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Preface

Exact solutions to Einstein’s equations have been useful for the understanding
of general relativity in many respects. They have led to physical concepts as
black holes and event horizons and helped to visualize interesting features
of the theory. In addition they have been used to test the quality of various
approximation methods and numerical codes. The most powerful solution
generating methods are due to the theory of Integrable Systems. Since stars
and galaxies in thermodynamical equilibrium lead to stationary axisymmetric
spacetimes, it is of special physical interest that the Einstein equations in
this case are equivalent to the completely integrable Ernst equation. In this
context the most prominent solution is the Kerr metric describing a rotating
black hole. Rich classes of solutions to integrable equations can be constructed
with methods from the theory of Riemann surfaces which were originally
introduced to generate periodic solutions to integrable wave equations such
as the Korteweg-de Vries equation. The corresponding solutions to the Ernst
equation, which contain the Kerr solution as a limit, are not periodic and are
related to deformations of the underlying Riemann surface. In this volume
we study these solutions to the Ernst equation in detail and discuss physical
and mathematical aspects of this class both analytically and numerically.

Olaf Richter and myself had been working in this field for almost a decade
starting with our common stay in Jena. He contacted me two years ago that
he intended to write a comprehensive review of the topic on the occasion of his
habilitation which should serve as the basis for a monograph. Since the time
appeared to have come for a summary of the current state of the art of the
field, T agreed to join the project. But in November, 2003 I got the shocking
and completely unexpected news of Olaf Richter’s passing away. This left me
with the sad duty to finish our common project alone. The present volume
is based on Olaf Richter’s habilitation thesis. Roughly half of the material is
taken after reworking from this thesis, the rest i1s from later publications and
other sources.

This work would not have been possible without the support of the Max-
Planck-Institute for Mathematics in the Sciences, and there especially of
Prof. E. Zeidler. It was supported in part by the Deutsche Forschungsgemein-
schaft, the Marie-Curie program of the European Union, the Schloessmann
foundation and the Max-Planck-Society. For helpful discussions and hints



VI Preface

I thank J. Bi¢dk, A. Bobenko, S. Bonazzola, P. Breitenlohner, B. Carter,
H. Farkas, P. Forgacs, J. Frauendiener, E. Gourgoulhon, R. Kerner, D. Ko-
rotkin, D. Maison, V. Matveev, M. Niedermaier, J. Novak, H. Pfister,
H. Samtleben, V. Shramchenko, and E. Zeidler. My special thanks go to my
coauthors J. Frauendiener, D. Korotkin, O. Richter and V. Shramchenko for
their collaboration and their patience. I am grateful to P. Forgacs, J. Frauen-
diener, T. Grava, M. King, D. Korotkin, D. Maison, H. Pfister and E. Zeidler
for critically reading part or all of the manuscript and for providing useful
comments. | appreciate very much the effort of R. Beig for carefully reading
the proofs and suggesting many improvements, and H. Schlegel for technical
support.

Leipzig, November 2004 Christian Klein



Contents

1 Imtroduction ........... .. ... . . . .. ... 1
1.1 General Remarks on Integrability ........... .. ... ... ... 1
1.2 The Korteweg—de Vries Equation ........... .. ... ... ... 6
1.3 The Ernst Equation ........ .. .. .. ... .. .. ... ... ... .... 8
1.4 OQutline of the Content of the Book ....................... 13

2 The Ernst Equation ......... ... ... ... ... ... ... ... ....... 17
2.1 Dimensional Reduction and Group Structure............... 18
2.2 The Stationary Axisymmetric Case ....................... 22
2.3 Bianchi Surfaces. ..... ... ... .. ... 26
2.4 The Yang Equation ........ .. ... .. .. i i 33
2.5  Multi-Monopoles of the Yang—Mills-Higgs Equations . ....... 40

3 Riemann—Hilbert Problem and Fay’s Identity............. 43
3.1 Linear System of the Ernst Equation...................... 44
3.2 Solutions to the Ernst Equation via Riemann—Hilbert

Problems .. ... ... 48
3.2.1 Riemann—Hilbert Problems on the Complex Plane
and the Riemann Sphere ... ...... .. .. .. ... ... .. ... 48
3.2.2 Gauge Transformations of the Riemann—Hilbert
Problem...... ... .. . 50
3.2.3 The Non-compact Case ........................... 52
3.24 The Compact Case ......... ... ..., 54
3.3 Hyperelliptic Solutions of the Ernst Equation .............. 55
3.4 Finite Gap Solutions and Picard-Fuchs Equations .......... 60
3.5 Theta-functional Solutions to the KdV and KP Equation .... 62
3.5.1 Hyperelliptic and Solitonic Solutions ................ 63
3.6 Ernst Equation, Fay Identities and Variational Formulas on
Hyperelliptic Surfaces ........ ... .. ... ... .. .. ...... 66
3.6.1 First Derivatives of the Ernst Potential.............. 70
3.6.2  Action of the Laplace Operator on the Ernst Potential
and Ernst Equation............ .. ... .. ... ... .... 71
3.6.3 Metric Functions for the Stationary Axisymmetric
Vacuum ... 73

3.6.4 Relation to the Previous Form of the Solutions ....... 76



VIII

4

Contents

Analyticity Properties and Limiting Cases .. .............. 79
4.1 The singular structure of the Ernst potential ............... 79
4.1.1 Zeros of the Denominator ......................... 80
4.1.2 Essential Singularities........ .. ... .. ... .. ... 80
4.1.3 Contours . .....oouit 81
414 AXIS oot 82
4.1.5 Asymptotic Behavior ....... ... ... ... ... L. 84
4.1.6 Real Branch Points ............................... 84
4.1.7 Non-real Branch Points ........................... 86
4.2 Equatorial Symmetry ........ ... . 87
4.2.1 Reduction of the Ernst Potential ................... 89
4.3 Solitonic Lamit .. ... . . 92
Boundary Value Problems and Solutions.................. 97
5.1 Newtonian Dust Disks . ...... .. . ... ... .. .. ... ... ... 99
5.2 Boundary Conditions for Counter-rotating Dust Disks. ... ... 102
5.3 Axis Relations ....... ... ... .. . 106
5.4 Differential Relations in the Whole Spacetime .............. 110
5.5 Counter-rotating Disks of Genus 2 ........ ... ... .. .. .. 113
5.5.1 Newtonian Limit ......... .. .. .. ... ... .......... 114

5.5.2  Explicit Solution for Constant Angular Velocity and
Constant Relative Density ......................... 116
5.5.3 Global Regularity ...... ... ... .. .. .. ... ... ... 119
Hyperelliptic Theta Functions and Spectral Methods . .. .. 123
6.1 Numerical Implementations .............................. 124
6.1.1 Spectral Approximation ........................... 125
6.1.2 Implementation of the Square-root ................. 127
6.1.3 Numerical Treatment of the Periods ................ 129
6.1.4 Numerical Treatment of the Line Integrals........... 133
6.1.5 Theta Functions.......... .. .. .. ... ... .. ........ 135
6.2 Integral Identities . ... .. .. ... .. . . i 137
6.2.1 Mass Equalities .......... .. .. .. ... .. ... ... 138
6.2.2 Virial-type Identities. .. ......... ... ... .. .. .. ... .. 140
6.3 Testing LORENE .. ... ..o i 141
Physical Properties ........... ... ... ... ... ... . ... .. .. ... 147
7.1 Metric functions . .......... .. .. . 148
7.2 Physical Properties of the Counter-rotating Dust Disk ... ... 154
7.2.1 The Physical Parameters .......................... 154
7.2.2 Mass and Angular Momentum ........ ... ... ...... 156
7.2.3 Energy-momentum Tensor .. ....................... 157
7.2.4 Ergospheres ........ ... i 163
7.3 Ultrarelativistic Limit .. ............. .. ... .. ... .. .. ... 166

7.3.1 Ultrarelativistic Limit of the Static Disks ............ 166



Contents IX

7.3.2 Ultrarelativistic Limit for 0 <y <1 ... .. ... .. ... 167
7.3.3 Ultrarelativistic Limit of the One-component Disks ... 169
7.3.4 Over-extreme Region ............................. 170
8 OpenProblems....... .. .. .. . ... ... 173
8.1 Integrated version of the Picard—Fuchs system ............. 175
8.2 Black-hole Disk Systems.......... ... ... ... .. .. ... .. 177
8.2.1 Newtonian Case .. ...t 177
8.2.2 RelativisticCase . ......... ... . i 178
823 TheCase g =0 ..... .00 .. 180
8.3 Einstein—-Maxwell Equations ........... ... .. .. .. .. ...... 182
8.3.1 Harrison Transformations ......................... 185
8.3.2 Asymptotic Behavior of the Harrison Transformed
Solutions ... 186
8.3.3 The Stationary Axisymmetric Case ................. 187
A  Riemann Surfaces and Theta Functions ............... .. .. 191
A.1 Riemann Surfaces and Algebraic Curves . .................. 191
A.2 Differentiation and Integration on Riemann Surfaces ........ 194
A.3 Divisors and the Theorems of Abel and Jacobi ............. 199
A.4 Theta Functions of Riemann Surfaces ..................... 202
A.4.1 EllipticSurfaces. ...... ... ... .. ... .. . 204
A.5 The Trisecant Identity for Theta Functions on Riemann
Surfaces . ... o 204
A.6 Rauch’s Formulas and Root Functions .................... 207
B Ernst Equation and Twistor Theory ...................... 209
B.1 The Quaternionic Hopf Bundle and the Twistor Transform .. 209
B.2 Symmetry Reductions of the Penrose—Ward Transform ...... 212
B.2.1 The Reduced Twistor Space ....................... 212
B.2.2 Holomorphic Vector Bundles over the Reduced
Twistor Space ... .. 218
B.3 Transition Matrices for the Holomorphic Vector Bundles. . . .. 226
B.3.1 The Covering of the Reduced Twistor Space ......... 226
B.3.2 Patching Matrices for Real, Symmetric Framed Bundles227
B.3.3 The Axis-simple Case .. ......... ... .. ... .. ...... 231

B.4 Patching Matrices for the Class of Hyperelliptic Solutions ... 234

References . ... 237






1 Introduction

1.1 General Remarks on Integrability

In classical mechanics a well defined concept of integrability exists which is
related to the Hamiltonian description of mechanics. If the phase space of
a mechanical system is 2n-dimensional, n integrals of motion in involution
are sufficient for a complete description of the dynamics of the system. In
this case the initial conditions specify the integrals of motion and thus the
complete time evolution of the system. The task is to find such a system
of integrals of motion. An important example for an integrable system in
classical mechanics is the motion of a spinning top in the gravitational field
of the Earth, the rotation of a rigid body about a fixed point (see e.g. [1],
Chap. 6 and [2]). For a top where the orthogonal frame is attached to the
body and where the axes coincide with the axes of inertia, the Hamilton
function has the form

1
H= 5(11Mf+12M§+13M§) + I'ip1 + I'apo + Iaps ; (1.1)

here M is the angular momentum of the body, p is the gravitational field,
the constant vector I' gives the center of mass whereas the origin is the fixed
point, and Il_l, 12_1 and 13_1 are the main moments of inertia of the body.
The Hamilton equations F; = {H, F'} lead to the Kirchhoff equations

. O0H . OH
=p X M, =M x X P —— b=
p,t P w, ,t w+p u , w 3Ml 3 U apl 3

(1.2)

where p; = %—’;, and where x denotes the vector product in R3. One has the

Poisson brackets

{M;, M} = eijuMy , {Mi,p;} = cijkpre, pipi} =0, 4,j,k=1,23,

(1.3)
where ¢;;;, is the totally antisymmetric tensor with e123 = 1. The Casimir
functions Z?Il p? and Z?Il piM; are trivial integrals of motion for the Pois-
son brackets (1.3). Thus the (reduced) phase space in this example is four-
dimensional and one needs one further conserved quantity in addition to the
energy. For the Euler and Lagrange tops it is known for a long time that they
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possess such an additional integral of motion. It was somewhat surprising
when in the late 19th century S. Kovalevskaya [3] found another integrable
spinning top which i1s now named after her. It is interesting to note that
this work is also one of the first applications in mathematical physics of the
multi-dimensional theta functions being discussed in this volume. Some years
later Goryachev and Chaplygin [4] discovered another integrable spinning top
which has the interesting property to be integrable only for one particular
orbit.

Whereas in classical mechanics a well defined mathematical theory of inte-
grability has been developed, see [5, 6, 7, 8], for partial differential equations
the situation is more delicate. It is, therefore, not surprising that several
approaches to this concept exist. Below we will mention some of these con-
cepts though none of them yields for itself a completely satisfactory theory
of integrability in infinite dimensions.

The modern theory of integrable systems began with the seminal work
of Gardner, Greene, Kruskal and Miura [9] who introduced a method of
integration for the Korteweg—de Vries (KdV) equation [10], see also [11, 12]
and Sect. 1.2 below,

U coe + 6uu,x = 4u,t )

a non-linear partial differential equation for the scalar function u. The KdV
equation plays an important role in the asymptotic description of one-
dimensional wave phenomena in physical models. For instance it can be
obtained via asymptotic expansions around simple wave motion of the one-
dimensional Euler equations for shallow water. The key observation in [9] was
that the spectrum of the Schrodinger operator can be stationary for a time
dependent potential u if this potential solves the KdV equation. Thus it was
possible to use powerful techniques developed for the Schrodinger equation
to construct solutions to the KdV equation. The so-called inverse scatter-
ing method for instance allows for the reconstruction of the potential in the
Schrodinger equation from the scattering data. Because of the close rela-
tion between the KdV and the Schrodinger equation, the inverse scattering
method can be used to generate solutions to KdV for given solutions to the
Schrodinger equation.

Later it was realized that this method is not limited to the KdV equation.
It can be used to construct solutions to equations which can be treated as
the integrability condition for an overdetermined linear differential system,
the so-called Lax representation [13] which happened to be related to the
Schrodinger equation in the case of KdV. For completely integrable equations
this linear system contains an additional parameter, the so-called spectral
parameter which reflects an underlying infinite dimensional symmetry group
of the differential equation. Methods from the theory of complex functions can
be used to construct classes of solutions for the linear system with prescribed
analyticity properties with respect to the spectral parameter which lead to
solutions to the non-linear partial differential equation to be studied. For a
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review of this subject see the monographs [12] and [14] to [17]. An example
are solitons and the almost periodic solutions to equations like KdV which
were constructed in terms of theta functions, certain transcendental functions
associated to Riemann surfaces which will be considered in detail in this
volume.

The existence of an associated linear differential system alone is not suffi-
cient to ensure the integrability of an equation. There are equations associated
with such a system for which the inverse scattering method is not applica-
ble. The vacuum Einstein equations illustrate this fact: they can be written
as the consistency condition of the field equations of a massless spin—3/2
particle (see [18]), but are not integrable in any accepted sense since it is
known that there are solutions with chaotic behavior. The important point is
that an integrable equation must have a Lax representation with a spectral
parameter which is not the case for the spin-3/2 equations above. An open
problem is how to find this representation for a given equation. There is an
approach due to Estabrook and Wahlquist [19] for constructing a Lax pair,
but this approach can rarely be used to decide whether there exists a Lax
representation for a given equation.

Another criterion for integrability which again does not work in the gen-
eral case is the so-called Painlevé test [20] to [24] and [12]. This method is
based on the following observation for ordinary differential equations: It is
well known that the singularities of linear differential equations are indepen-
dent of the integration constants. However non-linear equations may have
solutions with movable singularities, 1.e. singularities depending on the con-
stants of integration. If this is not the case for singularities other than poles,
the equation is said to satisfy the Painlevé property. A partial differential
equation with symmetry group G satisfies the Painlevé test if the reduced
system of ordinary differential equations for the G-invariant solutions has the
Painlevé property. A typical example for a one-dimensional wave equation is
the ordinary differential equation obtained for travelling waves which depend
only on the variable & = & — ¢t, ¢ = const. The Ernst equation which we
will discuss in the following can be reduced to the Painlevé VI equation, see
[25, 26]. For a Painlevé analysis of the vacuum Einstein equations we refer
the reader to [27]. We remark that integrability and Painlevé property are
not equivalent, as a simple example discussed in [28] shows. Nevertheless,
a differential equation having this property has good chances to be consid-
ered as integrable. It is interesting to note that S. Kovalevskaya found the
‘Kovalevski top” by requiring that its equations of motion should have the
Painlevé property.

Another approach to integrability is based on a remarkable relationship
between self-duality and integrability, see [28]. It is well known that the finite-
action solutions of the Yang—Mills equations on E* with gauge group G can
be obtained by stereographic projection of G-bundles over the one-point com-
pactification S* of TE* [29], the instantons. If the gauge group is SU(2), SU(3)
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or U(2) then any weakly stable instanton is known to be either self-dual or
anti-self-dual. Thus, in order to find finite-action solutions to the Yang—Mills
equations on E* with gauge group SU(2), one has to construct connections
in SU(2)-bundles over S* with (anti-)self-dual curvature. Fortunately, the
Penrose-Ward transform (see [30]) relates such connections in a one-to-one
fashion with holomorphic bundles over the three-dimensional complex pro-
jective space CP2. Since holomorphic bundles over CP? can be constructed
explicitly by several methods, e. g., the Atiyah—Drinfeld-Hitchin—-Manin con-
struction [31], all solutions with finite action to the (anti-)self-dual Yang—
Mills equations (ASDYM) are in principle known. The fact that the space of
solutions to the ASDYM equations is well understood yields an interesting
approach to integrable equations by considering equations which are obtained
as symmetry reductions of these equations. It is an important fact that most
of the known integrable equations in two and three dimensions turn out to
be symmetry reductions of the ASDYM equations and allow for a reduction
of the Penrose—Ward transform, see [32]. Thus, the ASDYM equations can
be used to provide a unifying description of integrable systems. However,
there is no agreement about its universality. For example, the Kadomtsev—
Petviashvili equation needs to be “ruthlessly hacked and stretched to fit the
Procrustean bed of self-duality” [33]. Similarly, the Landau—Lifshitz equation
does not fit into this picture.

Thus there is so far no universal concept to the integrability of partial
differential equations as in the case of classical mechanics. However there
exist powerful solution techniques for the equations known to be integrable.
For instance rich classes of solutions can be obtained in terms of theta func-
tions on Riemann surfaces. It is the objective of this volume to study exact
solutions to the Einstein equations with astrophysical relevance. Given our
current knowledge, there is little hope to find a general solution to the Ein-
stein equations as is the case for the Poisson equation in Newtonian gravity
since the former do not seem to be integrable in general. Nonetheless classes
of astrophysically interesting solutions could be constructed in special cases
as the Schwarzschild and Kerr black holes. Though the solution generating
methods are limited to situations with symmetries, they are nonetheless of
great importance. Exact solutions help to visualize relativistic effects and
have led to the development of new physical concepts as the formation of a
black hole in the collapse of a relativistic star and the existence of event hori-
zons. In addition they can be used as testbeds for numerical and perturbative
methods to solve the Einstein equations.

It is known that isolated matter configurations in thermodynamical equi-
librium can be approximately considered as perfect fluid bodies. Such con-
figurations lead within the framework of general relativity to stationary ax-
isymmetric spacetimes. It turns out that the vacuum FEinstein equations in
this case are equivalent to the Ernst equation [34] (for details see Sect. 1.3

and Chap. 2)
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(REVAE = (VE)? (1.4)

for a complex potential (g, () (g,  are cylindrical coordinates in R3). This
implies that powerful methods from the theory of integrable systems, espe-
cially from the theory of Riemann surfaces, can be applied to construct rich
classes of solutions to this astrophysically interesting case. It is the purpose
of this volume to study in detail a large class of solutions which can be given
in terms of theta functions.

A hyperbolic version of the Ernst equation describes the collision of grav-
itational waves, see [35, 36]. The elliptic version is a reduction of the so-called
Bogomolny equations for the SU(2) Yang-Mills system and could be used to
construct multi-monopole solutions to these equations, see [37] to [41]. Tt is
also equivalent to the Yang equation [42] which can be obtained as a symme-
try reduction of the self-dual SU(2) Yang—Mills equations. Mathematically it
corresponds to a completely integrable sigma model [43] to [48], a harmonic
map from the four-dimensional spacetime into the hyperbolic plane, see e.g.
[49]. Tt is also closely related to so-called Bianchi surfaces (see [50, 51]), two-
dimensional surfaces in three-dimensional euclidean space with prescribed
curvature.

As already mentioned the Ernst equation is completely integrable. Inter-
estingly 1t shows all the integrability properties listed above: it has a Lax
representation, has the Painlevé property and can be obtained as a symme-
try reduction of the ASDYM equations. The associated Lax pair is closely
related to the Lax pair for Bianchi surfaces. The special feature of this lin-
ear differential system is the fact that the spectral parameter varies on a
Riemann surface with moving branch points. This means that the branch
points are parametrized by the physical coordinates. The spectral parameter
is thus not independent of the physical coordinates as in the case of the KdV
equation. This leads to important consequences if one wants to study solu-
tions in terms of theta functions which were found for the Ernst equation by
Korotkin [52]. In contrast to solutions to evolution equations of KdV-type
which are comprehensively studied in [1], the theta-functional solutions to
the Ernst equation are not periodic or quasi-periodic. The reason is that the
underlying Riemann surface is not ‘static’ in the case of the Ernst equation,
since the branch points are parametrized by the physical coordinates. Thus
in contrast to the cases studied in [1], the dependence of the theta functions
on the branch points is important.

It is the purpose of this volume to illustrate the consequences of these
deformations of the underlying algebraic curves on the solutions and the dif-
ferent properties of the solutions compared to the theta-functional solutions
of KdV. The idea is to present the necessary mathematical and numerical
tools to study this question. From an analytical point of view this includes
variational formulas for Riemann surfaces and identities for theta functions
as well as the discussion of singular algebraic curves. From a numerical point
of view, the ‘dynamical’ nature of the Riemann surfaces requires an efficient
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code since all characteristic quantities of the Riemann surface have to be
determined at each point of the spacetime. We study a physically relevant
subclass of Korotkin’s solutions and discuss in detail the physical and math-
ematical aspects with the aim to provide the necessary tools for concrete
applications.

1.2 The Korteweg—de Vries Equation

A starting point for the inverse scattering method for the KdV equation is
the Lax representation. We consider the following system of equations [53]

_1/),1717 = Ul/) - k21/) )
41/),t 41/),1'1'1' + 6U1/),x + 3“,@'1/) )

where k& € C is the spectral parameter. Note that the first equation is just
the Schrodinger equation for the motion of a particle in a time dependent
potential u(z,t). Obviously, these equations form an overdetermined linear
differential system for the function ¥. With

- _ (Y
1/)1—1/),17'1']{71/)’ @—<,¢)1)a

we may put the above system of equations into the Lax form,

G, =Uk)P,
S, =V(k)D, (1.5)

where U and V' depend on the spectral parameter k and are given by

10 01
Uk) = —k (0 _1) + (—u 0) 5
s{1 0 of 01 2u 0 —U 2u

V(k) = —4k (0 —1) +4k (—u 0) —k (uyx —2u) + <2u2 — U uyx) ’
The integrability condition @ ;¢ = @ ¢, of system (1.5) is just the KdV equa-
tion. Because of this condition, which implies vanishing curvature of @, the
above linear differential system is also called the zero-curvature representa-
tion of the KdV equation. This system is an example for an autonomous
linear system where the spectral parameter is independent of the physical
coordinates. As already mentioned the existence of the spectral parameter
indicates the presence of an infinite dimensional symmetry group for this
equation.

The above linear differential system was used in [9] to solve initial value

problems for the KdV equation for fast decreasing initial data in the follow-
ing way: for t = 0 the Schrodinger equation is solved with u(z,0) as the
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potential. Since the spectrum of the above Schrodinger operator turns out
to be independent of ¢, the time dependence of the eigenfunctions is such
that it is straight forward to obtain ¢(z,t) for a given ¢ (z,0). The corre-
sponding solution to the KdV equation then follows by reconstructing the
corresponding potential u(z,?) from the solution of the Schrodinger equa-
tion, a problem known as the inverse scattering problem. For fast decreasing
data this problem was solved earlier by Gel’fand, Levitan and Marchenko,
see [b4, 55] and also [53]. Tt turned out that many important equations of
physics as the sine-Gordon equation, the non-linear Schrodinger equation
and the Landau-Lifshitz equation can be solved with the inverse scattering
method, see [53, 1].

The inverse scattering method cannot be directly applied to the case of
periodic potentials. It is known that the Schrodinger operator with a periodic
potential has a spectrum with gaps. If the number of these gaps 1s finite, there
is a natural interpretation of the gaps as branch cuts of a closed algebraic
curve. In the case of the KdV equation, this curve is hyperelliptic,

2g+1

pt=TL0-2), (1.6)

j=1

where g is the genus of the curve, i.e., u is the square root of a polynomial
in A (for ¢ = 1 the curve is called elliptic). Notice that this curve is ‘static’
in the sense that the branch points A; of the curve are independent of the
physical coordinates. The corresponding solution to the KdV equation can
be expressed in terms of the associated theta function via the Its—Matveev

formula [56, 57],
U =20, nOUx+ Wt+ D)+ 2¢, (1.7)

where U, W and c¢ are characteristic objects of the underlying Riemann
surface, and where D is a g-dimensional vector. For details of the history of
finite gap solutions of the KdV equation see [1, 58]. The finite gap solutions
(1.7) are either periodic or almost periodic, for examples see Sect. 3.5.

Solutions in terms of theta functions on a ‘dynamic’ curve, i.e., a curve
with branch points depending on the physical coordinates play a role if one
considers the long time behavior of an arbitrary solution to the KdV equation.
After a rescaling of the time ¢ and the spatial coordinate x to ¢/e, x/¢, the
KdV equation takes the form

2
& Ugrr + 6uu,x = 4u,t )

which becomes the Hopf equation in the limit ¢ — 0. Initial data describ-
ing a wave packet will lead in finite time to a point of gradient catastrophe
of the solution for the Cauchy problem of the latter equation. For small ¢
the solution of such a Cauchy problem of KdV develops near the point of
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gradient catastrophe of the solution of the Hopf equation a zone of fast os-
cillations of wavelength of order epsilon. This oscillatory behavior can be
approximately described by the exact periodic solution of the KdV equation
where the spectral parameters are not constants but evolve according to the
Whitham equations [59, 60]. This picture has been proposed by A. G. Gure-
vich and L. P. Pitaevskii [61] and has been rigorously proven in the works of
P. Lax, D. Levermore [62] and S. Venakides [63].

1.3 The Ernst Equation

As already noted, the Einstein equations do not appear to be generically
integrable. To find exact solutions, spacetimes with symmetries have to be
considered, see [35] for a review. As Geroch has shown [64], already a space-
time with one (non-null) Killing vector has an interesting SL(2, R) symmetry
on the space of solutions of the field equations, see Sect. 2.1. In the case of
two Killing vectors there are two physically interesting cases: colliding plane
gravitational waves (two spacelike Killing vectors) and rotating bodies (one
spacelike and one timelike Killing vector). The field equations reduce in both
cases to a single complex differential equation, the (elliptic (4) respectively
hyperbolic (=)) Ernst equation [34]

9% 10 [ o€ A A
@‘9){@*;@—@(%—9)}: (%) * (a—g)

for a complex function £ = £(g, (), the Ernst potential depending on Weyl’s
canonical cylindrical coordinates ¢ and {. The real and the imaginary part
of the Ernst potential are denoted with f and b respectively. It is interesting
to note that the development of our understanding of the two classes went
almost parallel: if one restricts oneself to real solutions one has to solve a
linear differential equation and in both cases this class is known for a long
time. The solutions are either the Einstein-Rosen waves [65] which describe
collinearly polarized gravitational waves or the Weyl solutions [66], 1. e., static
and axisymmetric fields like the Schwarzschild solution for a static black
hole. Furthermore, in both cases there was an interesting complex solution
known before a Lax pair for the Ernst equation was given: in 1963 Kerr [67]
found the solution for a rotating black hole, and in 1971 the Penrose-Khan
solution [68] was published. In fact it was Ernst’s original motivation to
provide a framework for a convenient representation of the Kerr solution. It
turns out that the Ernst potential for the Kerr metric is just an algebraic
function of the coordinates g, ¢, see [35],

e ¥ry +e¥r_ —2mcosy

= — . 1.8
e~r, +elPr_ 4+ 2mcosyp (18)

where 7y = \/({ £ mcosp)? + p2. The mass of the black hole is m, the
angular momentum J = m?sin, and the horizon is located on the axis
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between —mcos ¢ and mcos ¢. For ¢ = 0 the Kerr solution reduces to the
static and spherically symmetric Schwarzschild solution. In this volume we
will mainly discuss the elliptic version of the Ernst equation.

The Ernst equation is equivalent to an SL(2,IR) sigma model which can
be seen by the following consideration: let J be the SL(2,R) matrix

With this matrix the elliptic Ernst equation is equivalent to the non-
autonomous sigma model equation (for details see Sect. 2.1)

(9«7,9«7_1),Q+(9«7,C«7_1),C:0~ (1.10)

This symmetry property was apparently first observed in [69]. Sigma models
[43] are used in many branches of physics as solid state physics, super-gravity
and super-symmetry theories, see [44, 45] and the monographs [46, 47]. One
useful aspect of these models is the fact that many two-dimensional classi-
cal sigma models are completely integrable, see [48]. Sigma models represent
harmonic maps ([49] and Sect. 2.1). In particular the Ernst equation repre-
sents a harmonic map from the 4 dimensional Lorentz manifold M into the
hyperbolic plane H. This fact was used by Weinstein [70] to [73] to prove ex-
istence and uniqueness for multi-black hole solutions where the horizons are
located on the axis being separated by conical singularities, so-called Weyl
struts. Mars and Senovilla [T4] used these techniques to prove uniqueness of
solutions for perfect fluid configurations.

The complete integrability of the Ernst equation was shown by Maison
[75, 76] and Belinski-Zakharov [77], for alternative linear systems which are
gauge equivalent see for instance [78] to [80]. One possible form of the linear
system 1s

_ JeJ! _Jed™
Pe=ST0, dp=SE0, (1.11)
where £ = ( —ig, where ¢ € SL(2,R), and where
y = 5%5* (K — # + /(K = &)(K —&)) : (1.12)

where K is the spectral parameter. An interesting feature of these linear
systems 1s that they are not autonomous, 1.e., that the spectral parameter K
is a coordinate on a ‘dynamical’ Riemann surface where the branch points are
parametrized by the physical coordinates. The above system is thus defined
on a whole family of surfaces of genus zero given by pu2 = (K — &)(K — é)
A key point in the construction of linear systems for the Ernst equation
was Geroch’s observation that the space of solutions of the Ernst equation
allows for an infinite-dimensional symmetry group [81]. He conjectured that

all asymptotically flat, stationary, axisymmetric vacuum solutions can be
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generated from Minkowski space by an element of this symmetry group which
is now named after him. This conjecture was proven in [82]. We remark
that a similar statement holds for the hyperbolic Ernst equation, see [83].
The relation between the Geroch group and the above mentioned SL(2,R)
symmetry, observed for solutions with one Killing vector, was clarified in [78].
There it was found that this group is the central extension of a group of
holomorphic functions with values in SL(2,1R). In [84] the infinitesimal form
of the Geroch group was shown to be the affine Kac-Moody algebra A;(1).
For the group theoretical properties of the Ernst equation see also [85] to
[88].

To understand the geometric origin of the linear systems it is helpful to
consider the above mentioned close relationship between integrability and
self-duality. It was observed in [37, 89] that the Yang equation, an equation
which i1s mathematically equivalent to the Ernst equation, can be understood
as a symmetry reduction of the ASDYM equations on flat Minkowski space,
the symmetry being given by two Killing vectors which correspond to rota-
tion and time translation. It turned out that the Penrose-Ward transform
factors through this symmetry,i.e., the Yang equation respectively the Ernst
equation may be treated by the same methods as the ASDYM equations. This
gives the possibility to describe the solutions to the stationary, axisymmet-
ric vacuum equations in terms of fibre bundles over the symmetry reduced
twistor space which was done by Mason and Woodhouse, see [88]. The equiv-
alence of the Yang equation and the Ernst equation can also be used to
construct multi-monopole solutions to the static axisymmetric Yang—Mills—
Higgs equations, see [37] to [41].

Another geometric origin of the linear systems of the Ernst equation we
are going to address in this volume is the close relation to Bianchi surfaces
[50]. Bianchi studied two-dimensional surfaces in R3 with prescribed Gaus-
sian curvature. For the case of negative constant curvature such surfaces are
described by the sine-Gordon equation for a scalar function u,

Ugpe =sinu. (1.13)

The Gauss—Weingarten equations provide in a natural way a linear system
for the sine-Gordon equation, where, however, a spectral parameter has to
be introduced. For other classes of Bianchi surfaces the Gaussian curvature is
not constant; the Gauss—Weingarten equation for Bianchi surfaces are closely
related to the Ernst system, see [51]: both equations can be obtained as a
symmetry reduction of the same differential system, where the Bianchi equa-
tion corresponds to a SU(2) reduction and the Ernst equation to SU(1,1)
reduction.

Due to the non-autonomous character of the linear system (1.11), solu-
tions in terms of theta functions first given by Korotkin [52, 90] have different
properties than the periodic solutions of equations as KdV. The solutions to
the elliptic Ernst equation are given on a family of hyperelliptic surface cor-
responding to the algebraic curve
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B g
it = (K =€) (K — & [[ (5 — Ep) (K - Fy) | (1.14)
j=1

where the branch points F;, F; are independent of the physical coordinates
and subject to the reality condition E;, F; € R or E; = F;. The solutions
depend only on the Weyl coordinates via the branch points of the Riemann
surface. Thus the solutions are neither periodic or quasi-periodic since the
modular dependence and not the dependence on the argument of the theta
functions plays the main role in this context. For a study of the elliptic
(g = 1) case see [91] to [93], for a more recent exposition see [94, 95]. We
note that a similar approach is possible for the self-dual SU(2) invariant
Einstein equations, see [96]. It is the purpose of this volume to investigate
and illustrate this class of solutions in cases of physical relevance, and to
establish the differences with respect to the well-known periodic finite gap
solutions discussed in [1].

To this end we consider boundary value problems for the Ernst equation.
It is generally believed that most of the stars and galaxies can be described
in good approximation as fluid bodies in thermodynamical equilibrium. In
the framework of general relativity, this implies for isolated bodies, i.e., for
asymptotically flat settings (see e.g. [97, 98]) that the corresponding space-
times are stationary and axisymmetric. This stresses the importance of the
study of stationary axisymmetric spacetimes. A relativistic treatment is nec-
essary for rapidly rotating and massive compact objects like pulsars, neutron
stars and black holes as the one in the center of the Milky Way [99].

Though the importance of global solutions describing stationary axisym-
metric fluid bodies is generally accepted, the complicated structure of the
Einstein equations with matter gives little hope that such solutions can be
found in the near future. Heilig has established existence theorems for rotat-
ing stars in Newton’s theory in the vicinity of known stationary perfect fluid
solutions in [100] and for relativistic rotating stars in the vicinity of Newto-
nian solutions in [101]. Explicit solutions in the perfect fluid region, which
are discussed as candidates for an interior solution, could only be given for
special and somewhat unphysical equations of state [102] to [104] (in [105]
it was shown that the Wahlquist solution cannot be the interior solution for
a slowly rotating star). As indicated above, in the exterior vacuum region
powerful solution generating techniques are at hand which do not seem to be
applicable for general ideal fluids. For surfacelike distributions of the mat-
ter as disks which are discussed as models in astrophysics for certain types
of galaxies and the matter in accretion disks around black holes, see [106],
the matter equations reduce to ordinary differential equations. These pro-
vide boundary data for the vacuum field equations which correspond to a
boundary value problem as studied in [107, 108]. In the case of a disk it is
thus possible to find global solutions of the Einstein equations by solving a
boundary value problem. The matter enters in these models only in form of
boundary conditions for the vacuum equations.
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One approach to solve boundary value problems for integrable equations
with the help of the associated linear system is to translate the physical
boundary conditions into a so-called Riemann—Hilbert problem (see Sect. 3.2)
as was done in [109] to [111] for a rigidly rotating disk of dust. Here the bound-
ary conditions at the disk are related to a jump discontinuity of the matrix of
the linear system in the plane of the spectral parameter. The corresponding
matrix Riemann—Hilbert problem on the Riemann sphere CP! is equivalent
to a linear integral equation, see [53]. Neugebauer and Meinel were able to
reduce the matrix problem for the rigidly rotating disk of dust to a scalar
Riemann—Hilbert problem on a hyperelliptic Riemann surface which can be
solved explicitly via quadratures. By making use of gauge transformations
of the linear system we were able to show in [112] that this is possible in
general if the boundary value problem leads to a Riemann-Hilbert problem
with rational jump data. Up to now there is, however, no direct way to infer
the jump data from the physical boundary value problem in general. The ex-
plicit form of the hyperelliptic solutions, however, offers a different approach
to boundary value problems: one can try to identify the free parameters in
the solutions, a real valued function and a set of complex parameters, the
branch points of the hyperelliptic Riemann surface, from the problem one
wants to solve.

To this end we study Korotkin’s solutions [52] as the solution of a gener-
alized scalar Riemann—Hilbert problem on a hyperelliptic Riemann surface as
in [112]. We present a complete discussion of the singularity structure of the
corresponding Frnst potentials. It is possible to identify a subclass of solu-
tions that are everywhere regular except at some contour, which can possibly
be related to the surface of an isolated body, where the Ernst potential is
bounded. These solutions are asymptotically flat and equatorially symmet-
ric, and thus show all the features one might expect from the exterior solution
for an isolated relativistic ideal fluid. They can have a Minkowskian and an
extreme relativistic limit in which the body is ‘hidden’ behind a horizon, and
in which the exterior solution becomes the extreme Kerr solution.

To provide concrete examples we study as in [113] a boundary value prob-
lem for a surface layer which consists of two streams of matter rotating with
the same angular velocity in opposite direction. From an astrophysical point
of view a Newtonian treatment of galaxies is sufficient as long as no black
holes are involved which are genuinely relativistic objects. In this sense the
study of disks has to be seen as a preparatory step for the study of systems
consisting of black holes plus disks. Here we are mainly interested in illustrat-
ing features of the hyperelliptic solution. Counter-rotating disks can be seen
as models for galaxies with counter-rotating matter components which are
probably the results of the collision of two counter-rotating galaxies. There
is experimental evidence [114] for galaxies with a large amount of counter-
rotation: SO galaxies (which are the link between elliptical and spiral galaxies
in the Hubble fork of galaxies) can have up to 50 % counter-rotation. The
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first galaxy of this type, NGC 4550 in the Virgo cluster, has been discovered
in 1992 [116] and has 30-40 % counter-rotation. Infinite disks with counter-
rotating matter were discussed as sources of the Kerr metric in [117]. Physical
properties for an explicit solution [118] as mass and angular momentum and
the energy density are discussed following [119]. We give plots for the metric
functions in typical situations and discuss interesting limiting cases.

1.4 Outline of the Content of the Book

In Chap. 2 we study a dimensional reduction of the vacuum FEinstein equa-
tions in the presence of a single Killing vector, an approach that can be seen
as a special case of Kaluza-Klein reductions of higher dimensional gravity
theories, see e.g. [64, 120]. Ehlers had already noted in [121] that a quotient
space metric where the action of the Killing vector i1s divided out leads to
simplified field equations on the orbit space of the Killing vector. It was found
that the spatial part of the Killing vector is dual to a scalar potential called
the twist potential. It is convenient to combine the norm of the Killing vector
with the twist to a complex scalar potential since the integrability condition
for the twist can be combined with the Einstein equation for the norm of
the Killing vector to a generalized Ernst equation [34]. The remaining Ein-
stein equations have the form of three-dimensional Einstein equations with
an SL(2,R) non-linear sigma model [69] as a matter source. This corresponds
to a harmonic map from the spacetime M into the hyperbolic plane . In the
presence of a second Killing vector the symmetry group of the sigma model
is considerably enlarged. We consider here only the stationary axisymmetric
case in Weyl coordinates [35]. In this case the symmetry group of the sigma
model becomes the infinite dimensional Geroch group [81, 78]. The Einstein
equations reduce to the complex Ernst equation which decouples from the
remaining metric functions. The latter can be obtained via quadratures for
a given Ernst potential. The complete integrability of the Ernst equation is
shown following Maison [75] and Belinski-Zakharov [77] in the form of an
overdetermined linear differential system for an SL(2,1R) valued function &.
We discuss the relation to the Bianchi surfaces studied in [51]. The Ernst
equation is equivalent to the Yang equation [42] which can be obtained as a
symmetry reduction of the (anti-)self-dual Yang—Mills equations. This equiv-
alence 1s used to establish a relation to twistor theory. We show how the
multi-monopole solutions to the SU(2) Yang-Mills equations arise, see [37].

In Chap. 3 we study the Riemann—Hilbert problem for the Ernst equation.
The simplest example for a Riemann—Hilbert problem is to find a function in
the complex plane which has a prescribed discontinuity at a closed smooth
contour. For analytic jump data this problem can be always solved explic-
itly in terms of the Cauchy integral. In the case of the Ernst equation, the
Riemann—Hilbert problem is formulated for the matrix @ of the associated
linear differential system. As in [112] we exploit a gauge freedom to transform
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the matrix Riemann—Hilbert problem to a scalar problem on some Riemann
surface. If the surface is non-compact, existence of solutions to this problem
can be shown [122, 123]. If the surface is compact, the solutions form a sub-
class of Korotkin’s solutions [52] and can be given in terms of hyperelliptic
theta functions. We establish the relation of these solutions to Krichever’s
approach [124] to algebro-geometric solutions of integrable equations via the
monodromy matrix. An algebraic form of the solutions [125, 126] free of theta
functions is considered together with the so-called Picard—Fuchs equations.
An alternative derivation of these solutions [127] based on an identity for
theta functions due to Fay [128] is presented which leads also to explicit
formulas for the metric. We summarize basic features of theta-functional
solutions to the KdV and a two-dimensional generalization, the Kadomtsev—
Petviashvili equation.

In Chap. 4 the hyperelliptic solutions to the Ernst equation are discussed
following [118, 129]. We study potential singularities of the solutions as co-
inciding branch points, the axis of symmetry and ring and disk singulari-
ties which was first done in [118; 129]. A subclass of solutions is identified
which are only singular at the zeros of the theta function in the denominator,
asymptotically flat and equatorially symmetric. We discuss interesting lim-
iting cases as the Minkowskian and the ultrarelativistic limit. Reductions of
the theta-functional solutions in terms of theta functions on surfaces of lower
genus are presented on the axis of symmetry and in the equatorial plane. We
study the ‘solitonic’ limit in which the Riemann surface degenerates which
leads for instance to the Kerr black hole or the static limit, where the Ernst
potential 1s real and belongs to the static Weyl class.

In Chap. 5 we discuss boundary value problems for the Ernst equation.
If one is interested in global solutions, two-dimensional matter distributions
as shells and disks have to be studied. We consider the case of dust disks
as in [106, 113]. To solve boundary value problems in terms of hyperelliptic
solutions we study differential relations for the Ernst potential at a boundary
on a given surface which follow from the Picard—Fuchs equations. As an
example of this approach we discuss the derivation of the solution for the
counter-rotating disk [130, 113].

To numerically evaluate the transcendental theta functions efficient nu-
merical algorithms are necessary. This is especially true in the case of the
dynamical Riemann surfaces studied here since the calculation of the so-
called periods, which is typically the most time consuming operation, has
to be performed for each spacetime point. In addition the underlying alge-
braic curve the deformation of which is being studied becomes singular at
various points as the axis of symmetry. Thus a very efficient code of high
precision is needed. In Chap. 6 we present a code based on spectral methods
[131] which is tested by local and global methods. The code is used to test a
code [132] based on spectral methods to directly solve the Einstein equations
numerically.
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As an example for physical properties of hyperelliptic solutions, we dis-
cuss the counter-rotating disk solution in Chap. 7 as in [119]. We consider
various interesting limiting cases as the Newtonian, the static, the ultra-
relativistic and the limit of a one-component disk [125]. The mass and the
angular momentum of the disk as well as its mass density are discussed. The
metric functions as well as the ergoregions, where there can be no stationary
observer with respect to infinity are presented.

In Chap. 8 we mention open problems in the context of algebro-geometric
solutions to the Ernst equation. This includes solutions of higher genus than
2 and a relation between the quantities characterizing the Riemann surfaces,
the branch points, and physical quantities as the mass, the angular momen-
tum and the equation of state in the matter. Black holes can be included
in the formalism by considering partially degenerate Riemann surfaces, see
[133, 134]. Since the stationary axisymmetric Einstein—-Maxwell equations in
the electro-vacuum are also completely integrable (an infinite dimensional
symmetry group was discovered in [135]), theta-functional solutions can be
constructed along the same lines, see [52]. The underlying Riemann surfaces
are, however, three-sheeted in this case. Hyperelliptic solutions can be ob-
tained by exploiting the SU(2,1)/S[U(1,1)xU(1)] invariance of the Einstein—
Maxwell equations, i.e., by using a so-called Harrison transformation [136] as
in [137].

In Chap. A of the appendix, where we fix the notation, we have included
a brief review of the mathematics of compact Riemann surfaces needed in
this volume. For details the reader is referred to textbooks by Farkas and
Kra [138], Mumford [139], Fay [128] and Belokolos et al. [1]. A link to twistor
theory as in [88] is established in Chap. B of the appendix.
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Ernst’s original motivation in finding the Ernst equation [34] was to provide a
simple scheme to construct the Kerr metric as a solution to the stationary ax-
isymmetric Einstein equations in vacuum. In fact the Ernst potential for the
Kerr solution is just an algebraic function in suitable coordinates, see (1.8).
In this chapter we study a dimensional reduction of the vacuum Einstein
equations in the presence of two Killing vectors which will lead to the Ernst
equation. Due to the integrability of this equation large classes of physically
interesting solutions can be constructed which will be the main subject of this
book. The integrability of the Ernst equation has also played a role in the
construction of multi-monopole solutions to the static axisymmetric Yang—
Mills-Higgs (YMH) equations. We note the close relation to the theory of
Bianchi surfaces. Bianchi considered surfaces in three-dimensional Euclidean
space characterized by the harmonicity of 1/v/—K where K is the Gaussian
curvature. In the case of constant negative Gaussian curvature, this leads e.g.
to the pseudo-sphere which is a solution to the integrable sine-Gordon equa-
tion. If one studies Bianchi surfaces with non-constant Gaussian curvature
one is led to equations which are closely related to the Ernst equation.

In Sect. 2.1 we will study vacuum spacetimes with a single non-null Killing
vector. Using a quotient space formalism going back to Ehlers [121] and Ge-
roch [64], we divide out the Killing action and study the field equations on
its orbit space. This approach can be seen as a special case of Kaluza—Klein
reductions of higher dimensional gravity theories. The spatial part of the
Killing vector can be dualized to a scalar, the twist potential. It turns out
that the Einstein equations are equivalent in this approach to equations for
three-dimensional gravitation with matter where the matter corresponds to
a SL(2,R) sigma model. The symmetry properties of the sigma model im-
ply that one can generate from a given solution new solutions via the action
of the group SL(2,R), the Ehlers transformations. However, these transfor-
mations do not transform asymptotically flat solutions into asymptotically
flat solutions in the strong sense: the transformed solutions will either have
a negative mass or a so-called Newman-Unti-Tamburini (NUT) parameter.
Solutions with such a parameter, which corresponds to a magnetic monopole,
are not physically acceptable, see e.g. [140]. In the presence of a second com-
muting Killing vector (we will mainly study the stationary axisymmetric case
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here) discussed in Sect. 2.2, the symmetry group becomes the infinite dimen-
sional Geroch group. The Einstein equations reduce in Weyl coordinates to
the Ernst equation, the remaining metric functions follow in terms of quadra-
tures from a given Ernst potential. The infinite dimensional symmetry group
of the Ernst equation is reflected by the fact that it can be treated e.g. as
the integrability condition for an over-determined linear differential system
for some SL(2,R)-valued matrix ¢ which contains an additional parameter,
the spectral parameter.

In Sect. 2.3 we study Bianchi surfaces mainly following [51]. The corre-
sponding Gaufi-Weingarten equations are very similar to the linear system
of the Ernst equation and allow for the introduction of a spectral parameter
which leads to a zero-curvature representation. The Bianchi equation and
the Ernst equation correspond to SU(2) respectively SU(1,1) reductions of
the same differential system. We discuss simple examples. In Sect. 2.4 we
establish the equivalence of the Ernst and the Yang equation [42] which can
be obtained as a symmetry reduction of the self-dual Yang—Mills equations.
This allows to establish a link to twistor theory as in [88] which will be ad-
dressed in more detail in Chap. B of the appendix. In Sect. 2.5 we consider the
static axisymmetric YMH equations for a massless Higgs boson in Manton’s
ansatz [141]. Following [37, 40], we show the equivalence of the Bogomolny
equations in this case to the Ernst or the Yang equation and discuss the
Bogomolny-Prasad-Sommerfield (BPS) monopole as an example. In [38] to
[41] the dressing method [77, 142, 53] was used to construct multi-monopole
solutions to the YMH equations, where the monopoles are located in the ori-
gin. Spatially separated monopoles were shown to be non-axisymmetric in

[143].

2.1 Dimensional Reduction and Group Structure

For basic knowledge of the differential geometry needed to study general
relativity we refer the reader to the standard literature as [140] and [144]
to [153]. We consider a four-dimensional manifold (M, g) with Lorentzian
metric g of signature +2. The existence of a Killing vector can be used to
establish a simplified version of the field equations by dividing out the group
action. These quotient space metrics were first used in [121], see also [64];
here we will follow the approach of [120]. We use adapted coordinates in
which the Killing vector = is given by = = d;. We adopt here a coordinate
dependent approach to simplify the expressions, but the decomposition can
be performed independently of coordinates as in [64, 70]. We also assume here
that ¢ is a timelike coordinate, i.e., V¢ is timelike. The construction works,
however, for non-null Killing vectors. The vector = is subject to the Killing
equation

£zg9ap =DPpEa+Da=Zp =0, (2.1)
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where £ denotes the Lie-derivative, where capital indices take the values
0,1,2,3, and where D4 denotes the covariant derivative with respect to the
metric g. The norm of the Killing vector will be denoted by f. The decom-
position we are using is not defined at fixed points of the group action, i.e.,
the zeros of f, and the resulting equations will be singular at the set of zeros
of f.

In contrast to a standard 3 + 1-decomposition, the metric is written in
this approach in the form

1
ds? = gapdetda® = — f(dt 4 koda®)(dt + kydaz®) + ?habdxadxb ;o (2.2)

latin indices always take the values 1,2, 3 corresponding to the spatial coor-
dinates. To establish the Einstein equations which are in vacuum just equiv-
alent to the vanishing of the Ricci tensor, we use the standard definition of
the curvature tensor R 4gcp via the commutator of covariant derivatives of
an arbitrary vector which yields for the Killing vector

[Da,Dp)Zc = RapenZ" . (2.3)

Interchanging the first two indices in (2.3) leads to a term involving the
Riemann tensor, interchanging the last two indices leads to a sign due to the
Killing equation (2.1). If one interchanges these index pairs alternately until
one arrives at their original position, one gets

2D4Pp5c = (Reapp — Reoap + Rapen)=P . (2.4)
The symmetries of the Riemann tensor then imply the relation
DaDPp5c =Rpapc=P . (2.5)
The vacuum Einstein equations RgCB = 0 thus lead to
DAD,ER = 0. (2.6)

The spacetime M can be decomposed in the quotient space S = M/Z
and the Killing vector =. The four dimensional tensor h4p defined by

[
[

A—B

C

~ . 1. -
hap = gaB + ?SASB = gaB — (2.7)

[1]
[

C

has the components ]~7,00 = ]~loa = 0, and hg = ilabf coincides with the
previously defined spatial metric. The tensor is thus a projector orthogonal
to =4, hap=" = 0. We can use ]~lab as a metric on the quotient space S. A
tensor on S has the properties

AT P =0, ..., EpT$-E =0, £zT{F=0. (2.8)
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The covariant derivative Da on S is related to the covariant derivative D4
on M via

DT & =hEPnA  hERS . WD DTS E (2.9)
Thus we obtain for R 4 g =458
1 . -
5DADAf = (DaZp)(DAZP) . (2.10)

Since /szEA = 0 we have /Nlj;‘DBEA = /szDB(EA/f). Thus /szileDAEB =

fhfthk[ayb]. Equation (2.3) for R, =" thus implies the Maxwell equation

1

51)(1(1»’21{[@7‘71) =0, (2.11)

where D, denotes the covariant derivative with respect to hgp, and where [ab]

denotes anti-symmetrization in the indices. Notice that all indices here are

raised and lowered with hgp. Equation (2.11) implies that the dual Eloble .

has vanishing curl and that it is thus the gradient of a scalar potential b. If
we define this twist potential b via

1
Vhf?

where h is the determinant of hgp, then equation (2.11) is identically satisfied.
The potentials f and b can be combined to the complex Ernst potential
E = f +1b [34]. The equations for f and the integrability condition for b can
then be combined to the generalized complex Ernst equation

£ b = kLot (2.12)

FDy D€ = DEDE . (2.13)

To determine the relation between the Riemann tensor on S and on M,
we calculate [)a[)ch where V, is an arbitrary vector field on 5. Thus we get
with (2.9)

DoDyV. = h2hBhED A (K5 WM DL Vi) (2.14)

which leads with (2.7) to
DoDyVe = h2hPhE (DaDsVe + (DaZp)E*DLVe/ f
+EHDAZC)PEVL/F) - (2.15)

To eliminate the derivatives of V, in the last two terms in (2.15), we use for
the second

L=Ve =EMDVe —VEDeEL =0, (2.16)

and the fact that =, VL = 0 for the third. Consequently we can write (2.15)
as

DaDyVe = h2hPhE (DaDsVe — (DaZp)(DeSL)VE/f
— (DaZc)(PEEL)VE/S) - (2.17)
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Since the vector V is arbitrary, we obtain a relation between the Riemann
tensor Rapcp on M and the Riemann tensor Rgpeq on S (the Killing equa-
tion was used to establish the symmetry of the second term),

Rabea = hf‘;hﬁh[cchg] (Rapcp —2(Pa=B)(DPc=p)/ f
CY(DAZ)(DBED)/f) - (2.18)

The equations for the metric hyp can thus be written in the form

1 _

ﬁ%(&a&b) , (2.19)
where R, is the three-dimensional Ricci tensor corresponding to hgp. It is
obvious that zeros of the norm of the Killing vector are singular points of the
equations (2.13) and (2.19). Equations (2.19) can be interpreted as equations
for three-dimensional gravitation with some matter model which turns out
to be the well-known SL(2,R)/SO(1,1) sigma model of pure gravity. Sigma
models are a map @ : (M,g) — (N,G) from a manifold M with metric g
into a target manifold ', G,

1

S[@] = 5/M PLDT G ap(P(x)) g™ (v)/—gd*x, (2.20)

Rap =

where g = det(g). Sigma models correspond to so-called harmonic maps as
will be shown below. In the case of the Einstein equations in the presence
of a Killing vector, the field equations follow from the three-dimensional La-
grangian

1 1
L3 = h (533 — Whab(fyafyb + byabyb)) : (2.21)
The metric AP 4 db?
ds? = ffit (2.22)

is the invariant metric of SL(2,R)/SO(1,1) ~ SU(1,1) which can be seen
from a suitable parametrization of the coset space in terms of the coordinates
f and b. It corresponds to the Poincaré metric of the upper-half plane. The
action of the group SL(2,IR) on the Ernst potential is given in terms of a
Mobius transformation. It 1s straight forward to check that the whole group
is generated by the shift & — £+ic with ¢ € R and the inversion & — 1/& the
Ehlers transformation [121]. Note that this transformation does not transform
asymptotically flat spacetimes into asymptotically flat spacetimes which are
characterized by the condition

2m

E=1- T+0(r—2); (2.23)

here r is some suitably defined radial coordinate with the property 1/r — 0
at spatial infinity, and the real constant m is the Arnowitt—Deser—Misner
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(ADM) mass, see e.g. [145]. An Ehlers transformed Ernst potential has a
negative or an imaginary mass, a NUT parameter. Such spacetimes do not
seem to have astrophysical relevance, see for instance [140] for a discussion
of Taub—NUT spacetimes.

Metric (2.22) is also the metric of the hyperbolic plane modeled by the
half-plane H = {(f,b) : f > 0}. This is a Riemann surface with constant
curvature —1, see also the section on Bianchi surfaces below. The energy
density of the manifold S is given by

hab
€= f—z(f,af,b-i-b,ab,b) , (2.24)
see [49, 70]. The integral of the energy density is the energy of S. The critical
points of this integral are the harmonic maps into the hyperbolic plane. They
satisfy the Euler-Lagrange equations

D*fD,f — D*Dgb
7 ;

D*fDgb

7

which are obviously equivalent to the Ernst equation in this case. This as-

pect is discussed in detail by Weinstein in [70] to [73], where it was used
to prove existence and uniqueness theorems for multi-black-hole solutions in

DD, f =

D*Dyb =2 (2.25)

the stationary axisymmetric case. In [74] these techniques were used to prove
uniqueness of solutions for perfect fluid configurations.

2.2 The Stationary Axisymmetric Case

In the presence of a second Killing vector 5 commuting with =,
Lzgap=£y94a8 =0, [Z,9]=0, (2.26)

the metric can be further simplified to the Weyl-Lewis-Papapetrou form
with diagonal A4 1n situations which are asymptotically flat or which have a
regular axis, see [154, 155] and also [35]. We will only consider here such cases
with stationary and axial symmetry, i.e., with 5 = Js. In Weyl’s cylindrical
coordinates (g, ¢, ¢), we have

hap = diag(e e W?) . (2.27)

In addition we can choose k, = (0,0, a). All metric functions depend only on
¢ and ¢. The metric functions f, @ and W? are Killing invariants,

f=—Za54,
le = _EAUA )
W? = —Z,5%0% + (5an?)? (2.28)
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Obviously, the chosen metric does not change under conformal transfor-
mations in the (g,¢)-plane and basis transformations in the Lie algebra Fs
generated by the Killing vectors = and 7, i.e., coordinate transformations of

the form )
(5=

ad— By #0. (2.30)

The coordinates are usually fixed by imposing regularity conditions on the
symmetry axis ¢ = 0 and at spatial infinity. For a detailed treatment of this
issue see e.g. [108]. On the regular part of the axis the metric should be
elementary flat [148], i.e., the metric should be Minkowskian with vanishing
first derivatives. Thus we require

with

9:6(0,C) = 996(0,() = 0, (2.31)
which 1implies
a(0,{) =w(0,() =0, (2.32)
and
£0(0,¢) = a,(0,¢) =0. (2.33)

Furthermore, the ratio between the circumference of a circle around the sym-
metry axis and its radius should be 27 in the limit ¢ — 0. More precisely,

27
JTsed W2 —a? )
i 7“[0 94549 =27 I We/f —a?f = 27T—VV’Q =27

P T e e [T Ty o (239
by de I’'Hopital’s rule. Thus,
Wg(0,¢) = e+06) (2.35)
To summarize, on the axis we should have
[0(0,0) =0, a(0,{) =a,(0,{) =0,
W(0,¢)=0, OO =wW,0/). (2.36)

Remark 2.1. A transformation of the form ¢’ = ¢ + wt with constant w de-
scribes a change to a coordinate system rotating with w with respect to the
original system. The corresponding transformation of the metric coefficients
1s

Git = Ger + 2wgis + wgss
g£¢ = gip +Whggp -

To require that g should be Minkowskian on the symmetry axis does not fix
w.
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In the following we are particularly interested in the study of the gravita-
tional field of isolated matter configurations in an otherwise empty universe.
Thus, we impose the condition of asymptotic flatness, 1.e., that the metric is
asymptotically Minkowskian

lim U= lmk=lima=0, lim (W-y)=0, (2.37)
r—r00 r—r00 r—r00 r—r00
where e?V = f, where 72 = ¢? + ¢?, and where Ug and a¢® remain bounded.
Observe that w can now be fixed by requiring that a vanishes at spatial
infinity.

It is usually assumed that stationary axisymmetric fluid configurations
are invariant under reflections at the equatorial plane and that the corre-
sponding gravitational fields reflect this symmetry. In the following, we will
often restrict ourselves to equatorially symmetric spacetimes, where the met-
ric functions fulfil g4 5 (0, ¢) = gan (o, —(),i.e. a, e?V and k are even functions
in (.

Equations (2.19) for the ¢¢ component imply

Wiee+Wee=0. (2~38)

Thus W is a harmonic function of ¢ and ¢ which has to vanish on the axis,
see (2.32). We can thus use W as a coordinate,

W=o0, (2.39)

if [VW? # 0. Thus we use the metric
1
ds? = —f(dt 4 ad¢)? + ?(e% (do* +d¢?) + o*d¢?) . (2.40)

For the following it proves helpful to use complex coordinates ¢, & which are
related to g, via

E=C—ig. (2.41)
Then equations (2.19) imply for the metric function k
E-¢, -
ke=>2-"TE:E, . 2.42
€= gz Gebe (2.42)

The integrability condition for & in (2.42) is just the Ernst equation which
reads in this case

1 2
Eei————(E;—E¢)=—=E:E7. 2.43

For ¢-independent &£ this is equivalent to

fAE = (VE)?, (2.44)



2.2 The Stationary Axisymmetric Case 25

where A and V are the standard operators in cylindrical coordinates. The
duality relation (2.12) then reads

igbyg
Clyg = ? .

Again (2.45) is integrable because of the Ernst equation. Thus for a given
solution to the Ernst equation, the metric functions @ and & can be given in
terms of quadratures.

We note that the spacetime is static if the Ernst potential is real and
the function a vanishes. In this case the Ernst equation reduces to the ax-

(2.45)

isymmetric Laplace equation for U, the so-called Euler-Darboux equation,

1
Uo + EU,Q + U =0. (2~46)

The corresponding solutions belong to the Weyl class.

The above relations imply that solutions to the stationary axisymmetric
Einstein equations in vacuum can be obtained by solving the Ernst equation
only. The complete metric then follows in terms of line integrals. This is ob-
viously an important simplification. The main advantage of the formulation
of the Einstein equations in the Ernst picture is, however, the fact that the
Ernst equation is completely integrable, i1.e.; that the symmetry group of the
equation goes over in the presence of a second Killing vector from SL(2,R) to
the infinite dimensional Geroch group [81]. The relation between the Geroch
group and the above mentioned SL(2,R) symmetry for solutions with one
Killing vector was established in [78]: The Geroch group is the central exten-
sion of a group of holomorphic functions with values in SL(2,R). In [84] the
infinitesimal form of the Geroch group was shown to be the affine Kac-Moody
algebra A,V For the group theoretical properties of the Ernst equation, see
also [86] to [88].

Here we are mainly concerned with the analytical consequences of this
infinite dimensional symmetry group. As in the case of the KdV equation
(see the introduction and references given therein), the Ernst equation can be
treated as the integrability condition of an over-determined linear differential
system. One possible form of the linear system is (1.11) which is adapted to
the SL(2,R) symmetry of the equation. Here we use a gauge equivalent form
of the system, see [80], which was first given in [156],

L (Mo K—¢(0M
2e® _<0N>+ K—&(No}

N0 K—¢ N
om)T K—¢ 0

U,

P D! v, (2.47)

<o

where
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_ & _ _fe
M_5+£’ N_8+£'

The above system is defined on the Riemann surface £y of genus 0 defined
by p? = (K — &)(K —£). This means that the branch points of the Riemann
surface are parametrized by the physical coordinates, the Riemann surface
1s ‘dynamical’ in this sense; this is an important difference to equations like

KdV. The solution of (2.47) can be normalized by the condition

(2.48)

O(K = oot ¢,€) = (g _D : (2.49)

which implies that the Ernst potential can be directly read off as one com-
ponent of the matrix @ at infinity in the upper sheet of £y which is denoted
by cot (this is the reason why we choose this system instead of the one in
(1.11)). Consequently if one succeeds to construct a matrix ¢ in a way that
it solves the system (2.47), the corresponding Ernst potential is easily acces-
sible. The next chapter will be devoted to the construction of a large class of
solutions with the help of so-called Riemann—Hilbert techniques.

2.3 Bianchi Surfaces

In [75] the associated linear system of the Ernst equation was found by group
theoretical methods applied to sigma models. The corresponding linear sys-
tem in [156] was found by analogy to the sine-Gordon equation (SG). In this
section we will establish the close relation between the Ernst equation and
so-called Bianchi surfaces. It is well known that many equations which have
been successfully studied with the inverse scattering method in the last 30
years have been obtained in the framework of surface theory more than 100
years ago. The most famous example for this is the SG equation

D o =sind (2.50)

which is equivalent to the Gauss—Codazz system for surfaces with constant
negative Gaussian curvature K. The case of positive Gaussian or mean cur-
vature H leads to the hyperbolic version of (2.50), the sinh—-Gordon equation

G .:+sinhd=0. (2.51)

Complete integrability of these equations is established by introducing a spec-
tral parameter into the corresponding Gauss—Weingarten system which leads
to a zero-curvature representation of the equations, see [157] for a review.
Bianchi [50] studied congruences C'in R? i.e., a two-parameter family of
straight lines. In general a congruence has two focal surfaces S; and Ss.
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Definition 2.2. A congruence C' is called a Bianchi congruence if the Gaus-
stan curvatures of S1 and S at the points on the same straight line of the con-
gruence are negative and coincide. The surfaces S1 and Sy are called Bianchi
surfaces.

These congruences and surfaces were apparently first introduced by Bianchi
in [159], see [160] for a more modern exposition.

We consider the embedding of an arbitrary surface S in R3 defined by the
vector function F(z,y) : R? — R3 Let N(z,y) be a unit normal vector to
S. As usual one defines for S the first and second fundamental form as

I =(dF,dF), II=—(dF,dN). (2.52)

Then the Gaussian curvature is given by

det 17
=TT (2.53)
This curvature satisfies in the case of a Bianchi surface
[L] =0, (2.54)
V=K oy

where x and y are asymptotic coordinates on S, i.e., coordinates in which
the second fundamental form is off-diagonal, see the concrete parametrization
below in (2.57). Equation (2.54) implies
1
’Cz—ma Plx,y) = F(z)+ F(y) (2.55)
where F'(x) and G(y) are arbitrary real valued functions.

If S has negative Gaussian curvature (2.55) with P(z,y) > 0, we can
always choose local coordinates (z,y) along the asymptotic lines (F(z =
const,y) and F(x,y = const)) along which the curvature is equal to 0. In
this case the vectors F ., F , as well as F ;, and F ,, are orthogonal to
the normal vector IN. Then the first and second fundamental form can be
parametrized in the following way,

I = P*(A*da? + 2AB cos ¢dxdy + B*dy?) , (2.56)
Il = 2P ABsin ¢dxdy | (2.57)

where PA = |F ;|, PB = |F 4|, and where ¢ is the angle between F , and
F ,, i.e., between the asymptotic lines.

In the following we adopt a quaternionic description of the surfaces,; see
[51] and [161] for details. This description is based on the standard identifi-
cation of R3 with the algebra su(2),

3
1
X = (x1, 22, 23) ERSHX:;Zkak , (2.58)
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where o are the Pauli matrices. We consider the following basis in R3:

PA ) PB ) o
T(COS $101 +sin¢r02) , T(COS $201 +8in ¢a02) | 2—? . (2.59)

There is an SU(2) transformation @ which maps this basis to the basis
(Fyx’Fyy’ )’

. DA .
F,= @_17?2—i(cos $101 +8in ¢102)9P |

. B .
F,= @_17?2—1(cos $201 + 8in ¢202)P |

N = é—lgd (2.60)

The matrix & satisfies the Gauss—Weingarten equations

$,=U0, &,=V0, (2.61)
where
U= % [—A cos ¢101 — Asin ¢gr02 + (f/)z,x + 72?7;/2 sin(¢1 + ¢2)) 03] )
v=1lp ¢ Bsingaos + | —6 P’xB'(fb + ¢2) (2.62)
= 5 COS @01 SN @909 1,y Q'PA Sini @1 2 a3l . .

The compatibility condition for the Gauss—Weingarten system (2.61) is the
following Gauss—Codazzi system of nonlinear equations for the real valued
functions A(z,y) > 0, B(z,y) > 0 and ¢ = @1 + ¢a,

¢ oy + % (PWB sin qs) + 1 (PyyA sin ¢>) — ABsing =0,
)T Yy

P 2\ PB
Py, P _
Ayy'i’ ﬁA_ ﬁBCOS¢_ 0,
Paop Py _

It turns out that one can introduce a single complex valued function £ =
§Z~511/§Z~512 instead of the three real valued functions (A, B, ¢). The Gauss—
Codazzi system (2.63) is equivalent to a second order differential system for
the function &,

P

(E+EN (s,xy 4 Pae Py

2P 2P

g,x) = 28,8, . (2.64)

The functions A, B and ¢ are given in terms of &,

_ 28l 20E]
L+ (&) L+ (&)

p=m+ arggi : (2.65)
Ey

)
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Similarly one can express the fundamental forms and the moving frame in
terms of the function &, see [51]. Note that equation (2.64) can be written in
terms of the Gauss map IN which reads in terms of the function &

11 €2 -1 2¢&
_211+|€|2< 28 1—|5|2)’ (260)

in the form of

(PN N"H y+(PNy,NH . =0. (2.67)

The Gauss—Weingarten system (2.61) has almost the form of a Lax pair,
but it lacks a spectral parameter. In the case of Bianchi surfaces, this pa-
rameter can be inserted as done by Bianchi [50]: with P(z,y) = F(x)+ G(y)
one can show that the equation (2.64) is the compatibility condition for the
linear system (¥ is a 2 X 2 matrix)

W, =UV, W,=VV, (2.68)

)

R H =1tk
v=(0n)+ i (05) e

The form of the functions A, B, C and D can be obtained from the condition

where

U(r,y, K =ocot) = (5‘51 _11) : (2.70)

Gauging ¥ to be a SU(2) matrix ¢ with the property #(K = co®) = @, the
embedding of the Bianchi surface is given by

F=-20""0 |, N=o"'2 (2.71)

21 ‘K:oo+ ’

It is convenient to introduce locally the following types of Bianchi surfaces:

1. Bg-surfaces: F' = const and GG = const. In this case we can put £ = 0 and
G = 1 without loss of generality which implies K = —1. For A= B =1
the Gauss—Codazzi system 1s equivalent to the SG equation.

2. By-surfaces: F(z) = const, G ,(y) # 0. Without loss of generality we can
put locally F' =0 and GG = y which implies K = —1/°.

3. By-surfaces: Fo(x) # 0, G 4(y) # 0. Without loss of generality we can
put locally F' =z and G = y, which implies K = —1/(z + y)?.
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In the latter case equation (2.64) reads

@) = 26,8, . (2.72)

c—1
(E+E7Y (5,xy+ TeE

This equation is obviously closely related to the Ernst equation. Both equa-
tions can be obtained as reductions of the following system for two complex
potentials & and &,

gl,x + gl,y _
(&1 + &) (51,xy —+ 2z +y) ) =268y,
Ear v+ &
(81 + ((/‘2) (((/‘Z,xy + T—Fy)y) = 282,@'((/‘273/ . (273)

The Bianchi equation (2.72) corresponds to the ‘unitary’ reduction & =
(81)_1J whereas the Ernst equation corresponds to the ‘real” reduction & =

&1 = &;. The system (2.73) has a zero curvature representation of the form

(2.68) with
(K = o0) = (2 _11) : (2.74)

The reduction & = (£5)~" leads to the system (2.68), the reduction & = &
leads to the system found in [156]. The matrix ¥ can be gauged in a way
that it is in SU(2) in the first case and in SU(1,1) in the second case.

For illustration we will discuss some simple cases of Bianchi surfaces which
correspond to solitonic solutions to the Bianchi equation. All formulas below
are taken from [51] where the derivations and some of the figures are given.
In the By case the one-soliton solution of the SG equation leads to

2 o 2 o
F:(y—x—i—%ﬁl—q) ! g %ﬁlcos(x—l—y)Q—?

1+4¢2) 20 1442
— =3B sin(x + y) 2= (2.75)
14 ¢ 2’
where with J,¢ € R
1—idex —qx
5 = p(y/q — qz) (2.76)

~ 14idexp(y/q —qx)
This is a pseudo-sphere surface parametrized by the real values ¢ and §. The
case § = ¢ = 1 is shown in Fig. 2.1. The case ¢ = 4 and § = 1 leads to the
infinite helix which is shown 1n Fig. 2.2.

The embedding for the one-soliton solution for B, surfaces can be written
in the form (y > 71 positive)

F= (—l\/@—?iwl%ﬁl)%—l— (2@1351 cos %) %Jr (2@1351 sin %) % ,
(2.77)
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Fig. 2.1. Pseudo-sphere

0.5

Fig. 2.2. Part of the infinite helix

31
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B 1 —idexp(ipz/\/y) B ) B )
h= 1+ i0exp(ipz/\/y) p=vVm-—y/meR, w=ynmeik.
(2.78)

The solution depends on the two real parameters § and v €]0,y[. A typical
example of this surface can be seen in Fig. 2.3 for 6 = v, = 1.

Fig. 2.3. One-soliton Bj;-surface

There is no non-trivial one-soliton solution in the By case. The embedding
for the two-soliton solution has the form

_AS(qoq1) o1 48(qo + 0 XY q1) o2 AR(qo + o XY q1) o3

= — —= - = (2,79
L+ g1]? 2i L+]q* 2 L+|p* 2 (279)
where
qo = —io(51 X +52Y), q1=—i(BX+5Y). (2.80)
The coordinates X and Y are related to the coordinates z, y via
X= oo ben), V=g —w)
~ i W1 T WwW2), ~ %o w1 —wz2),

wi=Vet+a)o—y), wr=w. (2.81)

These coordinates are more suitable than x, y to generate the whole surface
since they are supposed to take positive and negative values of X and Y. If
only one possible choice of sign in the w; is taken into account, only one of
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the four leafs of the surface will be obtained. The solution is parametrized
by the real parameter ¢ and the real parameters a; and as in
1 ia ia 1 ia ia

61:5(6 14 ele) 62:5(6 el (2.82)
A typical example for these surfaces with o = 1, a3 = 7/2 and as = 0 is
shown in Fig. 2.4, where X, Y € [—10, 10]. The surface closes asymptotically
for X, Y — oo, the two leafs disconnected by a small gap approach each other
in this limit. The surface is however not smooth at this connection.

S

Fig. 2.4. Two-soliton B;-surface

2.4 The Yang Equation

To understand the geometric origin of the zero-curvature representation of
integrable equations, one approach consists in the study of symmetry reduc-
tions of the (anti)-self-dual Yang—Mills equations (ASDYM), see [28]. In the
case studied here, the first observation 1s the equivalence between the Ernst
equation and the Yang equation [42]. If we write the Weyl-Lewis—Papapetrou
metric in the form

ds? = Japdz®da? + 2=V (dg? 4+ d¢?) (2.83)

where «a, 8 = t, ¢ and
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(Jas) = (__aj} Qz/;a_fazf) , (2.84)

the matrix J is subject to the Yang equation
(0J 7 o) o +o(J T ¢) e = 0. (2.85)

Remark 2.3.
(1) With J being a solution to the Yang equation the matrix

J' = AJB", (2.86)

with constant 2 x 2-matrices A and B also solves the Yang equation.
(ii) If J is a solution to the Yang equation then the matrices J=1, and J7 are
also solutions.

To establish the relation between the Yang equation and the Yang—Mills
equations, we consider duality for the latter. Let M denote an affine four-
dimensional space with {-times + and s-times — in the signature. Since #* =
(—1)1, the Hodge star operator on M has the eigenvalues £1 iff s —¢ is even
and +1 iff s — ¢ 1s odd.

Definition 2.4. Let w be a two-form on M. We call w self-dual iff

w s—1 — even
W= {iw s—t —odd (2.87)

Similarly, we call w anti-self-dual #ff

—w s—1 — even
W= {—iw s—t —odd (2.88)

For the two-form F' of the field strength of the Maxwell field given by

R S T i
o 0 B®-B?

(F/“’) = E2 —BS 0 Bl 5 (289)
E* B? -pB! 0
we find with N
(#F )y = Z FYeim (2.90)
i<j
for the components of the Hodge dual of the field strength
0 B' B? B3
-B! 0 FE®-p?
“Fj)=| _pe_ps ¢ m (2.91)

-B® p?-p! 0
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Thus, the only real solution to *F = £1F is given by
E'=E'=p*=B'=B"=B*=0. (2.92)
The same holds for the ASDYM equations
« = I (2.93)

where F'is now the field strength of the non-Abelian gauge field.

On the other hand, for signatures of the metric of the form (+ + ++),
i.e. Euclidean space and (+ + ——), the so called ultra-hyperbolic spacetime,
real solutions to the (anti-)self-dual Maxwell equations exist. In order to
treat several signatures of the spacetime on the same footing, it is often
convenient to consider the complexification M© of M. Furthermore, let us
define a local chart of M® with double null coordinates (w,w, z, %) such that
the line element ds? on M has the following form

ds? = 2(dzd? — dwdw) . (2.94)

Imposing certain reality conditions on the coordinates (w, @, z, Z) yields real
subspaces of M©, see [32].

(i) the four-dimensional Euclidean space E*: W = —w, 7 = 7, i.e.,

Fwy_ 1 29 +iz! —2? 4 123
wz ) o\t 2 — it ’

(ii) the four-dimensional Minkowski space M: W = 1w, 7= z and Z = Z, i.e.,

zwy)_ 1 29+ 2! 2% — 128
wz) o\ 2?2 +ixd 20— 2! )

(iii) the four-dimensional ultra-hyperbolic space U: w = w, 7 = Z, i.e.,

w _L 2% + izt 2? — 123
z) T R\ 4t =izt )
0,1 .2 .3

Here z°, 2", x°, x° are real coordinates.

S W

Remark 2.5.

In the case (iii) it is also possible to require z, 2, w and @ to be real in order
to obtain a metric of the same signature.

The different real subspaces of M can be characterized as the set of fixed
points of M with respect to the following anti-holomorphic involution

o: M — M©, (2.95)

defined by



36 2 The Ernst Equation

i

|
Zal
|
g

o(w,z,w,2) = (—w, 2, —w, Z) ,

o(w,z,@,%) = (0,7,w,7) ,

o(w,z,w,7) = (—w,z,w,%) ,

o(w,z,w,7) = (0,z,w,3) . (2.96)

Here the first definition just yields the Euclidean four-space E*, the following
two the ultra-hyperbolic plane and the last one the Minkowski slice.

Let us turn, now, to the ASDYM equations (we consider here the anti-self-
dual case, the treatment of the self-dual equations is analogous). We denote
by D the covariant derivative

D=d+® (2.97)

of a connection on a complex vector bundle of rank n over a region U of
spacetime. Let us denote by F' the corresponding curvature two-form of the
connection, i.e., ' '
= Fijdl‘l Ada? |

with

Fij = 32'@]' - 8j@i + [@i,@j]
In double null coordinates (z, Z, w, @) the condition of the anti-self-duality of
F becomes

0, (298
0:Py — OpPs + [@g,@w] =0, (299)
0,P; — 0:P, — 0y Py + 0Py + [@Z,@g] — [@w,@w] =0 (2100)

With
Dwi6w+@wa Dziaz‘i‘@wa Dwi3w+@w, D,Ziai‘i‘@ia

the above equations become

[DzaDw] = 0 bl
[DEaD’Lﬁ] =0 )
[DZ,Df] - [DwaDw] =0,
and defining
L= Dw - €D§ )
M =D, —-¢Dg ,

we find the following form of the ASDYM equations

[L,M]=0, (2.101)
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for all ¢ € C.
Equations (2.98) and (2.99) can be integrated by the ansatz
OwH = H - &y | 0.H=H- -9,
. . A A (2.102)
OsH =H  -®y | O;:H=H - -®;,
with R
H, H:M®—Gln;C). (2.103)
Under a gauge transformation
& — P =g g+ g g, (2.104)

with ¢ € Gl(n; C) the quantity J = H-H~! remains unchanged, if we replace
H—H' =Hgy, H—H' =Hg. (2.105)

Then (2.100) takes the form
O (J7105J) — 0. (J710:0) = 0. (2.106)

Let us now consider the Euclidean subspace of MC with Weyl coordinates
(t, ¢, 0,¢) which are related to the double null coordinates by

i i s
such that we have
9. = L(0, +idy) | By = 1 (€99, %@) , 2108
9: = L (0 —idy) , O = % (700, - =20, '
Let the gauge potential @ be given by
@ = Pudt + Pypdd + P,do + D,dC (2.109)

and assume that & 1s invariant under time translations and rotations
Lx®=0=Ly® , (2.110)

with X = 0, and Y = 0, i.e., the components of @ do not depend on ¢
and ¢. Analogously, in double null coordinates this condition means that @ ,,
@ ;& and @ do not depend on ¢ and ¢, but only on ¢ and . Thus, for
a gauge potential fulfilling (2.110) equation (2.106) takes the form

0, (J—laQJ)Jréj—laQJJraC (J71'9;J) =0, (2.111)

what coincides with the Yang equation (2.85). Thus, the Yang equation is
equivalent to the ASDYM equations on [E* for static and axisymmetric fields.
However, a solution to (2.111) has to fulfil several additional conditions in
order to yield a solution to the Yang equation:
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(i) J has to be real and symmetric with n = 2 and

(i) det J = —¢?,

what follows directly from the definition of J in equation (2.84). This equiv-
alence can be used to construct solutions to the stationary axisymmetric
Einstein equations with twistor methods which is discussed in Chap. B of
the appendix.

Remark 2.6. Often equation (2.106) is called Yang equation.

An interesting consequence of the Yang equation being a symmetry re-
duction of the ASDYM equations (which was first observed by Witten [167]
and Ward [168]) is the fact that the latter are known to be integrable. The
Penrose-Ward transform (see e. g. [30]) establishes a natural one-to-one corre-
spondence between anti-self-dual U(n)-gauge potentials over S* (up to gauge
equivalence) and holomorphic vector bundles E of rank n over CP? with a
positive definite real form (up to isomorphism). An interesting feature of the
Penrose-Ward transform is that it allows for symmetry reductions. It turns
out that the Yang equation can be obtained as such a reduction. In fact,
in [32] most of the known integrable non-linear equations have been solved
by a symmetry reduction of the Penrose-Ward transform. For the stationary,
axisymmetric Einstein equations this procedure has been worked out in [88],
see also [163] and [164]. A detailed description of the procedure for the Kerr
solution can be found in [165]. An important point is that in the solution pro-
cess linear systems for the Yang equation are generated and get a geometric
meaning, see Chap. B of the appendix for details.

Following [88], but see also [166], let us consider the holomorphicity condi-
tion for the sections b = b(g, {, A) of the holomorphic vector bundle ¥ — Ry,

Ob+Wwb=0. (2.112)

With # = J and H = I this takes the form

1 1 [0J 2 0J - 0J - 0J = b -
= 90 — N2Z il A—— b4 —
1+/\2J (agﬁg 3C6Q+3C8C+ ag@() —I—agﬁg
b b -
hid —O\= 2.11
+3C6C + 3/\6 0, ( 3)
and using - -
_ A[(A? = 1) 9o — 2X9(]
OA = — 2.114
e(M+1) ’ (2114
we find the following system of equations
0b A—\3 1 1 (0] 0J
- - _— — A b=
e T o ED 1N (ag ac) v

o 22 a1 _ (o] oJ
— — - — 4+ A—]-b=0. 2.11
AN I ESY (a<+ ag) 0. (2.115)
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By simple algebraic manipulations we obtain

o AOb 9 0]

90 e Tract g =0
b A2ob b 0]
%+?8_/\_/\8_Q+J %~b—0~ (2.116)
With V4208
_e— oM +20A
w = — , (2.117)
we find )
0 _—e—oX 9 (2.118)

N T 222w
Restricting (2.116) to a leaf of the foliation, i.e. putting w = const., we obtain
with s = s(g, () the reduced system

(0p+X0¢) s+ J 0, -5 =0,
B = X0 s+ J 10T -s=0. 2.119
¢ 4 ¢

We have

Lemma 2.7. The integrability condition for the linear system of equations
(2.119) is the Yang equation.

Proof. Rewriting (2.119) one obtains

(1+A%) 0ps = (AT 710 — 10,0 s,
(1+A%)0cs == (AT 10, J + J710cT) s (2.120)

For this system we write down the integrability condition d:d,5 = 0,0¢s.

Using
1 227 (1 — \?
Jp (—2) = - 3 ( ) , (2.121)
1+ A (14227 (2072 + 0 (1 — A2))

an analogous expression for J¢ (1 + /\2) ~!and ordering of terms with respect
to powers in A we find that the coefficients of the even powers of A vanish iff

I 00T+ 0(9c (J710cT) + 0, (J719,7)) =0, (2.122)

i.e., 1f the Yang equation is fulfilled. For the coefficients of the odd powers in
A we find that they vanish identically because of 9:9,J = 0,0¢J.
O
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2.5 Multi-Monopoles of the Yang—Mills—Higgs
Equations

It was shown by ’t Hooft [169] and Polyakov [170] that spontaneously broken
gauge theories with a simple gauge group possess classical solutions that can
be 1dentified with magnetic monopoles. Such solutions can be interpreted as
soliton-like particles. In the limit of vanishing Higgs potential when the Higgs
field becomes massless, the field equations simplify considerably; the static
minimal energy configurations are given as solutions to a set of first order
equations, the Bogomolny equations. The analytic solution for the simply
charged spherically symmetric 't Hooft—Polyakov monopole was found by
Prasad and Sommerfield [171] and Bogomolny [172]. Since the monopoles in
this case do not interact, multi-monopole solutions for the static axisymmetric
case exist. The first exact solution for a doubly charged monopole were given
by Ward [89] with twistor methods and by Forgécs et al. [37] to [41]. Here we
will follow the latter approach which used the equivalence of the Bogomolny
equations in Manton’s ansatz with the Ernst equation.

We consider an SU(2) gauge theory with an isotriplet Higgs field in the
limit of vanishing Higgs potential with Lagrangian density

1 a a pur 1 a a
L= = Fu,F* = 5(Du@)" (D )" | (2.123)

where
Fo, = AL, — AL, —e™ALAS (D) = @8 —e"CALDT; (2.124)

in this section indices a,b,¢ = 1,2,3 are isospin indices and greek indices
spacetime indices. The Hamiltonian density for static configurations with
vanishing electric fields (A = 0) is then

1 o .
H= PGP + (D) (D), (a,ij=1,2,3). (2.125)

The field equations in this case are solved by solutions of the Bogomolny

equations [172]
Fz’(} = —Eijk(Dk@)a . (2126)

Using the Bogomolny equations one can write the energy in the form

/%d% = /(Dk@) (Dk®) /A|d§|2d3 (2.127)

where the last step makes use of the equations of motion of the Higgs field
D, DR = 0. Asymptotically the Higgs field behaves as

|@|:1—g—|—0(1/r2), (2.128)
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where n is the topological charge.
To describe multi-monopoles Manton [141] used an axially and mirror-
symmetric ansatz which takes in cylindrical coordinates the form

Agzoa @a:(0a¢1a¢2)a A;:_(O’nl’nz)’
A% = —(W1,0,0), A% = —(W5,0,0). (2.129)

With this ansatz the Bogomolny equations read

P10 — Wago = _é(nl,z - Wina),

P20 — Wag1 = —é(ﬁz,z - Wim),

Wie=Wa. = %(%772 — ¢am)

¢1,. — Wiga = %(771,9 — Wana) ,

¢2. + Wi = %(nz,g — Wam) . (2.130)

The system possesses a residual gauge invariance

1 . .
W/ =W+ A;, (ﬁj) = <¢Z) cos A+ g5 (?;‘7) sin A . (2.131)

i Ub j

It is possible to find a function A such that
1
Wi =-¢,, W,i=-n]. (2.132)
%
The remaining equations (2.131) imply
1 : be
¢)2:—(1Hf)7z ; 57]2: (hlf)yg ; W1 = —— W2:_7 ; (2133)
where £ = f + ib solves the Ernst equation. For details see [40].
There is a close relation between the static axisymmetric YMH equations
for a massless Higgs fields and the stationary axisymmetric self-dual SU(2)

Yang—Mills equations discussed in the previous section. The self-duality equa-
tions

Fo, =+F,, (2.134)
reduce for fields independent of the Euclidean time to

F;} = —Eijk(DkAo)a . (2135)

The latter equation is equivalent to the Bogomolny equations (2.130) if AZ is
interpreted as the Higgs field. This equivalence can be used to solve the YMH
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equations in the considered case in terms of the Yang or the Ernst equation
as in the previous section.

Consequently the solution techniques available for the Ernst equation can
be used also for the static axisymmetric multi-monopoles. The difference is,
however, the asymptotic behavior. Whereas asymptotically flat configura-
tions are typically studied in a relativistic setting, i.e., an asymptotically
constant Ernst potential, the asymptotic condition (2.128) for the Higgs field
implies an exponentially growing Ernst potential on the axis of symmetry.
The simplest solution with this property is the BPS monopole [171, 172] for
which we have £ = (¢ +1P)/F with

P = 4+ rcoshrcothr — zsinhz, P = zcosh z — rsinh z coth z .
sinh r
(2.136)
This implies for the Higgs field
1\ 2
¢* = ¢1 + 5 = (Cothu——) , oH = (w—2)" 47 (2.137)
1

where w is a real constant. For multi-monopole solutions to the Ernst equa-
tion see [40, 41].



3 Riemann—Hilbert Problem and Fay’s
Identity

In Chap. 2 we have shown that the Ernst equation can be treated as the in-
tegrability condition of an overdetermined linear differential system for some
matrix-valued function @. The important point is that this matrix depends
on a spectral parameter. The existence of such a linear system can be used to
generate large classes of solutions to the corresponding integrable equation.
The idea is to construct a matrix @ with certain analyticity properties with
respect to the spectral parameter in a way that it solves the linear differential
system for a corresponding Ernst potential. This means that the theory of
complex functions can be used to obtain rich classes of matrices @ and thus
of Ernst potentials.

The methods we are using here are so-called Riemann—Hilbert techniques,
i.e. we look for matrices @ with prescribed singularities with respect to the
spectral parameter, in particular jump discontinuities, poles and essential
singularities. In general a matrix Riemann—Hilbert problem is equivalent to a
linear integral equation for which 1t is difficult to construct explicit solutions.
In the case of the Ernst equation this can be achieved for rational jump
data, the corresponding solutions being Korotkin’s [52] hyperelliptic solutions
in terms of multidimensional theta functions. The characteristic feature of
these solutions i1s that the underlying Riemann surface is ‘dynamic’ in the
sense that the branch points depend on the physical coordinates. This is
in contrast to theta-functional solutions to integrable evolution equations
like KdV and KP where the Riemann surface is independent of the physical
coordinates and where the latter enter only the argument of theta functions.
The corresponding solutions are periodic or quasi-periodic. We briefly discuss
hyperelliptic solutions to the KdV and the KP equation to illustrate the
difference to the corresponding solutions to the Ernst equation which will be
studied in detail in later chapters.

To construct theta-functional solutions to the KdV and KP equation,
we use an approach due to Fay [128] (see also Mumford [139]) based on
Fay’s trisecant identity for theta functions. This identity can be seen as a
generalization of a well-known identity for the so-called cross ratio function
in plane projective geometry. Let P; € CP' i = 1,2,3,4, be four arbitrary
disjoint points in CP. Then the cross ratio function Ajss4 is defined as
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(PL— P)(Ps — Py)
(P1— Pa)(Ps— P2)

It is obviously subject to the identity
A123a + Aigoa = 1. (3.2)

Interestingly this identity can be generalized to Riemann surfaces where theta
functions are involved, see [173] to [176]. The important point is that this
identity due to Fay [128] holds for four points in arbitrary position. In the
limit of coinciding points it leads to identities for derivatives of theta func-
tions. These identities can be used to prove that the given theta functional
expressions solve the corresponding integrable equation. For details on the
mathematics of Riemann surfaces and the notation used in this book, the
reader is referred to appendix A and the literature given therein.

In Sect. 3.1 we start from a linear differential system for the Ernst equa-
tion and discuss the analytical properties the matrix ¢ must have to be a
solution of this system for a given Ernst potential. In Sect. 3.2 we formulate
the Riemann—Hilbert problem for the matrix @ in the plane of the spectral
parameter. For illustration we discuss the Riemann—Hilbert problem in the
complex plane which can be solved in terms of the Cauchy integral. We use a
gauge freedom for the matrix @ in the linear system to transform the matrix
Riemann-Hilbert problem for the Ernst equation with analytic jump data
to a scalar problem on a Riemann surface, see [112]. Existence of solutions
is established for the case of non-compact surfaces [123]. For rational jump
data the Riemann surface will be compact, and as shown in Sect. 3.3, the
corresponding solutions to the Ernst equation can be given in terms of hy-
perelliptic theta functions. In Sect. 3.4 we discuss an algebraic form of these
solutions as in [125, 126].

In Sect. 3.5 we use a degenerated form of Fay’s identity to construct so-
lutions in terms of theta functions to the KdV and the KP equation. The
corresponding solutions are periodic or quasi-periodic. We show typical solu-
tions on hyperelliptic Riemann surfaces for these equations and their solitonic
limit where certain periods on the Riemann surface diverge (see [177, 178]).
In this limit one obtains solitonic wave packets. To use Fay’s identity for
the Ernst equation we have to take into account the fact that the branch
points of the Riemann surface depend on the physical coordinates. This is
done in the form of Rauch’s variational formulas for Riemann surfaces [179].
In Sect. 3.6 we show how to use these formulas to obtain theta-functional
solutions to the Ernst equation. This approach also leads to explicit formulas
for the complete metric in terms of theta functions, see [127].

/\1234 = (31)

3.1 Linear System of the Ernst Equation

In Chap. 2 we have shown that the Ernst equation can be treated as the
integrability condition of an overdetermined linear differential system which
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contains a spectral parameter. Now we want to exploit this feature for the
construction of explicit solutions to the Ernst equation. There are several
forms of this linear system discussed in the literature ([77, 75, 156]). They
are related through gauge transformations (see [78, 79, 80]) and the choice
of a specific form of the linear system is equivalent to a gauge fixing. We will
use the form of [156] given in (2.47). The system is defined on the Riemann
surface Ly given by

W(K) = (K = §)(K - &) (3.3)

On Ly we have an involutive map o

Lo P=(K,tpuo(K)) = o(P)=P° = (K,Fuo(K)) € Lo, (3.4)
and an anti-holomorphic involution 7

Lo3 P =(K,+po(K)) = 7(P)=P = (K,+po(K)) € Lo . (3.5)

A point P on Ly with projection K into the complex plane will be denoted
by P = (K,%puo(K)) = K* where the sign of the root is fixed in the vicinity
of infinity, limg e po(K)/K = 1 on the plus-sheet.

As we will show below, linear systems as in (2.47) are useful for the
construction of solutions to the Ernst equation. To this end one investigates
the singularity structure of the matrices ® (@~! and @yg@_l with respect to
the spectral parameter and infers a set of conditions for the matrix @ (it has
to be at least twice differentiable with respect to & and é) that satisfies the
linear system (2.47). This is done (see e.g. [52]) in

Theorem 3.1. Let & (P € Ly) be a 2 x 2-matriz valued function on Ly with
the following properties:

L ®(P) (P € Ly} is holomorphic and invertible at the branch points £ and
& such that the logarithmic derivative @ b~ diverges as (K — 5)% at &
and @yg@_l as (K — é)% at .

II. All singularities of @ on Ly (poles, essential singularities, zeros of the de-
terminant of ¢, branch cuts and branch points) are regular which means
that the logarithmic deriwatives @ (@~ and @7?—1 are holomorphic in
the neighborhood of the singular points (this implies they have to be in-
dependent of & and ). In particular ®(P) should have

a) reqular singularities at the points A; € Lo (i =1,...,n) which do not
depend on ¢, €,

b) regular essential singularities at the points S; (i = 1,...,m} which
do not depend on ¢ and €&,

¢) jump discontinuities at a set of (orientable, piecewise smooth) con-
tours Iy C Lo (i =1,...,1) independent of & and &, which are related
on both sides of the contours by

®_(P) = 24(P)G:(P)lper, (3.6)
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where G;(P) are matrices independent of & and & with Hélder—
continuous components and non-vanishing determinant.
III. @ satisfies the reduction condition

G(P?) = 03P(P)y, (3.7)

where o3 1s the third Pauli matriz, and where v is an invertible matrix
windependent of £ and &.
IV. The normalization and reality condition

B(P = oot = (g _}) (3.8)

15 fulfilled.
Then the function & in (3.8) is a solution to the Ernst equation.

A proof of this Theorem may be obtained by comparing the above matrix @
with the linear system (2.47).

Proof. Because of I, & and ! can be expanded in a series in t = /K — &
and t' = /K — £ in a neighborhood of P = ¢ and P = £ # £ respectively
at all points &, & which do not belong to the singularities given in II. This
implies that

O = %+a1—|—a2t+~~ ,

where the «; are independent of ¢. We recognize that, because of I and II,
@ P~! — ay/t is a holomorphic function. The normalization condition IV
implies that this quantity is bounded at infinity. According to Liouville’s
theorem, it is a constant. Since @, =1 and @ ; are single-valued functions on
Lg, they must be functions of K and pg. Therefore, we have

K—-¢
K—¢

P! =y + 5.

The matrix Jy has to be independent of K and g since @ @~ must have
the same number of zeros and poles on Ly. The structure of the matrices 3y
and F; follows from III. From the normalization condition IV, it follows that
@ (0! has the structure of (2.47). The corresponding equation for @yg@_l
can be obtained in the same way.
O
For a given Ernst potential £, the matrix @ in the above theorem is not
uniquely determined. This reflects the fact that the gauge is not completely
fixed in the linear system (2.47). If we choose without loss of generality v = oy
(the first Pauli matrix), the remaining gauge freedom can be seen from
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Corollary 3.2. Let &(P) be a matriz subject to the conditions of Theo-
rem 3.1, and C(K) be a 2 x 2-matriz that only depends on K € C with
the properties

C(K) = a1 (K) + as(K)oy
oy (00) as(00) = 0. (3.9)
(

1
Then the matriz ' (P) = ®(P)C(K) also satisfies the conditions of Theo-
rem 3.1 and @' (cot) = P(c0™).

It is this freedom to which we refer in the following when we speak of the
gauge freedom of the linear system.

In other words: matrices @ which are related via the multiplication from
the right by a matrix C' of the above form lead to the same Ernst potential
though their singularity structure may be vastly different (the functions «;
need not be holomorphic).

It is interesting to note that the metric function a can be obtained from a
given matrix @ fulfilling the conditions of the above Theorem without solving
equation (2.45), see [52]. We get

Proposition 3.3. Let § be a local parameter in the vicinity of co™. Then
Z = (a—ag)e® =i(®1 —d1a) 5, (3.10)

where ag is a constant that is fired by the condition that a = 0 on the reqular
part of the aris and at spatial infinity, and where @ 5 denotes the linear term
in the expansion of @ in § divided by §.

The proof follows from the linear system (2.47).
Proof. Tt 1s straightforward to check the relation

(@71D5) e = D7HD D7) 5O . (3.11)
With (2.47), we get
-1 _ 19(5 — (‘,‘)75
(@ @,5)2175 = Erer (3.12)

from which (3.10) follows together with (2.45).

O
Notice that ag is not gauge independent (in the sense of the above corollary)
whereas a is.

Theorem 3.1 can be used to construct solutions to the Ernst equation
by determining the structure and the singularities of @ in accordance with
conditions I-1V. From the Theorem it can be seen that the only possible
singularities of the Ernst potential can occur where these conditions are not
fulfilled, 1.e. where @ cannot be normalized or where & coincides with one of



48 3 Riemann-Hilbert Problem and Fay’s Identity

the singularities of @, e. g. a contour I". The latter i1s particularly interesting if
one wants to solve boundary value problems for the Ernst equation, since the
boundary can be chosen as a singularity of the Ernst potential (the potential
needs to be only continuous there in the case of a Dirichlet problem and to be
differentiable in the case of a von Neumann problem). In this case the contour
I" has to be chosen in a way that £ € I" just corresponds to the contour in the
(&’, é’)—plane where the boundary values are prescribed. For example a disk of
radius gg = 1 in the plane ¢ = 0 is given by the contour

Ie={0<¢<¢, ¢=0}. (3.13)

The corresponding contour I" on Ly is the covering of the imaginary axis in
the upper sheet between —1 and i. The Ernst potential will not be continuous
at this contour, but its boundary values will be bounded. Notice however
that the Ernst potential will not be singular in any case if £ coincides with a
singularity of @ since the latter may be e.g. pure gauge. Theorem 3.1 merely
ensures that the solution will be regular at all other points.

Therefore, we will concentrate in the present work on a Riemann—-Hilbert
problem which can be formulated in the following way:
Let I' be a set of (orientable piecewise smooth) contours Iy C Lo (k =
1,...,1) such that with P € " also P € I' and P° € I'. Let Gi(P) be matrices
on I} with Holder—continuous components and non-vanishing determinant
subject to the reality condition G;;(P) = G;;(P) for the diagonal elements,
and gij(ﬁ) = —Gij(P) for the off-diagonal elements, and G(P?) = ¢1G(P)o;.
Both I' and G have to be independent of &, £&. The matrix & has to be
everywhere regular except at the contour I where the boundary values on
both sides of the contours (denoted by @) are related via

_(P) = 4 (P)Gi(P)lper, - (3.14)

It may be easily checked that a matrix @ constructed in this way fulfils the
conditions of Theorem 3.1.

3.2 Solutions to the Ernst Equation via
Riemann—Hilbert Problems

In this section we review basic facts of the Riemann—Hilbert problem in the
complex plane and on the Riemann sphere. Then we solve the Riemann-—
Hilbert problem for the Ernst equation by using a gauge transformation. In
the case of rational jump data, the Ernst potential will be given in terms of
hyperelliptic theta functions.

3.2.1 Riemann—Hilbert Problems on the Complex Plane and the
Riemann Sphere

To solve Riemann—Hilbert problems, one basically uses the same methods as
in the simplest case, the problem in the complex plane for a scalar function
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¥, see e.g. [180, 181]. If I'k is a simply connected closed smooth contour and
(G a nonzero analytic function on I'k in C, the function v that is holomorphic
except at the contour I'x where

Yo=Yy G (3.15)
is obviously given by the Cauchy integral,
L . 1 In GdX
Y(K) = F(K)exp <2m X K) , (3.16)

where F'is an arbitrary holomorphic function, and where the principal value
of the logarithm has to be taken. The well-known analytic properties of the
Cauchy integral ensure that condition (3.15) is satisfied. Formula (3.16) shows
that the solution to a Riemann—Hilbert problem of the above form is only de-
termined up to a holomorphic function. Since F' is holomorphic, the solution
will be uniquely determined (due to Liouville’s theorem) by a normalization
condition ¥(o0) = ¢y for oo ¢ I'k. Uniqueness is lost if one allows for ad-
ditional poles since F' in (3.16) has then to be replaced by a meromorphic
function. We note that the above conditions on the contour may be relaxed:
G may be a non-zero Holder continuous function, and I' may consist of a set
of piecewise smooth orientable contours which are not closed. The Plemelj
formula, see e.g. [182], assures that formula (3.16) still gives the solution to
(3.15). A normalization condition will however only establish uniqueness of
the solution if G = 1 at the endpoints of .

Riemann—Hilbert problems on the sphere £y which occur in the case of the
Ernst equation can be treated in much the same way as the problems in the
complex plane. The basic building block for the solutions is the differential
of the third kind dwg+ g~ (X) that corresponds to the differential dX/(X —
K) in the complex plane, i.e. a differential that can be locally written as
F(X,K)dX where F(X,K) is holomorphic except for X = K* where the
residue is £1. On the Riemann sphere £y this differential is given by

_ Ho(K) + po(X)

dw -(X) = dX . 3.17
If we make the ansatz
1
@—@0 = — X(X)dwK+K— (X) ; (318)

27Ti r
where the 2 x 2-matrix y is defined on I, and where @¢ is holomorphic, we

get for (3.6) at the contour I" with the Plemelj formula

1 1
Pt =+ -+ — X)d (X) .
2X+ 7 FX( Jdw e+ - (X)
Thus the Riemann—Hilbert problem (3.6) is equivalent to the integral equa-
tions
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1 1

—X(g—l-l)—l-—./ X(X)dwg+g-(X)(G 1) =0. (3.19)
2 27 Jp

For simplicity, we will only consider in the following the case where the pro-

jection of the contour I' into the complex plane has a simply connected

component ['k.

3.2.2 Gauge Transformations of the Riemann—Hilbert Problem

Apparently, the Riemann—Hilbert problem can be used to generate solutions
to the Ernst equation that contain four real-valued free functions, the com-
ponents of the matrix G. The remarks on the gauge freedom of the matrix
@ indicate however that two of them are related to gauge transformations.
It seems plausible that one can choose a gauge in which G has only two
independent components. Neugebauer and Meinel [183] used the form

G = (g 2) (3.20)

for the jump matrices on the contours in the upper sheet. To demonstrate that
this choice 1s possible one has to show the existence of a gauge transformation
of the form (3.9) which transforms a general Riemann—Hilbert problem for
the Ernst equation to the above form. This leads to the Riemann—Hilbert
problem for the matrix C' in the gauge transformation (3.9) on the contour
I of the form

Go_ = C4 ¢’ (3.21)

with G’ as given in (3.20). Tt can be shown by a simple calculation that
this problem has a, not necessarily unique, solution. This form of the gauge
transformation does not change the singularity structure of @ (i.e. @ will only
be singular at I"). The reduction condition IIT of Theorem 3.1 leads to

Gy = (ég)

on the contour I in the —-sheet. Because of the reality conditions for G,
this implies that solutions to the Ernst equation following from (3.6) contain
two real valued functions which correspond to « and 3. The reduction and
reality properties of @ (see Theorem 3.1) make it possible to consider only
one component of the matrix, e. g. @12 from which the Ernst potential follows

as & = P1(co™). With

@12:¢0+L fro (K) + po(X)

ami Jp, 2u0(X) (X — K)Z(X’g’é)dx ’

we obtain the Ernst potential for given o and # where Z is the solution of
the integral equation
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atl a—1 [ po(K)+ po(X) _
- 2 2= 41 /ﬂO(X)(X_[{)Z(Xagag)dX
Bl )
4mp uo(X)(X_K)Z(Xff)dX, (3.22)

and where ¢ follows from the normalization condition @$12(c0™) = 1.
Explicit solutions can in general only be obtained for diagonal G, i.e. for
B = 0. In this case we get with the above formulas £ = £ = ¢?Y with

1 1
U= =2 (3.23)
A -2+ g

Thus, all solutions are real in this case which implies that they belong to the
static Weyl class. Since the Ernst equation reduces to the Euler-Darboux
equation for U if £ is real, the function U in (3.23) solves the axisymmetric
Laplace equation. In fact one can show (see Theorem 5.1) that the contour in-
tegral there is equivalent to the Poisson integral with a distributional density.
It can also be directly seen from the expression (3.23) that the dependence
on the physical coordinates ¢ and ( is exclusively via the branch points of
the family of surfaces Lg.

However, if one drops the condition that the gauge transformed matrix
@' should have the same singularity structure as the original matrix in (3.6),
it 1s possible to reduce the above matrix Riemann—-Hilbert problem further.
This leads us to

Theorem 3.4. Let the conditions for (3.6) hold and let the projection of
the contour I into the complex plane consist of one simple smooth arc. Let,
furthermore, the components of the matriz G be quotients of holomorphic
functions. Then the Riemann-Hilbert problem (3.6) is gauge equivalent to
a problem with the diagonal matriz G' = diag(G, 1) (on the contour in the
upper sheet) on a two sheeted covering of the Riemann surface Lo where G
1s a quotient of holomorphic functions on I".

Proof. The proof uses again the explicit construction of the gauge transfor-
mation which takes in our case the form

Gii+Gi2+Ga1 + G2
Gi11—G12 — Ga1 + G2z
Gi1 — G124+ Go1 — Gao
G114+ Gi2 — Ga1 — Ga2

ay + ag)”
ap — as)

( )
( )
( Yo —ag)”
( ) T (3.24)
As already mentioned, this system will in general not have a solution if the
a; have to be holomorphic except at I'. Therefore, we make the ansatz
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ator o (L/ dK’ 1ng11+g12+g21+g22) (3.25)
o2mi Jp K =K' Gi1 —Gio— Gog +Gao ) '

o] — Qa2

where X is a possibly multi-valued function of K € C alone. With this ansatz
we can solve the above system and determine G and A,

G111 = G124+ Ga1 — Ga

A= 3.26

Gi1+Gi2—Go1 — Gan ( )

G+1 _ (G11 + G22)? — (G12 + G21)? (3.27)
G-1 (G11 — G22)? — (G2 — Ga1)? .

In an abuse of notation, we have here denoted the analytic continuation of
the G;; (which is obvious since the functions are assumed to be quotients
of holomorphic functions) with the same symbol as the functions that were
originally only defined on I' (this is still the case for the function GG). Writing
A in the form A? = F//H where F and H are holomorphic functions (which
is possible by assumption), one can recognize that the whole system has to
be considered on the Riemann surface £ given by

fA(K) = F(K)H(K) . (3.28)

This is a two-sheeted covering of the two-sheeted surface £y on which the
spectral parameter varies, and thus a four-sheeted covering of the complex
plane. It is on this surface that the gauge transformed matrix ¢’ and the
function A are single-valued.

O
The content of the Theorem may be put into this form: it is always possible
to transform the Riemann—Hilbert problem with ‘holomorphic’ jump data
to diagonal form. The price one has to pay for this is the occurrence of a
four-sheeted Riemann surface since the gauge transformation would be multi-
valued otherwise. The condition that the projection of I' into the complex
plane consists of only one arc can be replaced by the condition that the
analytic continuations of the G;; coincide on all contours I7.

Let us, now, turn to the solution of the Riemann—Hilbert problem on the
covering surface L. Of course, the structure of £ depends crucially on the
jump data of the original Riemann—Hilbert problem. We will first consider
the case of £ being non-compact and then turn to the compact case.

3.2.3 The Non-compact Case

Tt is well known, see [181], that there is a close relation between Riemann-—
Hilbert problems on Riemann surfaces and holomorphic vector bundles over
them. The idea is to use vector bundles to relate the Riemann—Hilbert prob-
lem on the Riemann surface to the corresponding problem in the complex
place. To this end we want to make use of the basic result of fibre bundle
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theory that a vector bundle over a manifold £ is completely determined by
a triple (ﬁ, {Ui}, {t”}) Here the U; are an open cover and the ¢;; are the

transition functions, defined on intersections U; NU;. Let L be equipped with
a covering N' = {U;,7 € I}, where I denotes some set of indices and let us
suppose that there exists a number N, the covering constant, such that any
point P € £ belongs to no more than N domains of the covering, see [181].
We assume that the contour I' is compact and closed, dividing L into, in
general, non-compact domains. To simplify the discussion we are looking as

in [184] for solutions ¢(P) with finite Dirichlet integral, i.e.

/ dg Ade < oo, (3.29)

A\A(r)

where A(I') denotes some neighborhood of I
Let {¢;(P)} be solutions to (3.15) in the domains U;, different from zero.
In the domains U; the original scalar Riemann—Hilbert problem is reduced to
a problem on the complex plane C, which can be solved as in Sect. 3.2.1. In
other words, the functions ¢;(P) are non vanishing on U; and fulfil (3.15) on
the intersection I' N U;. If I' N U; = § then ¢;(P) is a holomorphic function
in U;. Let us now define some functions t;tj(P) in U; NU; by
+py_ 9ix(P)
t;:(P) bie(P) (3.30)

for P € U; NU;. We have

(p) = 4=(B) _ 0is(PIGWE) _ 052(P) _ ) (3.31)

© 6in(P) i (P)G(P)  ¢ip(P)

i.e. the functions ¢;;(P) = t;"j(P) =1 P) do not jump at the contour I'.

z

k3
Since we have on the intersection U; N U; N Uy

G (P (P (P) =
¢j—(P) o5 (P) ¢i-(P)  ¢j1(P) ¢p1(P) ¢is(P)
¢i—(P) ¢;

P) =1

—(P) ¢x-(P)  ¢i+(P) 6;4(P) ¢y (P)
these functions fulfil the consistency conditions of a vector bundle. Thus, we
may associate to the Riemann—Hilbert problem (3.15) a vector bundle. Tt is
remarkable that this bundle is, due to a theorem by Grauert [185], a trivial
one. From this Theorem it follows that for non-compact £ the line bundle
Bg associated to the Riemann—Hilbert problem (3.15) has the form

(3.32)

B~ LxC. (3.33)

Since the ¢;(P) are non-vanishing the functions ¢;;(P) take values in C*.
Therefore, we may define a complex bundle with structure group C* and
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standard fibre C, i.e. a line bundle Bg over the compact Riemann surface £
by the 5-tupel (£, {U:}, {ti;}, C,C*).

Thus we have shown that for £ being non-compact there is a simple
geometric characterization of the Riemann—Hilbert problem in terms of fibre
bundles over £. Due to its local properties the bundle approach allows to
reduce the scalar Riemann—Hilbert problems on L to problems on the complex
plane C which can be explicitly solved as shown above.

3.2.4 The Compact Case

Let us now turn to the case that £ is compact of genus g. Then £ is given
by an equation of the form

/12

e

(K — E;)(K — F}) , (3.34)

i=1

where E; and F; are obviously independent of the physical coordinates. This
equation represents a two-sheeted covering of the Riemann sphere and thus a
four-sheeted covering of the complex plane. A point P € £ can be given in the
form P = (K, po(K), i(K)). The Hurwitz diagram of £ is shown in Fig. 3.1.
As in the non-compact case we may associate to a Riemann—Hilbert problem

k=]

oy
Iy

Ey F - E, F,

Fig. 3.1. The Hurwitz diagram of the covering surface shows the Riemann surface
as seen from the side

(3.15) a line bundle over this surface in the case of compact L. Contrary to
the non-compact case there is no analogue of Grauert’s theorem. However,
it has been shown by Zverovich [180] that on compact Riemann surfaces the
solutions to scalar Riemann-Hilbert problems can be written elegantly in
terms of theta functions on this surface.
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3.3 Hyperelliptic Solutions of the Ernst Equation

In this section, we want to give an explicit construction of the matrix @ in
accordance with Theorem 3.1 for the case of £ being a compact Riemann sur-
face. This limitation will allow us to give an explicit solution of the problem in
terms of theta functions. Recall that this is possible, as the discussion in 3.2.2
has shown, if the original matrix Riemann—Hilbert problem has rational jump
data.

Notice that there is an automorphism ¢ of £ inherited from £q which
ensures EY = F; and FY = F;. The orbit space £ = £/o is then, see [1],
again a Riemann surface, namely a hyperelliptic surface given by

P = (K=K - [[(K - E)(K - F), (3.35)

i=1

where the fixed points of o lead to additional branch points of ﬁ/a. We
impose the reality condition E;, F; € R or E; = F; on the branch points in
order to satisfy the reality condition of Theorem 3.1.

For the moment, we fix the physical coordinates ¢ and ¢ in a way that
0 # 0 and that & and € do not coincide with the singular points of @ in order to
ensure that the first condition of Theorem 3.1 is valid. In the next chapters
we will study the dependence of the found solution on ¢ and &. In order
to give the solution to this special case of the generalized Riemann—Hilbert
problem, we use the theory of theta functions associated to a Riemann surface
(see [186, 1]) and the solution of the Riemann—Hilbert problem on a Riemann
surface, as given in [180]. As we will need only hyperelliptic Riemann surfaces
of the form (3.35), we restrict ourselves to this case. For a brief review of the
basic notions of differential geometry on Riemann surfaces we refer the reader
to Appendix A and references cited therein.

The following theorem gives the solution to the generalized Riemann—
Hilbert problem on the hyperelliptic Riemann surface L.

Theorem 3.5. Let £ be a fired complex constant (¢ # 0) not coinciding with
the singularities of ¢ or the branch points E; or F;. Let £2(Pg) be a linear
combination of normalized Abelian integrals of the second kind (with singular-
ities p independent of & and é) and third kind (with in addition singularities
at all real branch points with residues :I:%), satisfying 2(Pg) = 2(Pg). Let
I' be a piecewise smooth contour on L decomposing into a finite set of con-
nected components {I;} (7 = 1,...,N), each of which is homeomorphic to
the interval (0,1). Let
N N
Gty =" a(t,I))G(t), WmGE) =" a(t, I;)InG,(t), tel\L.
j=1 j=1

(3.36)
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where the G;(t) are Holder continuous functions, where £ denotes the divisor
of end points of the I, and where

oft. Iy) = {(1) gf/ieemﬁse ’ (3.37)

(7 =1,...,N). Then the function

_, Ow(Py) —w(@®@)+u+b-K)
(Pr) = o 0(w(Pr) — w(®) —K)
1
exp ¢ £2(Py) + %/IHG(T)deHPD(T) , (3.38)
T
has a jump at I' of the form

) =Gy~ (t), tel; (3.39)

here

D=P +---+P,

15 a fived non-special diwvisor on L which s subject to the reality condition:
either P; € R or with P; € ® we have P; € © or P; 1s a branch point E; or
F;. b is the vector of b-periods of £2 with components

m:fdg, (3.40)

by

t=1,...,9, the u; are given by

u; = / In Gdw; | (3.41)
r

and g is a normalization constant. The paths of integration have to be the
same for all integrals.

Proof. We want to prove that ¢(Pp) is a single valued function on L. If we
choose a different path of integration for the integrals in the exponent and
the Abel map w(Py) and denote the corresponding integrals by a prime, the
primed and unprimed integrals are connected via

mwngwm+fd9, (3.42)

(similarly for the other integrals) where § is a closed contour on £ which
may be decomposed in the homology basis (a1,...,a4,b1,...,b4) as follows
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g g
S:Zmiari-znibi, (3.43)
i=1 i=1

with m;, n; € Z. Then we have, e.g. for {2 and w

Q(PH) — Q(PH) + Zg:nibi = Q(PH) + <N,b> )
w(Py) = w(Py) + ;7_T1M + BN |, (3.44)

where M = (mq,...,mg), N = (n1,...,n4) € Z9. Under this transforma-
tion, the original quotient of theta functions in (3.38) will be multiplied by

exp (—(N,b)) , (3.45)

but this term is just compensated by the contour integral over § in the
exponent. The same argument holds for the line integral over the contour
I' since the w; are its b-periods. This shows that ¢(Pg) is a single valued
function on L.

From the properties of the theta function, we also find that (P) has g¢
simple poles at the points P, ..., P, and g simple zeros. Additional poles, ze-
ros and essential singularities can be obtained by a suitable choice of Abelian
integrals of the second kind (essential singularities) and third kind (zeros and
poles). We remark that the assumption 2(P) = 2(P) had to be introduced
in order to satisfy the reality condition of Theorem 3.1.

O

Remark 3.6. Without loss of generality we can choose @ to consist only of
branch points since @ gives the poles of ¢ due to the zeros of the theta
function in the denominator. This can always be compensated by a suitable
choice of the zeros and poles of ¢ which arise from the integrals of the third
kind in £2. All ; € © shall have multiplicity 1 and be chosen in a way that
Opq(®) with [p, q] = w(D)+ K, where K is the Riemann vector, has the same
reality properties as the Riemann theta function ©(z).

Our next aim is to define a matrix-valued function @(P) on Ly, satisfying
the conditions of Theorem 3.1, with the help of the above solution to the
scalar Riemann—Hilbert problem on the hyperelliptic surface £. To this end
we define a further function on £ by

Ow(Pr)+u+b—w(l) —w® -K)

Prr) =
) = ) i) k)
1
exp (.Q(PH) + —/ In depHpD) , (3.46)
27 Jp
where yo is again a normalization constant. We recall that w(€) = —in(1,...,1)

in the used cut system of Fig. A.4. It can be easily seen that the analytic
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behavior of x(Pg) is identical to that of ¥(Pg), except that it changes sign
at every a-cut. x is thus not a single valued function on £. However, it is
single valued on £ which can be viewed as two copies of £ cut along [5,@

and glued together along this cut. We define a vector X on L by fixing the
sign in front of x in the vicinity of the points ¢* = (Ko, 0, 24(€)) € L,

X (P) = (f;i(zg)) , P~ct. (3.47)

By means of this vector, we can construct a matrix @ on Ly by
P(P) = (X (K, po(K), +i(K)), X (K, po(K), —(K))) (3.48)

where the signs are again fixed in the vicinity of £*.

It may be readily checked that this ansatz is in accordance with the re-
duction condition (3.7) (this is in fact the reason why one has to define the
function x in the way (3.46)). The behavior at the singularities is as required
in condition II: For the contour I" and the singularities of the Abelian inte-
grals £2, this is obvious. At the branch points E; and F;, one gets the following
behavior: at points P; of the divisor ©, the components of @ have a simple
pole, and the determinant diverges as (K — PZ')_%, if this branch point is not
a singularity of an integral of the third kind in 2 or lies on the contour I
If the latter condition holds at the remaining branch points; the components
are regular there but the determinant vanishes as (K — Pi)%. If the branch
points coincide with one of the singularities of the integrals in the exponent
in (3.38), this merely changes the singular behavior of @ and its determinant
there. Condition II of theorem 3.1 is however obviously satisfied.

Since @ in (3.48) is only a function of P, it will not be regular at the
cuts [E;, F;]. At the a-cuts encircling non-real branch points, we get &~ |,, =
& |y, 01, whereas we have @~ |,, = —®T|,, 02 at the a-cuts encircling real
branch points. The logarithmic derivatives of @ with respect to ¢ and € are
however holomorphic at all these points. One can recognize that the behavior
at the non-real branch points is related to a gauge transformation of the form
(3.9). This means that one can find a gauge transformed matrix @' that is
completely regular at these points if the integrals in the exponent are regular

there. With ] ]
a1:§(1—|—/\), a2:§(1—/\), (3.49)

and

where
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this may be checked by direct calculation. The real branch points, however,
cannot be related to gauge transformations.

Normalizing ¢ and x (if possible) in a way that ¢(coy) = 1 and
x(00) = —1, one can see that & is then in accordance with all conditions
of Theorem 3.1 since the reality condition follows from the reality properties
of the theta functions and the Riemann—Hilbert problem. It follows from the
modular properties of the theta function that @ 1s at least differentiable with
respect to & and & at points where € does not coincide with the singularities
of the integrals in the exponent or the remaining branch points of £. Let the
paths between [£,007] and [€, 00T] be the same in all integrals and let them
have the same projection into the complex plane (i.e. one is the involuted of
the other). Then the results may be summarized in

Theorem 3.7. Let Opq(w(co™) + u) # 0. Then the function

7 _ Opglw(ot) +u+b) + 1
= 224+ — 11 d -
£6.6) = et M e L0l o [ G (0
r
(3.50)
1s a solution to the Ernst equation.
The metric function af follows with (3.10) as a corollary,
Corollary 3.8. The metric function af is given by
— b o
7= (a—ao)f:i<ln Opalw(o0”) +u +w(€))) (3.51)
Opgq(w(c0™) +u +b) 5

Remark 3.9. We remark that @ in (3.48) consists of eigenvectors of the mon-
odromy matrix (see [124, 1])

LX (K, po(K), £(K)) = iX (K, po(K), £(K)) |

which can be introduced as follows. For a given linear system (2.47), we define
the monodromy matrix L as a solution to the system

Le=[UL}, Lg=[V,1]. (3.52)
For a known solution @ of (2.47), L can be directly constructed in the form
L(K) = —p(K)ocd™t | (3.53)

where C is an arbitrary constant matrix with det C = —1 and where i does
not depend on the physical coordinates. Since @ is analytic in K| there is a
solution to (3.52) with the same properties. It follows from (3.52) that the
coefficients of the characteristic polynomial

Q. K) = det (L(K) - il
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are independent of the physical coordinates. Without loss of generality we
may assume TrL(K) = 0. Then L has the structure

A(K) B(K
L= (CEK; —AEK;) ' (3.54)

The equation Q(i, K) =0, i.e.
p? = A*+ BC, (3.55)

is then the equation of an algebraic curve which in general will have infinite
genus.

3.4 Finite Gap Solutions and Picard—Fuchs Equations

Korotkin [52] originally gave his solutions in the slightly different form of
the so called Baker—Akhiezer function (see [1]) of the Ernst system. The
Baker—Akhiezer function has essential singularities and poles, and gives pe-
riodic or quasiperiodic solutions to integrable nonlinear evolution equations
as KdV and KP. There the essential singularity is uniquely determined by
the structure of the differential equation. In contrast to these equations, the
solutions (3.50) are in general neither periodic nor quasiperiodic, and the es-
sential singularity can be nearly arbitrarily chosen. The form of the solution
to the Riemann—Hilbert problem shows that one might even think of ‘putting
the singularities densely on a line and integrate over the integrals with some
measure’: an Abelian integral {2, of the second kind with a pole of first order
at p can be used as an analogue to the Cauchy kernel. A contour integral
over this kernel with some measure, fp In G'(2,dp, is thus just another way to
write down the solution to a Riemann—Hilbert problem on a Riemann surface.
The above solutions to the Ernst equation constructed via Riemann—Hilbert
techniques are thus a subclass of Korotkin’s solutions.

It is possible to give an algebraic representation of the solutions (3.50)
which was first used in [125], see also [126]. We define the divisor £ = >_7_, K;

as the solution of the Jacobi inversion problem (i =1,...,9)
R i—ld 1 i—ld
/ T T~ [ mel=w, (3.56)
p w(r)  2@Jp p(7)

where the divisor © = Zle E;. With the help of these divisors and formula
(A.62) for integrals of the third kind in [187], we can write (3.50) in the form

R g g
1n5:/ z dT—i/ mG 24T (3.57)
o M) 2mijp ()

Since the #; in (3.56) are subject to the recursive relation
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- _ 1.
Un41,6 = Ung + 5 n (3.58)
we get
g .
(Kn — 6K} )
Z * *"Anf 0, j=0,.,9-2 (3.59)
n=1
and :
(Kp — A
(In&) ¢ I’n . 3.60
(In ; A Vn ¢ (3.60)

Solving for the K, ¢, n=1,...,g, we obtain

1K) 1
* Ky gHm 1m¢n([{”_l{m) .

Additional information follows from the reality of the @; which implies

Koe=(In&),

(3.61)

w(f) —w(®) = w(f) —w®). (3.62)

Using Abel’s theorem (see Sect. A.3 of the appendix and references
therein) on the condition (3.62), we obtain the relation for an arbitrary K € C

g g
o) [[(K = Ki)(K = K;) = [[(K = Ei)(K = Bi) — (K =€) (K —£)Q3(K)

i=1 i=1
(3.63)

where with purely imaginary z;,
Qa(K)=xo+ o K+ ..+ xy o K92 42K~ (3.64)

Since (3.63) has to hold for all K € C, it is equivalent to 2g real algebraic
equations for the K; if the z; are given. Using (A.47) and (3.57) we find
E 1+4=

=T (3.65)

which implies z = ibe =2V

The underlying reason for the above differential relations is that the Ernst
potential & 1s studied on a family of Riemann surfaces parametrized by the
moving branch points ¢ and ¢. The periods on this surface (i.e. integrals
along closed curves) are subject to differential identities, the so called Picard-
Fuchs equations. It is a general feature of the periods of rational functions
[188, 189, 190] that they satisfy a differential system of finite order with Fuch-
sian singularities. An elegant way to find the Picard—Fuchs system explicitly
is via the notion of the Manin connection in the bundle Hjg(¥y) — X, on a
Riemann surface Xy of genus g, see [191]. The investigation turns out to be
particularly simple if one uses the following standard form of the (hyperellip-
tic) Riemann surface X (all hyperelliptic surfaces of genus g are conformally
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equivalent to this standard form, i.e. they can be transformed to this form
by a Mébius transformation)

y? = (r — z) H(a: —E)=(x—2)P(x) = (x — 2) Zajxj , (3.66)

where the E; do not depend on z. Using jo = dz/y, j1 = %jo,..., jag—1 =
x?971j, as the basis for the de Rham cohomology Hpg(X,), we obtain for
the matrix M* (m,n =0,...,2¢ — 1) of the Manin connection, defined by

Jjn .

—— =M m

9z nJ

the following expression

#() (m+1)am+1—|—z_m_1 Zajzj for0<m<n
z
Mm _ 7=0
n n 2g—1—-m
P (m4+ Dams1 — Z am+1+jzj forn<m<29-1
(Z) 7=0

(3.67)
One finds that the periods satisfy a similar recursive condition as (3.58). An
analogous consideration can be performed for the ¢é-dependence of the peri-
ods. One finds that the integrability condition of the Picard-Fuchs systems
is just the axisymmetric Laplace equation.

On the other hand, with the help of some boundary conditions (for in-
stance at |£| — oo), the @, can be uniquely determined from the system
(3.58). Thus the class of solutions discussed by Meinel and Neugebauer may
be phrased in the following form: if an arbitrary solution of the Laplace
equation is given, one can calculate the functions @, with (3.58) and the
boundary condition, and ends up with a solution to the Ernst equation of
the form (3.50) which is a subclass of Korotkin’s solutions, see also [126].

3.5 Theta-functional Solutions to the KdV and KP
Equation

The Kadomtsev—Petviashvili (KP) equation [192] for the real valued potential
u depending on the three real coordinates (#,y,t) can be written in the form

3u,yy + (6UU7@‘ + nyxx — 4u,t),x = 0 . (368)

The completely integrable equation has a physical interpretation as describ-
ing the propagation of weakly two-dimensional waves of small amplitude in



3.5 Theta-functional Solutions to the KdV and KP Equation 63

shallow water as well as similar physical processes, see [1]. It can be seen as
a two-dimensional generalization of the KdV equation

butt gy + U por —4ur =0, (3.69)

where u depends only on x and ¢. Algebro-geometric solutions to the KP
equation can be given on an arbitrary Riemann surface, see [193, 1]. The
corresponding solutions can be seen as a typical example for the periodic or
quasi-periodic solutions to nonlinear evolution equation. To compare with the
corresponding solutions of the Ernst equation, we will briefly discuss solutions
on hyperelliptic Riemann surfaces of the form

g+1
pr=[(E -E)K-F), E,FeR, i=1...g+1, (3.70)

i=1

here, for details the reader is referred to [1].

Perhaps the most elegant way to establish explicit expressions for theta-
functional solutions to various integrable equations is an identity for theta
functions due to Fay [128]. This identity can be seen as a generalization of
the identity for the cross ratio function (3.2) on CP! to a Riemann surface,
an interpretation being discussed in detail in [173] to [176].

Use the vectors U, V and W as defined in (A.69) as the expansion of

the Abel map f; dw for P’ ~ P as a series in the difference 7 of the local
parameters. We put

u=2(DsnO(z) — 2e;), (3.71)

where e; is the function defined in (A.79), and get for relation (A.68) after
differentiation with D%

Dp(Dbu+ 6uDpu — 2D%u) + 3D Dpu =0 . (3.72)

Because of (A.69) and (A.70) this equation is for z = Uz + Vy+ Wi+ D
equivalent to the KP equation, where D 1s some arbitrary real vector.

If we take P — oo and if the hyperelliptic surface £ is branched at
infinity, the vector V' vanishes. This implies that there is no y-dependence in
the formula (3.71), and the KP equation reduces to the KdV equation (3.69).

3.5.1 Hyperelliptic and Solitonic Solutions

We use the cut-system of Fig. 3.2. An interesting limiting case of the theta-
functional solutions on a genus g surface is the so-called solitonic limit, see
[1, 53, 139]. In this case E; — F; for i = 1,..., ¢ which leads to the g-soliton
solution. Since ¢ of the cuts collapse to double points, the diagonal elements
of the Riemann matrix diverge in the used cut-system as By; ~ 21In(F; — E;)
whereas all other a- and b-periods remain finite. The theta series thus breaks
down to a sum containing only elementary functions. To obtain the standard
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Fig. 3.2. Canonical cycles

form of the g-soliton, we choose the vector D in (3.71) to correspond to the

half-integer characteristic
1.1
sl o] 31

In this section we present typical plots of hyperelliptic solutions to the
KdV and the KP equation as examples. Such plots can already be found in
[139, 177] and [194]. The figures below are generated with the code presented
in [119, 131, 178] which is discussed in more detail in Chap. 6. We will show
general situations as well as almost degenerate surfaces which are identical to
their corresponding solitonic solution up to numerical accuracy. In all plots,
the vector D in (3.71) is chosen to correspond to the characteristic (3.73).

To begin we want to discuss plots of genus 2 solutions to the KdV equa-
tion. We consider a hyperelliptic surface of the form (3.70) with branch points
[-2,-24¢,—1,—1+ ¢, 3] (the surface is branched at infinity which can be
formally achieved by omitting the term with Fy45). In Fig. 3.3 we show the
case for ¢ = 10™!* which is identical to the 2-soliton solution within machine
precision being of the order of 1071%. The 2-soliton has the form

2 zq . 2 2y
DT Ut UiCOSh o Us S )
2 (Uy cosh % cosh 2 — Us sinh % sinh #2)
where
ZZIUZl‘—FVVZt, U1:2 E3—E1, U222 E3—E2, (375)
and
FE
Wi =—+\/Es— E1(E3+2E1), Wy=—\/Es— Ey(E3+2E,), c= —73 .
(3.76)

The one dimensional waves in shallow water are depicted in dependence on
z and t. It can be seen that a soliton coming from the right and traveling
in negative z-direction has a collision with a soliton traveling in positive z-
direction. After the collision the typical phase shift by 7 of 4 can be observed,
otherwise the solitons are unaffected.
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To obtain solutions on a surface of genus 6 we considered the surface with
the branch points [-6, —64+¢,—4, —4+¢,—2,—2+¢,0,¢,2,24¢,4,4+¢,6].
The situation for € = 1 i1s shown in Fig. 3.5. In Fig. 3.6 we show a solution of

Fig. 3.5. Almost periodic genus 6 solution to the KdV equation.

genus 6 in an almost solitonic situation (¢ = 107!*). One can see the collision
of 6 solitons at the center of the plot.

A genus 4 solution of the KP equation is shown for fixed ¢ on the hy-
perelliptic surface with branch points [-5,—4, -3, -3+ ¢,—1,—1+¢,1,1 +
€,3,3+¢]. In Fig. 3.7 we show the almost periodic situation for ¢ = 1. The
almost solitonic case with € = 0.001 is shown in Fig. 3.8.

3.6 Ernst Equation, Fay Identities and Variational
Formulas on Hyperelliptic Surfaces

This section will be devoted to the proof of the following theorem using Fay’s
identities and Rauch’s variational formulas:

Theorem 3.10. Let the branch points E,, Fp, of the curve £ (3.35) be (€,€)-
independent. Then the function

: (3.77)
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Fig. 3.6. Almost solitonic genus 6 solution to the KdV equation

Fig. 3.7. Almost periodic genus 4 solution to the KP equation.

where the theta function corresponds to the matriz of b-periods of the curve
L, and where an arbitrary (€, &)-independent non-singular characteristic [p, q]
obeys the reality conditions
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Fig. 3.8. Almost solitonic genus 4 solution to the KP equation

Bp+qeRY,

satisfies the Ernst equation (2./3) in the region of the -plane, where Opg(0) #
0, and, in addition,

@pq</:°_>¢o.

f; denotes the line integral of the vector dw from £ to a. The integration paths

mn the numerator and denominator are supposed to have the same projection
1. oot _ oo~
onto CIP~; therefore, fg = _fg .

The relation of this form of the theta-functional solutions to the one given in
(3.50) will be established below in Sect. 3.6.4.

The proof will consist of a series of auxiliary statements: we shall compute
the derivatives of the Ernst potential with respect to (&, é’) and the action of
the cylindrical Laplace operator

1 1
A=02,+ -0, + 02 E4<62—7 9 — 0 ) 3.78
0¢ 0 e ¢¢ 133 2(€_€) ( 13 5) ( )
on the Ernst potential. We note that the real part of the Ernst potential can
be written in a compact form:

Proposition 3.11. The real part of the Ernst potential is given by the fol-
lowing expression:
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Opq(0)Opq(ff)
Opa( [ )Opa([)

E+E=2Q (3.79)

where the function

b _ LE(E§E(c0, 00%)
Qe &) = 2 E(€,007)E(£, 00t)

(3.80)

does not depend on p, q. Taking into account that E =1 if p=q =0, we get
an alternative form of the function ) in terms of theta functions with zero
characteristics (@ = Qg ):

oUs 10U )
000 (f)

This gives an elegant form of the metric function f in terms of theta functions.
Proof: The proof is an immediate corollary of Fay’s identity (A.68) applied
to the points (co™, 007, &, &) if we note the following

(3.81)

Lemma 3.12. The following relation holds:

B(oot P00, )
B0 ) B0 £)

=-1. (3.82)

Proof. To prove (3.82) we use formula ([128], p.21) which is valid for arbitrary
four points P;, 1 =1,2,3,4 on L:

In

E(Pa, Py)E(Py, Ps) _ /P4

d . .
E(Py, P)E(Ps, Ps) Wrapy (3.83)

Ps

. o . OO+
Assuming Py = &, Py =&, P3 = 0o™, Py = oo™, we get the integral foo_ dwe £
along the path encircling the branch point £. On the hyperelliptic curve (3.35)
with our choice of canonical cycles (Fig.1) the Abelian integral [ dwg ¢ can
be computed explicitly to give % In ;—:% + ', where (' is an arbitrary constant
(indeed, this expression has the required structure of singularities at £ and g,
and does not suffer any modification with respect to tracing along a-cycles
shown in Fig. A.4; we remind that the local parameters around ¢ and & are

VA=E and VA — &, respectively). Therefore,

+

e 1, A==€ 1_ . )
/_ dwe g = §1H/\_€OO+I§27TII7T1,

oQ

which gives (3.82).
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O
To prove the above Theorem it is necessary to take the dependence of the
branch points on the physical coordinates into account. Rauch’s variational
formulas [179] describe the dependence of the basic normalized holomorphic
differentials dw, and the matrix of b-periods B,s on the positions of the
branch points, see section A.6 of the appendix. The formulas (A.80), (A.81),
together with the heat equation for theta functions (A.56), imply the follow-
ing dependence of hyperelliptic theta functions on the branch points:

Lemma 3.13. The derivative of the hyperelliptic theta function Opg(z) with
a { )\ }-dependent argument z with respect to a branch point A\, is given by

1 dzq

x,,Opq(z) = ZDAmDAm@pq(z) + Zaza{@pq(z)}w . (3.84)

3.6.1 First Derivatives of the Ernst Potential

We will first give convenient relations for the first derivatives of the Ernst
potential which where obtained in [129] with the use of the zero-curvature
representation of the Ernst equation.

Proposition 3.14. The first derivatives of the Ernst potential (3.77) are
given by the following expressions:

CZ(OO_agaOO-I—) @PQ(O)

b= 2 @%q(f;o—)Ds@pq(O) : (3.85)
- ca(00™, &, 007) @pq(f§) . 3
fe= 2 @Iz)q(fgoi—)Dﬁepq(/g ), (3.86)

where co is the function (A.74) from the degenerated Fay identity (A.72).

Proof. Let us first note the following corollary of Rauch’s variational formu-
las:

d " od o, dwa(€)
&/g dwa(r):—E A dwa(r)_—icl(oo L& 00T) e (3.87)

where ¢; is as defined in (A.73) and where 7(P) denotes a local parameter
in the vicinity of P. To prove (3.87) we notice that, according to (A.80),
the derivative of a holomorphic differential with respect to a branch point is
proportional to the bi-differential (the Bergmann kernel); consequently the
integration of this differential gives a differential of the third kind, according
to (A.73), (3.87).

The idea of the proof is to differentiate the Ernst potential with respect
to £ and to use (3.84) and (3.87) to relate these derivatives to directional
derivatives of the theta functions. We get
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(ing), = i{DnglnSHDg ln@pq</f )y - <Dgln@pq</;° )y

—c1(00™, €, 00T In | Opq " Opq " . .
(0o € >Dg( </5 ) </5 >)} (3.88)

The resulting expression can be simplified with the help of Fay’s identities.
It follows from Fay’s identity (A.72) with z = fgoo , P = 007, P = &,
Ps = oot that !

@Iz,q(O)
@pq(fgoo_)@pq(fgoo_)

applying the operator D¢ once more to both sides of this identity, we get

Deln& = c1(00™,&,00%) + ea(00™, €, 00T) ; (3.89)

@Iz,q(O)
@pq(fgoo_)@pq(fgoo_)

Substituting this expression into (3.88), we arrive at the formula

DeDeIn € = e3(00™, €, 00T) Dy

@Iz,q(O)
@pq(fgoo_ )@pq(fgoo_)

1
(lné')E = Zcz(oo_,é’, oot) Dy

1 oo~ oo~
—D¢lInq§ Opg Opg In&—ci(00™, & 00h)) .
1D, { (0wt ] >}{Dg (007,007}

We use (3.89) again to simplify the last term which leads to (3.85). The
expression (3.86) for &g can be proven analogously.
|

3.6.2 Action of the Laplace Operator on the Ernst Potential and
Ernst Equation

The same techniques can be used to determine the second derivatives of the
Ernst potential which enter the axisymmetric Laplace operator.

! It is worth noticing at this point that the action of the operator D¢ on the Ernst
potential has a priori nothing to do with the partial derivative of the FErnst
potential with respect to £: according to the definition (A.71), D¢& is just a
directional derivative of £ with respect to q in the direction given by the values
of the basic holomorphic differentials at the branch point & of the Riemann
surface L.
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Theorem 3.15. The action of the eylindrical Laplace operator (3.78) on the
Ernst potential has the following form:

3
Dsepq(/E )Dﬁepq(o) :

(3.90)

Opa( [ )
@gq(fﬁoo_)

where the function co is defined by (A.74).

AE = —262(00_,€, OO+)CZ(€a€a OO+)

To prove (3.90) we need to compute the derivatives with respect to ¢ of all
three multipliers in (3.85) with the help of the degenerated versions (A.72)
and (A.75) of Fay’s identities. These derivatives are given by the following
proposition.

Proposition 3.16. The following identities hold:

@PQ(O) 2 - - 2 - -
4 lnf.o— :_CZ(gagaOO )+Cl(€,€,00 ) (391)
@pq(fg ) £
- € Opal[)OpafE)
—2¢9(€,6,007)DgInOpg( [ ) p
‘ /s Opa I )Opal0)
 OpglfE 3
2(De¢ lﬂ@pq(o))gIdz(ﬁ,ﬁ)@zi({é))l)fepq(/g ), (3.92)

851H62(OO_’€’OQ+) = _% (C%(gagaoo_) - C%(gagaoo_)) - ﬁ : (393)

In the proof we need a corollary of formula (A.83):

Lemma 3.17. The following relation holds:

- + _
Z:l_g = CZ(OO 25’00 ) = CZ(gagaOO-I—) . (394)

The correct sign in (3.94) depends on the choice of all branches of the square
roots in (3.94) and is unessential for our purposes.

Proof. To prove (3.94) it is sufficient to consider the ratio of two root func-
tions (A.83): one with A, = &, \,, = £, and a = cot and another with A, = ¢,
Ay = € and @ = \,,,. Then the unknown function C' in (A.83) drops out and
we end up with (3.94).

O
The rest of the proof uses the same techniques as in the previous subsection
for the first derivatives of the Ernst potential, for details see [127].

Proposition 3.16 leads to (3.90) if we take into account the
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Lemma 3.18. The following identity holds:
1 ea(007, &, 007)
€ _€CZ(OO_a€aoo+)

Proof. We rewrite the left hand side in prime forms, using (3.94) for (£ — ¢).
Then

+do(€,6) =0. (3.95)

1 CZ(OO_aga OO+) _ E(OO-I_,&T) E(OO_’g)
f _€CZ(OO_a€aoo+) B Ez(g,g)E(OO-I_,g)dTg E(Oo_ag)dTg
1

- E2(¢,€)dredr (3.96)

3
that the prime form is proportional to a theta function with odd character-

istic. The minus sign in (3.96) appears due to lemma 3.12.

+ - + -
here we used that f;o = — f;o and f—oo = — f?o and took into account

O

To verify that (3.77) is a solution of the Ernst equation, one has to com-

pare the action (3.90) of the Laplace operator on the Ernst potential with
the expression

88&  ea(007, &, 00T )ea(007, &, 00t) @pq(fgoo_) ) ¢
S+e 0 @gq(w’?o—)Dﬁepq(O)Dg@pq(/E )

(3.97)
computed from (3.85), (3.86) and (3.79). The coincidence of these terms
follows from the definitions of ¢y and @.

3.6.3 Metric Functions for the Stationary Axisymmetric Vacuum

Explicit integration of equations (2.45) and (2.42) to obtain expressions for
the metric functions a and k is rather non-trivial; for the algebro-geometric
solutions (3.77) it was carried out explicitly, exploiting the zero-curvature
representation, in the papers [52, 95, 129]. In the sequel we show how to
achieve these results on the sole base of Fay’s identities and Rauch’s formulas.
It was shown in [52] with the help of the inverse scattering method that
the function a, corresponding to the Ernst potential (A.82), is related to
the logarithmic derivative of theta functions (3.98) which was alternatively
expressed in [129] via theta functions themselves. One has the following

Proposition 3.19. Let ag be a constant with respect to & and &. Then the
metric function ae®V for the Ernst potential (A.82) is given by the expression:

(= a0)e?V = —g i@pq(o)@pq(fg +fg ) 1] (3.98)

@ Opg( " )Opal[F)
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Proof. We have to show that equation (2.45) is satisfied with the function a
given by expression (3.98). With the function Z defined in (3.51), equation
(2.45) is obviously equivalent to the equation
1 _

Zs = 7 F (Z4+0)&+ (2 - 0)&) - (3.99)
This is done in complete analogy to the calculations of the first derivatives
of the Ernst potential above, for details see [127].

Taking into account the relation (3.94), this implies

P cz(é’,é,oo_)g@pq(o)@pq(fgoo_ +fgoo_)
F=

Dg In Opg (0) (3.100)

2Q @zzlq(fgo_)
_62(5,5,oo_)g@pq(ff)@pq(fgo_ +fgoo_) T 3
20 @%q(f;o_) Del (91,,;,(/E ).

Whereas the expression for 7 — g follows directly from (3.98), we can write
7 + 0, using Fay’s identity (A.68), in the convenient form

2 Ol I )0mlE)
© Opalf;" )Opalff)

Relation (3.100) turns out to be equivalent to (3.99) if we use equalities (3.94),
(3.79), (3.85) and (3.86).

(3.101)

O

The metric function e?* was calculated in [95] as the ~function [195] of

the Schlesinger system associated to the Ernst equation, see [203]. Here we
shall prove the resulting formula using Fay’s identities.

Theorem 3.20. The metric function e** is given by
3
O,4(0)0
ek = KLM(!&) . (3.102)
o(0)o(/;)
where K is a constant, and where as before ff =—in(1,...,1).

Proof. We have to show that (2.42) is satisfied with & given by (3.102). Taking
into account the relations (3.85), (3.86), and (3.94), we obtain the following
proposition we need to prove:

Proposition 3.21. The following identity holds:
Op4(0)Opa( J;)
e(0)0(f)

1 3
= 2 DeInOypg(0) D¢ In @pq(/E ). (3.103)

3
+ (De 10 ©pq (0))? + (Ds In O /E ))?

D§ D§ In
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Proof: As the first step of the proof of identity (3.103) we observe that (3.103)
can be rewritten in terms of the theta function without characteristics as
follows:

OV)O(ff +V)

In _
e e

+ (De mO(V))? + (D¢ 111@(/5E +V))?  (3.104)

3
= 2D§ hl@(V)Dg ln@(/ +V) s
3

where V. = Bp + q i.e. all exponential terms arising from relation (A.54)
between the theta function with characteristics and the theta function with
shifted argument drop out; therefore the statement (3.103) takes the form
(3.104).

The idea of the proof of identity (3.104) is the following: we define a
function F' as the difference of the left-hand and the right-hand side of (3.104).
We show that the derivatives of the function F' with respect to any component
po and any ¢, of the vectors p and g vanish. Then the function F' must be
a constant with respect to p and gq; thus it is sufficient to observe that this
function vanishes at p = ¢ = 0.

Function F' depends only on the combination V' = Bp + q; therefore, all
partial derivatives of F' with respect to each p, are linear combinations of
the partial derivatives with respect to ¢.; thus it is sufficient to prove that
all partial derivatives of F' with respect to ¢, vanish.

In turn, to show that all partial derivatives of F' with respect to ¢, are
g  OF dwa(P)
a=198,, drp
for an arbitrary point P € £, taking into account the following

equal to zero, it is sufficient to prove that DpF = 5" vanishes

Lemma 3.22. There exists a positive divisor Py + ...+ P, of degree g on
L such that the vectors dw(Py)/drp, ,...,dw(Py,)/dTp, are linearly indepen-
dent.

Proof. Suppose the opposite, i.e. that det{dw,(3)} vanishes for any divisor
P14+ ...+ P,. Let us integrate this determinant along a basic cycle ag with
respect to the variable § for each 3. On one hand, the result should equal 0
according to our assumption. On the other hand, we get the determinant of
the unit matrix, which equals 1. This contradiction proves the lemma.
O

Thus for suitably chosen P, the vector dw(P)/drp will take all values in
¥ . If one can show that Dp F = 0 for arbitrary P, this implies that F' must
be a constant.

Now let us calculate the Dp derivative of F' (3.104) where P # £ is an
otherwise arbitrary point on £. With the help of Fay’s identity (A.75) we can
write down this derivative as follows:
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o +v)e(fi+Vv) Deln o +V)e(ff+V)

DpF = dy(P,€) 55V @2(ff+V) (3.105)
ol +vie(i+v)  e(f +vie(i+v)
ta(B.0) e[ +V) Del (V) '

The degenerated Fay identity (A.72) implies

Dy m{@(/: —I—V)@(/:—i—V)} (3.106)

o L ov) [oUf+V) eyfi+v)
I A el et e

Substituting (3.106), together with the corresponding relation for Dg{@(f; —|—V)@(f1§ +V)}
into (3.105), we find that the Dp derivative of F' is identically zero for all
P # &. Consequently, the difference F' between the r.h.s. and l.h.s of (3.104)

must be a constant with respect to the characteristics [p, g]. Considering the
case [p, q] = [0, 0] we see that both sides of (2.42) are zero in this case. O

3.6.4 Relation to the Previous Form of the Solutions

The relation to the previous form of the Ernst potential can be established
as follows: Let ¢ = g+ n and pz4; = h; € R, g4 = 0for j =1,...,n.
Consider the limit of collapsing branch cuts for j > g, i.e. Fy1; = Fy4;. In
this limit all quantities entering (3.77) can be expressed in terms of quantities
(denoted with a tilde) on the surface £ of genus § given by 2 = (K —&)(K —
T, (K — E)(K — F), the surface £ with the collapsing cuts removed.
The holomorphic differentials have the limit, see [128],

dw; = d@; , i=1,...,5, dw=ddg-p+, i=G+1,...,n. (3.107)

In other words the holomorphic differentials of £ become holomorphic dif-
ferentials on £ and differentials of the third kind with poles at the collapsed
branch cuts. Since the b-periods of differentials of the third kind can be ex-
pressed in terms of the Abel map of the poles, see e.g. (A.27), one can use

formula (A.54) to get for (3.77)

o _ Omal@loet) 4 T by (T) — w(5)
Opq(@(00™) + 2oy hj(w(E;) — w(E})))
exp Zn:hj /Oi d""Ej—Ej . (3.108)
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By taking the limit Z;:l — fp from a sum to a line integral over the £},
we get after a partial integration (we assume In G vanishes at the limits of
integration) and the identification h(K) = dx (In G) formula (3.50) (without
the integrals of the second kind which can be included in the form of distri-
butional k) for (3.108) where we have used (A.22). For details of the above
construction see [95].






4 Analyticity Properties and Limiting Cases

In Chap. 3 we have used the linear system for the Ernst equation to construct
solutions via Riemann—Hilbert techniques. This was done on the Riemann
surface of the spectral parameter, the physical coordinates were fixed in a
way that they did not coincide with the singularities of the matrix of the lin-
ear system. In the present chapter we want to investigate the behavior of the
found solutions in dependence of the physical coordinates, especially at the
potential singularities which were so far excluded. This analysis allows us to
identify a whole subclass of solutions which will be only singular at some con-
tour which could be identified with the surface of some star or galaxy. Since
solutions of astrophysical interest typically have an equatorial symmetry, a
reflection symmetry at the equatorial plane, we will identify theta-functional
solutions with this property. For the found subclass we investigate interesting
limiting cases as the limit of large distance from the material source. This
allows to identify asymptotically flat solutions which can describe isolated
matter sources. We also study the static limit and the ‘solitonic’ limit, in
which the Riemann surface degenerates. In this vicinity the solutions can be
given in terms of elementary functions, they belong either to the static Weyl
class or the multi-black hole solutions.

In Sect. 4.1 we study all possible singularities of the solutions in terms of
hyperelliptic theta functions. Using techniques by Fay [128] and Yamada [196]
for degenerate Riemann surfaces; we show that the solutions can be analytic
in the case of coinciding branch points. In Sect. 4.2 we identify equatorially
symmetric solutions and give reduction formulas in the equatorial plane and
on the axis. In Sect. 4.3 we study certain limiting cases as the asymptotic
limit and the solitonic limit. As an example for the latter we obtain the Kerr
solution and discuss briefly some of its features.

4.1 The singular structure of the Ernst potential

The construction of the solutions in the previous sections with the help of
Theorem 3.1 also indicates where the resulting Ernst potential (3.50) may be
singular: only at points £ where the conditions of Theorem 3.1 do not hold.
Notice that these conditions are sufficient for the regularity of £ at all other
points. It may turn out though that the Ernst potential is perfectly regular
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at points which had been so far excluded, e. g. in the case of singularities that
are pure gauge. We will therefore discuss all possible singular points of the
solutions (3.50).

It is helpful that this discussion can be performed on the Riemann surface
L, where the powerful hyperelliptic calculus can be used. The introduction of
the four sheeted surface £ was necessary for the construction of the solutions.
In addition it provides an understanding of the mathematical properties of
corresponding solutions to the Ernst equation.

The possible singularities of £ can be directly inferred from the potential
in the form (3.50). The Ernst potential will be singular at the zeros of the
denominator. It is possibly not regular at the points where & is identical to
the singularities of §2 or when & is on I'. Critical points of a different kind
are the branch points F; and F;. If £ coincides with one of these points, the
Riemann surface £ degenerates. The same happens at the axis where the
branch points & and ¢ coincide. This is a reminiscent of the singular behavior
of the three-dimensional Laplace operator on the axis in the axisymmetric
case. The main aim of the analysis below is to single out a class of solutions
that may be interesting in the context of boundary value problems for the
Ernst equation that describe e.g. the exterior of a rotating body. Thus we
will not study the nature of the singularities (e.g. curvature singularities)
but single out a large class of solutions where the Ernst potential is only
discontinuous at a (closed) contour that could be identified with the surface

of a body.

4.1.1 Zeros of the Denominator

Zeros of the denominator of (3.50) will lead to singularities in the spacetime.
From condition IV of Theorem 3.1 it follows that these are just the points at
which the matrix @ cannot be normalized in the required way. This leads to
the transcendental condition

Opg(w(c™) +u+b) #0, (4.1)

if one wants to exclude these poles. We will show in the next section how the
zeros of the theta function in (4.1) can be found as the solution of a set of
algebraic equations.

4.1.2 Essential Singularities

The integrals of the third kind occurring in {2 are nothing but a particular
case of line integrals over contours with constant jump function G(t). There-
fore, we are left with the investigation of the integrals of the second kind
at this point. Since the theta functions in (3.50) are regular as long as the
Riemann surface £ is, we are left with the exponent if (4.1) holds. For the
behavior of the exponent, we get the following
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Proposition 4.1. The Ernst potential (3.50) has an essential singularity at
the points where & coincides with the singularities of the integrals of the second

kind on L.

Proof. The exponent has by construction an algebraic pole there and, there-
fore, the Ernst potential has an essential singularity.

O
An essential singularity of the real part of the Ernst potential corresponds to
a line singularity of the metric function U. In the context of exterior solutions
for bodies of revolution we are interested in, there seems to be no situation
where such a line singularity in a spacetime might be interesting.

4.1.3 Contours

In case & lies on a contour [ but not on an endpoint of I;, on the axis, or
on one of the branch points E; or Fj, it can be easily seen that the integral
in the exponent as well as the b-periods u; are bounded since GG is Holder—
continuous, finite and non-zero on I'. At the endpoints of the contours I3,
singularities may occur. The value of these integrals at the remaining points
will however not be the same in general if the contour is approached from
one or the other side. This can be seen from the following fact: The point &
is a branch point of L. If it lies on the contour I, care has to be taken of the
sign of the root whilst evaluating the integrals of the form

dr

Jn:/FlnG(r) .

The decisive factor is p3 = (K — &)(K — £). We get for K € I' with K =
Ky +1K5, and Ky, Ky € R for the imaginary part of pg,

o = i%sgn (K1 = Q) K) /Il = R (2) . (4.2)

i.e. the sign of the imaginary part of u depends on the sign of K7 — . Thus
the value of the integrals will in general not be the same if the contour is

approached from the interior or the exterior region. This reasoning does not
work for points K = Ky not on the axis (K3 # 0) with Ky = 0. There the
imaginary part of p2 is zero which means that g is either purely imaginary
or real in the vicinity of £ = K depending on the sign of K5 — (. We conclude
that the integrals over I" with & € I" have the form J = J! +sgn(e)J? (where
the J? are independent of & which indicates if the contour is approached from
the interior or the exterior) which implies that the limiting value of the Ernst
potential calculated via (3.50) exists but depends on e. Therefore, we have
proven the following

Proposition 4.2. Let ¢ € I' but not on the axis or be equal to one of the
branch points E; or F;, or at an endpoint of I';. Then & will, in general, have
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a jump at I'. The limiting values of £ will exist for both sides of the contour
and be Holder—continuous there. The Ernst potential may be singular at the
endpoints of the I5.

Thus the Ernst potential will be finite but possibly discontinuous at a contour
It in the (p,¢)-plane given by ¢ € I' which means that the solution to the
vacuum equations will not be regular at a surface in the (g, ¢, ¢)-space. If this
surface is closed, it can possibly be identified with the surface of a rotating
body. The interior of the body is supposed to be filled with matter. Therefore
the vacuum solution is only considered in the exterior (that contains £ = oo);
it 1s not regular at the boundary to the matter region.

4.1.4 Axis

The axis corresponds to a double point of the hyperelliptic curve since two
branch points coincide. Whereas the algebraic curve is singular in this case,
the corresponding Riemann surface is regular as will be shown below. In this
case, all quantities may be considered on the Riemann surface X’ given by

see e.g. Fay [128] and [196]. Let a prime denote here and in the following
that the primed quantity is taken on X’. This surface is obtained from £ by
removing the cut [5,@ For the analysis of the axis, we will use a slightly
different cut system than the one introduced in Chap. 3: we take a closed
curve encircling [E’,a in the +-sheet as the cut a,. All b-cuts shall begin at
the cut [E, F1]. The rest is unchanged with respect to the system of Fig. A.4.
This implies for the characteristic of the Riemann theta function that it has

the form -
p
R (43
where e = 0,1 and p} = 0.

Since the expansions of all characteristic quantities of the Riemann sur-
face are smooth in g except By, which is divergent as In ¢ for ¢ — 0, it follows
that the Ernst potential has a regular expansion in g¢. For points £ not coin-
ciding with real branch points or singularities of the exponent in (3.50), the
Ernst potential is thus at least C3. It follows from a theorem of Miiller zum
Hagen [197], which is based on a theorem by Morrey [198], that it is therefore
analytic if there are no horizons. Consequently it is sufficient to calculate the
limiting case. If this limit 1s well defined, the Ernst potential is regular at
these points of the axis. The differentials of the first kind for ¢ = 0 have the
limit

dw; =dwli, i=1,...,9—1, dwg:—dw/CJrC_ , (4.4)

1
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where dw’CJrC_ is the normalized differential of the third kind on X’ with poles
in ¢* and ¢~. This implies for the b-periods
B =B, ij=1...,9-1, (4.5)
C+
Big:—/ dwf, i=1,...,9—1, (4.6)
B,, = 2ln g + reg. terms . (4.7

Since B, diverges, the theta function will break down to a sum of two theta
series on X' (in the case of genus g = 1, the surface X’ has genus 0; the
formula below can however be used if one replaces the theta function @’
simply by a factor 1 which means that the axis potential can be expressed in
terms of elementary functions in this case). We introduce integrals «’(P) of
the first kind with the property w’(E7) = 0. The differential dweo+o.- on the
axis becomes dw!_| ___ . In the case of the contour integrals one has to observe
that an additional factor sgn(K; — ¢) in the notation of (4.2) occurs for the
same reasons as there. Since the Abelian integrals of the second kind can be
obtained from the integrals of the third kind by a limiting procedure, the
same holds for these integrals and their b-periods. With the above settings,
we obtain for (3.50)

@;,q, (“"/|E<3r+ +ul + b/) + (_1)56—(w'g(oo+)+ug+bg)@;71ql ("‘"/|Eo—+ o b’)
£ =

e (w’|§<3r+ —u — b’) + (—1)€e_(“’lg(°°+)_u9_bg)@;,q, (wl|zo_+ —u' — b’)

/

p'q
1

X eXp .Q’|§J_r + o InG(T)dw! 4oo- (T) + by +uy ¢ - (4.8)

T

It can be seen from the above formula that the limiting value of & exists
even if u, diverges, provided (4.1) holds (£ will be Hélder—continuous if u,
diverges). The Ernst potential will however have an essential singularity at
the real singularities of 2. We can summarize the above results.

Proposition 4.3. Let condition (4.1) hold. Then the Ernst potential is reg-
ular on the axis except at the points where & coincides with singularities of
2, points of I', and branch points F;, F;.

Remark 4.4. Though & is Holder—continuous even if u, diverges, it is inter-
esting to note for the following when this will be the case. Obviously this
can only happen at the real points of I'. It can be seen however that wu, is
always bounded at these points due to the reality condition, unless they are
endpoints of I'; (this would lead to a conic singularity on the axis).

The above degeneration (see [128, 129]) implies that the Ernst potential
has in the vicinity of the axis the form
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E(0,¢) = &(C) + *&1(O) + O(a") (4.9)

here &y and &; are independent of g, & 1s the axis potential. This means the
Ernst potential is a function of ¢? in the vicinity of a regular axis.

4.1.5 Asymptotic Behavior

Asymptotic flatness implies that the Ernst potential is of the form

22
sl Il

for || — oo where m, the ADM mass, and J, the angular momentum, are
real constants and where the mass has to be positive. A complex m 1s related
to a so called NUT parameter that is comparable to a magnetic monopole,
see e.g. [140].

Spatial infinity is a double point ¢, & — oo that can be treated as the axis.
The asymptotic properties of the solutions (3.50) can be read off at the axis.
Notice that the dw! are independent of {. For dw,, we get

£=1 +0(1/1¢f)

g
dwy = dw’ 4. (1 - %Z(E + FZ»)) + %dwgl' +o(1/¢),  (4.10)
i=1

(1)

+.4" 1s the differential of the second kind with a pole of second order
at oot. Furthermore it can be seen that exp(—wy(cot)) is proportional to
1/¢ for ¢ — +oo. Thus we get

where dw

Proposition 4.5. Let lim;_, o 7InG(7) = 0 on all contours that go through
oot or oo™ and let

@;)Iql (’U,/ + b/) 7£ 0 .
Then & has the form

_q_2m _2J 3
£=1- "0 = H00/¢), (4.11)

for { — 400 where m, J are complex constants which can be calculated in
terms of elliptic theta functions.

The proof of this proposition follows from (4.10) and (4.8).

4.1.6 Real Branch Points

If € coincides with a real branch point E; or Fj, this will be a triple point on
the hyperelliptic curve. We get the following

Proposition 4.6. At points where £ coincides with the real branch point E,,
the limiting value of £ exists. The Ernst potential is in general not differen-
tiable there.
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Proof. We use the same cut system and the same notation as on the axis.
Put £ = E, + z with z = Je! and ¢ € [0,2x],§ € R*. In order to expand &
in powers of  and %, one has to consider the a-periods, in particular

dr _ 4 /% dt
o B o —Eg) h U= O)1 = R)(F, — By + e (Fy + o)
- 1 (K (k) + 0(0)) (4.12)

vV i’(Fg - Eg)ﬂ”(Fg)

where k = ¢'? where K(k’) = K (V1 — k?) and K (k) are the complete elliptic
integrals of the first kind (see e.g. [199]), and where

It can be seen from (4.12) that the a-period has an expansion in powers
of V8. The coefficients of the expansion in Vz, and /& are ¢-dependent,
since the module of the elliptic integrals is just k = e'¢. This implies for the
differentials of the first kind

dw; = dw! + O(V3)
fori=1,...,9—1, and
dwy, = dwg_1 .
Similarly
dweotoo- = dwéo_;_oo_ + O (\/g)
We get for the b-periods,

B,, = —27r£((]2) (1+0(v4)) . (4.13)

whereas B,_1y, = O(\/é_) and By; = Bj; for i,j = 1,...,9 — 1 in the
limit. Thus £ can be expanded in /= and v/z. Even in case that only integer
powers in the expansion occur, the coefficients will be in general ¢-dependent.
Though the limiting value of £ at £ = E, exists, £ will in general not be
differentiable at this point.

O
This implies that the real branch points can be singular points on the axis,
possibly topological defects in the spacetime, see [93]. They should not occur
in the context of exterior solutions for bodies of revolution we are interested
in here.
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4.1.7 Non-real Branch Points

If £ coincides with a branch point £, = Fg, the points F, and F, will be
double points on the algebraic curve. Thus the situation is similar to the one
on the axis with the only exception that one ends up here with two double
points. As on the axis, it is convenient to consider all quantities on a Riemann
surface X" given by

W= 1:[(1( —E)(K - F), (4.14)

i=1

where the double points are removed. All quantities with two primes are
understood to be taken on this surface. We use the following cut system: let
ag—1 be the circle around [§, Fy], and a4 the circle around [é, Fg], both in
the plus sheet. The remaining cuts are as on the axis, i.e. all b-cuts start at
the cut [Eq, Fi]. We get

Proposition 4.7. Let ({.1) hold, and let E, = F, ¢ I'. Then the Ernst
potential s reqular at the point £ = Ey. For B, € I', £ 1s in general Holder-
continuous at & = K.

The proof is similar to the one on the axis and basically uses again results of

Fay [128].

Proof. The case ¢ = 1 may be checked directly with the help of the standard
theory of elliptic theta functions (see e.g. [199]). For ¢ > 1 with the cut
system in use and { = E,; 4+ x, where z is chosen as in the case of the real
branch points, the differentials of the first kind have a smooth expansion
in z and #. In contrast to the case of real branch points, the coefficients
in the expansion are ¢-independent. The differentials dw; become in leading
order the differentials of the first kind dw! on X. The differential dwgy_q
becomes in the limit the differential —dw”’ and similar for dw, at Fj,.

EYE;’
The differential of the third kind becomes

dwogtoo- = dw”” ) (4.15)

cotoo—

All these differentials have coefficients in the x and z expansion that contain
Abelian integrals of the second kind with poles in E;t and F;t as may be
checked by direct calculation. This implies for the b-periods that

B, = B/ (4.16)

ij
foré,j=1,...,9—2and
B(g—l)(g—l) ~ ng =2Inéd+ ...,
By = —2w”(E;') ,
B;, = —2w”(F;') , (4.17)
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whereas B,_1), is finite in the limit & — 0. If £y ¢ I', the u; as well as
the Cauchy integral in the exponent have a smooth expansion in z and z
with ¢-independent finite coefficients. The Theorem of [197] then guarantees
regularity in the absence of a horizon if the limiting value as calculated on
the axis exists. The theta function on £ breaks down to a sum of four theta
functions on X" times a multiplicative factor. If E, € I, the coefficients in
the expansion of £ in # and z will diverge which implies that &£ is possibly
not differentiable there though the limiting value exists if (4.1) holds.

O

4.2 Equatorial Symmetry

In Newtonian gravity it is known that isolated perfect fluid bodies in thermo-
dynamical equilibrium lead to a spacetime with equatorial symmetry. There
is the belief that the same holds in a general relativistic setting though a
proof of this assertion is unknown. A reflection symmetry for the metric at
the equatorial plane implies for the Ernst potential £(g, —¢) = &(g,¢) be-
cause of (2.45). Tt is therefore of special interest to single out equatorially
symmetric solutions among those in (3.50). We get

Theorem 4.8. Let L be a hyperelliptic surface of the form (3.35) with even
genus ¢ = 2s and the property u(—K,—C) = p(K, (). Let I' be a piecewise
smooth contour on L such that with P = (K, u(K)) € I' also P € I' and
(=K, u(K)) € I'. Let there be given a finite non-zero function G on I' subject
to G(P) = G(P) = G(—=K, u(K)). If (p, u(p)) is a singularity of 2, the same
should hold for (—p, u(—p)). Choose a cut system as in Fig. 4.1 in a way that
the cuts a} (i = 1,...,s) encircle [-F;,—E;] and a? encircle [E;, F;] in the
+-sheet (in the case of real branch points, the points are ordered in the way
E; < Fy < Eiy1 < ...; points with the same real part are ordered in the way
S(Ei) < S(F;) < S(Fig1) < ... which implies that F; # F; in this special
case).

Then &£ s equatorially symmetric if the characteristics in the i-th position
(any combination of these cases is allowed) have the form

1100 1100 1{11

(0] sloe) L] e
Proof. The property (¢, K) = pu(—¢,—K) on £ makes it possible to express
quantities on a surface with { = —(p in terms of the corresponding quantities

on the surface with ¢ = (5. We have a}(—¢) = ra?(¢) and b}(—¢) = 7b?(¢)
where ( and —( denote the surface on which the quantity is considered, and
where 7 is the anti-holomorphic involution on £. Together with the symmetry
properties of the Abelian integrals in the exponent of (3.50), this implies that
the transformation { — —( acts as the complex conjugation together with
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Fig. 4.1. Cut system adapted to equatorial symmetry

a change of the upper index. Thus we have for the characteristics in (4.18)
&(=¢) = £(0).

O
1100
2111
the resulting & is just the complex conjugate of the Ernst potential built
with the Riemann theta function. In the case of a rotating body, complex
conjugation of the Ernst potential implies that the angular velocity of the
body changes its sign.

Remark 4.9. If the theta function contains only blocks of the form

The above results suggest that it 1s possible to identify a whole subclass
of solutions among (3.50) that are asymptotically flat, regular except at a
closed contour and equatorially symmetric, 1. e. solutions that might describe
the exterior of a rotating body and might be helpful in the construction of
solutions to boundary value problems for the Ernst equation. We get

Theorem 4.10. Let L be a regular hyperelliptic surface of even genus g = 2s

of the form (3.35) without real branch points. Let I' be a closed, smooth

contour on L such that with P = (K,u(K)) € I' also P = (K, u(K)) € T’

and (—K,pu(K)) € I' and E; ¢ I'. Let there be given a finite nonzero function

G on I' subject to G(P) = G(P) = G((—K, u(K)). Choose the characteristic

[p, q] such that it consists of blocks of the form (4.18) as in Theorem 4.8.
Then

e @O e g [ MG () (19

£0.)= 2

p
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15
(i) a regular solution to the Ernst equation for & & I' if condition (4.1) holds,
i1) in general discontinuous a given by £ € T,
i) 1 ldi t t Iy given b r
(iii) asymptotically (|€] — oo) given by
21J¢

where m, J are finite real constants if

O, (u)#0

p'q
(iv) equatorially symmetric.

Proof. From (3.50) it can be seen that £ is a solution to the Ernst equation.
The regularity properties follow from the previous section. The asymptotic
behavior and equatorial symmetry follow from above.

O

Remark 4.11. The choice of this class is mainly due to regularity require-
ments. If all singularities like real branch points or the singularities of the
Abelian integrals of the second kind lie within the contour I where the so-
lution is not considered since the region is assumed to be filled with matter,
they would not affect the vacuum region. However this would not enlarge the
degrees of freedom (one real-valued function and a set of complex parameters)
if one wants to solve boundary value problems.

We will discuss the common properties of the solutions in this subclass in the
following.

4.2.1 Reduction of the Ernst Potential

The explicit form of the solutions (4.19) in terms of theta functions makes it
possible to identify physically interesting features directly as we will demon-
strate in the following chapters. Since the theta functions as the trigonometric
functions are transcendental functions, a numerical treatment will be neces-
sary. As we will demonstrate in the following, the numerical treatment of
theta functions is in general unproblematic since the exponential series con-
verges rapidly due to the factor exp (%Bijnmj) where the real part of the
Riemann matrix is negative definite. It is however obvious that the numer-
ical evaluation becomes more and more tedious the larger the genus g of
the Riemann surface £ is. Therefore it is an important question whether the
Riemann surface can be reduced in physically interesting cases to surfaces of
lower genus. Loosely speaking this is possible if there exists a special rela-
tion between the branch points (see Weierstrafl’ discussion of the case g = 2
which is referred to in Chap. 7 of [1] and references given therein). Since the
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branch points &, € are parametrized by the physical coordinates and can thus
take on arbitrary complex values, such a reduction will only be possible at
special points of the spacetime which will in general not be of special physical
interest. A general reduction of the Riemann surface is possible if there exist
non-trivial automorphisms on the surface (i.e. automorphisms in addition to
the hyperelliptic involution). For the class of equatorially symmetric solutions
discussed here, this is the case in the equatorial plane and on the axis. There
the surfaces £ and X’ have defining equations y(K) and p/(K) which both
depend only on K2. Thus on both surfaces there is the involution 7' defined
by
T:(K,u(K)) = (—K,pu(—-K)) .

For the sake of simplicity, we will only discuss the characteristic p; = ¢; = 0
and the case B! = —FE? (the general case can be inferred from the resulting
relations without problems). We will concentrate on disks of radius g since
they are an interesting model for galaxies which will be discussed in detail
in the following. The Ernst potential simplifies in the equatorially symmetric
case at the disk where the boundary data are prescribed. We recall that the
first solution of such a boundary value problem was found for the rigidly
rotating dust disk [109].
In the equatorial plane (¢ = 0), the surface £ is then given by

5

pA(K) = (K? + ¢") [[(K* - E})(K® - E7) .

i=1
We cut the surface as before which implies
Taj =d} , Tbj =b7
and
dwil (TP) = _dwzz(P) )

with P € £. The Riemann surface Xy = L£/T of genus s is then given by
(the fixed points of the involution leads again to branch points of the surface

£)T)

5

(@) = alw+ ) [l = E2)(w — 7). (4.20)

i=1
The holomorphic differentials dv; in Xy dual to (ay, b;) (the projection of the
cuts on £ onto X) follow from

dv; = dw} — dw? .
The so called Prym differentials dw; are given by

dw; = dw! 4+ dw? .
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They are holomorphic differentials on the Riemann surface X5 of genus s
with

ww) = (w+ o) [Jw—EHw—E?), (4.21)
i=1
which implies that the Prym variety is a Jacobi variety in this case. The
Riemann matrix on £ has the form

1 1 2 p2_ ml
B— <:13 +B- B B ) ’

-5 B2_B1B1+B2

5 (4.22)

where the B? are the Riemann matrices on 27 respectively. The theta function
on L thus factorizes into products of theta functions on the X,

O(w1|22, B) = > Oso(1 + 22; 2B*)Os0(21 — 22;2B) | (4.23)
4

where each component of the s-dimensional vector 8 takes the values 0, %
Thus the theta function on the surface of genus 2s can be expressed in terms
of theta functions on surfaces of genus s.

In the case of the Ernst potential (4.19), further simplifications follow
from the fact that oo is a branch point of 5. For the contour integrals u, we
obtain for disks

1 1
Uy = — InGdv ,  wy = sgnC—,/ In Gdw (4.24)
m Jp.

Tl T,

where I, is the contour in the +-sheet of X between 0 and —g? along the
real axis, and I3, is the part of the real axis in the upper sheet of X5 between
—oo and —g?. The formula for u, shows that it does matter whether the
equatorial plane is approached from the upper or the lower side (the Ernst
potential is not regular at the disk). For ¢ > gg, we have u,, =0 (G =1 in
the exterior of the disk). Similarly we get for the integral in the exponent of
(4.19)

I, = o Flndeoo+oo— = % . In Gdveg+oo- - (4.25)
Summing up we can write the Ernst potential in the equatorial plane in the
form
B dos Oso(v(co™) —|—uv;2B1)@5B(uw;2B2) I, (4.26)
T3 Os0(v(00) + 1y; 2B)Oap(ug; 2B7) '

where §; = %, and where
P
v(P) :/ dv .
_92

The reality properties of the above theta functions imply together with (4.24)
the condition for equatorial symmetry. Thus the imaginary part of £ jumps at

&
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the disk. For ¢ > go (where u,, = 0), only the terms with even characteristics
in (4.26) will survive which leads to a real Ernst potential. This implies that
the Ernst potential is regular in the equatorial plane in the exterior of the disk
as it should be. The formula (4.26) can also be used to determine asymptotic
quantities as the ADM mass in the limit of ¢ — oo as was done previously
on the axis.

A similar reduction as in the equatorial plane is possible on the axis. There
the Riemann surface X’ also has the involution 7" which makes it possible to
factorize the surface into the surfaces ¥ and XYy where the X; are as above
and where X is Xy with the cut [0, —92] removed. Thus the theta function
O’ on the surface X’ of genus 2s — 1 can be expressed via theta functions on
surfaces of genus s — 1 and s respectively. In the case ¢ = 2, this will not
lower the genus of the Riemann surfaces under consideration on the axis. We
will not give the Ernst potential on the axis since it will not be used here
(the formula is helpful if one wants to calculate the multipole moments on
the axis for higher genus).

4.3 Solitonic Limit

In Chap. 3 we had briefly discussed the formation of solitons in theta func-
tional solutions of the KP equation. In the limit of a degenerate surface £
given by (1.14) E; — F; fori = 1,..., g certain periods diverge and the theta
functions reduce to elementary functions. In the cut system of Fig. A.4, the
diagonal elements of the matrix of b-periods diverge whereas the remaining
periods remain finite. Since the elliptic Ernst equation is not a wave equa-
tion it cannot have solitonic solutions in the sense of stable wave packets.
But it is interesting to study to which solutions the ‘solitonic’ limit of the
theta-functional solutions leads.

The result depends of course on the characteristic in (4.19). If the char-
acteristic of the theta functions consists only of blocks of the first two pos-
sibilities in (4.18), the theta functions obviously tend to one in the solitonic
limit. The resulting solutions are real and belong to the static Weyl class.

If there are blocks of the third form in (4.18), the limit will correspond
to the multi-black hole solutions (see e.g. [35], [200, 201] and [202]). We
will discuss here the simplest non-trivial example that will lead to the Kerr
solution. One has

Proposition 4.12. Let the characteristic of the theta functions in (3.77) be

given by
L L
7 7
1 ey 10 , (4.27)
—3t ot g T o

where a1 = 1/az = —cot £ with 0 < ¢ < 7/2. Then in the limit By — I =
—a, Fy — Fy = a with a = mcosy, the solution is identical to the Kerr
solution and the Ernst potential is given by (1.8).
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Proof. In the limit E; — F;, ¢ = 1,2, all functions entering (3.77) are given
on the Riemann surface £y. This implies that they can be expressed in terms
of elementary functions. The holomorphic differentials dw; become the differ-
entials of the third kind dwg- +. Since the b-periods Bi; and Bas diverge,
we get for the Ernst potentiall '

_ 1+ ayager () Hwa(ooT) ie_P(a1e“’1(°°+) - azew2(00+))

&= ; 4.28
ewr (o) Fw2(00F) g ay — ie~ P (ayev2(0F) — qyewr (o)) ( )
here
1 K E,—E —r)(E—E
P=—-Bi, :/ oy =n Br=Bednora)l€ = Batra) o)
2 £ (B1 = By +r14+m)(§ — By — 1)
7 = po(F;), and
B — i
wi(ot) =1In & . (4.30)
—ip
Writing the Ernst potential in the form
Gg-1
==, 4.31
G+1 (4.31)
we get
G— 14 ajas Ty — T3 i(a; — as) 1+ 7
1—a1a2—i(a1—|—a2) El—Ez 1—a1a2—i(a1—|—a2) El—Ez ’
(4.32)
which is with the definition of the a; the Kerr solution in the form (1.8).
O

In the used Weyl coordinates, the horizon is located on the axis between
+mcos . In the same way as above one gets for the metric functions af in

(3.98) and €% in (3.102)

(a1 — an) (1 = X)(1+Y?) — (1 = Y?)(ar (1 + X)? - as(1 = X)?)

J = -2« 3
4Y2 + (Cll + as + (Cll — Clz)X)z
(4.33)
and -2 2 2 2
o2k _ S0 @Y + cos” pX —1’ (4.34)
(X2 —=Y?)cos?p
where n
1 9 Ty —Tg
X=— = 4.35
Ey— By’ Ey— FE4 ( )

To compare with similar plots for the disk solutions to be discussed in
the following chapters, we will now present plots of the metric functions for
the Kerr solution for the case m = 1 and ¢ = 7. The real part of the
Ernst potential is shown in Fig. 4.2. It can be recognized that the function
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Fig. 4.2. Real part of the Ernst potential for the Kerr solution with m = 1 and
=7

f changes the sign at some contour, the ergosphere, which touches the axis
at the horizon. This surface marks the limiting region where there can be no
stationary observer with respect to infinity. The dragging due to the rotating
black hole is too strong in this region. In locally corotating coordinates, the
metric function g}, is positive in the ergoregion up to the horizon where it van-
ishes. Asymptotically the function f tends to one, the value of the Minkowski
spacetime. The function 1s obviously globally smooth and symmetric in .

The imaginary part of the Ernst potential, see Fig. 4.3, is an odd function
in (. It vanishes asymptotically and in the equatorial plane.

The metric function af as shown in Fig. 4.4 is equatorially symmetric. It
vanishes asymptotically and on the regular part of the axis.

In contrast to the functions shown above, the metric function e
Killing invariant. Nonetheless we will show it in Fig. 4.5 since it is related to
the 7-function, an important concept in the theory of integrable systems, see
[203] in this context. It is an equatorially symmetric function which is equal
to one on the regular part of the axis and at infinity.

2k js not a
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Fig. 4.3. Imaginary part of the Ernst potential for the Kerr solution with m =1

and p = 7

s

Fig. 4.4. Metric function af for the Kerr solution with m =1 and ¢ = §
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s

Fig. 4.5. Metric function e?* for the Kerr solution with m =1 and ¢ = T



5 Boundary Value Problems and Solutions

In the previous chapters we have used the complete integrability of the sta-
tionary axisymmetric Einstein equations in vacuum to construct and to study
rich classes of solutions which could describe the exterior gravitational field
of stars and galaxies in thermodynamical equilibrium. In the present chapter
we will use these methods to actually solve boundary value problems which
are motivated by astrophysical models, in particular so-called dust disks.
Relativistic dust disks have been studied since the late sixties [204], the
reasons for the interest in these configurations being both physical and math-
ematical. The physical motivation arises from the importance of disk-shaped
matter distributions in certain galaxies and accretion disks. Whereas general
relativistic effects do not play a role in the context of galaxies, they have
to be taken into account in the case of disks around black-holes since black-
holes are genuinely relativistic objects. Moreover disks can be considered as
limiting configurations of fluid bodies for vanishing pressure (see e.g. [205]).
From a more mathematical point of view, dust disks offer the opportunity to
obtain global spacetimes containing matter distributions which can be physi-
cally interpreted. The Einstein equations for an ideal fluid do not seem to be
integrable even in the stationary axisymmetric case. Infinitesimally thin disks
provide a possibility to circumvent this problem because the matter is reduced
to two spatial dimensions. This leads to ordinary differential equations inside
the disk which can be integrated at least in principle. Consequently one has to
solve a boundary value problem for the vacuum equations where the bound-
ary data follow from the properties of the matter in the disk. Since dust disks
have no radial pressures one can place the disks without loss of generality
in the equatorial plane even in standard Weyl coordinates. Thus one avoids
the complications of a free boundary value problem where the location of
the disk has to be determined as part of the solution of the boundary value
problem. The first solutions for relativistic dust disks were given by Mor-
gan and Morgan [204]. They considered static spacetimes with disks which
can be interpreted as being made up of two counter-rotating dust streams
with vanishing total angular momentum. Bardeen and Wagoner [205] stud-
ied numerically and as a post-Newtonian expansion a uniformly rotating disk
consisting of a single dust component. They compared this stationary solu-
tion to the Einstein equations to the static and the Newtonian case and gave
a detailed discussion of the physical features of the spacetime. Later Neuge-
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bauer and Meinel [109] gave an explicit solution for the Bardeen—Wagoner
disk in terms of Korotkin’s solutions [52, 94] on a Riemann surface of genus
2.

Since Newtonian dust disks are known to be unstable against fragmenta-
tion and since numerical investigations (see e.g. [205]) indicate that the same
holds in the relativistic case, such solutions could be taken as exact initial
data for numerical collapse calculations: due to the inevitable numerical error
such an unstable object will collapse if used as initial data. We will investi-
gate disks with counter-rotating dust streams which are discussed as models
for certain SO and Sa galaxies (see [114] and references given therein and
[206, 117]). These galaxies show counter-rotating matter components and are
believed to be the consequence of the merger of galaxies. Recent investiga-
tions have shown that there is a large number of galaxies (see [114, 115], the
first was NGC 4550 in Virgo [116]) which show counter-rotating streams in
the disk with up to 50 % counter-rotation.

In the Newtonian case, dust disks can be treated in full generality (see
e.g. [106]) since the disks lead to boundary value problems for the Laplace
equations which can be solved explicitly. The unifying framework for both
the Laplace and the Ernst equation is provided by the previously discussed
Riemann—Hilbert problems: by solving the scalar problem for the Laplace
equation we obtain the Poisson integral for distributional densities. In this
sense the solutions to the Ernst equation constructed via Riemann—-Hilbert
techniques can be viewed as a generalization of the Poisson integral to the
relativistic case.

Whereas the Poisson integral contains one free function which is sufficient
to solve boundary value problems for the scalar Newtonian potential, the
finite gap solutions contain one free function and a set of complex parameters,
the branch points of the Riemann surface. Thus one cannot hope to solve
general boundary value problems for the complex Ernst potential within this
class because this would imply the possibility to specify two free functions in
the solution according to the boundary data. This means that one can only
solve certain classes of boundary value problems on a given compact Riemann
surface. In this chapter we investigate the implications of the underlying
Riemann surface on the multipole moments and the boundary values taken
at a given boundary. The relations will be given for general genus of the
surface and will be discussed in detail in the case of genus 1 (elliptic surface)
and genus 2, which is the simplest case with generic equatorial symmetry. It is
shown that the solution of boundary value problems leads in general to non-
linear integral equations. However we can identify classes of boundary data
where only one linear integral equation has to be solved. Special attention will
be paid to counter-rotating dust disks which will lead us to the construction
of the solution for constant angular velocity and constant relative density
which was presented in [130]. Tt contains as limiting cases the static solutions
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of Morgan and Morgan [204] and the disk with only one matter stream by
Neugebauer and Meinel [111].

The chapter 1s organized as follows. In Sect. 5.1 we discuss Newtonian dust
disks with Riemann—Hilbert methods and relate the corresponding boundary
value problems to an Abelian integral equation. The boundary conditions
for counter-rotating dust disks are summarized in Sect. 5.2. In Sect. 5.3,
we establish relations for the corresponding Ernst potentials on the axis on
a given Riemann surface of arbitrary genus. The found relation limits the
possible choice of the multipole moments. We discuss in detail the elliptic
and the genus 2 case with equatorial symmetry. This analysis is extended
to the whole spacetime in Sect. 5.4 which leads to a set of differential and
algebraic equations which is again discussed in detail for genus 1 and 2. The
equations for genus 2 are used to study differentially counter-rotating dust
disks in Sect. 5.5: First we discuss the Newtonian limit of disks of genus
2. Then we derive the class of counter-rotating dust disks with constant
angular velocity and constant relative density of [130, 113] as an application
of this constructive approach. We prove the regularity of the solution up to
the ultrarelativistic limit in the whole spacetime except the disk. The found
solution is thus a global solution to the boundary value problem.

5.1 Newtonian Dust Disks

To illustrate the basic concepts used in the following sections, we will briefly
recall some facts on Newtonian dust disks. In Newtonian theory, gravitation is
described by a scalar potential U which is a solution to the Laplace equation
in the vacuum region. We place the disk made up of a pressureless two-
dimensional perfect fluid with radius gy in the equatorial plane { = 0. In
Newtonian theory stationary perfect fluid solutions and thus also the here
considered disks are known to be equatorially symmetric.

Since we concentrate on dust disks, the only force to compensate gravi-
tational attraction in the disk is the centrifugal force. This leads in the disk
to

Up,=12(0)e, (5.1)

where {2(p) is the angular velocity of the dust at radius g. Since all terms in
(5.1) are quadratic in {2 there are no effects due to the sign of the angular
velocity. The absence of these so-called gravitomagnetic effects in Newtonian
theory implies that disks with counter-rotating components will behave with
respect to gravity exactly as disks which are made up of only one component.
We will therefore merely consider the case of one component in this section.
Integrating (5.1) we get the boundary data U(g,0) with an integration con-
stant Uy = U(0,0) which is related to the central redshift in the relativistic
case.

To find the Newtonian solution for a given rotation law £2(g), we thus have
to construct a solution to the Laplace equation which is everywhere regular
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except at the disk where it has to take on the boundary data (5.1). At the
disk the normal derivatives of the potential will have a jump since the disk is
a surface layer. Notice that one has to solve only the vacuum equations since
the two-dimensional matter distribution merely leads to boundary conditions
for the Laplace equation. In the Newtonian setting one thus has to determine
the density for a given rotation law or vice versa, a well known problem (see
e.g. [106] and references therein) for Newtonian dust disks.

The method we outline here has the advantage that it can be generalized
to some extent to the relativistic case. We put gg = 1 without loss of gener-
ality (we are only considering disks of finite non-zero radius) and obtain U
as the solution of the Riemann-Hilbert problem in Chap. 4,

Theorem 5.1. Let InG € CH%(I') and I' be the covering of the imaginary
aris in the upper sheet of Lo between —i and i. The function G has to be
subject to the conditions G(7) = G(7) and G(—71) = G(r). Then

L In G(r)dr
Wy St &

1s a real, equatorially symmetric solution to the Laplace equation which is
everywhere regular except at the disk ( = 0, ¢ < 1. The function InG s
determined by the boundary data U(g,0) or the energy density o of the dust
(2wo = U¢ in units where the velocity of light and the Newtonian gravitational
constant are equal to 1) via

InG(t) = 4 (Uo o[ Uﬂ(g)dg) (5.3)

Ule,¢) = - (5.2)

or
1

oUy
InG(t) =4 —=—d 5.4
0=t SE 6.0

respectively where t = —iT.
We briefly outline the

Proof. Tt may be checked by direct calculation that U in (5.2) is a solution to
the Laplace equation except at the disk. The reality condition on G leads to a
real potential, whereas the symmetry condition with respect to the involution
T — —7 leads to equatorial symmetry. At the disk the potential takes due to
the equatorial symmetry the boundary values

U(0,0) =~ Og%dt (5.5)
and
U,c(Q,O):—%/Q &(127\/4(;)2)&. (5.6)
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Both equations constitute integral equations for the jump data InG of the
Riemann—Hilbert problem if the respective left-hand side is known. The equa-
tions (5.5) and (5.6) are both Abelian integral equations and can be solved
in terms of quadratures, i.e. (5.3) and (5.4). To show the regularity of the
potential U we prove that the integral (5.2) is identical to the Poisson integral
for a distributional density which reads at the disk

— ' NA A A o d¢
Ulo) —_2/0 7l)ede o V(e+¢)?— 100 cos¢
! o Kk(o, d))
= — d R .
4/0 ole)ede — == o7

where k(g,0') = 24/0¢'/(0+ ¢') and where K is the complete elliptic integral
of the first kind (see the appendix and references given therein). Eliminating
InG in (5.5) via (5.4) we obtain after interchange of the order of integration

2 0 / / 1
U=-= (/ ULk (9—) do +/ UK (ﬁ/) dg’) (5.8)
™ \Jo 0 0 o o

which is identical to (5.7) since K(2Vk/(1 + k)) = (14 k)K (k). Thus the
integral (5.2) has the properties known from the Poisson integral: it is a
solution to the Laplace equation which is everywhere regular except at the
disk where the normal derivatives are discontinuous.

O

Remark 5.2. We note that 1t is possible in the Newtonian case to solve the
boundary value problem purely locally at the disk. The regularity properties
of the Poisson integral then ensure global regularity of the solution except at
the disk. Such a purely local treatment will not be possible in the relativistic
case.

The above considerations make it clear that one cannot prescribe both U
at the disk (and thus the rotation law) and the density independently. This
just reflects the fact that the Laplace equation is an elliptic equation for which
Cauchy problems are ill-posed. If In GG is determined by either (5.3) or (5.4) for
given rotation law or density, expression (5.2) gives the analytic continuation
of the boundary data to the whole spacetime. In case we prescribe the angular
velocity, the constant Uy is determined by the condition In G(i) = 0 which
excludes a ring singularity at the rim of the disk. For rigid rotation (£2 =
const), we get e.g.

InG(r) = 402*(7%* + 1) (5.9)

which leads with (5.2) to the well-known Maclaurin disk, the disk limit of
the Maclaurin ellipsoids.
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5.2 Boundary Conditions for Counter-rotating Dust
Disks

In the stationary relativistic case the Euler—Darboux equation of Newtonian
theory is replaced by the Ernst equation. In static situations the Ernst po-
tential is real and belongs to the Weyl class, the Ernst equation reduces again
to the Euler-Darboux equation. Hence static disks like the counter-rotating
disks of Morgan and Morgan [204] can be treated in the same way as the
Newtonian disks in the previous section.

In this section we want to study the boundary values at a stationary
infinitesimally thin disk made up of two components of pressureless matter
which are counter-rotating. These models are simple enough that explicit so-
lutions can be constructed, and they show typical features of general bound-
ary value problems one might consider in the context of the Ernst equation.
It is also possible to study explicitly the transition from a stationary to a
static spacetime with a matter source of finite extension for these models.
Counter-rotating disks of infinite extension but finite mass were treated in
[206, 207, 208], disks producing the Kerr metric in [117].

To obtain the boundary conditions at a relativistic dust disk, it seems best
to use Israel’s invariant junction conditions for matching spacetimes across
non-null hypersurfaces [209]. Again we place the disk in the equatorial plane
and match the regions V* (£¢ > 0) at the equatorial plane. This is possible
with the used coordinates since we are only considering dust i.e. vanishing
radial stresses in the disk. The jump y.5 = K: — K_; in the extrinsic
curvature K,g of the hypersurface ¢ = 0 with respect to its embeddings into
VE = {4+( > 0} is due to the energy-momentum tensor S, of the disk via

—SFSQQ = YaB — ha@'yj s (5.10)

where h is the metric on the hypersurface (greek indices take here the values

0, 1, 3 corresponding to the coordinates ¢, g, ¢). As a consequence of the field

equations the energy-momentum tensor is divergence free, S%ﬁ =

)

the semicolon denotes the covariant derivative with respect to h.

0 where

The energy-momentum tensor of the disk is written in the form

SH = opuliul + o_ulu” (5.11)
where the vectors ug are a linear combination of the Killing vectors, (u$) =
(1,0,%42(g)). This has to be considered as an algebraic definition of the ten-
sor components. Since the vectors uy are not normalized, the quantities o4
have no direct physical significance, they are just used to parametrize S*”.
The energy-momentum tensor was chosen in a way to interpolate contin-
uously between the static case and the one-component case with constant
angular velocity. An energy-momentum tensor S*” with three independent
components can always be written as
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SH = opvh v + prwtw” (5.12)

where v and w are the unit timelike respectively spacelike vectors (v#) =
N1(1,0,wy) and (w*) = Na(x,0,1). This corresponds to the introduction of
observers (called ¢-isotropic observers (FIOs) in [117]) for which the energy-
momentum tensor is diagonal. The condition w,v* = 0 determines « in terms

of wy and the metric,
)= _J8 T 9053 (5.13)

goo + wWegos

If p; /oy < 1 the matter in the disk can be interpreted as in [204] either
as having a purely azimuthal pressure or as being made up of two counter-
rotating streams of pressureless matter with proper surface energy density

0';/2 which are counter-rotating with the same angular velocity , /p;;/O';,

1
W = ot (ULUY + UAUY) (5.14)

where (U{) = U*(vH % , [py/ofwh) is a unit timelike vector. We will always
adopt the latter interpretation if the condition p;‘,/O'; < 1 1s satisfied which is
the case in the example we will discuss in more detail in Sect. 5.5. The energy-
momentum tensor (5.14) is just the sum of two energy-momentum tensors for
dust. Furthermore it can be shown that the vectors Uy are geodesic vectors
with respect to the inner geometry of the disk: this is a consequence of the
equation 5% = 0 together with the fact that U is a linear combination of
the Killing vectors. In the discussion of the physical properties of the disk we
will refer only to the measurable quantities wy, o, and py which are obtained
by the introduction of the FIOs whereas o1 and {2 are just used to generate
a sufficiently general energy-momentum tensor.
Equation Sif = 0 leads to the condition

U, (1 + 2y0a + Qzaz) + 2a (v + 2a) + 2%0(oU , — De U =0, (5.15)

where

Q) — U-I-(Q) — U—(Q) ] (516)

ay(e) +o-(0)

The function v(g) is a measure for the relative energy density of the counter-
rotating matter streams. For v = 1, there is only one component of matter,
for v = 0, the matter streams have identical density which leads to a static
spacetime of the Morgan and Morgan class.

As in the Newtonian case, one cannot prescribe both the proper energy
densities o4 and the rotation law §2 at the disk since the Ernst equation is
an elliptic equation. For the matter model (5.11), we get at the disk

Theorem 5.3. Let &(0) = o4 (0) + 0-(0) and let R(o) and 6(o) be given by
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R= (a + %) v (5.17)
and . )
J(0) = 7;2](9()9) : (5.18)

Then for prescribed £2(g) and 6(g), the boundary data at the disk take the
form

.RZ 2 5 4U :
£ = —1%59 + éeZU . (5.19)

Let ¢ be given by o = e*~U. Then for given density o and ~, the boundary
data read,

2
(¢ +667) (), (*7)  +boby)

~20e (e2V) ((er) L (0) + b,gb,c) +02e =0, (5.20)

) )

and

2
(boma () , ()  +bab))
+-8mpoe?V 4 (<62U> o <62U>7g + bygb,C) =0. (5.21)

)

Proof. The relations (5.10) lead to

—AgeF-U) 5, = (ke—2U;) eV

1
—4me "=V (S5 — aSo0) = —5%62[] ;
—47Te(k_U)(533 — 2aSp3 + ClZSoo) = —k’yggze_ZU , (5.22)

where

Spo = eeV (1 + 2%+ QQa'y) ,
Sos — aSpg = —F 0282 (2a+7) ,
Saz — 2aSg3 + a?Sgg = 7027 g™V | (5.23)

One can substitute one of the above equations by (5.15) in the same way
as one replaces one of the field equations by the covariant conservation of
the energy-momentum tensor in the case of three-dimensional perfect fluids.
This makes it possible to eliminate k  from (5.22) and to treat the boundary
value problem purely on the level of the Ernst equation. The function & will
then be determined via (2.42) with the found solution of the Ernst equation.
It is straight forward to check the consistency of this approach with the help
of (2.42).
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If £2 and v (and thus J) are given, one has to eliminate & from (5.22) and
(5.23). This can be combined with (5.15) and (2.45) to (5.19).

If the functions 4 and o are prescribed (this makes it possible to treat the
problem completely on the level of the Ernst equation), one has to eliminate
2 from (5.15), (5.22) and (5.23) which leads to (5.20) and (5.21).

O

Remark 5.4. For given £2(g) and d(g), equation (5.15) is an ordinary non-

linear differential equation for e?Y,

(R? — ) ,0? — 2Re'V (%) = (R? = 0% — 6610 (V) .- (5.24)

4 ’

For constant {2 and v we get

2
R? — ¢* +3e' = Xer , (5.25)
where

A =20%7 20 (5.26)

For given boundary values as in Theorem 5.3, the task is to to find a solu-
tion to the Ernst equation which is regular in the whole spacetime except at
the disk where it has to satisfy two real boundary conditions. In the following
we will concentrate on the case where the angular velocity 2 and the relative
density v are prescribed.

Remark 5.5. To solve boundary value problems with the class of solutions
(4.19), one has two kinds of freedom: the function G as before and the branch
points E; of the Riemann surface as a discrete degree of freedom. Since one
would need to specify two free functions to solve a general boundary value
problem for the Ernst equation, it is obvious that one can only solve a re-
stricted class of problems on a given surface, and that one cannot expect
to solve general problems on a surface of finite genus. But once one has
constructed a solution which takes the imposed boundary data at the disk,
one has to check the condition @(w(c0™) + u) # 0 in the whole spacetime
to actually prove that one has found the desired solution: a solution that
is everywhere regular except at the disk where it has to take the imposed
boundary conditions.

There are in principle two ways of generalizing the approach used for the
Newtonian case: One can eliminate £2 from the two real equations (5.19)
and enter the resulting equation with a solution (4.19) on a chosen Riemann
surface. This will lead for given v to a non-linear integral equation for InG.
In general there is little hope to get explicit solutions to this equation (for a
numerical treatment of differentially rotating disks along this line in the genus
2 case see [210]). Once a function G is found, one can read off the rotation law
£2 on a given Riemann surface from (4.19). Another approach is to establish
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the relations between the real and the imaginary part of the Ernst potential
which exist on a given Riemann surface for arbitrary GG. The simplest example
for such a relation is provided by the function w = ¥ which is a function on
a Riemann surface of genus 0, where we have obviously |w| = 1. As we will
point out in the following, similar relations also exist for an Ernst potential
of the form (4.19), but they will lead to a system of differential equations.
Once one has established these relations for a given Riemann surface, one can
determine in principle which boundary value problems can be solved there
(in our example which classes of functions 2, 4 can occur) by the condition
that one of the boundary conditions must be identically satisfied. The second
equation will then be used to determine G as the solution of an integral
equation which is possibly non-linear. Following the second approach, we
want to study the implications of the hyperelliptic Riemann surface for the
physical properties of the solutions.

5.3 Axis Relations

In order to establish relations between the real and the imaginary part of the
Ernst potential, we will first consider the axis of symmetry (¢ = 0) where
the situation simplifies decisively. In addition the axis is of interest since the
asymptotically defined multipole moments [211, 212] can be read off there as
in [213].

In Chap. 4 we have shown that the Ernst potential can be expressed on
the axis in terms of functions defined on the Riemann surface X/ given by

W =TIl (K - E;)(K — E;), i.e. the Riemann surface obtained from £ by
removing the cut [£, €] which just collapses on the axis. We use the notation of
Sect. 4.1.4 and let a prime denote that the corresponding quantity 1s defined

on the surface X'. We get with (4.8)

v (fgonr dw' + Ul) — e~ (ws(eoT)Hua)y (fgoer dw’ + u’)
v (ngjJr dw’ — u’) — e~ Wwyleot)=ug)y (fCOer dw’ — u’)

eI+ug

£(0,¢) = ;
(5.27)
where ¥ is the theta function on X' with the characteristic p; = 0, ¢} = 1 for
i=1,...,9—1
Notice that the u; and I are constant with respect to ¢. The only term
dependent both on G and on ¢ is u,. To establish a relation on the axis
between the real and the imaginary part of the Ernst potential independent
of GG, the first step must be thus to eliminate u,. We can state the following

Theorem 5.6. The Ernst potential (4.8) satisfies for g > 1 the relation

PL(Q)EE+P2(O)b+P3(¢) =0, (5.28)
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where the P; are real polynomuals in ( with coefficients depending on the
branch points E; and the g real constants [, In Gridr/p/ (7) withi = 0,...,9—
1. The degree of the polynomials P1 and Ps is 29 — 3 or less, the degree of
Py s 29 — 2 or less.

To prove this theorem we need the fact that one can express integrals of
the third kind via theta functions with odd characteristic denoted by ., see
(3.83),

Ui (w'(00t) — w'(¢F))
+ _ *
exp(—wgy (oo = — . 5.29
( 9( )) ﬁ*(w’(ooﬂ—w’(c—)) ( )

Proof. The first step is to establish the relation

AEE+ Bib+1=0, (5.30)
where _ _
ot (w + [ dw) o (w4 [ do) s
9 (w e [Z7 de ) 0 (w + [T dw)
and
el — amialeot) (I ) P (w0 S dw) (5.32)

) (u’ + fCOjJr dw’) ) (u’ + fCOer dw’)

which may be checked with (4.8) by direct calculation. The reality properties
of the Riemann surface X’ and the function GG imply that A is real and that
B is purely imaginary. We use the addition theorem (A.65) with [m;] = ... =
[ma] equal to the characteristic of ¢ in (5.31) to get

Y. exp(—4mi(my, a®))¥?[a](w’ + ' (007))0?[a] (' (CT))
_ 2a€(Z2)%

etz oy CPCATImE, @)L+ o) PLe](w ()
2 (5.33)

This term is already in the desired form. Using the relation for root functions
(A.84), one can directly see that the right-hand side is a quotient of polynomi-
als of order g—1 or lower in ¢. For (5.32) we use (5.29) with [m1] = [/na] = [K]
where K is the Riemann vector as the characteristic of the odd theta func-
tion ¥, and let [ms] = [Ma] be equal to the characteristic of ¥. The addition
theorem A.65 then leads to

Y. exp(—4ri(mi, a®))0%[n + al(u + w'(007))P?[a](w (CF))
_ 2a€(Z2)%0

Y. exp(—4mi(my, a?))0*[a](w + o’ (00t))9?[a](w (C))
2a€(Z3)29

AeZI —

Bel = X
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exp(—4milmt. a2 [](/)X
(Z) p(—dnifm}, a*) =7
2[a](w'(00T) — & (¢F)) | *[a)(w(00t) — W' (¢7))
( 797%( (OO+)—w/(C+)) + ﬁi(w’(oo"‘)—w’((‘)) ) ) (5.34)

where n follows from 7 as in Theorem A.65. The first fraction in (5.34) is
again the quotient of polynomials of degree ¢ — 1 in ( for the same reasons

as above. But since the quotient must vanish for { — oo, the leading terms
in the numerator just cancel. It is thus a quotient of polynomials of degree
g — 2 or less in the numerator and ¢ — 1 or less in the denominator. To
deal with the quotients ﬁz[a](w’(oo+) - w "(¢E)) /0% (W (00T) — W (CF)), we
define the divisors T+ = Tli + ...+ T as the solutions of the Jacobi
inversion problems w’ (%) —w’(@) —w (oo"')—l—w (¢*) where Q) is the divisor
D =F1+...+ Ey_1. Abel’s theorem then implies for arbitrary K € C

g—1 - g
[T —15) (5 —¢) = (K —A*)? IIA— —(K-Ey) [J(K—E:), (5.35)
i=1 i=1 i=1

where

A (YR
[T (¢~ B
Let @; be given by the condition [@Q; + K] = [a], i.e. @; is a branch point of
X', Then we get for the quotient

(- AT =+ (5.36)

(o (oct) — ' (¢F) T TE-Q;
02 (w'(o0t) — w/(CF)) ‘”““H Ti B

(5.37)

where const is independent with respect to . With the help of (5.35), it is
straight forward to see that for @); € 9), the theta quotient is just propor-
tional to (¢ — E1)/(¢ — Q;) whereas for ); ¢ ), the term is proportional
to (¢ — E1)(Q; — A%)?/(¢ — @;). Using (5.36) one recognizes that the terms
containing roots just cancel in (5.34). The remaining terms are just quotients
of polynomials in { with maximal degree ¢ in the numerator and g — 2 in
denominator.

O

Remark 5.7. The remaining dependence on (G via w’ and I can only be elim-
inated by differentiating relation (5.27) ¢ times with respect to {. If we pre-
scribe e.g. the function b on a given Riemann surface (this just reflects the
fact that the function G can be freely chosen in (5.27)), we can read off e2Y
from (5.28). To fix the constants related to GG in (5.28) one needs to know
the Ernst potential and g — 1 derivatives at some point on the axis where the
Ernst potential is regular, e.g. at the origin or at infinity, where one has to
prescribe the multipole moments. If the Ernst potential were known on some
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regular part of the axis, one could use (5.28) to read off the Riemann surface
(genus and branch points). Equation (5.27) is then an integral equation for G
for known sources. This just reflects a result of [214] that the Ernst potential
for known sources can be constructed via Riemann—Hilbert techniques if it is
known on some regular part of the axis.

In practice it is difficult to express the coefficients in the polynomials P;
via the constants «; and 7, and it will be difficult to get explicit expressions.
We will therefore concentrate on the general structure of the relation (5.28),
its implications on the multipoles and some instructive examples. Let us first
consider the case genus 1 which is not generically equatorially symmetric.
In this case the Riemann surface X’ is of genus 0. One can use formula
(5.27) for the axis potential if one replaces the theta functions by 1. Putting
Ey = ay +15; we thus end up with

(—o I

&~ QbTe = (5.38)

Here the only remaining G-dependence is in 1. If & = £(0,0) is given, e
follows from &,&y + 2b0a1e1/61 = &2l if the in general non-real mass M is
known, the constant e’ follows from 14 4ImMe’ /3, = e?/. In the latter case
the imaginary part of the ADM mass (this corresponds to a NUT parameter)
will be sufficient. Differentiating (5.38) once will lead to a differential relation
between the real and the imaginary part of the Ernst potential which holds
for all G, which means it reflects only the impact of the underlying Riemann
surface on the structure of the solution.

I

Remark 5.8. For equatorially symmetric solutions, one has on the positive
axis the relation £(—¢)€(¢) = 1 (see [215, 216]). This is to be understood
in the following way: the function |{| is even in (, but restricted to positive
¢ it seems to be an odd function, and 1t is exactly this behavior which is
addressed by the above formula. This leads to the conditions

Pi(=C) = =Ps3(() , P2(=C) = P=(C) . (5.39)

2i_dr

The coefficients in the polynomials depend on the ¢/2 integrals fp InGr ()

(¢=10,...,9/2—1 and the branch points.

The simplest interesting example is genus 2, where we get with £ = a+if

_ NG)
55((—01)—1—0—((2—a—C’zz)b:C—l—C'l , (5.40)
2
i.e. a relation which contains two real constants C', C related to . In case
the Ernst potential at the origin is known, one can express these constants
via &. A relation of this type, which is as shown typical for the whole class
of solutions, was observed in [109] for the rigidly rotating dust disk.
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5.4 Differential Relations in the Whole Spacetime

The above considerations on the axis have shown that it is possible there to
obtain relations between the real and the imaginary part of the Ernst poten-
tial which are independent of the function G and thus reflect only properties
of the underlying Riemann surface. The found algebraic relations contain
however g real constants related to the function G, which means that one
has to differentiate g times to get a differential relation which is completely
free of the function GG. These constants were just the integrals «’ and I which
are only constant with respect to the physical coordinates on the axis where
the Riemann surface X degenerates. Thus one cannot hope to get an alge-
braic relation in the whole spacetime as on the axis. Instead one has to deal
with integral equations or to look directly for a differential relation.

To avoid the differentiation of theta functions with respect to a branch
point of the Riemann surface, we use the algebraic formulation of the hyper-
elliptic solutions which we have discussed in Sect. 3.4. With this form of the
solutions it can also be seen how one could get a relation independent of G
without differentiation: one can consider the equations (3.56) and (3.57) as
integral equations for (G. In principle one could try to eliminate G and X
from these equations and (3.63). We will not investigate this approach but
try to establish a differential relation. To this end i1t proves helpful to define
the symmetric (in the K,) functions S; via

g
[[(K - Ki) = K9 — S,y K97+ .+ S0 (5.41)
=1

ie. Sy =K1Ky...Ky, ..., Sg—1 = K1 + ...+ K. The equations (3.63) are

bilinear in the real and imaginary parts of the S; which will be denoted by
R; and I; respectively. With this notation we get

Proposition 5.9. The x; and the Ernst potential £ are subject to the system
of differential equations

0= (Ro— €1+ ..+ E(-1)%) x5+ 7Qul6)
—%(1—952)(11155),5 (Io—&h+ ...+ (=19 ,_697h) (5.42)
and for g > 1
zie=xe (1) R4+ + 9T (2 + . 2897
—%(1 —2Y(InEE) ¢ (1Y T Ly + ... —€97972, 1) . (5.43)

Proof. Differentiating (3.63) with respect to & and eliminating the derivatives
K; ¢ via the Picard-Fuchs relations (3.61), we end up with a linear system
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of equations for the derivatives of the #; and & which can be solved in stan-
dard manner. The Vandemonde-type determinants can be expressed via the
symmetric functions. For « ¢ one gets (5.42). The equations for the z;, are
bilinear in the symmetric functions. They can be combined with (5.42) to
(5.43).

O

Remark 5.10. Tf one can solve (3.63) for the K;, the equations (5.42) and
(5.43) will be a non-linear differential system in ¢ (and & which follows from
the reality properties) for z;, # and £ which only contains the branch points
of the Riemann surface as parameters.

For the metric function af, we get with (3.51)

Proposition 5.11. The metric function a is related to the functions x; and
S; via

Z = lilf";z - % (5.44)
forg>1 and .
Z=—Iy+ % (5.45)
forg=1.

Proof. To express the function Z via the divisor & in (3.56), we define the
divisor ¥ = T7 4+ ... 4+ T as the solution of the Jacobi inversion problem
w(%) = w(R) + w(P) where P is in the vicinity of oo™ (only terms of first
order in the local parameter near oo™ are needed). Using the formula for root
functions (A.85), we get for the quantity 7 in (3.51)

Iy

i CA
7= 5De- 1ni1j[1 T (5.46)

Applying Abel’s theorem to the definition of ¥ and expanding in the local
parameter near co~, we end up with (5.44) for general ¢ > 1 and with (5.45)
for g = 1.

|

Remark 5.12. For g > 1 equation (5.44) can be used to replace the relation
for @4_2¢ in (5.43) since the latter is identically fulfilled with (5.44) and
(2.45).

Remark 5.13. An interesting limiting case is G & 1 where £ ~ 1, i.e. the
limit where the solution is close to Minkowski spacetime. By the definition
(3.56), the divisor R is in this case approximately equal to ©. Thus the
symmetric functions in (5.43) and (5.42) can be considered as being constant
and given by the branch points F;. Relation (5.44) implies that the quantity
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7 is approximately equal to I,_» in this limit, i.e. it is mainly equal to the
constant ap in lowest order. Since the differential system (5.42) and (5.43)
is linear in this limit, 1t is straight forward to establish two real differential
equations of order g for the real and the imaginary part of the Ernst potential.
In principle this works also in the non-linear case, where sign ambiguities in
the solution of (3.56) can be fixed by the Minkowskian limit.

To illustrate the above equations we will first consider the elliptic case.
This is the only case where an algebraic relation between Z and b independent

of GG could be established. Equations (3.63) lead to
(1—2%) Ry = oy — (x?,
(1 - l‘z)Sogo = ElEl - Popol‘z . (547)

Formula (5.45) takes with (5.47) (the sign of Iy is fixed by the condition that
Iy = —p for # = 0) the form

(1 -7 =izx(a; — ) + \/(1 —22)(B? — 022?) — 22(an — ()2 . (5.48)

This relation holds in the whole spacetime for all elliptic potentials, i.e. for all
possible choices of G in (4.19). This implies that one can only solve boundary
value problems on elliptic surfaces where the boundary data at some given
contour [y satisfy condition (5.48).

In the case genus 2, we get for (3.63)

(1— xz)Rl = a1 +as—Cz? + xag,
(1 — 2} (R} + I} + 2Rg) = (a1 + asz)? + 20105 + 3] + F5
—zp — 2(0” + () + 4Cxaq
(1 — 2?)(RyRo + I1 Ip) = ajas(ay + as) + a1 05 + asf7
—Cag + (&8 + P,
(1—2®)(RG + I5) = (oF + B87) (a3 + 55) — (¢® + )2 . (5.49)
The aim is to determine the S; and g from (5.49) and
(1—2)(Z 4+ L) = ixg — Cix (5.50)

and to eliminate these quantities in

(Ro—ERy + e = —%(1‘0 +&x) + %(1 —2?)(In&E) ¢(Io — 1) (5.51)

which follows from (5.42).

Remark 5.14. Since the above relations will hold in the whole spacetime, it
is possible to extend them to an arbitrary smooth boundary I, where the
Ernst potential may be singular (a jump discontinuity) and where one wants
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to prescribe boundary data (combinations of £, & ). If these data are of suffi-
cient differentiability (at least C'9*(I%)), we can check the solvability of the
problem on a given surface with the above formulas. The conditions on the
differentiability of the boundary data can be relaxed by working directly with
the equations (3.56) and (3.57) which can be considered as integral equations
for In G. The latter is not very convenient if one wants to construct explicit
solutions, but it makes it possible to treat boundary value problems where
the boundary data are Holder continuous. We will only work with the differ-
ential relations and consider merely the derivatives tangential to I'; in (5.43)
to establish the desired differential relations between a, b and U. One ends up
with two differential equations which involve only U, b and derivatives. The
aim is to construct the spacetime which corresponds to the prescribed bound-
ary data from these relations. To this end one has to integrate the differential
relations using the boundary conditions. Integrating one of these equations,
one gets g real integration constants which cannot be freely chosen since they
arise from applying the tangential derivatives in (5.43). Thus they have to be
fixed in a way that the integrals on the right-hand side of (3.56) are in fact
the b-periods of the second integral on the right-hand side of (3.56) and that
(3.57) holds. The second differential equation arises from the use of normal
derivatives of the Ernst potential in (5.42). To satisfy the b-period condition
(3.56), one has to fix a free function in the integrated form of the correspond-
ing differential equation. Thus one has to complement the two differential
equations following from (5.42) with an integral equation which is obtained
by eliminating G from e.g. @#; and 5 in (3.56). For given boundary data, the
system following from (3.56) may in principle be integrated to give e?V and b
in dependence of the boundary data. Then the in general non-linear integral
equation will establish whether the boundary data are compatible with the
considered Riemann surface. This is typically a rather tedious procedure. As
shown in the next section, there is however a class of problems where it is
unnecessary to use this integral equation. If the differential equations hold
for an arbitrary function e?V | the integral equation will only be used to de-
termine this metric function, but the boundary value problem will be always
solvable (locally). This offers a constructive approach to solve boundary value
problems without having to consider non-linear integral equations.

5.5 Counter-rotating Disks of Genus 2

Since it 1s not very instructive to establish the differential relations for genus
2 in the general case, we will concentrate in this section on the form these
equations take in the equatorially symmetric case for counter-rotating dust
disks. In this case, the solutions are parametrized by E? = a + i3. We will
always assume in the following that the boundary data are at least C*(I%)
(the normal derivatives of the metric functions have a jump at the disk, but
the tangential derivatives are supposed to exist up to at least second order).
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Putting s = be™2Y | we get for (5.51) for { =0, ¢ < 1

iz = (Ro — 0’ - 5]0) 7C —o(Ry—shy) b’?Q
_ (3(R0 — QZ) + [0) % + Q(SRl + [1) % ,
os = (Ro— ¢° — sly) 17’79%-9(1131—811)[)’7C
— (s(Ro — %) + Io) %_Q(SRl‘i‘h)% ; (5.52)

where the S; and izg are taken from (5.49) and (5.50). Since counter-rotating
dust disks are subject to the boundary conditions (5.19), we can replace the
normal derivatives in (5.52) via (5.19) which leads to a differential system
where only tangential derivatives at the disk occur. With (5.49) and (5.50)
we get

Ry —o* (Q_R2+92+5f2R0—92) y

LR 2Rp I
e b Q)
—Z tixg) 2= —sZ =), 5.53
((=2+ im0y L2 - o2 (5.53)
7 RO_Q2 R2+Q2+(5f2
os|ll1——=] = - X
R I 2R
<5Z& + (-7 + ixo)b’—g) . (5.54)
f f
With I; = izg/(1 — 2?) — Z and
_ML‘OZ—Oz—Qz—2 7% — o?
Ryo [ 5 , (5.55)
the function ixg follows from
, (Ro—¢%)? «2? B a? + B2 — g%
Ry + g st 1.2 , (5.56)

i.e. an algebraic equation of fourth order for izg which can be uniquely solved
by respecting the Minkowskian limit. Thus (5.53) and (5.54) are in fact a
differential system which determines b and f in dependence of the angular
velocity 2.

5.5.1 Newtonian Limit

For illustration we will first study the Newtonian limit of the equations (5.53)
to (5.56) (where counter-rotation does not play a role). This means we are
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looking for dust disks with an angular velocity of the form 2 = wq(g) where
l¢(0)] < 1 for ¢ < 1, and where the dimensionless constant w < 1. Since we
have put the radius gg of the disk equal to 1, w = wgq i1s the upper limit for
the velocity in the disk. The condition w < 1 just means that the maximal
velocity in the disk is much smaller than the velocity of light which is equal to
1 in the used units. An expansion in w is thus equivalent to a standard post-
Newtonian expansion. Of course there may be dust disks of genus 2 which do
not have such a limit, but we will study in the following which constraints are
imposed by the Riemann surface on the Newtonian limit of the disks where
such a limit exists.

The invariance of the metric (2.40) under the transformation t — —¢
and {2 — —{2 implies that U is an even function in w whereas b has to
be odd. Since we have chosen an asymptotically non-rotating frame, we can
make the ansatz f =14+ w?fo+ ..., b=w3bs+ ..., and a = w3as + .... The
boundary conditions (5.19) imply in lowest order f> , = 24?0, the well-known
Newtonian limit. Since the FErnst equation reduces to the Laplace equation
for fo in order w?, we can use the methods of Sect. 5.1 to construct the
corresponding solution. In order w® the boundary conditions (5.19) lead to

bs,o = 20qf2,c (5.57)

whereas equation (2.43) leads to the Laplace equation for bs. Again we can
use the methods of Sect. 5.1, but this time we have to construct a solution
which is odd in ¢ because of the equatorial symmetry. In principle one can
extend this perturbative approach to higher order, where the field equations
(2.43) lead to Poisson equations with terms of lower order acting as source
terms, and where the boundary conditions can also be obtained iteratively
from (5.19).
With this notation we get

Proposition 5.15. Dust disks of genus 2 which have a Newtonian limit, i.e.
a limit in which £2 = wq(o) where |q(0)| < 1 for ¢ < 1, are either rigidly
rotating (¢ = 1) or q is a solution to the integro-differential equation

by = ((R8 — 92)2(] — K?) fac, (5.58)

where in the first case IY/R) = 2w and in the second I = kw with RY and &
being w independent constants.

We note that one can show with the techniques of [217], an integrated version
of the above Picard—Fuchs system, that only constant {2 is possible in this
limit.

Proof. Since the right hand side of (3.56) vanishes, we have K; = E; for
w — 0, and thus ag = I; up to at least order w?. Keeping only terms in lowest

order and denoting the corresponding terms of the symmetric functions by
5?9, we obtain for (5.54)
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Wbz = fac (29(R) — 0*)w® — w?17) . (5.59)

The second equation (5.54) involves b3 ¢ and is thus of higher order. If (5.59)
holds, this equation will be automatically fulfilled.

The w-dependence in (5.59) implies that R}, I{ and thus the branch
points must depend on w. Since fo ¢ is proportional to the density in the
Newtonian case, it must not vanish identically. The possible cases following
from equation (5.59) are constant {2 or (5.58). Using (5.6) and (5.3), one can
express U ¢ directly via {2 which leads to

4 [t de .
f2,§ = —/ —Qﬁg/(nglz)[x/ (k’) (560)
T Jo e
with & = 2+/00'/(¢ + ¢') and K being the complete elliptic integral of the
first kind. Thus (5.58) is in fact an integro-differential equation for ¢.
|

5.5.2 Explicit Solution for Constant Angular Velocity and
Constant Relative Density

The simplifications of the Newtonian equation (5.59) for constant {2 give rise
to the hope that rigid rotation could be generalized to the relativistic case
which is what we will check in the following. Constant +/§2 makes it in fact
possible to avoid the solution of a differential equation and leads thus to
the simplest example. We restrict ourselves to the case of constant relative
density, ¥ = const. The structure of equation (5.54) suggests that it is sensible
to choose the constant ag as ag = —v/§2 since in this case Z = R. This is
the only freedom in the choice of the parameters o and § on the Riemann
surface one has for ¢ = 2 since one of the parameters will be fixed as in the
Newtonian case by the condition that the disk has to be regular at its rim.
The second parameter will be determined as an integration constant of the
Picard—Fuchs system.

We get

Theorem 5.16. The boundary conditions (5.19) and (5.25) for the counter-
rotating dust disk with constant §2 and constant v are satisfied by an Ernst
potential of the form ({.19) on a hyperelliptic Riemann surface of genus 2
with the branch points specified by

) 1 02

The parameter § varies between § = 0 (only one component) and § = 5,

5522(1+w/1+%) : (5.62)
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the static limit. The function G is giwen by

Y Gt et 5.3

PP+ P (7 +1)

Proof. The proof of the theorem is performed in several steps.
1. Since the second factor on the right-hand side in (5.54) must not vanish
in the Newtonian limit, we find that for 7 = R

RO_Qz_Z2+Q2+6f2

= — (5.64)
With this relation it is possible to solve (5.55) and (5.50),
(0% + 20 — 62 (1 — 22
g = 2(¢ + 20— 71— 7)) (5.65)

ZZ_QZ_(ng ?

62]:2 5 1/1 2

- =5 (5o 4 o ?)
L koo

-4
f \/ Az O[(S +62ﬁ2
\/—+6g

One may easily check that (5.53) is identically fulfilled in this case. Thus the
two differential equations (5.53) and (5.54) are satisfied for an unspecified f
which implies that the boundary value problem for the rigidly rotating dust
disk can be solved on a Riemann surface of genus 2 (the remaining integral
equation which we will discuss below determines then f).

2. To establish the integral equations which determine the function G and
the metric potential 2V, we use equations (3.56). Since we have expressed
above the K; as afunction of eV alone, the left-hand sides of (3.56) are known
in dependence of 2V . It proves helpful to make explicit use of the equatorial
symmetry at the disk. By construction the Riemann surface £ is for { = 0
invariant under the involution K — — K. This implies that the theta functions
factorize and can be expressed via theta functions on the covered surface Xy
given by pi(r) = 7(r + ¢*)((r — @)? + 3?) and the Prym variety Y5 (which
is here also a Riemann surface) given by p3(7) = (7 + 0%)((7 — a)? + 3?) (see
Sect. 4.2.1). On these surfaces we define the divisors V' and W respectively
as the solution of the Jacobi inversion problem

v

1 [~ nG(/7)dr dr
Uy = — — = ;
17 Jo p1(7) 0o M1
-1 w
wy = L [ Glyr)dr :~/ dr (5.66)
1T J_p2 /’LZ(T) co M2

For the Ernst potential we get



118 5 Boundary Value Problems and Solutions

& = 1 (1 Zizo )+/V Ty (5.67)
nff=-In({l- ——= — 1. .
)y
where )
1 —e] d
L= — InG(y7)rdr . (5.68)
)y om0

3. Using Abel’s theorem and (3.56), we can express V and W in terms of
the divisor & which leads to

v S (5.69)
Z2(1 — 2?) — 271xg
and 1
W+ o = - (Z*(1 — 2*) — 2Zizg — 27) . (5.70)

4. Since V and I, vanish for ¢ = 0, we can use (5.67) for ¢ = 0 to
determine the integration constant of the Picard—Fuchs system. We get with
(5.65)

2
62:%—6a+%. (5.71)

5. Since V in (5.69) is with (5.65) a rational function of g, & and 7 and
does not depend on the metric function e?Y, we can use the first equation in
(5.66) to determine G as the solution of an Abelian integral which is obviously
linear. With & determined in this way, the second equation in (5.66) can then
be used to calculate €?V at the disk which leads to elliptic theta functions
(see also [129]). (In the general case, one would have to eliminate eV in the
relations for u, and w,, to end up with a non-linear integral equation for G.)

The integral equation following from (5.66),

Vodr 1/—92 InG
IR — T ar 5.72
/0 p(r)  imSy pa(T) (5.72)

is an Abelian equation and can be solved in standard manner by integrating
both sides of the equation with a factor 1/v/K — r with respect to r from 0
to r where r = —p?. With (5.69) we get for what is essentially an integral
over a rational function

Gy - MEZPE P+ K=ot
) =

(K—a)?+ /2 —(K—a+9%)

. (5.73)

6. The condition G(—1) = 1 excludes ring singularities at the rim of the
disk and leads to a continuous potential and density there. It determines the
last degree of freedom in (5.73) to

)

7. The static limit of the counter-rotating disks is reached for g = 0, i.e.

the value §,.
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a

Remark 5.17. 1t is interesting to note that there exist algebraic relations be-
tween a, b and eV though they are expressed in terms of theta functions, i.e.
transcendental functions, also at the disk.

5.5.3 Global Regularity

In Theorem 5.16 it was shown that one can identify an Ernst potential on a
genus 2 surface which takes the required boundary data at the disk. One has
to notice however that this is only a local statement which does not ensure
one has found the desired global solution which has to be regular in the whole
spacetime except at the disk. It was shown in [118, 129] that this is the case
if @(w(oo™) 4+ u) # 0. In the Newtonian theory (see Sect. 5.1), the boundary
value problem could be treated at the disk alone because of the regularity
properties of the Poisson integral. Thus one knows that the above condition
will hold in the Newtonian limit of the hyperelliptic solutions if the latter
exists. For physical reasons it is however clear that this will not be the case
for arbitrary values of the physical parameters: if more and more energy is
concentrated in a region of spacetime, a black-hole or a singularity is expected
to form (see e.g. the hoop conjecture [218]). The black-hole limit will be a
stability limit for the above disk solutions. Thus one expects that additional
singularities will occur in the spacetime if one goes beyond the black-hole
limit. The task is to find the range of the physical parameters, here A and 4,
where the solution is regular except at the disk.
We can state

Theorem 5.18. Let X' be the Riemann surface given by p'? = (K? —
E)(K? — E) and let a prime denote that the primed quantity is defined on
X' Let A () be the smallest positive value X\ for which @'(u') = 0. Then
O(w(oo™)+u) #0 forall g, ¢ and 0 < A < A (d) and 0 < § < 4.

This defines the range of the physical parameters where the Ernst po-
tential of Theorem 5.16 is regular in the whole spacetime except at the disk.
Since it was shown in [118, 129] that ©@’(wu’) = 0 defines the limit in which the
solution can be interpreted as the extreme Kerr solution, the disk solution is
regular up to the black-hole limit if this limit is reached. This ultrarelativistic
limit will be discussed in more detail in Chap. 7.

Proof. 1. Using the divisor R of (3.56) and the vanishing condition for the
Riemann theta function, we find that @(w(co™) 4+ u) = 0 is equivalent to the
condition that coT is in &. The reality of the @; implies that £ = oot + £.
Equation (3.56) thus leads to

/°°+ dr /5 dr 1 [ InGdr
—t | —-=
B, H E; M 2m o p

/Oo+ Ty /E A (5.75)
B, H B, H 2mi Jr H

Il
<

Il
<
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where = denotes equality up to periods. The reality and the symmetry with
respect to { of the above expressions limits the possible choices of the periods.
It is straight forward to show that @(w(co™) + u) = 0 if and only if the
functions F; defined by

+
©"q ¢d d d d d
Fli/ —T+/ —T—n1<2 —T+2?{—T+?{ —T+?{ —T)
B M B, M by M by M a; M ay M

1 InGdr
2m Jp  p
in/w+ﬂ_f+/fﬂ_f_n2(2 rdr , f Tdr
By H B, H by M by M
L S IR 510
a M a M 2m Jp p

with the cut system of Fig. A.4 and with n; » € Z vanish for the same values
of o, ¢, A, 4. The functions F; are both real, F; is even in { whereas Fs is
odd. Thus F5 1s identically zero in the equatorial plane outside the disk.

2. In the Newtonian limit A & 0, the above expressions take in leading order
of A the form

Fr=A((=8n1+ l)er(o, ) In A —di(g, )N (5.77)

and

Fy = VX ((=8n2 + ea(o, ) In A — dafo, QA2 (5.78)

where we have used the same approach as in the calculation of the axis
potential in (4.8) (see [129] and references given therein); the functions ey,
dy are non-negative whereas cs/ds is positive in €/{¢ = 0}. Thus the F;
are zero for A = 0 which is Minkowski spacetime (£ = 1), but they are not
simultaneously zero for small enough A, i.e. £ is regular in the Newtonian
regime in accordance with the regularity properties of the Poisson integral.
The F; may vanish however at some value A; for given g, ¢ and 4. Since we
are looking for zeros of the F; in the vicinity of the Newtonian regime, we
may put ny 2 = 1 here.

3. Let G be the open domain C/{{ = 0,0 < 1V p = 0}. Tt is straight forward
to check that the F; are a solution to the Laplace equation AF; = 0 for
¢, € G. Thus by the maximum principle the F; do not have an extremum
mg.

4. At the axis for ¢ > 0, the u; are finite whereas the F; diverge proportional
to —In g for all A, . Thus £ is always regular at the axis.

5. Relation (5.42) at the disk can be written in the form (f + A)? +b% = B?
where A and B are finite real quantities. Thus the Ernst potential is always
regular at the disk. Due to symmetry reasons Fs = @y which is non-zero
except at the rim of the disk. For F} one gets at the disk
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ot E E
dr dr dr
F1:/ __|_/ -|-/ — Uy . (5.79)
—0? ﬂl(T) 0 ﬂl(T) 0 ﬂl(T)
With (5.72) one can see that Fy is always positive at the disk.
6. Since F1 is strictly positive on the axis and the disk and a solution to the
Laplace equation in G, it is positive in C if 1t 1s positive at infinity. Fj is

regular for |£| — oo and can be expanded as Iy = Fi1/[é| 4+ o(1/|€|) where
F11 can be expressed via quantities on X’. We get

1 fdr 1 ['InGdr
Fli=-¢ —_— — . 5.80
=g ?{,1 e B (5:30)

The quantity Fi; = 0iff @'(w’) = 0. The condition Fy; > 0 is thus equivalent
to the condition that A < A;(d) where A (d) is the first positive zero of @’ (u').
O

Remark 5.19. Since Fa(g,0) = 0 for ¢ > 1, the reasoning in 6. of the above
proof shows that there will be a zero of @(w(oo™ )+ u) and thus a pole of the
Ernst potential in the equatorial plane for A > A.(6) if the theta function in
the numerator does not vanish at the same point. In the equatorial plane the
Ernst potential can be expressed via elliptic theta functions (see [129]) which
have first order zeros. Thus Fy; will be negative for A > A, in the vicinity of
A, and consequently the same holds for F} in the equatorial plane at some
value ¢ > 1. It will be shown in Chap. 7 that the spacetime has a singular
ring in the equatorial plane in this case. The disk is however still regular and
the imposed boundary conditions are still satisfied. This provides a striking
example that one cannot treat boundary value problems locally at the disk
alone in the relativistic case. Instead one has to identify the range of the
physical parameters where the solution is regular except at the disk.






6 Hyperelliptic Theta Functions and Spectral
Methods

The solutions to the Ernst equation discussed in the previous chapters are
given in terms of multi-dimensional theta functions. Though theta-functional
solutions to integrable equations are known since the beginning of the sev-
enties for equations like KdV, the work with these solutions admittedly has
not reached the importance of solitons.

The main reason for the more widespread use of solitons is that they
are given in terms of algebraic or exponential functions. On the other hand
the parameterization of theta functions by the underlying Riemann surface
is very implicit. The main parameters, typically the branch points of the
Riemann surface, enter the solutions as parameters in integrals on the Rie-
mann surface. A full understanding of the functional dependence on these
parameters seems to be only possible numerically. In recent years algorithms
have been developed to establish such relations for rather general Riemann
surfaces as in [219] or via Schottky uniformization (see Chap. 5 of [1]),
which have been incorporated successively in numerical and symbolic codes,
see [220, 221, 222, 223, 224] and references therein (the last two references are
distributed along with Maple 6, respectively Maple 8, and in an improved ver-
sion as a Java implementation at [225]). For an approach to express periods
of hyperelliptic Riemann surfaces via theta constants see [226].

These codes are convenient to study theta-functional solutions of equa-
tions of KdV-type where the considered Riemann surfaces are ‘static’, i.e.,
independent of the physical coordinates. In these cases the characteristic
quantities of the Riemann surface have to be calculated once, just the (for
low genus) comparatively fast summation in the approximation of the theta
series via a finite sum as e.g. in [224] has to be carried out in dependence of
the spacetime coordinates.

In the case of the theta-functional solutions to the Ernst equation, the
branch points of the underlying hyperelliptic Riemann surface are parame-
terized by the physical coordinates, the spectral curve of the Ernst equation
is in this sense ‘dynamical’. This implies that the time-consuming calculation
of the periods of the Riemann surface has to be carried out for each point in
the spacetime. This includes limiting cases where the surface is almost degen-
erate. In addition the theta-functional solutions should be calculated to high
precision in order to be able to test numerical solutions for rapidly rotating
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neutron stars such as provided e.g. by the spectral code LORENE [132]. This
requires a very efficient code of high precision.

In [131] a numerical code for hyperelliptic surfaces was presented where
the integrals entering the solution are calculated by expanding the integrands
with a Fast Cosine Transformationin MATLAB. The precision of the numeri-
cal evaluation is tested by checking identities for periods on Riemann surfaces
and by comparison with exact solutions. The code was originally optimized
for the solution discussed in Chap. 5, but was generalized in [178] to the
case of arbitrary hyperelliptic surfaces. It is shown for the solution of the
counter-rotating dust disk that an accuracy of the order of machine precision
(~ 107!) can be achieved at a spacetime point in general position with 32
polynomials and with at most 256 polynomials in the case of almost degener-
ate surfaces which occurs e.g., when the point approaches the symmetry axis.
Global tests of the numerical accuracy of the solutions to the Ernst equation
are provided by integral identities for the Ernst potential and its derivatives:
the equality of the ADM mass and the Komar mass (see [227, 146]) and a
generalization of the Newtonian virial theorem as derived in [228]. The so
determined numerical data for the theta functions can be used to provide
‘exact’ boundary values on a sphere for the program library LORENE [132]
which was developed for a numerical treatment of rapidly rotating neutron
stars. LORENE solves the boundary value problem for the stationary axisym-
metric Einstein equations with spectral methods. Tt was shown in [131] that
the theta-functional solution is reproduced to the order of 107! and better.

The chapter is organized as follows: in Sect. 6.1 we summarize basic fea-
tures of spectral methods and explain our implementation of various quan-
tities. The calculation of the periods of the hyperelliptic surface and the
non-Abelian line integrals entering the solution is performed together with
tests of the precision of the numerics. In Sect. 6.2 we check integral identities
for the Ernst potential. The test of the spectral code LORENE is presented in
Sect. 6.3.

6.1 Numerical Implementations

The numerical task in this work is to approximate and evaluate analytically
defined functions as accurately and efficiently as possible. To this end it is
advantageous to use (pseudo-)spectral methods which are distinguished by
their excellent approximation properties when applied to smooth functions.
Here the functions are known to be analytic except for isolated points. In
this section we explain the basic ideas behind the use of spectral methods
and describe in detail how the theta functions and the Ernst potential can
be obtained to a high degree of accuracy.



6.1 Numerical Implementations 125
6.1.1 Spectral Approximation

The basic idea of spectral methods is to approximate a given function f
globally on its domain of definition by a linear combination

N
R ad
k=0

where the functions ¢ are taken from some class of functions which is chosen
appropriately for the problem at hand.

The coefficients ag are determined by requiring that the linear combina-
tion should be ‘close’ to f. Thus, one could require that ||f — Zi\;o agdg|
should be minimal for some norm. Another possibility 1s to require that

<f — Zi\;o ap ok, Xl> = 0for! = 0: N with an appropriate inner product and

associated orthonormal basis x;. This is called the Galerkin method. Finally,
one can demand that f(z;) = Ei\;o apdr(z;) at selected points (#7);=o.n -
This is the so-called collocation method which is the one we will use here. In
this case the function values f; = f(#;) and the coefficients a;, are related by
the matrix @y, = ¢y (27).

The choice of the expansion basis depends to a large extent on the specific
problem. For periodic functions there is the obvious choice of trigonometric
functions ¢x(x) = exp(27ik/N) while for functions defined on a finite inter-
val the most used ¢x(x) are orthogonal polynomials, in particular Cheby-
shev and Legendre polynomials. While the latter are important because of
their relationship with the spherical harmonics on the sphere, the former
are used because they have very good approximation properties and because
one can use fast transform methods when computing the expansion coeffi-
cients from the function values provided one chooses the collocation points
x; = cos(ml/N) (see [229] and references therein). We will use here collocation
with Chebyshev polynomials.

Let us briefly summarize their basic properties. The Chebyshev polyno-
mials Ty, (#) are defined on the interval I = [—1, 1] by the relation

Ty (cos(t)) = cos(nt) , where = cos(?) , te[0,n].
They satisfy the differential equation
(1= %) 6" (2) — 2'(2) + n(x) = 0. (6.1)
The addition theorems for sine and cosine imply the recursion relations
Toq1(x) = 22Ty (x) + Tho1(2) =0, (6.2)
for the polynomials T}, and

T (@) T (x)
n++1 - = 2T (@) (6.3)
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for their derivatives. The Chebyshev polynomials are orthogonal on I with
respect to the hermitian inner product

/f g 1—x2'

<TmaTn> = Cmgémn (6.4)

We have

where ¢g = 2 and ¢; = 1 otherwise.

Now suppose that a function f on [ is sampled at the points x; =
cos(ml/N) and that ZnNzo a,T, 1s the interpolating polynomial. Defining
co = cn = 2,¢, = 1 for 0 < n < N in the discrete case and the num-
bers F,, = ¢,a, we have

N
wl(x) = Z (cos(ml/N))

Mz

fi =

n=0

; N
Z cos(mnl/N) = Z

This looks very much like a discrete cosine series and in fact one can
show [230] that the coefficients F,, are related to the values f; of the function
by an inverse discrete cosine transform (DCT)

| |

cos(mnl/N) .

9 7
__§ I
Fn = Nl_o o cos(mnl/N) .

Note, that up to a numerical factor the DCT is idempotent, i.e., 1t is its
own inverse. This relationship between the Chebyshev polynomials and the
DCT is the basis for the efficient computations because the DCT can be
performed numerically by using the fast Fourier transform (FFT) and pre-
and postprocessing of the coefficients [229]. The fast transform allows us
to switch easily between the representations of the function in terms of its
sampled values and in terms of the expansion coefficients a, (or Fy).

The fact that f is approximated globally by a finite sum of polynomials
allows us to express any operation applied to f approximately in terms of
the coefficients. Let us illustrate this in the case of integration. So we assume
that f = py = ZnNzo a, T, and we want to find an approximation of the

integral for py, i.e., the function
= / f(s)ds
-1

so that F’'(x) = f(x). We make the ansatz F(z) = ZN_ b, Ts(x) and obtain

. n=0
the equation
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N N
F' = anTT/L = ZanTn =f.
n=0 n=0
Expressing T, in terms of the 7! using (6.3) and comparing coefficients im-
plies the equations

2&0 — a9

aN—1
by =

2N

L b=l It g 0<n< N, by =
2 2n
between the coefficients which determine all b; in terms of the a, except
for by. This free constant is determined by the requirement that F(—1) = 0

which implies (because T, (—1) = (=1)")

bo=—> (—1)"by .

n=1

These coefficients b,, determine a polynomial g5 of degree N which approxi-
mates the indefinite integral F(z) of the N-th degree polynomial f. The exact
function is a polynomial of degree N 4+ 1 whose highest coefficient is propor-
tional to the highest coefficient ax of f. Thus, ignoring this term we make an
error whose magnitude is of the order of |ay| so that the approximation will
be the better the smaller |ay| is. The same is true when a smooth function f
is approximated by a polynomial py. Then, again, the indefinite integral will
be approximated well by the polynomial g5 whose coefficients are determined
as above provided the highest coefficients in the approximating polynomial
pn are small.

From the coefficients b,, we can also find an approximation to the definite
integral f_ll f(s)ds = F(1) by evaluating

(/2]

N
gn(1) = an =2 Z bait -
n=0 =0

Thus, to find an approximation of the integral of a function f we proceed as
described above, first computing the coefficients a,, of f, computing the b,
and then calculating the sum of the odd coefficients.

6.1.2 Implementation of the Square-root

The Riemann surface £ is defined by an algebraic curve of the form

p? = (K — &) (K —§) H(K — E) (K — E),

i=1

where we have ¢ = 2 for the counter-rotating disk. In order to compute the
periods and the theta functions related to this Riemann surface it is necessary
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Fig. 6.1. Canonical cycles (P = ¢)

to evaluate the square-root /p?(K) for arbitrary complex numbers K. In
order to make this a well defined problem we introduce the cut-system as
indicated in Fig. 6.1. On the cut surface the square-root u(K) is defined as
in [231] as the product of square-roots of monomials

ﬂ:MK—ng—Qﬁ¢K—&¢K—&. (6.5)

The square-root routines such as the one available in MATLAB usually have
their branch-cut along the negative real axis. The expression (6.5) is holomor-
phic on the cut surface so that we cannot simply take the built-in square-root
when computing /p?(K). Instead we need to use the information provided
by the cut-system to define adapted square-roots.

Let arg(z) be the argument of a complex number z with values in | — 7, 7|
and consider two factors in (6.5) such as

VK — P\/K — Py,

where P; and P, are two branch-points connected by a branch-cut. Let
o = arg(P2 — Py) be the argument at the line from Py to Pa. Now we define
the square-root (4)/* with branch-cut along the ray with argument a by com-
puting for each z € C the square-root s = /z with the available MATLAB
routine and then putting

—s otherwise

(a\y—:{ saf2<arg(s) <a/2+m

With this square-root we compute the two factors
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@K —P @YK -P,.

It 1s easy to see that this expression changes sign exactly when the branch-cut
between P; and P is crossed. We compute the expression (6.5) by multiplying
the pairs of factors which correspond to the branch-cuts.

This procedure is not possible in the case of the non-linear transformations
we are using to evaluate the periods in certain limiting cases. In these cases
the root is chosen in a way that the integrand is a continuous function on the
path of integration.

6.1.3 Numerical Treatment of the Periods

The quantities entering formula (4.19) for the Ernst potential are the periods
of the Riemann surface and the line integrals w and I. The value of the theta
function is then approximated by a finite sum.

The periods of a hyperelliptic Riemann surface can be expressed as inte-
grals between branch points. Since we need in our example the periods of the
holomorphic differentials and the differential of the third kind with poles at

oo® | we have to consider integrals of the form
Pi 1on e
i K"dh
/ S n=0,1,2, (6.6)
P, H(EK)

where the Py, i,7 =1,...,6 denote the branch points of L.
In general position we use a linear transformation of the form K = ¢t +d
to transform the integral (6.6) to the normal form

1 ag + Ozlt + ath

-1 V1—1t2

where the «; are complex constants and where H (t) is a continuous (in fact,
analytic) complex valued function on the interval [—1,1]. This form of the
integral suggests to express the powers {” in the numerator in terms of the
first three Chebyshev polynomials Tp(t) = 1, Ty (t) = ¢ and Ta(t) = 2t* — 1
and to approximate the function H(t) by a linear combination of Chebyshev
polynomials

H(t)dt (6.7)

H(t)y = haTu(t) .

n>0

The integral is then calculated with the help of the orthogonality rela-
tion (6.4) of the Chebyshev polynomials.

Since the Ernst potential has to be calculated for all g,{ € Rg’, it is
convenient to use the cut-system (6.1). In this system the moving cut does
not cross the immovable cut as in the one in Fig. A .4 used for the analytical
calculations. In addition the system is adapted to the symmetries and reality
properties of £. Thus the periods as and b, are related to a; and b; via
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complex conjugation. For the analytical calculations of the Ernst potential in
the limit of collapsing cuts, we have chosen in Sect. 4.1 cut systems adapted
to the respective situation. In the limit ¢ — ¢ we were using for instance a
system where as is the cycle around the cut [¢, £]. This has the effect that only
the b-period by diverges logarithmically in this case whereas the remaining
periods stay finite as g tends to 0. In the cut system of Fig. 6.1, all periods
diverge as In g. Since the divergence is only logarithmical this does not pose
a problem for values of ¢ > 107°. In addition the integrals which have to be
calculated in the evaluation of the periods are the same in both cut-system.
Thus there is no advantage in using different cut systems for the numerical
work.

To test the numerics we use the fact that the integral of any holomorphic
differential along a contour surrounding the cut [Fy, Fi] in positive direction
is equal to minus the sum of all a-periods of this integral. Since this condition
i1s not implemented in the code it provides a strong test for the numerics. It
can be seen in Fig. 6.2 that 16 to 32 polynomials are sufficient in general
position to achieve optimal accuracy. Since MATLAB works with 16 digits,
machine precision is in general limited to 14 digits due to rounding errors.
These rounding errors are also the reason why the accuracy drops slightly
when a higher number of polynomials is used. The use of a low number of
polynomials consequently does not only require less computational resources
but has the additional benefit of reducing the rounding errors. It is therefore
worthwhile to reformulate a problem if a high number of polynomials would
be necessary to obtain optimal accuracy. These situations occur in the cal-
culation of the periods when the moving branch points almost coincide which
happens on the axis of symmetry in the spacetime or at spatial infinity. As
can be seen from Fig. 6.2, for ¢ = 1073 and ¢ = 103 not even 2048 polyno-
mials (this is the limit due to memory on the low end computers we were
using) produce sufficient accuracy. The reason for these problems is that the
function H in (6.7) behaves like 1/4/f + ¢ near ¢t = 0. For small g this behav-
ior is only satisfactorily approximated by a large number of polynomials. We
therefore split the integral in two integrals between Fy and (Fy + £)/2 and
between (Fy+¢)/2 and €. The first integral is calculated with the Chebyshev
integration routine after the substitution ¢ = /K — Fs. This substitution
leads to a regular integrand also at the branch point F5. The second integral
is calculated with the Chebyshev integration routine after the substitution
K — ¢ = gsinh(t). This takes care of the almost collapsing cut [£,£]. Tt can
be seen in Fig. 6.2 that 128 polynomials are sufficient to obtain machine
precision even in almost degenerate situations.

The cut-system in Fig. 6.1 is adapted to the limit & — F5 in what concerns
the a-periods, since the cut which collapses in this limit is encircled by an
a-cycle. However there will be similar problems as above in the determination
of the b-periods. For € ~ Fy we split the integrals for the b-periods as above in
two integrals between Fy and 0, and 0 and Fs. For the first integral we use the
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Fig. 6.2. Test of the numerics for the a-periods at several points in the spacetime.
The error i1s shown in dependence of the number N of Chebychev polynomials

integration variable t = /K — F}, for the second K = R F,—iSF5 sinh . Since
the Riemann matrix is symmetric, the error in the numerical evaluation of
the b-periods can be estimated via the asymmetry of the calculated Riemann
matrix. We define the function err(g,{) as the maximum of the norm of
the difference in the a-periods and the integral of a closed cycle around [¢, €]
discussed above and the difference of the off-diagonal elements of the Riemann
matrix. This error is presented for a whole spacetime in Fig. 6.3. The values
for ¢ and ¢ vary between 10~% and 10*. On the axis and at the disk we give
the error for the elliptic integrals (only the error in the evaluation of the
a-periods, since the Riemann matrix has just one component). For £ — o
the asymptotic formulas for the Ernst potential are used. The calculation is
performed with 128 polynomials, and up to 256 for |£| > 103. It can be seen
that the error is in this case globally below 10713,

It is possible to address the above problems for arbitrary genus as long
as the branch points coincide at most pairwise as in the solitonic limit. The
idea of [178] is to use substitutions in the integrals (6.6) leading to a regular
integrand. To determine the a-periods in the case E; — Fi, where the a-cycle
is the closed contour around the cut [E;, Fj], we use

—21— + 5 coshz . (6.8)

l§

K=
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log, ,error

e o 0

p

Fig. 6.3. A measure for the error in the determination of the periods in dependence
of the physical coordinates. For g, ¢ > 1 we use 1/9,1/¢ as coordinates

After a linear transformation which transforms the integration path to the
interval [—1, 1], the integral is computed with the Chebyshev integration rou-
tine sketched above. This also works in situations close to the solitonic limit.
To treat the b-periods in this case, we split the integral from F; to Ei+1 in
two integrals from F; to (FZ + EH_l)/Q and from (FZ + EH_l)/Q to Ei+1~ In
the former case we use the substitution (6.8) and

Eipr+Fiyr | Fipr— B
_|_
2 2
in the latter. These substitutions lead to a regular integrand even in situations
close to the solitonic limit. After a linear transformation, the integrals are
computed with the Chebyshev integration routine.

The above procedure to determine the periods can be directly imple-
mented within MATLAB for arbitrary genus. Due to the efficient vector-
ization algorithms of MATLAB, the calculation of the periods with optimal
accuracy takes only a second even for genus 10 on the used low-end com-
puters. The limiting factor is here whether the matrix A of a-periods 1s ill
conditioned. This 1s the case if a considerable number of the entries of A are
of the order of the rounding error (1071%). Thus due to the limited num-
ber of digits, the inversion of the matrix A which is necessary to determine
the Riemann matrix can only be carried out with reduced accuracy which
is independent of the number of polynomials used in the spectral expansion.
For large genus, this becomes the limiting factor in the determination of the

K=

cosh (6.9)
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Riemann matrix. For instance in the case of the genus 20 surface with branch
points [—21, —20, ..., 20], the identity for a-periods is satisfied with 32 poly-
nomials up to 1071%, the symmetry of the Riemann matrix only up to 107°
since the matrix A is badly scaled. The calculation of the periods takes less
than a second in this case on the used computers.

6.1.4 Numerical Treatment of the Line Integrals

The line integrals w and I in (4.19) are linear combinations of integrals of
the form : o
/ WmGIE)AE gy (6.10)

—i p(K)
In general position, i.e. not close to the disk and A small enough, the integrals
can be directly calculated after the transformation K = it with the Chebyshev
integration routine. To test the numerics we consider the Newtonian limit
(A — 0) where the function In (i is proportional to 1 4+ K2 i.e. we calculate
the test integral .

"1+ K?)dK

We compare the numerical with the analytical result in Fig. 6.4. In general
position machine precision is reached with 32 polynomials.

When the moving cut approaches the path I', i.e., when the spacetime
point comes close to the disk, the integrand in (6.11) develops cusps near the
points ¢ and £. In this case a satisfactory approximation becomes difficult even
with a large number of polynomials. Therefore we split the integration path
in [—1, —ig], [-1g,10] and [ig, i]. Using the reality properties of the integrands,
we only calculate the integrals between 0 and ig, and between ig and i. In
the first case we use the transformation K = ( + g¢sinht to evaluate the
integral with the Chebyshev integration routine, in the second case we use
the transformation ¢ = /K —&. It can be seen in Fig. 6.4 that machine
precision can be reached even at the disk with 64 to 128 polynomials. The
values at the disk are, however, determined in terms of elliptic functions
which is more efficient than the hyperelliptic formulae.

To treat the case where §A? is not small, it is convenient to rewrite the
function G in (5.63) in the form

InG(K) =2In (\/(1(2 —a)?+ 32+ K+ 1) —In (% - 51{2) . (6.12)

(6.11)

In the limit §A? — oo with § finite, the second term in (6.12) becomes singular
for K = 0. Even for 6\? large but finite, the approximation of the integrand
by Chebyshev polynomials requires a huge number of coefficients as can be
seen from Fig. 6.5. It is therefore sensible to ‘regularize’ the integrand near
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Fig. 6.4. Error in the integrals for the Maclaurin solution in dependence of the
number N of Chebychev polynomials

K = 0. We consider instead of the function ln(% — §K?)F(K) where F(K)
1s a C'*° function near K = 0, the function

In (% - 51{2) (F(K) —F(0) = F'(O)K — ... — iF(”)(O)K”) . (6.13)

n!

The parameter n is chosen such that the spectral coefficients of (6.13) are of
the order of 10~1* for a given number of polynomials, see Fig. 6.5. There we
consider the integral .
! InG(K)dK

2_0)2 4+ 32 ’
which has to be calculated on the axis. We show the absolute values of the
coefficients ai in an expansion of the integrand in Chebyshev polynomials,
Zi\;l aiTy,. Tt can be seen that one has to include values of n = 6 in (6.13).
The integral [, InG(K)F(K) is then calculated numerically as the integral
of the function (6.13), the subtracted terms are integrated analytically. In
this way one can ensure that the line integrals are calculated in the whole

(6.14)

spacetime with machine precision: close to the Newtonian limit, we use an
analytically known test function to check the integration routine, for general
situations we check the quality of the approximation of the integrand by
Chebyshev polynomials via the spectral coefficients which have to become
smaller than 1074,
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dependence of the number of Chebychev polynomials

6.1.5 Theta Functions

The theta series (A.53) for the Riemann theta function (the theta function
n (A.53) with zero characteristic, theta functions with characteristic follow
from (A.54)) is approximated as the sum

1
O(x|B) = Z Z exp{ niBiy +ninaBis + 2n2B22
ni=—N ny=

+nixq —|—n2l‘2} . (615)

The value of N is determined in an a priori estimate by the condition that
terms in the series (A.53) for n > N are strictly smaller than some threshold
value gy which is taken to be of the order of 1071¢. To this end we determine
the eigenvalues of B and demand that

1
N > ==— (llell + /T2l + 2Brox Ino) (6.16)

where Bpax is the real part of the eigenvalue with maximal real part (the
real part of B is negative definite). For a more sophisticated analysis of theta
summations see [224]. In general position we find values of N between 4 and
8. For very large values of { close to the axis, N can become larger than 40
which however did not lead to any computational problems. To treat more
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extreme cases it could be helpful to take care of the fact that the eigenvalues
of B can differ by more than an order of magnitude in our example. In these
cases a sumimation over an ellipse rather than over a sphere in the plane
(n1,n2), i.e. different limiting values for ny and ny as in [224] could be more
efficient. The summation over the hypercube has; however, the advantage
that it can be implemented in MATLAB for arbitrary genus. In addition it
makes full use of MATLAB’s vectorization algorithms outlined below. Thus
it is questionable whether a summation over an ellipse would be more efficient
in terms of computation time in this setting.

Here we made use of MATLAB’s efficient way to handle matrices. We
generate a 2N + 1-dimensional array containing all possible index combina-
tions and thus all components in the sum (6.15) which is then summed. To
illustrate this we consider the simple example of genus 2 with N = 2. The
summation indices are written as (2N + 1) x (2N + 1)-matrices since g = 2.
Each of these matrices contains 2N + 1 copies of the vector with integers
—(2N +1),...,2N 4+ 1. Ny is the transposed matrix of Nj. Explicitly, we
have

2 2 2 2 2 210 -1 -2
11 1 1 1 210 -1 -2

Ni=| 0000 0], No=[210-1-2]". (6.17)
—1-1-1-1-1 210 -1 -2
—2 -2 -2 -2 -2 210 -1 -2

The terms in the sum (6.15) can thus be written in matrix form

1 1
exp <§N1 * NiBqg + Ny« NoBys + §N2*N2]322 + Ni %2y +N2*l‘2) ;

(6.18)
where the operation Ny x Ny denotes that each element of Ny is multiplied
with the corresponding element of Ny. Thus, the argument of exp is a (2N +
1) x (2N + 1)-dimensional matrix. Furthermore, the exponential function is
understood to act not on the matrix but on each of its elements individually,
producing a matrix of the same size. The approximate value of the theta
function is then obtained by summing up all the elements in (6.18).

The most time consuming operations are the determination of the bilin-
ear terms involving the Riemann matrix in (6.18). If one wants to calculate
solutions to e.g. the KP equation, these terms only have to be determined
once for a given surface. The integer N is in this case fixed for the largest
[|z]| in the plot. We note that the summation is very fast even though the
used determination of N is rather crude. For instance in the case of genus 2
with N = 100, the calculation of the theta function takes 0.1s on the used
computers.

The limiting factor is here the available memory since arrays of the or-
der (2N 4+ 1)¢ have to be multiplied with each other. On the used low-end
computers we could deal with rather general genus 4 situations, but the limit
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was reached for genus 6 and N = 5. The summation is still very efficient,
the calculation of the bilinear terms and the determination of the coefficients
took 16s in the latter case, the subsequent calculation of the linear terms in
(6.18) and the summation, which have to be carried out for each value of x
and t, took roughly 4s. Thus the limitations we had to face were not due to
the computing time but due to missing memory.

In case of genus 2 solutions to the Ernst equation the computation of
the integrals entering the theta functions was however always the most time
consuming. The theta summation always took less than 10 % of the calcu-
lation time for a value of the Ernst potential. Between 50 and 70 % of the
processor time are used for the determination of the periods. On the used
low-end PCs, the calculation time varied between 0.4 and 1.2s depending on
the used number of polynomials.

We show a plot of the real part of the Ernst potential for A = 10 and 6 = 1
in Fig. 6.6. For o, { > 1, we use 1/, 1/ as coordinates which makes it possible
to plot the whole spacetime in Weyl coordinates. The non-smoothness of
the coordinates across ¢ = 1 = 1/p and ¢ = 1 = 1/¢ is noticeable in the
plot. Asymptotically the potential is equal to 1. The disk is situated in the
equatorial plane between ¢ = 0 and g = 1. At the disk, the normal derivatives
of e?V are discontinuous.

The coordinate g can take all non-negative real values, the coordinate ¢
all real values. Since the example we are studying here has an equatorial sym-
metry, it is sufficient to consider only non-negative values of (. The case ¢ = 0
corresponds to the axis of symmetry where the branch cut [¢, €] degenerates
to a point, and where the Ernst potential is given in terms of elliptic theta
functions (4.8). Formula (4.9) could be used to calculate the Ernst potential
in the vicinity of the axis. However we considered only values of g greater
than 10~® and did not experience any numerical problems. Consequently we
did not use formula (4.9). For large values of r = |£], the Ernst potential has
the asymptotic expansion (4.11). The mass and the angular momentum are
calculated in terms of elliptic functions on the axis. Formula (4.11) is used
for values of r > 106,

6.2 Integral Identities

In the previous section we have tested the accuracy of the numerics locally,
i.e. at single points in the spacetime. Integral identities have the advantage
that they provide some sort of global test of the numerical precision since they
sum up the errors. In addition they require the calculation of the potentials
in extended regions of the spacetime which allows to explore the numerics
for rather general values of the physical coordinates.

The identities we are considering in the following are the well known
equivalence of a mass calculated at the disk (the Komar mass) and the ADM
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Fig. 6.6. The real part of the Ernst potential for A = 10 and § = 1 in dependence
of the physical coordinates. For g, ¢ > 1 we use 1/9,1/¢ as coordinates

mass determined at infinity, see [227, 146], and a generalization of the Newto-
nian virial identity, see [228] and [131]. The derivatives of the Ernst potential
occurring in the integrands can be related to derivatives of theta functions
as shown in Chap. 3. Since we are interested here in the numerical treatment
of theta functions with spectral methods, we determine the derivatives with
spectral methods, too (see Sect. 6.1). The integrals are again calculated with
the Chebyshev integration routine. The main problem in this context is the
singular behavior of the integrands e.g. at the disk which i1s a singularity
for the spacetime. As before this will lead to problems in the approxima-
tion of these terms via Chebyshev polynomials. This could cause a drop in
accuracy which is mainly due to numerical errors in the evaluation of the
integrand and not of the potentials which we want to test. An important
point is therefore the use of integration variables which are adapted to the
possible singularities.

6.2.1 Mass Equalities

The equality between the ADM mass and the Komar mass provides a test of
the numerical treatment of the elliptic theta functions at the disk by means of
the elliptic theta functions on the axis. Since this equality is not implemented
in the code, it provides a strong test.

The Komar mass at the disk is given by
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1 c a¢b
2 AV [ Tap — zgapTs ) n%E° = mg (6.19)
disk 2

where the integration is carried out over the disk, where n, is the normal
at the disk, and where Ty is the energy momentum tensor of the disk of
Chap. 5. In the example we are considering here, the normal derivatives at
the disk can be expressed via tangential derivatives (see (5.19)) which makes
a calculation of the derivatives solely within the disk possible. We implement
the Komar mass in the form

1
b
me = | d 0 02U 1 026~ (52 _ q264UY) |
= /0 Q492\/92—(5e4U—|—2e2U//\ ( (e )
(6.20)

The integrand is known to vanish as /1 — ¢? at the rim of the disk, which

is the typical behavior for such disk solutions. Since y/1 — g? is not analytic in
0, an expansion of the integrand (6.20) in Chebyshev polynomials in ¢ would
not be efficient. We will thus use ¢ = /1 — ¢? as the integration variable.
This takes care of the behavior at the rim of the disk. Since in general the
integrand in (6.20) depends on g?, this variable can be used in the whole
disk. In the ultra-relativistic limit for § # 0, the function €2V vanishes as
o. In such cases it 1s convenient either to take two domains of integration
or to use a different variable of integration. We chose the second approach
with ¢ = sinz (this corresponds to the disk coordinates (6.22)). Yet, strongly
relativistic situations still lead to problems since ¥ vanishes in this case at
the center of the disk as does b , which leads to a ‘0/0’ limit. In Fig. 6.7 one
can see that the masses are in general equal to the order of 107%. In these
calculations 128 up to 256 polynomials were used. We show the dependence
for v = 0.7 and several values of the parameter' ¢, as well as for ¢ = 0.8 and
several values of 4. The accuracy drops in the strongly relativistic, almost
static situations (¢ close to 1, v close to zero) since the Riemann surface
is almost degenerate in this case (§ — 0). In the ultra-relativistic limit for
d = 0, the situation is no longer asymptotically flat which implies that the
masses formally diverge. For ¢ = 0.95, the masses are still equal to the order
of 10713, Not surprisingly the accuracy drops for € = 0.9996 to the order of
10~%

! For physical reasons it is convenient to discuss the solution in dependence of
the two real parameters ¢ and v, where = is defined in (5.16). The parameter
e = zr/(1+ zr) is related to the redshift zr of photons emitted at the center of
the disk and detected at infinity. It varies between O in the Newtonian limit, and
1 in the ultra-relativistic limit, where photons cannot escape to infinity. Thus,
¢ 1s a measure of how relativistic the situation is. For the functional relations
between ¢, v and A, 0 see Chap. 7.
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Fig. 6.7. The relative difference of the ADM mass and the Komar mass for v = 0.7
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6.2.2 Virial-type Identities

Generalizations of the Newtonian virial theorem are used in numerics (see [228])
as a test of the quality of the numerical solution of the Einstein equations.
Since they involve integrals over the whole spacetime, they test the numerics
globally and thus provide a valid criterion for the entire range of the physical
coordinates.

The identity which is checked here is a variant of the one given in [228]
which 1s adapted to possible problems at the zeros of the real part of the
Ernst potential, the ergosphere,

3 (o] (o] _ _ _
5/ / deCQZ (8,9(8,29 + g,zg) + 579(8,29 + g,zC))
0 0
1 00 00
:/ dggzew(ag&g+5,C£,Q)+2/ / ded¢oe®V €, (6.21)
0 0 0

see [131] for a derivation. Eq. (6.21) relates integrals of the Ernst potential
and its derivatives over the whole spacetime to corresponding integrals at the
disk. Since the numerics at the disk has been tested above, this provides a
global test of the evaluation of the Ernst potential. As before, derivatives and
integrals will be calculated via spectral methods.

The problem one faces when integrating over the whole spacetime is the
singular behavior of the fields on the disk which represents a discontinuity of
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the Ernst potential. The Weyl coordinates in which the solution is given are
not optimal to describe the geometry near the disk. Hence a huge number
of polynomials is necessary to approximate the integrands in (6.21). Even
with 512 polynomials for each coordinate, the coefficients of an expansion
in Chebyshev polynomials did not drop below 10~° in more relativistic sit-
uations. Though the computational limits are reached, the identity (6.21) is
only satisfied to the order of 10~® which is clearly related to the bad choice
of coordinates.

We therefore use for this calculation so-called disk coordinates 7, 6
(see [106]) which are related to Weyl coordinates via

0 +1i¢ = cosh(n + i6) . (6.22)

The coordinate 7 varies between i = 0, the disk, and infinity, the coordinate ¢
between —m/2 and w/2. The axis is given by § = +7/2, the equatorial plane
in the exterior of the disk by ¢ = 0 and n # 0. Because of the equatorial
symmetry, we consider only positive values of 8. The surfaces of constant 5
are confocal ellipsoids which approach the disk for small 7. For large 5, the
coordinates are close to spherical coordinates.

To evaluate the integrals in (6.21), we perform the n-integration up to a
value no as well as the f-integration with the Chebyshev integration routine.
The parameter 7y 1s chosen in a way that the deviation from spherical coordi-
nates becomes negligible, typically g = 15. The integral from 7y to infinity is
then carried out analytically with the asymptotic formula (4.11). Tt turns out
that an expansion in 64 to 128 polynomials for each coordinate is sufficient
to provide a numerically optimal approximation within the used precision.
This illustrates the convenience of the disk coordinates in this context. The
virial identity is then satisfied to the order of 107'2. We plot the deviation
of the sum of the integrals in (6.21) from zero for several values of ¢ and v in
Fig. 6.8. The drop in accuracy for strongly relativistic almost static situations
(v small and ¢ close to 1) is again due to the almost degenerate Riemann
surface. The lower accuracy in the case of strongly relativistic situations for
~ = 1 reflects the fact that the disk is shrinking to a point in this limit, see
the discussion in Chap. 7 of the ultrarelativistic limit of the counter-rotating
disk. To maintain the needed resolution one would have to use more polyno-
mials in the evaluation of the virial-type identity which was not possible on
the used computers.

6.3 Testing LORENE

One purpose of exact solutions of the Einstein equations is to provide test-
beds for numerical codes to check the quality of the numerical approximation.
In the previous sections we have established that the theta-functional solu-
tions can be numerically evaluated to the order of machine precision which
implies they can be used in this respect.
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Fig. 6.8. The deviation from zero of the virial-type identity for v = 0.7 and several
values of €, and for e = 0.8 and several values of v

The code we are considering here is a C++-library called LORENE [132]
which was constructed to treat problems from relativistic astrophysics such
as rapidly rotating neutron stars. The main idea is to solve Poisson-type
equations iteratively via spectral methods. To this end an equation as the
Ernst equation (1.4) is written in the form

AF =G(F,r0,¢), (6.23)

where spherical coordinates r, #, ¢ are used, where A is the Laplace operator
in these coordinates, and where G is some possibly non-linear functional of
F and the coordinates. The system (6.23) is to be solved for F which can be
a vector. In an iterative approach, the equation is rewritten as

AFpi1 =G(Fu,r,0,6), n=12,.... (6.24)

Starting from some initial function Fy, in each step of the iteration a Pois-
son equation is solved for a known right-hand side. For the stationary ax-
isymmetric Einstein equations which we are considering here, it was proven
in [107, 108] that this iteration will converge exponentially for small enough
boundary data if the initial values are close to the solution of the equa-
tion in some Banach space norm. It turns out that one can always start
the iteration with Minkowski data, but it is necessary to use a relaxation:
instead of the solution F,11 of (6.24), it is better to take a combination
fn+1 = Fpq1 + &F, with & €]0, 1] (typically k = 0.5) as a new value in the
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source G, 41 to provide numerical stability. The iteration is in general stopped
if || Fnp1 — Fnl| < 10710

The Ernst equation (1.4) is already in the form (6.23), but it has the
disadvantage that the equation is no longer strongly elliptic at the ergosphere
where RE = 0. In physical terms, this apparent singularity is just a coordinate
singularity, and the theta-functional solutions are analytic there. The Ernst
equation in the form (6.23) has a right-hand side of the form ‘0/0’ for RE = 0
which causes numerical problems especially in the iteration process since the
zeros of the numerator and the denominator will only coincide for the exact
solution. The disk solutions we are studying here have ergospheres in the
shape of cusped toroids as will be shown in Chap. 7. Therefore it is difficult
to take care of the limit 0/0 by using adapted coordinates. Consequently the
use of the Ernst picture is restricted to weakly relativistic situations without
ergospheres in this framework.

To be able to treat strongly relativistic situations, we use a different form
of the stationary axisymmetric vacuum Einstein equations which is derived
from the standard 3 + 1-decomposition, see [232]. We introduce the functions

v and Ny via
22U aU
o @t et
0% — aZeiU ¢ 0% — aZell

(6.25)

The vacuum Einstein equations for the functions (6.25) read in cylindrical
coordinates

1 —4v
Av = §gze 4 (N¢2>,Q +N¢2>,C) , (6.26)
1 1% 1%
ANy — Q_2N¢ = 40(Ng o(e™)g + Ny c(€) ¢) - (6.27)

By putting V = N4 cos ¢ we obtain the flat 3-dimensional Laplacian acting
on V on the left-hand side,

AV = 4o(Vy(e*) o + Ve (e™)e) . (6.28)

Since the function e?” can only vanish at a horizon, it is globally non-zero in

the examples we are considering here. Thus the system of equations (6.26)
and (6.28) is strongly elliptic, even at an ergosphere.

The disadvantage of this regular system is the non-linear dependence of
the potentials v and Ny on the Ernst potential and a via (6.25). Thus we loose
accuracy due to rounding errors of roughly an order of magnitude. Though
we have shown in the previous sections that we can guarantee the numerical
accuracy of the data for e?V and ae?V to the order of 10714, the values for v
and V are only reliable to the order of 10713,

To test the spectral methods implemented in LORENE, we provide bound-
ary data for the disk solutions discussed above on a sphere around the disk.
For these solutions 1t would have been more appropriate to prescribe data
at the disk, but LORENE was developed to treat objects of spherical topology
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such as stars which suggests the use of spherical coordinates. It would be
possible to include coordinates like the disk coordinates of the previous sec-
tion in LORENE, but the code should be tested in its present form. Instead we
want to use the Poisson—Dirichlet routine which solves a Dirichlet boundary
value problem for the Poisson equation for data prescribed at a sphere. We
prescribe the data for v and Ny on a sphere of radius R and solve the sys-
tem (6.26) and (6.28) iteratively in the exterior of the sphere. If the iteration
converges, we compare the numerical solution in the exterior of the sphere
with the exact solution.

Since spherical coordinates are not adapted to the disk geometry, a huge
number of spherical harmonics would be necessary to approximate the po-
tentials if R is close to the disk radius. The limited memory on the used
computers imposes an upper limit of 64 to 128 harmonics. We choose the
radius R and the number of harmonics in a way that the Fourier coefficients
in @ drop below 1071 to make sure that the provided boundary data contain
the related information to the order of machine precision. The exterior of the
sphere where the boundary data are prescribed is divided in two domains,
one from R to 2R and one from 2R to infinity. In the second domain 1/r
is used as a coordinate. For the ¢ dependence which is needed only for the
operator in (6.28), 4 harmonics in ¢ are sufficient.

Since LORENE is adapted to the solution of the Poisson equation, it is
to be expected that it reproduces the exact solution best for nearly static
situations, since the static solutions solve the Laplace equation. The most
significant deviations from the exact solution are therefore expected for § = 0.
For the case A = 3, we consider 32 harmonics in # on a sphere of radius
R = 1.5. The iteration is stopped if ||Fn11 — Fnll < 5 # 1071° which is
the case in this example after 90 steps. The exact solution is reproduced to
the order of 107 !!. The absolute value of the difference between the exact
and the numerical solution on a sphere of radius 3 is plotted in Fig. 6.9 in
dependence of 8. There is no significant dependence of the error on #. The
maximal deviation is typically found on or near the axis. As can be seen from
Fig. 6.10 which gives the dependence on r on the axis, the error decreases
almost linearly with 1/r except for some small oscillations near infinity.

We have plotted the maximal difference between the numerical and the
exact solution for a range of the physical parameters A and ¢ in Fig. 6.11.
As can be seen, the expectation is met that the deviation from the exact
solution increases if the solution becomes more relativistic (larger £). As
already mentioned, the solution can be considered as exactly reproduced if
the deviation is below 10712, Increasing the value of v for fixed ¢ leads to less
significant effects though the solutions become less static with increasing .

For § = 0, the ultra-relativistic limit A — 4.629... corresponds to a
spacetime with a singular axis which is not asymptotically flat, see [119] and
the discussion in Chap. 7. Since LORENE expands all functions in a Galerkin
basis with regular axis in an asymptotically flat setting, solutions close to
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Fig. 6.9. Difference between the exact and the numerical solution for A = 3 and
6 = 0 for r = 3 in dependence on 6

this singular limit cannot be approximated. Convergence gets much slower
and can only be achieved with considerable relaxation. For A = 4 and § = 0
we needed nearly 2000 iterations with a relaxation parameter of xk = 0.9. The
approximation is rather crude (to the order of one percent). For higher values
of A no convergence could be obtained.

This is however due to the singular behavior of the solution in the ultra-
relativistic limit. In all other cases, LORENE is able to reproduce the solution
to the order of 10™!! and better. More static and less relativistic cases are
reproduced with the provided accuracy.
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7 Physical Properties

In Chap. 5 we studied solutions describing stationary counter-rotating dust
disks in terms of hyperelliptic functions. As an example of this approach we
gave an explicit solution on a Riemann surface of genus 2 in Theorem 5.16
where the two counter-rotating dust streams have constant angular velocity
and constant relative density. In the present chapter we discuss the physi-
cal features of the class of hyperelliptic solutions (4.19) which are a subclass
of Korotkin’s finite gap solutions [52, 94] for the example of this disk. We
demonstrate how one can extract physically interesting quantities from the
hyperelliptic functions in terms of which the metric 1s given. The metric de-
pends on two physical parameters: € = zg /(1 4 zg) is related to the redshift
zg of photons emitted from the center of the disk and detected at infinity; v
is the relative density of the counter-rotating streams in the disk. In the New-
tonian limit € is approximately 0 whereas it tends to 1 in the ultrarelativistic
limit where the central redshift diverges. The limit of a single component disk
is reached for v = 1 (we will only consider positive values of v), the static
limit for v = 0.

We give analytic expressions for the mass and the angular momentum as
an expansion of the metric functions at infinity. As in [117] and Chap. 5 we
discuss the matter in the disk using observers which rotate in a way that
the energy-momentum tensor is diagonal for them. We study the angular
velocity of these observers with respect to the locally non-rotating frames,
and the angular velocities and the energy densities of the dust components
which these observers measure. In the limit of diverging central redshift the
spacetime is no longer asymptotically flat in the case of a one component
disk, and the axis is no longer elementary flat. This behavior can be related
as in [205] to the vanishing of the radius gy of the disk which was used as
a length scale. If one carries out the limit gy — 0 for ¢ # 0, the metric
becomes the extreme Kerr metric. In this limit the disk vanishes behind the
horizon of the extreme Kerr solution. In the case of two counter-rotating dust
components the radius of the disk remains finite even in the limit where the
central redshift diverges. In the ultrarelativistic limit of the static disks, the
matter in the disk moves at the speed of light, the energy density diverges at
the center of the disk but the mass remains finite.
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We follow closely the discussion in the pioneering paper [205], but this
time for a class of solutions which depend on two parameters which continu-
ously interpolate between the Newtonian and the ultrarelativistic regime, and
the static and the Bardeen—Wagoner case respectively. The chapter is orga-
nized is follows: In Sect. 7.1 we write down the complete metric corresponding
to the Ernst potential of Theorem 5.16 in terms of theta functions. In Sect. 7.2
we discuss various physical properties of the solutions: We relate the physical
parameters € and 7 to the parameters on which the analytic solution depends
and discuss mass and angular momentum. The angular velocity {2 is discussed
as a function of ¢ and v. We study the energy-momentum tensor at the disk
as in [117] as well as the occurrence of ergospheres. In Sect. 7.3 we discuss
the ultrarelativistic limit of the solutions. We briefly study the over-extreme
case for the one-component solution where the boundary value problem at
the disk is still solved but where a ring singularity exists in the spacetime
since the parameters of the solution are beyond the ultrarelativistic limit.

7.1 Metric functions

In Theorem 5.16 we have constructed the solution for the counter-rotating
dust disk with constant v and {2, which takes in the cut-system of Fig. 6.1
the form

_ Olmlwlt) )
= Bl —w)
where ©[m] is the theta function on £ with half-integer characteristic [m]

where [m] = 1 [10].

(e,¢) (7.1)

~2|10
As shown in Sect. 3.6, the complete metric (2.40) can be expressed via
theta functions. Carrying out the partial degeneration of the Riemann surface
used there, we get with the characteristics

ml= |11 =2 00 ma=g{l0] . =Y
M= =S ] M= ol M™MT5 0]
for the function €2V with (3.79)

2v _ Oln](@)O[ns](u)  Olns](w(oe”))Ona](w(e™)) (7.3)
O[n1](0)0[n5](0) O[ns)(w(007) + w)@[na)(w(oe™) +u) ~~

This form 1s especially adapted for determining ergospheres which are just
the zeros of e?V. It can be seen that the real part of the Ernst potential can
only vanish if

Olni](u)O[ns](u) =0 (7.4)

which provides a necessary condition for the occurrence of ergospheres (the
sufficient condition is that the denominator in (7.3) is non-zero in this case).
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For the metric function a we obtain with (3.98)

(a —ap)e v

~))@na](w(o0™)) Ons)(u + w(oo™))Ona](u + w(oce™

where the constant ap = —v/§2. The constant can be expressed via theta
functions on the elliptic surface X’ given by p'? = (K — E3)(K — E?). As
before we denote quantities defined on X’ by a prime and get

ﬁl T 93(0) L a(u + 2w (007)) _p
= 1%( <w/<oo—>>ﬂ4<wf<oo—>>) da(w)

(7.6)
where dw; = dw’, dws = dw’c_CJr, u; = ﬁfp In Gdw;, and where I’ =

% JpInGdw! _,_ _. For a definition of Jacobi’s elliptic theta functions see
the appendix or references given therein.
For the metric function k we get with (3.102)

Olm)(wnsl(u)
Om(0)6[rn:1(0)

exp (ﬁ/r/FdKldth(Kl)h(Kz)ln @*(“([fl)_f’(f(z))) ,

eZk:C

(7.7)

K — Ky

where @, is a theta function with an odd non-singular half-integer character-
istic, where h(r) = 9; In G(7), and where C'is a constant which is determined
by the condition that £ vanishes on the regular part of the axis and at infinity.
It reads

792(u')
02
( //d[xldlxzh K)h(K2) In 791(@«)’(1&7’1)—«70’(1(2))) |

K — Ky

1/C = (7.8)

In an ergoregion, the function ©@[n1](u)O[na](u) becomes negative. Since the

2k is always neg-

remaining terms in (7.7) cannot change sign, the function e
2(k=U) g

ative where e2U is negative. The metric function g1; = g2 = e
consequently non-negative.

Since we can concentrate on positive values of { because of the equatorial
symmetry of the solution, the Riemann surface can only become singular if &
coincides with &, i.e., on the axis, or if it coincides with Es. Coinciding branch
points imply that some of the periods diverge. To avoid numerical problems
in the immediate vicinity of the axis, we substitute the analytic expression
(4.8). The real part of the Ernst potential can be written in the form

v _ Yi(w)
e”” = 72(0) X (7.9)

) O[1,](0)6[:](0) O] (w)Ons)(u + 2w(c7)
9( s (w (o ) 1)’

(7.5)
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W (fcoj_ dw’) — exp (—2wa(00™)) V3 (fcof_ dw’)
V2 (u’ + fcof_ dw’) — exp (—2wa(00™) — 2us) V2 (u’ + fcof_ dw’) .

For finite ¢ it can only vanish for

Da(w/) =0 . (7.10)

Since this condition is independent of {, the real part of the Ernst potential
will vanish on the whole axis in this case which means that the axis is an
ergosphere. The spacetime is not asymptotically flat in this case. For an
interpretation of this case as an ultrarelativistic limit see Sect. 7.3.3.

If £ coincides with E5, the Ernst potential and the metric functions can
be expressed in terms of quantities defined on the Riemann surface X" of
genus 0 given by p//?(r) = (1 — Ey1)(r — E4), i.e., via elementary functions as
shown in Sect. 4.1. For & = E5 the differentials on £ reduce to differentials
on X dwy = dwE B dwy = dwf_ -t and [ = I = 5L [ InGdw”

where a double prime denotes that the quantity is defined on X". The Ernst
potential reads

cotoo—

W (o) U
sinh J—Ll L 17

&= , 7.11
sinh C‘A—Ll °°+ —t ( )

the function a follows from

(a— ao)eZU + 0
3 B12
B gsinh =]
 2sinh £l ginp 22lel) iy wamen(ooT) gy wazws (oot .

( <B12) Ul —|—U2—|—2W1(OO+)—|—2(.02(OO+)
exp | — ] cosh 5

_ +) +
( Blz)cosh U u2—|—2w1(020 ) = 2o )) ; (7.12)

and the function e?* is given by

B> Urtus 12 Ul—Ug
ok ~€XD ( ) cosh #:542 — exp (— ) cosh #1542
e =(C Y h (7.13)
d[\ld[\z
InG(Kq)1 K
ex p( )2 / / TR OE G(K1)In G(K3)x

(K1 — B1)(Ky — E1) N (K1 — B (K — Ey) 5

(K1 — E) (K. — Ev) (K1— E)(K2— Ey) '
At the disk the branch points ¢, ¢ lie on the contour I" which implies that
care has to be taken in the evaluation of the path integrals. The situation
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1s however simplified by the equatorial symmetry of the solution which is
reflected by the additional involution K — —K of the Riemann surface £
for { = 0. This makes it possible to express the metric functions in terms of
elliptic theta functions. In Sect. 4.2 we gave especially efficient formulas for
the functions needed to calculate the energy-momentum tensor at the disk.
With the notation of Sect. 4.2.1 the real part of the Ernst potential at the
disk can be written as

v L (L Y[ s+d 1
Y—(S A (5 /%‘1‘6@2 A

Y2((0? + a)? + 52) 1
—2Y (¢? — 43¢ 14

where . )
3z +d0 ﬁ%(uw)

e R )

In Theorem 5.16 it was shown that there exist algebraic relations between the
real and imaginary parts of the Ernst potential, and the function Z defined in
(3.10). Consequently these functions can be expressed in terms of the metric
function Y.

At the rim of the disk (¢ = 1 and ¢ = 0) the value of the metric function

e2V thus has the form

1 1 1
Q2U(1,0) — q _ = ( =t 5— X) , (7.16)

The imaginary part of the Ernst potential vanishes for v # 0 at the rim of
the disk as (1 — 92)%. These explicit relations at the rim of the disk can be
used as a test for the numerics.

To illustrate the metric functions we show plots for ¢ = 0.85 and v = 0.99
(A=10.12 and § = 0.856), i.e., a disk in a strongly relativistic situation. The
metric function eV (see Fig. 7.1) tends to 1 for large distances from the disk.
At the disk it is continuous but its normal derivatives have a jump. In the
vicinity of the disk, the function is negative which indicates the presence of
an ergosphere. In the exterior of the disk, e’V is completely smooth and does
not take a local extremum in the whole physical range of the parameters.
The function thus shows the same analytic properties as a solution to the
Laplace equation.

The imaginary part of the Ernst potential (see Fig. 7.2) is an odd function
in ¢. Thus it vanishes in the equatorial plane in the exterior of the disk. For
large distances from the disk it tends to zero because of the asymptotic
flatness of the spacetime. At the disk, the function has a jump which is zero
at the rim of the disk since b is continuous there.

(7.15)
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Fig. 7.1. Metric function e*Yfor e = 0.85 and v = 0.99

The metric function ae?V (see Fig. 7.3) is equatorially symmetric and
everywhere continuous. At the disk, the normal derivatives of a have a jump,

P

Fig. 7.2. Imaginary part of the Ernst potential for ¢ = 0.85 and v = 0.99
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Fig. 7.3. Metric function ae*Yfor e = 0.85 and v = 0.99

in the remaining spacetime it is completely regular. On the axis and at infinity
the function is identically zero.

05

270
E P

Fig. 7.4. Metric function e**for ¢ = 0.85 and v = 0.99
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The function e?* in Fig. 7.4 has similar properties: it is equatorially sym-

metric and everywhere continuous, the normal derivatives have a jump at the
disk. The function is identical to 1 on the axis (‘elementary flatness’) and at
infinity (asymptotic flatness). The function is only significantly different from
1 in the vicinity of the disk. The metric function e2(*=Y) is always positive
even in the ergoregions which implies that the signature of the metric does
not change.

7.2 Physical Properties of the Counter-rotating Dust
Disk

In this section we discuss physical properties of the hyperelliptic solution for
the example of the counter-rotating dust disks.

7.2.1 The Physical Parameters

We consider the metric as depending on the two physical parameters ¢ and
~. Mathematically more natural are the parameters A and 4. These two sets
can be converted through the following procedure. Formula (7.9) can be used
to calculate the real part of the Ernst potential at the origin, ¢V, which is
related to the redshift zp of photons emitted from the center of the disk and
detected at infinity, zp = e~Y° — 1,

2o _ L+ X)(VI+ A -2

= , 7.17
X2 = (V14+A2=))2 ( )
where X 1s the purely imaginary quantity
Is(u")U4(0)
X=————= 7.18
T2 () 7:(0) 71

The corresponding values of A and ¢ follow from (5.26), (5.18) and (7.17).
We get for ¢ £ 1

1—~2 2
(1—e)2 X"

= (7.19)
With this value we enter equation (7.17) for e?Y° and solve numerically for
A(g,7). For § = 0 one finds that the first zero of e2U¢ is reached for A.(0) =
4.62966 . ... The function has additional zeros for higher values of A (see
e.g. [118]). We are only interested in values 0 < A < A.(6). For v < 1 the
quantity e?Y¢ is a monotonous function in A for 0 < A < co. Equation (7.19)
then provides the corresponding value of 6(¢, 7).

For ¢ = 1 there are two cases: if vy = 1, then § = 0 and A = A;(0). For
vy # 1, relation (7.19) implies that A.(d) must be infinite. The corresponding
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value of § follows with (5.26), (5.18) and (7.17) in the limit A — oo as the
solution of the equation
A(1 - 4?)X?
0= —————— . 2
1+ X2 (7.20)

Throughout this chapter we will consider the following limiting cases:
Newtonian limit: ¢ = 0 (A = 0), i.e., small velocities £2¢gy and small red-
shifts in the disk. For A — 0, the integral u’ goes to zero. Thus the quantity
X diverges since )1 is an odd function. Consequently one gets from (7.17)
Uop = —£2?, the value for the Maclaurin disk (see [233] Theorem 5.1). There
it was shown that in this limit e*V tends to the Maclaurin disk solution,
independently of ~. This solution can be written as

11 2N+ 1
Ulg,{) = —— ﬂdT . (7.21)
Ami J \/(r =2 + o2
ultrarelativistic limit: ¢ = 1, i.e., diverging central redshift. For v = 1

we have ¥4(v’) = 0 and thus X = —i and & = —i, i.e., the value of the
Ernst potential of the extreme Kerr metric at the horizon. For v # 1, the
ultrarelativistic limit is reached for A — oo.

static limit: y = 0 (6 = d;(A)). In this limit, the branch points of X’
collapse pairwise which leads to a diverging X and e?Uo = /1422 — .
In [233] (Theorem 5.2) it was shown that this is the Morgan and Morgan
solution [204] for constant {2,

1/ 1
Ule,¢) =——= __Gln) (7.22)
4m _i (T—C)2—|—Q2
with 4
G=1- g(rz +1) . (7.23)
At the disk one has
1 1 1 1 o2
Y - — 4+ = .24
© ¢4 5t ¢4 5t (7.:24)

with 2726 = 1.

one component: ¥ = 1 (§ = 0), i.e., no counter-rotating matter in the disk.
This is the disk which was studied numerically by Bardeen and Wagoner
[205]. The analytic solution is due to Neugebauer and Meinel [109].

The parameter A can be viewed as a ‘relativity’ parameter: for small values
of A, one 1s in the Newtonian regime, for larger values relativistic effects
become more and more dominant up to the ultrarelativistic limit where the
central redshift diverges. The values of A itself, however, do not have an
invariant meaning. Thus it seems better to use the central redshift zp in
¢ = zr/(1 4 zg) as a parameter as in [205],
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e=1-el° (7.25)

bl

where eV? is taken from (7.18).

In the ultrarelativistic limit, the values of & must be between 0 (the one-
component case) and 4 (the static limit, where ¥ = 0 and X? — oo). We plot
¢ as a function of A for vy =1 and v = 0 in Fig. 7.5. In the case v = 1, the
function goes to 1 at finite values of A whereas for v # 1 it goes monotonically
to 1 as A goes to infinity as in the static case v = 0.

0 5 10 15 20 25 30 35 40 45 50

Fig. 7.5. The function ¢ in dependence of A for v =1 and v =0

7.2.2 Mass and Angular Momentum

The ADM mass M and the angular momentum J of the spacetime (see e.g.
[146]) can be obtained by expanding the axis potential (4.8) in the vicinity
of infinity. The real part of the Ernst potential for ¢ < 1 reads €2V =1 —
2M /¢ +0(1/¢) and the imaginary part b = 2J/¢(? +0(1/¢?). The ADM mass
and the angular momentum can be calculated on the axis as was done in
Proposition 4.5. For genus 2 we find

™

M =—Do- Inva(u') — %/ InGdo'), (7.26)
r

for the ADM mass and
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1
J=—L (Do In04(u') + Do Inda(u) + —/ InGdo'", ) (7.27)
N 2 Jp o0
for the angular momentum.
In the Newtonian limit this leads to
4422
= — 2
3r (7.28)
the value of the Maclaurin disk, and
823
J = . 7.29
157 ( )
In the ultrarelativistic limit of the one component disk, ¥4(u’) = 0, both

the mass and the angular momentum diverge. In this limit the dimensionless
quotient M?/.J remains bounded and goes to 1, the value of the extreme Kerr
metric.

We plot the dimensionless quantity M?/J in Fig. 7.6. As a function of ¢
it varies monotonically between the Newtonian value

M? 1002

T S (7.30)

and the value in the ultrarelativistic case which is always bigger than 1 for
~ < 1. For fixed ¢ it increases monotonically with ~.

7.2.3 Energy-momentum Tensor

The energy-momentum tensor of the disk is given by (5.14) which will be

discussed as outlined in Sect. 5.2 by introducing the FIOs of [117]. If we

introduce the four-velocities &y = Niuy, the quantities o4 N are proper

densities in the sense of [205]. The quantity o which appears in the Einstein

equations in Theorem 5.3 is related to 6 = oy + o_ via ¢ = *~Y5. Here &
is given by

b

= ’ . 7.31

7 8m082%(a — ag)e®V (7.31)

It vanishes for ¢ — 1 with infinite slope: in the non-static case it was shown

in [233] that b , is always proportional to /1 — ¢? while in the static case

one gets

1 1— o2
o= 5 3 5 arctan T
4202 (§ -1+ 0?) $—1+yp

(7.32)

Since b = by + O(g?) in the vicinity of the origin for ¢ # 1, the density is
regular in the whole disk for € < 1 and v # 0. This is however not true in the
ultrarelativistic limit of the static disks which we will discuss in more detail
in the following section.
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Fig. 7.6. The dimensionless quantity M?/J in dependence of ¢ for several values
of v

The FIOs can interpret the matter in the disk as having a purely azimuthal
pressure or as a disk of two counter-rotating dust streams if p;‘,/O'; < 1. One
can show numerically that p;;/a; is a monotonically decreasing non-negative
function of 4 which vanishes identically only for v = 1. Thus, it is maximal
in the static case as expected. There we have

*
By prgrem iU 2 W) 5 (7.33)

P
The last equation follows from (5.24). The only case where p, = 0, is the ul-
trarelativistic limit of the static disks. In this case the matter rotates with the

velocity of light while in all other cases, the velocity p;;/O'; 1s smaller than

1. Consequently the FIOs can interpret the matter in the disk as two streams
of dust with proper energy density 0';/2 which are counter-rotating with the

same angular velocity 2. = (N2/N1),/py/oy. This is the interpretation we
will refer to in our discussion.

Except for the static case v = 0 the FIOs are not at rest with respect to
the locally non-rotating frames which rotate with angular velocity

. 903

wp = 7.34
: R ( )



7.2 Physical Properties of the Counter-rotating Dust Disk 159

with respect to the inertial frame at infinity. Therefore, the quantities we will
discuss in the following are the angular velocities w;, wy, {2:, and the energy
density o* = e(k_U)O';.

We discuss the angular velocities in units of £2 which has no invariant
meaning but which provides a natural scale for the angular velocities in the
disk. It is constant with respect to ¢ but depends on the parameters ¢ and
~v. In the Newtonian limit it is small since Uy = —£22. Thus independently
of v, the angular velocity {2 behaves as /¢ for ¢ =~ 0. The fact that the
ultrarelativistic limit for the one-component disk is reached for a finite value
of A implies via (5.26) that {2 must vanish in this limit. This behavior will
be discussed in more detail in Sect. 7.3.3. Thus, as ¢ varies between 0 and 1,
for v = 1, §2 starts near zero in the Newtonian regime, reaches a maximum
smaller than 1 and then goes to zero. For 0 < v < 1, it reaches a maximum,
too, but then it does not go to zero in the ultrarelativistic limit. In the static
case (y = 0) one has

00,0 = 5/ T- (-7, (7.35)

which grows monotonically from zero to 1/2 in the ultrarelativistic limit. We
plot £2 as function of € for several values of v in Fig. 7.7.
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0.1 g

0.05 q

0 I I I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

€

Fig. 7.7. Angular velocity 2 in dependence of ¢ for several values of v
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The angular velocity w; of the locally non-rotating observers is a measure
for the frame dragging due to the rotating disk. We depict w; in dependence
of ¢ at the disk for v = 0.7 and several values of ¢ in Fig. 7.8. There is

0 I I I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p

Fig. 7.8. Angular velocity w; for vy = 0.7 and ¢ = 0.05,0.15, ...,0.85

obviously no frame dragging in the Newtonian case, w; is of order 2° for
small {2. The angular velocity w; increases monotonically with ¢ for fixed g
and 7. However the curves for € > 0.85 are so close to the curve with £ = 0.85
that we omitted them in Fig. 7.8. Since the density (see below) is peeked at
the center of the disk for ¢ — 1, the frame dragging increases strongly near
the center. In Fig. 7.9 we plot w; at the disk for ¢ = 0.8 for several values
of ~. In the static case it is identical to zero. The frame dragging increases
monotonically with v for fixed g and ¢ since more counter-rotating matter
makes the spacetime more static. Since the central density decreases with
~ for fixed ¢, the frame dragging at the center is for v < 1 closer to the
one-component case than at the rim of the disk. The angular velocity w; is
always smaller than 2 for v < 1. In the ultrarelativistic limit for v = 1 the
ratio w;/£2 becomes identical to 1 in the disk.

In terms of the components of the energy-momentum tensor, the angular
velocity wy reads

|
@ = 330 <S§ — 80—\ /(53 - 589)2 + 45g53) . (7.36)
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Fig. 7.9. Angular velocity w; for ¢ = 0.8 and v = 0.1,0.2,...,0.9,0.95,0.99, 1

For fixed ¢ and ¢, the angular velocity wy is monotonically increasing in ~y
from zero in the static case to {2 in the one-component limit. For ¢ = 0 it
is identical to {2 which is also the value in the Newtonian limit. The ratio
wgy /82 is depicted in dependence of g for v = 0.7 for several values of ¢ in
Fig. 7.10.

The angular velocity of the dust streams 2. with respect to the FIOs

follows from
w2 — Qw82 + 22
0, =2 . (7.37)
1 — 2ky82 + £22K2

For fixed g and ¢ the angular velocity {2, increases monotonically in v from
0 in the one-component case to 1 in the static case. In the former case the
observer follows the dust and can interpret the dust which is at rest in his
coordinate system as ‘two’ non-rotating dust components. For ¢ = 0 the
function 2. is identical to £24/1 — ~2 which is also the value in the Newtonian
limit. We plot {2, in dependence of g for v = 0.7 for several values of ¢ in
Fig. 7.11.
The proper density o} for a FIO is given by
o G ¢

Pl KWy Kgos + 933

(1 — 26y02 + k2027) . (7.38)
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Fig. 7.10. Angular velocity wg for ¥ = 0.7 and from top to bottom e =
0.05,0.15,...,0.95

The density is finite except in the ultrarelativistic limit of the static disks. In
the Newtonian limit, the density reads

o =5(1+ 2%((1 —9%)e* - 2)) = 271_&22\/1—92 , (7.39)

the value for the Maclaurin disk. The dependence of ¢* on ¢ is shown for
~ = 0.7 for several values of ¢ in Fig. 7.12. With increasing ¢, the central
density grows and the matter is more and more concentrated at the center of
the disk. For ¢ = 0.8 the density is plotted for several values of v in Fig. 7.13.
With increasing v, the central density increases.

In [204] and [205] the observer dependent ‘rest mass density’ oo + of the
dust streams was defined as o9 1 = o*/2U) which leads to the total rest
mass density og in the asymptotically fixed frame

oo =0"— . (7.40)

The total rest mass of the disk My is then the integral

1
My = 271'/ ogoedo . (7.41)
0
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Fig. 7.11. Angular velocity §2. for v = 0.7 and and from top to bottom & =
0.05,0.15,...,0.95

The binding energy of the disk is defined in [205] and [204] as the difference
between the total rest mass and the ADM mass, £, = My — M. We plot
Ey/ My as a function of € for several values of v in Fig. 7.14. In the Newtonian
limit, the binding energy is independent of =,

Ey/M = %92 : (7.42)

In the case 4y = 1, the binding energy increases monotonically up to a value of
Ey/My =~ 0.37 in the ultrarelativistic limit. For v < 1 it reaches a maximum
for a finite value of € and can become even negative. In the static limit Ey, /M,
diverges to —oo in the ultrarelativistic limit since the rest mass of the disk
goes to zero.

7.2.4 Ergospheres

In strongly relativistic situations it is possible that the asymptotically time-
like Killing vector d; becomes null or even spacelike. The vanishing of eV
defines an ergosphere (although it does not have the topology of a sphere
here) i.e., the boundary of a region of spacetime where there can be no static
observer with respect to infinity.
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Fig. 7.12. Energy density ¢* for v = 0.7 and several values of €

The surface plot of the metric function eV in Fig. 7.1 shows the typical
behavior of these functions: they are completely smooth in the exterior of the
disk while the normal derivatives are discontinuous at the disk. The function
does not assume a local extremum in the exterior of the disk and goes to 1
at infinity, e’V = 1 —2M/|¢| + .. .. Since the ADM mass is always positive
in the physical range of the parameters, the real part of the Ernst potential
is always less than 1. At the disk, however, the function may have a global
minimum.

In the Newtonian regime, the so-called gravito-magnetic effects such as
ergospheres do not play a role. When the parameter ¢ increases from zero
to one, the function e?Y may vanish at some points in the spacetime. Since
it assumes its minimum value at the disk, this means that an ergosphere
necessarily first appears at the disk when the minimum value becomes zero.
For larger values of ¢ the minimum drops below zero in these cases so that
the ergosphere grows for increasing values of €. In the ultrarelativistic limit
€ = 1 it reaches the axis.

To illustrate the dependence of ergospheres on the parameter ¢ for fixed
v, we plot them in Fig. 7.15 for v = 1. The plot shows the (g, {)-plane
with the disk on the g-axis between zero and one. The potential is regular
in the equatorial plane in the exterior of the disk which implies that the
equipotential surfaces hit the plane orthogonally there. At the disk, however,
the normal derivatives have a jump which leads to a cusp of the equipotential
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Fig. 7.13. Energy density ¢* for e = 0.8 and several values of

contours at the disk. The ergosphere grows with ¢ and includes the whole
spacetime in the ultrarelativistic limit which will be discussed in the next
section.

Qualitatively, one would expect that counter-rotation makes a solution
more static, i.e., that effects like ergospheres are suppressed. Thus in situa-
tions with the same central redshift but different v, the ergoregion will always
be smaller in the case of more counter-rotation if there is an ergoregion at
all. In Fig. 7.16 we show the ergospheres for ¢ = 0.95 and several values of ~.
It follows from (7.16) that the ergosphere goes through the rim of the disk if

2

d=1- Y- (7.43)
This means that for disks with § > 1 possible ergoregions are confined to
values of ¢ < 1. One finds numerically that smaller values of 7, i.e., more
counter-rotating matter imply that the ergoregion forms at bigger values of ¢,
i.e., in stronger relativistic situations if it is to appear at all. The ergoregions
are also formed closer to the axis. In the static case there is obviously no
ergosphere. The function e?V only vanishes in the ultrarelativistic limit at the
center of the disk. There are no ergoregions for values of v < 7. = 0.707 . . ..
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Fig. 7.14. Binding energy of the disks in dependence of ¢ for several values of v

7.3 Ultrarelativistic Limit

In this section we discuss the limit in which the central redshift of the disks
diverges.

7.3.1 Ultrarelativistic Limit of the Static Disks

The main features of the ultrarelativistic limit can already be found in [204].
The potential €2V in the disk and its normal derivative there have the form

1— o2

0?

e?V = g , (eZU)yC = %arctan

(7.44)

whereas the metric function & is of order p? for small g. The behavior of the
metric functions can be obtained from (7.24) and (2.42). The angular velocity
in the disk is £2 = 1/2. The matter in the disk moves with the velocity of light
since the four-velocity becomes null in the whole disk. The energy-density o
(7.32) diverges at the center as 1/¢?, the density o* = —ggoo diverges as
1/¢. The ADM mass is however finite, M = 1/(4x). Since the matter moves
with the velocity of light, the rest mass of the disk must vanish. Thus the
gravitational binding energy is negative.
The linear proper radius
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Fig. 7.15. Ergospheres for v = 1 and several values of ¢

4
% :'/ #Vdyf (7.45)
0

is finite in the disk since the integrand behaves near the center (see [233],
Corollary 4.1) as 1/,/¢ and is finite in the rest of the disk. The proper cir-
cumferential radius in the disk,

2c = Vgs3(e) = V20, (7.46)

is also finite. Thus the ultrarelativistic limit of the static disks with uniform
rotation is a disk of finite radius with diverging central redshift and diverging
central density but finite mass. The matter in the disk consists of particles
with zero rest mass which move with the velocity of light.

7.3.2 Ultrarelativistic Limit for 0 < v < 1

The ultrarelativistic limit of stationary counter-rotating disks bears similar-
ities with the static case in the sense that the axis remains regular: the con-
stants ag and C'in (7.6) and (7.8) which are 0 and 1 respectively in the static
case remain finite here since they can only diverge if ¥4(«’) = 0 which cannot
happen for v # 1. The integrals in the respective exponents of (7.6) and (7.8)
are always finite though InG(7) has a term In 7 in the limit A — oo as can
be easily seen. Thus the axis remains elementary flat in the case v < 1 even
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Fig. 7.16. Ergospheres for e = 0.95 and several values of v

in the ultrarelativistic limit. Since ag = —v/§2 is non-zero for 0 < v < 1, the
angular velocity {2 remains finite in the limit, too, as can be seen in Fig. 7.7.

In [233] (Corollary 4.1) it was shown that the potential €2V is linear in g
near the origin unless v = . (which is just defined by this condition) where
it is quadratic in g. For v > ~. there are ergospheres in the spacetime, for
v < 74 the potential e?V is positive in the whole spacetime. We plot eV
at the disk for several values of v in the ultrarelativistic limit in Fig. 7.17.
We note that the metric function ae?V in the disk is also linear in g in the
vicinity of the origin if €2V is. For ¥ — 0, the metric function e?V in the disk
approaches ¢/2. For ¥ — 1 the limiting function is linear in ¢ in the whole
disk. One has to note that the limits ¥ — 1 and € — 1 do not commute. The
ultrarelativistic limit of the case v = 1 is discussed in Sect. 7.3.3 below. The
limit v — 1 of the ultrarelativistic solutions for v < 1 is always obtained for
A = oo, If one goes with ¥ — 1 (6§ = 0) in this cases, the limiting function is
one of the ‘overextreme’ solutions which are discussed in Sect. 7.3.4.

In contrast to the static case, the energy density o* is finite even in
the ultrarelativistic limit. The proper linear radius (7.45) and the proper
circumferential radius (7.46) are both finite in the disk. The velocity of the

counter-rotating streams in the disk , /p;/O'; is less than 1, i.e., the velocity

of light, in the limit e = 1 for 0 < v < 1.
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Fig. 7.17. Metric function €2V at the disk for several values of 7

7.3.3 Ultrarelativistic Limit of the One-component Disks

The ultrarelativistic limit of the case 4 = 1 is different from the previously
discussed cases since it is reached for ¥4(u') = 0. This implies with (7.6) and
(7.8) that both constants ag and C' diverge as € — 1. These constants do not
have a direct physical importance. The fact that they diverge merely indicates
that the axis cannot remain elementary flat in the ultrarelativistic limait.
A consequence of the diverging constant ap is that the angular velocity {2,
which is the coordinate angular velocity in the disk as measured from infinity,
vanishes. A diverging constant C implies that all linear proper distances
(7.45) diverge. The function e*(*=U)+2Vo is however bounded.

The axis is in fact singular in the sense that the metric function e
vanishes there identically which can be seen from (7.9). The Ernst potential
is identical to —1 on the axis for { > 0. In the limit ¢ — 1, the ergosphere
becomes bigger and bigger. When it finally hits the axis for ¢ = 1, the whole
axis and infinity form the ergosphere and the function eV is negative in the
remainder of the spacetime. We plot the potential in Fig. 7.18. The fact that
e?V vanishes on the whole axis implies moreover that all multipole moments
diverge. The dimensionless quotient M?/J remains however finite and tends
to 1, the value of the extreme Kerr metric (see Sect. 4.3).

The vanishing of 2 = {2¢¢ in the limit ¢ = 1 indicates that either the
angular velocity or the radius of the disk go to zero in this case. Bardeen

20
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Fig. 7.18. Metric function €2V in the ultrarelativistic limit of v =1

and Wagoner [205] argued that the spacetime can be interpreted in the limit
€ — 1 and gy — 0 as the extreme Kerr metric in the exterior of the disk. In
[118] it was shown that such a limit (diverging multipoles, singular axis,...)
can occur in general hyperelliptic solutions and can always be interpreted as
an extreme Kerr spacetime. For an algebraic treatment of the ultrarelativistic
limit of the Bardeen-Wagoner disk see [234]. In the ultrarelativistic limit of
the above disks for v = 1, the spacetime becomes an extreme Kerr spacetime
with m = % The physical interpretation of this fact as already given in
[205] is that the disks become more and more redshifted for increasing . Its
radius shrinks and the disk finally vanishes behind the horizon of the extreme
Kerr metric which forms in the ultrarelativistic limit.

7.3.4 Over-extreme Region

Since the ultrarelativistic limit of the one-component disks is reached for a
finite value A; of A, the question arises what the solution (7.1) describes for
A > A, the smallest value of A where ¢ = 1. In Theorem 5.18 it was shown
that the boundary conditions at the disk are still satisfied. Moreover the
relations between the metric functions at the disk ensure that the functions
are bounded at the disk (they have at most a jump discontinuity there).
The proof for global regularity given in Theorem 5.18 does not hold in the
‘over-extreme’ region A > A.. It indicates that a singularity in the equatorial
plane 1s probable which in fact can be verified numerically. A typical plot is
presented in Fig. 7.19. In the ultrarelativistic limit, the ergosphere stretches
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to infinity, in the over-extreme region with ¢ < 1 it is confined to a finite
region of spacetime. The singularity in the equatorial plane is of the form
1/(0—os) at g; since the elliptic theta functions in the equatorial plane have
zeros of first order. From formula (7.26) it can be seen that the singularity
leads to a negative ADM mass for certain A > A.. The spacetime is thus
physically unacceptable. This is a striking example that it is not sufficient
to solve a boundary value problem locally at the disk within the class of
solutions [52], but that one has to find in addition the range of the physical
parameters where the solution is globally regular outside the disk.

[=]
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Fig. 7.19. Metric function eV in the over-extreme region of v = 1






8 Open Problems

In the previous chapters we have discussed a subclass of Korotkin’s hyperel-
liptic solutions to the Ernst equation with physically interesting properties.
Physical and mathematical properties of the solutions have been studied an-
alytically and numerically for in principle arbitrary genus of the solution. As
an example we have presented the counter-rotating dust disk [130] which is
given on a surface of genus 2, and which was obtained as the solution to
a boundary value problem. What remains unclear is how to solve general
boundary value problems with these Riemann surface techniques. In the case
of dust disks the question is which rotation laws £2(g) are possible on a sur-
face of given genus, and whether the solutions to these problems can be given
in terms of quadratures. It is also unclear whether characteristic quantities
of the Riemann surface can be directly related to physical quantities’.

From an astrophysical point of view the most interesting models in this
context are systems of black holes and surrounding thin disks of collision-
less matter. They are discussed as models for accretions disks around black
holes and for galaxies with supermassive black holes in the nucleus, see e.g.
[235, 236, 237] for the observational evidence and [106, 238, 239, 240] for the
theoretical background. Since a black hole is a genuinely relativistic object, a
fully relativistic treatment of such situations is necessary. In cases where the
mass of the disk is not negligible compared to the mass of the black hole, the
self gravity of the disk plays a role. Disks around black holes must have an
inner radius strictly larger than the photon radius, the radius where photons
move on a sphere around the black hole, to exclude superluminal velocities
of the particles.

In the context of the algebro-geometric solutions discussed in this book,
the integrable non-linear equation is linearized on the Jacobian of a plane
algebraic curve which implies that different solutions can be combined in a
non-linear way (sometimes called ‘non-linear superposition’). But since this
is a non-linear operation, the combined solutions will have in general singu-
larities as singular rings, Weyl struts on the axis and singular horizons. A well
known example is the ‘superposition’ of two Kerr black holes which results

! Tn the case of the KdV equation this is only possible in the limit of small ampli-
tudes, i.e. in the linear regime, where a genus g solution can be seen locally as a
superposition of g solitary waves.
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in a spacetime with a Weyl strut, a conical singularity on the axis in between
the holes, or singular rings in the spacetime, see e.g. [35]. Such techniques are
thus only helpful if the analytical properties of the solutions can be obtained
in a general way as has been done in the preceding chapters.

In the Einstein—Maxwell case, similar techniques as in the stationary ax-
isymmetric vacuum can be used since the equations are again completely
integrable. However 1t turns out that theta-functional solutions in this case
can no longer be constructed on the well understood hyperelliptic surfaces. In-
stead they are given on three-sheeted surfaces where 1t is not straight-forward
to identify the needed analytical quantities. From an astrophysical point of
view the importance of magnetic fields is known for the formation of neutron
stars and for stars with a strong magnetic field, so-called magnetars. Charges
typically compensate in astrophysical settings. Therefore electric fields are of
less importance on larger scales. For a review of disk solutions to the station-
ary axisymmetric Einstein-Maxwell equations see [242].

In Sect. 8.1 we briefly review the algebraic approach of [217] which yields
an integrated version of the Picard—Fuchs system in Chap. 5. This method
could offer a more direct approach to the solution of boundary value problems
in terms of theta functions. In Sect. 8.2 we discuss a subclass of Korotkin’s
solutions which are obtained on partially degenerate Riemann surfaces where
precise statements on the analyticity of the solutions can be made. The so-
lutions describe annular disks of infinite extension but finite mass and in-
ner radius gg = 1 in the equatorial plane. The black hole in the center of
the annulus is characterized by a regular Killing horizon. The solutions are
asymptotically flat, equatorially symmetric and regular outside the horizon
and the disk. They contain a free function and a set of free parameters, the
branch points of the Riemann surface. If the energy conditions are satisfied,
the matter in the disk can be interpreted as in [117] as made up of one or
more components of collisionless matter. Since the spacetimes are asymptot-
ically flat, the matter in the asymptotic region behaves as in [117] as free
particles which move on Keplerian orbits. The approach presented in [134]
makes it possible to map the problem for an infinite disk around a black hole
to the problem of a disk of finite radius which allows the use of the techniques
of the previous chapters in this context. For the class of solutions presented
here which can be seen as a combination of the Kerr solution with an infinite
disk, we are thus able to establish regularity of the horizon and the exterior
of the disk.

In Sect. 8.3 we study the Einstein-Maxwell equations in the presence of
one Killing vector. We explore the group structure of the equations and give
the Harrison transformation which generates electro-vacuum solutions from
pure vacuum solutions. The solutions contain an additional real parameter
related to the total charge. General properties of the transformed spacetimes
as the asymptotics are discussed. In the stationary axisymmetric case, com-
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plete integrability of the equations is established. Solutions in terms of theta
functions were obtained in [52] on three-sheeted Riemann surfaces.

8.1 Integrated version of the Picard—Fuchs system

In Chap. 5 we have used the Picard—Fuchs system of the hyperelliptic so-
lutions to the Ernst equation together with an algebraic approach to the
corresponding Ernst potentials to solve the boundary value problem for the
counter-rotating dust disk. The disadvantage of this approach is the occur-
rence of a system of differential equations the order of which increases rapidly
with the genus of the Riemann surface. Therefore it is in general difficult to
solve boundary value problems with this approach.

This is why we have studied in [217] an integrated version of this system.
The idea is to use the linear system (2.47) of the Ernst equation for the matrix
¥ and the explicit construction of this matrix ¥ in terms of theta functions
n (3.48). If we consider the logarithmic derivative ¥ @~ in (2.47) it is equal
to some matrix which is completely determined by the Ernst potential. The
logarithmic derivative itself is given in terms of hyperelliptic functions for the
class we are studying in this book. To establish integrated relations for the
algebro-geometric solutions, the idea is to expand the matrix ¥ in the local
parameter J near co™. To this end we consider the linear system (2.47) for
the matrix ¥ given by @(P) =W (cot)~lw(P),

- 1 e (E-8)¢ K—¢ -

Ve= —— > 2 = —1|w Nl

T+ &) (525,5—525,5 —(E€) ¢ K—¢ @D
which is of the form @5 = K(¢, € ( )W and similarly for Wg The

advantage of this form of the linear system (2.47) is that the rlght—hand side
vanishes for § = 0. If we expand ¥ in &, ¥ = 1+ 6¥! + 6202 + ..., we obtain
with constant matrices C;

W:/dwi£+q (8.2)
I

and

2 __ 1 1 - e
v _/Fg dekw +8/p£ dEX (3¢ +€)(E — &) + O (8.3)

and so on. The integrals fl“g d¢ denote an integral along a contour in the &-
plane from some point &y to &. If one is interested in boundary value problems,
it is convenient to choose [¢ to be the contour where the boundary values
are prescribed. In [217] we have proven the following proposition in order d:
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Proposition 8.1. The following relations are valid for g > 1:
c 9

. &€ -
w4 wl,EE = TiF ;(AZ» — K;) (8.4)

and

I _ N\ E+€
Wy, —U,EE = - (Z(E + E) €~ g) — -2 (8.5)
i=1

The formulas hold also for ¢ = 1 if one sets formally z_; = 0. For a proof
using the techniques of Chap. 5 see [217].

Remark 8.2. The 12-component of ¥ is with (3.10) related to the metric
function a, i.e. ¥, = —i(a — ag)/2. The relation for the function ¥J; is new.

Both functions can be considered as an integral of the Picard—Fuchs system
(3.59) and (3.60), which can be seen by differentiating (8.5) with respect to

13

For the genus 2 solutions with equatorial symmetry and E? = a + i3
which we have discussed in detail in Chap. b, we get in the equatorial plane

with (8.4) and (8.5) in addition to (5.52) and

il‘o

s

1, (8.6)

arelation between x, Z and the quantity Y := —i(£+ &)W, /(£E) of the form

2
1 a+0%/2  o? 9
1 a+02/2 o\’
<§YZ— 1_9x§ —%) 22(Y + Z)?
2 2 2
O‘ljfz (=2 + L =) - 2 (8.7)

Equations (5.52) and (8.6) were used to determine zg, R; and I;, i = 1,2
in dependence of Z and x. The problem is that Y is not directly related to
the boundary data as is Z. If one chooses an integration path I in (8.2)
along the axis from infinity to the origin and then in the equatorial plane
to the point (g, 0), the integration along the axis leads to a constant matrix
w! since the integrand in (8.2) vanishes there. The integration in the disk
gives integrals over the boundary relations. Thus relation (8.7) only contains
contributions from the boundary data as well as two integration constants
and the constants « and 3. It has to be checked whether these constants can
be chosen in a way that (8.7) holds for some §2(g) in Theorem 5.3.
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8.2 Black-hole Disk Systems

In [243] we have shown that annular disks with a finite radius lead to a
difficult boundary value problem at the disk even in the Newtonian case. The
reason 1s that one has to prescribe the normal derivative of the gravitational
potential (vacuum and thus vanishing normal derivatives of the potential) in
the exterior and the interior of the annular disk. At the disk one typically
prescribes the tangential derivative (the angular velocity in the disk) which
leads to a so-called three-part boundary value problem. If the disk stretches
to infinity, the related two-part boundary value problem can be however
solved. Therefore we consider in this section only infinite annular disks in
asymptotically flat settings.

8.2.1 Newtonian Case

It 1s instructive to consider first a Newtonian analogue for a system consisting
of a black hole and a disk, i.e. a point mass with a surrounding annular
disk. As in Sect. 5.1 we describe the gravitational potential of disks in the
equatorial plane { = 0 between radii 0 and 1 in the form

i A(r)dr
A =

where [ is the part of the imaginary axis between —i and 1 on the first
sheet of the Riemann surface Ly; A is a Holder—continuous function on [I'
independent of the physical coordinates. It has to vanish at the end points
of I' to avoid a ring singularity at the rim of the disk. Relation (8.8) can be
used to construct an annular disk of infinite extension with finite inner radius
with the help of a Kelvin transformation as in [244, 243], a reflection at the
inner circle in the ¢, plane. It is a property of the Laplace operator that a
function U = Ule/r,¢/r)/r with r? = g% 4+ (? is a solution to the Laplace
equation if AU (g, () = 0. Using the linearity of the Laplace equation, we get
- m

that ) Ar)
r
U8 =-———-— / _dr (8.9)
v A e (e =1/ - 1/9)
is a solution to the Laplace equation which describes a point mass surrounded
by a disk of infinite outer radius and of inner radius 1. It can be easily seen
that the solution U is equatorially symmetric if A is an even function. We
note for later use that the integral in expression (8.9) can be written in the
form

Ule:¢) = — (8.8)

1 InG(r)dr
Ue,€) = —7= _InGir)dr (8.10)
[ Y e
after a transformation 7 — 1/7 where ', = (—ico, —i] U [i,ic0) and A(7) =

InG(1/7)/7 (the integral has to be understood as a standard contour integral
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in the complex plane after appropriate choice of the sign). This establishes
the relation to the form of the solutions discussed in the previous chapters.

The total mass M of the system (8.9) is given by M = m + A(0)/4.
Thus the contribution of the disk to the mass is due to the value of A at the
origin. We assume that the matter in the disk consists of pressureless matter
rotating with angular velocity {2. Thus the centrifugal force is the only force
to stabilize the disk against gravitational collapse and has to compensate the
gravitational attraction, U, = £2%(g)e. In this Newtonian setting the velocity
20 of particles with radius ¢ in the disk is obviously related to the point mass.
By limiting the value of m one can thus impose upper limits on the velocities
of the particles. Asymptotically the angular velocity reads 22 = M/g3, the
Keplerian value for test particles.

8.2.2 Relativistic Case

In Sect. 4.3 we have shown that the Kerr solution can be also obtained on a
degenerate hyperelliptic Riemann surface of genus 2. In fact the Kerr solution
can be obtained on a partially degenerate Riemann surface of higher genus.
Consider families of hyperelliptic surfaces £ of genus g + 2 defined by the al-
gebraic relation (A.82). The corresponding Ernst potential is given by (4.19).
In [133] it was shown that the Kerr solution can be obtained from (4.19) for
even g in the absence of a disk (u; = I = 0) in the limit Eyy; — Eyq; = K,
j=1,2with K1 = —Ks = mcos ¢. The additional branch points are subject
to the condition F; = —Eg+1—z’, i=1,...,9/2, and the characteristic reads
(we use the cut-system of Fig. A.4)

0...0 L 1
[l l_l_ilnA l_zlnA:| ) (8.11)
202 4 271 4 27

where with A real

. g ~
_w_lA—Fl K| — F; 19
¢ _iA—1Z,Ul\/K1—EZ»' (8.12)
Here the Kerr solution is obtained by partially degenerating the surface £
which leads to an Ernst potential given on a surface £ of genus g where the

cuts [Egtj, Egy;], 7 = 1,2 are removed from £. The theta function on £ is
in this limit proportional to

K K
f(il?) — gpq (53_1_/}( d&) +exg+1+l‘g+29pq (1%+/I(+ d&) (813)

2

K} Kt
—ie™" (Aexwepq (az +/ d&) — A7eTo20,, (az +/ d&:)) ,
Kf K¥

where P = B(gq1)(g42)/2, .. it can be expressed completely in terms of

quantities defined on £, the corresponding theta function § and the differen-
tials dw. This makes it possible to combine the Kerr solution and the disks
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of infinite extension in a non-linear way by considering the above limit of the
Ernst potential (4.19). The important point is that we can establish the reg-
ularity of the horizon and the range of the free parameters where the exterior
of the disk 1s regular in a general way. These features which are summa-
rized in the following theorem establish the physical relevance of this class of
solutions.

Theorem 8.3. The potential

_ f(u + w(oo+))ef+wg+1(oo+)+wg+2(oo

) I = L In Gdé _
Flu+w(oo ) ! omi Jp MO “°°+;>° ’)
8.14

where dwgy; = dwp -+, 7 = 1,2, 15 an equatorially symmetric solution to
7 7

the Ernst equation which has a finite jump at the disk between 1 and nfinity
mn the equatorial plane and a reqular Killing horizon on the aris between
—mcos ¢ and mcos . The solution is reqular in the exterior of the horizon

and the disk if F(u 4+ w(oo™)) # 0.
We briefly sketch the proof which follows from Theorem 4.10 and [133].

Proof. The fact that (8.14) solves the Ernst equation is a direct consequence
of working out the limit of (4.19) as in [133]. The behavior at the disk was
demonstrated in Chap. 4, here the discontinuity is located in the equato-
rial plane between 1 and infinity because of the Kelvin transformation. The
potential on the axis can be calculated as in Sect. 4.1.4 by a further degen-
eration of the Riemann surface £. The corresponding formulas also hold on
the horizon where it is a consequence of [133] that the metric is identical to
the Kerr metric which establishes the regularity of the horizon. All metric
functions being given explicitly (see Sect. 3.6), the same is true on the axis
where one finds that the function e?V is zero at the endpoints of the horizon
where the ergosphere touches the horizon and is negative in between. The
functions @ and k are zero on the axis in the exterior of the horizon and have
non-vanishing constant values with respect to ¢ on the horizon which charac-
terizes a regular horizon (see e.g. Carter [241]). In the rest of the spacetime
the Ernst potential is regular unless there is a zero in the denominator of
(8.14) as was shown in Theorem 4.10.
O
Since the disk extends to infinity, the spacetime corresponding to (8.14)
is in general not asymptotically flat. Choosing .A(0) to be finite, one assures
that & is finite at infinity. If 7'(«’) does not vanish on the regular part of the
axis where it is a constant, the Ernst potential tends to 1 and one can define in
a standard way multipole moments on the axis, £ = 1—2M/{—2iJ/(?+. . ..
For a general choice of the function G and the additional parameters, the
mass M will not be real which implies a NUT parameter. For a vanishing
NUT parameter, the spacetime is asymptotically flat in the standard sense.
This procedure implies that the rotation state of the hole and the disk must
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be synchronized. In other words the black hole and the disk cannot rotate in
an arbitrary way in an asymptotically flat setting.

8.2.3 The Case g = 0

For illustration we will consider the simplest case ¢ = 0 in more detail even
though it will turn out that the corresponding disks always consist of exotic
matter. Since the Ernst potential is defined on a surface of genus zero it can
be expressed in terms of elementary functions. Writing the Ernst potential

in the form £ = (G — 1)/(G + l)eI, formula (8.14) takes the form

G— 1+ eurtuz L — 7o
1 —ewtuz —j(Aetr euz/A) By — Ey
i(Aevr — ez /A) T+ T

n (8.15)

1 —ertus —j(Ae®r +e¥2/A) By — Ey

We put A = cot £ to obtain for w = I = 0 the Kerr solution in the form
(1.8). The static limit ¢ = 0 of these solutions describes the superposition
of a Schwarzschild black hole and an annular disk as in [244, 243]. Since this
is a solution to the Laplace equation in the exterior of the horizon and the
disk, the solution is always regular there and asymptotically flat. This implies
that the solutions (4.32) are also regular in this sense for small ¢. Tt depends
however on the choice of the function A whether the extreme limit ¢ — %
can be reached without generating naked singularities as in the case of the
over-extreme Kerr solutions. In non-static situations the spacetime will have
a NUT parameter unless

/i. ﬂ& 0. (8.16)

m2cos?p —1

This is obviously only possible if A changes sign on the path of integration.
Since the density in the Newtonian limit is proportional to fgl dtA(it) /vt? — 1
(see Chap. 7), it must in this case also change sign. Numerically one finds
that in the relativistic case, too, there must be regions with negative density
in the disk which implies that the case ¢ = 0 does not lead to asymptotically
flat spacetimes with non-exotic matter in the disk.

The ADM mass is given by M = m+ A(0)/4, the angular momentum by
J = m?sinp(1 + A(0)/(2m)). The values for the invariant surface Apg of
the horizon and the constant value 1/2pg of the metric function a at the
horizon are unchanged with respect to the pure Kerr case. The constant 2pg
can be interpreted as the angular velocity of the black hole (see e.g. [238]).

We have plotted in Fig. 8.1 the real part of the Ernst potential for the
simplest possible choice of A, a polynomialin 72 of second order, in the case
where the contribution of the disk and the hole to the mass are equal. It can
be seen that the function is equatorially symmetric. It is negative or zero on
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the horizon located on the axis and continuous at the disk between 1 and
infinity in the equatorial plane. The normal derivatives of the function are
discontinuous at the disk which leads to a cusp.

Fig. 8.1. Metric function €2V in the case g =0 for m =1, ¢ = 7/2

In contrast to the genus 0 case, the condition of a vanishing NUT parame-
ter can in principle be satisfied for higher genus by choosing the parameter A
appropriately in dependence of the other parameters whereas the density can
be positive in the whole disk. For a given function A, the parameter m has to
be chosen in a way that the energy conditions in the disk are satisfied. The
analytically known expressions in terms of theta constants for the horizon
surface Apg and the angular velocity 2gg are in general different from the
pure Kerr case.

Thus it appears possible that physically acceptable disks can be found for
g > 2. Since it is straight-forward to extend the formalism of [113] and the
numerical treatment of theta functions in [131] to the case discussed here, it
should be possible to identify physically interesting black hole disk systems
in this class. Whether the algebraic difficulties in solving boundary value
problems due to a prescribed matter distribution in the disk can be handled
analytically is an open question.
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8.3 Einstein—-Maxwell Equations

In the Einstein—-Maxwell case, the Maxwell equations have in principle the
same form as in the absence of gravitation, only the partial derivatives have
to be replaced by covariant derivatives since the spacetime is no longer flat
(see e.g. [35]),

Fo*"=0, "F,"=0. (8.17)

The tracefree energy-momentum tensor of the electromagnetic field is given

by
a 1 af
Ty = Fu " — ng,Fa@F . (8.18)
Since the Einstein equations have the form

1

Ry — §g,“,R =Tw, (8.19)
we get
Ry = FunF) — %guanAF“ : (8.20)
They can be derived from the action
S = %/dx4\/—_g (R— %FWF‘“’) , g =det(gu) . (8.21)

Equations (8.17) and (8.20) form the Einstein-Maxwell equations. Since the
Maxwell fields only enter the Einstein equations via the energy-momentum
tensor, the well known U (1) symmetry of the Maxwell equations carries over
to the Einstein-Maxwell case.

In general one would expect that the above U(1) invariance of the
Einstein—Maxwell equations is the only symmetry of the equations even in
the presence of Killing symmetries in the spacetime. However, it turns out
that a much bigger symmetry group exists already for a single Killing vec-
tor. It is convenient to use again the projection formalism of [121, 211] as in
Sect. 2.1. The metric is written in the form (2.2) for the stationary case.

The vector potential is decomposed as the metric into pieces parallel and
orthogonal to the Killing vector, A, = (A, Am + knA). The Lagrangian of
(8.21) can then be written in the form

1 1 2 1

3) = = __— pab J ab ~pab

L QJE(R g fafo+ TRaK + ZhA Ay
_g(fabJrA/cab)(fauA/cab)) , (8.22)

where L) is a three-dimensional Lagrangian density, where Fu, = Aap —
Ap o, and where Kgp = kap — kpo. All indices are raised and lowered with
Rap.
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The first part of the Maxwell equations (8.17) can be written in the form
1
v—g
which implies (\/EFab/f)yb = 0. With this relation or by varying (8.22) with

respect to A,, we obtain

(V=gF"), =0 (8.23)

(VRf(F® + AK™)), =0 (8.24)

We can define the potential B as in magnetostatics via

1
B,c = _igcab\/ﬁf(fab + AICab) . (825)

Again A and B can be combined to the complex electromagnetic potential

®=A+1B.
Similarly we get by varying (8.22) with respect to kg

(Jﬁ (f;/cab — Af(F® + Alcab))) = 0. (8.26)

)

This can be dualized as in the vacuum case by introducing the twist potential
b via

2
b.= gcabﬂ%lcab + BA,.— AB, . (8.27)
The potentials f and b can again be combined to the complex Ernst potential,
E=f—dD+ib. (8.28)

The scalars b and B replace the vectors k, and A,. The corresponding
three-dimensional Lagrangian reads with w, = b, —2BA , + 2AB,

L(S) = — (R — hab (#(f,af,b + wawb) - %(AvaAvb + BVGB’b))) ’
(8.29)

The line element

1

2 _
dS—ﬁ

((df)* + (db + 2BdA — 2A4dB)* — %((dA)Z +(dB)?))  (8.30)
describes the invariant metric of the Riemannian symmetric space S =
SU(2,1)/S[U(1,1) x U(1)] in some coordinates. The stationary Einstein-
Maxwell equations can thus be interpreted as three-dimensional gravity cou-
pled to some matter model. The ‘matter’ is an SU(2,1)/S[U(1,1) x U(1)]
nonlinear sigma model [246] which can again be related to harmonic maps, see
[247]. Following [248] we parametrize the space S by trigonal 3 x 3 matrices
V’
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NZi 0 0
V= i/20 1 0 (8.31)
(b+il®1)/VF (V28) /T 1VF
The matrix V satisfies
001
VigW =9, n=[010] , (8.32)
—-100

i.e. it is unitary with respect to the metric n of SU(2,1). The action of
GeSU(2,1) on Vis

V= H(\V,G)VG~', H(V,G)e S[U1,1)x U(1)], (8.33)

where H restores the triangular gauge of V. To obtain a gauge invariant
parametrization, one introduces

xi=E2VIEV |, Z=diag(l,-1,1), (8.34)

on which the action of G € SU(2,1) is given by

X = 2@ HIEGT . (8.35)
We have
[ =210 + (> + |@|*)/f V20(b = 1|0 +if)/f (b —i|®]*)/f
x=| V2o +ieP-if)/f 1—2|®*/f —\V20/f
(b +ilel*)/f V29/ f 1/f

(8.36)
The SU(2,1) symmetry can be used to generate solutions by the action of an
element G. We list the infinitesimal transformations and their consequences:

000
1 00
6, 05 0
lead to gauge transformations which add physically irrelevant constants
to S€ and S,

0086

000

000

is an Ehlers transformation [121] which changes f — b, i.e. which gener-

ates stationary from static solutions (if the ADM mass of the spacetime is
non-zero, the transformed solution will have a NUT parameter)

9 0 0

0 —2i6 0

0 0 if
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is an electromagnetic duality transformation, i.e. the U(1) symmetry of
the sourcefree Maxwell equations,
600
000
00 -0
is a scale transformation, f,b,® — e’ f e?b,e?/2¢ and
0—160
0040
000
is a Harrison transformation [136] which changes f — &, i.e. generates
solutions with electromagnetic fields from pure vacuum solutions.

8.3.1 Harrison Transformations

Harrison transformations offer the possibility to generate solutions with
charge from pure vacuum solution. This leads to solutions to the Einstein—
Maxwell equations containing one additional constant parameter which is
related to the charge. For physical reasons we are interested in solutions
which are equatorially symmetric and asymptotically flat, i.e. f > 1, — 0
and b — 0 for [&] = 0.

We assume that the pure vacuum solutions which we want to submit to
a Harrison transformation satisfy these conditions. To ensure that the trans-
formed solutions have the same asymptotic behavior, one has to use a scale
transformation (f — 1) together with a transformation which changes @ and
b by some constant (@, — 0). We are interested in transformations which
preserve the equatorial symmetry, i.e. f(—=¢) = f({), 6(=¢) = —b(¢) and
&(—¢) = @(¢). By exponentiating the matrices of the SU(2,1) transforma-
tions, we thus consider a transformation of the form

G=——=|-ivV2g1+¢* —V2¢ | . (8.37)
1—gq Ly
i —v2q 1

If we transform an Ernst potential of a pure vacuum solution (¢ = 0), we
end up with

! 1-— ? 2f
= (1—(q2f;]2)—|— 4202 (8.38)
I Ul B L (8.39)

(1_q2f)2 _|_q4b2 ’
, 1— )1 —¢%f) + b2 +ib(1 — ¢
¢ = L= (1iq3f)2q+ q4b;( ) (8.40)

The real parameter ¢ has to be in the region 0 < |¢| < 1, for ¢ > 1 the
transformed spacetime would have a negative mass if the original mass was
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positive. The value ¢ = 0 corresponds to the untransformed solution. The
above formulas imply that the functions f/, b’ and @' are analytic where the
original functions are analytic.

A well-known example is the Harrison transformation of the Schwarzschild
solution which leads to the Reissner—Nordstrom solution. In the Ernst picture
the Schwarzschild solution reads in cylindrical Weyl coordinates with ry =

(€ +m)? + g?
f:w’ b=0, (8.41)
r +r_ +2m
where the horizon (f = 0) is located on the axis between —m and m. For the
transformed solution we get with (8.40)

f/ _ (7“_|_ + r—)z B 4m2 @/ _ 2Q
o (ry o +2m)2 0 Corpro 4+ 2m
14 ¢> 2myq
o —
o=t g2 (5.42)

and b’ = 0 which is the Reissner—Nordstrom solution. This is a static space-
time with mass m’ and charge @ subject to the relation m’? — Q? = m?.
Both m/ and @ diverge for ¢ — 1. The extreme Reissner—Nordstrom solution
with m’ = @ is only possible in the limit m — 0, |¢| — 1. The horizon of the
solution is again located on the axis between +m which illustrates that the
horizon degenerates in the extreme case.

8.3.2 Asymptotic Behavior of the Harrison Transformed Solutions

We assume that the asymptotic behavior of the original solution, which can
be read off on the axis, is of the form f = 1 — 2M/|{|, b = —2J/¢? and
@ = Q/|¢| — iJar/¢? plus terms of lower order in 1/|¢| where M is the ADM
mass, J the angular momentum, ) the electric charge and Jy;s the magnetic
moment. The same will hold for the Harrison transformed potentials. We find

(see [137])

1—|—q2 2q 1—|—q2 2q

M =M - J =17 - —J 8.43
1—(]2 1_q2Q’ 1—(]2 1_q2M’ ( )
and
14 ¢> 2q 14 ¢> 2q
= — M L= — . 44
Q Ql_qz 1_q2 ) JM JMl_qz 1_q2J (8 )

It is interesting to note that the quantities M? — Q% and J? — J3, are invari-
ants of the transformation. They are related to the Casimir operator of the
SU(2,1)-group. If the original solution was uncharged, the extreme relation
M' = £@Q’ is only possible in the limit M — 0.
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A consequence of the relations (8.44) is the presence of a non-vanishing
charge if the ADM mass of the original solution is non-zero whereas the
charge is. Since charges normally compensate in astrophysical settings, the
astrophysical relevance of Harrison transformed solutions is limited.

A further invariant is the combination Jas M — J@ which is of importance
in relation to the gyromagnetic ratio

_ 2MJy
9M = JO .

Relation (8.43) implies that g%, is equal to 2 if @ = Jyr = 0 and ¢ # 0.
Thus all solutions which can be generated via a Harrison transformation
from solutions with vanishing electromagnetic fields as the Kerr—-Newman
family from Kerr (and this includes most of the known exact solutions) have
a gyromagnetic ratio of 2. Due to the invariance of Jy M — J@) under Har-
rison transformations, a gyromagnetic ratio of 2 is not changed under the

(8.45)

transformation.

Whether this property is an indication of a deep relation between rela-
tivistic quantum mechanics and general relativity as claimed in [249, 250] is
an open question. Here 1t is just related to an invariant of the Harrison trans-
formation, a subgroup of SU(2, 1). Numerical calculations of charged neutron
stars [251] indicate, however, that values well below 2 are to be expected in
astrophysically realistic situations.

8.3.3 The Stationary Axisymmetric Case

In the astrophysically important stationary axisymmetric case, the symme-
try group of the equations increases again, this time an infinite-dimensional
group as shown by Kinnersley [135]. This means that the equations are com-
pletely integrable as in the vacuum case. In the Weyl-Lewis—Papapetrou
metric (2.40) the Einstein-Maxwell equations reduce to the electromagnetic
Ernst equations [245]

FAE = (VE420VP)VE
fAD = (VE+20VP)VP | (8.46)

where A and V are the standard differential operators in cylindrical coordi-
nates, and where the potentials £ and @ are independent of ¢. The duality
relations (8.25) and (8.27) read
i
(%@)75 = Ef(A¢’E - aAtyg) ; (847)
e = =
=g ((SE) ¢ + PP — DD ) (8.48)

which implies that ¢ and As follow from & and @. We choose a gauge where
Ay = Az = 0. The equations for Rap of (8.29) are equivalent to
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—£/1 _ _ - -
ke= % (E(&s +200)(Eg + 200 ) - @,5@,5) ~ (8.49)
Thus the complete metric and the electromagnetic potential can be obtained
from given potentials £ and @ via quadratures.

Since the electromagnetic Ernst equations are completely integrable, there

is an associated linear differential system for a 3 x 3 matrix-valued function
¥ which reads in the form [252]

D0 M k_e [0 D0

le‘l’/‘l = 0 C 0 + i 0 —-My ,
—Nl 0 %(Cl—l-'Dl) Ho 0 —Nl 0
Dy 0 M, e [0 D2 0

wa_l = 0 Cs 0 + C: 0 —-M, ,(850)
—Nz 0 %(Cz—l—'Dz) Ho 0 —Nz 0

where ¥ depends on the spectral parameter K which varies on the Riemann

surface Lo of genus zero given by the relation p2(K) = (K — &)(K — €).
The expressions for C;, D; and M; (¢ = 1, 2) follow from the condition

) E4200 1 V2id
W(oot,€,€) = £ —1-V2i0 | . (8.51)
—2ige? 0 2eY

As in the vacuum case in Chap. 2, the existence of the linear system can be
used to generate solutions. Since the matrix ¥ in (8.50) is now a 3 x 3-matrix,
the same holds for the monodromy matrix L of (3.52). The characteristic
equation

Q(ft, K) = det(L — agl) =0 (8.52)

is thus cubic in g which can be always brought into normal form by a redef-
inition of f:

i+ PR+ Q(K) = 0. (8.53)
The functions P and @ are analytic in K. Equation (8.53) defines a three-
sheeted Riemann surface which will in general have infinite genus. For poly-
nomial P and @, the surface will be compact and will have finite genus. On
a given surface the solutions to the Ernst equations can be given in terms of
the corresponding theta functions which was first done in [52].

The theory of these surfaces is not as well understood as the theory of
hyperelliptic surfaces which occur in the pure vacuum case, for instance it is
not straight forward to construct the holomorphic differentials for a Riemann
surface where only the branching is known. Therefore we have taken an in-
termediate step in [137] where we have considered a Harrison transformation
of the counter-rotating dust disk [130]. The found charged disks can be in-
terpreted for a range of the physical parameters as charged dust moving on
electro-geodesics, i.e. on solutions to the geodesic equation in the presence of
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a Lorentz force. However as shown in Sect. 8.3.2 above, these solutions will al-
ways have a non-vanishing charge. Astrophysically interesting solutions with
strong magnetic field and vanishing total charge can thus be only expected
on three-sheeted surfaces or suitable degenerations. To identify disk solutions
with strong magnetic fields, but vanishing total charge will be the subject of
further research. In this context the Riemann—Hilbert techniques of Korotkin
[253] for multi-sheeted Riemann surfaces will be important, see also [254, 255]
for the related 7-function.






A Riemann Surfaces and Theta Functions

In this appendix we collect some basic facts on theta functions on Riemann
surfaces. The idea is to give a comprehensive presentation of the mathemat-
ics on theta functions and the notation used in this book without providing
lengthy proofs. For more detailed accounts of the subject, the reader is re-
ferred to [128], [138], [139], [187], and [256] to [270], for topics related to the

Ernst equation see also [271].

A.1 Riemann Surfaces and Algebraic Curves

A Riemann surface X is a connected complex one-dimensional manifold.
Riemann surfaces can be associated to multi-valued functions. Let f be an
analytic function on C? with arguments w and z. The equation

flw,2) =0 (A.1)

defines a one-dimensional complex submanifold of C2. Let the complex gra-
dient gradg f be given by

_ (9 o
gradef == <3w’ &z) (A.2)
and call (wg, zg) with f(wg, z0) = 0 regular iff
grad@ﬂ(wm%) # 0 . (A3)

It can be shown that the corresponding Riemann surface admits a com-
pactification if equation (A.1) describes a plane algebraic curve, i.e. if f is of
the form

flw, z) = Z w' a;(z) (A.4)

with a; (i = 0,..., k) being polynomials in z. Then w = w(z) is a multiple-
valued algebraic function. It can be shown that any compact Riemann surface
can be represented as an algebraic curve. A complex structure is introduced
on the algebraic curve in the following way: in the neighborhoods of the
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points where 9f/0w # 0, the variable z is taken as a local parameter, in the
neighborhoods of the points §f/9z # 0, the parameter w is taken as a local
parameter.

In this volume we shall be mainly concerned with functions of the form

flw,z) = w? — Po(2), (A.5)

with P, being a polynomial of degree n in z. The corresponding multiple-
valued function is denoted by w = /P, (z) and the Riemann surface £ is
called hyperelliptic (for n = 3,4 the surface is called elliptic). The hyperellip-
tic surface is everywhere regular if and only if P, (z) has no multiple roots.
For w # 0 one chooses z as a local parameter, for z ~ z;, where P,(z;) = 0,
the variable 7,, = /2 — z; can be used as a local parameter.

For X' being hyperelliptic the hyperelliptic involution o is defined by

c:XY35P=(z,w)—=>0c(P)=P°=(z,—w)e X, (A.6)

1.e., o interchanges the two sheets of the Riemann surface.

Any compact Riemann surface X, of genus g is topologically equivalent
to a sphere with g handles. Any compact Riemann surface has finite genus.
The first homology group of X, is denoted by Hi(Xy,Z). A standard basis
of generators of Hy(X,,Z) consists of g pairs of cycles (a1,b1),..., (ag,by)
where a pair (a;, b;) encircles the i-th handle (or surrounds the ith hole) so
that a; intersects b;, see Fig. A.1

Fig. A.1. A homology basis for a Riemann surface of genus two

The way cycles intersect is described by intersection numbers. In Fig. A.2 we
show for two cycles v and v, when the intersection number 7, - v2 is +1 or
—1.

We choose oriented closed curves ai,...,ag4,01,..., b, such that their in-
tersection numbers are
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72 71

Y172 = +1 Y1y = —1

Fig. A.2. The orientation dependence of the intersection numbers

ai~aj:bi~bj:0,

a; ~bj = —bi ca; = (Sij . (A?)
A basis with the above intersection numbers is called canozzical basts. The
choice of such a basis is not unique: Any other basis (a,b) of Hy(Z,,Z)

(where @ and b denote the g-dimensional vector a = (a1, ...,a4)" and b =
(b1,...,by)T) is given by the transformation

(%)::A(Z), A€ SL(29,7) . (A.8)

From the requirement that the new basis 1s also canonical we find that the
matrix A is symplectic, A € Sp(g,7Z),

T (01
J=AJAT J_<[O). (A.9)

A canonical basis is also referred to as a cut-system. If one cuts the Rie-
mann surface starting from one point along the canonical cycles, the resulting
surface is simply connected, a 4g-gon called the fundamental polygon. For the
surface of Fig. A.1 one gets the fundamental polygon shown in Fig. A.3.

—1
al bl

—1
bl ay

as b2—1

b -1
2 a,

Fig. A.3. The fundamental polygon fg of a Riemann surface Yy of g =2
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A.2 Differentiation and Integration on Riemann
Surfaces

A differential (or one form) df2 = adz + bdy = adz + 8dz, where z is a local
complex coordinate in the neighborhood of some point P on the Riemann
surface X, of genus ¢ is called an Abelian differential if we have

df2 = f(z)dz, (A.10)

with f being a meromorphic function in the vicinity of P. Since

d(de) = g—fdz Adz+ %dé ANdz=0, (A.11)

Abelian differentials are always closed. We may classify Abelian differentials
as follows:

— Abelian differentials of the first kind (or holomorphic differentials): f is a
holomorphic function in any local chart.

— Abelian differentials of the second kind: have a single pole of order higher
than 1 with vanishing residue.

— differentials of the third kind: have two first-order poles with residues +1.

Furthermore, it turns out that each Abelian differential can be decom-
posed into Abelian differentials of the above mentioned kinds. We denote a
differential of the second kind with pole p of order n + 1 by d.QJ(pn) and a
differential of the third kind with poles P (residue +1) and @ (residue —1)
by df2pg. We have for the differential d{2pq

1
df2pg = (— + O(l)) drp, mnear P,

P
1
df2pg = (—— + O(l)) drg, near @, (A.12)
TQ
where 7p and 7¢ are local parameters at P and @ with 7p(P) = 0 and

79(Q) = 0. For the differential of the second kind we have

1
dQJ(P”) - (Tn+1 + O(l)) drp, near P, (A.13)
P

where 7p is a local parameter at P with 7p(P) = 0. A differential of the
second kind can be obtained from a differential of the third kind by differen-
tiating
n L.,
dnl = —0pdi2pq . (A.14)

An Abelian integral on a Riemann surface is an integral of an Abelian differ-
ential.
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It can be shown that the vector space H' (X)) of holomorphic differentials
on Xy is g-dimensional. For example if X, is a hyperelliptic Riemann surface

2g+2
of the form p? = H (A — Ai), we may define a basis in H'(Y,;) by
i=1
DUBEYDY
dl/k = ; (A15)
it

fori=1,...,g. The hyperelliptic differentials of the third kind have the form

ptpp  ptpg)di
d R) = - — f 0 0
WPQ( ) (A—TP A—TQ)Q/,L’ lﬂP;é a/’LQ;é ’

K+ pp 1 dr .
d = — — f =
WPQ(R) (A—TP A—TQ) 2# ’ 1 /’LP;éOa/'LQ Oa

1 1 dA

d = — — if = = Al
WPQ(R) (A—TP A—TQ) 2# ’ 1T pp Oa/'LQ 0’ ( 6)

where the argument of dwpg is the point R = (A, p) € Xj.

Definition A.1. The periods along the cycles a1, ..., by of a closed differen-
tial d§2 are defined by
A; = ?{ de |

a;

B, i?{d(), (A.17)
bi
fori=1,... 9.

The periods are independent of the representatives of the cycles with the
given homology classes since the differentials are closed. Let d{2 respectively
ds2" be closed differentials and denote the corresponding periods by A; and
B; respectively A} and B! (i =1,...,9). Let Py € Z; be fixed and define a

function f on ZN’g (the fundamental polygon) by
P
f(P) = / de | (A.18)
Po
VP € X,. With these settings one obtains Riemann’s bilinear identities,
Theorem A.2. The following relation holds:

g

/d.QAd.Q’: ?f Jd' =" (AiBj - AjB:) | (A.19)
PP 6Z~'g i=1

where 35’9 1s the boundary of the 4g-gon ZN’g, oriented wn positive direction.
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The first identity in (A.19) follows from Stokes’ theorem, the last identity fol-
lows from an evaluation of the integrand at the boundary of the fundamental
domain (for details see [186]).

The Riemann bilinear relations of Theorem A.2 imply useful relations
for the A- and B-periods of Abelian differentials. Applying them to two
holomorphic differentials df2 and df2’ one finds

g
(4;B, — B;A}) = 0. (A.20)
j=1
and
g _
S| A;Bj| <o0. (A.21)
j=1

Thus one has
Corollary A.3. (i} An Abelian differential of the first kind where all A-
(ii) or all B-periods vanish is identically zero.

(iii) An Abelian differential of the first kind with only real periods is identically
zero.

Remark A.4. With the above relations one may show that for an integral of
the third kind the poles and integration limits can be interchanged

Q R
/d.QRS = /dQQP : (A.22)
P S

PQ,R,5€X,.

We normalize the Abelian differentials in the following way:

— The holomorphic differentials are normalized by the condition

f dw]' = 27Ti(5ij . (A23)

z

The so normalized basis of the holomorphic differentials is called canoni-
cal.

— Abelian differentials of the second and third kind are only determined up
to a linear combination of holomorphic differentials. This ambiguity will
be fixed by demanding that all a-periods of the normalized differentials
of the second and third kind vanish.
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The Riemann bilinear relations (A.19) imply that the matrix B;;,

Bij ié dw]' s (A24)

z

of b-periods of the normalized holomorphic differentials is a Riemann matrix,
i.e. it is symmetric B;; = Bj; and has a negative definite real part. We note
that the Riemann matrix transforms under a change of the homology basis
from (a, b) to (a, I;) according to

(%) - (é g) (Z) ) (é S) € Sply, Z) (A.25)

B = 27i(DB + 27iC)(BB + 27miA) ! . (A.26)
For the b-periods of the normalized differentials of the third kind, the

bilinear relations imply
P
%dQPQ = / dwk . (A27)
by Q

as

The corresponding relations for the b-periods of the normalized differentials
of the second kind follow from (A.14).

In physical applications so-called real surfaces (surfaces with an anti-
holomorphic involution) play an important role. In the hyperelliptic case the
surface X, of genus ¢ is given by the relation

p? = H(K — E)(K - F), (A.28)

where E;, F; € Ror E; = F; fori = 1,...,g+ 1. On this surface the anti-
holomorphic involution has the form

T:X¥3P=(K,u)—=r(P)=P=(K,p)ey, (A.29)

l.e.. 1t acts as a complex conjugation on each sheet of £. In the context of the
Ernst equation we are interested in surfaces with E 41 = Fyq = €. Since in
the cut-system of Fig. A.4 the closed curves ag remain in one sheet, they are
not invariant under the hyperelliptic involution ¢ whereas the curves by are
(as a point set). The hyperelliptic involution acts on the Abelian differentials
of the first kind, as one easily finds from (A.15) and (A.23), as multiplication

by —1. Similarly, the anti-involution 7 acts on Hq(X,) as follows:

T(hi) =bi— > ax, (A.30)
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Fig. A.4. Homology basis for real hyperelliptic Riemann surfaces

for curves a; surrounding two complex conjugated branch points and

r(a;) = —a; ,

T(bi) =bi— > ax, (A.31)

k=1

for curves a; surrounding two real ones. Since the non-normalized differentials
dy; (A.15) transform according to 7*dy; = d7; we find with (A.23) and (A.30)
for the normalized Abelian differentials of the first kind

Therefore, the components of the Riemann matrix B transform under 7 in
the following way

b= o= frian= § = a3 fua-

7(bs) I#i g,

=B — QmZaﬂ , (A.33)
l#1

for ovals a; surrounding two complex conjugated branch points, and

g
”_?{dw]_?{ (dw); :?{dwj:?{dwj—Z?{dwk:
by l:lal

(6i)
= Bij — 2m s (A34)

for ovals a; surrounding two real branch points. Notice that the periods of
the holomorphic differentials on a hyperelliptic surface can be expressed in
terms of differences of the Abel map between branch points. At the end of
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this section we introduce the notion of the Jacobian of a Riemann surface
and of the Abel map. Let A be the lattice

A={2niN+BM, N,M €7% (A.35)

generated by the periods of X;. This defines an equivalence relation in C9:
two points of €9 are equivalent if they differ by an element of A.

Definition A.5. The complex torus
Jac(Xy) =9 /A (A.36)
15 called the Jacobi variety or the Jacobian of X,.

Definition A.6. The map

P
w:Xy, = Jac(Xy), w(P)= / dw , (A.37)
Pq

where dw 1s the canonical basis of the holomorphic differentials and where
Py € Xy, 1s called the Abel map.

Let {e()},i=1,..., ¢ be a basis in C9 with (e(i))j = d;; and define
(f); = Bi; . (A.38)

Then the vectors 2riet) ... el 1) . £ are lineary independent since
the real part of the Riemann matrix is negative definite. A point e € Jac(X,)
is uniquely determined by the 2¢ real numbers p;, ¢; (4,7 =1,...,9),

g g
e :QWique(k) —|—Zpkf(k) . (A.39)
k=1 k=1

The numbers p;, ¢; form the characteristic [e] of the point e,

[¢] = [p] . (A.40)

q

A.3 Divisors and the Theorems of Abel and Jacobi

A divisor on a Riemann surface X, is a formal sum of points,
N
A= "niP; (A.41)
i=1

with P; € X, and n; € Z. The sum
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N
degd = " n; (A.42)
i=1

is called the degree of 2. The set of all divisors with the obviously defined
group action

N
niP+nyP = (ny+n2)P, —A=> (—n;)P; (A.43)

i=1

forms an Abelian group Div(X,). A divisor with all n; > 0 is called positive
(or integral or effective). This notion allows a partial ordering in Div(X,),

A< AW <= A -A>0. (A.44)

Let f be a meromorphic function on X, with zeros P, ..., Py of multi-
plicities p1,...,pa > 0 and poles @1, . .., @ n of multiplicities ¢q, ..., gy > 0.
Then the divisor

A=pPi+...+puPy— Q1 — ... —aqn@Qn = (f) (A.45)

is called the divisor of f and denoted by (f). A divisor is called principal if
there exists a function f with (f) = 2. For two meromorphic functions f
and g one has obviously (fg) = (f) + (¢9). Two divisors 2 and ' are called
equivalent if the divisor 20 — 2’ is principal which is denoted by 2 = 2’. The
corresponding equivalence class is called the divisor class.

Similarly one can define the divisor of an Abelian differential df2 =
f(2)dz. Since the quotient of two Abelian differentials is a meromorphic
function, any two divisors of Abelian differentials are lineary equivalent. The
corresponding class is called canonzcal.

The Abel map is defined for divisors of the form (A.41) in a natural way,

w(Ql):Zni/Pldw. (A.46)

If the divisor is of degree zero, w(2) is obviously independent of Py. This
leads to the important

Theorem A.7 (Abel’s theorem). The divisor © € Div(Xy) is principal if
and only if:

1. deg® = 0,

2. w(®) =0 on Jac(Xy).

Since the divisor ® is principal, it defines a class of meromorphic functions.
Let F' be such a function. Then we have the useful
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Corollary A.8. Let the conditions of Abel’s theorem hold and let © = A—B
where A and B are positive divisors. Then the following identity holds

oy FP)
/% deQ =1 F(Q) . (A47)

Let ®, be a positive divisor on X,. A natural question is to describe the
vector space of meromorphic functions with poles at ., only. For a general
divisor ® on X, one can define the vector space

L(®) = {f meromorphic functions on Zy|(f) > D or f =0} . (A.48)

If we split © in positive (Dg) and negative (D) parts
Dy = anpz , Do = kaQk ) (A49)

where n;, my > 0, then the space L(D) (we call its dimension r(®D)) consists
of the meromorphic functions with zeros of order at least n; at P; and with
poles of order at most my at @J. Similarly one can define the corresponding
vector space of the differentials

H(D) = {12 Abelian differential on X,|(£2) > D or 2 =0}, (A.50)

the dimension of which is denoted by ¢(®). This dimension is called the index
of speciality.

Definition A.9. A positive divisor © of degree deg® = g is called special if
there exists a holomorphic differential dw with

(dw) > D . (A51)

It can be shown that the condition (A.51) is equivalent to the existence
of a non-constant function f with (f) > —9. Since the space of holomor-
phic differentials is g-dimensional, equations (A.51) form a linear system of
g equations for g variables. This shows that most of the positive divisors are
non-special. In the hyperelliptic case equations (A.51) imply that a divisor is
special if and only if it contains two or more points lying on different sheets
but having the same projection into the complex plane.
With these notions we can state the important

Theorem A.10 (Jacobi’s inversion theorem). Let D, be the set of pos-
itive divisors of degree g on X;. The Abel map on this set w : D4 — Jac(Xy)
is surjective, i.e. for any x € Jac(Xy) there exists a positive divisor of degree
g with Pr+ ...+ P, € D, (the P; are not necessarily different) satisfying

g P
Z/ dw==x. (A.52)
i=1 Fo
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A.4 Theta Functions of Riemann Surfaces

Theta functions are a convenient tool to work with meromorphic functions
on Riemann surfaces. We define them as an infinite series.

Definition A.11. Let B be a g X ¢ Riemann matriz. The theta function with
characteristics [p, q| is defined as

Opq(®, B) = Z eXp{%<B (N+p),N+p)+ (= +27riq,N+p>} ;
Nezo
(A.53)
with ® € C9 and p, q € C9, where (-, ) denotes the Euclidean scalar product
<N, 33> = Z?:l Nll‘l

The properties of the Riemann matrix ensure that the series converges abso-
lutely and that the theta function is an entire function on C9. A characteristic
is called singular if the corresponding theta function vanishes identically. Of
special importance are half-integer characteristics with 2p, 2q € Z9. A half-
integer characteristic is called even if 4(p,q) = 0 mod 2 and odd otherwise.
Theta functions with odd (even) characteristic are odd (even) functions of
the argument @. The theta function with characteristics is related to the Rie-
mann theta function, the theta function with zero characteristics @ = ©go,
via

. 1 .
Opq(z,B) = O(x + Bp + 2miq) exp {5 (Bp,p)+ (p, = + 27T1q>} . (A.54)

The theta function has the periodicity properties

Opq(® + 2mie;) = e?miPs Opq(®) , Opg(w+Be;) = o243 =%~ 5B Opq(®) |

(A.55)
where e; is the g-dimensional vector consisting of zeros except for a 1 in
jth position, and satisfies the heat equation (under the assumption that all
entries of the matrix B are independent)

20p..,0pq(%, B) = 0._0.,0pq(z,B) . (A.56)

The above definitions are possible for Riemann matrices B which are not
associated to a Riemann surface. In the following we will only consider theta
functions on Riemann surfaces. Then we have

Proposition A.12. The theta function O(w(P) — e) either vanishes identi-
cally on Xy or has exactly g zeros (counting multiplicities).

Proposition A.13. Let K be the Riemann vector defined by
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P
o7+ B,
K = 7”+ mt B2 Z?{ duwr(P /dwj , (A.57)
l;é]al Py

where Py 1s the base point of the Abel map, and let ® = P+ ...+ P, be a
non-special divisor. Then the theta function @(w(P) — w(®) — K) vanishes
if and only if P € D.

For general Riemann surfaces it is difficult to find an explicit form for the
Riemann vector. On hyperelliptic surfaces it is related to an odd characteristic
which can be expressed in terms of the Abel map of some divisor of branch
points. For example for the cut-system in Fig. A.4 one has

K= zg:w(m) . (A.58)

i=1

In general there is no simple relation between the complex conjugate of
a theta function ©(z) and the theta function of the complex conjugated
argument @ (). However for real hyperelliptic surfaces such relations exist.
For the cut-system of Fig. A.4 the relations (A.33) for the matrix of b-periods
imply for the Riemann theta function,

O(x) = O (x +in4) , (A.59)

where A; = 1 if E; and F; are real and A; = 0 otherwise.
Abelian integrals can be expressed in terms of theta functions. Since for
the applications in Chap. 3 the integrals of the third kind are particularly
interesting, we want to show how a sum of g such integrals can be expressed
via theta functions, see [187]. Let f be a meromorphic function on ZN’g of the
form
O(w(P) —w(®) - K)
O(w(P) —w(€) - K) '

where ® = P+ -4+ F,and ¢ = Pi+-- ~—|—ﬁg, B, ]5j € Y, are two non-special
divisors of degree g and K is the Riemann vector. This function has g zeros
respectively poles at the points of the divisor © respectively &. Furthermore,
f(P) has at the cut a; the jump 1 and at b; the jump exp{2(w; (D) —w;(€))}.
On the other hand, the function

f(P) = exp Z/dwplpl : (A.61)

i p,

f(P) =

(A.60)

where Py € X is fixed, has the same properties as f: we have f(PZ) =0 and
f(ﬁ]) = oo. The jumps at the cuts a; respectively b; are the same as for the
function f. Therefore, both functions coincide, up to a P-independent factor.
By taking P = P, one gets
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Z/dwﬁ,Pl IZ/dWPDP (A.62)
( (©) — K)O(w(Py) — w(®)  K)
(@ —K)0(w(Po) — (D) —K)

(P)
(P)

Here we have used that for an Abelian integral of the third kind the poles
and limits of integration may be interchanged.

Ow
=1n Ow

— W
— W

A.4.1 Elliptic Surfaces

A special case are surfaces of genus 1 which are called elliptic, see e.g. [199].
Elliptic curves can always be brought into the standard form

p? = (1= X3 (1 = k*N\?) (A.63)

by using a Mobius transformation. The periods of the holomorphic differen-
tials can be expressed in terms of complete elliptic integrals

K(k) = /_1 CL—A, K(k) = K(\/1—k2). (A.64)

The Jacobi elliptic theta functions ¥#; where i = 1, ... 4 have the character-

istics % [1], % [é], % [8] and % [?] respectively.

A.5 The Trisecant Identity for Theta Functions on
Riemann Surfaces

Theta functions are subject to a number of addition theorems. A typical ex-
ample 1s the ternary addition theorem which can be cast into the form, see

[1, 270]:

Theorem A.14. Let [m;] = [m},m?] (i = 1,...,4) be arbitrary real 2g-
dimensional vectors. Then

O[m1](u + v)O[ma](u — v)O[m3](0)O[m4](0) (A.65)
= 2% Z exp(—4rmi(mi, a?)) x
2a€(Z3)29

O[n1 + a](u)B[nz + al(u)O[ns + a](v)BOng + a](v) ,

where a = (a',a?), and (m1,...,ma) = (n1,...,n4)T with
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1111
1[1-1-1-1

r=s1, 1] (A.66)
1-1-1 1

Fach 1 in T denotes the g x g identity matrix.

The above addition theorem holds for general theta functions. A very useful
identity due to Fay [128] (see also [139, 272]), however, holds only for theta
functions on Riemann surfaces.

To generalize the cross ratio function (3.1) to the Riemann surface X,
one needs as a building block an object on X, which has exactly one zero
as the difference of two points z — zy in CP'. There is no function with this
property on a Riemann surface, but the so called prime form which is the

(=%, —%)-differential on Xy x X, defined by

o.(F
E(P,Q) = A ’
ha(P)ha(Q)
where h% (P) =529 _, g?:(O)dwa(P), and where x = [p*q¢*] is an odd non-

singular half-integer characteristic (note that the prime form is independent
of the choice of the characteristic *). f; denotes the line integral from @

to P of the vector dw(r). With this notation we can define the cross ratio
function

E(Py, P)E(Ps, Pa)
E(Py, Py)E(Ps, Py)
which is a function on Y, that vanishes for P, = P, and FP3 = P, and

has poles for Py = P, and P, = Ps. The generalized identity (3.2) is Fay’s
trisecant identity

Theorem A.15. Let Py, Po, P3, Py € X, be four arbitrary points and let
P, q € C9 be two characteristic vectors. Then the following identity holds:

Al2sq = (A.67)

Ps Py P3 Py
A3124Opq(z + / )Opq(z ‘|‘/ ) + A3214Opq(z + / )Opq(z + / )
Py P

Py Py

= Opq(2)Opq(z + /}:3 -|-/J:4) ) (A.68)

where all integration contours are chosen not to intersect the canonical basic
cycles; this requirement completely fives all terms of the identity (A.68).

In the sequel we will use degenerate versions of Fay’s identity which lead
to identities for derivatives of theta functio)?s. Let 7 be a local coordinate
near P. Then we can write the Abel map fP for X ~ P as a series in T,

X 1 1
/ =UT+ V4 -Wre .. (A.69)
P 2 6
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Let us denote by Dp the operator for the directional derivative along the
basis of holomorphic differentials, acting on theta functions, and similarly
D% and DY, the directional derivatives along V' and W,

DP@PQ(z) = <V@pq(z),U> )

D%@PQ(z) = <V@pq(z), V),

DEOpq(z) = (VOpqe(2), W) . (A.70)
Since the theta function (A.53) depends only on the sum of the vectors z and

q, the action of the operator Dp on a theta function with characteristics can
be written alternatively as

dw (P)
dTP '

DpOpq(z) = Zaqa{@pq(z)} (A.71)
This form of Dp can be easily extended to any object depending on a vector

q.
Differentiating (A.68) with respect to the argument P; and taking the
limit P4 — P one obtains

Corollary A.16. The following identity for first derivatives of theta func-
tions on Riemann surfaces holds:

Ps
Opq(z + fpl )
Dp,In ———1—
Opq(2)
Py Ps
Opq(z + fpl )Opq(z + fp2 )

= c¢1(P1, Pa, P3) + ca( Py, Pa, Ps) O (2)O(z 1 flie’) , (A.72)
where the functions of three variables ¢1 and co are given by
c1(Py, Py, P3) = dw%;(l%) (A.73)
and
¢o(Py, Pa, P3) = DB, P) (A.74)

E(Pl, PQ)E(PQ, Pg;)dﬂ'p2 '
The derivative of (A.72) with respect to argument Ps gives in the limit
P3 — P1

Corollary A.17. The following identity for second deriwatives of theta func-
tions on Riemann surfaces holds:

Opq(z + fpil)@pq(z + f}%)
@Iz,q(z) ’
(A.75)

l)ple2 ln@pq(z) = dl(Pl, Pz) —|— dz(Pl, Pz)
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where the functions of two variables di and ds are given by

WP, P.
di(Py, Po) = —ﬁ (A.76)
1
dz(Pl, Pz) = ; (A77)

o EZ(Pl, Pz)dTpldTp2 ’
W(Py, Py) =dp,dp, In E(Py, P2) is the canonical meromorphic bidifferential.

In the limit P, — P, = P we obtain for an expansion of the terms in
(A.75) in the difference of the local parameters near P; and Ps

Corollary A.18. The following identity holds:

DpInO(z) + 6(D31nO(2))* + 3D Dp InO(2) — 2Dp DY In O(z)
—24e1(P)D} InO(z) 4 12(10e5(P) — 363 (P)) =0 . (A.78)

Here the functions e1(P), ea(P) turn up in the Taylor expansion of the nor-

malized differential dQJg) of the second kind with a pole of second order at P
(7 is the local parameter in the vicinity of P with T(P) = 0),

anih) = (_T_lz + 21 (P) — (6e2(P) — 12e5(P))7> + .. )dr . (A.79)

A.6 Rauch’s Formulas and Root Functions

So far we have only studied functions on a given Riemann surface with fixed
branch points. In the context of the Ernst equation it is however necessary to
study certain functions on a whole family of Riemann surfaces in dependence
on the branch points. Rauch’s variational formulas [179] describe the depen-
dence of the basic normalized holomorphic differentials dw, and the matrix
of b-periods B, on the moduli of the Riemann surface. The moduli space
of hyperelliptic curves can be parameterized by the positions of the branch
points. Let 7y, (P) = /A — A, be a local parameter in the neighborhood of

P. Then Rauch’s formulas read:

W(P, Ap) dwa (Am)
dTAm dTAm

1

I, (dwa(P)) = 3 , (A.80)
_ 1dwa(Am) dws(Am)

xf = 2 dTAm dTA ’

In the case of hyperelliptic Riemann surfaces, quotients of theta functions

with the same argument but different half integer characteristics are equiv-

alent to so-called root functions, see Chap. 1 of [1], [267]. If we write the
surface £ in the form

0x, B

(A.81)

m
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2g+2

=T =), (A.82)

m=1

the following identity for root functions holds [1, 267] for any point P =
(K, p(K)) € L:

SN _ o [E=
E(P,\)/dm, VK =X~

where C'is a constant with respect to A(P).

We will also need these functions in a form free of prime forms: Let @);,
t=1,...,2g9+2, be the branch points of a hyperelliptic Riemann surface X,
of genus g and A; = w(Q;) with w(@1) = 0. Furthermore let {i1,...,i,} and
{j1, ..., Jg} be two sets of numbers in {1,2,...,2¢ + 2}. Then the following
equality holds for an arbitrary point P € L,

(A.83)

OK +X0_ Ayl (w(P) . [(K=Ey).. (K- E,)
O + 320, Al (w(P)) CM(K —5,) (k= A8

where (7 is a constant independent of K. Let X = X; 4+ ... 4+ X, with
X; = (K, u(K;)) be a divisor of degree g on L. Then the following identity
1s satisfied,

OK + A (w CzH (K, —

Ok 14, ]( (7 —Q» (4.85)

where C5 1s a function independent of the Kj.



B Ernst Equation and Twistor Theory

In this appendix we establish the relation between twistor theory and the
solutions to the Ernst equation discussed in this volume. We basically follow
the approach of Mason and Woodhouse [32]. In Sect. B.1 we review some
basic facts on the quaternionic Hopf bundle. This will be used in Sect. B.2 to
perform a symmetry reduction of the Penrose-Ward transform which leads to
the linear system of the Yang equation discussed in Sect. 2.4. In Sect. B.3 we
construct explicitly the holomorphic bundles over the reduced twistor space
Ry for the algebro-geometric solutions of the stationary and axisymmetric
solutions to the Einstein equations according to Woodhouse and Mason [88].
We equip the space Ry associated to a region V of the (g,()-plane with a
standard cover consisting of four charts. It turns out that for solutions to the
Yang equation which yield a symmetric and real Yang matrix and which have
a regular behavior on the symmetry axis, one patching matrix (and a couple
of integers) characterizes the bundle over Ry completely. Then we pass to
the construction of the holomorphic bundles associated to the solutions to
the Ernst equation discussed in Chap. 4. If the solution has a regular axis,
we can read off the corresponding patching matrix directly from the Ernst
potential at the symmetry axis.

B.1 The Quaternionic Hopf Bundle and the Twistor
Transform

It is well known that methods of complex analysis are also suited for the de-
scription of real analysis of two variables. This is due to the fact that one may
identify R? ~ C (i.e. one may introduce in R? a complex structure) uniquely,
if an orientation and a metric in R? are given. If one wants to make a similar
identification for R* one would naively identify R* ~ C2. Unfortunately, for
R* this identification is not possible, because in this case there is no natural
complex structure in C? induced by orientation and metric in R* It turns
out that the correct four-dimensional analogue of C is the three-dimensional
complex projective space CP?, the so called Penrose twistor space. Using this
complex manifold it turns out that one may describe (Euclidean) (anti-)self
dual Yang—Mills fields by algebraic constructions. To be more precise, we first
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introduce the basic notions of quaternion geometry. We define three formal
symbols i, j and k which fulfil the following requirements

i2:j2:k2:_1 ’
y=—ji=k, jk=-kj=1i, ki=-1k=j . (B.l)

A general quaternion ¢ € H is then given as a linear combination
qg=x0+x1i+x2)+ 23k | (B.2)
with zg,...,z3 € R. The conjugated quaternion ¢ is defined by

(j:l‘o—l‘li—l‘zj—l‘gk . (B3)

The conjugation is an anti-involution, i.e. (¢¢) = gg. With (B.1) one finds

3
@=q9=> x, . (B.4)

n=0

We denote the above expression, which is zero only for ¢ = 0, by |¢|?. Each
q with |¢| # 0 has a unique inverse ¢~!, which is given by

g =q/ld? . (B.5)

The unit quaternions, i.e. all quaternions with |¢| = 1, form a multiplicative
group which is geometrically the sphere S3

dar=1. (B.6)

If we identify i with the usual complex number we may regard the complex
numbers C as contained in H (by taking x5 = x3 = 0). Furthermore, each ¢
has a unique representation

qg=2z1+23) , (B.7)

with 21 = 2o + 211 and 25 = x5 + 23i. Therefore, we may identify H ~ CZ.

In analogy to real and complex projective spaces, one may define quater-
nionic projective spaces HIP". An element of HP™ is an equivalence class
of lines in H'*! ie. we call ¢ = (qo,...,¢9n) € H'F! equivalent to
q=(§o,--,Gn) €T g~ q, iff ¢ = X q for some A\ € H* = H\ {0}.

For the further analysis it is useful to introduce two important principal
fibre bundles, the Hopf bundle and the quaternionic Hopf bundle. The Hopf
bundle is the simplest example of a family of U(1)-bundles S?"+! — CP",
which can be defined as follows. From the equivalence class of (n+ 1)-vectors
z = (20,...,2,) in C"*! ~ R?"+2 we may always choose a representative
whose tip lies on the unit sphere in S??*!, i.e. it satisfies
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2ol 4+t |zl? = 1, (B.9)

~1/2
by multiplying z by the scalar A = (Zzzo |Zu|) . Of course, the result-

ing vector is only unique up to multiplication by scalars of the form e'¢. In
other words, we find that CP” can be obtained from S?"*! by identifying
all points €'?z on S?*! with z. Therefore, we have a principal fibre bundle
S2n+L(CP" U(1)) with base space CP? and structure group U(1). Now, for
n = 1 (using the identifications CP' ~ $2 and U(1) ~ S*) the corresponding
bundle is called the Hopf bundle 53(S%,5), i.e. S3 is a principal fibre bundle
with base space S? and structure group S*.

Analogously, one may define the quaternionic Hopf bundle as follows. We
first endow R4 ** with the structure of the (n + 1)-dimensional quaternion

space H't! with coordinates qq, ..., ¢n. In these coordinates the unit sphere
S4n+3 in R4+ is given by

Z |‘Ju|2 =1. (B.9)
n=0

We have a natural (left) action of unit quaternions on S*"+3 as follows

SU(Q) X S4n+3 =] (Qa (q0a ey QTL)) — (QQOa ey QQH) S S4n+3 ) (Blo)

because with Zzzo |g4)> = 1 we have Zzzo lgqu|* = 1. The resulting orbit
space S *3/SU(2) is just the quaternion projective space HIP". Thus we

have

Proposition B.1. S +3(HP" SU(2)) is a principal fibre bundle with stan-
dard fibre SU(2).

Remark B.2. For n = 1 we have the identification HIP* ~ S* With SU(2) ~
53 we find the quaternionic Hopf bundle S7(5%, 53), i.e. S7 is a principal
fibre bundle with base space S* and structure group S°.

With these notions at hand we can now introduce the twistor bundle, a fibre
bundle which is associated to the quaternionic Hopf bundle. We construct
this fibre bundle with standard fibre SU(2)/U(1) =~ 5? as follows. We remark
that SU(2) acts naturally on the homogeneous space SU(2)/U(1) by adjoining
to [g] € SU(2)/U(1) and ¢' € SU(2) the equivalence class [¢'¢g] € SU(2)/U(1).

Now we construct the bundle
E = ST xgu(z) SU(2)/U(1) = 57/U(1) = CP? . (B.11)

Here the second equality reflects a standard proposition in the theory of
associated bundles [273], and the third equality is nothing but the above
construction of U(1)-bundles S?"+! — CP" for n = 3. The above construction
motivates the following
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Definition B.3. The twistor bundle @3(54, 5% is a bundle with base space
S* and standard fibre S? associated to the quaternionic Hopf bundle S7(S*,5%).

The twistor bundle is of interest for the construction of solutions to the
Yang-Mills equations for the following reason. Suppose we are given a Yang—
Mills field over the four-dimensional Euclidean space [y, i.e. we are given a
principal fibre bundle P(E!, &) with structure group (gauge group ) and
bundle space P. If one compactifies 4 by adding the point “c0”, one gets a
bundle with compact base space S* (this is just the four-dimensional analogue
to the one point compactification in complex analysis). This is due to a
fundamental result of Uhlenbeck [29], which states that all Euclidean finite-
action Yang—Mills fields over i,y are smoothly extendible to Yang—Mills fields
over S*. Thus, we are led to the investigation of principal fibre bundles over
S*. The projection 7 : CP? — S* in the twistor bundle can be applied to the
principal bundle P(S*, () and gives an induced bundle over CP?, the pull-
back bundle W*P(@PS, (). A fundamental result states then, see e.g. [274],

Proposition B.4. There is a natural one-to-one correspondence between

(1) anti-self-dual U(n)-gauge potentials over S* (up to gauge equivalence)
and

(ii) holomorphic vector bundles E of rank n over CP? with a positive definite
real form (up to isomorphism).

B.2 Symmetry Reductions of the Penrose—Ward
Transform

B.2.1 The Reduced Twistor Space

An interesting feature of the Penrose-Ward transform (see for instance [30])
is that it allows for symmetry reductions. It turns out that the Yang equa-
tion can be obtained as such a reduction. In fact, in [32] most of the known
integrable non-linear equations have been solved by a symmetry reduction
of the above Penrose—Ward transform. For the stationary, axisymmetric Ein-
stein equations this procedure has been worked out in [88], see also [163]
and [164]. A detailed description of the procedure for the Kerr solution can
be found in [165]. The important point for us is that in the solution pro-
cess linear systems for the Yang equation are generated and get a geometric
meaning.

Let us recall this symmetry reduction procedure. To start with we consider
the action of the Abelian isometry group

G=S'"xR, (B.12)

on the four-dimensional Euclidean space E!, defined by
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(¢0at0) . (ta¢agac) = (t +t0a¢+ ¢0agac) ’ (B13)

for all ¢g € [0,27), ty € R. This action extends to a conformal action on
the compactification S* of E* and we may lift this conformal action to an
action on CIP?. In terms of local coordinates (t, ®,0,(, 6, 5) on CP?, adapted
to the Hopf bundle structure, which are related to holomorphic coordinates

(€1,62,6%) by
=6, &=CHit—0dge™ , =0’ +5(¢—it) , (B.14)

we find for the generators @ and T of this action

g .8 <0
@—%‘1’168—6—1(5%,
0
T=o (B.15)

In holomorphic coordinates (¢1,£2,€3) on CP? we also find ¢ = 2R(Yg) and
T = 2R (Yr), with

o
3_ Y 1~
o
Yr = 1@_161863 : (B.16)

The holomorphic vector fields Y and Y7 generate the action of the complex-
ification G = C* x C of G on CP?. Let us consider the orbits of these Killing
fields. We have

Proposition B.5. The orbits of the Killing fields are parametrized by w € C
and given by subsets of

Qu = {(&%&%&3) e Cp? El +€7 =07 0el? 4 9¢ — dge™ = 2w
(B.17)
Proof. Let
Y =a¥Ys + 5Yr (B.18)

with a, 3 € C, denote an arbitrary linear combination of Y and Yr. In the
holomorphic coordinates (51,52,53) we have

=iaf' o5 +ifam +i(a® - pet) o= (B.19)

661 662 653 '

For the integral curve (with curve parameter t) of ¥ we have to solve the
following system of equations (a dot denotes the derivative with respect to )



214 B Ernst Equation and Twistor Theory
¢ = ai¢!
& =pi, (B.20)
& =i(ag-pg')
from which we immediately obtain for £(¢) and &£2(t)
€)= et
() =ipt+Ca (B.21)
with arbitrary complex constants C7 and Cs. Thus, we obtain
€% —iagd = —ipelttc (B.22)
with general solution
E3(t) = e (C5 —ifter) | (B.23)
(C5 € C). Inserting (B.21) yields
g?g; + &% (t) = Cse™ 1 4 Oy = 2w . (B.24)
O

It is well known, that if G acts freely and properly on a manifold M then
the space of orbits 1s a Hausdorff manifold. Since Yg and Y are the lifts of
the G-action on [E* which is obviously not free, the situation is a bit more
involved. First, we have for the zeros of the Killing vector fields

Proposition B.6. For the Killing vectors of the action of G© on CP? we
have

(1)

(Ya(p) =0) < pe€ {ﬁ) — }izg; i}oo} , (B.25)
(1)
(Yr(p) =0) <= pel=n""(x0) . (B.26)

Proof. ad (i) From Eq. (B.16) we find Y = 0 for ¢! = &3 = 0, i.e., for
r = & = 0. In order to prove that Ys vanishes on L; we consider its local
expression in the chart (CP?\ {Z' = 0}) with coordinates

~ Z° 1

1 _Z _ -

€ - Zl - (5 )

L 22 1, .
gzzﬁ:g(C—i—lt)—ge ¢,

- Z3 . 1

€ ="-=((-it)+ gge“z’ . (B.27)

Zl
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Thus, we find for Yg in this local chart
0

0
351 c2

€2 — B.28
& (829
which vanishes for &71 = éz =0, i.e., for g = 0 and § = co. The proof of ii)
follows similarly.

Ye = —iél

O
With this proposition we find that the different orbits of G€ on CP? are
characterized by the intersections of ¢}, with the singularities Ly, L1, and
of Y and Yr.

In the following we will often consider regions D C CP® which are related
to subsets of the (g,()-plane. Let D C CP? be open. Then a holomorphic
function f on D, invariant under the action of G has also to be invariant
under the action of its complexification GC, i.e., we have

Yo(f) = Yo(f) =0 . (B.29)

Of course, the orbits of Y and Y7 may intersect D in disconnected sets.
Then we find with (B.29) that f is locally constant on each component of the
intersection of D with the orbits of G. But, on different intersections it can
take different values, i.e., f is not the pull-back of a function on the space
of orbits of G on CP®. But, since Y3 and Y7 generate an Abelian isometry
group, they commute

[YéaYT] =0 )

and span, by Frobenius’ theorem, an integrable distribution of T'D which is
non-singular at all points p € D\ {LoU Ly U T}. In other words, we have a
codimension 1 foliation F of D, except at the intersections of D with Ly, Ly,
and I, generated by Y and Yp.

Let H C C be the upper half of the (g, {)-plane, i.e.,

H={w=(+ig€Clo >0} (B.30)

and V C H be connected and simply connected and define V by V =
{w|w € V}. We may consider w = { + ig as a stereographic coordinate on a

Riemann sphere CP!. We define
pr:E*\{o=0} — H (B.31)

by
pr((t, ¢, ¢,¢)) == +ie . (B.32)
We denote Fy an open subset of E! with
pr(lyv) =V . (B.33)

Remark B.7. Often we shall be interested in a simply connected set Ey , i.e.,
in general we have [y # pr=(V).
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Let V C H be fixed and choose Fyx C E* to be an open subset of the
Euclidean four-space (see above) and, correspondingly, of S*. We define

Py := {€ € CP?|n(§) € By } (B.34)
where 7 : CP? — 5% is the projection in the twistor bundle CP? (54, Sz).

Definition B.8. Let Py C CP? be given as above. The set of connected com-
ponents of Qu NPy (w € C) is the reduced twistor space Ry associated with
V.

Let us now show that the reduced twistor space Ry can be represented as
a compact but in general non-Hausdorfl Riemann surface. We consider the
surjection

I:CP*\(TULyULy) — CP! | (B.35)
defined by
1 ¢2 43 1/& 9 Lo g 1o iy
Ir((¢e%,¢°) 1:§<€—1+€)=§5 oe +C—§6ge , (B.36)
or, with (B.17),
rge.e)=w. (B.37)

Let w be fixed and x € E* have the coordinates = (¢, ¢, ¢,¢). Let 7! (z) ~
P! be the fibre over z with stereographic coordinate d. This fibre intersects
the quadric @, labelled by w in points §4+ with

1 : 1,
§6ige_l¢ + (w — ¢)dx — §rel¢ =0, (B.38)

see Figure B.1.
We have

Lemma B.9. Let w be fizred. The intersection Q, NPy s connected if there
erists a path v : [0,1] = Q. with ¥(0) = 04 and (1) = d_ such that
n(y(t)) € By fort €[0,1] and has two connected components otherwise.

Proof. The proof follows directly from the definition of a connected set.

O
This lemma yields another possibility to characterize points of the reduced
twistor space Ry . For w = (i the discriminant A = (w—¢)?+ ¢? of (B.38)
vanishes such that §; = J_. Thus we have

Lemma B.10. If w € V UV then Qu NPy has one connected component
and two two connected components otherwise.

A direct consequence of this Lemmais that Ry does not possess the Hausdorff
property.
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I
> .
Lo PTy CP?
Vv avd
e=0 Ev FEy

Fig. B.1. The twistor space above Ev

Lemma B.11. For V being open the reduced twistor space Ry associated to
V' is not Hausdorff.

Proof. Let © € 9V and U, a neighborhood of . Then # ¢ V and accord-
ing to Lemma B.10 there are two points #; and x5 in Ry associated to z.
Schematically we have

T2

S ——

S ——

T

Fig. B.2. The non-Hausdorff property of Ry

Obviously, each neighborhood U, of x1 contains elements of the neighbor-
hood U, of s, i.e., Uy, NUy, # B, and the Hausdorf property fails.
O
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Now we want to show that Ry is a compact Riemann surface. More precisely,
we have

Proposition B.12. Let V C H be simply connected. Then Ry is a compact
Riemann surface, i.e., there is a covering map I' : Ry — CP'.

Proof. We have just shown that "= (w) has either one or two points depend-
ing on w. Thus, it remains to show that ['~! (@Pl \ (V U V)) 1s a connected
double cover of the complex projective plane CP'. Let z € ! be fixed. Let
w(t) be a closed path which encircles V' such that w(0) = w(1) = wgy. From
(B.38) it follows that A changes its sign, i.e., 6+ changes continuously to dx.
Thus, a closed curve in CP' lifts to a path in I'=1 (@Pl \ (V U V)) which
joins the two points in the preimage I'~! (wp).

O
Thus, following [88], we can construct Ry associated to V in the following
way:

(i) Choose points ¢ € V and ¢ € V and make a cut C from ¢ to ¢.
(i1) Take two copies Sy and Sy of the extended w-plane with cuts Cy and Cf.
1) Identify points in Vj; with the corresponding points in V; and points in
[dentify p rresp gp p
Vo with corresponding points in Vj.
(iv) Identify points on the +-branch of the cut Cy in Sy with points on the
—-branch of the cut Cy in S;.

B.2.2 Holomorphic Vector Bundles over the Reduced Twistor
Space

This subsection deals with the symmetry reduced Penrose-Ward transform.
We will find that holomorphic vector bundles over Ry for some region V
of spacetime will correspond to a solution of the Yang equation on V. Let
us first recall the Penrose-Ward transform for our model. Let V' C H and
J = J(o,¢) a solution to the Yang equation (2.85) over V. Suppose, we have

H,H:Ey — GI(2;C) . (B.39)

such that R
J=H H . (B.40)

Using the complex coordinates p = @ = ge'® and ¢ = 7z = ¢ + it we define by
Y= H™' (8, Hdp + 0;Hd) + H~! (apﬁfdp n aqﬁqu) (B.41)

a gl(2; C)-valued connection D = d+7 in the trivial vector bundle (By , By, C?)
with total space
By = Ey x C* . (B.42)

In Sect. 2.4 it has been shown
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Lemma B.13. The connection D = d+ 7T in (By, Ev,C?) is anti-self-dual
if and only if J is a solution to the Yang equation (2.111).

Let us now define by means of 1" a g{(2; C)-valued one-form on Py. We take

v =0 (B.43)

bl

where 7 is the projection in the twistor bundle = : CP? — S$* and where
71 denotes the (0, 1)—compon¢nt of the one form 7*7 on Py in the
decomposition (¢,€). With X := de™'% we have

Proposition B.14. The connection one form ¥ is given by

- 1—1—1/\2
07 [(M0,H 400 H ) Do+ (N0 = A0, 1) 6c¢|) . (B.44)

w (B [(00H = A H) o+ (0 H + A9, H) OC]

Proof. We will prove the proposition for H = J. Then we have

id H
™7 = e—H_la—

5 R (e_1¢dg — ige_l¢d¢) + —H_la—

d¢ —id¢ B.4
such that we find

el? OH 1 OH

_ - 1Yt —ig g a (. —1¢ Spg-1Yt 5. -5
V= H 5 (e7%00+ 00 (7)) + S H % (9¢ —iot) . (B.46)
From (B.14) we know
€ =C+it—dge™ | =" +5(C—it) (B.47)

and using the fact that &' and €2 are holomorphic coordinates, i.e., 9¢' =
9¢? = 0, we obtain

0=0¢+i0t—4¢ (59) e _ §oe %29 (ei¢) ,
0=e%do+ 00 (ei¢) +80¢ —id0t .
Therefore, we find

(A2 = 1) Do — 2X0¢

5 (el?) —

O = mpery
R _

iét:(/\ 1)3(—1—2/\39’
(A2+1)

and inserting into (B.46) yields (B.44).

Remark B.15.
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(i) Since dg = 9¢ = 0 for & € By fixed, we have

W), =0 (B.48)
along all fibres X = 7= 1(x).

(i1) We have
LW = LW =0 . (B.49)

In fact, since H and A are independent of ¢, we have

1 (0H 9H\\ _

Furthermore, Lydo = Lpd¢ = 0. The proof of the Le¥ = 0 follows similarly.

(iii) Let us consider the quadric lim @y in Py. Since
wW— 00

1
w=ctleoy (B.51)
this means A, 6 — 0 or A, d — co. We denote
Ag Zzpvﬂ{/\IO} ,
A =Py n{A =00} |, (B.52)

l.e., Ag and Ay are the points in Ry above oo in CP!. Then we find from
(B.44)

W(Ay) = H! (%—IZ@Q + %—?ac) =H™'oH
() = Jim g (A+AB+ N (B0, ) Do+ X (H'0cH ) &)
= (H'0cH) 8¢+ (H~'0,1) Do
= H'0H . (B.53)

The curvature form of 7" is anti-self-dual and we want to investigate the
consequences for ¥. To do this, we use the following theorem, due to Atiyah,

see [274].

Proposition B.16. A two-form w on U C S* is anti-self-dual if and only if
m*w is a (1,1)-form over U C cp3.

Remark B.17. This proposition is closely related to a lemma which states
that a two-form w over U C R*is anti-self-dual if and only if w is of type
(1,1) for all compatible complex structures on R* see [274].

The above proposition implies the following result
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Lemma B.18. A necessary condition for the anti-self-duality of the curva-
ture two-form F =dT + T AT 1s

O+ W AT =0 . (B.54)
Proof. Let us decompose
T =04V =" (B.55)

with ¥ being a (1, 0)-form. Then we find for the pull-back 7* F of the curva-
ture form F'

T F =" (dV)+ 7 (T AY)=d(#*7)+ 7T Ax™T
= (0+0) (v+0)+ (w+0) A (v+0)
— W+ WA+ +IV VAT +TAT AT +TAT

The (2, 0)-part of the pull-back of F' does not depend on ¥ and, according to
Proposition B.16, the (0, 2)-part of the pull-back of F' has to vanish, i.e.,

OW+W AV =0 . (B.56)

O

In the following we will make use of the decomposition of the connection

V = d+ ¥ in the trivial C*-bundle B = Py x C? into a (1,0)-part and a
(0, 1)-part

v =vho v (B.57)

Then we have the following proposition, for the proof of which we refer

to [275], see also [276].

Proposition B.19. The (0, 1)-form ¥ € T* (Py)@g¢l(2; C) with OV +WAW =
0 defines a holomorphic structure on B, if

VO, = 0b+wb =0, (B.58)
forb e I' (Py,B).
Remark B.20. The proof makes essential use of the following proposition

Proposition B.21. Let (B, M, rr) be a vector bundle over a complex manifold
M and let ¥V be a connection in B with curvature being of type (1,1). Then
there exists a holomorphic structure on (B, M, x).

Corollary B.22. According to (B.48), the restriction |y of ¥ to the fibres
X = 77 Y(x) vanishes for x € E*. Thus (B.58) reduces along the fibres X to

ob=0 . (B.59)

From this it follows easily that the restriction B|y is holomorphically trivial.
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Thus, Proposition B.19 gives the condition for locally holomorphic sections
in the vector bundle B, such that B|y = X x C? is trivial not only as a
smooth bundle but also as holomorphic bundle. However, for a bundle over
Ry, it 1s also necessary that the sections are invariant under the G-action,
1.e., the sections should fulfil

ob+Wb=0, Pb)=0=T() . (B.60)
The existence of such sections is implied by (B.49) and (B.54). We will prove
Lemma B.23. The sections in Eq. (B.60) depend only on ¢, ¢ and A.

Proof. That b is independent of ¢ is a direct consequence of the definition of
T as

0
T=—. B.61
% (B.61)
Let us now show that b depends on ¢ and ¢ only via A. We have
i - i
0 e 9 1e'® 9 (B.62)

AT 20 206

and ob . Ob 0b
56 e e (B.63)
because @(b) = 0. The derivative with respect to § vanishes due to the holo-
morphicity condition of Proposition B.19 and we have
ob g Ob g 06

— = —ide

26 ax 85 ox (B.64)

O
Since the leaves of the foliation of Py are simply connected, the value of b on
a leaf A is completely determined by its value in one point of A via

Yolb) = (Vo) b = 0 = ¥i(b) — (Vi) b | (B.65)

and the complex conjugate equations which are a direct consequence of (B.60)
and the definitions of Yy and Y7. Let now ££/4 be the two-dimensional complex
space of solutions to these equations.

Definition B.24. The vector bundle E — Ry is generated in each point
A € Ry by the two-dimensional fibre E 4.

By taking the locally holomorphic invariant sections of B, i.e., solutions to
(B.60), as locally holomorphic sections of E, the holomorphic structure of
is induced by that of B. The matrices H and H distinguish bases in the fibres
over Ag and A; in the following way. We define

% = (H_loﬂ'|AD) €

Al) e (B.66)

fli: (H_loﬂ'
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(i=1,2), with

er = (?) . (B.67)

Proposition B.25. The sets {fol, foz} and {f11, flz} form fibre bases over
Ao and /11.

Now we have

Proof. Since H and H have non-vanishing determinants, f°; and f°, respec-
tively f11 and f1s are linearly independent. Then we have for the i-th column
of H~1

i

d(H), +w (H™) .+ (HOH) (HTY) (B.68)

TOH)HTY), + (HT'OH) (H™'), =0 .

K3

7 7

H
H

The proof for {f'1, f'2} follows similarly.
|

Remark B.26. A different choice of H and H generates a bundle isomorphic
to E.

To summarize, we have shown, how to associate to a solution to the Yang
equation on some region V of spacetime a holomorphic vector bundle over
the reduced twistor space Ry associated to V. In fact, the converse 1s also
true. We have

Theorem B.27. There is a 1-1-correspondence between:

(i) Gl(2; C)-valued solutions J to the Yang equation on V. C H, uniquely
determined up to transformations J — AJB~! with A, B € Gi(2;C) and

(ii) holomorphic vector bundles (E, Ry, GI(2;C)) such that II*E|y is holo-
morphically trivial for any fibre X = =1 (z) C Py (z € Ey ).

The fizing of frames f° respectively f+ over Ay respectively Ay in E deter-
mines J completely.

Remark B.28. The transformations J — AJB™! correspond to a left multi-
plication of H by A and of H by B. Since A and B are constant matrices the
one-form 7 remains constant.

Proof. Tt remains to be shown how a solution to the Yang equation with the
required properties can be constructed by means of a holomorphic vector
bundle over Ry . Let (E, Ry, Gl(2; C)) be a vector bundle fulfilling the above

requirements. Due to the triviality in any fibre we may construct for B a
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globally smooth frame (b1, b2) such that b; is a holomorphic section of B|y
for all X. Taking the derivative of b; with respect to the coordinates of Py
we define globally a g{(2; C)-valued (0, 1)-form ¥ by

which in turn yields a holomorphic structure on B. Writing
v = (7)Y (B.70)

we obtain, according to Proposition B.16, a one-form 7" with anti-self-dual
curvature. Obviously, the choice of b; is not unique: with b; we may also
choose a;7 b; with (a;7) € GI(2; C) depending smoothly on g,(, ¢ and ¢. This
transformation induces a gauge transformation of 7. In order to determine J
completely, we define frames over Ay respectively A; by the following formulae

s'=I*"f, , "=I"f, . (B.71)

Here
II:Py/F — Ry (B.72)

is the projection of Py onto Ry which associates to each p € Py the corre-
sponding leaf. We define
bly, = sYH | (B.73)

and obtain

by, =" H | (B.74)

where 7 is determined by (B.41). Then we have Ab4+Wh =0 on Ay and A,
and obtain J by R
J=H-H*'. (B.75)

Therefore, the chosen gauge fixes the splitting of J into H and H and the
fixing of f° and f' determines the entries of J. In particular, for b|A1 = s!
we get

by, =5 J (B.76)

with J : Ag — G1(2;C) given by E, f° and f!. Then J is just the solution of
the Yang equation one is looking for. Furthermore, we have LI7|AD =JtaJ
and it follows with (B.75) that H = J = J. A change of the frames so
respectively s; on Ag respectively A; can, according to the definition of these
frames, only lead to a transformation J — AJB~! with constant matrices A
and B. For the same reason we have J = J(g, ().

O
Of course, a solution to the Yang equation has to be real and symmetric
in order to describe a stationary and axisymmetric solution to the Einstein
equations. From Sect. 2.4 we know that with J being a solution to the Yang
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equation also J=1, J and JT are solutions (J = J). Therefore, we may con-
struct holomorphic vector bundles over Ry corresponding to these solutions
and relate them to E. To do this we have to define some natural involutions
on Ry:

(i) Let ¢ : Ry — Ry be the holomorphic mapping, which interchanges the
two spheres Sy and S in Ry, i.e.,

i(ws) = ws (B.77)
(ii) Let j : Ry — Ry denote the anti-holomorphic mapping

jlws) = p (B.75)
Then we have the following

Proposition B.29. Let J be a solution to the Yang equation corresponding
to the triple (E, f°, f*) over the reduced twistor space Ry by Theorem B.27.
Then

(1) the inverse solution J=1 is generated by

FE L) = (E), S (), () (B.79)
i) the complex conjugate solution J is generated by the triple
(1)
FE LY = (B, (), 57 (F) (B.80)
(11i) and the solution (J~Y)T' is generated by the triple of dual objects
(B, L0 = (B () (FY)) - (B.81)

Proof. We will prove (i), the proof of (ii) and (iii) follows similarly. Let J =
H-H'. Then J=' = I - H='. Therefore, J~! generates by (B.44) a (0, 1)-
form ¥’ in which H and H have changed their role. But, from the form of
¥ is obvious that W(X) = W/(=A7!) and, therefore, for the fibre it follows
E'(\) = E(=A71). With i(wy) = wy it follows i(A) = -2~ and we find
B = i*(E).

O
Corollary B.30. We have: J is symmetric iff
(B0 1) =81, 1) (B.82)
and J s real iff
(B, £, 1) =57, 1) (B.83)

Proof. The first assertion follows from the fact that J = J7 is equivalent to

Jl = (J_l)T. The second is just the definition.
O
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B.3 Transition Matrices for the Holomorphic Vector
Bundles

B.3.1 The Covering of the Reduced Twistor Space

It is well known, that the two-sphere S? can be covered completely by two
local charts. As it has been shown in Sect. B.2.1, the reduced twistor space
Ry, is a two-sheeted covering of the Riemann sphere. This suggests that Ry
may be covered by four charts Ry, ..., R3. These can be viewed as covers of
52 induced by the compactification of F? with the complex coordinate w. Let
us now, following [88], but see also [166] for a detailed description, construct
a standard cover of Ry . To begin with, we cover the Riemann sphere by two
charts U and U’ in the following way. Let U denote an open subset of the
complex w-plane such that

(i) ue =uel,

(i) vuvcu,
(i) U\V,U\V, and U itself are connected and simply connected.
Furthermore, let U’ be a neighborhood of w = co such that

(i) v €U = w €U and
(i) the intersection A = U U U’ is an annular region, see Figure B.3.

Rw Rw

Fig. B.3. The covering of the w plane

Then A is the union of two simply connected sets Ay and A_, A= AL UA_,
and we have AL NA_ = (ANV)U(ANV). The set I'"'(U’) C Ry contains
two copies Rg and Ry of U’, i.e., I'"}(U') = Rg U Ry. The subset Rg is

a neighborhood of w = oo in the Riemann sphere Sy and, similarly, R is
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a neighborhood of w = oo in S7. The intersection Ry U R; on Ry can be
identified with the intersection Ay N A_ in the complex w-plane.

Analogously, I'~1(U) consists of two copies, which both contain the cut
C' and intersect in I'~* (V U V) We denote these copies by Ry and Rs where
the labelling is fixed by

RoNRy CT HAL) , RinNnRyC I YAy) . (B.84)

In I'"Y(AL NA_) C I~V UV) the four covering sets are identified. But,
over each point of the Riemann sphere they are in one sphere and, therefore,
they are Hausdorff and may be used as coordinate patches for the basis Ry
of the holomorphic vector bundles.

B.3.2 Patching Matrices for Real, Symmetric Framed Bundles

Let us now consider the holomorphic vector bundle (E, Ry, C?) with typical
fibre C? and projection pr : E — Ry . This bundle is trivial if restricted to
the contractible Hausdorff manifolds R,. Since the R, are Stein manifolds,
we may choose globally a holomorphic frame e® in the form of a 2 x 2-matrix

(€)= (eT,e3) - (B.85)

(Note that o enumerates the different covering sets and not the different
vectors of one particular frame.) Then, the trivialization of E takes the form
(Ra, ylef‘) for pr(y) € R,. In particular, we may have

O =L e, =1 (B.86)

which is well defined because of Ag € Ry and A; € R;. In an intersection
Rqo N Rg the patching matrix P, transforms holomorphic frames e into
holomorphic frames e’ according to

e’ = e*Pog . (B.87)

In general, there are six patching matrices which we denote as follows:

P01 . A+ NA_ — Gl(?, C) s

P02 . A_ — Gl(?, C) s

P13 . A_ — Gl(?, C) s

Pos . AL — GI(2:0), (B.88)
P12 . A+ — Gl(?, C) s

P23 VoV — Gl(?, C) .

Since the covering of Ry by R, suspends locally the twofold covering of CP*,
the patching matrices depend only on w. The cocycle condition

P01P12P20 =1 (B89)
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fixes Py1 on its whole domain Ay N A7 in terms of Py and Pps, 1.e., we
are left with five transition matrices. This number may be reduced further
by requiring particular properties of the holomorphic bundle E. Here the
starting point is that the Yang matrix J which corresponds to a vacuum
solution of the stationary and axisymmetric Einstein equations has to be
real and symmetric, see (2.84). Recall that we have seen in Sect. B.2.2 what
these requirements mean for the corresponding holomorphic vector bundles.
In the sequel we shall assume that the conditions (B.82) and (B.83) for the
holomorphic bundles are fulfilled. (How det J = —p? can be achieved will
be discussed in Corollary B.37.) In order to transfer conditions like (B.82)
and (B.83) to the patching matrices we first observe for J being symmetric
the isomorphism between E* and ¢*(E) can be understood as a family of
invertible linear mappings depending holomorphically on A € Ry

Since i2 = 1 we have
Sicay : Biay — B (B.91)

*

and we denote by Si(A) the map dual to Sj(4)
Then we may define by
-1
op = (SZ*(A)) OSAZEA—)EA (B93)
a holomorphic section in the automorphism bundle Aut(F) = E @ E* of Ff

and have

Lemma B.31. 0 =1 on Ry.

Proof. We have Sy, (f%) = (fl)* and Sy, (f1) = (fo)* and, therefore, o = I
over Ag and A;. Now we pull back the bundle E to the fibre X C Py

Bly = IT* (E) (B.94)

and use the triviality of B|y and Aut(B|y). Thus, II*(o) is a holomorphic
section in a trivial bundle which is the identity map over A = 0 and A = co.
By Liouville’s theorem o is then the identity on the whole of Ry .

|
Thus, we have for the standard cover of Ry with Ry = i(R1) and R2 = i(Rs)

and the corresponding frames

* (Eyy) = ("E), = E3 (B.95)
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i*(e?) = (%) i*(e®) = (e*) . (B.96)

Analogously, for a vector bundle corresponding to a real solution of the Yang
equation there exists an isomorphism

TA . EA — Ej(A) s (B.97)
and one defines B
Ta = TjayoTa . (B.98)

Since 7 is also a holomorphic section in the automorphism bundle Aut(F) of
E, which is the identity mapping over Ay and A;, we find again, that 7 is the
identity map everywhere on Ry . Then we have

7 (Ej) = (" E), = Ea , (B.99)

Jt(e®) =€, (B.100)

for all @« = 0,...,3.
Using (B.96) and (B.100) we find for the patching matrices of a real,
symmetric framed bundle the following.

Lemma B.32. Let J be a symmetric real solution to the Yang equation
(2.85) and (E, Rv, Gl(2;C)) the corresponding holomorphic vector bundle

over Ry with patching matrices as defined above. Then we have

Pos(w) = Pap(w) (B.101)
and

Pox(w) = (Psr(w))” | Pos(w) = (Pu(w))" | Pas(w) = (Pas(w))’ .
(B.102)

Proof. Let us show first (B.101). Since e? = ¢® P, 5, we also have ¢’ = &% P4
and, therefore,
7 (e7) = j* (e*Pap) = €*Pap | (B.103)

and B
J(e?) =’ =e* Py . (B.104)

In order to prove (B.102), we first note that
() = ()" = (Ps)" (1), (B.105)

and

i* (%) = i ("Poz) = (Po2) (') (B.106)
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1s an identity, because the domains of Py and Ps; coincide. Furthermore, we
have

(%) = (2)" = (Poy)T (2)" (B.107)

and
7 (%) = i (2 Paz) = (Pas) (%) . (B.108)
O

According to the Lemma B.32 the framed bundle (E, f°, f1) corresponding
to a real and symmetric solution of the Yang equation (2.85), is completely
characterized by the following three patching matrices

F = P02 A —)Gl(?,@) s

G .= P12 . A+ —)Gl(?,@) s

P = Pyl : V—Gl(2;0) . (B.109)

Furthermore, we have B B
Posly = Pasly = P, (B.110)

and we way obtain from the identities given above further requirements for
the patching matrices. From the above Lemma we immediately find P = PT.
In addition, we have G(w) = G(w) and F(w) = F(w), i.e., on the real axis
these matrices become real. Finally, on ANV =A_ NV = A, NV we find

Py3P3gPos =1 = PGTF . (B.111)
We have
Proposition B.33. The patching matrices are only determined up to gauge
transformations of the form

(P,F,G) — (LPLT,KFL—l, (k7)™ GL—l) , (B.112)

with the holomorphic and (in the above sense) real matrices L : U — Gl(2;C)
and K : U — GU(2;0), fulfilling L = L, K = K and K(o0) = I. Here U
and U’ are the open subsets of the w-plane introduced at the beginning of
Sect. B.3.1.

Proof. The proof follows by direct calculations. Since P = PT we have
(PL™)" = LPL” . (B.113)

Furthermore, the cocycle condition (B.111) leads to

(LPLT) ((L—l)T ead ((KT)‘l)T) (KFL™Y) = LPGTFL ' = LL™' =1 .

(B.114)

O

Thus, we have a one-to-one correspondence between real symmetric solutions

to the Yang equation (2.85) and equivalence classes of triples of patching
matrices [P, F, G] with properties discussed above.
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B.3.3 The Axis-simple Case

As we have shown in Sect. 4.2, the solutions (4.19) to the Ernst equation are
regular outside a contour which can correspond to the surface of a rotating
body. It has been shown in [88] that under these circumstances there is a fur-
ther reduction of the set of patching matrices [P, G, F]. To find this reduction
one investigates the behavior of the holomorphic bundles by approaching the
symmetry axis ¢ = 0.

Let U C [E? be defined as in the beginning of Sect. B.3.1. We denote by
Ry the analogue of Ry, constructed for U. Let the projection

U:RV — Ry (B.115)

be defined by -
w; weU\(VUV)

s = {0 WEULYOY) (B.116)

for wy € Ry.

Definition B.34. The triple (E, f°, f1) is called axis simple, iff there exists
a triple (E', fO, f1') such that

(B, £ ) =7 (E’,fo',fl') : (B.117)

Proposition B.35. The following statements are equivalent:

(i) A bundle E' exists.

(1) Elp-1qy s trivial.

(iii) If E is, furthermore, the holomorphic vector bundle of a real, symmetric
solution to the Yang equation, then the patching matric P can be ana-
lytically continued to a function on U, which is real on the symmetry
aris.

Proof. (i) = (ii): Let B’ exist, such that n*(E’) = E. Then we have for the
fibre over wy € I'"Y(U \ (VUV))

By, = Eu_ =1 () . (B.118)

Since U is contractible, E'|; is trivial and, therefore, also E|F_1(U).

(il) = (i): Let E|F_1(U) be trivial. Then, there exists a biholomorphic map-
ping ¢ : pr-1(I'"Y(U)) = I'"1(U) x C?. We have to construct E’ which is,
being a bundle over a contractible manifold, trivial. Due to its triviality, £
can globally be written as

E={(pe)pel"'(U),ecC} . (B.119)

We construct E’ by choosing the fibre E|p over 7(p). Then, the condition
n(p) = pr(e) is fulfilled, and B’ is trivial.



232 B Ernst Equation and Twistor Theory

(ili)) = (i): For vector bundles related to real symmetric solutions to the
Yang equation, the patching matrix P is well defined and its analytic con-

tinuation (P yields a globally defined holomorphic section s in the vector

bundle over I'=*(U) putting:

s = { “lee) 5w € Ry (B.120)
eiP 1y (ws) ; we € Ry

Here we sum over the index i of P and make use of ¢3 = 62ﬁ23 =e2PinVUV.
Then, E|F_1(U) is trivial. Conversely, a global section as constructed above
yields an analytic continuation of P. Using (B.96) respectively P(w) = P(w)
we eventually find the reality on the real axis.

O
Since Ry = S°US!, E' is constructed out of two bundles E'|g and E'| over
the two spheres which form Ryr. Being holomorphic bundles over the Riemann
sphere these two bundles can, according to a theorem by Grothendieck (see
e.g. [277] for a proof), be decomposed into direct sums of line bundles

E/|SD = Lp @Lq 3

E'|S1 =L PpL?, (B.121)
with
P=L® --®L, (B.122)
—_————
p times

and L=' = L*. Here L is the tautological bundle over CP'. The explicit
form of E'[g for a given E'|g is a direct consequence of the symmetry of
J (or i*(F') = El*). Thus, the patching matrices of an axis-simple bundle
corresponding to a real and symmetric solution to the Yang equation, have

the following form
P:U—Gl(2;,0 |, (B.123)

with P(w) = P(w), P(w) = P(w)T, can now be defined on U. Furthermore,
we have

P wynr),) — G0 = <(216J)” (;i)q) (B.124)
and, finally,
G (F‘l(U)ﬂF‘l(U’)|Sl) L Gl2;0)
G=Ps= ((zwo)—p (213)_61) SP(w)™h (B.125)

because of the cocycle condition (B.111).
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Thus, in the axis-simple case, the holomorphic vector bundle E can be
characterized by the triple (P, p,q) consisting of one patching matrix and
two integers. It turns out that these parameters can be comparatively easily
fixed and that we have a close relation between the value of P(w) and the
asymptotic behavior of J(g,¢) in the limit ¢ — 0. The following proposition,
for the proof of which we refer to [88] (for p = ¢ = 0) and also [166], shows
that the axis behavior of J can be read off from the patching data.

Proposition B.36. Let p > q and let g, g and §2 be functions of w, such that
the first two do not vanish for ¢ = 0, and let P denote the transition matriz
m an axts simple vector bundle of the form

(9 —g82
P= (—gQgQZ—I—ﬁ_l) . (B.126)
Then, the corresponding Yang matriz has for ¢ — 0 the following behavior:
h(¢) —h(¢)L
_ (0 - —g+1
100= (% o) ((—h(:)L w2 + (i) ) roL >) "

(%p Qoq) . (B.127)

Here we have set h({) = (—1)P¢({) and H(C) = (—=1)2g(¢) and

) . (B.128)
w=(

Then, for the determinants of the Yang matrix J and the patching matrix P
it follows immediately

_ (—1)P gP—4 dr—e0
~2=4(p—g)! \ dwr—q

Corollary B.37. Under the assumptions of the above proposition we have:

Ifdet P =1 then det J = (—92)p+q.
For our purposes more important is the converse, see [163, 164].

Proposition B.38. Let £ = e?Y +ib be a solution to the Ernst equation with
reqular symmetry axis. Then the patching matriz P is given by

—b
P(¢) = =2V (00) (_b(t’ . e4U(0’C)(—E’Ii)O, C)Z) : (B.129)

Before we turn to the construction of the holomorphic vector bundles for the
solutions of Chap. 4 we discuss the construction for several examples.
Examples:
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(i) The Weyl class.
The solutions of this class have real Ernst potentials & = e?
for the patching matrix

U and we find

P(¢) = 0 20(0,¢) : (B.130)

€

Let us consider the particular case of the Schwarzschild solution. From(1.8)
with ¢ = 0 we get at the symmetry axis for { > m

20 (06) — —g - = (B.131)

(i1)The Kerr metric.
Recall from (1.8) that the Ernst potential of this solution has the form

e ¥ry 4 e¥r_ —2mecos

= — . , (B.132)
e~¥Wry 4+ e¥r_ 4 2mcos ¢

with 74 = /({ £ mcosp)? + p2. Then we find by a simple calculation
for ( > mcosy

¢? —m?cos? ) 2m? sin? o
£(0,¢) = U S Y (B33
(C+m)2+m2sin“e  (C+m)?2+m?sin”p
and we have for the patching matrix
P(C) = 1 (C+m)? +m?sin ¢ 2m? sin? o
T (2 —m2cos?y 2m? sin” o (¢ —m)? +m?sin ¢
(B.134)

B.4 Patching Matrices for the Class of Hyperelliptic
Solutions

In Sect. 4.2 we have distinguished a class of solutions to the Ernst equation
with physically interesting properties. The corresponding Ernst potentials are
of the form

pq(w(oo"') +u)

pg(w(oot) —u)

1
exp %/IHG(T)dwOO+OO—(T) , (B.135)
T

£0.)= 2

where the theta characteristic consists of blocks of the form

1 [00

1 [00

- and
2 00]

5 11] . An essential property of these solutions is for @pq(w(co™) —u) £ 0
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their regularity outside ¢, which can possibly be interpreted as the surface
of the rotating body one is interested in. Thus, the solutions are regular on V/
being an open subset of H\ Iz, V C H \ I;. In particular, the axis behavior
is regular as long as

Qi (W) £ 0, (B.136)

which 1s the condition for an ergosphere not to hit the symmetry axis, see
Sect. 7.3. Thus, we have

Proposition B.39. Let £ be a solution of the form (B.135). Furthermore,
let Ry be the reduced twistor space for V.C H \ I',. Then the holomorphic
vector bundle E — Ry corresponding to £ s characterized by one patching
matriz iff

@;)Iql (U/) 7£ 0.

Corollary B.40. From Proposition B.38 it is obvious that the patching ma-
triz is determined by the axis potential which s for the class of solutions

(4.19) given by

OO+ & A CUI OO+ U OO+
Oy (W15 ) + (A De) (e + )

£(0,¢) = -
@;/q/ (w/|2<_1+ _ ’U/) 4 (_1)56—(wg(oo+)—ug)@;)1ql (w/|20—+ _ u/)
1
eXp 5 /ln G(r)dwl goo-(T) +ug p . (B.137)
r
Remark B.41.

(i) For the more general case of an algebro-geometric solution, obtained in
Theorem 3.7, we have proven in Proposition 4.3, that the Ernst potential is
regular on the axis except at the points where & coincides with the singular-
ities of the Abelian integral of the second kind {2, points of I' and branch
points, provided (B.136) holds (with ' replaced by u’ 4+ ¥'). If, e.g, a pole
of {2 is on the axis then we have an essential singularity, see Proposition 4.1,
and the solution is no longer axis-simple.

(i) In proving Theorem 3.7 we have constructed explicitly a matrix @ on Lo,
see (3.48), with column vectors given by

X(P) = (f;(p)))’ P~gE (B.138)

with ¢ and x being of the form (3.38) and (3.46). These vectors just form a
basis in the fibre of £ over any point of Ry .
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