which also implies ¢ = 0 from the constraint (16.2.23). Since no other modifications are
needed, the derivation from the DJN algorithm also holds.

16.3 Complex scalar fields: rotation

In this section we expose the main ingredient for applying the JN transformation with a # 0
(but n = 0) on complex scalar fields: one needs to transform together the real and imaginary
parts without enforcing any reality condition. Solutions with n # 0 require a more careful
treatment and are studied in appendix 16.4.

We will give examples from ungauged N = 2 supergravity coupled to n, = 0, 1,3 vector
multiplets (pure supergravity, STU model and T model). Our aim is not to give a detailed
account of supergravity, and more details can be found in the usual references [165, 170,
171].

16.3.1 Rule for complex fields

Let’s consider a complex scalar field x such that
R
x(r) =1+ — (16.3.1)
r

for the static configuration, R being a parameter. This is a very typical behaviour, where
the imaginary part vanishes and the real part is harmonic with respect to the 3-dimensional
spatial metric.

The first step of the JN algorithm is to complexify all the fields, using only the fact that
r is complex. Namely, performing the JN transformation

r=r"—iacos® (16.3.2)
gives
/ - 9
=148 ROl+iaces) (16.3.3)
r’ —ia cosf p>

where as usual p? = r'2 + a? cos? §.

The imaginary part is thus proportional to the angular momentum a. Consequently it
is impossible to generate the latter only from the static imaginary part since the traditional
JN algorithm cannot generate a non-zero rotating field from a null static one. The main
argument for this new rule is that one should not enforce any reality condition on the real or
imaginary parts because they naturally form a pair. In other words, imaginary and real parts
of the scalar fields naturally form a pair which cannot be reduced by any reality condition.
Splitting a complex fields into its real and imaginary parts may hence obscure its structure
and leads to a failure of the transformation (as it shows up in [115]). Note also that y is
now a complex harmonic function.

16.3.2 Review of N = 2 ungauged supergravity

In order for this chapter to be self-contained we recall the basic elements of N = 2 (ungauged)
supergravity. The gravity multiplet contains the metric and the graviphoton

{gm,,AO} (16.3.4)
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while each of the vector multiplets contains a gauge field and a complex scalar field
{AY 2%}, i=1,...,n,. (16.3.5)

The scalar fields z° (we denote the conjugate fields by z* = 2') parametrize a special Kihler
manifold with metric g;;. This manifold is uniquely determined by an holomorphic function
called the prepotential F'. The latter is better defined using the homogeneous (or projective)
coordinates X such that

i X
Z =35 (16.3.6)
The first derivative of the prepotential with respect to X is denoted by
oF
Fy = —. 16.3.7
AT XA (16.3.7)
Finally it makes sense to regroup the gauge fields into one single vector
AN = (40, AY). (16.3.8)

One needs to introduce two more quantities, respectively the Kahler potential and the
Kaéhler connection

K =—Ini(X Fy — XAFN), 4, = f%(&-K 0,7 — 0K 9,27). (16.3.9)
The Lagrangian of this theory is given by

R -
L= -5 + 9i7(2,2) 20,2°0" 2" + Rax (2, 2) Flﬁ,FZ W — Thas(z, 2) F;ﬁ/ *F=M(16.3.10)

where R is the Ricci scalar and +F* is the Hodge dual of FA. The matrix
N=R+iT (16.3.11)

can be expressed in terms of F. From this Lagrangian one can introduce the symplectic

dual of FA 5r
G = —ox = RasF¥ — Ins +F™. (16.3.12)
SFA

16.3.3 BPS solutions

A BPS solution is a classical solution which preserves a part of the supersymmetry. The BPS
equations are obtained by setting to zero the variations of the fermionic partners under a
supersymmetric transformation. These equations are first order and under some conditions
their solutions also solve the equations of motion.

In [36, sec. 3.1] (see also [61, sec. 2.2] for a summary), Behrndt, Liist and Sabra obtained
the most general stationary BPS solution for N = 2 ungauged supergravity. The metric for
this class of solutions reads

ds? = f~1(dt + wde)® + fd¥?, (16.3.13)

with the 3-dimensional spatial metric given in spherical or spheroidal coordinates

d¥? = h;jda'de? = dr® 4 r%(d6? + sin? 6 dp?) (16.3.14a)
2
= dr? + r2dQ? = 2’; S dr? 4 p2d6% + (r* + a?) sin? 0 d¢?, (16.3.14D)
T a

where i, j, k are flat spatial indices (which should not be confused with the indices of the
scalar fields). The functions f and w depend on r and 6 only.
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Then the solution is entirely given in terms of two sets of (real) harmonic functions?
{HA, HA}

f=e K =i(X2Fy, — X Fy), (16.3.15a)

eirOjwr = 2e K A; = (HA0; HY — HY0;H}), (16.3.15b)
1 1

Fh = 5 eikOHY,  Gaij = 5 ik Ha, (16.3.15¢)

i(XA = XM =HD  i(Fy— Fy) = Hy (16.3.15d)

The only non-vanishing component of w; is w = wy.
Starting from the metric (16.3.13) in spherical coordinates with w = 0, one can use the
JN algorithm of section 15.2 with

fo=r"Y  fe=f  fa=1f (16.3.16)
in order to obtain the metric (16.3.13) in spheroidal coordinates with w # 0 given by
w=a(l — f)sin? 0. (16.3.17)

Then one needs only to find the complexification of f and to check that it gives the correct
w, as would be found from the equations (16.3.15). However it appears that one cannot
complexify directly f. Therefore one needs to complexify first the harmonic functions H
and H” (or equivalently X*), and then to reconstruct the other quantities. Nonetheless,
equations (16.3.15) ensure that finding the correct harmonic functions gives a solution, thus
it is not necessary to check these equations for all the other quantities.

In the next subsections we provide two examples,® one for pure supergravity as an ap-
petizer, and then one with n,, = 3 multiplets (STU model).

Pure supergravity

As a first example we consider pure (or minimal) supergravity, i.e. n, = 0 [36, sec. 4.2].

The prepotential reads _
i

F=—7 (X9)2. (16.3.18)
The function Hy and H are related to the real and imaginary parts of the scalar X°
Hy = %(XO + X% = Re X°, H° =4i(X" - X% = —2Im X°, (16.3.19)
while the Kéhler potential is given by
f=e K =XxX0 (16.3.20)

The static solution corresponds to [36, sec. 4.2]
Hy=x"=1+2 (16.3.21)
T

Performing the JN transformation with the rule (16.3.3) gives

m(r + iacosf)

X0=1+ e (16.3.22)
This corresponds to the second solution of [36, sec. 4.2] which is stationary with
2
w= m(Tijm) asin? 6. (16.3.23)
P

2We omit the tilde that is present in [36] to avoid the confusion with the quantities that are transformed
by the JNA. No confusion is possible since the index position will always indicate which function we are
using.

3They correspond to singular solutions, but we are not concerned with regularity here.
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STU model
We now consider the STU model n,, = 3 with prepotential [36, sec. 3]

Xtx2x3

= X0

(16.3.24)
The expressions for the Kéhler potential and the scalar fields in terms of the harmonic
functions are complicated and will not be needed (see [36, sec. 3] for the expressions).
Various choices for the functions will give different solutions.

A class of static black hole-like solutions are given by the harmonic functions [36, sec. 4.4]

Ho=ho+%  gi—pit2  pgo—pg,—o. (16.3.25)
' '

These solutions carry three magnetic p’ and one electric gy charges.
Let’s form the complex harmonic functions

Ho = Ho+ i HY, M, = H +i H;. (16.3.26)
Then the rule (16.3.3) leads to

qo(r + iacos ) pi(r + iacosf)

Ho = ho + > : Hi=h'+ > : (16.3.27)
P P
for which the various harmonic functions read explicitly
- - i 0 i 0
Ho=ho+% w4+l pgo=20270 g, POIR7 0 (16.3.28)
p p p p

This set of functions corresponds to the stationary solution of [36, sec. 4.4] where the mag-
netic and electric dipole momenta are not independent parameters but obtained from the
magnetic and electric charges instead.

16.3.4 Dilaton—axion black hole — 7% model

Sen derived his solution using the fact that Einstein—-Maxwell gravity coupled to an axion
o and a dilaton ¢ (for a specific value of dilaton coupling constant) can be embedded in
heterotic string theory. This model can also be embedded in N = 2 ungauged supergravity
with n, = 1, equal gauge fields A = A% = A and prepotential®

F=—-iXX", (16.3.29)
The dilaton and the axion corresponds to the complex scalar field
z=¢e 2 4+io0. (16.3.30)

The static metric, gauge field and the complex field read respectively

ds? = —fLa 4 g, (ffl dr? 4 r? dQQ), (16.3.31a)
P
A=ia dt, (16.3.31b)
P
z=e2=Ff (16.3.31c)

4This model can be obtained from the STU model by setting the sections pairwise equal X2 = X0 and
X3 = X1 [44]. Tt is also a truncation of pure N = 4 supergravity.
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where r r q
f1:1*—17 f2:1+_2, fa=-. (16.3.32)
r r r

The radii 1 and r5 are related to the mass and the charge by

2
ridre=2m, =L (16.3.33)
m

Applying now the Janis—Newman algorithm, the two functions f; and fs are complexified
with the usual rules (C.1.1b)

. rir . ror
f1=1—?, f2=1+%. (16.3.34)

The final metric in BL coordinates is given by

= 2
ds? = % [dt —a (1 - %) sin? 9d¢] T o <p2ir2 1 p2de? + fé sin? 9d¢2> (16.3.35)
2 1 1

for which the BL functions (C.3.4) are

A

o) =3, h)= % (16.3.36)

with ~ . ~
A = fip* +a®sin? 0, A = fop® + a?sin? 6. (16.3.37)

Once f4 has been complexified as
~ q’f'

fa= = (16.3.38)

the transformation of the gauge field is straightforward
A=T2 = asin20dg) — L ar. (16.3.39)

f2 A

The A, depending solely on 7 can again be removed thanks to a gauge transformation.
One cannot complexify the scalar z using the previous function fs since the latter is real
and not complex. Instead one needs to follow the rule (16.3.3) a new time in order to obtain

p=14 21420 (16.3.40)
r p

The explicit values for the dilaton and axion are then

¥ =f o= w. (16.3.41)
p
We have been able to find the full Sen’s solution, completing the computations from [115].
It is interesting to note that for another value of the dilaton coupling we cannot use the
transformation [138, 141].° Finally the truncation o = 0 is also a solution of dilatonic
gravity [141], but the JN algorithm generates directly the axion—dilaton metric such that
we cannot recover the vanishing axion case [115].

5The authors of [139] report incorrectly that [138] is excluding all dilatonic solutions.
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16.4 Complex scalar fields: NUT charge

16.4.1 Pure supergravity

In [36, sec. 4.2] a solution of pure supergravity (see 16.3.3 for the notations) with a NUT
charge is presented. In this case the solution reads

X0— 14 2 oncose. (16.4.1)
T

The question is whether this configuration can be obtained from the n = 0 solution
(16.3.21)

X0=14+2 (16.4.2)
T

from the transformation (15.4.3)

m=m'+in, r=r"+1in. (16.4.3)
It is straightforward to check that the full metric (16.3.13) is recovered, while the field X°
in (16.4.1) follows from the rule (C.1.1a)

1
r— 3 (r+7)=Rer=1r (16.4.4)

applied in the denominator. Hence a DJN transformation with the NUT charge does not act
in the same way as a transformation with an angular momentum, since the transformation
rule is different from (16.3.3).

16.4.2 SWIP solutions
Let’s consider the action [162, 39, sec. 12.2]

1

S =_—
167

1 o oo
d*z+/|g] (R —2(0¢)* — 3 ' (00)® — e PF. F 4 aF;WFW) (16.4.5)
where ¢ =1,..., M. When M = 2 and M = 6 this action corresponds respectively to N = 2
supergravity with one vector multiplet and to N = 4 pure supergravity, but we keep M
arbitrary. The axion ¢ and the dilaton ¢ are naturally paired into a complex scalar

z=o0+ie 2. (16.4.6)

In order to avoid redundancy we first provide the general metric with a,n # 0, and we
explain how to find it from the restricted case a = n = 0.
Stationary Israel-Wilson—Perjés (SWIP) solutions correspond to

ds? = —2YW(dt + Ay de)? + e 2YW—1dx?, (16.4.7a)
. _ . _ H
Al =2V Re(k'Hy), Al =2¢?YRe(K'Hy), z= Fl (16.4.7b)
2
Ay =2ncosf —asin? (e 2VW T — 1), (16.4.7¢)
- 2
eV = 2Tm(H Hy), W =1-22, (16.4.7d)
p
This solution is entirely determined by the two harmonic functions
Hy = — % —_— Hy=—eP ([14+ —""—). 16.4.8
! \/§e (ZO+Tiacost9)’ 2 \/§e ( +rz’acos€) ( )

130



The spatial 3-dimensional metric d¥? reads

2 .2
d¥2 = hy; datdad = vﬁiai;oqﬂ Ar? + (p% — 12)d6? + (r2 + a® — r2)sin2 0 dg2.  (16.4.9)
— o

Finally, ro corresponds to

12
rg = M+ [P =] (16.4.10)

where the complex parameters are
M =m+in, I =q¢' +ip’, (16.4.11)

m being the mass, n the NUT charge, ¢’ the electric charges and p’ the magnetic charges,
while the axion/dilaton charge T takes the form

T = %Z%—)Q (16.4.12)

%

The latter together with the asymptotic values zg comes from

27
Z~ozg—ie 2P0 (16.4.13)
r
The complex constant k¢ are determined by
: 1 MI?+ YT
k= —— % (16.4.14)
V2 IMPP =T

As discussed in the previous section, the transformation of scalar fields is different
whether one is turning on a NUT charge or an angular momentum. For this reason, starting
from the case a = n = 0, one needs to perform the two successive transformations

u=1u —2inlnsiné, r=r +in, m=m'+in, (16.4.15a)
u=1u"+iacosb, r=r"—iacosb, (16.4.15b)

the order being irrelevant (for definiteness we choose to add the NUT charge first). As
explained in section 17.3, group properties of the DJN algorithm ensure that the metric will
be transformed as if only one transformation was performed, and one can use the formula
of section 15.2. Then the formulas (C.3.3) for the metric and for the gauge field directly
apply, which ensures that the general form of the solution (16.4.7) is correct.®  Since all
the functions and the parameters depend only on M, H; and Ho, it is sufficient to explain
their complexification.

The function W is easily transformed, whereas H; and Hs are more subtle since they are
complex harmonic functions. Let’s consider first the NUT charge with the transformation
(16.4.15a). According to the previous appendix, the r in the denominator of both functions
is transformed according to (C.1.1a)

1
r—» 5(r—i-f) =Rer=r". (16.4.16)

Then one can perform the second transformation (16.4.15b) in order to add the angular
momentum. Using the recipe from section 16.3.1, one obtain the correct result (16.4.8) by
just replacing r with (16.4.15b).

Finally let’s note that it seems possible to also start from p’ = 0 and to turn them on
using the transformation

¢ =q" =g +ip', (16.4.17)

using different rules for complexifying the various terms (depending whether one is dealing
with a real or a complex function/parameter).

SFor that one needs to shift r? by r2 in order to bring the metric (16.4.9) to the form (16.3.14). This
modifies the function but one does not need this fact to obtain the general form. Then one can shift by —rg
before dealing with the complexification of the functions.
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Chapter 17

Technical properties

In this chapter we describe few technical properties of the algorithm. In particular some
DJN transformations have an interesting group structure that allows to chain several trans-
formations [159]. Another useful property of Giampieri’s prescription is to allow to chain
all coordinate transformation, making computations easier [99]. Then finally we discuss the
fact that not all the rules (C.1.1) are independent and several choices of complexification
are equivalent [99], contrary to what is widely believed.

17.1 Chaining transformations

The JN algorithm is summarized by the following table

t - u —- ueC — o —
r - reC — 1
¢ ) - ¢ (17.1.1)
f = f
Guv = G

where the arrows correspond respectively to the steps 1, 2, 4 and 5 of section 14.2 (and 1,
3, 4 and 6 of section 14.1).

A major advantage of Giampieri’s prescription is that one can chain all these transfor-
mations since it involves only substitutions and no tensor operations. For this reason it is
much easier to implement on a computer algebra system such as Mathematica. It is then
possible to perform a unique change of variables that leads directly from the static metric
to the rotating metric in any system defined by the function (g, h)

dt = dt’ + (ahsin®0 (1 — fH—g+ f_l) dr’ +asin?6 (f~1 —1)dé¢/, (17.1.2a)
dr = (1 — ahsin® @) dr’ + asin® 0 d¢’, (17.1.2b)
d¢ = d¢/ — hdr', (17.1.2¢)

where the complexification of the metric function f can be made at the end. It is impressive
that steps 1 to 5 from section 14.2 can be written in such a compact way.

17.2 Arbitrariness of the transformation

We provide a short comment on the arbitrariness of the complexification rules. In particular
let’s consider the functions

hr)==, fr)=. (17.2.1)
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The usual rule is to complexify these two functions as

filr) = Rir:, folr) = % (17.2.2)

|r

using respectively the rules (C.1.1b) and (C.1.1c) (in the denominator).
But it is possible to arrive at the same result with a different combinations of rules. In
fact the functions can be rewritten as

S|
S =

(17.2.3)

The following set of rules results again in (17.2.2):
e fi: (C.1.1a) (numerator) and (C.1.1¢) (denominator);

o fo: (C.1.1a) (first fraction) and (C.1.1b) (second fraction).

17.3 Group properties

In this section we want to show that (some of) DJN transformations form a group.
After a first transformation

r=r+1iFy, u=u"+iGy (17.3.1)
one obtains the metric
ds? = — fi (du+ HGY dg)? + FEH (462 + H2a6?)
PP (17.3.2)
— 2/ fFIM A (du + G H dg)(dr + FH dg)
where ~ ~
FU =i e m). (17.3.3)
Applying a second transformation
r=r +1ikF, u=1u +1iGs (17.3.4)
the previous metric becomes
ds? = — f1V (du + H(G) + Gh) dg)” + Fi2H(d6? + H2dg?)
- - (17.3.5)
— 2/ FIH A (du + (G + Gh) H dg) (dr + (F] + F3)H dg)
where this time ~ ~
Fv2 = (86 B R, (17.3.6)
As for the first transformation we only ask for the following conditions
e R0 = f0 e R, PR R) = P R B, (17.3.7)

In one word a zero transformation should just give back the old metric, and the two trans-
formations should commute.
Looking at the expression of the metric, it is obvious that the DJN transformations which
are such that
F e B Fy) = Y 0+ R (17.3.8)
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form an (Abelian) group if the functions F' and G are linear in the parameters (i. e. the
group is additive). This last condition means that we can decompose them on a basis of
generators { F4(0)} and {Gpr(0)}, where A and M are (different) indices, such that

F(0) = fAFA(0), G = gMGu(0), (17.3.9)
f4 and gM being the parameters of the transformations. It is possible that f4 = ¢M
and F4 « Gy for some A and M (as we obtained in section 15.3) which means that the
corresponding parameters f4 and g™ are not independent.

These transformations form a group because composing two transformations (Fy,G1)
and (Fy, G2) gives a third transformation (F3, Gs) according to

Fs=F| + Fy, G3 =G+ Gy (17310)

with the parameters combining linearly. Moreover there an identity (0,0) and also an inverse
(—F,—-G).

All this structure implies that we can first add one parameter, and later another (say first
the NUT charge, and then an angular momentum). Said another way this group preserves
Einstein equations when the seed metric is a known (stationary) solution. But note that it
may be very difficult to do it as soon as one begins to replace the F in the functions by their
expression, because it obscures the original function — in one word we cannot find fi(r, F)
from f;(r,0).

Another point worth mentioning is that not all DJN transformation are in this group
since it may happen that the condition (17.3.8) is not satisfied. Such an example is provided
in 5d where the function fo(r) = r? is successively transformed as [160]

12— > = 1%+ a?cos? 0 — |r|* + a®cos? 0 = % + a® cos® 6 + b sin? 0, (17.3.11)
where the two transformations were
Fy = acosb, Fy = bsin, (17.3.12)

and _
f§{21,2} — 24 F2 4 F2. (17.3.13)

The condition (17.3.8) is clearly not satisfied. These group properties may explain why the
JN algorithm is not working for d > 5, or maybe give a clue to solve this problem.
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Chapter 18

Other dimensions

While in four dimensions we have at our disposal many theorems on the classification of
solutions, this is not the case for higher dimensions and the bestiary for solutions is much
wider and less understood [110, 241]. In particular important solutions have not yet been
discovered, such as charged rotating black holes with several angular momenta (in pure
Einstein-Maxwell gravity).

Generalizing the (D)JN algorithm in other dimensions is challenging and only small steps
have been taken in this direction. For instance Xu recovered Myers—Perry solution [163] with
one angular momentum from the Schwarzschild—Tangherlini solution [122] (see also [242]),
and Kim showed how the rotating BTZ black hole [243] can be obtained from its static
limit [123, 124].

We first analyse the case d = 5 and we show how to generate solutions with two angular
momenta from a static solution in the case of two examples [160]: the Myers—Perry black
hole [163] and the Breckenridge-Myers—Peet—Vafa (BMPV) extremal black hole [164].

Parametrizing the metric on the sphere by direction cosines is a key step in order to
generalize the transformation to any dimension since these coordinates are totally symmetric
under interchange of angular momenta (at the opposite of the spherical coordinates). Despite
the fact that it is possible to obtain the correct structure of the metric (for Myers—Perry-like
metrics), it is very challenging to determine the functions inside the metric. Nonetheless
this provides a unified view of the JN algorithm for d = 3,4,5. Indeed our formalism can
be used to recover the rotating BTZ black hole more directly.

Here Giampieri’s prescription simplifies greatly the computations as the tetrad formalism
would imply working with matrices of size d. Note also that we could not reproduce the
derivation using the tetrad formalism as some terms do not seem to cancel in this case.

A major application of our work would be to find the charged solution with two angular
momenta of the 5d Einstein—-Maxwell. This problem is highly non-trivial and there is few
chances that this technique would work directly [242], but one can imagine that a generaliza-
tion of Demianski’s approach [100] (see chapter 15) could lead to new interesting solutions
in five dimensions. An intermediate step is represented by the CCLP metric [244] which
is a solution of Einstein—-Maxwell together with a Chern—Simons term, but it cannot be
obtained from the JN algorithm. Moreover it would be very desirable to derive the general
d-dimensional Myers—Perry solution [163], or at least to understand why only the metric can
be found, and not the function inside. Slowly rotating metrics could in principle be derived
easily [242, sec. 4] using our prescriptions and could be a nice playground to understand
better higher dimensional solution with d > 6. Finally one can ask whether the algorithm
can be used to derive black rings [241, 245].

INote that [127, 129] obtain higher dimensional metric with one angular momentum, but they are not
solutions of the equations of motion.
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18.1 Five-dimensional applications

We first look at the simple case of five dimensions, and later we generalize to any dimension.

18.1.1 Myers—Perry black hole

In this section we show how to recover Myers—Perry black hole in five dimensions through
Giampieri’s prescription. This is a solution of 5-dimensional pure Einstein theory which
possesses two angular momenta and it generalizes the Kerr black hole. The importance of
this solution lies in the fact that it can be constructed in any dimension.

Let us start with the five-dimensional Schwarzschild—Tangherlini metric

ds® = —f(r)dt> + f(r)~tdr® + 72 d02 (18.1.1)

where dQ)3 is the metric on S®, which can be expressed in Hopf coordinates (see section B.3.2)

dQ3 = d6* + sin® 0 d¢? + cos? 0 dep?, (18.1.2)
and the function f(r) is given by
fr)=1- g (18.1.3)

An important feature of the JN algorithm is the fact that a given set of transformations
in the (r, ¢)-plane generates rotation in the latter. Generating several angular momenta in
different 2-planes would then require successive applications of the JN algorithm on different
hypersurfaces. In order to do so, one has to identify what are the 2-planes which will be
submitted to the algorithm. In five dimensions, the two different planes that can be made
rotating are the planes (r, ) and (r,¢). We claim that it is necessary to dissociate the radii
of these 2-planes in order to apply separately the JN algorithm on each plane and hence to
generate two distinct angular momenta. In order to dissociate the parts of the metric that
correspond to the rotating and non-rotating 2-planes, one can protect the function 72 to
be transformed under complex transformations in the part of the metric defining the plane
which will stay static. We thus introduce the function

R(r) = Re(r) (18.1.4)
such that the metric in null coordinates reads
ds? = —du (du + 2dr) + (1 — f) du® + r*(d6? + sin? 0 dp?) + R? cos O dop?. (18.1.5)
The first transformation — hence concerning the (r, ¢)-plane — is

u=u +iacosyi, r=r"—iacosxi,
idy; = sin x; do, with x1 =0, (18.1.6)
du = du’ — asin?0dg, dr = dr’ + asin? 6 do,

and f is replaced by f{1} = f{1}(r 0). Indeed we need to keep track of the order of the
transformation, since the function f will be complexified twice consecutively. On the other
hand R(r) = Re(r) transforms into R(r) = r' and we find (omitting the primes)

ds? = —du? — 2dudr + (1- f{l})(du — asin?0d¢)? + 2asin® 0 drde

18.1.7
+ (r* + a® cos® 0)d6? + (r* + a*) sin? 0 d¢? + 12 cos? O dep?. ( )
The function f{1} is
sy m m
f”**m*“m' (18.1.8)
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There is a cancellation between the (u,r) and the (6, ¢) parts of the metric
ds?, =(1- FUN (du — asin® 0 de)? — du(du + 2dr) + 2asin® 0 drd¢ + a® sin® 6 d¢?,
(18.1.9a)
dsg 4 = (r* + a® cos® 0)d6” + (r* + a*(1 — sin® §)) sin® 6 dg”. (18.1.9b)
In addition to the terms present in (18.1.5) we obtain new components corresponding
to the rotation of the first plane (r,¢). We find the same terms as in (18.1.5) plus other
terms that corresponds to the rotation in the first plane. Transforming now the second one
— (r,%) — the transformation is?
u = + b sin xa, r =1’ —ib sin ya,
idys = — cos x2 dv, with 2 =0, (18.1.10)
du = du’ — beos? 6 dip, dr = dr’ + bcos? 6 dvp,
can be applied directly to the metric

d82 _ 7(1’11,2 _ 2d’ll,d7’ + (1 _ f{l})(du — asjn2 9d¢>2 —+ 2asin2 edeQb (18 1 11)
4 26° + (B + a?)sin? 042 + 1 cos? 0 dy? -

where we introduced once again the function R(r) = Re(r) to protect the geometry of the
first plane to be transformed under complex transformations.
The final result (using again R = 7’ and omitting the primes) becomes
ds? = —du? — 2dudr + (1 — f2)(du — asin® 0 d¢ — beos® 0 d)?
+ 2asin? O drde + 2b cos? 6 drdyp (18.1.12)
+ p%d0? + (r* + a®)sin? 0 de? + (r* + b?) cos? 0 dy?
where
p* =12+ a®cos® 0 + b*sin? 6. (18.1.13)

Furthermore, the function f{1} has been complexified as

Fo2 g m =1- s COS;”@ e =L p—”; (18.1.14)
The metric can then be transformed into the Boyer—Lindquist (BL) using
du=dt—g(r)dr,  dp=d¢' —he(r)dr,  dv=dy — hy(r)dr. (18.1.15)
Defining the parameters®
D=2 +a>)(r*+0%), A=r'+r2a®+0* —m)+d?b? (18.1.16)
the functions can be written
g(r) = %, he(r) = % TQ;LGQ hy(r) = % ﬁ (18.1.17)
We get the final metric
- 22
ds? = —dt? + (1 — F112)(dt — asin® 0.d¢ — beos® 0.dyh)? + Tp dr? (18.1.18)

+ p?d6% + (r* + a?)sin® 0 dp? + (r? + b?) cos® O dap?.

2The easiest justification for choosing the sinus here is by looking at the transformation in terms of
direction cosines, see section 18.3.3. Otherwise this term can be guessed by looking at Myers—Perry non-
diagonal terms.

3See (18.2.17) for a definition of A in terms of f.
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One recovers here the five dimensional Myers—Perry black hole with two angular mo-
menta [163].

It is important to mention that following the same prescription in dimensions higher than
five does not lead as nicely as we did in five dimensions to the exact Myers—Perry solution.
Indeed we show in section 18.2 that the transformation of the metric can be done along
the same line but that the only — major — obstacle comes from the function f that cannot
be complexified as expected. Finding the correct complexification seems very challenging
and it may be necessary to use a different complex coordinate transformation in order to
perform a completely general transformation in any dimension. It might be possible to gain
insight into this problem by computing the transformation within the framework of the
tetrad formalism.

One may think that a possible solution would be to replace complex numbers by quater-
nions, assigning one angular momentum to each complex direction but it is straightforward
to check that this approach is not working.

18.1.2 BMPYV black hole
Few properties and seed metric

In this section we focus on another example in five dimensions, which is the BMPV black
hole [164, 246]. This solution possesses many interesting properties, in particular it can be
proven that it is the only rotating BPS asymptotically flat black hole in five dimensions with
the corresponding near-horizon geometry [241, sec. 7.2.2, 8.5, 247].* It is interesting to
notice that even if this extremal solution is a slowly rotating metric, it is an exact solution
(whereas Einstein equations need to be truncated for consistency of usual slow rotation).

For a rotating black hole the BPS and extremal limits do not coincide [241, sec. 7.2, 246,
sec. 1]: the first implies that the mass is related to the electric charge,”® while extremality®
implies that one linear combination of the angular momenta vanishes, and for this reason
we set a = b from the beginning.” We are thus left with two parameters that we take to be
the mass and one angular momentum.

In the non-rotating limit BMPV black hole reduces to the charged extremal Schwarz-
schild-Tangherlini (with equal mass and charge) written in isotropic coordinates. For non-
rotating black hole the extremal and BPS limit are equivalent.

Both the charged extremal Schwarzschild-Tangherlini and BMPV black holes are solu-
tions of minimal (N = 2) d = 5 supergravity (Einstein—Maxwell plus Chern—Simons) whose
action is [246, sec. 1, 248, sec. 2, 249, sec. 2]

1 2
S=-— Rl +FA+F+—-FAFAA 18.1.19
167rG/( AT IR ) ( )

where supersymmetry imposes A = 1.

Since extremal limits are different for static and rotating black holes we can guess that
the black hole we will obtain from the algorithm will not be a solution of the equations of
motion and we will need to take some limit.

The charged extremal Schwarzschild-Tangherlini black hole is taken as a seed metric [249,
sec. 3.2, 250, sec. 4, 251, sec. 1.3.1, 252, sec. 3|

ds?> = —H™2dt> + H (dr? + 2 d03) (18.1.20)

40ther possible near-horizon geometries are S x S? (for black rings) and T3, even if the latter does not
seem really physical. BMPYV horizon corresponds to the squashed S3.

5Tt is a consequence from the BPS bound m > v/3/2 |q|.

6Regularity is given by a bound, which is saturated for extremal black holes.

7If we had kept a # b we would have discovered later that one cannot transform the metric to
Boyer—Lindquist coordinates without setting a = b.
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where dQ% is the metric of the 3-sphere written in (18.1.2). The function H is harmonic
(18.1.21)

and the electromagnetic field reads

V3 m
A= o5 5 di=(H-1)dt (18.1.22)

In the next subsections we apply successively the transformations (18.1.6) and (18.1.10)
with @ = b in the case A = 1 because we are searching a supersymmetric solution.
Transforming the metric

The transformation to (u,r) coordinates of the seed metric (18.1.20)

dt = du+ H3?dr (18.1.23)

gives
ds? = —H 2du® — 2H Y2 dudr + Hr? dQ3 (18.1.24a)
= —H?(du — 2H*?dr) du + Hr? dQ2. (18.1.24b)

For transforming the above metric one should follow the recipe of the previous section:
transformations (18.1.6)

u =1 +iacosb, du = du’ — asin? 6 dg, (18.1.25)
and (18.1.10)
u=1u"+1ia sind, du = du’ — acos®§dy (18.1.26)

are performed one after another, transforming each time only the terms that pertain to the
corresponding rotation plane.® In order to preserve the isotropic form of the metric the
function H is complexified everywhere (even when it multiplies terms that belong to the
other plane).

Since the procedure is exactly similar to the Myers—Perry case we give only the final
result in (u,r) coordinates

ds? = — A2 (du — a(1 — H*?)(sin? 0 d¢ + cos? 0 dy)))”
— 20 Y% (du — a(1 — H?) (sin 0 d¢ + cos? 0 dy)) dr
+ 2aH (sin® 0 d¢ + cos? 0 dip) dr — 24> H cos? 0 sin? § dpdyp
+H ((r2 + a?)(d6? + sin” 0 d¢? 4 cos® O dp?) + a®(sin? 0 d¢ + cos? 0 dl/J)Q)-

) (18.1.27)
After both transformations the resulting function H is
. m m
H=1 = —_—— 18.1.28
+ r2 + a2 cos? 0 + a2sin? 0 r2 + a? ( )
which does not depend on 6.
It is easy to check that the Boyer—Lindquist transformation (18.1.15)
du = dt — g(r) dr, d¢ = d¢’ — he(r)dr, dyp = dy)" — hy(r)dr (18.1.29)

is ill-defined because the functions depend on 6. The way out is to take the extremal limit
alluded above.

8For another approach see section 18.1.3.
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Following the prescription of [164, 246] and taking the extremal limit

a,m — 0, imposing % = cst, (18.1.30)
a
one gets at leading order

73ma

(T() — m _ F73/2Y _
H(r)=1+ 5 =H(r), a(-H /2y = T (18.1.31)
which translate into the metric
2 -2 3ma . o 2 ’
ds*=-H du + 5,2 (sin” 0 d¢ + cos® 0 dv)
T
3 18.1.32
_9fg—1/2 (du+ ﬁ (sin29d¢+c0529d1/1)) dr ( )
T
+ H r%(d6* + sin® 0 dg? + cos® 6 dip?).
Then Boyer—Lindquist functions are
g(r) =H(r)*?,  hy(r) = hy(r) =0 (18.1.33)
and one gets the metric in (¢,7) coordinates
~ 3ma 2
ds? = — H2 <dt + S (sin® 6 d¢ + cos 9d1/;)>
2r (18.1.34)

+H (dr2 + 72 (dé’2 +sin? 0 d¢? + cos? 0 de)).

We recognize here the BMPV solution [164, p. 4, 246, p. 16]. The fact that this solution has
only one rotation parameter can be seen more easily in Euler angle coordinates [246, sec. 3,
253, sec. 2] or by looking at the conserved charges in the ¢- and -planes [164, sec. 3.

Transforming the Maxwell potential

Following the procedure described in [99] and recalled in section 14.5.2, one can also derive
the gauge field in the rotating framework from the original static one (18.1.22). The latter
can be written in the (u,r) coordinates

3
A= % (H — 1) du, (18.1.35)
since we can remove the A, (r) component by a gauge transformation. One can apply the

two JN transformations (18.1.6) and (18.1.10) with b = a to obtain

A= ? (F - 1)(du7a(sin29d¢+c0529dw)). (18.1.36)

Then going into BL coordinates with (18.1.15) and (18.1.33) provides

A= ? (H-1) (dt — a (sin® 0 d¢ + cos? de)) + A (r)dr. (18.1.37)
Again A, depends only on r and can be removed by a gauge transformation. Applying the

extremal limit (18.1.30) finally gives

_V3m

2 r?

A (dt - a(sin29d¢+60829d1/))), (18.1.38)
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which is again the result presented in [164, p. 5].

Despite the fact that the seed metric (18.1.20) together with the gauge field (18.1.22)
solves the equations of motion for any value of A, the resulting rotating metric solves the
equations only for A = 1 (see [246, sec. 7] for a discussion). An explanation in this re-
duction can be found in the limit (18.1.30) that was needed for transforming the metric to
Boyer—Lindquist coordinates and which gives a supersymmetric black hole — which neces-
sarily has A = 1.

18.1.3 Another approach to BMPV

In section 18.1.2 we applied the same recipe given in section 18.1.1 which, according to our
claim, is the standard procedure in five dimensions.

There is another way to derive BMPV black hole. Indeed, by considering that terms
quadratic in the angular momentum do not survive in the extremal limit, they can be added
the metric without modifying the final result. Hence we can decide to transform all the
terms of the metric? since the additional terms will be subleading. As a result the BL
transformation is directly well defined and overall formulas are simpler, but we need to take
the extremal limit before the end (this could be done either in (u,r) or (¢,r) coordinates).
This section shows that both approaches give the same result.

Applying the two transformations

u=u'+iacosb, du = du’ — asin? 6 dg, (18.1.39a)
u=1u"+1ia sind, du = du’ — acos® 6 dy (18.1.39b)

successively on all the terms one obtains the metric

ds? = — A2 (du — a(1 — H*?)(sin? 0 d¢ + cos? 0 dy))”
— 20 Y%(du — a(sin® 0 dp + cos® 0 dep)) dr
+H ((r2 + a?)(d6? + sin? 0 d¢? 4 cos® O dp?) + a®(sin? 0 d¢ + cos? 0 dz/J)Q),
) (18.1.40)
where again H is given by (18.1.28)

m

H=1+——.
+T2+a2

(18.1.41)

Ouly one term is different when comparing with (18.1.27).
The BL transformation (18.1.15) is well-defined and the corresponding functions are

a® + (r2 + a®) H(r) a

= h =h == 18.1.42
g(r) r2 4+ 2a2 ’ (1) »(7) 2 1242 (18 )
which do not depend on 6. They lead to the metric
ds? = — H=2(dt — a(1 — H?/?)(sin? § d¢ + cos® 6 dip))”
- dr?
2 2 2 2 2 2 2

+ a?(sin® O de + cos? 0 dwp)?|.

At this point it is straightforward to check that this solution does not satisfy Einstein
equations and we need to take the extremal limit (18.1.30)

a,m —0,  imposing  — = cst (18.1.44)
a

9In opposition to our initial recipe, but this is done in a controlled way.

141



in order to get the BMPV solution (18.1.34)

3ma

ds? = — H2 <dt+ 5

2
5 (sin? @ d¢ + cos? 0 dz/;))
r (18.1.45)

+ 1 (@ 4 72 (40% + sin® 0.46? + cos? 0 du?) ).

It is surprising that the BL transformation is simpler in this case. Another point that
is worth stressing is that we did not need to take the extremal limit in this computation,
whereas in section 18.1.2 we had to in order to get a well-defined BL transformation.

18.1.4 CCLP black hole

It would be very interesting to find the CCLP black hole [244] (see also [248, sec. 2]), which
is the corresponding non-extremal solution with four independent charges: two angular
momenta a and b, an electric charge ¢ and the mass m. This black hole is also a solution of
d = 5 minimal supergravity (18.1.19).

The solution reads

_ 2 2
ds? = —df? + (1 — f)(dt — asin® 0 de — beos® 0 dyp)? + TA—’) dr?

T

+ p?d0* + (r* + a?) sin? 0 dp? + (1 + b?) cos? O dyp? (18.1.46a)
2

- —g (bsin® 0 d¢ + a cos® 0 dy) (dt — asin? @ d¢g — bcos? 0 dy),

A= ? 4 (dt — asin®dg — beos® dp), (18.1.46b)
p
where the function are given by
> =1% +a®cos® 0+ b?sin? 0, (18.1.47a)
~ 2m  ¢?

f=1-"+ (18.1.47b)
A, =TI+ 2abq + ¢* — 2mr2. (18.1.47¢)

Yet, using our prescription, it appears that the metric of this black hole cannot entirely be
recovered. Indeed all the terms but one are generated by our algorithm, which also provides
the correct gauge field. The missing term (corresponding to the last one in (18.1.46a)) is
proportional to the electric charge and the current prescription cannot generate it.

This issue may be related to the fact that the CCLP solution cannot be written as a
Kerr—Schild metric but as an extended Kerr—Schild one [254-256], which includes an addi-
tional term proportional to a spacelike vector. It appears that the missing term corresponds
precisely to this additional term in the extended Kerr—Schild metric, and it is well-known
that the JN algorithm works mostly for Kerr—Schild metrics. Moreover the A computed
from (18.2.17) depends on 6 and the BL transformation would not be well-defined if the
additional term is not present to modify A to A,.

18.2 Transformation in any dimension

In this appendix we consider the JN algorithm applied to a general static d-dimension metric.
As we argued in a previous section it is important to consider separately the transformation
of the metric and the complexification of the functions inside. Hence we are able to derive
the general form of a rotating metric with the maximal number of angular momenta it can
have in d dimensions, but we are not able to apply this result to any specific example for
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d > 6, except if all momenta but one are vanishing [122]. Despite this last problem, this
computation provides a unified framework for d = 3,4,5 (see section 18.3.4 for the BTZ
black hole).

In the following the dimension is taken to be odd in order to simplify the computations,
but the final result holds also for d even.

18.2.1 Metric transformation
Seed metric and discussion

Consider the d-dimensional static metric (notations are defined in appendix B.1)
ds? = —fdt* + f~rdr? +r2dQ2_, (18.2.1)
where in_Q is the metric on 42

n

dQ3_, =dfg o +sin?0y_2d03_5 = Z (A + pide?). (18.2.2)

=1

The number n = (d — 1)/2 denotes the number of independent 2-spheres.
In Eddington-Finkelstein coordinates the metric reads

ds? = (1 — f)du® — du (du + 2dr) + r* Z (duz2 + p? dqﬁf). (18.2.3)

The metric looks like a 2-dimensional space (¢,7) with a certain number of additional
2-spheres (u;, ¢;) which are independent from one another. Then we can consider only the
piece (u,r, i, ¢;) (for fixed i) which will transform like a 4-dimensional spacetime, while the
other part of the metric (u;, ¢;) for all j # ¢ will be unchanged. After the first transformation
we can move to another 2-sphere. We can thus imagine to put in rotation only one of these
spheres. Then we will apply again and again the algorithm until all the spheres have angular
momentum: the whole complexification will thus be a n-steps process. Moreover if these 2-
spheres are taken to be independent this implies that we should not complexify the functions
that are not associated with the plane we are putting in rotation.

To match these demands the metric is rewritten as

ds? = (1— f) du® — du (du+2dr, ) +72 (du§1+u§1d¢$l)+z (rfldu§+R2M§ dqbf). (18.2.4)
iy

where we introduced the following two functions of r
ri, (r) =1 R(r)=r. (18.2.5)

This allows to choose different complexifications for the different terms in the metric. It
may be surprising to note that the factors in front of du? have been chosen to be 7“121 and
not R2, but the reason is that the ju; are all linked by the constraint

S =1 (18.2.6)

and the transformation of one ¢;-th 2-sphere will change the corresponding p;,, but also all
the others, as it is clear from the formula (B.1.14) with all the a; vanishing but one (this
can also be observed in 5d where both ; are gathered into 6).
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First transformation

The transformation is chosen to be

iy, =75, —iai\/1—pZ, u=1u+iai\/1—p3 (18.2.7a)

which, together with the ansatz

dys;
i —=H i de, (18.2.7b)
V1= “121
gives the differentials
dri, = dr}, + a;, p7, do, du = du’ — a;, 17, depy, - (18.2.7¢)

It is easy to check that this transformation reproduces the one given in four and five
dimensions.

The complexified version of f is written as f{}: we need to keep track of the order in
which we gave angular momentum since the function f will be transformed at each step.

We consider separately the transformation of the (u,r) and {u;, ¢;} parts. Inserting the
transformations (18.2.7) in (18.2.3) results in

. 2
dsi,r = (1 - f{“}) (du — A4y ,LL?I d¢11) —du (du + 2dri1) + 20’1'1#121 dril d¢11 + a‘121 :u;ll dd)?l,

dsp o= (r, + a2 ) (dp? +p? de?) + > (rfdu? + R?p? d¢?) — a?, i, dg?,
i+i1

+a?, [ —pgdpd + (=) > du?] :
iy

The term in the last bracket vanishes as can be seen by using the differential of the
constraint
doui=1= mdu =0. (18.2.9)

Since this step is very important and non-trivial we expose the details

2
o=t — (=) S ded = (Y d | -2 dw?

iy i1y J#i i
= > (papyduadpy — p5du?) = D g (padpy — pydps)dps = 0
P57 i

by antisymmetry.
Setting r;, = R = r one obtains the metric

s 2
ds? = (1 — fln}) (du — ai, 17, dqﬁil) — du (du + 2dr) + 2a;, p3, drde;,

+ (7 4 ad ) (dpd, + pd de?) + Y r? (dp? + pf dg?).
itiy

(18.2.10)

It corresponds to Myers—Perry metric in d dimensions with one non-vanishing angular mo-
mentum. We recover the same structure as in (18.2.4) with some extra terms that are
specific to the i1-th 2-sphere.
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Iteration and final result

We should now split again r in functions (r;,, R). Very similarly to the first time we have

o~ 2
d82 = (1 - f{zl}) (du — G4y ,U/?l d¢l1) —du (du + 2dri2) + 20/1'1 ,U/?l de¢11
+(rf, +ai,)dpd, + (B? + af, )i, Ao, + 73, (dpsf, + 3, dg,) (18.2.11)
+ > (rRdu?+ %2 4?).

171102

We can now complexify as

Tiy :ng—iai21/1—u?2, u:u’—f—iaiﬂ/l—,ufz. (18212)

The steps are exactly the same as before, except that we have some inert terms. The
complexified functions is now fli:72},
Repeating the procedure n times we arrive at

ds? = — du® — 2dudr + Z(T2 +a?)(dp? + pZde?) — 2 Z a;p? drdg;

9 (18.2.13)
n (1 _ f{“ ..... in}) (dqu Zaiﬂfdfbi)

One recognizes the general form of the d-dimensional metric with n angular momenta [163].
Let’s quote the metric in Boyer—Lindquist coordinates (omitting the indices on f) [163]

2
2.2
2 a4 (=P at =S a;u2de; |+ ar? 24 a2) (dp2+p2 do?
ds? = —dt®’+(1—§) <dt § azuzdgbz) + o dr +§i (r +al)(duz+uz d¢>1) (18.2.14)

which is obtained from the transformation

du =dt — gdr, d¢; = d¢ — h;dr (18.2.15)
with functions I ) I
a;
e 18.2.16
I AT1-Fa-] A 2 +a? ( )
and where the various quantities involved are (see appendix B.1.4)
2 2 ajy? 2 1
= : F=1- il _ i
H(r ), Z 2a Z r?+a;’ (18.2.17)

r?p? =1IF, A= frip> +11(1 - F).

Before ending this section, we comment the case of even dimensions: the term &’ r?da?
is complexified as &' 77 da?, since it contributes to the sum

duitat=1. (18.2.18)

This can be seen more clearly by defining p,+1 = o (we can also define ¢,,+1 = 0), in which
case the index ¢ runs from 1 to n + ¢, and all the previous computations are still valid.
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18.3 Examples in various dimensions

18.3.1 Flat space

A first and trivial example is to take f = 1. In this case one recovers Minkowski metric in
spheroidal coordinates with direction cosines (appendix B.1.4)

ds? = —dt* + F di* + Z(FQ + a?)(dﬂ? + i dqgf) + &' r?da?. (18.3.1)

In this case the JN algorithm is equivalent to a (true) change of coordinates [109] and there
is no intrinsic rotation. The presence of a non-trivial function f then deforms the algorithm.

18.3.2 Myers—Perry black hole with one angular momentum

The derivation of the Myers—Perry metric with one non-vanishing angular momentum has
been found by Xu [122].
The transformation is taken to be in the first plane

r=r"—iay/1— p? (18.3.2)

where p = p1. The transformation to the mixed spherical-spheroidal system (appendix B.1.5
is obtained by setting

W =sin 6, 01 = ¢. (18.3.3)
In these coordinates the transformation reads
r=r"—iacos®. (18.3.4)
We will use the quantity
p? =71 +a*(1—p?) =r*+a*cos? 0. (18.3.5)

The Schwarzschild-Tangherlini metric is [252]
ds? = —fdf® + f1 A +02d03,, f=1- - (18.3.6)
T

Applying the previous transformation results in

~ 2
ds? = (1- ) (du — ap?dg)” — du(du + 2dr) + 2ap® drdo

18.3.7
+ (P + @®) (dp® + p2de®) + D (duf + pf dg7). e
i#1
where f has been complexified as
p m
f = 1 - W. (18.3-8)
In the mixed coordinate system one has [122, 242]
- _ pd=3 2
ds? = — fdt? +2a(1 — f)sin® 6 dtde + dr? + p2de?
A
52 (18.3.9)
+— sin? 0 d¢? + r? cos® 92 dQ3_,.
p
where we defined as usual
Fo 2 .2 x? 2 2
A= fp°+ a’sin“ 6, — =71 +a" + agie. (18.3.10)

2
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This last expression explains why the transformation is straightforward with one angular
momentum: the transformation is exactly the one for d = 4 and the extraneous dimensions
are just spectators.

We have not been able to generalize this result for several non-vanishing momenta for
d > 6, even for the case with equal momenta .

18.3.3 Five-dimensional Myers—Perry

We take a new look at the five-dimensional Myers—Perry solution in order to derive it in
spheroidal coordinates because it is instructive.

The function m
1-f=3 (18.3.11)

is first complexiﬁed as
A1 m . m

and then as

L= f = 5 = o . 18.3.13
T Fren e Prei- )+ -7) (18.3.13)

after the two transformations

ry =1y —iay/1 — p?, ro =14 —ib\V/1 — V2. (18.3.14)

For 1 = sin # and v = cos 6 one recovers the transformations from sections 18.1.1 and 18.1.2.
Let’s denote the denominator by p? and compute

2

% =7’ +a®(1—p?) + b2 (1 = %) = (u* + ) + v2a® + p*b?
2 2 2 2 2 2 2 2 2 9 /’[’2 V2
= po(r" +0°) + 070" +a%) = (7 + 6%)(r +a)(r2+a2+r2+b2).
and thus

r2p? =1IF. (18.3.15)
Plugging this into 112} we have [163]

2
1 fluzy -

E (18.3.16)

18.3.4 Three dimensions: BTZ black hole

As another application we show how to derive the d = 3 rotating BTZ black hole from its
static version [243]

7,2

ds? = —fdt* + f~Hdr? 4+ r2d¢?, f(ry=—M + R (18.3.17)
In three dimensions the metric on S in spherical coordinates is given by
dO? = d¢*. (18.3.18)
Introducing the coordinate p we can write it in oblate spheroidal coordinates
dQ? = dp? + pPde? (18.3.19)
with the constraint
p? = 1. (18.3.20)



Application of the transformation

u=1u'+ia\/1— p2, r=r"—ia\/1—p? (18.3.21)
gives from (18.2.13)
ds? = — du® — 2dudr + (r* + o) (dp? + p?dé?) — 2ap? drde

N Y (18.3.22)
+ (1 — f)(du + ap“de).
We still need to give the complexification of f which is
7 P 2 2 2 2
f:—m—i—g—Q, po=1"+a(1—pu°). (18.3.23)
The transformation (18.2.16)
) -
1-— .
g:¥, h:%, A=r’4a®+ (f—1)p? (18.3.24)

to Boyer—Lindquist coordinates leads to the metric (18.2.14)

B 2
ds? = —d? + (1 — f)(dt + ap?de)® + % dr? + (2 + @) (dp? + p® dg?).  (18.3.25)

Finally we can use the constraint u? = 1 to remove the p. In this case we have

ot =r?  A=d’+ fr? (18.3.26)
and the metric simplifies to
ds? = —df? + (1 — f)(dt + adg)® + T gy (% + a?)d¢?. (18.3.27)
a?+r2f
We define the function
N2:f+j_z:_M+Z_z+j_j_ (18.3.28)
Then redefining the time variable as [123, 124]
t=t —a¢p (18.3.29)
we get (omitting the prime)
ds? = —N2dt? + N72dr? + r2(N?dt 4 d¢)? (18.3.30)
with the angular shift
Né(r) = 7% (18.3.31)

This is the solution given in [243] with J = —2a.

This has already been done by Kim [123, 124] in a different settings: he views the d = 3
solution as the slice § = 7/2 of the d = 4 solution. Obviously this is equivalent to our
approach: we have seen that p = sin@ in d = 4 (appendix B.2), and the constraint u? = 1
is solved by € = 7/2. Nonetheless our approach is more direct since the result just follows
from a suitable choice of coordinates and there are no need for advanced justification.

Starting from the charged BTZ black hole

2

Fr)=—M+ ;—2 —@2Inr?, A= ,g Inr2, (18.3.32)
it is not possible to find the charged rotating BTZ black hole from [257, sec. 4.2]: the solution
solves Einstein equations, but not the Maxwell ones. This has been already remarked using

another technique in [258, app. B]. It may be possible that a more general ansatz is necessary,
following chapter 15 but in 3d.
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Appendix A

Conventions

A.1 Generalities

We mostly follow the conventions of [165] (see also [170, app. C]).

Greek indices are curved, roman indices are flat (local Lorentz). Specific names for
curved indices are given, such as (¢,r, 0, ¢), and numbers are reserved for flat indices, such
as (0,1,2,3). In most of the text we use Planck units

8tG=h=c=k=1. (A.1.1)
The signature of spacetime metric
Tab = €, diag(—1,1,1,1) (A.1.2)
is taken to be mostly plus €, = 1. The Levi-Civita symbol ¢, ., (in flat indices) is
€0123 = € e = —e, (A.1.3)
and we will use e, = 1.
Given a Lagrangian £ the action reads
S = /ddx\/fgﬁ. (A.1.4)
Partial derivatives are abbreviated as
0
o, = —. Al5
H Ok ( )
The (anti)symmetrization is done with unit weight
1 1
A[ab] = 5 (Aab — Aba); A(ab) = 5 (Aab + Aba)- (A16)

We summarize the number of degrees of freedom in tables A.1 and A.2.

field spin off-shell on-shell

o) 0 1 1

A 1/2 gld/2] gld/2]-1
A, 1 d—1 d—2

Y. 3/2 | (d—1)2l/21 (g 3)2ld/2-1
o 2| Ydd-n o bdid-3)

Table A.1 — Degrees of freedom off-shell and on-shell for the fields with spin < 2 [165,

tab. 6.2].
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Table A.2 — Degrees of freedom off-shell and on-shell for the fields with spin < 2 for d = 4.

field spin | off-shell on-shell
0] 0 1 1
A 1/2 4 2
A, 1 3 2
Yy 3/2 12 2
Guv 2 6 2

fields la;, )\ai AL, )\ai, Ti CA qu ZA, gA a o®
here e’ i A u A a x
[165] i I « A u

[170, 171] A A i « u

[50] A a 1 i

range 1,2 0,...,ny 1,...,1y L....2np | 1,040y | Oyeeoynp | 1,0y | 1,2,3

Table A.3 — Indices of the N = 2 fields in various conventions. n, and nj are the numbers of vector and
hypermultiplets. The last column 2 corresponds to SU(2) index (¢” are the Pauli matrices).

signs €y € €0 €C
here +1 +1 +1 +1
[165] +1 +1 41

[170, 171] | —1

[50] +1 41

Table A.4 — Sign conventions. For other comparisons of conventions see [259, problem C.1,
p. 449-453, 165, app. A].

A.2 Differential geometry

Given a metric

ds? = G datda”, (A.2.1)
the Christoffel symbol and the Riemann tensor are
1 log
FHUP - 5 g* (&,gpg + 0pGvo — aggl,p), (A.2.2)
RE, . =01, , — 0, T", , +TH I, —TH I7, . (A.2.3)
The Ricci tensor and the curvature are
R, =R, R=g""R,,. (A.2.4)
A manifold is said to be Einstein if
R
R,uu = Ag;wv A= Ea (A25)
d being the spacetime dimension. In the case A = 0 it is said to be Ricci flat
R, =0. (A.2.6)

A Killing vector k,, generates an isometry of the corresponding manifold and it is defined
by the equation
Viuk, +V, k, =0. (A.2.7)
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A p-form A, with components A, ..., is defined by

A,=—A

PR daztt A - Adatr. (A.2.8)

The exterior derivative d is nilpotent and maps a p-form into a (p + 1)-form (example with
a 1-form)

F =dA = 9,4, dz" Ada”, (A.2.9a)
Fl = 20,4, (A.2.9b)

The interior derivative i, by a vector k maps a p-form into a (p — 1)-form (example with a
1-form)
irA=FkiA=Ek'A,. (A.2.10)

The Lie derivative L) acting on forms is defined as
Ly = ipd + dig (A.Q.ll)

and it commutes with the differential [260, sec. 4.21]

[Lr,d] = 0. (A.2.12)
The integration of a d-form A reads
1
/A =5 /AM,W daz#t A Adat = /Ao...D_lde Ao AdztTh (A.2.13)

Levi-Civita tensor is given in curved coordinates by

— e lpa | a4 H1pd M1 ... pHd ~G1° G4
Epyepa =€ € €L Earians € =eell--elde , (A.2.14)

where ¢j; is the vielbein. Contraction of two symbols is

- i Py — _plpl§ lpr ... 5Vppp]_ (A.2.15)

R 2R 2

Using this tensor one can define the Hodge operation

H(dzht A Adatr) = r_g), e g AT A A dat (A.2.16a)
)
1 @ -a
*(eM AN = @—p) e i ag €T N N e (A.2.16D)
)

and the dual of a p-form will produce a (d — p)-form. This operation squares to —1
*xF = —F. (A.2.17)

One has the formula
1
/*F@) ANF® = o /ddxs/—gF“l”'“PFM...#p. (A.2.18)

In particular the dual of a 2-form for d = 4 is denoted by [165, sec. 4.2.1]

Hob = f% gabed [ | = %MV (A.2.19)
Them one can define the self-dual and anti-self-dual of this tensor as
+ 1 5
Hyjy = 5 (Hap + Ha) (A.2.20)
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with the properties )
Hg, =+Hy,  Hy = (HJ)" (A.2.21)

Moreover the dual operation is an involution (thanks to the factor 7). In the curved frame

one has 1 1
*F#V = 5 vV —g Euupanaa *FHY = m E#UPUFPU. (A222)

Given two tensors F' and G one has the following identities

F'G L, = FuGuy, F* G = FuGl, (A.2.23a)
1
+ —rr — pypt o= pv o+ + - + v
FLG =0, g Fu[pGU]V =0, g FH(pGU)V == 90 F,G™. (A.2.23b)
A.3 Symplectic geometry
Let’s consider a space of dimension 2n. We use indices M, N =1,...,2n.

Define the 2-dimensional antisymmetric matrix

c—¢ <_01 (1)> (A.3.1)

where e = +1. Then the (flat) symplectic metric is defined by
0 1,
w:s@ln:e(ln 0), (A.3.2)

1,, denoting the n-dimensional identity. An alternative representation is the block-diagonal
form

e 0 0
W=1,Qec= 0o . 0of- (A.3.3)
0 0 ¢
The symplectic metric squares to —1
w?=-1 (A.3.4)
and the inverse is simply —w
wl=—w. (A.3.5)

Let’s consider a vector with contravariant components AM. We are using the NW-SE
convention [170, app. C, 165, p. 421, 471]

wMNwNP = 75MP, AM = 7€wMNAN, AI\/[ = ewIV[NAN. (A36)

This implies that WwMN = wun (in components) and wMN does not correspond to the
components of w~!. In particular with € = 1 this implies

AM = ANwN]\/[, A]M = WMNAN. (AS?)
and the symplectic inner product of two vectors A and B is
(A, B> = AMwMNBN = A]\/IBM. (ASS)

In the course of this thesis we will have several different symplectic spaces: 2, C, €. Each
will have a different sign eq, ec, etc. We choose eq = ¢ = 1. The sign is reversed with
respect to [46, 53, 85, 150, 170, 171], but the same as in [62, 149, 165, 169].
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A.4 Gamma matrices
Gamma matrices form a Clifford algebra
Vs v = 29, [Var ] = 27ab- (A4l)
The Hermitian conjugate of v* is
(v")F =%, (A.4.2)
Antisymmetric products are denoted by
Yar-an = Var *** Van]- (A.4.3)
Finally in four dimensions one defines

Y5 =E%M1Y2Y3 Eaped” = V5 Vabe- (A.4.4)

The left and right projectors are defined by

1 1
1B p 1T (A.4.5)

P
L 9 9

A.5 Spinors

Given a Majorana spinor €*, the chiral left and right Weyl spinors are denoted by [65,
sec. 2.1]
€a = Pr, €, e = Pre”. (A.5.1)

The Majorana and Dirac conjugates are

A= \C, X =iAA0 (A.5.2)
The charge conjugation is
¢ = B\, B =iCA°. (A.5.3)
The matrix C satisfy
C? =1, C'=-C, (Cy")t = Cy™. (A.5.4)

A.6 Supergravity

Given a Lagrangian £ the dual of the field strength F* is defined by

6= (25), e

The electric and magnetic charges ¢y and p® contained in a volume V with boundary 3

are defined by
A 1
p
© (QA) Vol(X) /z (A.6.2)

where F = (F*,G,) are the field strengths. The charges are defined as densities to avoid
infinite charges in the case of non-compact surfaces. For compact horizons one takes

Vol(X) = Vol(S?) = 4. (A.6.3)
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The central charge is defined by

Z=¢eql'(Q) =€q (V, Q) (A.6.4a)
= LAy — Map™ = 572 (X2 qu — Fap™). (A.6.4D)
Note that there is a factor 2 in [165, p. 480].!
Similarly one defines
LY = €O F('PI) = €Q <V,7)z> (A.6.5a)
= LAPY — My P (A.6.5b)

A.7 Topological horizons

Black hole horizons correspond to 2-dimensional (6, ¢) sections ¥ with spherical, planar or
hyperbolic topology [75, 76]. The sign of the curvature is denoted by x and correspond to

+1 spherical,
k=<0  planar, (A.7.1)
—1 hyperbolic.

In the case k = 0,—1 the horizon is non-compact and the full solution describes a black
membrane [75].

For a static spacetime the 2-dimensional section is maximally symmetric. The corre-
sponding spaces are the sphere S?, the euclidean plane R? and the hyperboloid H? respec-
tively for positive, vanishing and negative curvature (see table A.5). In these cases the
uniform metric on ¥ reads

d¥? = d6* + H'(0)* d¢? (A.7.2)
where
—cosf k=1, sinf k=1,
H(0) =40 k=0, H'(0) =141 k=0, (A.7.3)
coshf k=-1, sinhf k= —1.

The function H(#) may be defined by the differential equation

H' +KkH=0, H(O)=0, H0)=1. (A.7.4)
topology b K ISO(Y)
spherical S? +1 SO(3)
planar R? 0 R?
cylindrical RxSt 0 RxSO(2)
toroidal T2 0 SO(2)?
hyperbolic H? -1 SO(2,1)
Riemann surface (g > 1) PO -1 SO(2,1)/T

Table A.5 — Horizon topology for static spacetime. The last row corresponds to hyperbolic
Riemann surfaces; non-hyperbolic surfaces are the sphere S? for ¢ = 0 and the torus 72 for

g=1.

By definition black holes have a compact (orientable) horizon. These can be obtained
by taking the quotient of the isometry group ISO(X) by a discrete subgroup I'. In this case
taking the quotient is a global effect and does not affect the fields, and in particular one

IFor e = —1 one writes Z = (Q, V).
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can work with the above metric. An intermediate case corresponds to a cylindrical black
hole with horizon R x S! when the direction ¢ is made compact using the quotient R/Z.
Compact horizons are Riemann surfaces ¥; where g € N denotes the genus. The sphere
g = 0 is already compact so we do not need to take a quotient. The surface g = 1 corresponds
to the 2-torus T2 ~ S x S! obtained by the quotient (R/Z)?, while higher genus surfaces
g > 1 are obtained by taking the quotient of H? by a Fuchsian group I', which is a discrete
subgroup of PSL(2,R) (see table A.5). The sign of the curvature reads

Kk =sign(l — g). (A.7.5)

If the black hole is spinning then X is deformed as the isometry group is reduced. For
example in the case of spherical topology one obtains a spheroid and the isometry is only
SO(2) (corresponding to the Killing vector 0y).
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Appendix B

Coordinate systems

This appendix is partly based on [163, 261]. We present formula for any dimension before
summarizing them for 4 and 5 dimensions.

B.1 d-dimensional
Let’s consider d = N + 1 dimensional Minkowski space whose metric is denoted by

ds® =, dztda”, p=0,...,N. (B.1.1)

In all the following coordinates systems the time direction can separated from the spatial
(positive definite) metric as

ds? = —dt? 4+ dx?, dX? = vy dz?da?, a=1,...,N, (B.1.2)

where 20 = ¢.
We also define

n= {%J (B.1.3)
such that
d+e=2n+2, N +e=2n+1, g=1-¢ (B.1.4)
where
S L A Rievpadolont o1
and conversely for ¢’.
B.1.1 Cartesian system
The usual Cartesian metric is
d¥? = §,pd2?da’ = da®da® = da®. (B.1.6)

B.1.2 Spherical

Introducing a radial coordinate r, the flat space metric can be written as a (N — 1)-sphere
of radius r [252]
d¥? = dr? +r2dQ3%_,. (B.1.7)
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The term dQ2%_, corresponds the metric on the unit (N —1)-sphere SV =1, which is parame-
trized by (N — 1) angles 6; and is defined recursively as

dQ% _; = do%_; +sin?On_ dQX_,. (B.1.8)

This surface can be embedded in N-dimensional flat space with coordinates X* con-
strained by
XeX*=1. (B.1.9)

B.1.3 Spherical with direction cosines

In d-dimensions there are n orthogonal 2-planes,! thus we can pair 2n of the embedding
coordinates X® (B.1.9) as (X;,Y;) which are parametrized as

X; +iY; = pi e, a=1,...n. (B.1.10)
For d even there is an extra unpaired coordinate that is taken to be
XN =a. (B.1.11)

Each pair parametrizes a 2-sphere of radius p;. The pu; are called the direction cosines
and satisfy

Z,u? +ea?=1 (B.1.12)

since there is one superfluous coordinate from the embedding.
Finally the metric is

a0 | = Z (d/ﬁ + p? dqﬁ%) + &' da?. (B.1.13)

3

The interest of these coordinates is that all rotational directions are symmetric.

B.1.4 Spheroidal with direction cosines

From the previous system we can define the spheroidal (7, fi;, ¢;) system — adapted when
some of the 2-spheres are deformed to ellipses — by introducing parameters a; such that (for
d odd)

rPui = (P a)ig, Y =1 (B.1.14)
This last condition implies that

= (P al)i; =7+ dlf;. (B.1.15)

K2

In these coordinates the metric reads

A% = F d? + Y (7 + a?) (dﬁ? + 2 qu?) + ¢ r2da? (B.1.16)

and we defined

2-2 =29
ag i s
F=1- o = L. B.1.17
Z 72+ af Z 72+ af ( )
Here the a; are just introduced as parameters in the transformation, but in the main
text they are interpreted as "true' rotation parameters, i.e. angular momenta (per unit of
mass) of a black hole. They all appear on the same footing.

Another quantity of interest is

= []¢*+a)). (B.1.18)

INote that this is linked to the fact that the little group of massive representation in D dimension is
SO(N), which possess n Casimir invariants [163].
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B.1.5 Mixed spherical-spheroidal

We consider the deformation of the spherical metric where one of the 2-sphere is replaced
by an ellipse [242, sec. 3].
To shorten the notation let’s define

0=0n_1, ¢ =0n_s. (B.1.19)
Doing the change of coordinates
sin? fsin® ¢ = cos” . (B.1.20)
the metric becomes
dy? = r2ﬁ—)|—2a2 dr? + p2d6* + (r* + a?) sin® 0 d¢? + r? cos® 02 dQ3_, (B.1.21)
where as usual
p? = 1%+ a®cos® 6. (B.1.22)

Except for the last term one recognize 4-dimensional oblate spheroidal coordinates (B.2.9).

B.2 4-dimensional

In this section one considers
d=4, N=3, n=1. (B.2.1)

B.2.1 Cartesian system

d¥? = da? + dy? + d2? (B.2.2)

B.2.2 Spherical
d¥? = dr? +r2dQ?, (B.2.3a)
dQ? = d6? +sin? 0 d¢?, (B.2.3b)

where dQ? = dQ3.

B.2.3 Spherical with direction cosines

dQ? = dp? + p? d¢? + do?, (B.2.4a)
p?+a? =1, (B.2.4b)

where .
z iy =rp e, z=ra, (B.2.5)

Using the constraint one can rewrite

1
dQ? = —— dp® + p? d¢* B.2.
[ ¢ (B.2.6)
Finally the change of coordinates

a = cosf, 1 =sin6. (B.2.7)

solves the constraint and gives back the spherical coordinates.
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B.2.4 Spheroidal with direction cosines

The oblate spheroidal coordinates from the Cartesian ones are [234, p. 15]

T+ iy = /12 +a? sinf e, z =rcosf, (B.2.8)
and the metric is
2
ax? = 21 S dr? 4 p%d0% + (r® + a®)sin? 0 dg?,  p* =12 +acos?0.  (B.2.9)
r?+a

In terms of direction cosines one has

2 TQMQ 2 2 2 2 2 1,2 212
d¥*=1(1- 7 2 dr® + (r +a)(d,u +pu dqﬁ)—i—r do”. (B.2.10)
T a

B.3 5-dimensional

In this section one consider
d=4, N=3, n=1. (B.3.1)

B.3.1 Spherical with direction cosines
dQ3 = dp? + p? d¢? + dv? + v dy?, =1 (B.3.2)

where for simplicity
= p, p= p2, ¢ = ¢, Y = 2. (B.3.3)
B.3.2 Hopf coordinates
The constraint (B.3.2) can be solved by
p=sind, v =cosf (B.3.4)
and this gives the metric in Hopf coordinates

dQ3 = d6? + sin? 0 d¢? + cos® 0 dy?. (B.3.5)
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Appendix C

DJN algorithm: summary

C.1 Complexification

1
r—>§(r+F):Rer,
1 . 1/1 n 1\ Rer
r 2\r 7/ |r|2’
2 —s |r|?.
C.2 Transformations

Coordinates:

r=r"+iF(0), u=1u"+1G(0),

dr=dr’ + F/(0)H(0)d¢,  du=du + G'(0)H(0) do.

Mass and horizon curvature:

/ . 4A 2
m=m —+1Kn, m—>m—?n,
Functions:
e A#0
F(0) =n, G(0) = —2knln H(0).
e« A=0
FO)=n—aH' )+ ke (1 + H'(0) In II_}II((Z//?)> ,
G0)=raH'(0) —kcH'(0) In II-}I’((Z//?) —2nln H(0).

C.3 Metric and gauge field

Static:
ds® = = fi(r) dt* + f,(r) dr? + fa(r) dO?,

dQQ _ d92 + H(9)2 d¢2, H(H) _ S%ne K )
sinhf k= -1,

A= fadt.
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(C.1.1b)

(C.1.1¢)

(C.2.1a)
(C.2.1b)

(C2.2)

(C.2.3)

(C.2.4a)

(C.2.4b)

(C.3.1a)
(C.3.1b)

(C.3.1¢)



Non-static (null coordinates):

ds? = — fy(du + adr + wH d¢)* + 28 drde + fo(d6? + o H?d¢?),
A= fa(du+ G'Hdo),

w=G"+ fTF’, 52:1+QF’2, a= f—f, B =f.F'H.
ft fa fe
Non-static (Boyer—Lindquist):
ds? = — fy(dt + wH d¢>)2 + % dr? + fo(d6* + o> H?d¢?),
A= f4 <dt ﬁdwaﬂd(ﬁ) ,
tJr
w=G"+ fTF', 02:1+&F’2, A:fTQUQ.
ft fQ fr
Boyer—Lindquist functions:
B (ftf})fl fo—F'G' ) — F’

When F’ = 0 the metric takes a simple form

ds? = —f(dt + G'H d¢)* + fr dr® + fo Q2.
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(C.3.2¢)
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Appendix D

Group theory

D.1 Group classification

For some elements see [165, app. B].

D.1.1 Symplectic groups

Given a vector space of dimension 2n over a field K endowed with a skew-symmetric product
defined by the 2-form 2, the set of transformations that preserve this product define the
symplectic group Sp(2n,K) C SL(2n,K)

S € Sp(2n,K) = S'QS = Q. (D.1.1)

The three symplectic groups of interest to us are: Sp(2n,R), Sp(2n,C) and Sp(n) =
USp(2n). The first two are non-compact while the latter is compact: USp(2n) is the compact
form of Sp(2n, R), both being real Lie groups. On the other hand Sp(2n, C) is complex. They
all have n generators and are of dimension (real or complex) n(2n + 1).

The Lie algebra sp(2n, C) corresponds to the semi-simple complex algebra C,, while the
others are real forms: usp(n) is the compact form and sp(2n,R) is the normal (or split)
form.

The compact group is isomorphic to

U(n,H) = USp(2n) ~ U(2n) N Sp(2n, C). (D.1.2)

Note also the isomorphism

5p(1) ~ su(2) ~ s0(3), 5p(2) ~ so(b) (D.1.3)
Group | Matrices Group type compact 7
Sp(2n,R) R real no A
Sp(2n,C) C complex no 1
Sp(n) = USp(2n) H real yes 1

Table D.1 — Symplectic groups.
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D.1.2 Groups on quaternions

Several matrix groups on the quaternions can be defined

0*(2n) = O(n, (D.1.4a)

U*(2n) = SL(n, ) (D.1.4Db)

USp( n) = U(n, H), (D.1.4¢c)
USp*(2n4,2n_) = U(2n4,2n_) N Sp(2ny,2n_,C). (D.1.4d)

D.2 Homogeneous space

A homogeneous space M of dimension n is a coset manifold
G . .
M:E’ n=dimG — dim H. (D.2.1)

It admits n(n+1)/2 Killing vectors which is the maximum number in dimension n. In such
a space all points are equivalent, i.e. it is always possible to find an isometry transformation
that takes a point p to a point p’. Its isometry group is G

ISO(G/H) = G (D.2.2)

only if the normalizer of H in G is the trivial group [170, p. 8].
A symmetric space is a homogeneous space for which the algebra of G can be decomposed
as [208]
g=h+t (D.2.3)

with
[h,b] C b, [h, ¢ C ¢ (&€ Ch. (D.2.4)
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Appendix E

Formulas

E.1 Quartic invariant identities

The formulas given in this appendix are a consequence of the Jordan algebra’s structure of
very special geometry and the fact that the duality groups are of E7-type [147]. While they
can be proved using techniques from [147, sec. 4] (see also [213, sec. 3, 207, sec. 2.2, 148,
211]), they have been determined by matching both sides on Mathematica. Some of them
appeared already in [84, 85, 150].

The quartic invariant possesses many identities, some of them being given in [207,
sec. 2.2].

Given two vectors A and B, any vectors built from them and from Ij(-,-,-) can be
expanded on the following basis

{A,B,L’l(A),L’l(A,A,B),IZL(A,B,B),IZL(B),IZL(A,A,IQ(B)),IQ(B,B,IQ(A))}, (E.1.1)

where there are 1, 3 or 5 vectors.

Below is the full list of identities involving respectively 5,7 and 9 vectors. They were
computed using Mathematica by matching coefficients of both sides by using the explicit
expressions of I;. This has been checked for several cubic models and for the quadratic
N, = 1.

We recall two equations involving the section

1
I4(ReV) = L4(Im V) = 6’ (E.1.2a)
I;(ImV)

ReV =2eq I}(ImV) = e —r_, E.1.2b
Q 4( ) Q 2\/m ( )
I(A,ImV,ImV) = -4 (ImV, A)ImV — 8 (Re V, A) Re V — QM A. (E.1.2¢)

None of these identities changes when V is multiplied by a phase.

E.1.1 Symplectic product

(I1(A, A, B), I(A)) = —814(A) (A, B) (E.1.3a)
(IL(A, B, B), I,(A)) = _g I4(A, A, A, B) (A, B) (E.1.3b)
(I4(A, B, B), I}(A, A, B) = 12 (I}(A), I}(B)) —4Li(A, A, B,B) (A, B)  (E.13¢)
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E.1.2 Order 5

I(IL(A), A, A) = —8 ALi(A)
TL(T}(4), A, B) = 21,(4) (A, B) —  AL(A, A, A, B)
I(IL(A, A, B), A, A) = _g ALi(A, A, A, B) — 8T}(A) (A, B) — 16 BI4(A)

IU(IL(A, A, B), A, B) = f% 2 BI,(A, A, A, B) — 2 AIj(A, A, B, B) + 2 I)(A, A, B) (A, B)
~21}(I})(4), B, B)
I{(I)(A, B, B), A, A) = —3 BL(A, A, A, B) ~ 4I}(A, A, B) (4, B) + 2I,(I}(4), B, B)

E.1.3 Order 7

I (A), I)(A), AV, (A)

(13(A

I (I4(A), 14 (A),
W/

)

), A

), B .
IL(I(A), I,(A A B), A
( ), A
B

(

A)IH(A A, B) = S L(A)L(A A, A, B) = 16 AL(4) (A, B)
(
(

I 1(A)

1 14(A)

2 I (A)I,(A, A, A, B) + 16 AI(A) (A, B)
I3(A)

)
)
)
IL(I)(A), I,(A, B, B), A) A)L(A, A, B, B) +§AI4(A,A,A,B) (A, B)

16 BI,(A) (A, B) — g ALL(A, A, A, B) (A, B)
I/(IL(A, A, B), IL(A, A, B), A) = —16 I,(A)[,(A, B, B) + 8 I,(A)I4(A, A, B, B) + g (A, A, A, B)IL(A, A, B)
64 BI,(A) (A, B) + 1—36 AL(A, A, A, B) (A, B)

TL(I(A), Ty (B), A) = 5 L(A)Ii(A, B, B, B) + 2 A(I}(4), I,(B))

2 1
IZIL(IZIL(A)aLll(AaBaB)aB) = _§ Ié/l(A)I4(AaBanB) + 5 I4(A,A,A,B)I!1(A,B,B)

- % BIi(A, A, A, B) (A, B) — 8 A(I}(A), I,(B)) + 16 I;(A)I,(B)

IL(T{(A, A, B), Ii(A, A, B), B) =~ I{(A)L(A, B, B, B) + = [i(A, A, A, B)I}(A, B, B)

3
1
16 ALi(A, A, B, B) (A, B) — 36 BLI(A, A, A, B) (A, B)

+ 32 A(IL(A), I(B)) + 32 I,(A)I,(B)
I,(I}(A, A, B), I)(A, B, B), A) = ?14(/1)14(/1 B,B,B) +214(A, A, B, B)I)(A,A,B)

- 514(A A, A, B)I)(A, B,B) + ?BQ(A A, A,B)(A,B)

+8AIL(A, A, B, B) (A, BY — 8 A(I(A), I}(B)) — 32 Iy(A)[}(B)
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E.1.4 Order 9

I4(I4(A)) = ~16 1,(4)°A

I(I4(A), IL(A), I)(A, A, B)) = —64 BIy(A)? — 6—34 Ii(A, A A B)AI4(A)

16

I (I (A), I} (A), I}(A, B, B)) = -3 BI4(A)I4(A, A, A, B) + - (A, B) I;(A)I4(A, A, A, B)

5
— 16 I,(A)I4(A, A, B, B)A — 16 (A, B) L(A)I,(A, A, B)
+8 L (A)I}(B, B, I1(A))

I)(I}(A), IL(A, A, B), I}(A, A, B)) = —% AI(A, A, A, B)? — 32 BI,(A)I,(A, A, A, B)

- ? (A, B) IL(A)Li(A, A, A, B) — 32 L,(A) 11 (A, A, B, B)A
+32 (A, B) I,(A)I,(A, A, B) — 16 I{(A)I,(B, B, I)(A))
I(I4(A), I (B, B, I)(A)), A) = 32 AI,(A) (A, B + % I4(A, A, A, B)I,(A) (A, B)

2
-5 Ii(A, A A, B> A+ 8 AIL(A)I4(A, A, B, B)

I(I4(A), I4(A), I(B)) = fg 1,(A)ALL(A, B, B, B) + 4 (I3(A), I1(B)) I3(A)

IL(I)(A), I,(A, A, B), I)(A, B, B)) = _é 8 BI,(A, A, A, B)® — 214(/1, A, B, B)AL(A, A, A, B)
- % <Aa B> Izll(Aa Av B)I4(A7 Aa Av B)
64

+ %IQ(B,B,IQ(A))L;(A,A,A,B) — = I4(A)I4(A, B,B,B)A

— 32 ,(A)I4(A, A, B, B)B — 24 (I}(A ), I4(B)) I,(A)
+8 (A, B) (A, A, B, B)I,(A) — 16 I,(A)I,(A, A, I,(B))
—16 (A, B) I4(A)L'1(A,B,B)

I,(I,(A), I(B, B, I)(A)),B) = =32 I,(A)B (A, B)* + 3314(/1, A, A, B)? —81,(A)I4(A, A, B,B)B
+ 5 AL(AVL(A, B, B, B) 12 (j(4), Ti(B)) T4(4)

8 L(AVG(A A T (B) + 5 14(A, A, A, B)I{(B, B, Ij(4))
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I (I4(A, A, B), I)(B, B, I(A)), A) = 128 BI,(A) (A, B)* + 16 AIL(A, A, A, B) (A, B)®

3
4
+3 I,(A, A, A, B)I,(A, A, B) (A, B) — g I(A A A B)?’B

1+ 32 BI(A)L1(A, A, B, B) + ? AL(A)I4(A, B, B, B)

+48 (13(A), I}(B)) I1(A) + 16 Io(A)I1(A, A, I3(B))

_ %14(/1,A,A,B)IQ(B,B,[Q(A))
I(I4(A), I1(A, A I(B)), A) = 214(/1)14(14737373)14 — 12 (I}(A), I4(B)) I1(A)
L(IL(A), IL(B), IL(A, A, B)) = —64 Li(A) AL (B) — 314(A,A,A B)I.(A, B, B, B)A

- ?14(/1)14(/1 B.B.B)B+ 3 2 (A, B) I.(A, B, B, B)I,(4)

— 16 (A, B) Ly(A)I}(B) + 2 (I4(A), I3(B)) I;(A, A, B)

+ 2 LA, A A B)I(A A T(B))

1
IL(I4(A), I(A, B, B), I(A, B, B)) = —128 I,(A)AL(B) — 36 I4(A,A, A, B)I,(A, B, B,B)A

- 214(A7A5A73)I4(A5A7B73)B - % 14(A)I4(A5B5B7B)B

+ ? (A,B) I,(A,B,B,B)I;(A) — 16 (I} (A), I}(B)) I}(A, A, B)

- §I4<A, A, A, B)Ij(A, A, T4(B))

3 (A.B)Li(A. A, A, B)I{(A. B, B)
+41,4(A, A, B, B)IL(B, B, I,(A))
I,(IL(A, A, B), I}(A, A, B), I;(A, B, B)) = =16 AI(A, A, B, B)?> — 16 I,(A, A, A, B)BI,(A, A, B, B)
—814(B, B, I4(A))I4(A, A, B, B)
64

— 5 La(A A A B)L(A, B, B, B)A + 256 AL (A)Li(B)

— % (A, B) I,(A,B,B,B)I;(A) + 128 (A, B) I,(A)I}(B)

16 (14(A), 4(B)) T4(A, A, B) + < (4, B) [i(4, A, A, B)I{(A, B, B)
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I4(IL(A, A, B), I,(B, B, I,(A)), B) = _% 16 I4(A, A, A, B)B (A, B)? — 1_36 1.(A, B, B, B)I,(A) (A, B)
4641, (A)IL(B) (A, B) — 1—36 1(A)Li(A, B, B, B)B
128 ALi(A)I4(B) + g ALL(A, A, A, B)I,(A, B, B, B)
— 4 (I3(A), 14(B)) I1(A, A, B) — %Ll(A,A,A,B)IQ(A,A,IQ(B))
+2 [4(14, A, B, B)LIL(B, B, LI;(A))

TL(T(A, B, B), 13(B, B,I4(A)), A) = 22 BI(A, A, A, B) (4, B)* +16 A {I,(A), I3(B) (A, B)
+ 13_6 I4(A, B, B, B)I'(A) (A, B) — 64 I(A)T,(B) (A, B)
+ LA A A B)I(A, B, B) (4, )
4 64

— 5 1a(A A, A B)Li(A, B. B, B)A+ — BL(A)I1(A, B, B, B)

4
+ 16 <IAI1(A)7 L/L(B)> L/L(Aa Aa B) + g 14(‘4’ A’ Aa B)IAIL(A’ Aa IAIL(B))
—214(A, A, B, B)I}(B, B, I;(A))

I4(I3(A), I} (A, A, I} (B)), B) = 16 A(A, B) (I}(A), I(B)) — 4 I3(A, A, B) (I3(A), I}(B))
- g L(A)I4(A, B, B, B)B + 64 AI,(A)I,(B)

+ % (A,B)I,(A,B,B,B)I;(A) — 32 (A, B) I,(A)I;(B)

- §I4<A, A, A, B)Ij(A, A, T4(B))

Iz,l(lzll(Aa A’ B)’ IZIL(A’ Aa Li(B)), A) = —16 <A’ B> A <L’1(A), Iz/L(B» —4 IZ/L(A’ Aa B) (IZIL(A)’ Iz/L(B»
+ % BIy(A)I4(A, B, B, B) + % AIL(A, A, A, B)IL(A, B, B, B)
- 13_6 (A, B) (A, B, B, B)I}(A) + 64 (A, B) I,(A)I)(B)

2

E.2 Quaternionic gaugings: constraints

For completeness the full set of constraints for the (symplectic) gaugings parameters is listed
below [149, sec. 6.1, app. C].
The set of parameters
0% = {U,a,a", e, €0, 6} (E.2.1)

reads explicitly

aAA) 7 (E.2.2)



where U» and U, are matrices whose parameters depend on the model.
The number of parameters is (approx.)

#(params) = n, (¢ + 4ny, + 3), (B.2.3)

x being the number of independent isometries of the base (this can be of order n?, ny or 1).

E.2.1 Constraints from abelian algebra

The constraints from the closure of the abelian algebra are

o electric/electric

0= T(aa,&x) — T(ag, da), (E.2.4a)
0= —(Upas — Usap) + (eoras — eonan) + (e140x — €45an), (E.2.4Db)
0= (UAaE —Usan) + (G,Aaz — G_ZCYA) + (eoAaz — €onQip), (E.2.4C)
0= OZR(COQ) + 2(6+260A — €+A602), (E24d)
0= (@4Casx — a4 Cax) + 2(e1ne_p — e4ae_x), (E.2.4e)
0 = &R(C&g + 2(601\6,2 — 6026_1\). (E24f)
o electric/magnetic

0 = T(ap,&”) — T(a™, ay), (E.2.4g)
0= *(UAOAX — UEOA/\) + (EOAOzE — €§OZA) + (€+Aa2 — EEaA), (E.2.4h)
0= (IUA&E — Uza/\) + (6_1\042 — 6?0&/\) + (60/\&2 — ega,\), (E.2.4i)
0= alCa” + 2(eFeon — €467, (E.2.4j)
0= (@4Ca® — oy Ca”) + 2(eYe_p — e4a€>), (E.2.4k)
0 = a4\ Ca” + 2(ega€e™ — ee_p). (E.2.41)

« magnetic/magnetic
0=T(c™, &%) — T(a®,a"), (E.2.4m

0= —(U"” - U¥a?) + (efa® — o) + (eha” — eFat), (E.2.4n
0= (UAa" —UTa") + (fa® — &ab) 4 (ha® — 5ah), (E.2.40
0=a'*Ca” +2(Fel — lel), (E.2.4p
0= (@'"*Ca® — o' *Ca¥) + 2(F et — el e®), (E.2.4q

0=alrCa” + 2(eh e — eyet). (E.2.4r
We recall the expression of the matrix
To,a = (Oztag)(dtag)g. (E.2.5)

The number of (electric) constraints is (approx.)

ny(ny, — 1)

#(constraints) = 5

(x4 2np + 3), (E.2.6)

where the front factor comes from the antisymmetric equations on (A,X), and z is the
number of independent entries in the matrix S (this can be of order n?, nj, or 1).
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E.2.2 Locality constraints
The constraints from locality are

A A

0={(a,a') =a’a} — apa™, (E.2.7a)
0= (a,a") = a™al — apa'™, (E.2.7b)
0=(a,a") =a"al —aa™, (E.2.7¢)
0= (a,eq) = aleip — apel, (E.2.7d)
= {a, €0) = aegp — A€y, 2.7e
0 A A E.2.7
0= (a,e_) =a’e_p — ape®, (E.2.7f)
0=(a,eq) = ateip — apel, (E.2.7g)
= (@, €) = Q™ egp — QA€ 2.
0=(a a’ aped E.2.7h
= (Q,€6_) = €_p —Qp€E_, 2.7
0=(a at ane® E.2.7
0= (e4,e_) = eﬁe_/\ —eqpet, (E.2.7j)
0= {et,€0) = eﬁ}eoA - €+A66\, (E.2.7k)
0= {ep,e_) = 686_1\ - eerf, (E.2.71)
0= (U ey) = alesp — anel, (E.2.7m)
0= (U, ¢) = aPegp — oeré\, (E.2.7n)
0= (U,e_ ) =ale_p —ape, (E.2.70)
0= (U,a) = a’ e — aAeé\, (E.2.7p)
0=(U,a)= ate_n —aped (E.2.7q)

where

(a,a') = (<“A’O‘B> <O‘A’O‘B>>, (o eq) = <<°‘A’f*>> (E.2.8)

(aa,a®) (aa,ap) (oa,€4)

and similarly for the others. The notation (U, X) is a shortcut for the product of X with all
parameters of U (by linearity). For example with a cubic prepotential one of the constraint
is

(8,X)=0, pB= (gi) : (E.2.9)

The numbers of locality constraints is (approx.)

#(locality constraints) = 3(ns + 1) + zny(2ns + 3). (E.2.10)
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Appendix F

Computations

In this section we are collecting long and cumbersome computations.

F.1 Quaternionic isometries: Killing algebra

F.1.1 Computations: duality and extra commutators

The non-vanishing commutators of the algebra are

ko ks] = 2k, [koskal = ko [kaskl] = Chy,  [ku, ko] = Uka.

The evaluation of the last commutator proceeds as
[ku, k4] = 5 (U)P (0564), — ([04(U€)7] 05 + [0%(U€) 2] 0"

(,UABé-B + tABgB)aa . tBAaB . uBAaB

1 1 -~
=vlp (aB + B fBaa> — 4B (53 —3 §B(9a) .

N~ DN

In components we have

[kAv h’B} = 75ABk+a I:koa kA} = kAa [k()v kA] = kAa
[ky, k] = (UCh)4, [ky, ka] = (UCh) 4.

F.1.2 Computations: hidden and mixed commutators
We now compute the commutators between hidden and duality symmetries
ko, k-] = =2k, [ko, ka] = —ka, (k- ka] = —ka,
[kt k_] = —ko, [kt ka] = ka, [ku, ka] = Uka,

[kd, ktA] =Ck_, [atkd, atka} = % aCa kg + k/]l‘ayd

where
1
Ta,a = (a'CO)(a'CO) S = — 1 Hla
H}, ; = CO(Cochyy 4)" = (a'COe)(a'Ce)H,
hy o = (' COg) (&' Cog)h.

C(aa’ + aa') + C,

1
2
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We have
(k4 k_] = a0® — (CO0*W)'0¢ — (07S Z)'07 + c.c. — %g“ Dy + a&t0,
+ %gAgtag - %(a&A — 9AW)da.
Another commutator:
[ko,k_] =4e79 0, — 2a(—0p + 200, + £'0¢) + (€'0¢ — Dy)W O,
— (a€ — C(£'0¢ — 0y)0W) 0 + ((€'0¢)SZ) " Bz + c.c.
+2(a% — e — W), + (a& — COW) 0

= 4(e™* — a®)0, + 200y — 2a 10 + AW 9, — (a& — 3COW) 0,
+2(S2)!0z + c.c. +2(a® — e — W), + (a& — CO:W) 0

(F.1.5)

=2 [ —ady + (a® — €™ — W), + (a& — COW)'0e — (SZ)'0z + c.c.}

=2k,

where we used the "homogeneity" of W (9.1.27).
Introducing a set of parameters «, @, then we have

o ko, @ ka) =

1
(—0g + ady) (at(Cég)&t& ) (at(Cag)(ézt(&%W) Oa

N | =

+ % (Oét(cag)(&tfgtag) — (Oét(cag) [&t(Cég((C&gW)tag}

— (a'CO) [a1(COS 2)'0,] + W D + % (a€) (41CO)
- g (G'CO;) al€ 0, — % [at @é - cag(cagvv)t) ag} (a'€) Ba.

The two terms cancel because
atetla = (a'€)(Ea) = (aE)(E ).

We have
(a'Cog)a’¢ = o'Ca’

as can be seen by writing the indices explicitly
Oéi(cijaj éékék = ai(Cijéjk&k = ozz-(Cij&j.

MOYGOVer we can rewrite
Q'Eg' 9 = (a'€)(€ ).
and then
(a'COe)(&E€ D) = (' Ca) (€' De) + (a'CIe ) (a%€).

The expression simplifies to

[aka,dks] = — %oﬂca (8 — 200, — £'0;) — %W%
+ 5 (a'COE(8'€) + 5 (0'€)(a'Ca)

— (a'CO) [4'CI(CHW)'8e] — (o' T ) [ (COES Z)185]
+ 5 (8" CONEDTT ) 0.

(F.1.6)

(F.1.7)

(F.1.8)

(F.1.9)

(F.1.10)



The cancellation occurs since
(dT@g)(C@gW)ta = (&t(C@g)(at(C@gW)t = (dtCag)(atC85W) (F.1.11)
the last parenthesis being just a number.

The penultimate in the first expression gives a factor 2 in 2ad, since

a

5 (6'Ca) 0, = g (atC&) 8, (F.1.12)

by antisymmetry of C.
Then we can write

(a'Ce)(67¢) + (a'€)(6'Co) = (§'a)(a"C) + (§'a)(a"COe)
= ¢"(aa' + ad")C o
— —[C(aa’ + aa')¢]" b

We need to simplify the terms with W and S. Starting with W: this function contains
quartic and quadratic terms in &, so (a'Cd) (4'CO¢)(CO:W)*! is linear in &, which implies
that it is homogeneous of first order. This linear term is given by the third derivative of h,
such that

1
(Ozt(cag) [dT&g(C&gW) = 1 (Caghgﬂ (F.1.13)

and we have defined
hgﬂ = (at(C@g)(dtCag)h. (F.1.14)

As we said its derivative is homogeneous, thus
COchly s = ' 0¢(COchly )" = —'CHY, 4. (F.1.15)
The new symbol we have defined is
H], ; = CO:(Cochy, ;)" = (o'CH)(a"CIe ) H. (F.1.16)

Note that the matrix H g & is constant and symmetric.
Using all this we can simplify the W term as

(at(caf) [dtcaf((Cé?gW)tc’)g] = i (H&@(Cf)taf. (F.1.17)

After all this the computation for S is straightforward:
t At L4 At ¢, 1
(a"CO)(&"CO)S = 5 (a"CO)(a'CO) | €6 + 5 H | C
[ sty Loy
=-3 C(aa’ + ad’) + 1 H, sC.

The new expression is

A 1 L N
[aky,aks] =— 3 ko + 3 [C(aa’ + ozoet)f]t O
1 1 1
— 7 (1 4CE)'0c + 5 [C(aa’ + ad')z)" 97 — 1 (H4C2)'0z.
We recognize the vector k_y, , with parameters
1 At At 1 "
Up,a = ~3 C(aa' + adt) + 1 Hy ,C. (F.1.18)
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F.2 Gauged supergravity

F.2.1 Computations : constraints from algebra closure

We compute first the various pieces:

lky, k] = [k;UA,atECka + &4 Cha| = al,CU ko + G4CU ke,
[0y Cha, ks = [af\(Cka, kg, + 0sCho + @5 Cha + conko + e,zk,}
= —a\CUs ko + o\ Caxg ky — % o\ Cais ko — ky(ay,ax)
— eonah Cky + e_xa,C Ea,
{aACEa, kz] - {atACEa, kug, + ahCha + G5 Cha + e4sky + eogko}
= —a4CUs ko + % a4 Cas ko + kr(ay as) + 04 Cas k-
— €450 Ckq + €054, Cky,
lesnkas, ks] = {e+gk+, aL.Chy + oxko + e_zkz_}
= €4205Cka — 26 p€0x kit — exne_s ko,
[eonko, kx] = €oaakCka — €on@hCha + 2em€0n ks — 2eone_s k_,

[e_Ak,, kg] = [e,gk,,CatEka + eoxko + €+El€+]

= —G,AatE(CEa + 2¢on€_p k— + e1xn€e_4 ko.
Adding everything we get

[kA, kg] = k'ﬂ*(amdz) + (OztE(CUA + €+AatE(C + EOAO[tE(C) ko
+ (atZ(C[UA + 6_2(15\@ + eog&ﬁ\@) /];a

1 (F.2.1)
+ (afCas + 2e1xe0n) kg + (5 ahCasx + €+E€—A) ko
+ (&R(C&g + 2601\6_2) k- —(A+X).
We will take the transpose and use that
U'C + CU = 0. (F.2.2)
F.3 Static BPS solutions
F.3.1 Ansatz
We take the following ansatz for the metric and the gauge fields
ds? = 2Vdt? — e 2Vdr? — 2V dx?, (F.3.1a)
AN = g dt — kp™F'(0)do. (F.3.1b)

The functions U, V,q and p depend only on r. The space ¥, is a Riemann surface.!

IThe convention are slightly different from the one in the appendix A.7. One needs to make the replace-
ment (H,H') - (—xH’, H).
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Ansatz: Vierbein and spin connections

Recall the metric
ds? = e?Vdt? — e 2Vdr? — VU (d0? + F2dg?).

We introduce the following vierbein

e =e’dt, el=elVdr, e=e"Vd), e =Fe' Vdo.

We compute the differential

de® = U'dr A€,

de! =0,

de? = (V! —=U")eV"Ydr A do,

de3 =F (V' =U)e" Ydr ndg+ F'eV=Vdo A de.

(F.3.2)

(F.3.3)

Using (A.7.4) and the vierbein expressions (F.3.3), we can replace all the differentials by the

vierbein
de® =U"eVet A€,
det =0,
de? = (V! —U")eVe! A e?,

F/
de® = (V' —U")eYe! ned + vl eU=Ve2 ned.

Using Cartan formula
de® +wi Aeb =0

we obtain the following spin connections

Wl =U"eVe, wh = (V' =U")eYe?,
F/
w31 —_ (V/ . U/) eU637 w32 —_ F eU*VSS.

The explicit components
w =w, dat

are

77 U _ _ / N U _
woor = U'e”, wyrg = wgyg = (V' —U")e", Wiz = 4 €

Field strength

Recall the gauge fields
AN = G dt — kp F’ do.

In terms of the vierbein (F.3.3) we have
F/
AN = Gh QU g — U=Vph 3,
Now we compute the field strength as

FA=dAM = @2 dr Adt + (p* — 206™)F dO A d¢ — kp™ F' dr A dg

~/A 0 1
= — e"Ne —K e e
q FP
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(F.3.4c)

(F.3.4d)

(F.3.5)

(F.3.6)

(F.3.7)

(F.3.8)

(F.3.9)

(F.3.10)

(F.3.11a)

(F.3.11b)



The Hodge dual field strength is

F/
*FA=ghe? ned +k Fp’A U=V O pe? 4 ph e2U=V)e0 A el (F.3.12a)
/

F
=@r VU Ed A dp + K yal pr eV dt A dl — pt 2UVdr A dt. (F.3.12b)

Finally the anti-self dual form is

1 - F’ -
FA= §(FA —ixFY) = FMNeP el +ie? ned) + ¥ GMe' Ae*+ie® ne?)  (F.3.13)
where .
FA = 7% g — %pA 2U-V), GM = —e2UVpA, (F.3.14)

The symplectic dual G of F* is defined by

b)
G = 5F—EA = Rax F¥ — Iys +F>. (F.3.15)

It reads explictly (with a matrix/vector notation)
G=R (§drANdt+pFdi Adp — kp'F' dr A do)

o F.3.16
-7 (q’ V-UEFdIAdY + K - p eV dt ndl — pe2U=Vdr A dt) , ( )

or after simplification

G = (R7 +Ipe*V="YNdt + (Rp — ¢ &V ~")Fdo Adg

F.3.17
—KF' (Rdr Adg+Ze*V dt Adf)yp'. ( )
The "conserved" electric and magnetic charges are defined by [62]
pA:L/ o oa=2 [ a (F.3.18)
4 S2 ’ 47 S2 ’ -
The pair
A
Q= < ) (F.3.19)
aa
forms the correct symplectic vector of charges.?
We obtain the explicit expressions
aa = Rasp™ — 2V, o™ (F.3.20)
We can solve for @ in terms of p* and ga
7 = AUVITHAZ(Roa p® — g5). (F.3.21)

If p"» = 0 we can obtain the field strength and its Hodge dual in terms of the symplectic
charges (we use a matrix/vector notation)

F=eU-VNTRp-TYg)dr Adt +pFdf A do,
*F = —pe2U=Vdr Adt + T-H(Rp — q) FdO A do.

2Note that [62] forgets to add & in the formula: the presence of x here can be traced to the fact that it
is absent in (F.3.1b), and ultimately the reason is that the gauge field should be defined with the integral of
F', and not its derivative; see [76] for comparison.
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From here we compute the symplectic dual of FA

G=R (e2<U—V>I—1(Rp ) dr Adt+pFdo A d¢)

(F.3.23)
7 (fp U=V dr A dt + T-HRp — q) Fd A d¢>)
and after replacing the charges
G=U"V((Z+RI'R)p—RI q)dt+qF do A do. (F.3.24)

We can gather both vectors into a symplectic vector using the expression of M [165,
p. 515]
Ga

Note that it does not seem possible to write such an expression if p’ # 0.
Dirac quantization condition implies that [62, sec. 2]

A
F= <F ) = 2V"UMQdr Adt + QFdf Adé. (F.3.25)

pPiez, pMkicl. (F.3.26)
Supersymmetry restricts the integers to be
P Py =k,  pMki=0. (F.3.27)
It seems that for P!, P? # 0 one has [149, app. D]
(pAPY)? = K2 (F.3.28)

F.3.2 Symplectic extension

Almost all the BPS equations we obtained in the previous sections are already symplectic
invariant since they are given in terms of symplectic invariant quantities.
We replace the charges by Q. To replace §* we note that

efz(va)q/A _ (Ifl)AE (Rsa pA —qx) (F.3.29)

corresponds to the first component of —M Q.
The symplectic invariant equations are

(Q,G) = —=, (F.3.30a)
Re(e L) = 2U=V)Im(e™ ™ 2) (F.3.30b)
Y = A, +2e U Re(e L), (F.3.30¢)

2¢?V9, (e U Im(e V) = —8e*V=U)Re(e ™ L) Re(e V)
-9 - V=V Mg, (F.3.30d)
() =—2e""VIm(e ™L). (F.3.30¢)

We also have the equation

20, (e" Re(e™™V)) = 2V"VIMQ +G. (F.3.31)

The second term cannot be seen from the original equation since g* was set to zero, but we
could get it by computing explicitly the derivative of Mjy.

The equation (F.3.30d) can be modified using (F.3.30e) to include one factor e inside
the derivative. The LHS is

9 eQVaT(e—U Im( e—i’l/JV)) — 2eVaT(eV—U Im( e—i’l/JV)) _ 2€V_U6T(€V) Im( e_iwv)
=2¢"0,(e" VIm(e V) + 1e2V=U) Im(e= L) Im(e~ V)
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and it combines with the RHS to
2¢Y0, (VU Im(e V) = — 8>V Re(e 7 L) Re(e™ V)
—4e2V=U Im(e ™ L) Im(e™ V) (F.3.32)
-9- VMg
Finally we recall the equations for U’ and z*
(V) = —gap" Im(e L) + V"V Re(e " 2), (F.3.33a)
(') = e Ve g (V=YD Z i gop D;L). (F.3.33b)

F.3.3 Fayet—Iliopoulos gauging
We write

ga

to really distinguish between non-constant and constant prepotentials.

G=P3= (gA) (F.3.34)

Equations from special geometry

We can use several identities involving the quartic invariant in order to express all equations
in terms of ImV and V uniquely.
We define

V=e""Ve Wy (F.3.35)
The first step is to use the identity (6.3.16) in (F.3.32)
2¢V9, ImV = —Q + I,(ImV,Im V, G), (F.3.36)
Then using (5.3.16) and (6.3.17) as

~ 1 ~ ~
L(mV) = - AU ReV = —282UY) 1 (Im V). (F.3.37)

we can replace Re(V) and eV

~ ~ 1y I(ImV
V"V ReV = 203V [[(Im V) = —= ¢V 4(&1}). (F.3.38)

In terms of this new variable the equations (F.3.30d) and (F.3.30e) become
2¢"9,(ImV)) = —Q+ I}(Im V, Im V, G), (F.3.39a)

(V) = —2 <g, Im17> . (F.3.39b)

F.4 NUT black hole

F.4.1 Ansatz

We consider N = 2 gauged supergravity with n, vector multiplets. Fayet—Iliopoulos gaugings
are denoted by ga.
We take the following ansatz for the metric and the gauge fields?
ds? = eV (dt + 26nF'(0) dg)” — e 2Vdr? — 2V=U) (62 + F(0)2dg?), (F.4.1a)
AN = @M (dt + 26nF'(0) dp) — kp™F'(0)dg. (F.4.1b)

3Nick is defining N = kn.
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U,V, G and p are only function of r, while

sinf k=1
F(0) =40 k=0 ,  w=sign(l—g) (F.4.2)
sinhf x=-1

where g is the genus of the surface. We note that the second derivative of F' satisfies

F" = —kF. (F.4.3)

F.4.2 Vierbein and spin connections
Recall the metric
ds? = ?U(dt + 2knF’ dg)” — e 2Vdr? — 2V=U)(d6? + F2d¢?). (F.4.4)
We introduce the following vierbein
¥ = eV (dt+2xknF’ dg), el = e Udr, e? = eV "Ydo, e3=Fe" Yde. (F.4.5)
We compute the differential
de® = U'dr A e® + 2kn F” eV df A dé,
det =0,
de* = (V' = U") eV Ydr A do,
de3 =F (V' —=U")e " Ydr ndg+ F'eV~Vdo A de.

Using (F.4.3) and the vierbein expressions (F.4.5), we can replace all the differential by the
vierbein

de® =U'eVer Ae® —2ne3V"2Ve2 A e (F.4.6a)
det =0, (F.4.6b)
de? = (V' = U")eYe! Ae?, (F.4.6¢)
F/
de? = (V' —U")eVel Ned + ya V=Ve2 ned. (F.4.6d)
Using the Cartan formula
de® +wi Neb =0 (F.4.7)
we obtain the following spin connections
W0, = U’ eUe?, W0y = —ne3U=2Ve3, WOy = nedU—2Ve2)
w21 — (V/ o U/) eU€2, W31 — (V/ o U/) eU€3, (F,4,8)
W, = F oU=Ve3 4y e3U—2V 0.
F
The last term in w3, comes from the fact that
0 =de +wie? + we = ded + we? +ne3V2Ve2 A el (F.4.9)
since w3, = w’;.
The explicit components
w? = w, % dz" (F.4.10)
are 1 U 3U—-2V
woor = U'e”, Wo03 = ~W3p2 = 1€ 5
/
Wy = wyyy = (V' = U')e", Wiz = o eV, (F.4.11)
Woo3 = ne3V=2V,
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F.4.3 Gauge fields
Recall the gauge fields

AN = M (dt + 26nF' dg) — kP F' do (F.4.12a)
=" dt — kp"F' do. (F.4.12b)

where we have defined
ph =5t — 2ngh. (F.4.13)

For n = 0 we obviously recover the formula from [62], and for this reason formulas written
in terms of A in terms of p* should be equivalent to this case.
In terms of the vierbein (F.4.5) we have

F/
AN =gh Vel — & - U=Vt 3, (F.4.14)

Field strengths

Electric field strength Now we compute the field strength

A =qat (F.4.15)
and we get
FA= g% dr A (dt + 26nF' dg) + p*FdO A dg — kp/* F' dr Ad¢ (F.4.16a)
=—gMdt Adr+p" FdO Adep — kp F' dr A dg, (F.4.16b)
or in terms of the tetrads
FA= —gheO el +phe2U=V)e2 p ¢B ﬁﬁ’AI; W=V el ae?, (F.4.16¢)

In particular it is trivial to see that the Bianchi identity is satisfied

dF = p"» Fdr AdO Adg + p"  Fdo A dr Adg = 0. (F.4.17)

Hodge field strength Using the facts that

1
*(e! Ne¥) = 3 et e’ Ne?, (F.4.18)

and
ey =y =1, Py =1, (F.4.19)

the Hodge dual field strength is found to be

!’

AF
* N = ph 2U-VIe0 Al 4 M e A e + k™ & U=V 0 A e? (F.4.20a)

or by replacing the tetrads

*FA = 2U=Y)dr A (At + 2knF’ do) + ¢ 2 V"UIF Ao A do
J 2 (F.4.20b)
— K ﬁ'A 7 ¢ (At +26nF’ dg) A dO.
We can also expand in order to get all components
F/2
FA*p e(U V)dt/\dT+<~/A 2(V— U)+2n~/AF 2U>Fd9/\d¢
(F.4.20c)

/

F
—2knp? U"VIF dr Adg — mﬁ'AF e2V dt A d6.
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(Anti-)self dual field strength The anti-self dual form is

1 - F
Fh=g(FY—ixFY) = FMOnel +ie? A %)+ GMel A Hied ne?)  (Fa21)
where 1 )
FA _ 75 ql\ o %p/\ eQ(U*V), GA = —K eQU*Vﬁ/A_ (F422)

Magnetic field strength The symplectic dual G of FA is defined by

oL
G = * ((SF—A) =Ras, F¥ — T)s, «F*. (F.4.23)

It reads explictly (with a matrix/vector notation)
G =R (7 dr A (At +26nF' dg) + p FdO A dg — k' F' dr A d)

F’
. ~1 2(V-U) Iy e?U !
I<q e FdOAdo+k e (dt+2nnF dgb)/\d@ (F.4.24)

+p 2UV)dr A (dt + 26nF d¢))’

or after simplication (in the last term we moved p’ in front of the expression since all matrices
are symmetric)

G = (R +ZIpe*V=V))dr A (dt + 26nF" dg) + (Rp — Zq * V=) F do A do

(F.4.25)
— & F' (Rdr Ade +Ze*V (dt + 2knF’ dg) A d6).
Electromagnetic charges
The electric and magnetic charges are defined by [62]
T S L N (F.4.26)
47 S2 ’ 47 S2 ' o
The pair
Q=" a) (F.4.27)
forms the correct symplectic vector of charges.*
We obtain the explicit expressions
ph =t — 2n g, (F.4.28a)
F12
qr = Ras p> — VUL o> + 2nIysp™ 2V / — a9, (F.4.28b)
which justify a posteriori that we identified p* above.
The last integral can be done as
Omax F'2 Frax 17
/ —df = / — dF =In F(0max) — In F(0). (F.4.29)
0 F 0 F
Since F'(0) = 0 the last piece is divergent so we should require that
n=0 or §r=0. (F.4.30)

4Note that [62] forgets to add & in the formula: the presence of & here can be traced to the fact that it
is absent in (F.4.1b), and ultimately the reason is that the gauge field should be defined with the integral of
F, and not its derivative; see [76] for comparison.
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Since we want that our black holes carry a NUT charge we require

7 =0. (F.4.31)

Another evidence for imposing this equation is that the field strength (F.4.16) and its dual
(F.4.20) do not respect the isometries of the spacetime if 5 # 0. Moreover if this equation
does not hold it is not possible to construct the symplectic vector of field strengths. Finally
we will see that supersymmetry imposes naturally this constraint. For the rest of the section
we will consider that this term is absent.

Imposing (F.4.31) we obtain the electromagnetic charges

pt =" —2ngh, (F.4.32a)
qn = Rasp> — 2V 0q%. (F.4.32D)

We can solve for ¢/* in terms of p® and gx

Ft = UVNT M (Rep p® — gx). (F.4.33)

We note that the above relation corresponds to
7t = -V MmN, (F.4.34)

and we may use this relation for obtaning symplectic covariant formulas.

Symplectic field strengths
Imposing the condition (F.4.31), the expression (F.4.16) for the field strength becomes

FA = @™ dr A (dt + 26nF' dp) + p*F do A dg. (F.4.35)
The Bianchi identity reads
dF* = (p' + 2n @ Fdr AdOAde = A Fdr AdO Adg =0 (F.4.36)

which is solved by (F.4.31) and this is consistent.
The Hodge dual (F.4.20) reads

*FA = —ph 2U=V)dr A (At + 26nF’ do) + ¢ V"V F A0 A do. (F.4.37)
Finally the magnetic field strength (F.4.25) is
G = (R7 +Ipe*V=V))dr A (dt + 26nF' d¢) + (Rp — Z§' V"V )Fd9 Adg. (F.4.38)

Then we can use the expression (F.4.33) for removing ¢’ in F* and G (we use a ma-
trix/vector notation)

F=eU="VNT'Rp—T7 q)dr A (dt + 26nF'de) + p F dO A do, (F.4.39a)
G=U"V((Z+RI'R)p—RI q)drA (dt +2knF’ d¢) +qFdo Adg, (F.4.39b)
where G is obtained from the simplification of

G=TR (e2<U*V>f1(Rp — q)dr A (At + 26nF" dg) + p F O A d¢>)

(F.4.40)
7 (—p U=V)dr A (At + 26nF" dg) + I~ (Rp — q) Fdo A d¢) .
Note that we also have
*F = —pe*U=Vdr A (dt + 26nF’ dp) + I~ (Rp — q) FdO A do. (F.4.41)
Looking at (F.4.39) we can gather F' and G into a symplectic vector using (F.4.34)
F = (gi) = VU MQ dr A (dt + 26nF' dg) + Q Fdf A dg. (F.4.42)

As explained above we cannot obtain this symplectic vector if p’ # 0.
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Maxwell equation

Maxwell equation reads
dGy = 0. (F.4.43)

From the expression (F.4.39) we obtain
a6 = [2n U=V)((Z+RI"'R)p — RI1q) + q’} FdrAdfAds, (F.4.44)

or in components

¢ =-2n*U"V)((ZT+RI'R)p—-RI'q). (F.4.45)

This computation is much more complicated if one keeps p’ # 0 (the hope would be to get
P’ =0 as a second equation).
The constraint (F.4.31) and the Bianchi identity

dF* =0 (F.4.46)

both read
P =p +2ng =0. (F.4.47)

Using the expression (F.4.33) one obtains
p =20V Y Rp—q). (F.4.48)
The equations for p’ and ¢’ can be gathered into a symplectic equation as
Q' =20V MQ (F.4.49)

using the expression for M. This result can also be straightforwardly derived from the
symplectic field strength (F.4.42).

Central charge

The central charge is defined by
Z=(Q,V) =p"My —qa L™ (F.4.50)

where Q = (p”, qp). Using (F.4.32), the symmetry of Ay and My = NysL* we can find
another expression

Z =p*(Ras +iZxs)L” — (Rasp* — V"¢ L%,
and after simplifcation we get
Z =TIrs (VUGN +iph)L*. (F.4.51)
Now we can deduce its relation with F* from (F.4.22)
z=—2*V-U1,FALE. (F.4.52)
Let’s now compute the derivative of the central charge
Z,=D;Z=(Q,U;). (F.4.53)

We have
Z; = p"(Ras — ian) [ — (Ras p™ — V"D Lq?) 7,

K2

since now h;jp = Mas flE , simplification gives

Zi = Ins (VUGN —ip) £, (F.4.54)

3
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On the other hand we will have
Zr = Ins (VUGN +iph) £ (F.4.55)
Finally we introduce a last quantity

L=(G,V)=g"My—gpL". (F.4.56)

where G = (g™, ga) (recall that g* = 0 for the moment).
Inverting (F.4.50) we get

- 1
Ty FAL® = -5 UV z, (F.4.57)
We also define

~ 1
TasGALY = —5 (F.4.58)

F.5 BPS equations for NUT black hole

We obtain the equation from [62] by taking Py = gx. We take the scalars and spinors to
depend only on r. The ansatz for the spinors is

ea(r) = e2(¥iolgy (F.5.1)

with H and a both functions of r, and g4 is a constant spinor.

F.5.1 Gravitino equation

The gravitino variation is

6Ypa =Dyuea +iSapvue® + T;V’}/VEABEB =0 (F.5.2)
where
Dyea =Duea+ %gAAﬁU3ABEB, (F.5.3a)
Dy, =0+ i‘“““”ab + % A, (F.5.3b)
A, = %(Kiauzi — K;0,2"), (F.5.3¢c)
Sap = —% L£o*,%pe, (F.5.3d)
T,, = 2iT\sL”F, (F.5.3¢)

More precisely we will look at the components of v*§1),4 (no sum over a).
We can obtain another expression for T~ from (F.4.21)

T~ =2 Tas L*F 2
- F’ -
= 2% Ias FALE (P Nl +ie® Aed) +2i FIAZGALZ(el Aed 4iel Ae?)
/

F
=—i 62(U7V)2(60A61+i€2/\63)7Z'Fy(€1/\63+i60/\62)

using the expressions (F.4.52) and (F.4.58). By contracting this expression with +* and
multiplying by v* (thus with no sum over a) with

a 1 a
vy’ = =, (F.5.4)



we can see that only one term will remain for each value of a, and the factor will be £+1 or
+i.
The components of the variation read

1 . .
y081hos = 5(U’ eV~ 4 ne3U_2V7023)€A + 5 grg® €7 Y403 Bep +iSape? (F.5.5a)

i F’
L2U-V)g 01, B - Y2 4 e,

oy a =Y <8T + % AT) ylea +iSape? — %eQ(U*V)vasABsB (F.5.5b)
F/
+1 Vi VyPeape®,
V261hos = 1 V' —UNeYAt —nedV=2V 4023 ey 408 5el F.5.5¢
2
F/
+ 5TV 2 Peape — — V4 Peape?,
3 1 A1 su—2v_o023 , I u_v_» , B
7 0Ysa =5 —ne YO+ 7 " V9 ) ea +iSape (F.5.5d)
i F' F
-2 K gap® U=V 4303, Bep + ; GU-V)Z 2., By Fy'7135ABEB-
We use the fact that 79y = v2%/2 in all the last terms. Also we introduce curved index r
for derivatives by using the inverse tetrad for the 1-component. We can rewrite v°?3 and
~13 and we simplify the equations
U .
708¢oa = %(U’ —ine?U=V))yley + %gA(jA e U403, Bep +iSape® (F.5.6a)
) _ F
- 62(U V)Z'YOl&-ABEB _ F y’yOZEABEB,
V' hra =¥ (@ + % Ar) v'ea+iSape” — % U=V 2401 P (F.5.6b)
F/
— & Y1eape”,
U
e . _
V2oihon = 7((V’ —U") +ine* V))’y ea+iSapel +1 5 U=V z 0 peB  (F.5.6¢)
F/
- = yWOQEABEB
1 F’ A B
V36134 = Y2 00on + 5 + eV~ V(7 ea — ik gap™ 3o, B). (F.5.6d)

First we see that each equation contains a #-dependent term which should vanish since
we have only r-dependent functions, thus

V=T)sG L® =0 = I)sp"*L” = 0. (F.5.7)
We note that (F.5.6d) and (F.5.6¢) differ only by a 6-dependent term, which gives a first

projector equation

Y2ea — ik gap" 2o, Bep = 0. (F.5.8)

Taking the difference of (F.5.6a) and (F.5.6b) gives
U i eV ey i A o=U,0153 B
Or + 5 Ar sA:T(U —ineXU- ))€A+§g/\(j e Uy0163 Bep. (F.5.9)

Finally we need to take (F.5.6a) minus (F.5.6¢)
U V' —2ine* V=V yle s +igag® e 72V 700 Pep —2ieV "2V 290 ype? = 0. (F.5.10)
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We multiply (F.5.6¢) by gamma matrices and we replace Sap to get
. 1 .
%E 762, Cepoef = 5 UV Z e pel + %eU (V' = U +ine® V=)0, (F.5.11)

Let’s summarize the equations we need to solve®

0= Irsp L%, (F.5.12a)
. 1 .
(GT + %AT> €4 = §(U' — ineQ(U_V))EA + %gAQ’A e U053 Bep, (F.5.12b)
(2U" =V’ —2in eQ(U_V))EA = —2ieV "2V 2y9% 4 peB —igag® e 463, Bep, (F.5.12¢)
ea = —kgap™ "%, Bep, (F.5.12d)
i LA03,Cepoel = 2WU-V)z o peB —iel (V’ —U' +in eQ(U_V))VOEA. (F.5.12¢)

These equations are equivalent to the ones in [62] if we replace
U — U —ine2@=Y), (F.5.13)

There are four equations with projectors, and we need to reduce two of them to bosonic
equations in order to get 1/4-BPS solutions.
We can plug (F.5.12d) into itself and find the following consistency condition®

(kgap™)® =1 = | gap" = +x. (F.5.14)

For simplicity we will keep the expression

ea = —rgap™yo?,Bep (F.5.15)

for the projector and simplify the sign only at the end. If g, is fixed, then we can pick a sign
and obtain the other just by inverting the other charges. An equivalent formulation gives

kgaptea = —""0" 4 ep (F.5.16)

by multiplying (F.5.15) on both side by kgap”® and using (F.5.14).
We can use it to simplify (F.5.12¢)

U — V' —2ine®V="ey = —2ieV "2V 2% 4p5eP +icea (F.5.17)
where we have introduced the shortcut notation
c=kgap" gnq e 2V = +gpg* 2. (F.5.18)
We rewrite the equation as
(U = V' —ic)es = —2ieV?V 2% 4P (F.5.19)

where
t=c+2neUV) = g g g=G> €72V + 202UV, (F.5.20)

Hence we can interpret the effect of n as shifting c instead of U’.
We can now look for consistency of this last equation by plugging it into itself. First
take the complex conjugate

QU' — V' +id)e? = 2ieV 2V Z~0cABc . (F.5.21)

5We obtain five equations from four because we got one additional constraint by requiring that the
0-dependent term in each equation vanishes.

6We could have not included & into this equation but this choice allows to remove all x from the equations,
and it appears that it is necessary for finding a solution.
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Now use this result into the first equation

22U — V' +id] =4|Z 2V, (F.5.22)

or written differently

,  efv-2U
|IZ|* = n (U =V +&). (F.5.23)
We define the phase” (r) by the equation
20UV ez = 2U — V' — g, (F.5.24)
or by replacing ¢

20V e Wz =20 — V' —i(kgap” gnq” e 2V + 20XV, (F.5.25)

The real and imaginary parts of this equation are respectively
2eV"2V Re(e ™ 2) = 2U" — V', (F.5.26a)
2¢"2 Im(e " 2) =~k gap" goi® e — 202UV, (F.5.26b)

The second equation will help us to replace ¢* everywhere.
The projector then becomes

‘EA =ie"¥ ’YOEABEB. (F.5.27)

The version with indices up is

A

ed =je W

e Bep. (F.5.28)

The phase ¢ which appears here is the same as the one of the spinor in (F.5.1), as can be
seen by comparing the phases of (F.5.27), thus

a =1 (F.5.29)

Inserting the projector (F.5.15) into (F.5.12b) turns it into a bosonic equation

Orea %(U’ —i(AT +c+ne2(U_V)))€A (F.5.30a)
= %(U’ —i(Ay + 2= ne V) )eq, (F.5.30D)

Plugging the ansatz (F.5.1) for the spinor, we get a differential equation for the phase
¥ = —(Ar +c+neV=) (F.5.31)

from the imaginary part, while the real part tells us that H' = U’, and setting to zero the
integration constant we have

H=U. (F.5.32)
Replacing ¢ we have
P =— (AT +rgap g2 e +n eQ(va)). (F.5.33)
and it simplifies with (F.5.26b)
W =—A,+2e" 2V Im(e ™ Z) + ne2U-V), (F.5.34)

"We know that both sides of the equation differ by this phase because of the above value for |Z|.
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The last step is to simplify (F.5.12e)

iLA%%3, c BCEB = 2U-V)z o, B ,L-eU(V/ i ine2(U’V))705A,

—i L 70103Acfyosc eB = AUV zA 0, gef — iV (V' =U"+in eQ(U_V))sA,
e WL A3, Ce = i 2U-V) =iz o, _ el (V! - U+ ineQ(UfV))EA’
kgap™ e “bﬁ eq=—ie2UV)gmibzo el (V’ —-U + ine2(U_V))5A.

In the first step we multiplied by 7% and reversed €p¢, then we used the projector (F.5.27),
and finally we used the other projector (F.5.16). After simplifcation we obtain a bosonic
equation

ikgap™ e WL = U V)eWz 4 U (V’ U +in eQ(va)). (F.5.35)

The real part and imaginary parts read
kgap™ Tm(e L) = —e2U=VIRe(e ™™ 2) — U (V/ - U"), (F.5.36a)
kgap® Re(e™™L) = AUV Im(e ™ 2) + ne3V=2V, (F.5.36b)

From the equation (F.5.26a)
V"V =2((e) — 2U=VIRe(e " 2)), (F.5.37)
we can simplify the first equation

kgap™ Im(e™L) = —2U"VIRe(e ™ 2) — (2(eV) — 26X V"V Re(e ™ 2Z) — (eV))

(F.5.38)
and get a differential equation for U’
(eV) = —k gap™ Im(e™ L) + 2U=V) Re(e ™ 2). (F.5.39)
Plugging this equation back we obtain a differential equation for V’
(") = =2k gpp™ " VlIm(e ™¥L). (F.5.40)

We can solve these two equations instead of (F.5.26a) and (F.5.36a).
Adding (F.5.35) to (F.5.25) gives

AUV =Wz ik gap® e WL = eV (U’ —i(kgap™ guq= e 2V + neQ(U*V))). (F.5.41)

This equation is just a rewriting of previous equations.

F.5.2 Gaugino variation
The gaugino variation is given by
SN = i@uzi yHed — gijj?: IAE.F;VA v eABep 4 zg,\g”fA 3 BCAp = 0. (F.5.42)

The variation becomes®

. . 1 . .
6A1A _ ieU(?Tzz ,_ylgA + 5 e2(U—V) gUDjZ(")/Ol + 7:’)’23)€AB€B + Z.gl‘]DjE O_3CB€CA€B
P .
+2 5 0"DY(y 1 + iy ") e p.
(F.5.43)

8The contraction is antisymmetric and should give a factor 2; but we wrote Fe%¢!, and we did not write
the component e'e®, thus we do not take it into account (or we could by multiplying by a factor 1/2).
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The last term is the only 6 dependence and it should cancel
97DV = gT Ths G P = 0 = I\ G  fF = 0. (F.5.44)

Adding this to the previous equation (F.5.12a), we see that G is orthogonal to the n, + 1
base vectors (L*, fjf\) which implies that it vanishes. We deduce that

P =0= p=cst. (F.5.45)

We can simplify the rest of (F.5.43)

. 1 .
ieUGTzZ ’71€A — _5 e2(U7V) gsz_Z(,yOl + ’L")/23)€ £p — ,ngJD Y 0_3 B CA
,L'eUaTZ’L' 'ylz":A — (U V) z]D Z ,yOl AB ZngD‘ﬁ 0,3 B CA
,L-eUaTZi EA _ 2(U V) UD z ,_YO ABEB + ,nggD Y ,_YO CA,YOIOB BEB

ieV8, 2" et =i 2U=V) gt g”D]—ZE — 1K gAp g”D L A0C e
ieV8, 2" et =i 2U—V) g giijZ e — kgppt e g”DJ—EE .

First we replaced v2* by 4%!, then we multiplied by v and we introduced (7°)? = 1, after
what we used projectors (F.5.27) and (F.5.16) respectively for the first and second terms of

the RHS, and finally we used again (F.5.27) for the last term after changing ¢4 = —¢4¢.
Cleaning up this equation gives finally
e U8, 2t = giﬂ’(eQW*V) D;Z + i s gap™ Dj,c). (F.5.46)
We want to rewrite it in terms of the sections. It is easier to proceed if we replace
D; 2 = I (2 UGN +iph) f7 DL = —gsfZ, (F.5.47)
using (F.4.54), to get
e eVt = gl fr ( UM Ty (VDG 4iph) — ik gap® gg) (F.5.48)

We contract both sides with f2. Using the relation

_ 1 _
— IR = 3 (Z-H)"A + LLA (F.5.49)

. . 1 _
o= iV eUfiAarzz _ (5 (1-71)2A 4 LELA> (eZ(U*V)IAz( 2AV-D) A 4 i ) — ik gap™ gz:)
1 i A e , AT
§(q + leQ(U—V)pA) + 5 figApA (I 1)EAgE +mgApA A ngz
Q2U=V) IAELEEA(G2(V—U)Q~/A n ,L-pA)
1, , _ i A , A=
_ _§(q/A + i 2 V)pA) + 5 HgApA (I 1)EAgE _ zfigApA IAr
Q2U=V) [A
where we used the expression of Z and £
1,
2(q/A +Z€2(U V) A) + 5’191\]7 (I 1)X)AgE
— EA(eQ(U*V) Z+1 IigAﬁA E)
1,
2(q/A +Z€2(U V) A) + 5’191\]7 (I 1)X)AgE

— LAeWeV (U’ — i(c + neQ(U*V)))
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by using (F.5.41). We now consider the LHS
. . 1 1 . _
Ao,z = 0,2 (@LA + 5(6iK)LA) =9, L* + 5(2”011( — "0, K) LA
=0, LA +4iA LN = 0, L —i(¢' + e+ ne2UTV)) LA

from (F.5.34) and from
. _ . _ . 1 -
aTLA _ z”&-LA + z”&;LA _ Z/zaiLA + Z”&Z(G%XA) _ z”&-LA + 5 Z”LAa{K

(explained with words, L depends on z by the Kihler potential).
Gluing the two sides we find

e el (GTLA —i(¥ +c+n eQ(U_V))LA) + LA e eV (U’ —i(c+ neQ(U_V)))

1,. . _ ? - _
:—§(qIA+’L€2(U V)pA) +§"€9APA (I 1)ZA92- (F550)

We focus on the LHS
e” W eV (&LA —i(y +c+ ne2(U_V))LA) + LA e Y (U’ —i(c+ neQ(U_V)))
= e WeV ((%LA - iw’LA) + U eV LA —jeV (c+ neQ(U*V)) ( e VLA + ewiA)
=&Y, ( e_iwLA) +U VLA +2ieV (2 "2V Im(e ™2Z) + ne2(U_V)) Re(e ™ L%)
= eY0,(e7™LA) + U’ eV (Re(e ™ L?) —iIm(e " L?))
+2ieY (2 V2V Im( e_wZ) +n eQ(U_V)) Re( e_wLA)
using (F.5.26b) and that Im(z*) = —Imx to replace ¢. We multiply each side by 2 and

using the fact that (e*V) = +U’eV we decompose this equation into real and imaginary
9
parts

20,(eV Re(e ™ LY)) = —¢"™, (F.5.51a)
2e?V0, (e YIm(e L)) = —pt + ke2V=U g 5™ (T71) s (F.5.51b)
—4(2Im(e”™2) + ne’)Re(e " L?).

The first equation is directly integrated to give

G = —2eV Re(e ™ LM). (F.5.52)

Finally we can use (F.5.36b) to get

2e?V0, (e”Y Im( e*wLA)) =— 4(2ngA]5A VU Re(e™¥L) — ne’) Re( e"WLA)
I VN Y v

(F.5.53)
F.5.3 Summary
We found two projectors
e =ie W 0eABep, (F.5.54a)
eq = —rgapo® Bep. (F.5.54b)

9For the imaginary part we need to multiply by 2(V=U),
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We have algebraic

gap" = epr, (F.5.55a)
Kk gap™ Re(e L) = XU~V Im(e ™™ 2) + ne®V~2Y (F.5.55b)

and differential equations
W =—A, 42"V Im(e ¥ Z) + ne2V-YV), (F.5.55¢)
(eV) = —w gap® Im(e™ L) + 2U~V) Re(e ™ 2), (F.5.55d)
(V) = =2k gap™ eV Y Im(e L), (F.5.55¢)
() = e Ve g (2VVID;Z + ik gap™ DiL). (F.5.55¢)

We have

ep =+1 (F.5.56)

and both signs correspond to different branches of BPS solutions. In general one can study
the solution with ep = —1 [46, 52, 84] and the other branch can be found by flipping the
sign of the charges — and apparently eV — once G is fixed (see [81, app. B, 62, p. 6]). In
particular this choice agrees with [58, p. 8]. Note that setting x to the RHS is necessary (if
one wants a solution) even if we do not see this from the equations.

The equations (F.5.55d) and (F.5.55f) can be gathered into

2¢%Y0, ( e Y TIm( e*wLA)) = — 8k gap® 2V Re(e L) Re(e W LA)
+ 4n eV Re( e WL —pM + kgap® 2(V-U) (I_l)ZAgg.

(F.5.57)
One needs also to impose Maxwell equations (F.4.49)
Q' = —2n*U-Y) MQ. (F.5.58)
It includes the equation
A =0 (F.5.59)
and the charges ¢* are given by the equation (F.5.52)
G = —2eY Re(e ™ LY. (F.5.60)

Note that (F.5.55a) reduces to Dirac quantization condition from [62] when n = 0. Using
the definition (F.4.32)

Pt =p* 4+ 2ngt (F.5.61)
and the equation (F.5.60) '
G = —2eV Re(e ™ LY, (F.5.62)
we obtain!? a new expression for (F.5.55a) which depends only on the electromagnetic
charges

gap™ —4n eV gy Re(e ™ LA) = k. (F.5.63)

We can use (F.5.55b) in order to get an expression for €. This last expression will not
help to solve the equation since it is complicated, but it means that we can always integrate
the differential equation for the phase (F.5.55¢), and we can obtain the expression if we
know all other quantities. From (F.5.55b) we have!!

(e_wﬁ + eiwﬁ_) =—i e2(U_V)(e_in — e“/’Z_) +2ne3V 2V, (F.5.64)

10Since the formula contained ¢ and not ¢’ we could not use (F.4.34) to replace it.
11Ty lighten notations we take gop™ = &
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We multiply by e’ in order to get a second order equation
(L —ie*UVZ) — eV e 4 (L4 VV)Z) =0 (F.5.65)

whose solutions are

X 3U-2V 3U—2V 2 . 2(U_V)Z
MO g (e T ) _Lrie 72 (F.5.66)
L—ie2U-V)Z L—ie2U-V)zZ [ _ie2U-V)Z

For n = 0 it reduces to [52, eq. (2.39)]

U-VIZz —iL

eQ(U_V)Z+i,C

(F.5.67)

F.5.4 Symplectic extension

Almost all the BPS equations we obtained in the previous sections are already symplectic
invariant since they are given in terms of symplectic invariant quantities. The symplectic
covariant expression of Dirac quantization condition can be read from (F.5.63).

The symplectic invariant equations are

(Q,G) +4n eV Re(e ™ ™L) =ep r, (F.5.68a)

ep Re(e L) = 20"V Im(e ™ 2) + ne’V—2V (F.5.68b)
2e2V8T(e*U Im( e*wV)) = (4n eV —8zp 2(V-U) Re( e*“ﬁﬁ)) Re(e™ V)

—Q—¢ep VU Mg, (F.5.68¢)

(V) = —2epeV " VIm(e L), (F.5.68d)

Q' = —2ne2V=V) MO, (F.5.68¢)

We also have the derivative of equation (F.5.60)
20, (eV Re(e™™V)) = -G — 2T~V M0Q. (F.5.69)

The first term cannot be seen from (F.5.60) since g was set to zero, but we could get it by
computing explicitly the derivative of Mjy.
Finally we recall the equations for ¢, U’ and 2"

w/ — *AT _ 2e*U Re(e*iwﬁ) — ne2(U7V), (F570a)
(eV) = —epIm(e™™L) + V=V Re(e™" 2), (F.5.70b)
(21 = e~V eigi( 2U-VID,Z 4 iD;L). (F.5.70c)

Other equations

The equation (F.5.68c) can be modified using (F.5.68d) to include one factor e inside the
derivative. The LHS is

2620, (e UIm(e V) = 2¢"0, (" Y Im(e V) — 2" "V0, (") Im(e~"*V)
=2e"0: (""" Im(e™™V)) + 42V Im(e™ L) Im(e7MV)
and it combines with the RHS to
2¢0, ( e~V Im( e_in)) =4 (n U — 9e2(V-U) Re( e—iwﬁ)) Re(e™ V)
— 42V Im(e ¥ L) Im(e" V) (F.5.71)
_ Q o eQ(V_U)./\/lg.
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One can also use Maxwell equation (F.5.68e) to rewrite (F.5.69) as

. 1
20, (e Re(e™™V)) = 2—Q’ -g. (F.5.72)
n
It is then straightforward to integrate this equation
ane’ Re(e V)= Q —2nGr — Q (F.5.73)

where @ is the integration constant. In turn one can use this to get the expression for Q
if one knows the other quantities. Moreover plugging this result into Dirac quantization
equation (F.5.68a) gives

(Q,G) +4n e" Re(e L) = <@Q> =epk (F.5.74)

which shows that the LHS of Dirac equation is constant.
Finally one can use this expression for Q in order to rewrite the equation (F.5.68c) for
the imaginary part of V

2e2V8T(e*U Im(e™™V)) = (8n eV — 8ep 2V=U) Re( e*“ﬁﬁ)) Re(e™ V)

R (F.5.75)
—2nGr—Q—ep V- MG.

The main advantage is that Q has been replaced by the constant @, while the extra term
G r is not a big problem.

Another formulation

We can use the second equation to replace n everywhere: we then get a set of equations
which is the same as for n = 0, and any solution of this set should satisfy the additional
constraint (F.5.68b). The new equations are
Y =—A, + eV Im(e ™ 2) + e URe(e L), (F.5.76a)
2¢*V0,(e”YIm(e ™V)) = —4(e Y Re(e L) + V2V Im(e " Z)) Re(e V)
— 90— VU Mg, (F.5.76Db)
Q' =2(eYRe(e™™L)— "V Im(e ™2)) MQ.  (F.5.76c)
If we multiply (F.5.76b) by M (which is real) we get
2e?V0, (e VIm(e W MV)) = —2(e2(V7U) Re(e ™ L) +Im(e " 2Z)) Re(e ¥ MV)
—~MQ+ VU MMG
+2e Y Im (e ™0, (2V M)V)
—2e?V 0, (e Y Im(ie ™V)) = —2(e Y Re(e L) + e/ 2V Im(e ™ 2)) Re(ie" V)
-~ MQ— VUG 4+ 2e7VIm (e, (Y M)V)
since M2 = —1. We obtain
2¢?V0,(e"YRe(e™™V)) = —2(e Y Re(e L) + 2V Im(e ™ 2)) Im(e V)

+MQ+ VUG +2e7VIm (e79, (2 M)V).
(F.5.77)
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Equations from special geometry

We can use several identities involving the quartic invariant in order to express all equations

in terms of Im V and V' uniquely.
We define B .
V=2e""Ve ™y, (F.5.78)

The first step is to use the identity (E.1.2¢) in (F.5.71)
2¢V8,ImV = —Q + I,(ImV,Im V, G) + 4n U~V Re V), (F.5.79)

Then using (E.1.2a) and (E.1.2b) as

~ 1 ~ ~
L(mV) = - AV=U 0 ReV = —262UY) I (Im V). (F.5.80)

we can replace Re(V) and eV

1, I(ImV)

UV ReV = -2V [[(Im V) = —= ¥ A2 F.5.81
T (F.5.81)
In terms of this new variable the equations (F.5.68¢) and (F.5.68d) become
~ ~ - I'(Im V
2¢V0,(ImV)) = —~Q + I,(Im Y, Im V,G) — = ¢V LmY) (F.5.82a)
(eV) = -2 <Q,Im17> : (F.5.82b)
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