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1 Introduction

Compact astrophysical objects are frequently accompanied by extended magnetic fields. These
fields can have their origin in the object itself, as happens with white dwarfs or neutron
stars, or they are caused by external currents of charged matter like accretion disks, as is
particularly relevant for black holes [1, 2].

Configurations of magnetic fields in the background of Schwarzschild or Kerr geometries
have been studied by many authors [3]–[10]; such an approximate description of the solutions
of the Einstein-Maxwell equations are relevant when the back reaction of the external
electromagnetic field on the space-time geometry can be neglected, i.e. when the effect of
the energy density in this field on the space-time curvature is sufficiently small, as is often
the case. These weak fields are sometimes refered to as test fields.

In this paper we review some of the earlier results and then proceed to study the motion
of charged particles in the combined gravitational and electromagnetic background, first of
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all in a Schwarzschild background. Charged particle motion, in particular on circular orbits,
has been widely studied [11]–[17]. Here we extend the analysis by considering in detail the
conditions for their stability, and by allowing non-circular orbits as well. In addition we show
that combinations of different multipole fields allow discrete orbits that would not exist in
only a dipole or single higher-order multipole field by itself.

After considering magnetic fields in the static Schwarzschild geometry we also address
weakly rotating compact objects in the context of the linear approximation of a Kerr
background. In that case in the frame of a static observer at asymptotically large distance
any static axisymmetric magnetic field is necessarily accompanied by radial and polar electric
fields. We conclude by summarizing our results; many details of our calculations are collected
in the appendices. Throughout this paper results are expressed in natural units in which
the speed of light c = 1.

2 Static magnetic fields in Schwarzschild space-time

Full analytic expressions for static and axially symmetric magnetic test fields in Schwarzschild
space-time have been derived by several authors. The precise form depends on the boundary
conditions. A particular solution which has been much studied is expressed in terms of the
Killing vectors of the underlying static and spherically symmetric space [3]; magnetic test
fields of this type are asymptotically uniform and finite.

In the present paper we consider test fields which are localized around stars and black
holes and vanish at asymptotically large distances; their structure close to the surface or
horizon can still be allowed to vary, depending on the source of the magnetic field. In the case
of a static and spherically symmetric space-time, employing standard Schwarzschild-Droste
co-ordinates (reviewed in appendix A), one can fix a gauge such that the electro-magnetic
vector potential has only one non-vanishing component Aφ, satisfying the equation [4]–[12]

r2∂r

[(
1 − 2GM

r

)
∂rAφ

]
+ sin θ∂θ

[ 1
sin θ

∂θAφ

]
= −r4 sin2 θ jφ, (2.1)

where jφ is the density of a current circulating the black hole and acting as a source for the
magnetic field. Details of the derivation are given in appendix B.

In regions where the current density vanishes: jφ = 0, the equation becomes separable;
taking a potential defined by a product

Aφ = f(r)Φ(cos θ), (2.2)

the factors are related by coupled ordinary differential equations in r and x = cos θ:

r2 d

dr

[(
1 − 2GM

r

)
df

dr

]
= λf, and (1 − x2) d2Φ

dx2 = −λΦ, (2.3)

where λ is a constant common eigenvalue of the operators acting on Φ(x) and f(r). For
the angular component Φ(x) there exists a complete set of eigenfunctions Φl(x) defined in
terms of the Legendre polynomials Pl(x), l = 0, 1, 2, . . . , by

Φl(x) = (1 − x2) dPl

dx
= l (Pl−1(x) − xPl(x)) . (2.4)
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For l = 0 this implies that Φ0(x) = 0, therefore in the spectrum of Φl the value l = 0 may be
disregarded. Note that, as the Legendre polynomials are solutions of the equations

d

dx

[(
1 − x2

) dPl

dx

]
= −l(l + 1) Pl(x), (2.5)

it follows that

dΦl

dx
= −l(l + 1)Pl(x). (2.6)

Combining the above definitions and relations one then gets

(1 − x2) d2Φl

dx2 = −l(l + 1)Φl(x). (2.7)

Thus we obtain a complete set of solutions for the second equation (2.3) with eigenvalues

λ = l(l + 1), l = 1, 2, . . . (2.8)

It then remains to solve for the corresponding radial functions fl(r) to obtain the general
form of the vector potential in the form of a series:

Aφ(r, θ) =
∞∑
l=l

fl(r)Φl(cos θ). (2.9)

The radial functions satisfy the eigenvalue equation (2.3) with the eigenvalues (2.8). This
equation has two kinds of solutions [4]; first there are solutions expressed in terms of an
infinite series in powers of 1/r:

fl(r) =
∞∑

n=l

c(l)
n

(2GM

r

)n

, (2.10)

with the coefficients related to the first one by

c
(l)
l+k = 1

k!

k∏
m=1

(
(l + m)2 − 1
2l + m + 1

)
c

(l)
l , k = 1, 2, . . . (2.11)

These solutions are therefore defined by a single free normalization parameter c
(l)
l . As

by construction they vanish in the limit r → ∞, they are relevant especially — but not
exclusively — in the large-r region.

In addition to the infinite series solutions vanishing at infinity there exist polynomial
solutions

Aφ(r, θ) =
∞∑
l=l

gl(r)Φl(cos θ), (2.12)

with

gl(r) =
l+1∑
n=2

a(l)
n

(
r

2GM

)n

. (2.13)
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Here a
(l)
2 is a free parameter, in terms of which the other coefficients are given by

a
(l)
2+k =

k∏
m=1

(
m(m + 1) − l(l + 1)

m(m + 2)

)
a

(l)
2 , k = 1, . . . , l − 1. (2.14)

Obviously these solutions do not vanish asymptotically for large r; therefore they can be
relevant at most in a finite domain of r-values in the inner region of the magnetic field.
It should be noted that the radial functions fl(r) presented in series form above can be
written in closed form [4, 8]

fl(r) = r2Q(0,2)
l−1

(
r

MG
− 1

)
, (2.15)

in which Q(0,2)
l−1 is the Jacobi function of the second kind. The polynomial solutions gl(r) are

related to the Jacobi polynomial P(0,2)
l−1 of the second kind by

gl(r) = r2 P(0,2)
l−1

(
r

MG
− 1

)
. (2.16)

More details are given in appendix D. Also the angular functions Φl(x) are related to
Gegenbauer polynomials by [4]

Φl(x) = (1 − x2)C3/2(x). (2.17)

In the following we focus on the series solutions which vanish at infinity. From the vector
potentials (2.9) one derives two non-vanishing components of the Maxwell tensor:

Frφ =
∞∑

l=1
f ′

l (r)Φl(cos θ), Fθφ = sin θ
∞∑

l=1
l(l + 1) fl(r)Pl(cos θ). (2.18)

The corresponding components of the magnetic field strength Bi = F̃0i, as defined in
appendix B, are

Br = 1
r2

∞∑
l=1

l(l + 1) fl(r)Pl(cos θ), Bθ = − 1
sin θ

(
1 − 2GM

r

) ∞∑
l=1

f ′
l (r)Φl(cos θ), (2.19)

whilst the azimuthal component vanishes: Bφ = 0.

Dipole fields. The lowest and often dominant component of the magnetic field is of dipole
form with l = 1; in that case

P1(cos θ) = cos θ, Φ1(cos θ) = 1 − cos2 θ, (2.20)

and

f1(r) = c
(1)
1

2GM

r

(
1 + 3

2
GM

r
+ 12

5

(
GM

r

)2
+ . . .

)
,

f ′
1(r) = −c

(1)
1

2GM

r2

(
1 + 3 GM

r
+ 36

5

(
GM

r

)2
+ . . .

)
. (2.21)
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These expressions can actually be written in closed form as

f1(r) = −3c
(1)
1
2

(
r2

2G2M2 ln
(

1 − 2GM

r

)
+ r

GM
+ 1

)
,

f ′
1(r) = − 3c

(1)
1

2GM

(
r

GM
ln
(

1 − 2GM

r

)
+ 1

1 − 2GM
r

+ 1
)

.

(2.22)

The non-vanishing magnetic field components then have expansions

Br = 2µ

r3 cos θ

(
1 + 3GM

2r
+ . . .

)
, Bθ = µ

r2 sin θ

(
1 + GM

r
+ . . .

)
, (2.23)

with the magnetic dipole moment µ defined by

µ = 2GMc
(1)
1 . (2.24)

Note that the corresponding polynomial solution with l = 1 follows from

g1(r) = a
(1)
2

(
r

2GM

)2
, g′

1(r) = a
(1)
2

r

2(GM)2 , (2.25)

and gives rise to magnetic fields

Br = Bz cos θ, Bθ = −Bz (r − 2GM) sin θ, (2.26)

where Bz is the constant magnetic field strength on the positive z-axis:

Bz = a
(1)
2

2(GM)2 . (2.27)

This magnetic field is purely transverse in the equatorial plane and purely radial along
the z-axis. This is the asymptotically constant field found in ref. [3] specialized to the
Schwarzschild case. In view of the boundary conditions at infinity we will not consider
this solution in the following.

3 The motion of charged test particles

The motion of massive test particles in combined gravitational and magnetic fields is decribed
by a world line ξµ(τ) with tangent vector uµ = ξ̇µ, which are solutions of the covariant
Lorentz force equation

u̇µ + Γ µ
λν (ξ)uλuν = q

m
F µ

ν(ξ)uν . (3.1)

Here the overdot denotes a proper-time derivative: ξ̇ = dξ/dτ ; the forces are local, being
dictated by the values of the Riemann-Christoffel connection and the Maxwell tensor at the
location of the world line. Our conventions for the metric and components of the connection
in a Schwarzschild space-time are given in appendix A. The Maxwell tensor Fµν has non-zero
components Frφ and Fθφ given in equation (2.18).
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As both the background geometry and the magnetic field are static, and they share
axial symmetry, the energy and the angular momentum component in the z-direction of
test particles are conserved. Indeed it is straightforward to check, using polar co-ordinates
ξµ = (t, r, θ, φ), that the following are constants of motion:

ε =
(

1 − 2GM

r

)
ut, ℓ = r2 sin2 θ uφ + q

m
Aφ. (3.2)

In addition, by definition of the proper time there is a constraint

gµν(ξ)uµuν = −1. (3.3)

Eliminating ut and uφ in terms of the constants of motion (3.2) this becomes

ur 2 +
(

1 − 2GM

r

)
r2uθ 2 = ε2 −

(
1 − 2GM

r

)[
1 + 1

r2 sin2 θ

(
ℓ − q

m
Aφ

)2
]

. (3.4)

The θ-component of the world line equation (3.1) can be written as

d

dτ

(
r2uθ

)
= sin θ cos θ r2uφ 2 + q

m
Fθφ uφ. (3.5)

Now recall, that for even l = 2n the polynomials Pl(cos θ) and Φl(cos θ) in the equatorial
plane take the values

P2n(0) = (−1)n

22n

(2n)!
(n!)2 and Φ2n(0) = 0, (3.6)

whilst for odd l = 2n + 1

P2n+1(0) = 0, Φ2n+1(0) = (2n + 1)P2n(0) = (−1)n

22n

(2n + 1)!
(n!)2 . (3.7)

It follows that the individual contributions of the even-l multipole fields to the magnetic
field strength Fθφ in the equatorial plane never vanish, and charged particles in non-radial
orbits experience a transverse Lorentz force. Indeed in the equatorial plane cos θ = 0, in
a magnetic multipole field with l = 2n

d

dτ

(
r2uθ

)
l=2n

= qℓ

mr2 2n(2n + 1)f2n(r)P2n(0).

This vanishes only on radial trajectories, with ℓ = 0. In contrast, for odd multipoles with
l = 2n + 1 the magnetic field in the equatorial plane is perpendicular to that plane, and
the Lorentz-force component on the right-hand side of equation (3.5) vanishes there. Planar
equatorial orbits then exist in odd multipole fields with

r2uφ = ℓ − q

m
(2n + 1)P2n(0) f2n+1(r). (3.8)

Note however, that although individual even-l multipole fields do not allow for planar
equatorial orbits, whenever there are several of these multipole fields they will in general
cancel each other in the equatorial plane for specific values of the radial co-ordinate r,
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Figure 1. Fθφ as a function of r/2GM in the equatorial plane for combinations of quadrupole and
hexadecapole fields with relative strength 1 (blue), 1/2 (red), 1/4 (green) and 1/8 (yellow); the last
one has no zero-point outside the horizon.

depending on the relative strengths as determined by the coefficients c
(l)
l ; this is clear from

the alternating signs in (3.6). As a consequence there exist circular orbits at characteristic
radius r = R such that

∞∑
n=1

2n(2n + 1)P2n(0)f2n(R) = 0. (3.9)

As an example Fθφ is plotted in figure 1 as a function of r/2GM for several combinations
of quadrupole (l = 2) and hexadecapole (l = 4) fields.

Where Fθφ = 0 a stable circular orbit exists, provided it lies outside the horizon
r/2GM = 1 and the satisfies stability conditions to be discussed later on.

Figure 2 shows Frφ for similar combinations of dipole (l = 1) and octopole (l = 3) fields.
The absolute values depend on the scale set by c

(1,2)
1 ; however the zeros are not affected by

the scale. These combinations of odd multipole fields allow for equatorial orbits of any radius
outside the horizon meeting all stability criteria, but whenever Frφ = 0 the magnetic field
and the Lorentz force on charges moving in the equatorial plane changes sign.

4 Circular equatorial orbits

Generic circular orbits in the equatorial plane with fixed r = R exist for dipole and other
odd-l multipole fields. On circular orbits both the radial velocity and the radial acceleration
vanishes. They also require Fθφ(R, π/2) = 0. Writing uφ = ωR the radial component of
equation (3.1) then implies(

1 − 2GM

R

)(
GM

R3 ut 2 − ω2
R

)
= −qBθ

mR
ωR, (4.1)

with Bθ as defined in (2.19). In addition the constraint (3.3) with ur = uθ = 0 becomes:(
1 − 2GM

R

)
ut 2 = 1 + R2ω2

R. (4.2)
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Figure 2. Frφ as a function of r/2GM in the equatorial plane for combinations of dipole and octopole
fields with relative strength 1 (blue), 1/2 (red), 1/4 (green) and 1/8 (yellow).

Combining these results provides a relation between the angular velocity and the orbital radius:(
1 − 3GM

R

)
ω2

R − qBθ

mR
ωR = GM

R3 . (4.3)

For all values of R ̸= 3GM this quadratic equation for ωR has general solutions

RωR = 1
1 − 3GM

R

qBθ

2m
±

√
GM

R

(
1 − 3GM

R

)
+
(

qBθ

2m

)2
 . (4.4)

However, provided qBθ ̸= 0, for the special circular orbit at R = 3GM the equation reduces
to a linear one, in which case

RωR = − m

3 qBθ
, R = 3GM. (4.5)

For electrically neutral particles, or in the absence of a magnetic field, this circular orbit is
available only to massless particles like photons. A number of physically relevant solutions (4.4)
have been plotted in figure 3 for R > 2GM .

Solutions for test particles with opposite charge or opposite magnetic field strength, such
that qBθ → −qBθ, are related by opposite angular velocity: ωR → −ωR. For each of these
cases there is always a solution with R > 3GM . From eq. (4.4), it follows that a second
solution with 2GM < R < 3GM also exists provided(

qBθ

m

)2
≥
(2GM

R

)2 (
3 − R

GM

)
. (4.6)

When this condition is not met, no circular orbit inside 3GM exists.
Two extreme cases are q = 0 when only gravity acts:

ω±
R = ±

√
GM

R3
1

1 − 3GM
R

; (4.7)

– 8 –
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Figure 3. Solutions of equation (4.4).

and GM = 0 when there is only a magnetic field causing cyclotron motion:

ω−
R = 0, ω+

R = qBθ

mR
. (4.8)

5 More on bound equatorial orbits

Starting from the circular orbits discussed in the previous section, one can construct more
general bound motions using the method of relativistic epicycles [19, 20]. In this procedure
bound orbits are obtained as deformations of circular motion in a perturbative expansion.
In this paper we discuss only first-order deviations from circular motion; these deviations
also provide information on the stability of circular orbits. It is straightforward to extend
the procedure to higher orders [21, 22].

The deviation of any bound orbit from a circular one is parametrized by ξµ = ξµ
0 + nµ,

where to first order the deviation nµ is a solution of the extended relativistic deviation equation

D2nµ

Dτ2 = R µ
κνλ uκuλnν + q

m
T µ, (5.1)

where
T µ = F µ

ν

Dnν

Dτ
+ nνDνF µ

λuλ. (5.2)

In these expressions the Riemann curvature R µ
κνλ (ξ0), the magnetic field strength F µ

ν(ξ0)
and the proper velocity uµ = ξ̇µ

0 are evaluated on the circular reference orbit [18].
We first consider deviations out of the equatorial plane, parametrized by nθ. As on a

circular equatorial orbit ur = uθ = cos θ = 0 and we require Fθφ = 0 in the plane, it follows

– 9 –
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that the various contribution combine to

n̈θ = −GM

R3

[(
1 − 2GM

R

)
ut 2 + 2R2uφ 2

]
nθ + quφ

mR2

[
R

(
1 − 2GM

R

)
Frφ + ∂θFθφ

]
nθ

= −
(

ω2
R + qνR

m
ωR

)
nθ, where νR = dBr(R)

d cos θ

∣∣∣∣
cos θ=0

.

(5.3)
Clearly the orbital deviations in the plane do not mix with the resulting periodic transverse
motion, and hence can be treated separately. The solutions of eq. (5.3) are periodic with
frequency ωθ given by

ω2
θ = ω2

R

(
1 + qνR

mωR

)
, (5.4)

unless the squared frequency ω2
θ becomes negative, for qνR/mωR < −1. This value represents

the limit of stabilty of the orbit with respect to transverse fluctuations.
The remaining components of the deviation vector nµ are coupled by eq. (5.2) and can

be expressed in the form 
d2

dτ2 α d
dτ 0

β d
dτ

d2

dτ2 − κ −γ d
dτ

0 η d
dτ

d2

dτ2


 nt

nr

nφ

 = 0, (5.5)

where
α = 2GM

R2
ut

1 − 2GM
R

, β = 2GM

R2

(
1 − 2GM

R

)
ut,

γ =
(

1 − 2GM

R

)
2Ruφ − qBθ

m
, η = 2uφ

R
− qBθ

mR2
1

1 − 2GM
R

,

κ = 3
(

1 − 2GM

R

)
uφ 2 − 2qBθuφ

mR

R − 3GM

R − 2GM
− qB′

θ uφ

m

= 3GM

R3
R − 2GM

R − 3GM
+ qBθ ωR

mR

R2 − 6G2M2

(R − 2GM)(R − 3GM) − qB′
θ ωR

m
.

(5.6)

Here B′
θ(R) = (∂rBθ)(R). The eigenvalues iω̃ of the operator d/dτ in equation (5.5) are

solutions of the characteristic equation

ω̃4
(
ω̃2 − ηγ + αβ + κ

)
= 0. (5.7)

Apart from the zero-modes, the solutions are

ω̃2 = GM

R3
R − 6GM

R − 3GM
− qBθ ωR

mR

R2 − 4GMR + 6G2M2

(R − 2GM)(R − 3GM)

+
(

qBθ

m

)2 1
R(R − 2GM) + qB′

θ ωR

m
,

(5.8)

resulting in periodic expressions for nt, nr, nφ for real frequencies ω̃.
As in general the period of the deviations is different from that of the circular orbit,

the periastron will perform a precession the phase of which is determined by the ratio of
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the angular frequencies; more precisely, with nr(τ) = nr(0) cos ω̃τ it follows that the angles
of two periastra at proper time τ = 0 and τn differ by

ω̃τn = nπ ⇒ φ(τn) − φ(0) = ωR

ω̃
nπ. (5.9)

Following the criterion for transverse stability, orbital stability for fluctuations in the equatorial
plane requires the squared frequency eq. (5.8) to be non-negative, whereas exponentially
run-away solutions are found when it is negative. Thus unstable orbits are possible for
appropriate strength and sign of the magnetic interaction term qBθ.

Specifying to a single-multipole magnetic field of rank l, eq. (2.19) implies

B′
lθ =

(
2GM

R2
1

1 − 2GM
R

+ f ′′
l

f ′
l

)
Blθ (5.10)

the orbital frequency ωR is expressed in terms of the magnetic field Blθ, and the limit of planar
stability ω̃2 = 0 becomes a quadratic equation for Blθ, which can easily be solved algebraically.

6 Kinematical stability of circular orbits for dipole fields

We will now collect results on the existence and stability of circular orbits in a Schwarzschild
space-time, applying them to the special case of a dipole field with l = 1. We use the
dimensionless quantities introduced in figure 3;

x = R

GM
, Ω = GMωR, y = qBθ

m
. (6.1)

As we consider the exterior of horizon, x > 2. By eq. (2.23)

y = qµ

m(GMx)2 h(x), (6.2)

where using eq. (2.22)

h(x) = 3
4

(
1 − 2

x

)
x2
(

1 + 1
1 − 2

x

+ x ln
(

1 − 2
x

))
. (6.3)

But eq. (4.3) states that the dimensionless magnetic field expressed in terms of x and Ω is

y(x, Ω) = (x − 3) Ω − 1
x2Ω . (6.4)

Combining these results we find for Ω(x) in terms of the physical data (q, µ, m, M) the
expression

Ω
y

= 1
2(x − 3)

(
1 ±

√
1 + 4(x − 3)

x2y2

)
. (6.5)

Real solutions for Ω exist iff.

y2 + 4
x2 (x − 3) ≥ 0. (6.6)

This inequality is automatically satisfied for all y if x > 3. The circular motion is stable
against fluctuations in the transverse direction (out of the plane) provided ω2

θ > 0; in view
of eq. (5.4) this requires

qνR

mωR
> −1.
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Now for l = 1, using eq. (2.3)

νR|l=1 = 2µ

(GMx)3 k(x), k(x) = −3
4x

(
x2

2 ln
(

1 − 2
x

)
+ x + 1

)
. (6.7)

Therefore stability requires

y

Ω > −xh(x)
2k(x) . (6.8)

This is always satisfied if y/Ω > 0. Combining this inequality with (6.4) it follows that

Ω2 >
2k(x)

x2 [2(x − 3)k(x) + xh(x)] . (6.9)

We can also eliminate Ω to get another inequality for y:

4(x − 3)k(x)
xh(x)

1
1 ±

√
1 + 4(x−3)

x2y2

> −1,
k(x)
h(x) = 1 + 1

2x
+ 7

10x2 + 11
10x3 + . . . (6.10)

This inequality holds automatically if the l.h.s. is positive, which happens with the plus sign
for the square root for all y and x > 3. Finally the circular motion must be stable under
fluctuations in the equatorial plane, which imposes the condition ω̃2 > 0. Now for a dipole field

qB′
θ

m
= 1

GM

dy

dx
= − 2qµ

m(GMx)3 k(x) = − 2k(x)
R h(x) y (6.11)

and hence stability under fluctuations in the equatorial plane follows via eq. (5.8) as

1 + (x − 2)(x − 6)
x2(x − 3)y2 − Ω

y

(
x2 − 4x + 6

x − 3 + 2(x − 2)k(x)
h(x)

)
≥ 0. (6.12)

The results in equations (6.6), (6.10) and (6.12) provide implicit formulae for the curves
dividing allowed stable regions from unstable regions in the (x, y)-plane. The results are
shown in figure 4, where the magnetic field strength is quantified in terms of the dipole
moment µ. The key features are the regions separated by the colored lines. The red line
denotes the dividing line between kinematically allowed and disallowed orbits, where all of
the region above the red line is allowed. The solid (dashed) blue line denotes the dividing
line between planar stability and instability for orbits with minus (plus) sign in eq. (6.5),
where the region above (below) the blue line is stable. The solid (dashed) green line denotes
the dividing line between transverse stability and instability for orbits with minus (plus) sign
in eq. (6.5), where for both signs the region right of the corresponding green line is stable.
Analytical details are provided in appendix E. An important feature is that, in case of the
minus sign, the smallest radius of equatorially stable circular orbits shifts from R/GM = 6 to
3, while simultaneously the smallest radius of kinematically allowed circular orbit shifts from
R/GM = 3 to the horizon of the black hole at R/GM = 2. This is the result of gravitational
attraction being counterbalanced by the Lorentz-force.

Note that in this section we have only considered the kinematical stability of circular orbits.
In a complete treatment one would also have to consider the emission of electromagnetic and
gravitational radiation, which ultimately destabilizes any classical bound orbit.
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Figure 4. Regions of existence, and planar and perpendicular stabilities, for the orbits with plus
and minus sign in eq. (6.5). The red line denotes the dividing line between kinematically allowed and
disallowed orbits, the blue lines separates equatorial stability from instability, and the green lines
separates transverse stability from instability. The resulting regions are described in the main text.

7 Magnetic fields of slowly rotating stars

In the limit of slow rotation and distances r ≫ 2GM (that is, to first order in G) the line
element of Kerr space-time takes the form of the Lense-Thirring metric

ds2 ≃ −
(

1 − 2GM

r

)
dt2 +

(
1 + 2GM

r

)
dr2 + r2dθ2 + r2 sin2 θ dφ2 − 4GJ

r
sin2 θ dtdφ,

(7.1)

where J = Ma is the angular momentum of the star. In this background space-time a static
and axially symmetric Maxwell field with a gauge-fixed vector-potential of the form:

A(r, θ) = At(r, θ)dt + Aφ(r, θ)dφ,

satisfies the curved-space Maxwell equations[
∂2

r + 2
r

∂r + 1
r2 sin θ

(
1 + 2GM

r

)
∂θ sin θ ∂θ

]
At

= −2GJ

r3

[
∂2

r − 1
r

∂r + 1
r2 sin θ

∂θ sin θ∂θ

]
Aφ,

∂r

( 1
sin θ

(
1 − 2GM

r

)
∂rAφ

)
+ ∂θ

( 1
r2 sin θ

∂θAφ

)
= 2GJ sin θ

r

[
∂2

r − 1
r

∂r + 1
r2 sin θ

∂θ sin θ∂θ

]
At.

(7.2)

Note that we cannot impose At to vanish, unless J = 0. However, if we expand the solutions
in powers of G, retaining only the terms to first order in G:

At = at + Gbt, Aφ = aφ + Gbφ, (7.3)
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and require the solutions to reduce to the corresponding Schwarzschild solution in the limit
J → 0, it follows that at = 0. As a result to this order the second equation (7.2) reduces
to the same equation for Aφ as in the Schwarzschild case, except that here we should only
retain the terms up to order G:

Aφ =
∞∑

l=1

dl

rl

(
1 + l(l + 2)

l + 1
GM

r

)
Φl(cos θ). (7.4)

Inserting this expression into the right-hand side of the first equation, to the first order
in G only aφ contributes:

(
∂2

r + 2
r

∂r + 1
r2 sin θ

∂θ sin θ ∂θ

)
bt = −2J

r3

(
∂2

r − 1
r

∂r + 1
r2 sin θ

∂θ sin θ ∂θ

)
aφ. (7.5)

The solution of this equation reads

At = Gbt = −GJ
∞∑

l=1

ldl

rl+3 cos θ Pl(cos θ). (7.6)

The coefficients dl determine the relative strengths of the multipole components. From these
expressions we now deduce the components of the electromagnetic field strength tensor; the
non-vanishing magnetic components are

Frφ = −
∞∑

l=1

ldl

rl+1

(
1 + (l + 2)GM

r

)
Φl(cos θ),

Fθφ =
∑
l≥1

l(l + 1)dl

rl

(
1 + l(l + 2)

(l + 1)
GM

r

)
sin θ Pl(cos θ),

(7.7)

with corresponding non-vanishing electric components at order G:

Frt = GJ
∞∑

l=1

l(l + 3)dl

rl+4 cos θ Pl(cos θ),

Fθt = GJ
∞∑

l=1

ldl

rl+3 sin θ
(
Pl(cos θ) + cos θP ′

l (cos θ)
)

.

(7.8)

As the dependence on J indicates, the appearance of these electric components is clearly
a result of the rotation of the gravitational field in the presence of static magnetic field
components. Following the analysis in appendix B, the θ-component of the magnetic dipole
field takes the standard form

Bθ = µ

r2 sin θ (1 + O[G]) ,

after identifying d1 = µ. Of course, to first order in G higher-l multipoles are to be taken
into account only as long as dl+1 ≫ µ(GM)l.
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8 Equatorial orbits in slowly rotating background

As the metric (7.1) is axially symmetric and stationary, the energy and z-component of
angular momentum of test particles are again constants of motion:

pt = −mε, pφ = mℓ, (8.1)

with
ε =

(
1 − 2GM

r

)
ut + 2GJ

r
sin2 θ uφ − q

m
At,

ℓ = r2 sin2 θ uφ − 2GJ

r
sin2 θ ut + q

m
Aφ.

(8.2)

By inverting these equations we get the proper velocity components involved:

ut =
(

1 + 2GM

r

)
ε − 2GJℓ

r3 + q

m

(
At + 2GJ

r3 Aφ

)
,

uφ = 1
r2 sin2 θ

(
ℓ − q

m
Aφ

)
+ 2GJ

r3 ε,

(8.3)

all expressions modulo terms O[G2], keeping in mind that according to eq. (7.6) At ∼ O[G].
Next observe, that the electric fields (7.8) vanish in the equatorial plane for odd multipoles;

in fact for l = 2n + 1 only the magnetic field component Frφ remains in the plane θ = π/2.
Therefore in the presence of dipole and other odd-multipole fields there exist solutions of
the equations of motion (3.1) in the equatorial plane with sin θ = 1 and uθ = 0. On such
orbits At = 0 and the hamiltonian constraint implies

ur 2 = ε2 −
(

1 − 2GM

r

)[
1 + 1

r2

(
ℓ − q

m
Aφ

)2
]

− 4GJε

r3

(
ℓ − q

m
Aφ

)
+ O[G2]. (8.4)

For circular orbits with r = R a constant, uφ = ωR a constant, ur = 0 and u̇r = 0 it
then follows that

ε2 =
(

1 − 2GM

R

)(
1 + R2ω2

R

)
,(

1 − 3GM

R

)
ω2

R −
[

qBθ

mR
− 2GJε

R3

]
ωR = GM

R3 .

(8.5)

For non-relativistic orbital velocities the last equation can be simplified (at order G) to give

2GJε

R3 ≃ 2GJ

R3 + GJω2
R

R
. (8.6)

In this limit, and always up to terms of order O[G2]:(
1 − 3GM

R

)
ω2

R −
(

qBθ

mR
− 2GJ

R3

)
ωR + GJω3

R

R
= GM

R3 . (8.7)

To check the stability of these orbits, we have again evaluated the world-line deviation
equation (5.1) for the deviations nθ out of the equatorial plane; using the results of ap-
pendix F we get

n̈θ = −
[
ω2

R − 2GJε

R3 ωR − q

mR2 (∂θFθφωR + ∂θFθtε)
]

nθ. (8.8)
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In particular, for dipole fields:

n̈θ = −
[
ω2

R − 2GJε

R3 ωR + 2qµωR

mR3

(
1 + 3GM

2R

)
− 2qµGJε

mR6

]
nθ. (8.9)

This guarantees stability when

2GJε

R3 < ωR, (8.10)

which is implicit in our approximation of a weakly rotating background geometry.

9 Discussion and summary

The starting point of this paper is the development of a multipole expansion for magnetic fields
in a background Schwarzschild space-time and its generalization to slowly rotating stationary
curved space-times. These results are valid in the case the back reaction of the magnetic field
on the space-time geometry can be neglected. This is correct when the space-time curvature
is large compared to the energy density in the magnetic field. Now the leading term in the
dipole magnetic field gives the energy density in the equatorial plane as

ε0
2 B2 ≃ ε0µ2

4r6 , (9.1)

modulo higher-order corrections in G falling off faster. Higher multipoles also fall of faster
than the dipole field. In contrast the curvature of Schwarzschild space-time satisfies

√
RµνκλRµνκλ = 4

√
3GM

r3 . (9.2)

Therefore the condition

8πGT 0
0 ≪

√
RµνκλRµνκλ, (9.3)

is satisfied everywhere if it is satisfied in the near-horizon region. Reinstating the speed of
light, at the horizon the condition becomes

Gε0B2

c2 ≪
(

c2

2GM

)2

. (9.4)

For example, for neutron stars in the range of one to three solar masses this is satisfied for
magnetic fields of 1015 T or less at the surface, which is about the observed upper limit.

Once the fields are known one can establish if stable circular orbits in the equatorial
plane for charged particles are possible. This requires the radial magnetic field component to
vanish in this plane, a condition always satisfied by odd-l multipole fields, like dipole and
octopole fields. In the presence of even-l multipole fields such orbits can only exist for special
radii where the odd multipole fields happen to cancel each other. Orbits within the stable
photon orbit 3GM are possible in principle, provided the magnetic field strength exceeds
the limit (4.6) and satisfies the stability conditions displayed in figure 4.
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In addition to circular orbits, for the case of Schwarzschild space-time we have also found
approximate non-circular orbits by the method of relativistic epicycles (world-line deviations).
In general the periods of the epicycles differ from the parent orbital period, which leads
to displacement of the periastron of the charged particles. Moreover, in the presence of
combinations of odd multipole fields the sign of the magnetic field can vary as a function of
radial distance r, causing the direction of the rotation to change.

We have derived conditions for existence and stability of circular orbits in the equatorial
plane, in particular in non-rotating Schwarzschild space-time. We found that the radius of
innermost circular orbit and the innermost stable circular orbit can shift, for appropriately
high values of the magnetic interaction, towards the black hole horizon. For the special
case of a dipole magnetic field in a Schwarzschild spacetime, we found the existence of a
‘forbidden region’ in between the horizon and the photosphere where circular orbits are not
allowed to exist, and two regions of stability where the circular orbits are allowed and stable
in planar and transverse directions in a specific range of magnetic field strengths. In principle,
these regions are most likely to host charged particles in circular orbits, resulting in distinct
gravitational wave and electromagnetic frequencies. We have not considered their dynamical
stability, due to the emission of gravitational or electromagnetic radiation. We expect these
regions to have measurable consequences for the detection of magnetic fields around black
holes and determining their strengths. This remains to be addressed in future research.

We have not constructed orbits in the transverse direction, out of the equatorial plane.
In general such orbits will have a helical structure, as the Lorentz force will causs charged
particles to circle around magnetic field lines. We have considered the effect of slow rotation
of the background gravitational field, by considering the first-order in G approximation of
the Kerr geometry. An interesting result is, that in that case also electric fields arise, both in
the radial and the polar direction. However, again for odd-l multipoles these electric field
components vanish in the equatorial plane, still allowing for stable circular orbits.

Topics discussed in the literature but not addressed in this paper include non-vacuum
modifications of the Schwarzschild and Kerr metrics, discussed in [23], and euclidean extensions
of the background geometry [24].

Finally we have not considered here the origin of the magnetic fields. As is well-known
white dwarfs and neutron stars can have their own intrinsic magnetic fields. For black holes
the source of magnetic fields, as observed by the Event-Horizon Telescope, must be currents of
charged particles such as accretion disks circulating close to the black hole itself. This presents
an intricate problem of magnetohydrodynamics; for rotating compact bodies there is an
abundant literature on an effective description of such processes using the Blandford-Znajek
scenario [25]; for recent discussions, see refs. [26–28].

A Schwarzschild geometry

In this appendix we summarize our conventions for the connection and curvature components
of Schwarzschild geometry. Taking c = 1 the line-element in standard Schwarzschild-Droste
co-ordinates reads

ds2 = −
(

1 − 2GM

r

)
dt2 + dr2

1 − 2GM
r

+ r2dθ2 + r2 sin2 θ dφ2. (A.1)
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The non-vanishing components of the corresponding Riemann-Christoffel connection are

Γ r
tt = GM

r2

(
1 − 2GM

r

)
, Γ t

rt = Γ t
tr = GM

r2
(
1 − 2GM

r

) ,

Γ r
rr = −GM

r2
1

1 − 2GM
r

,

Γ r
θθ = −r

(
1 − 2GM

r

)
, Γ θ

rθ = Γ θ
θr = 1

r
,

Γ r
φφ = −r sin2 θ

(
1 − 2GM

r

)
, Γ φ

rφ = Γ φ
φr = 1

r
,

Γ θ
φφ = − sin θ cos θ, Γ φ

θφ = Γ φ
φθ = cotg θ,

(A.2)

whilst the non-vanishing components of the Riemann curvature tensor are given by

R r
trt = 2GM

r3

(
1 − 2GM

r

)
, R t

rtr = − 2GM

r3
(
1 − 2GM

r

) ,

R θ
tθt = −GM

r3

(
1 − 2GM

r

)
, R t

θtθ = GM

r
,

R φ
tφt = −GM

r3

(
1 − 2GM

r

)
, R t

φtφ = GM

r
sin2 θ,

(A.3)

and
R θ

rθr = GM

r3
(
1 − 2GM

r

) , R r
θrθ = GM

r
,

R φ
rφr = GM

r3
(
1 − 2GM

r

) , R r
φrφ = GM

r
sin2 θ,

R φ
θφθ = −2GM

r
, R θ

φθφ = −2GM

r
sin2 θ.

(A.4)

B Magnetic fields in Schwarzschild space-time

We describe electromagnetic fields in Schwarzschild space-time in the frame of a static distant
observer associated with the Schwarzschild-Droste co-ordinate system (A.1). In the absence
of electric components, any static magnetic fields can be derived in the radial gauge Ar = 0
from a vector potential 1-form

A = Aθ dθ + Aφ dφ.

Imposing axial symmetry then implies that the components are functions of (r, θ) only. As
a result the magnetic field strength Fij = ∂iAj − ∂jAi has components

Frθ = ∂rAθ, Frφ = ∂rAφ, Fθφ = ∂θAφ. (B.1)

The Maxwell equations for the magnetic field strength components (B.1) in the presence
of a current density ji then reduce to

∂j

(√
−gF ji

)
= ∂j

(√
−g gjkgilFkl

)
=

√
−g ji. (B.2)
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Written out separately for i = (r, θ, φ):

∂θ

(√
−g gθθgrrFrθ

)
=

√
−g jr,

∂r

(√
−g grrgθθFrθ

)
=

√
−g jθ,

∂r
(√

−g grrgφφFrφ
)

+ ∂θ

(√
−g gθθgφφFθφ

)
=

√
−g jφ.

(B.3)

In the absence of radial and polar currrents: jr = jθ = 0, the first two equations imply that

Frθ = κ√
−g

grrgθθ, (B.4)

with κ a constant; in Schwarzschild space-time this becomes

Frθ = κ

sin θ

1
1 − 2GM

r

. (B.5)

This solution is singular everywhere on the z-axis as well as on the horizon. Therefore we
discard it by setting Aθ = 0.

Finally, evaluation of the third equation (B.3) yields the result [4]

r2∂r

[(
1 − 2GM

r

)
∂rAφ

]
+ sin θ∂θ

[ 1
sin θ

∂θAφ

]
= −r4 sin2 θ jφ,

which is defines the starting point eq. (2.1) for the discussion in section 2.
The relation between the magnetic field strength components Fij and the dual axial

vector field Bi is defined in terms of the antisymmetric permutation tensor

Eµνρσ =
√

−g εµνρσ = r2 sin θ εµνρσ, (B.6)

with εµνρσ = +1 for even permutations of (µνρσ) = (trθφ), εµνρσ = −1 for odd permutations
of (µνρσ) = (trθφ), and εµνρσ = 0 in all other cases. Its inverse is

Eµνρσ = 1√
−g

εµνρσ = 1
r2 sin θ

εµνρσ, (B.7)

with εµνρσ = −1 for even permutations of (µνρσ) = (trθφ) and εµνρσ = +1 for odd
permutations of (µνρσ) = (trθφ). With these definitions the dual electromagnetic field
strength is

F̃ µν = 1
2 EµνρσFρσ, (B.8)

and the B-field components are defined by

Bi = F̃0i = g00gijF̃ 0j = − 1
2
√

−g
g00gijεjklFkl. (B.9)

Therefore in Schwarzschild space-time

Br = 1
r2 sin θ

Fθφ, Bθ = − 1
sin θ

(
1 − 2GM

r

)
Frφ, Bφ =

(
1 − 2GM

r

)
Frθ. (B.10)

The vanishing of the field-strength component Frθ is seen to be equivalent to Bφ = 0.
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C Angular dependence of magnetic fields

The angular dependence of the magnetic fields discussed in this paper is expressed in terms
of Legendre polynomials Pl(cos θ) and the related functions Φl(cos θ) derived in section 2.
Here we give explicit expressions for the cases l = 1, 2, 3, 4, or dipole, quadrupole, octopole
and hexadecapole fields. Writing x = cos θ:

P0(x) = 1, P1(x) = x, P2(x) = 1
2
(
3x2 − 1

)
,

P3(x) = 1
2
(
5x3 − 3x

)
, P4(x) = 1

8
(
35x4 − 30x2 + 3

)
,

(C.1)
and

Φ1(x) = −
(
x2 − 1

)
, Φ2(x) = −3

(
x3 − x

)
,

Φ3(x) = −3
2
(
5x4 − 6x2 + 1

)
, Φ4(x) = −5

2
(
7x5 − 10x3 + 3x

)
.

(C.2)

D Radial dependence of magnetic fields

In this appendix we provide details of the solutions for the radial dependence of the magnetic
vector potential Aφ. We first consider the series solution in inverse powers of r. Switching
to the new variable η = 2GM/r the first equation (2.3) takes the form

d

dη

[
η2 (1 − η) dfl

dη

]
=
(
η2 − η3

) d2fl

dη2 +
(
2η − 3η2

) dfl

dη
= l(l + 1) fl. (D.1)

With the Ansatz

fl(η) =
∞∑

n=0
c(l)

n ηn, (D.2)

this becomes

l(l + 1) c
(l)
0 + [l(l + 1) − 2] c

(l)
1 η +

[
(l(l + 1) − 6) c

(l)
2 + 3c

(l)
1

]
η2

+
∞∑

n=3

[
(l(l + 1) − n(n + 1)) c(l)

n + (n − 1)(n + 1) c
(l)
n−1

]
ηn = 0.

(D.3)

Since this is to hold for any η, it follows that c
(l)
0 = 0 and for any k ≥ 1:

c
(l)
l−k = 0, c

(l)
l+k = (l + k)2 − 1

k(2l + k + 1) c
(l)
l+k−1. (D.4)

The upshot is, that c
(l)
l is a free parameter, and higher coefficients are related to this

parameter by

c
(l)
l+k = 1

k!

k∏
m=1

(
(l + m)2 − 1
2l + m + 1

)
c

(l)
l . (D.5)
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The first few series then start out as

f1(η) = c
(1)
1 η

(
1 + 3

4 η + 3
5 η2 + 1

2 η3 + . . .

)
,

f2(η) = c
(2)
2 η2

(
1 + 4

3 η + 10
7 η2 + 10

7 η3 + . . .

)
,

f3(η) = c
(3)
3 η3

(
1 + 15

8 η + 5
2 η2 + 35

12 η3 + . . .

)
.

(D.6)

Up to the normalization factor these series can actually be summed and written in closed form:

f1(η) = − 3
η2

[
ln(1 − η) + η + η2

2

]
,

f2(η) = −20
η3

[
(4 − 3η) ln(1 − η) + 4η − η2 − η3

6

]
,

f3(η) = −105
η4

[(
15 − 20η + 6η2

)
ln(1 − η) + 15η − 25

2 η2 + η3 + η4

12

]
.

(D.7)

These solutions all have a logarithmic divergence on the horizon η = 1. They are equivalent
to the closed-form expressions (2.15), (2.16) derived in [4, 8]. As mentioned in section 2, in
addition to these solutions valid for r > 2GM there also exist polynomial solutions of the
radial equation in the domain 0 ≤ r < ∞. We denoted these solutions by gl(z), where by
definition z = 1/η = r/2GM ; equation (2.3) then becomes:

z2 d

dz

[(
1 − 1

z

)
dgl

dz

]
= z(z − 1)d2gl

dz2 + dgl

dz
= l (l + 1) gl. (D.8)

Looking for solutions

gl(z) =
∞∑

n=0
a(l)

n zn, (D.9)

by substitution in (D.8) this equation becomes

0 = l(l + 1) a
(l)
0 − a

(l)
1 + l(l + 1) a

(l)
1 z

+
∑
n≥2

[
(n − 1)(n + 1)a(l)

n+1 + (l(l + 1) − n(n − 1)) a(l)
n

]
zn.

(D.10)

It follows that a
(l)
0 = a

(l)
1 = 0 and for n ≥ 2

a
(l)
n+1 = n(n − 1) − l(l + 1)

(n − 1)(n + 1) a(l)
n . (D.11)

Then for all k ≥ 2 also a
(l)
l+k = 0, and the solutions become polynomials of order l + 1:

gl(z) =
l+1∑
n=2

a(l)
n zn, (D.12)
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with a
(l)
2 a free parameter and all coefficients a

(l)
2+k defined by

a
(l)
2+k =

k∏
m=1

(
m(m + 1) − l(l + 1)

m(m + 2)

)
a

(l)
2 , k = 1, . . . , l − 1. (D.13)

The first few polynomials are

g1(z) = a
(1)
2 z2, g2(z) = a

(2)
2 z2

(
1 − 4

3 z

)
,

g3(z) = a
(3)
2 z2

(
1 − 10

3 z + 5
2 z2

)
, g4(z) = a

(4)
2 z2

(
1 − 6z + 21

2 z2 − 28
5 z3

)
.

(D.14)

For 1 < r < ∞ both the asymptotic solutions or the polynomial solutions exist. In fact, as
pointed out in [4] there is a direct relation between these two sets of solutions:

fl(1/z) = βl gl(z)
∫ ∞

z

dζ(
1 − 1

ζ

)
g2

l (ζ)
. (D.15)

The solutions (D.7) correspond to specific choices of the normalization factor βl, specifically
β1 = 3, β2 = 20/3, β3 = 35/2. An equivalent integral expression for the asymptotic solutions
fl(r) = r2Q(0,2)

l−2
(

r
GM − 1

)
is given in [8].

E Stability analysis for circular dipole orbits

In section 6 we discussed the stability of circular orbits in dipole magnetic fields. This
appendix presents the details of the analysis on which the results about stability are based.
The input of this analysis is first the condition of existence of circular orbits, and second the
periodicity of the fluctuations about these orbits, expressed by the reality of the frequencies
of the transverse and planar deviations. In terms of the dimensionless variables (6.1) these
conditions are summarized by eqs. (6.6), (6.10) and (6.12). The complication of analyzing
these conditions is, that they need to be considered separately in different domains of variables:
2 < x < 3, 3 < x < 6 and x > 6; and that they have to be discussed for two choices of
sign in the relation between the angular velocity Ω and equatorial magnetic field y. We
first discuss the choice of positive sign:

2(x − 3)Ω = y

(
1 +

√
1 + 4(x − 3)

x2y2

)
. (E.1)

This relation imposes the inequality (6.6), which is trivially satisfied for x ≥ 3; but for
2 < x < 3 it requires a non-zero magnetic field:

y2 >
4(3 − x)

x2 . (E.2)

Next, the inequality (6.10) for transverse stability becomes√
1 + 4(x − 3)

x2y2 > −
(

1 + 4(x − 3)k(x)
xh(x)

)
. (E.3)
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Figure 5. Range of x for which 2 < x < 3 and 2(3 − x)k(x)/xh(x) < 1.

Again, it is satisfied for all y in the range (E.2) if the r.h.s. is negative, which happens if

xh(x) ≥ 4(3 − x)k(x). (E.4)

This is true automatically for x ≥ 3; if xh(x) < 4(3 − x)k(x) the case 2 < x < 3 has
to be considered separately. Terms on both sides of the inequality can then be squared
and rearranged to give

y2 >
4(3 − x)

x2
1

1 −
(

4(3−x)k(x)
xh(x) − 1

)2 . (E.5)

Non-trivial solutions of this inequality implying transverse stability (E.3) exist only in
the domain

0 <
2(3 − x)k(x)

xh(x) < 1, (E.6)

or approximately 2.23 < x < 3; see figure 5.
In summary, either x ≥ 3 for all values of y2, or 2.23 < x < 3 and y2 in the range

y2 >
4(3 − x)

x2
1

1 −
(
1 − 4(3−x)k(x)

xh(x)

)2 >
4(3 − x)

x2 . (E.7)

Finally it remains to consider the condition for planar stabilty, expressed by the inequal-
ity (6.12), which can be recast in the form

(x − 2)(x − 3)(x − 6)
x2y2 + (x − 3)2 − F (x)

(
1 +

√
1 + 4(x − 3)

x2y2

)
≥ 0, (E.8)

where
F (x) ≡ 1

2

(
x2 − 4x + 6 + 2(x − 2)(x − 3)k(x)

h(x)

)
. (E.9)

Figure 6 shows that in the domain x > 2 this function is everywhere positive. For
comparison we have also plotted the function (x − 3)2/2 to show that

2F (x) > (x − 3)2 .
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Figure 6. The function F (x) defined in eq. (E.9).

This implies that the inequality (E.8) is never satisfied in the limit y2 → ∞; thus it imposes
restrictions on the allowed values of the magnetic field as represented by y. Defining the
coefficients

A = (x − 2)2(x − 3)2(x − 6)2,

B = x2(x − 3)
[
(x − 2)(x − 6)

(
F (x) − (x − 3)2

)
+ 2F 2(x)

]
,

C = x4(x − 3)2
(

F (x) − 1
2(x − 3)2

)
,

and considering the domain x > 6 where (x − 2)(x − 3)(x − 6) > 0 and (A, B, C) > 0
everywhere, the condition of planar stability reduces to

A

y4 − 2B

y2 − 2C ≥ 0,

which is solved for

y2 ≤ A

B +
√

B2 + 2AC
. (E.10)

For 3 < x < 6 it follows that (x − 2)(x − 3)(x − 6) < 0; in that domain

(x − 2)(x − 3)(x − 6)
x2y2 + (x − 3)2 − F (x)

(
1 +

√
1 + 4(x − 3)

x2y2

)
< 0;

thus the condition (E.8) for planar stability has no solutions. Finally, for 2 < x < 3 the
coefficient A > 0, but B can become negative; however, as

√
B2 + 2AC > |B| there are still

non-trivial solutions for y in the domain defined by (E.10), provided (E.2) holds:

4(3 − x)
x2 ≤ y2 ≤ A

B +
√

B2 + 2AC
. (E.11)

It remains to investigate the stability of circular orbits for which

2(x − 3)Ω = y

(
1 −

√
1 + 4(x − 3)

x2y2

)
. (E.12)
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Again we have to distinguish the domains x > 3 and 2 < x < 3; in both cases y/Ω < 0 and
therefore the inequality (6.8) becomes non-trivial:

0 >
y

Ω = 2(x − 3)
1 −

√
1 + 4(x−3)

x2y2

> −xh(x)
2k(x) . (E.13)

For x > 3 this imposes the explicit constraint

0 < y2 <
4(x − 3)

x2
1(

1 + 4(x−3)k(x)
xh(x)

)2
− 1

. (E.14)

For 2 < x < 3 we get

y2 <
4(3 − x)

x2
1

1 −
(

4(3−x)k(x)
xh(x) − 1

)2 , (E.15)

with x in the range (E.6); see figure 5.
Finally, we have to impose the inequality (6.12), which in this case becomes

(x − 2)(x − 3)(x − 6)
x2y2 + (x − 3)2 + F (x)

(√
1 + 4(x − 3)

x2y2 − 1
)

≥ 0. (E.16)

For x > 6 it is always satisfied. Next, for 3 < x < 6 it still holds in the limit y2 → ∞,
but there is a lower threshold

y2 ≥ A

B +
√

B2 + 2AC
. (E.17)

In the remaining domain 2 < x < 3 the situation is similar, but there is the additional
condition (E.2); therefore the condition for stability of circular orbits in the plane becomes

y2 ≥ max
(

A

B +
√

B2 + 2AC
,
4(3 − x)

x2

)
. (E.18)

F Weak field limit of Kerr geometry

The weak-field approximation of Kerr geometry, deviating from Minkowski space-time only
by terms linear in G, is described by the line element (7.1). Based on this, the expressions
for the components of the connection to first order in G read

Γ r
rr = −GM

r2 , Γ r
θθ = −r

(
1 − 2GM

r

)
, Γ θ

rθ = 1
r

,

Γ r
φφ = −r sin2 θ

(
1 − 2GM

r

)
, Γ φ

rφ = 1
r

,

Γ r
tt = GM

r2 , Γ t
rt = GM

r2 ,

Γ θ
φφ = − sin θ cos θ, Γ φ

θφ = cos θ

sin θ
,

Γ t
rφ = −3GJ

r2 sin2 θ, Γ φ
rt = GJ

r4 , Γ r
tφ = −GJ

r2 sin2 θ,

Γ t
θφ = GJ

r
sin θ cos θ, Γ φ

tθ = −GJ

r3
cos θ

sin θ
, Γ θ

tφ = GJ

r3 sin θ cos θ.

(F.1)
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Non-zero θ-components of the Riemann tensor:

R θ
tθt = −GM

r3 , R θ
rθr = GM

r3 ,

R θ
φθφ = −2GM

r
sin2 θ, R θ

tθφ = 2GJ

r3 sin2 θ,

(F.2)
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