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Abstract 

We implement the proposal of Faddeev and quantize the anomalous, 
chiral Schwinger model. We carry out a Schrodinger representation 
quantization,on a circle, in the Hamiltonian formulation. We make a special 
emphasis to uncover the structure of the fermionic Hilbert bundle over the 
space of gauge fields. We find that although a unitary and consistent 
quantum field theory is obtained, Lorentz invariance is lost. 

I. Introduction 

Anomalous gauge theories III pose a perplexing puzzle to quantum field 
theorists. First it was anticipated and demonstrated/2/that standard 
methods of quantization would not yield a consistent quantum field theory. 
The principle of cancellation of anomalies was a foundation of any grand 
unified model. Recently however, our understanding of anomalies has 
greatly improved. In the Hamiltonian interpretation of anomalies/3/, 
it was shown that anomalies constitute an obstruction to projecting the 
Hilbert bundle of fermions over the space of all gauge field configurations, 
to a bundle over the true configuration space, the space of all gauge field 
configurations factored by the group of gauge transformations. The reasoxz 
for the obstruction is that the fermions transform under a non-trivial 
projective representation of the gauge group. Consequently, non-degenerate 
energy eigenstates, the fermionic Fock vacuum for example, form non-trivial 
complex line bundles over the gauge group. Accordingly, no gauge invari~nt 
definition of these states can be made. However the question still remains, 
whether or not one can modifiy the quantization procedure and further 
quantize the gauge degrees of freedom in a gauge invariant manner. 

In the Hamiltonian formulation of gauge theories 14/, gauge invariance is 
educed by imposing Gauss' law as a constraint to characterize physical states, 
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In an anomalous gauge theory, the Gauss operator satisfies the algebra 151 

making (1) inconsistent, as S~(x,y;A) does not generally ~ihi!ate any 
states. In light of the algebt~ (2), Faddeev made the proposal/6/on how to 
effect the further quantization of the gauge fields, such that (I) is in some 
Sense obeyed. He proposed to decompose G,~(x) as 

3 

With 

4 

and impose only 

G,a~) = > 

Then Gauss' law ( 1 ) is regained as a statement valid in matrix elements 
between physical states 

0f Course the decomposition must satisfy 

rot (5) to be sensible, and 

J ) 4 . 

We present below the application of this program to the quantization of 
the anomalous, chiral Schwinger model. We work on a circle of length 211" 
arid in momentum space, more from a constructive viewpoint, along lines 
cleveloped by Manton /7/ for the usual Sehwinger model. 

IL Momentum Space, Schrodinger Representation Quantization 

By the chiral Schwinger model we mean the theory ostensibly described 
by the Lagrangian 
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where F~ ~A~-3v.A~, ands"= 1 , ~ ' =  -l,~(x)is a single component, 
left handed fermion, and we work with Ao= O. Thus 

z "/" ,,,, "f' t 2,, 

The equations or motion obtained from this Lagrangian include the Dirac 
equation and Ampere's law, but Gauss' law is absent. However, due to the 
invariance of the Lagrangian under arbitrary, time independent gauge 
transformations, the Gauss operator 

is conserved, 

To make the transcription to momentum space, for the fermions, we need 
an infinite set of creation and annihilation operators 

The fermionic field operator (distribution) 

satisfies the canonical anti-commutation relations. The Fock vacuum is 
defined as the state annihilated by 

t 

,3 

The operators corresponding to the fourier transform of the charge density 
a r e  

These are well defined operators when acting on states which only hay a 
finite number of excitations relative to the Fock vacuum, which form a donse 
domain. For p = 0 we have the total charge operator 

Z - 
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Which we must define with a normal ordering. The free Hamiltonian is also 
defined with a normal ordering, 

0 commute.~ wi thf (p)  and H o, while 

and 

These commutation relations can be rigourously derived without recourse to 
any regularization or any ad hoe prescription 171. 

With 

the full fermionic ilamiltonian becomes 

Where 

21 

aad the c-number constants are determined by insisting that H commute 
With the Gauss operator. The fourier components of the Gauss operator are 

Which satisfy the (anomalous) commutator (I), 

e appearance of y~. in G~ stems from the functional Sc~odinger 
rel)resentation quan~t~i~ation of the gauge degrees of freedom, whence 
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This lends the interpretation or the tsauss operator as the generator 
parallel transport of the fermionic Hilbert space over the space of gauge 
transformations. Finally including the kinetic part of the gauge fields, we 
find 

I I I. Fermionic Hilbert Bundle 

The full fern, ionic Hamiltonian can be diagonalized by a unitary 
transfor marion, 

26 
: U He U "1" 

i% 
The full eigenstates U I~>, where I£> is an eigenstate of II o, can be thougllt 
of as having been obtained from the free eigenstates by paralIely 
transporting these in the space of ~t with a (fermionie) operator valued 
connection 

' I * 

Clearly this is a pure gauge, and the corresponding field strength vanisheS. 
Therfore the fermionie IIilbert spaces form a trivial bundle over the spaCe of 
gauge fields ~. However if we consider the reduction of this bundle to each 
energy eigensubspace, the resulting bundle is non-trivial. The relevant 
(U(1)) connection is that defined by Berry/8/ 

and 

In more concrete terms, such a connection means that paraUely transporti~ 
an eigenstate about a closed loop in the space yeilds back the same sate 
multiplied by a phase. The phase is exactly the flux of the magnetic field 
(29) passing through the loop. Tl~s serves as a rigorous example of the 
bundle structure proposed by Mvarez-Gaume and Nelson/3/and 
established by Niemi and Semenoff /8/ and by Sonoda/9/. 
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IV. Faddeev's Proposal and Full Quantization 

To implement Faddeev's proposal is straight-forward. With 

for (23). This is the appropriate decomposition. Then 

is equivalent to imposing Gauss' law as an equation between matrix 
elements. The full Hamilton/an is diagonalized by linear canonical 
transformatiions, after bosonlzation of the [ermionic kinetic parts. The 
Cletails will be published elsewhere. The result is 

z Z " 
• 'ith frequencies 

[(cf 1 
V. Conclusion 

It is evident that the spectrum (34) is not Lorentz invariant. It is clear 
that this is not a consequence of having worked on a circle. Everything can 
be carried OUt equally well on the line, only one must work mostly with 
OPerator valued distributions, which just adds surmountable technical 
clirriculties. However a perfectly consistent and unitary quantum field 
.theory has emerged. It is important to investigate exactly why Lorentz 
t~Variance is lost, and if there is some way to overcome this problem. We 
,SUggest that our techniques may be extended to a manifestly Lorentz 
~Variant scheme for quantization, perhaps along the lines of the Gupta- 
l~leuler quantization of Q E D, or incorporating the BRST formalism. 
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