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Abstract

We implement the proposal of Faddeev and quantize the anomalous,
chiral Schwinger model. We carry out a Schrodinger representation
quantization,on a circle, in the Hamiltonian formulation. We make a special
emphasis to uncover the structure of the fermionic Hilbert bundle over the
space of gauge fields. We find that although a unitary and consistent
quantum field theory is obtained, Lorentz invariance is lost.

I. Introduction

Anomalous gauge theories /1/ pose a perplexing puzzle to quantum field
theorists. First it was anticipated and demonstrated /2/ that standard
methods of quantization would not yield a consistent quantum field theory.
The principle of cancellation of anomalies was a foundation of any grand
unified model. Recently however, our understanding of anomalies has
greatly improved. In the Hamiltonian interpretation of anomalies /3/,
it was shown that anomalies constitute an obstruction to projecting the
Hilbert bundle of fermions over the space of all gauge field configurations,
to a bundle over the true configuration space, the space of all gauge field
configurations factored by the group of gauge transformations. The reason
for the obstruction is that the fermions transform under a non-trivial
projective representation of the gauge group. Consequently, non-degeneraté
energy eigenstates, the fermionic Fock vacuum for example, form non-trivial
complex line bundles over the gauge group. Accordingly, no gauge invarian!
definition of these states can be made. However the question still remains,
whether or not one can modifiy the quantization procedure and further
quantize the gauge degrees of freedom in a gauge invariant manner.

In the Hamiltonian for mulation of gauge theories /4/, gauge invariance is
educed by imposing Gauss' law as a constraint to characterize physical states:

1 G“"‘) ILlJFl\35> = &
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In an anomalous gauge theory, the Gauss operator satisfies the aigebra /5/
2 [Gd(x—) G| (vp] =, .Fch S(x—a,) C,C(%) + qu(x.zr;pi)

making (1) inconsistent, as S (x,y,A) does not generally annihilate any
States. In light of the algebra (2), Faddeev made the proposal /6/ on how to
effect the further quantization of the gauge fields, such that (1) is in some
Sense obeyed. He proposed to decompose G“(x) as

3 G\q(x) = C,:(,(, + (e

Wwith

4 Ga)z(quo

and impose only

> G | LP,,hds> = 0 .

Then Gauss® law (1) is regained as a statement valid in matrix elements

between physical states
G | Hpgs7 = 0 :

SRS

Of course the decomposition must satisfy

7 [ng\ ) G b{‘a)] = ]Cq\;c S("‘Z}}Gj")

for (5) to be sensible, and

8 [ :(x) ) G‘;QK’] + [ ;@QJ thp] = SGL(,‘, 3'3 A> .

We present below the application of this program to the quantization of
the anomalous, chiral Schwinger model. We work on a circle of length 2TV
and in momentum space, more from a constructive viewpoint, along lines
developed by Manton /7/ for the usual Schwinger model.

L Momentum Space, Schrodinger Representation Quantization

b By the chiral Schwinger model we mean the theory ostensibly described
¥ the Lagrangian

9 | - j‘ ("f’w i5 Buei A Feo - .;,i(f,:,:)&)
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where EzJA-3A, ands’= 1,6"'= -1,%/(x) is a single component,
left handed fer mion, and we work with A = 0. Thus

0 Le fie (0790 o it o+ (R

The equations of motion obtained from this Lagrangian include the Dirac
equation and Ampere’s law, but Gauss' law is absent. However, due to the
invariance of the Lagrangian under arbitrary, lime independent gauge
transfor mations, the Gauss operator

. 1
I G@c_) = D’c A‘(x) - n(f(z) n]‘:(x)

is conserved.

To make the transcription to momentum space, for the fermions, we need
an infinite set of creation and annihilation operators

12 {"(Pad;}zgf’"(ﬂ{d?'d‘t}: {4, s pge

The fer mionic field operator (distribution)

( ‘ ﬁx
13 = 77 2 e U g
satisfies the canonical anti-commutation relations. The Fock vacuum is
defined as the state annihilated by

.]L-
= RY
. of% {O> O ﬁ/

0{ Lo>::.O %40 .

The operators corresponding to the fourier transform of the charge density
are

-tc
14 @ = Aoy X #o
PP L, 4 7
These are well defined operators when acting on states which only have 2
finite number of excitations relative to the Fock vacuum, which form a densé
domain. For p = 0 we have the total charge operator
> KK, - > A
Q = 7t 1%

15 g<e Fzo
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which we must define with a normal ordering. The free Hamiltonian is also
defined with a normal crdering,

s T
16 = + [a| £ & .
H, % 1% ; 5
Q commutes with f(p) and H,, while

17 [f(f) R f@ﬁﬂ P g}o,

angd

s [H, fﬂ‘-‘— P LP .

These commutation relations can be rigourously derived without recourse to
any regularization or any ad hoc prescription /7/.

With
T

the full fermionic Hamiltonian becomes

0 Y - H- Z(J}?)Q(«p@gf—‘(;c;m) f Q2
P)o

Where

Qp = (oo + P Tp

Qz(f>= ‘i(f(f’ - f('f))/‘/z?

“ll_d the c-number constants are determined by insisting that H commute
With the Gauss operator. The fourier components of the Gauss operator are

" Gos gy Jtr%ﬂ % &

L

21

Which satisfy the (anomalous) commutator (1),

s [Gi,Gil= 5 & ,

The appearance of }x" in G; stems rrom the functional Schrodinger
®Dresentation quantization of me gauge degrees of freedom, whence
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24 Ewr= -0 Z(emfx) +.um(fx)0{\ f?f% .

This lends the mterpretatmn of the Gauss operator as the generator of a
parallel transport of the fermionic Hilbert space over the space of gauge
transformations. Finally including the kinetic part of the gauge fields, we
find

T

s He H- T 0 -8 ) N0

111. Permionic Hilbert Bundle

The full fermionic Hamiltonian can be diagonalized by a unitary
transfor mation,

U= &—“/——'\‘l R

The full eigenstates U |&), where l€> is an eigenstate of H_, can be thought
of as having been obtained from the free eigenstates by paranely
transporting these in the space of ‘6‘ with a (fermionic) operator valued
connection

27 J‘c:”UU -LE,JWQﬁ- . .

Clearly this is a pure gauge, and the corresponding field strength vanishes.
Therfore the fermionic Hilbert spaces form a trivial bundie over the space
gauge fields X‘ However if we consider the reduction of this bundie to each
energy emensubspaoe the resulting bundle is non-trivial. The refevant
(U(1)) connection is that defined by Berry /8/

n s <elkley .

and

29 B zle‘) i ;, 1J(foal JxQB o

In more concrete terms, such a connection means that paraue!y transporting
an eigenstate about a closed loop in the  space yeilds back the same staté
multiplied by a phase. The phase is exactly the flux of the magnetic field
(29) passing through the loop. This serves as a rigorous example of the
bundle structure proposed by Alvarez-Gaume and Neison /3/ and
established by Niemi and Semenoff /8/ and by Sonoda /9/.

-4
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IV. Faddeev's Proposal and Full Quantization

To implement Faddeev's g:oposai is straight-forward. Wi}{h
/A 2 (-
30 Gl“J;(ﬁ*) )Gz\/fj(ﬁ)7
..t.
31 EOZ } OZ :( = i

for (23). This is the appropriate decomposition. Then

32 OZ ] L’Urkag> = O

is equivalent to imposing Gauss' law as an equation between matrix
elements. The full Hamiltonian is diagonalized by linear canonical
transformatiions, after bosonization of the fermionic kinetic parts. The
details will be published elsewhere. The result is

33 H(f):ziq(al ﬁ)eé . (?A\* f}

With frequencies

— 1
34 O, = iﬁ + ‘—; ﬂ(f)2+ l)z — 1

V. Conclusion

It is evident that the spectrum (34) is not Lorentz invariant. It is clear
that this is not a consequence of having worked on a circle. Everything can
be carried out equally well on the line, only one must work mostly with
Operator valued distributions, which just adds surmountable technical
difficulties. However a perfectly consistent and unitary quantum field
?heory has emerged. It is important to investigate exactly why Lorentz
Wvarjance is lost, and if there is some way to overcome this problem. We
Suggest that our techniques may be extended to a manifestly Lorentz
variant scheme for quantization, perhaps along the lines of the Gupta-

leuler quantization of Q E D, or incorporating the BRST formalism.
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