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We calculated the scattering of gluon, scalar and quarks in gauge theory in the light
cone gauge. Some computation techniques suited for the light cone gauge are introduced.
We observed some inadequacies of the counter terms suggested in our earlier work, and
we suggest a new way of fixing counter terms using Lorentz invariance as a guide. Gluon
scattering with massive matter fields in the loop are presented for completeness. The
helicity amplitude method is extensively used in this work and is also modified to simplify

the light cone gauge calculation.
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CHAPTER 1
INTRODUCTION

Gauge theory is generally thought of as the fundamental theory that governs most of
the important interactions in particle physics. The standard model of particle physics is
based on a gauge theory with a gauge group SU(3) ® SU(2) ® U(1) minimally coupled
to some matter fields. The electro-weak part of this theory has relatively small coupling,
and the perturbative calculations produced results that agree with the experiments
extremely well. The strong interaction (QCD) has a coupling constant of the size 0.1 at
high momentum (short distance) where the perturbative calculation can still give some
useful predictions. However, the coupling is of order one around 1 GeV and will tend
to infinity at lower momenta. The perturbative calculations cease to make sense at this
scale, yet it is at this scale that some interesting phenomena happen. For example, at high
energy QCD can be described by quark and gluon fields, while at low energy the quarks
become confined and the description in terms of pions and baryons is more relevant. At
high energy the quarks enjoy an SU(2);, ® SU(2)g symmetry, but at low energy the axial
vector part of this symmetry is spontaneously broken down. These phenomena are beyond
the grasp of perturbation theory, and the quantitative results mainly come from lattice
computation. The quest for an analytic solution to the low energy spectrum or a dual
description of QCD that suits the low energy and strong coupling has been the focus of
many physicists.

Besides its phenomenological importance, gauge theory is also interesting in its
own right because of its close connection with topology. A gauge theory consists of a
curvature field F),,, satisfying the Bianchi identity dF' = 0. In QED, the entries of F'
are simply the electric and magnetic filed E and B, while the Bianchi identity is two of
the four Maxwell equations V - B = 0and —0B JOot =V x E. In general, the Bianchi
identity says the two form F),, dz"dx" is closed, so we cannot simply vary the field strength
to obtain the Euler-Lagrange equation. Instead, we write F' as dA for some 1-form A,

known as the connection 1-form, and vary A rather than F. Although not all closed forms
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(forms satisfying dw = 0) are exact (forms can be written as w = dr), writing I as dA
causes no problem in the perturbative calculations, because we are only interested in
small fluctuations around A = 0. Yet for a non-perturbative computation, a non-trivial
configuration of the A field can give important results such as the anomalous breaking of
the axial U(1) symmetry. In those cases, we have to manually sum over configurations of
different winding numbers. The A field, as its name suggests, is a connection in the gauge
bundle, more concretely, the 1-form Aft*dr" acting on the tangent vector d, = 9/0z",
converts it to a vector Ajj¢* in the direction of the fibre (elements of the Lie group
translate a field in the ’vertical” direction). With this connection, we can compare two
fields in nearby space-time points using the covariant derivative D, = 9, — A,. The
geometrical nature of the gauge theory is not explored in this dissertation, however, the
problem of gauge fixing is still important for this work.

Putting aside gauge theory for a moment, we also have a possible alternative
description of the strong interaction: string theory. It was initially proposed in order
to model the dynamics of the flux tube which is the explanation of confinement in the
strong interactions. In analogy with the point particle, where the equation of motion is
such that the path traversed by a particle(world line) in space-time is the shortest path,
the bosonic string theory studies a one dimensional extended object and the equation of
motion is such that the two dimensional surface swept by the string (world sheet) is a
minimal surface. An open string has two free ends, they can be given the Chan-Paton
degrees of freedom, which are rather like a label that labels the different states of the end
of the string. These states can be taken to transform in a representation of a Lie group,
say, in the fundamental for one end and anti-fundamental for the other. With this setup,
the open string is like a pion which has presumably a quark and an anti-quark at each
end and connected by the flux tube. In fact, the scattering amplitude of the open strings

reproduces the scattering of gluons in the low energy limit.
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The similarity was explored in [1], where 't Hooft looked at the SU (V) gauge theory
as N — oo. In this limit, the adjoint representation of SU(N) can be approximated
by N ® N. The A field transforming in the adjoint representation, now carries two
indices A; in the large N limit, where * and ; transform in the N and N respectively.
Hence a gluon line can be drawn as two lines carrying the * and ; index each. With this
representation, a Feynman diagram will look like Fig.1-1. The ; index corresponds to the
Chan-Paton factors. Any closed index loop such as in the middle of Fig.1-1 will be a trace
Tréj- producing a factor of N. If a Feynman diagram is drawn with crossed lines, we will
lose factors of N, so by keeping only the leading terms in the power of N, we pick out
all the planar diagrams. There is a clear analogy between the planar diagrams and the
open string scattering diagrams Fig.1-2, where the arrows now indicate the Chan-Paton
factors. By summing over all the planar diagrams, we hope to learn something about the
non-perturbative nature of the gauge theory.

't Hooft also pioneered the light-cone parametrization of these planar diagrams in
[1]. The correspondence between the two graphs in Fig.1-3 is that, a rectangle maps to
a propagator, a line (cut) maps to the blank space between two propagators, and the
beginning(end) of a line is the splitting(merging) point of two propagators, or simply
a 3-point vertex. The success of this parametrization is because in the light-cone, a
propagator contains a step function #(x*p™). This factor says if a propagator is to
propagate forward in 2™, it has to carry positive p*. This parametrization is also used in
6, 7, 8, 9].

The correspondence between gauge field theory and string theory was revolutionized
by the AdS/CFT correspondence due to Maldacena [2], a certain superstring theory on an
AdSs x S? background is equivalent to the A/ = 4 supersymmetric gauge theory. Detailed
proposals of this correspondence were made by Gubser, Klebanov and Polyakov [3] and
by Witten [4]. Their idea is the holographic concept, where the Minkowski space M* is

the boundary of the AdS space, and the correlators in M* are computed from the bulk of
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AdS. The field theory and its perturbative expansions grasp the weak coupling limit, while
the string theory description naturally grasps the strong coupling limit. For example, in
[5], the author studied the energy of a string hanging between two static sources in the
classical limit (in the context of AdS/CFT duality, classical limit in the string theory
corresponds to the strong coupling limit in the field theory), which shows a force that
obeys inverse square law, in accordance with the fact that A/ = 4 SYM is a conformal
theory. Despite all the above, a lot of the details of the correspondence still await filling
in.

So the establishment of the detailed correspondence between string theory and gauge
theory becomes urgent. In [6, 7], the authors proposed a local world sheet description
of the (supersymmetric) gauge theory, which maps a Feynman diagram to a world
sheet representation. The vertices in this description become the merging and splitting
of strings, and the summation of Feynman diagrams becomes a path integral on the
(discretized) world sheet. The Feynman rules, or the vertex functions were realized by
inserting a local world sheet operator close to the splitting or merging point. There is no
need for the representation of a four point vertex, because it is automatically generated
when two insertions for three point vertices coincide and produce a contraction term. This
is rather fortuitous, for a four point vertex is very unnatural in a string diagram. The
summation of all the planar diagrams becomes the summation over whether or not there
is a cut in each of the lattice sites. This treatment still has many loose ends to tie up. For
example, the problem of renormalization which requires not only a local representation of
the bare diagrams on the world sheet but also a local representation of the counter terms.
The problem of renormalization for scalar fields on the world sheet was addressed in [§],
but was only partially solved for gauge theory in [9] due to some complications.

It is absolutely necessary therefore, to study the renormalization for gauge fields
on the world sheet, making sure that the world sheet path integral description at

the least will reproduce all the perturbative results before we jump into studying its
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non-perturbative side. The checks include, whether all the divergences appearing in the
perturbative expansion can be absorbed into target space local counter terms, and whether
these counter terms can have a local world sheet representation. And most importantly in
the case of (supersymmetric) gauge theory, how the regulators will affect gauge covariance
and supersymmetry.

Since 't Hooft’s planar diagram representation was most easily given in the light cone
parametrization, it is natural that we chose to study the gauge theory on the world sheet
also in light cone gauge. In this case, in order to study the gauge invariance property, we
have to deal with some collateral complications due to the light cone gauge choice and also
the issue of infrared divergence which is inherent to a gauge theory. These tasks have been
the main focus of my work. In the two papers [13, 14], we studied the gluon scattering in
the light cone gauge in great detail and found the need for some counter terms that were
quite unexpected. An infrared regulator is also proposed in [14] that is very different from
dimensional regulation yet still respects gauge covariance. In [15], the extension to the
gauge theory coupled to general matter was made, and some results that are peculiar to
N = 4 were observed. Also the cancelation of counter terms between different species was
achieved, whose importance will be explained later.

As an extension, the scattering of quarks and scalars in addition to gluons was
computed, which showed a need for some new counter terms not given in the previous
work. The complete determination of these new counter terms is still a work in progress.
And the usage of Lorentz covariance as a guide to fix counter terms will be initiated in the
future work section.

The organization of the dissertation is as follows, in Chapter 2, the helicity amplitude
method is briefly introduced. This method, when modified to suit the light cone, can
greatly increase the flexibility of light-cone gauge, and offers an alternative way to obtain
light cone Feynman rules. Some computational details are also given in the same chapter.

In Chapter 3, I shall describe the box-reduction technique which occupied a bulk of
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the work done in [14], and is essential to our achievement of the cancelation of artificial
divergence and the extraction of infrared divergence. In Chapter 4, I shall simply list the
results, since the details of the computation are complicated and not very illuminating.
Discussion about some known features of supersymmetric gauge theory is given in Chapter
4 too. In Chapter 5, the Bremsstrahlung calculation on the light cone is presented, and
the real processes are combined with virtual processes to obtain an IR finite result.

In Chapter 6, I shall give the scattering of gluon with massive matter in the loop for
completeness, and the photon scattering amplitude is also presented. I shall conclude this
dissertation by pointing out some remaining problems and the outlook for some future
work. In the appendices, I shall spell out the spinor notations used in the paper and all

the Feynman rules obtained by using the method of Chapter 2.

\_/

7N\

Figure 1-1. Double line notation

o

Figure 1-2. Open string scattering diagram
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Figure 1-3. Light-cone parametrization
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CHAPTER 2
COMPUTATION TECHNIQUES IN THE LIGHT CONE

2.1 Mini Introduction to Spinor Helicity Amplitude Method
This method exploits the covering group of SO(3,1): SL(2,C). Lorentz invariance
will be represented as SL(2,C) invariance. By dotting a momentum into the sigma
matrices, we obtain a 2 by 2 matrix: p, — py,o*. If p were light like, we will have
det(p - ) = p* = 0, so the matrix p - ¢ can be decomposed into a product of two spinors:

ad a, &

p-o® =pp (2-1)

where we have used the same letter for both the momentum and its spinor. p® (p%) is the
left (right) handed spinor that satisfies the massless Dirac equation. The notation using

bracket is commonly used in the literature:

P — |p); pa — |pl; pa — (p); p* = [p] (2-2)

Polarization vectors for the gauge particles are also cleverly chosen to minimize the
computation [10, 21, 22]. The reader can refer to [11] for a review, and to [12] for some
more simplifications and extensions to massive fields.

As an example, a left handed polarization vector €, can be given by (up to a
normalization factor) €, = napa < |n](p|, or equivalently €** = pn® < |p)[n|. The
handedness can be seen by remembering that v* or o* is the Clebsch-Gordon coefficient

for the projection

(@), 0),

and that |p) is the spinor of a left handed fermion. We have €¢- | p) = |[n](p|p) = 0. This
means that the photon must be left handed so the product of it with a left handed fermion

will not have a right handed component.
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Another way of seeing the same fact is by inspecting whether the field strength F),,

constructed out of €, is anti-selfdual (right handed) or self-dual (left handed).

Fuw = =i [paamyPs — PipNaPa) = —1 [papbp[am,]] = —iPaPo€sp [P 1]

The € symbol in the spinor language is given by

€7 = 4,0 = 4i [54 oL &% 60 — 8% 6% ¢ 5d]

a “a ~“c-c a “c - c Ta

SO

1
3 det g7 F,, = 1" p,A, = — lO — €., PbPalP | n]] = {F* (2-4)

hence xF =i F.
The reference spinor 7 can be chosen to our advantage. The most efficient way is to
pick it to be a spinor of one of the momenta in the problem. As an illustration, consider

the amplitude M(1,2,3,4, —, —, +, +). Pick

er~ [L)[4]; €2~ [2)[4]; s~ [1)[3]; es ~ [1)[4] (2-5)

They have the property that only the pair €; and €3 have non-vanishing inner product.
These polarization vectors are not properly normalized yet, their normalization factors will
be put back in at the last step.

Let us look at the t-channel exchange diagram:

1050 7
€1 - 64(p4 - p1)5 + €§(2P1 +p4) T€4 T EZ(—QM - pl) : 61} (pliiém)z {} (2*6)

I did not bother to write down the vertex on the right since the left vertex is already zero.
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The four-point contact vertex is in fact zero too. Recall that the four-point vertex
always involves two pairs of polarization vectors dotted into each other, while we only have
one non-zero pair available.

Finally the s-channel exchange diagram:

1950
{61 - ea(p1 — p2)° + €5(2py +p1) e+ e (—2p, — p2) - 62] X (1)1176]92)2
l€3 -€4(p3 — pa)” + €7 (2ps +p3) - €3+ €5(—2p3 — py) - 64:| (2-7)
The underlined terms are all zero, and we are left with
1 1
—4- (@) (p2-e) - (ps - &) = —5-[43)(21) [24](21)[34](31) (2-8)

As the last step, we need to put in the normalization factors for the polarization

vectors: —[14][24](31)(41)/4, I get

[34]%(12)? B , (12)*

S T A e ey By ()

(2-9)

The second presentation is holomorphic in the left handed spinors, which will turn out to
be interesting later on.

As a slightly more non-trivial example, I shall compute the amplitude M(+, +, —, —, —)
Fig.2-1.

I shall define the polarization vectors to be

elzﬁw- 62:\/5%

[14] 7 [24]
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Here I have used p; and p, as reference legs. A general observation is that a vertex that
involves both legs that are used as reference vanishes, so diagrams 2,3 and 4 are zero.

A closer look at the products between a pair of polarization vectors shows that all the
diagrams involving four point vertices are zero. We are thus left with only three diagrams
to compute.

I will start with some small building blocks according to Fig.2-2:

AP = [54)(41)€" — [45](51)¢”  B* = [35)(51)€! — [53](31)e"
O = J13){12) (ps — po)* + [H43](32)e5 — B2k DF = [42)(21)ek — [41](12)¢}
(2-11)

With these building blocks, we can calculate further larger blocks Fig.2-3:

E" = A, [¢""(1—-2=3)4+g¢"2+3—-4-5)"+¢"(4+5—-1)"
= 0+ A"[4]2+ 3|1) + 0 = —A,[4]5](5|1)

F¥ = Asesp[97P(1+2-3)7+¢7(3—-4-5)"+¢°"(4+5—-1—-2)"]

- {%[54]<41>[4|2 g1y — %[45]<51>[5yz - 3|1>] +AV[3 = 21)

_ [[541<41>[421<21> - [451<51>{521<21>] A3p2)
_ [54](21)[23)(31) — A”[32)(21)

G = By [¢7(B+5—4) + ¢ (4—1—-2)" +¢g”(1+2—3—5)7)

— 0te {%[35}<51>[5|4 — oy — %[53]<31>[3|4 - 2|1>] + %B”[4|2 — 3 5[1)

= [[35]<51>[54} (41) — [53]<31>[34]<41>} + BU[4)2]1)
= ¢[35)(41)[42](21) + B¥[42)(21) (2-12)
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Finally

BC, = —A,AI5)6ID) | L3012 (5 — o + 1310320 — [32](21)e
= Lupem s oS3 - sienE )

—0 - %[4\5]<5|1>[32}(21>[4|5]<5I1>[54]<21>

- _%[4|5]<5|1>[43]<12> _[54]<41>[4y2;—3\1> - [45]<51>[5I¥I1>_

o % 4[5)(5/1)2[1)2[54 [ — [43)[42](41) — [43][52](51) + [32] [45](51)]

= —%[45]2<21>3<51>[42] [32] (2-13)
F'D, = e [54](21)[23](31) — AN[32]<21>] {[42](21)&; - [41](12)@;}
= € €3[54][42](21)%[23](31) — 0 + €5 - €2[45](51)[32][42](21)” + 0
= %[34](21)[54} [42](21)%[23](31) + %[54](21)[45}(51)[32] [42](21)?
= %[54](21)4[42]2[23] (2-14)

G'D, = [e@ [35](41)[42](21) + Bl,[42]<21>} [[42]<21>eg - [41](12%*;}
= 0— 0+ [42]*(21) |:€5 - €9[35](51) — €3 - 62[53]<31>:| -0
- JlazPey? ey sy - BaEniEen]

= %[42]3<21>4[35] (2-15)

Assemble them together:
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G-D F-D E.-C
RD12]35)[53] | 2D [12](d5)B4]  (23)[32](45)[54]
[42]2<54> (32> — [42] [23]<53> (32} + [45][12](51)(53)

= @1 2[12](53) (54} (32)
_ 31407 [21][41](51)(13)
= ) e B B (2-16)
After putting back the normalization factor:
- Vex
SR EEE) (2-17)
we get
o ey (2-18)

2(12)(23)(35)(54)(41)
To go to large N,, we simply multiply it by (—igsy/N./2)3.
2.2 The Light Cone Setup

The light cone gauge Feynman rules are usually obtained by the lagrangian method,
namely, we first set A_ = 0 and integrate out A~. Then the Feynman rules can be read off
from the lagrangian, which is a function only of A! and AZ2.

Here, I combine the covariant vertex functions with the above spinor helicity method
to obtain the Feynman rules in a more flexible way. But this will require us to fix n® =
n® = [1,0]".

The gluon propagator in light cone gauge is

T ot
k2 + e

—ig - B £

(2-19)

Note the metric is diag(1, —1, —1, —1) throughout the dissertation. The numerator can be

factored into
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gu—l— kY gu—i- kH gu+gu+

(" — i ) = — (el + €eel) — e k? (2—20)
Where €,y are light cone gauge polarization vectors given by
1 kY —ik? kl —ik? 1 KN A

el = 1,—1,—

v \/_(ko RN W):%(k_*’l’_z’_kj);e/\zev
ev = —V2nlk]; en = —V2k](n] (2-21)

They satisfy € - ¢ = —1 and k- € = 0. These polarization vectors are defined both on-shell
and off-shell. Note from now on, the definition of |k|, |k), [k| and (k| will be that of the
appendix A, which is slightly different from the conventional ones.

The Feynman rules are obtained by dotting the polarization vectors into the covariant
three or four point vertices.

The tri-gluon vertex Fig.2-4, for example, becomes

Vigg = Qfabc(_eiu)(_%y)(_egp)[gw(pl —p2)’ + g""(p2 — p3)* + ¢"(ps — p1)"]

Setting €1, €5 = €5, €3 = €y, the above becomes

abc p/\ p/\ e D —|—p
o (o = p0) 2 = (2 = )"+ (pa = 1) "2 — (pu = )] = 20 %K
1 9 ;

(2-22)

where K}, := (pjpg‘ — p;rp’; ). They are related to spinor products according to

K} = pi o} [pilpi] = pi ol pipia

The spinor notation here is also different from the conventional one [20]. The reader can

refer to the appendix for an explanation of the spinor notation.
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The gluon propagator Eq.2-19 almost factorizes into the product of two polarisation
vectors. While the third term on the rhs of Eq.2-20 will make an extra contribution to
the four point vertex. For example, consider the t-channel diagram Fig.2-5, the first two
terms of Eq.2-20 can be associated with the two tri-gluon vertices, the third term, which

describes the mediation of A~ gives

v pona a0 i) iG] — p)e - S05 —p3)
1u€ts VT g 69,6, o rERY (2-23)
(p1 +p4) (pl +p4) (pl +p4)

What’s happening here is that the explicit factor of k2 in the third term of Eq.2-20
cancels the propagator, effectively making a four point contact vertex.

The fermion-gluon vertex Fig.2-6 is the usual ig y* t*. We can set 4 = A or V by
dotting —e€j, ,, into p.t Multiplying the spinors to the gamma matrix, we get (assuming

now the fermion is left-handed)

ig(t“)bc\/@ (=) [0 pg ] ‘ (gf)w (%o)ad
= —ig(ta)bc\/@(_ﬁ)[lb nl{qlp1)

A A e +
. a q P1 . oV DP1DP2 . o P2
= —2ig(t")per/ P DT (q—+ — p_f) = —2igt p— Ké\l’q — —2igt q+prI/)\hq(2—24)

In Eq.2-24, in order to avoid defining what is y/pT, I chose to associate py instead of
/Py ps to a vertex. This won’t cause any problem, since a fermion line either always
closes, or end up as an external particle (then the phase of the root can be defined

arbitrarily).

1 Calling polarizations by V or A is potentially confusing, especially if you are looking
at the diagram up-side-down. So,sometimes it is clearer to associate A with 'in’ and V
with "out’.
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The fermion propagator is given by ip,v*/(p* + i€). We can decompose p - v according

to

oo = @{f;v ;QA]:@H—%%H_S_; 1]+ | 8]
= V|l
] £ T o 0 0
p.a:\@{gv g_}Z\@p {5_1}[1 p—+]+ \/g;]
= VElo |+l (2-25)

Since the fermion propagator almost factorizes too, it is also possible to contract a
pair of vertices here. For example, the second term of Eq.2-25 will contribute to Fig.2-7

according to

(Yo (e 207 7 [l (5 - a)%(—ez 3)lp1)

i
— =2 (1) e (t")ep/ 2 [p \/_ D VY
—g°( Jev\/ 201 5 [P2 [(V2|n](p3 |) - FTE

(p1 + pa)? .
'V%fEEWWDO@MMDM>

d ;r ; 2/,d p;
= —229 (1) ce (%) — =207 (1Y) e (1) et (2-26)
ol +pi P+ oy

The scalar Feynman rules have no suspense in them at all, and can be read off
from any field theory book. The Feynman rules that pertain to our calculation will be
summarized in the appendix. The main property of the Feynman rules above is the
absence of p~.

2.3 Brief Description of the Calculational Procedure

In the Fig.2-8, the k’s and ¢ are the dual momenta. They are related to the real

momenta coming into the three legs according to p1 = k1 — ko, po = k4 — ky and

p3 = kg — k4. The unregulated integrands have a symmetry under k; — k; + a, which
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would ensure that each diagram depends only on the real momenta. But here, as in
[13, 14], we use a regulator exp (—20¢"¢") that breaks this symmetry. Hence, a regulated
amplitude can depend on the individual dual momenta. This seemingly unwieldy regulator
is designed for the world sheet description, but the result doesn’t differ too much when a
cut off regulator is used.

The calculation roughly goes as follows,

1. Exponentiate all propagators according to

! = /OO dT ¢'Tr’
p? + i€ 0

For the schematic diagram Fig.2-8. We have

I = / (;ljrg‘l (¢ —Zk2)2 (¢ —Zk1)2 (¢ —Zk4)2
_ / (37454 d*T; exp {iZTi(q - ki)z}

2. Integrate out ¢, leaving a delta function relating ¢* to the Feynman parameters(this

step requires the absence of ¢~ in all Feynman rules).

r = /Mld?’T&(ZT-k*—ZT- ) ex ZZT( — k;)?
(27_‘_)3 2 (3 1y Zq p 3 q (3

3. Integrate ¢!, ¢* using exp [—d¢%] as a damping factor.

_ dq* +_ ot 1
r = / oadnid (Y wi = 1Y _wiki —q ) el T

where x; :=T;/ > T;.
Here is the rub: we cannot simply integrate over x9,x7 and x4, because the prefactor

of this diagram will have up to second order poles at ¢ = k;". In order to show the
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cancellation of these poles (gauge artificial divergences), we proceed as follows: first

eliminate one Feynman parameter in favour of ¢*:

+—/{Z+ 1— +—/€+
ki <qt <k $1:7x(q+ f), x4:( xl(q — 2>, ro=1—x1— x4, v €]0,1]
ki — ks ki — ks
1— + _ |kt + _ Lt
ki <qt <kf: xlz( xj(q T 4), $2=M, rg=1—1x1 — 29, €[0,1]
ki — K ky — ki

Now dxodr dzsd(>" 2 — )63 wiki — ¢7) = dqTdxJ. After integrating out x, we are
left with a function of ¢* which is defined differently in different regions: ky < ¢© < ki
and ki < ¢ < kf. All these can be visualized very clearly when we represent a Feynman
diagram on the light cone world sheet. The details can be found in [13, 14].

Our observation is that, in each region, all poles cancel.? Hence we can perform the
final ¢* integral and obtain the results.

To summarize the computation procedure, perform the q* integral last.
5
A \ /}

Figure 2-1. Five-point amplitude

2 in the case helicity conserving amplitude, all poles cancel up to infrared terms, but
since infrared divergence is always proportional to a tree, they are easy to recognize and
deal with.
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Figure 2-2. Some building blocks that can be computed separately

4 ) 4 5 3 by 3
Eu% " Fﬁ\%/ Gﬂ\\f/
1 L L

Figure 2-3. Second level building blocks

P, C, P3

|

H, a, pP1 v, b7 P2

Figure 2-4. Tri-gluon vertex

RN
PR
K, P1 v, Do

¢, N b7 D2

Figure 2-6. Fermion-gluon vertex



g, V, D4 P, N, P3
N7
AN

b7 b1 ¢, D2

Figure 2-7. Fermion propagator contracted

Figure 2-8. Here we assume only (ko — kq)? # 0, and kf > ki > kg

30



CHAPTER 3
BOX REDUCTION

This chapter contains a lot of technical details, the reader may skip it for first
reading.
Our general procedure for evaluating box diagrams is

1. Evaluate a box diagram that is free of artificial, collinear and infrared divergences
using text book method (combining denominator with Feynman’s trick, shift the
momentum, perform momentum and Feynman parameter integrals, etc).

2. Evaluate a box that contains collinear or infrared divergence but is free of artificial
divergence by subtracting those collinear or infrared divergences in the form of
triangle diagrams, and then use method 1.

3. A box that has artificial divergences has to be reduced to triangle diagrams.

In the next section, I will describe how to achieve 2 and 3. The dual momenta assignment
given by Fig.3-1 will be used through out all the calculations.
3.1 Box with a Helicity Violating Sub-diagram
The Feynman rules for the gluon, scalar and fermion in the light cone gauge are very
similar. Any three point vertex will have the following form: R(k;" )KZ-/;-’V, where R(k™) is
a rational function of the + component of external momenta and K Qv = (pjp?’v — p;’pf’v)

is introduced in the appendix. This allows us to write the numerator of any box diagram

as

R(kﬂKgVK,Q;VK,Q;y K (3-1)

We can also label a box by the helicity of the four corners, regardless of the details of the
boxes. For example the following Fig.3-2 will be abbreviated as A A VV box.

R (k™) in general will contain poles of k. These poles are usually interpreted using
Cauchy principle value or some other prescriptions. We chose to show directly that

these poles are all fake, namely, when we compute a physical quantity, these poles will

31



be cancelled. To show this would entail us to express the amplitude as a holomorphic
functions of k™ and analyze the poles one by one. But the box integrand in general will
have a denominator that is quadratic in the Feynman parameters and k*. Integrating it
by force will introduce logarithm and di-logarithms with various arguments. Although we
know of certain relations between (combinations of) di-logarithms and double logarithms,
the application of these relations is hard to automate.

Fortunately, for the case at hand, all box diagrams can be reduced to triangle-like
integrands, whose manipulations are considerably easier. Here I describe the box reduction
technique in detail.

The lower half of the box Fig.3-2 is the 't channel’ of (+ 4+ +—) scattering process,
which is zero. So we can replace this 't channel” with minus the ’s channel’, which will
result in a triangle diagram. But since the amplitude is only truly zero on-shell, while the
two internal lines are certainly off-shell, I will get some more terms that are proportional
to the virtuality of the two internal lines (p? and p2). Schematically, I have Fig.3-3:

More concretely, Fig.3-3 is written as

1 AN A
(p1+p6)2K16K52
— —¥K/\KA ‘l‘ p% K/\K/\ ‘l‘ pg K/\K/\
(p1 + p2)? A (p1 + p6)?(p1 + p2)? prE (p1 + p6)?(p1 + p2)? 2o
(3-2)

Clearly, in this case, the box is reduced into three triangle-like diagrams.

Here I list its contribution: First, define some functions that occur ubiquitously:
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(ki — q")(—=ks + qT)sde?
HSZ = 4 (k}+—§€+)2 ak;<q+<k2_
2 4

ki —qt)(qt — k)tder
H: = (ks (Cik?;ak;);) ki <qt <k

(ki —q")(—k5 + q7)sde
1 e I I
(¢ = k3) (ks — g*)sde?
BRI E

(—ki +q") (k3 —q")toe
H: = kT <qt <k
(k3 — ki) (=k + k) ’ '

(ki + ¢T)*t0e
= k< gt <kf
(ki — kD) (kf —&§)" !

(5 —a)la* — k)t
N G s I

(¢" — k) (=kf +qD)sber
f — kD) —kp) 0 =4 =

(k3 + ¢T)*t0e
Ty M
( —a*)la" — K )ise
= ORI Ry Tk @9

Next, I list the results for the two model boxes V A AV and AV VA.

o VAAV:

i

— T [t*Ptet?] x
T[]
ki <qt <kj:

(" — ki) (g = k3) (q" = k3 (k) — ki) (kg — ki)

1/4 K\ K log(H, 1/8 log(H,
+ 1/ (5 —kD)s 1385, log(Hy) + 1/ o — og(H,)
(¢F —ki)(g" — k3)
- 1/4 (k;‘l_ kI)S : K‘i\.gK;/l log(HT>
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ki <qt <k

(4"~ kD)a* = k)
(k5 —K)s

(k5 = k) (ki = k)

(k5 = K) (R — k)

+ 1/4 K3 K5 log(Hy)

+ 1/8

((—k;k; kS — kTR 4 207K — gtk

©ORPRERE 4 gk — 20Tk kE — kS + q+2k:) log(H,)

+ (gt — kT + Rt Ykt o Lt
i 1/4((] ki)(q k2)K£3K§/110g(Ht)—1/8(q ki)* (k3 — k7)(=k3 + k5)

lOg(Hl)

(ky — ki )s ky — ki
(¢ — k)" — k) (q" — k3 )2 (k" — ki) (ks — k7))
- 1/4 (k;;—‘l_ ki—)g : K41\3K£/1 log(Hl) _'_ 1/8 - k;l_ _ k;— . . log(HT)
q—i- _ /{Z+ q—i- _ k+
- 1/4( (l{;+4z(k+)5 : >K41\3K;/1 log(H,)
2 4

ki <qt <k

(" — ki) (g" = k5) (¢ — ki) (ks — ki) (kg — k7)

+ 1/4 K35 log(H) — 1/8

10g(Hl)

(kg —ki)s ky — ki
(" = kK@ = F3) pon o
— 1/4 K5 K5 log(H,
/ (kF — k)s 43031 log(Hy)

Now assume that its coefficient is C'+ A/(¢" —kf)*—1/(¢" — kf)', what to do next is
to combine this with the coefficients of the log H terms, then extract the polynomial part

through partial fraction and perform the integrals to get its contribution.

ki — ki — kf + ke

— 1/36 - (ki — k) (kf — k) (kT — kD) (K = k)C+1/8- = SR
(ki + k2 — kT — kP — KTk — Kk + 2k k) C
_ 1/24 1 3 12 4 ls 3 2 4 3 4 2) K£3K£/1
—ki +kf+2A kSl — kN)*C
+ 1/8log(s) - . 32 Kzi\?:K;/l — 1/241og(s) - MK&K%
+ 1/24log(t) - (ki — k3) (k3 — k) (k{ — kp)(K — k3)C
—kf + Kk +24 ki — kf)2C
— 1/8log(t) - —2 52 KKy, 4 1/241log(t) - MK&K; (3-4)
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If its coefficient were C' + A/(q" — k;)? — 1/(q" — k), then the result can be obtained
from the above by replacing ki < —ki, ki (k3) < —k{ (=kF).

What is not included in Eq.3-4 is of the form:

“ Now g -
(q—k‘i)2+q—k,~ og (3-5)

where ... only depends on the external momenta. The second order poles will have to
cancel eventually, the first order pole always combines to become proportional to a tree
amplitude with a universal structure.

e ANV VA

ky <qt <ki:

(g7 = kD) (ki + k3 (k5 — ky)

- 1/8 log( H,
/ . og( 1)
(" — k3)*(k — kD) (ki +k3)
1/8 log(H,
+ / ]{Z; _ kig- Og( d)
_k,-l- + + + _ k,-l—
o 1/4( 1 q )(q 3)K{\4K§/210g(Hd)

(k3 — k) (1)
(=K +q")° (k3 —k)(kF — k)
ky — kY
(=K +q")(g" = k3)
(k3 — k) (1)

+ 1/8

log(H,)

+ 1/4 K1, K 35 log(H,)

ki <qt < ki
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(kg — ki) (ks — ki)

- VTR kD)

O%N?MW@—@@+@@—fo

O A R g ) Tty A Ty A q+2k;) log(H,)

(=ki + ") (" — k)
(kg — k)(=1)
(g7 = k) (k| — ki) (k3 — k)

(ki +q) (gt —k3)
(k3 — k) ()
(=K +q")(q" — k3)

- 1/4 K1, K35 log(Hy) — 1/4

K{\4K§/2 log(Hy)

- 1/8 K1A4K3v2 10g(Hd)

log(Hy) +1/4

ky — kT (ks = k{)(=1)
—/{;++q+2k5+—k+ ki — |kt
+ 1/8( 1 )]{(;_1_3_ k+4)( 3 2>10g(Hu)
3 1
_ LT (gt — LT
+ 1/4( M+ a) k3)K1A4K3v210g(Hu)

(kg — k) (=)

ki <qt <ki:

(g7 = k3)* (k| — ki) (kg — ki)

+ 1/8 " log(H)
—k+—|—q+2k:+—k;+ /{Z+—/{Z+

o 1/8( 3 ) k(;;l_ kr4)( 2 1) log(Hd)
_k,+_|_ + _k,++ +

4 1/4( 3 q )( 1 q )K{\4K§/2 ].Og(Hd>

(kg — k)(=1)
(=ki + ) (ky — ki) (kg — k3)
ks — kY
(=ky +q)(=k{ +q7)
(kg — k)(=1)

— 1/8 log(H,)

- 1/4 K1A4K3v2 log(Hu)

Now assume that its coefficient is C' + A/(¢™ — k)* — 1/(¢™ — k)*, its contribution

would be
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—ki +kf + kT — kS

= /36 (K = k) (ks — k(K] — kD) (K7 = k5)C +1/8- = =KL
g (R kSRS 4 IR + TR 4 RTRS KLY =100 pon e
(—t) 14°%32
1/24log(s) - (ki — k) (kg — k3) (k{7 — k) (k[ — k3)C
—k +2A+ &y ky —ki)*C
1/stog(s) - 2B iy, — 1 /2nog(s) - B ey
—kf +2A+ k] ki — kf)*C
— 1/8log(t) LT PATES pen g 1 poatonr) - P8R e ey (3-6)

(=)

Just as in Eq.3-4, the pole terms are dropped here.

(=)

3.2 Box without a Helicity Violating Sub-diagram
But of course, not all boxes are going to have a helicity violating subtree, I now turn
to a second, much more complicated case Fig.3-4.

Assuming this box diagram can be written as

A B
(¢t =k (¢t — k)

KKKy 5K 4 (3-7)

Here I have used the notation of dual momenta to make the formalism more symmetric

looking. Write
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A B
(¢t =k ) (¢t — k)

A B
= 7(K¥6K2+KAKV K{\(SKE\)/2)+

\Y% A
K16K52

(KI/GKE/)\Q K{\6K2+KAKV)

(¢+ — k)2 (¢t — &)
- L(KVK + )+7B (KsKfy — c.c)
(qF — kp)2' 16052 ¢.c (gt — k) V102
1 1
A B
RGN e
A
= W§(k+ —q" )=k +q")s
A 1
+ (¢ — k22 (ki = kD) (k3 —¢F) + (K = k) (" = k)] (¢ — ka)*
A 1
+ mj—kf + k) (=R +q) (g — ka)?
1
A 1
+ mﬂ—ki +hD)(K = ¢ (g — ko)
1
B (¢ — &)
+ Ky Ky — L
=k ke~ COuE )
A B

- KK (3-8)

KPR
Notice that the first four terms in Eq.3-8 contain covariant products of momenta: s,
(¢ — k1)?, (¢ — k4)? (¢ — k2)?. The coefficient of s is simply —sA/2 (the annoying
1/(¢" — ki)? has disappeared, the fifth term also has this property). Terms like (¢ — k;)?
will simply cancel one of the four propagators, effectively making a triangle-like terms.
Now Let us look at the sixth term of Eq.3-8. Putting back the factor of K3 K’ ,
gives [A/(q" — ki)* = B/(q" — k)| K[y K, K3 K" 4. Now that two A’s (or V) are next
to each other, this term is in fact nothing but the previous model diagram.
In summary, the evaluation of the second, fifth and sixth terms of Eq.3-8 goes
through without further twist. However, the first(hence forth called half scalar box), third
and fourth term have collinear divergence individually (on top of the infrared divergence),

some more manipulations are needed.
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Subtraction of Collinear Divergence: A collinear divergence in a virtual process
happens when the momenta flowing through two internal propagators connected to a
common massless external leg become parallel. For a box diagram, there can be a collinear
divergence at each massless corner. When only transverse components propagates in the
loop, the vertex function will vanish due to helicity conservation. So, a bona fide box in
light cone gauge will have no collinear problem. However, in the manipulations of Section
3.2, we have tampered with the vertex structures of the lower sub-tree, so there will be
collinear divergences in some of the resulting pieces. But they will cancel when all the
pieces are collected.

The collinear divergence in a box diagram can be located into two triangle-like

diagrams. This process is rather like doing a partial fraction. Consider

Ky .- K" 3-9
s e R R R = R = R o
Take limit ¢ — k4 (so the right propagator is soft). Eq.3-9 becomes
K _ .- K} ! ! ! ¢ 3-10
o B R e R (g R s o
Take limit ¢ — k7 (so the bottom propagator is soft). Eq.3-9 becomes
Ky 5+ Kiy : e (3-11)

(g —F1)? (¢ — ka)? t (g — k2)?
Naturally, if these two "poles’ are subtracted from Eq.3-9, we should have a term free of
collinear divergence, which will be demonstrated next.
According to Chapter 2, the Schwinger representation of Eq.3-9 is (with H given by
T w3t + Tow4s + p2, where p is a small mass used here to regulate temporarily the possible

collinear divergences)
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/ T3dT§(Sa; — 1)d z;

2T (27)? eXp (—z'Tqi + z'TH)

{(k —k)q" + mo K5 + legz] [(k;; — k)" + 24 Kpy + 21 K7y

Lexp (—iTq? +iTH)

B / T3dT6(Sx; — 1)d*x
B 2T (2m)3

1
[5(1{5: - k;)(kar k+)QJ_ + f2954K43K43 + 1'1554K32K43 + x2551K43K14 + flKg/zKﬁ]

62T expil'H

1 (/{Z+ — ]{3+)(]€+ — k’+> Loy T1T4 Lo
UK Z ) L ey + D Ry + R + KK
Integrate over T"
1
1 ToTy T1T4 ToTy x?
=g = R0 — k) + SRR + S R + T KR+ o K]

The first two terms won’t have collinear divergence, the p can be set to zero, but the rest
will have to be evaluated with a small u to regulate the collinear divergences.
There are basically two types of Feynman parameter integrals in this case. The others

are either finite or could be obtained from these two.

/ A
Yz;<1 ($1l’3t + XoxyS + ,u2)2

1 > s s 2 u? 1 s, 4 nls
= 102t % 102 Zieg log(2)+ = - "%
35% 5 TG 1T Ty O g T e e

/ T1T2
Yr;<1 (zlet + ToxyS + Iu2)2
1 25 _ 2 p? 1 s 2 2

- e Zegtt 1 _T
212 Bt st B s tstt) 2t T st 2s 1)

(3-12)

Collecting all the divergent terms from Eq.3-9:
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1A 1 1 1
| ) _ 1 2 2 1 2 1 1 2 K\/ K/\
(3 9)dlv ) 8(_t) og- u + 2(—t) og 4(_2,:) og slog i 327114
- —iA ! log ,U2 ) (K4V3K1A4 + K4A3K3v2) (3-13)
872 4(—1)

Eq.3-10 and Eq.3-11 simply give

K gn i i
0 Y3 (q — k)2 (q — k1) (g — k3)? s
/ TQdexldxgdx45(Z T; — 1)
2T (2m)3
ki — kg v L1 v 0 v A . 2, -
— q’ — Ky — —K 5| Kjy exp(—iTq . ”+iTH)
{ (—1) (=) 2 (=t) B .

]' 2 AN \
= WUO%M +2- log(—t)]mf(sz(w

v e i d
Bas R G T (2t (g — )
_ / T?dTdx dxodz,d (> x; — 1)
2T(2m)3

P
{— LSy gy T2 ey | KD exp (—igu? + iH)

0 LT R

1 1 1 1

= @[(logg — 2) log/,l/2 — 5 10g2 ,u2 _ (5 10g2 s+4— 210g S)]MK;)/QK{Z
1 , 1

+ @[logu +2— logs]ml('é\(gl({\4

This, multiplied by —sA/2, is the same as the half scalar box contribution Eq.3-13.

The complete contribution of Eq.3-9 with Eq.3-10 and 3-11 subtracted is (pole terms

omitted)
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e - 1s(=ky +ki)(—ky +k)

872 t 8 (—t) —s
1 s 1 s 1

—= K\ K3+~ KAKV+7KAKV]
A((=t) = 9)(=t) 2 A=) —s)(=t) T A(—t) —s)
1 s 1 s(—=ki + k) (—k§ + k) (—1)

— Afoe? 2 21 & 3 4 2 3

T gudlos 3+ ]{ 16 (=) — o)

1 52 1 s s

A oV - A 1oV } N oV _
(D S R () P e L Ry s>2K43K32](3 1)

So, when evaluating Eq.3-9, which is collinearly divergent by itself, I shall subtract

Eq.3-10 and 3-11 from it, to make 3-9 finite.
Next I will show that Eq.3-10 and Eq.3-11 also cancel the collinear divergence in the

third and fourth term of Eq.3-8. Putting the triangle-like terms in Eq.3-8 together with

Eq.3-10, 3-11:

(ki + k) =k +q")(q = ka)* + (=K + KD (BT — ") (g — k2)?]
1 i i i i

Ky K"
(0" K (a— R)? (g~ kP (a— R (g — R >
+ Ky Kpy— ! Lty
BTN (g = k)2 (g — ka)? (g — ka)? s
Oy Gp— O 3-15
e R Y I (R N e A (315)

Suppose ¢ — k1 = A(p1 — p2), ¢ — k2 = (1 + A)(p1 — p2). The above expression becomes

1 1
(q—k1)? (g — k2)

(=kf +kh3) 1
)\(k;f — k;;’) (T+ M)t

vV
S K5 5 X

11
(1+A)K1A4+O+O+E35Kf4 =0

Suppose ¢ — k1 = A(ps — p1), ¢ — ks = (A — 1)(ps — p1). The above expression becomes
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1 1

(q —k1)? (¢ — ka)

0+

Vv
S Ky 5 X

(—ky +k7) 1 11 11
—A(;I — ];f) o 1>t(K1A4 +AKY) + Kfy——s + K} =0

TS il

Thus all the collinear divergences cancel.

The complete contribution of 3-10 and 3-11 and third fourth term of Eq.3-8 are quite

complicated. I observed that the rational part of their contribution is zero, so if there is a

way to get the logarithmic parts through some other methods (such as unitarity), we can

be spared all these ordeals.

To summarize, I have subtracted 3—10 and 3-11 from Eq.3-9 and then added them

back to the triangle-like terms in Eq.3-8 to make both parties collinearly finite. I want to

add that the introduction of p will not mess up gauge covariance as people would normally

think.

4\@ 3
1 / (k) \2

Figure 3-1. Dual momentum assignment with ky < ki < k" < kj

\ P4 P30
vV V
Dol ps| |
A N
/" 1 NN

Figure 3-2. Model box with a helicity violating subtree
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Figure 3-3. Graphical representation of box reduction

\ P4 P30
A V
Dol ps|
V N
/" 1 NN

Figure 3-4. Model box with alternating helicity
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CHAPTER 4
MASSLESS AMPLITUDES

I will be following [21] and decompose an n-particle amplitude into

M, = Z Tr(t* 2.t )M (p1, €15 P2, €2; - Pns €n) (4-1)

perm’
where perm’ is over non cyclic permutations for complex representations, non cyclic
and non reflexive permutations for real representations. In the following results, the
representation is assumed to be the adjoint representation.
4.1 Two Point Functions
A factor of —ig?/(1672) fe*d o = ig?/(167%)Tr [t*t*] will be omitted in the following
list.
4.1.1 Gluon Self-Energy

Refer to Fig.4-1

1

g+, g+;8) = =5 [k” + kikg + k37
4
g+ g+:9) = 5 (k12 + Kk + k57
2 A2 A AN N2
(g+,9+;9) = 3 [kl + ky ks + k3 } (4-2)

where the first two arguments in II tell the species of particle and the helicity, and

the third denotes the particle in the loop. For the above assignment of helicity, the
contribution should be zero due to Lorentz covariance. They are only nonzero because the
regulator used here doesn’t respect Lorentz covariance. This is purely an artifact, and it
has to be cancelled by a counter term. Also, it can be observed that II(g+, g+, s) X Ng +
(g+, g+;¢)r X Ny +II(g+, g+;9) x N, =0 in the N’ =4 SYM case.
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1

f[(ng-,g*;S):ép*pA
2
H@+395®=:—§pﬁf
7
(g+,9"59) = §p+pA + IR terms (4-3)

The notation g* simply means that I am using |n](n| or g"* as polarization vector. The

first two terms should also be zero due to Lorentz covariance, so they have to be set to

zero with counter terms.

Here are the helicity conserving 2 point functions:

I(g+,9—;5)
I(g+,9—;9)
I(g+,9—.9)

Here z is in fact (¢7 —

1
/ dzx(1 — z)p?logz(1 — z)p*se”
{ logpzée“’}

2/ dx — z)?] p*log z(1 — z)p*e’
0
6

1 1—
2/ dx L oty z(1— :v)} p*log x(1 — x)p*se”
0 - x

11 ! 2 2
P _u7 + —log p®de” + / dx + = log (1 — x)p*Se™ |(4-4)
9 3 0 l—2z =

k) [ (k5 — k).

Several comments are in order:

In the last line of Eq.4-4, the x integral is certainly divergent, this is due to the

artificial divergence. This divergent integral is what we call the infrared term (with x

interpreted as (¢ —

k{)/ (ki — k). Temporarily forgetting about these infrared terms, it

is easily observed that the sum of these diagrams is zero with the N’ = 4 field content. I

shall comment on this later.
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In the above list, all quadratic divergence 1/ are omitted. Due to the way the light
cone world sheet computation is setup, all the tadpoles are being dropped. These tadpoles
will only contribute to the quadratic 1/ divergence. As a result, the 1/ terms can
actually have non-trivial p™ dependence. When the p™ dependence is of the type 1/p™, it
can be interpreted as a world sheet cosmological constant as in [13]. While in other cases,
the p™ dependence could be of the form (1/p™)logp™, whose interpretation has not been
fully understood yet.

There is one small point about numerics that I want to point out here. The 2 point
function naturally comes with a color structure of fofdc = Ty [t“tb}, when we try to fit
the 2 point functions into the big picture as in Fig.4-2, the trace factor becomes (assuming

that ¢* is in a real representation):

feremeltet!] fre = Te[(—a) e, ) (—a) [t ¢]]
= —Tr[t o) 4 Tr[tt°¢% ] + Tre[t*t tt?] — Te[tbt ¢t
— —2Tr [ttt (4-5)
Also, there is always another factor of i coming from the two propagators connecting to
the 2 point function.
As a comparison, I shall give the two point function that describes the 'propagation’

of A=. The argument g™ means that I am taking the polarization vector to be g#*.

41
M(g*,g%5s) = p §—glogp2567}

90 4
M(g*,g%;q) = p*° go—glogp%e”}

81
M(g*, g7 9) = p*° g—glogp%ey}

We observe that the logarithmic piece that will give a cut matches between I1(g+, g—)
and II(¢g™, g7) when the loop particle is fermion or scalar. This is a hint that we shall use

counter terms to enforce the total agreement between II(g+, g—) and II(g*, g*), due to the
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consideration of Lorentz covariance. This observation shall be a guide to fix counter terms
later on.

Clearly, there is a mismatch when the gluon is in the loop. This mismatch is due to
the presence of infrared divergences in II(g+, g—, g), while II(¢g™, g™, g) is free of infrared
divergence.

4.1.2 Fermion and Scalar Self-Energy

—2+ 3z — 3a?
(1—2x)x

1
(g+,q+) = /dx p*log x(1 — x)p*Se”
0

1 —2
= p’ l—6 +3logp*de” + / dz ll + 7} log (1 — x)p*de”
0

-
The divergent z integral is likewise interpreted as infrared term.

I shall also give the result when I use |n) or | n] as spinors instead of [p) or |p].

I(g*,q") = V2p*[2—logp®se”]

where p flows with the direction of the fermion line. We again observe a mismatch of
log p? term, due to the infrared divergence.

The scalar self-energy diagram is given by

P24 4z — 4a?
IT = *log z(1 — x)p*se”
(s,s) /0 dz 1= p~logz(1 — x)p“de

! —2
= p [_8 +4logp*de” +/ da {1 - ?} log z(1 — z)p*de’
0

— X

4.2 Three Point Functions

The general structure of 3 point function Fig.4-3 is

(const + log pg) tree + o term + const (ko + k11 + ka1 )
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The o term will arise if the off-shell leg has unlike helicity.
A factor of g®/8n? fdae febf fled — g3 /82 Tr[t4°] is omitted.

4.2.1 Gluon Vertex Correction

—2 1 11
g+, 9+,9—35) = s —+ K5y |- logplde” — = —a— plpz}
pivs 2t [6 9 6 pi
—2p3 4 32 2 pips
r —: = KA Zlog p3deY — 22 <P Py
(94 9+.9—:9) oot a3 ogpyde’ — o +az e
—2 [ 70 1
I(g+,9+,9—19) = s — K3, ——10gp256”’ — —az p1p2] + IR terms (4-6)
pips . 3 9 3 py

where o = 1 if leg 3 is off shell and 0 otherwise, and p, is the momentum of the only
off-shell leg. The infrared terms present in the gluon triangle diagram will eventually be
combined with infrared terms from other diagrams to become proportional to a tree. They
are given in [14] and are not repeated here.

All of the above also contain an anomalous term:

1
L(g+, 94,95 8)ano = g(kﬁ + k) 4+ KD
4
(g4, 9+, 9= Qano = —g(k:g + kD 4 kD)

2
F(g+7g+vg_;g)ano = g(k‘é\ + k{\ + kﬁ\)

here the k’s are dual momenta, they arise because ¢ is an exponential damping factor
of the transverse dual momenta. Had we used a cut off regulator ((q, — k1) < A for

example) instead of J, the anomalous terms would change according to

(koy +kiy +kat) = (koy — k1) + (kay — k11)

These polynomial terms must be canceled by counter terms.

The MHV triangles (with all three legs having the same helicity) give
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(K3 [ 2]
pipsp3 [ 3p2]

L(g+, 9+, 9+;s) =

(K3)% [—8]
L(g+,9+,9+:q) = P
pip3ps | 3p2]
KAV [ 4]
I(g+,9+,9+;9) = (K1) (4-7)

pipsps (307
Here, we again observe that with N = 4 SYM field content, the gluon vertex correction
vanishes.

As a comparison, I shall give the result when the off shell leg takes on + component.

1 5
F(g+7g_vg+a S) = _(pii_ —p;) 6 lng§5€’Y — ]__8:|
4 2%
C(g+,9—95q9) = —(@f —p3) glogp?ﬁe”— 5]
+. TR 25 4, 51
C(g+,9— 979 = —(p7 —p3) —glogpoée +§ + IR terms
I'(g+,g+,97) = 0 (4-8)

Although T'(g+, g—, g") are not directly used in the computation of the scattering
amplitudes, they are a guide to fix the counter terms
4.2.2 Fermion Vertex Correction

The fermion vertex correction Fig.4-4 is given by

L(g+,q+,9+) = K" [—3 logpiée“’ + 6] + IR terms (4-9)

2
q_+ P2,q

The notation here is that: ¢ means an incoming fermion line while § means an outgoing
fermion line; g+ means that the fermion is right handed; g+ means that the gluon
is right handed which corresponds to A. The reader can refer to Fig.4-4. The factor

ig®/(87?)Tr[t*t*t°] is omitted as usual. The other combination is
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2p3
qtp

L(g+,q+,9—) = KY [—Z%logpic?eV + 6] 4+ IR terms (4-10)

p1,9

While F(q_7 q__7 g+)7 F(q+7 q—i_7 g_)7 and F(q_a q_7 g_)7 F(Q+7 q—i_a g+) are related by
charge conjugation' . These results up to the IR terms are the same with any one of the
legs being off shell.

We can also have the case when a gluon is off shell but taking on + component.

L(g+,q+,97) = 2p3 [~logp?ée’ +2] +IR terms

4.2.3 Scalar Vertex Correction

Scalar vertex Fig.4-5 is given by

2 17
I(s,s,g+) = q—+KQl —4log p2de” + 5|+ (kY + k) + k) + IR terms  (4-11)

with I'(s, s, g—) equal to I'(s, s, g+) with the obvious change of A to V. This result is also
the same up to IR terms with any one of the legs being off-shell.
4.2.4 Four-Point Functions

The box diagrams are too cumbersome to present here, but I do want to point out
that, up to the infrared terms, the total contribution of the box diagrams in a specific
amplitude is surprisingly simple. I shall list the rational part of the contribution of some
boxes in conjunction with the scattering processes in which they occur.

4.3 Scattering Amplitudes

[ shall start with gluon scattering, with a factor of ig*/(872)Tr[t*t*t“t?] omitted.

L up to the external line factors which are defined asymmetrically, see the explanation
below Eq.2-24
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4.3.1 Helicity Violating Amplitudes
The tree level amplitude for four gluons with the same helicity is zero. At one loop,

the amplitude is

4 KNKD KN KD
Alg+, g+, 9+, 9+ 8) = s — o
3 pipspspyst
16 KO KD KN KD
Alg+, g+, 9+, 9+1q) = — — 42—
3 pipipipsst
8 K3 K3y Ky K1)

Alg+, 9+, 9+,9+;9) =

4-12
3 pipsp3pyst (4-12)

The tree level amplitude with only one unlike helicity is zero too. At one loop level, the

amplitude is

1 K/\2p+p+
Alg+, g+, 9+, 9—8) = = (s + 1) =21
6 Kz KL Ky KT,
_2 K/\2p+p+
Alg+, g+, 9+,9—3q) = — (s + 1) 22
3 K KL Ky KT,
1 K/\2p+p+
A(g+, 9+, 9+,9—19) = = (s + 1) 2t (4-13)
3 KK Ky K7y

It is easily observable that the helicity violating amplitude is zero if there is any amount of

supersymmetry [17]. For example:

6 1 8 9 1 1
L 2 105120 — ikt ox1=0
N 3 “3T3% 3%373%
16 8 4 9 11
0 ) 1SN 4 T%220 — x4 -x4ix2=0
N g itgxitgX g Xty ”
16 8 4 9 1 1
C3(4): ) 24 S I h o620 —-x24+-x14+-x6=0(414
N =3(4) g X2+ g x +3><6 0 g X243 +6><6 0(4-14)

Since for gluon scattering up to one loop, adding supersymmetry is simply taking into
account the multiplicity of each species, hence N' = 3 is the same as N' = 4.
In the list of amplitudes, the fermions are assumed to be dirac, this explains the

strange looking 1/2 multiplicity for the fermions in the first line of Eq.4-14.
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4.3.2 Helicity Conserving Amplitudes

The helicity conserving amplitude is non-zero at tree level. They are given by [20]

—2K{'pipy
K£3K§\2K§\1K{\4pfp;
—2K{y'pypy
K£3K§2K2A1K1A4PTP;

A(g+7 g+7 g—, g_) = ig2fabef66d

(4-15)

A(g+, g—, g+, g—) = ig® f* fe

The factor f®°fe? can be converted to —1/C(G)Tr [[t*, *][t°, t"]] — —2/C(G)Tr [t*t"tt?].
Here I have chosen t* to be the structure constants, while most literature picks t* to be in
the fundamental representation. So, instead of the one loop amplitude gaining a factor of
N, here the tree amplitude is down by a factor of N..

At one loop level, the amputated Green’s function is (with external leg corrections

omitted)
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— 2K otpl 1 1 1
A —,g—;8) = 127374 —logde’t| — =X + =
g+:9+,9-,6-39) KK K5 Ky ps 18 6 o8 0 6 +3
2K s p 19 1 2
A —g—q) = —2 1273 ———1 de't| — =X
g+g+.97,9750) {K4A3K3A2K2A1K14P1P2 9 3 o80¢ 3 +3
—2Kotpl s 11 73
A . _ 12 P3 P4 _<1 2 8 >__1 Sevt 4+ =2
(9+.9+,9—9-:9) KOKLKN Koot ogly +m 5 logde’t + -
1 2
X 4+ Z 4-16
53X t3 (4-16)
oK Mptpt §242 s
A _ ) — 13 P2 P4 _ (1 2 5 2)
ORI IR = R K K | 2 i VT
s(2t? —bst —s?) . s 1 ts 1
log > + 2 logde”s + — 4 —
O E A R R TP R T
1 1
6
2K s p st(t? 4 s?) s
A _ . _ 13 P2 P4 (l 2 S 2)
g+:97,04:9739) {K£3K§\2K§\1K14P1P3 2(s+1¢)* & t+7r
(t2+st+25) s 2 ts 19
log 5 — Zlogde? i
Bs 40P e 3 et e Ty
1 2
_Ix 4z
3~ 3}
—2K s r (s? + st + 12)? s
A _ . _ 13 P2 P4 . (l 2 5 2)
9+,9=,9+,9-39) K£3K§2K§\1K{\4pfp§ (t+s)* o t o
s (14t% + 19st + 11s%) oo ® 11 low §¢7s - ts N 73
- og - — —logde’s —
3 (s+1)3 Y3 G+12 9
1 2
X+ Z 4-17
53X t3 (4-17)

The symbol X above is the relevant four point vertex: —2(pfps + p3pi)/[(p7 +

pi)(p3 +p3)] or 2(p3 ps +pipi) (P +p3) (P35 +pi)]+2( ps +p3py)/[(pf +01) (P53 +p3)]-

Here I also give the rational contribution of the corresponding box diagrams:
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4
B(g+,9+,9—,9—;s) = = —all a terms

9

B(g+,9+.9—9—q9) = —? — all a terms

B(g+,9+,9—.9—:9) = g — all « terms

Blohamioha=) = 5+ o AR
R e N Kf_<2§<];<ppp
B(g+,9—.g+,9—:9) = §+ e ft)? K&éﬁ%ﬁ = (4-18)

So, the rational part of a box diagram vanishes in A = 4 SYM together with the
earlier observation that two and three point functions vanish in N’ = 4 SYM. This agrees
with the 'mo-triangle’ assertion and some other technical observations that are commonly
used nowadays to simplify the computation of N/ = 4 SYM amplitudes. Using a box
reduction procedure [18], an integrand with d powers of momenta in the numerator and n
propagators can be reduced to tensor box integrals of degree up to d + 4 — n. For gauge
interactions, all three point vertices have one power of momenta, so there is n powers
of momenta in the numerator of an n-gon diagram. Then the result of reduction is a
combination of degree four box integrals, and some of the degree four box integrals can be
further reduced to triangle and bubble integrals. In A/ = 4 SYM, due to the ultraviolet
cancelation between different species, the degree of an n-gon integrand will be n-4, so
the result of reduction is thus scalar box integrals. This essentially is the 'no triangle’
assertion, which we did observe in Section 4.2 of vertex corrections. While it can also be
shown that the scalar box integrals will not in any way produce rational terms, this I have
explicitly shown in the above list.

The gluon scattering in N' =4 SYM is very simple (up to infrared terms):
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—QKA4p+p+ s
A(g+, g+,9—,9—SYM) = 12784 {— <10g2 2 —|—772)]
K$3K§2K2A1K1A4PTP; t
_2KA4p+p+ s
A(g+,9—,9+,9—SYM) = 1Br2m [— <10g2—+7r2)] (4-19)
K&K&Kﬁ[(ﬁpfpf{ t

without any need for counter terms.
4.3.3 Restoring Gauge Covariance

So far, we have only studied the pure gluon scattering, and we have encountered some
non-gauge-covariance (non-Lorentz-Covariance) such as the hanging four point vertex.
We have to complete everything to a tree in order to maintain Lorentz covariance. At
four point level, the spinor structure of the leading order amplitude is the unique one that
agrees with all the helicity assignment. So for the result to be Lorentz covariant, it has to
be proportional to the leading order. This remains true to all orders if supersymmetry is
present according to [17], which says MHV amplitudes are proportional to tree amplitudes.

We cannot just simply use a counter-term to cancel the hanging four point vertex,
because they are not polynomials in external momenta. However, we can adjust the
relative strength of the exchange diagram to the contact diagram by adding a term
proportional to p? to the self-energy term Eq.4-4. This modification only changes the
field strength renormalization by a constant, hence is perfectly allowed. With this term,
the coefficient of s and t channel exchange diagram is shifted. So if we pick the numerical
factor in front of p? to be —1/6, —1/3, —1/3 for scalar, fermion and gluon respectively,
then they will match the coefficient of the lone four point vertex, completing it to a full
tree. This brings about a change in the numerical factor: 1/18 — —5/18,19/9 — 13/9,
73/9 — 67/9 [14].

I have also done the computation with dimension regulation. The procedure was
to use dimension regulation to regulate the transverse momentum integral, and as
soon as this is done, € will be set to zero. Hence the infrared regulator is still k7. The

computation shows that the hanging four point vertex and the pure number will vanish,
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this is expected since I have used a gauge invariant regulator. The numerical factor in this
scheme will come out in agreement with [23], who used dimension regulation through and
through, (not that the numerical factor is any thing important, as it can be altered by a
redefinition of coupling constant).

This type of counter-term will be put to a more severe test later on when we consider
the scattering of not just gluons but quarks and scalars. These counter terms had better
be universal in the sense that they are only the property of the self-energy bubble, and
should not depend upon what process it is embedded into.

4.3.4 All 2-2 Processes

SK2KY? 2 2t 2
A(s, s,9+,9—) % [ _2As+20) log 0e7s — i log det
SP3 P4 P1 (s+1t) (s+1)
2 o 4 g2 1 T+ (ot
S +8+2 <10g2§+7rz>]——><{1+(p2 ﬁl)(pi2p3)}+1
(s+1) t 2 (p! +p3)
—8Ky K35 28 2
A(g+,8,9—,8) = ———=5 |9 — 2logde’s — 2log de’t — (1og -+ ) —1x(-2)
stpy P3 Do t

59s® 4+ T7st + 59t 3(2s + 3t)
3st

2 2 2 2
B togaere - 2 (10g? )|
S

1 {(pf—prﬁ)(p; —pi) | (pi —p))ps —p;?f)]
2 (py +p3)? (p3 +p3)?

A(s,s,s8,8) = [ log de™'s

while A(s, s, s,8)o = 2(s* + st + t?)/(st).The above are the processes only involving
bosons, the scheme for picking counter term described in Section 4.3.3 remains valid,
namely, we can find a universal set of numerical factors that will complete all the
above amplitudes into trees. This set can be chosen as -1/3 for II(g+, g—; g), -1/3 for
II(g+, 9—;q), -1/6 for II(g+, g—:; s) and -1/2 for II(s, s).
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However, when fermions are involved, I failed to find a universal set of counter terms

that will fix the problem. I shall list the result of the computation first.

—4KNKL 167 11 s 1 —4pipf
Alg—,q—,G—,q—) = —=222 {— — —logde’t — (log2 - —|—7r2)} — o x —2
( T Thh o : 3T i)
(4-20)
AK K, (s + 1)
A(q_vq_vq_vq_) = 18322
stp{ p3.
67 11 ¢ 11 s 25?2 + st + 2t s
— - — log de”s — — 1 5”’t——<l 22 2)
{9 st 00T g8 2(s+1)? et
3 Lol +p1i)* (o +p3)?
The notation here is that a ’¢’ represents an incoming fermion line, a ’§’ represents
an outgoing one, '+’ corresponds to right handedness while '—’ corresponds to left
handedness. So the process corresponding to Eq.4-20 and Eq.4-21 is Fig.4-6:
—4K{KY, [67 11 s 1 —4pSpf
Alg—,q—, q+,q+) = —2-2 | — — —logde’s — <log2 — +7r2)] — - x 2
spfpy |9 3 t 37 (pf +p3)?

In fact, by charge conjugation, A(¢—,G—,q + g+) can be related to A(q—, ¢—,q—,q—),
which then can be obtained from rotating A(q—, ¢—, G—, ¢—) clockwise by one notch (up
to the external line factors). As was explained in Section 2.2, instead of associating

V/pT to each fermion line, I only associate a factor of p* to an outgoing line, but

nothing to an incoming line. This is simply because a square root always causes

troubles in automated computation. For example, —4K 1y K3,/(spf ps) should really

be —4K[\Ky,/(s\/pT p3 p3pi), which is quite clear as the latter is Lorentz covariant (can
be written as spinor products), but the former is not. The phase of the square root here

can be given arbitrarily.
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A(S,S,q—,q—) =
AKNKY, 92 29 2% + (

s
log? = + 7°

— — —logde’s — "

)] 2 2pi(ps —pi)
.+ T X T e
spyps |9 6 2(s+1) 3

(P +p3)?
So far, the effect of using a non-covariant regulator is the mismatch between the

exchange vertex and 4 point vertex in the final result. However, in the case of gluon

fermion scattering, the mismatch is much worse.

_8K/\2K\/ K\/ s
Alg+,9—,9—.4—) = 18— 32 2 [6 — 3logde’s — <log2 ~ 4+ 71'2) }
stpy p3 p3° t

1
—3 X s channel tree

8K K Ky

A(g+7 g_7 Q+7 g+> =
stpy p3 p3 vy

{6 — 3logde’s — <log2 ; + 7r2> }

1
~3 X s channel tree

Here we see that the mismatch is between s and t channel. By s-channel tree, I mean the

s-channel exchange diagram and also its descendent four point vertex.

_8KA2K\/ K\/ S
Alg+,q9—,9—.4—) = 214332 {6 — 3logdet — (log2 -+ 7r2) }
stpy ps p3° /

Here, it is mere coincidence that everything matches (the planar condition eliminates the
u-channel tree).

The problem of fixing counter terms will be revisited in the future work discussion.

p ks
a kl: b

Figure 4-1. Two-point function and the dual momentum assignment
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Figure 4-2. A self-energy diagram embedded in a scattering process

\/, ¢, P3

/\7 a, p1

Figure 4-3. Triangle diagram
N, a

|

ko ky

r, b, p1 k1 r, ¢, P2

Figure 4-4. Fermion vertex correction corresponding to Eq.4-9

A, aq
kg k4
- /{;1 <.

.b7 D1 C, P2

Figure 4-5. Scalar vertex correction corresponding to Eq.4-11

P4 l\ y p3, L pa l\ y p3, 1
V. N V. N

D1, l D2, l D1, [ D2, [

Figure 4-6. Four-fermion scattering corresponding to Eq.4-20 and Eq.4-21
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CHAPTER 5
BREMSSTRAHLUNG IN LIGHT CONE

In this chapter, I shall deal with the infrared terms.
5.1 A List of Infrared Terms

All the amplitudes given in Section 4.3.4 are amputated Green’s function, the
external leg corrections are not included. As we can see that the self-energy diagram
always contains a term log de”p?x(1 — x), which gives a multi-particle branch cut on
the positive real axis, stopping us from doing wave function renormalization. This can
be cured by summing over collinear emissions or absorptions from the external legs.
The analysis of [14] showed that doing so is equivalent to replacing log de?p?z(1 — z)
with log 6e?A%z(1 — z), A being the jet resolution. For I1(g,g,g,g;s) or 11(g,9,9,9,q),
this substitution alone is enough to regulate the infrared divergence (the triangle or
box diagrams involving fermions or scalars are devoid of further infrared divergences).
While all the other processes (whenever there is a gluon propagator juxtaposed between
two massless external legs), the computation is fraught with IR terms. But these IR
terms when combined finally, are universal, which shows that they are physical infrared
divergences, instead of light cone gauge artifices. Here I list all of them first.

All momenta appearing below are dual momenta, with the real momenta given by
pl =ki —ky,pf =ki — ki, p3 =ki — ki, pf =k — ki and ky < ki <k < k], see

Fig.5-1.
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+ _ +H\/(_Lt+ + ¥
log(k‘l qat)( k:2+q)s5e[ 1 1 ]

(ks — k{)? gt —ky gt =k
(" — k) (=ki +q*)sde? [ 2 }
(ki —ED)(ky — k) Lgt =k
(¢ — k) (ki —q*)sde’ [ 2
(ki — k) (ki — k7)) [q+ — k;]
(—kf + q")*toe? 2
(ki — ki) (ki — ki) [‘q+ - k;f}

log

log

log

62



The above is always multiplied by the corresponding tree amplitude (by a tree, I mean
whatever I wrote in front of the square bracket in the list of amplitudes). As long as the
process has infrared divergence, the infrared divergence will be of the above form.

The infrared terms above will be combined with soft Bremsstrahlung and collinear
emission (absorptions) along with the self-energy insertions on the external legs to give a
finite result. The basic idea is the same as the standard treatment of infrared divergence.
That is, we insist on measuring jets (within a certain resolution A) rather than gluons or
quarks.

5.2 Bremsstrahlung Process

I will be focusing on final state bremsstrahlung radiation (region between leg 3 and 4)
Fig.5-2, and study the four gluon core scattering process as an example.

pi, ¢ = 1...4 and k are assumed to be incoming, and k will be called the extra one
for now. The momenta of the 2-2 core process will be denoted as j;, ¢ = 1...4 (j for jet).
Possible sources of divergence associated with region 34 are

1. k is collinear with p3 or py

2. k is soft.
We can look at roughly how each type of divergences get canceled. From Fig.5-3, it is
quite natural to guess that the collinear divergence arising from k being parallel with ps is
going to be cancelled by the corresponding self-energy bubble on leg 3. The cancellation
will work as long as k is not too soft. We can make sure of this by setting £™ away from
zero as a cut off. What happens when & — 0 is that we lose coherence. More concretely,
when k is not too soft, we only need to worry about the case when it is attached to ps.
When k ~ 0, it can be attached to either ps or ps. So we will be considering the following
cancelation of Fig.5-4.

There is no natural boundary as to when k is soft enough. In fact, we can first impose
an artificial boundary A, such that when k* > A we use the scheme in Fig.5-3, when

kT < A we use the scheme in Fig.5-4. When the dust settles the A dependence disappears.
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The method described above was used in [14], it involves a careful analyzing of phase
space to avoid double counting. However the beautiful Parke-Taylor expression for helicity
amplitudes greatly simplifies the computation: the first diagram in Fig.5-2 is given by (in

the large N, limit)

2

(g\/ﬁc>3< <p1|p2>4

p1|p2)(p2|p3)(p3|k><k:|p4><p4|p1>
96N§ (p1 'p2)4
2 (p1-p2)(p2-p3)(p3-k)(k-pa)(ps-p1)

(5-1)

It’s quite clear from Eq.5-1 that when k is collinear with ps4 or soft, there will be
divergences.

As stated before, we have to set kT away from zero in order to cut off infrared
divergence, but this does not regulate collinear divergence, so a temporary cut-off ¢ will be
used tentatively to cut off collinear divergence.

In order to parameterize the phase space, define (refer to Fig.5-5)

2Q - (—ps3 2Q - (—p4
x:%, :%, Q =p1+p2 (5-2)
The integration region of x and y is depicted in Fig.5-5, we will only be integrating = and
y in the 'L’ shaped region. R is related to detector resolution according to R := A?/s.
The physical meaning of these cuts is quite clear: when z ~ 1, k- py = 1/2(k + py)? =
1/2(Q + p3)* = 1/2Q*(1 — z) = 0; when x,y ~ 1, k- Q ~ 0 (since Q is time-like, k& ~ 0).

Here and after, s and ¢ will denote the Mandelstam invariants for the 2-2 core process.

A trick used in [24] turned out useful. Write

1 1 1

s Dk -p) s R st p0) | r Rk (03 1 p2)
_ 2 2 n 2 2 (573)
s(1—y)s2—z—y) s(l—x)s(2—xz—y)
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The first term will only diverge when p3 and & are collinear and(or) k is soft. The
second term will only diverge when p, and k are collinear and(or) k is soft. For the second
term, the integration of x and y inarea A: 1 — R<x <1—¢ 1 —x <y <1 is divergent,
but finite in thearea B: 1 — R <y < 1; 1 —y < x <1 — R. These two areas will be
treated slightly differently.

e Region A:
Since © ~ 1, p, and k are either collinear or £ is soft. All z at innocuous places can be
set to be 1. Further define L to be a reference (light-like, L° > 0) 4-vector, such that

L-p=p*. Now the 3 body phase space integral is given by

ST

64(271')5 ngdIdQ4k

dQ23 is the angular integral of p3. df)y includes the angular integral of ps and k, dx
represents the integral of the norm of p5. Note that if the phase space integral is isotropic,
it can be written as the standard form sdx dy/12873 for a 3-body final state. We can
factorize the phase space integral into [1/(8(27)?)dS2%3] [sz/(8(27)3)dzdSyy). Here ps is
picked out as ’the special one’,; since in region A, ps is always hard, and is almost equal to
J3 of the 2-2 core process. I will integrate out [sz/(8(2m)%)d2yy], while the [1/(8(27)?)d2s]
part is what should be compared to the 2-2 process.

The second term of Eq.5-3 is parameterized as

9°N? (p1 - p2)*
2 (p1-p2)(p2-p3)(pa-k)(Kk - (pa+p3))(pa-p1)
goN3s? . 1
4s(p2 + p3)*(pa +11)*  (pa-k)(k - (pa +p3))
g°N3st _ 1
s(p2 +p3)?(pa+p1)? s(1—2)s(2 -2 —y)
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Asx ~ 1, (py + p3)? ~ t, (p1 +ps)? ~ yt. The first approximation is always good in
region A, the second is good as long as p4 is not too soft. Plug in the phase space integral,

thus arriving at

6 \73 o2
sxr g°N7s 1
<. dxdS?
/647T3 stiyt) (1—x)(2—z—1y) PO
T 9 1 1 1
= N.AZ . - — dxdS? 59
/647’(‘39 core (1 —$)(2—l’)(y + 2_$_y) Ta3 Ly ( )

where A.oe = g*N2(s/t)?, let us drop the factor 2N, A% _ hereafter.

core

dSy;, can be expressed as

2
i dudv
\/(Ul — u)(u — u)
2(1 —
wem1- 2=y
T
20k 2k :
v =22 (KT < Al
Gz~ 1= Ak < i)
2pT (1 — 2b(1 — Y
S 1 k) Bt D P (5-6)
|Q+ + p5 |« T 17|

We can first pick a particular value of ps, then go to the CM frame of p; 4+ py + p3 to
evaluate the invariant expression 6(k + ps + p1 + p2 + p3)d(k?)d(p3)d*k d*ps. Notice in this
frame, u is in fact cos(psk), v is cos(Lk) and w is cos psL. Then after some exercises in

Euclidean geometry in Fig.5-6, we can obtain the expression for df)y.

ug 1 = vw £ /(1 — v?)(1 — w?) are the lower/upper limit of u (y) integral. The limit
placed upon k™ is for breaking the Bose symmetry between ps and k and to make sure
that the approximation (p; + ps4)? ~ yt works (the A dependence will drop out).

Performing the u integral using
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L | 1
E— b>0)
/_1a—|—b$\/1—x2 N a? — b? (a>b>

27 n 2w ) (5-7)

JE-T+u)E—1+uw) /G -1-w)E—1-u)

! 1=e ST 1 2

dv dz A% . —

/1—2,\ /1—R 64m3 e (1 - x)(2 - 95) z
(

The first square root can be obtained from the second one by replacing v by —v. So I will
only compute the second square-root. The following indefinite integral will perhaps be

useful:

1 1 —b+ax ++/(a® + %) (22 + 1)

1
d = 1
/ x\/xQ—l—la—l—bx va? + b? o8 a+ bx

The second term of Eq.5-7 becomes

1 ! dv 1—v
1672 1_2,\1—11[ ge(l—i—v)
(1= o)+ (14 v —25)R] + \/[(1 = v) + (L +v — 2B)R]* + 8bR2(1 +v)
4bR }58

+ log

here we have treated the two cut-off’s R and e differently: € is set to zero with fixed v
(fixed £7) while R is taken to be small but non-zero. This treatment agrees with the
strategy given in the paragraph above Eq.5-1. Notice the second term in the square
bracket is finite (when kT is kept away from zero), while the first will be combined with
self mass contributions to cancel the e dependence.

We can make a change of variable (the y below is not the previous y):

67



—[(1 =)+ (14 v — 20)R] + /[(1 = v) + (1 + v — 2) R + 8bE2(1 + v) = bRy

L= b2 —y(l—b) dv b(1— R)y® + 2bRy + 1 — bR
— 1-v=2R U oR 5-9
v y1—R)+ R ' dy [R+y(l—R)]? (5-9)

then the integral becomes

1 /yl b(1 — R)y? + 2bRy + 1 — bR
1672 J,,, [R+y(1—R)|[1—by* —y(1—10)]

_ 1 /y{ l-r 1 1 }10 L /1 dv | 1—v
- 1672 ), [[R+y(l1—-R)] 1-y y+1/b 59T 162 oy 1 —v ge(l—i—v)
(5-10)

where yo >~ R(1 — A)/A; y; = 1. The above integral becomes

1 Uyl 1—-R | 72 dilog(1 + b)} N 1 /1 dv | 1—w
ogy — — — dilo o
1672 |/, [R+y(l—R)] 597% & 1672 Ji_oy 1 =0 s e(1+v)

1 1 1 1—AX 2
— — —log® R — dilog~ +1 log A\ — — — dilog(1
167?2{ 2ogR dlog)\+ og R )\ og A 3 dilog(1 + b)

'oda 1—
+ / " log “} (5-11)
1

o l—v Te(l+w)

We can do one more thing to make it more symmetric: as b always comes in pairs with
1/b, we may replace dilog(1+ |73 /4,|) with —1/41log? |55 /4, | — 72/12 by using the formula
dilog[1/(1 — 2)] + dilog[1 /2] = —72/6 — 1/21og® (1/x — 1).

The first term of Eq.5-7 is obtained from the above by substituting v to —v and the

limit of y integral becomes y € [0, RA/(1 — \)]. We get
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1 A 1 b dv 14w
1672 [dlogl—ﬂL sty Ogl—)\+/1—2>\1+v Oge(l—w}
2

1 17 1., 1
= 16#2{ d1logx 5 log Rlog (1 — \) Elog )\+§10g (1=2X)

2
—I—% [—2dilog)\ —log? (1 —\) + % + 2logelog (1 — )\)} }

= log % log (1 — \) (5-12)

In fact, by noticing that du/+/(u; —u)(u — ug) behaves like (7 times) ¢ function as z ~ 1,
Icanset y=1—2(1 —u)/2tobe 1l —2(1—v)/2 ~ (1+v)/2 in the first term of Eq.5-5,
which will lead to the same result in a much quicker way.

e Region B
Now py is the hard momentum, (ps + p1)? is equal to ¢, while (p3 + p2)? is approximated as
xt. The three body phase space integral should likewise be factored as d€2,dydS2sx. Since
there is no need here to hold k7 fixed, and the restriction |kT| < N|QT + pf| can be lifted,
sy/(8(2m)3)dydQsy, is simply sdxdy/(167%). Here I have used a different partition: ),

because the partition associated to leg 3 need not be the same as leg 4.

/ GO N3 sydydQsy, st 1
(B(2m)?)  s(p2+ps)*(pa+p1)?s(1 —2)s(2—z —y)
6N3 4 1 1 2
/g chxdy S . — 7T_ 2NCA30T6 (5713)
1672 s(zt)t s(l—x)s(2—z—y) 167212

I have dealt with the first term of Eq.5-3, the second is similar:

1—N ™ y
7 log N — = — dilog(1 + |j/ /)

1 1., 1
16W2{—§log R—dllogyjtlogR )\

N5f| dk+ L+ 2
+ lo : + =
/0 KOS — k) 12

-Jr‘
3

1 X 1 Xl
+ dilog—— +log R log /
0

. LA
1-N 1-XN "1-=-X

1
Tk

(5-14)
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So far, I have covered the first diagram of Fig.5-2 when k& does not dominate over
neither ps nor py (k™ < Ajf|, k™ < N|j5|). To complete the region k™ > A|j; |, we need to

do a computation in region 14.

g°N3st 1
4s(p2 +p3)?(pa +p1)*  (pa-k)(k - (pa+p3))
g°N3s? 1 1 1 1

" S(pe+p3)2(k - (ps+p3)) _p4./<;p4.(k_pl)+p4_p1p4.(k_pl> (5-15)

with (k + ps)? < Rs and |kT| > A|5f|. One point that I should have emphasized earlier is

that in the presence of 1/(p4 - k), we can only make approximations controlled by O(p4 - k),
and similarly in the presence of 1/(p4 - p1), we can only make approximations controlled by
O(p4 - p1), otherwise there will be errors of the type Rloge. This rule makes the evaluation

of the first term much easier: we can set k to be parallel to p, in all the irrelevant terms.

g°N3s? 1 1 g°N3s? 1 1

8(p2 + p3)?(k - (ps+p3)) pa-kps-(k—p1) 8t(k - (pa+p3)) pa-kps- (k—p1)

Now set up a parametrization for region 14:

—2k - (pl — P4 — k)
(p1 — pa — k)2

2p1 - (pr —pa— k)
(p1 — pa — k)2

F= j=

Abbreviate (p; — py — k) as T. Then k - py can be worked out as 1/2(1 — Z)T?. With this

parametrization:

g°N3s? 1 1 g°N3s? 1 1

8t(k - (psa+p3)) pa-kps- (k—p1) tys (1—-2)T?(2 -2 —g)T?

In the limit # = 1, 7% = |t|. In fact, the above expression can be calculated without effort,
simply by identifying A as 1 — X and b as p{ /|p; | (p1 and py here are the core values), we

can borrow the result from Eq.5-11.
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6473 tgs(1— )2 (2— & — §)1?
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9°N Az, 1. 5= ) 1 ~ A T . J1
I Neleore | Z 1002 R dil 1 log (1 — \) — = — dilog(1 + 21
G2 [ 2ogR ilogT— + ogRl_Aog( ) 3 ilog( +|]f|)
il gt it gt
J
+ / Tt log| 4l]€+ ]
At il —Fk €
1 N kt
dilog— + log R log — 1 516
" o [ oy s R os 3+ | 8 o1

Comparing this to Eq.5-11, 5-12, we see that the A dependence cancels.

Now we look at the second term of Eq.5-15, it in fact can be interpreted as a false
jet, since it will make a contribution when p, is parallel with p;, thus the final state will
be a three well separated jets unless p4 is soft. Our task is to compute this term in the
region 2k - p; < Rs with || > |k¥| > A|j,|. This region can be dissembled into a part
{1—# < R}{# < 1 — R}, which produces a 1/(167%)72/12 (the restriction on k* makes
no difference).

There is the other part: {1 —# < R} ({1 -7 < R} N{|kT| > A/ |}. Here I only lay
out the strategy if one were to compute it honestly. First compute in region {1 — 7 < R}
with no restriction on k%, then subtract the entire region of {# < 1 — R} ({1 — § < R}
again with no restriction on k*. The validity of this strategy lies in the fact that there
exists an upper limit of order O(R) for |pf|, beyond which there is no intersection with
the region {1 —# < R}({1 — § < R}, while the limit |[k*| > A[j;| translated to
Ipi| < (1= MN)|j;] | is well beyond the said upper limit.

Yet in practice, the condition that we can only make approximation of order py-p; =0
makes the evaluation (and interpretation) quite hard. So we make a compromise, and
allow for errors of Rloge, trusting that it will go away with a complete calculation. I shall
set not only ps - p1 = 0 but also py - £ = 0. Then, this term will cancel against some

disconnected diagrams which will be explained later.

So the completed result for Eq.5-4 is
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1 1 2 il gt |t
{——bg R—W——dllog(ljL it L)+ / log | ]
0

1672 | 2 4 T | — k* ekt
1 1 2 15| il g+ kt
+ — Zlog? R — =— — dilog(1 + £ +/ log —
= g~ dloell+ 55 R T )

(5-17)

It makes a similar contribution associated to leg 3, with some suitable substitutions.

Let us take a look at the self-energy bubble on leg 4 Fig.5-7, calculated with a cut off
Kﬁ WK fl o/Pi kT > u? to regulate the on shell divergence. e should be in this case identified
with p?/s and € with p?/|¢|.

The wave function renormalization of these diagrams are (with the 1/2 from 'v/Z" and

another 2 since it enters as a cross term):

left: /1 ! 1—1— ! log z(1 — x)
‘ o 1672 |z 1-—ux & s

11—
middle: / (1-2) log z(1 — x)
0

1672 =
right: /1 L log x(1 — ) (5-18)
o 16721 —x

where z is |kT|/|j5]. Not all of Eq.5-18 will contribute to region 34. For now, I only take

the first line. Combine Eq.5-18 to the expression above:

12 {— 1log R — log R——2 — dilog(1 + s |) dilog(l—l—L)
1672 2 2 \4| 1|

0 gt et i gt (i = k)2t
lo —I—/ lo 1
/0 R T S V7 R e

Thus, the effect of a self-mass insertion is to replace € by 1/sz(1 — x) or 1/|t|z(1 — x).
Fig.5-8 represents all the diagrams that contribute to the Bremsstrahlung process.
The second diagram of Fig.5-2 or Fig.5-8, when combined with the second line of Eq.5-18,

will contribute to leg 4:
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1 1 w? |J3‘
— =1 R———dl 1
162[ g 8 7 dilos( T3 \)
lid| dk+ Et2g 1
+ /0 = log —— e +/0 (=3 + 3z — 2% logz(1 — z)Rs (5-19)

Note its contribution here should be attributed to region 34. This diagram won’t
contribute to region 14, because it remains finite when ps — 0.

The third is similar to the second:

1 1 .2 g
— —log? R — — — dilog(1 1
162[ 2ogR 1 10g(+‘4|)
|dk;+ L2t 1
/0 e log j+|2 | +/ (=3 + 3z — 2% logz(1 — z)R|t| (5-20)
4 0

Note that it is credited to region 14.
In summary, the contribution from Bremsstrahlung plus self-mass insertion to region

34 is

1 A2 72 1., |
| —2log? = —r?—2( -1 — Zlog?
167T2[ T < 6 2% |

ifl gt k2 i gt kT2 67 11
9 ] 9 P og 2 2L 2o A2
+/0 k+og]+2+/o k+ogj3+2+9 3 0f }

4

And a symmetric contribution to region 14:

1 o AZ 2 1 pi
—2log? — — 72 -2 —— — —log* =
16w2[ o8 T ( 6 2" |4|)

A Wkt kT2t 67 11
2 1 2 —1 — — —log A?
v [ G 2 [ ot - e

As a summary, although the kinematics in 14 and 34 region are very different, the results
are almost symmetric up to the false jets that I haven’t included. Next, we study how to

combine these results to the virtual process, and defer the discussion of the false jets.
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5.3 Combining with the Infrared Terms from the Virtual Process
The list of infrared terms in Section 5.1 can be rewritten in a more symmetric form

that is independent of the relative size of the dual momenta:

Region 34:
1 [/pi dk+l k+2s ps | dk:*l k+2g
— og +/ og
872 | Jo KT Tlpillpsl  Jo kT T [psllpdl
5| g+ k)t
p p
+ / = log {l2s1 = K| i'} (5-21)
.y ([pg ]+ &) ps |
Region 12:
~1 UPT dit ks 21 di*t | ks
— og +/ og
872 | Jo KT Tlplllpsl  Jo kT T [p(Ips |
s
N /”2 ah" e 1P —k‘+)lp1+|]
KT (Il T+ R Ips |
Region 41:
~1 UPT dk+ k+2(—t)+/PI dkt k()
— og 0g
872 | Jo KT T pfllpil  Jo kT T Ipllpd |
s
N /pld/f+ o (Ipf\—kﬂlpil}
LA G 12
Region 23:

1 P3| gE+ k2 (—t) 5| gg+ k2 (—t)
) - log ———— + - log ————
8 0 k p3 I[p5 | 0 k p3 I[p5 |
/%* k(s - k+>|p;q

|

og
5 kT (k* — |p3)|p7 |

P3
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The first two terms of Eq.5-21 cancels the divergence of Eq.5-19, while the last term
integrates to be —1/(1672) [—n? — log? (pf /p{)]. Finally, all the non-covariance pieces

cancel and everything falls together nicely:

+ — — —log A?] (5-22)

is the total contribution of virtual and Bremsstrahlung processes to region 34. While for

region 14 we have similarly:

A2 272 67 11
o2 T L2 g A2 9
|~ log -3 TG ) (5-23)

Thus, we can write down the total scattering probability:

P(g+,9+,9—,9—39)1 =

2
gsN
5 A? 5 A? 7T2 67 11 SA*eY S
—21 ——21 — “log —— +log? =
o8’ T T R T |t|”

P(g+,9—, 9+, 9= 9)1 =

e
A? A r2 67 11 A%
—2log? — —2log® — — — 4+ — — —1
[ I T I T
(s2+st+t2)* o, s  s(14t> + 19st + 11s%) s ts
(t+s)4 ltl 3 (t+ s)3 L] (t+ s)?

And the probability with A/ =4 SYM is
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P(g+,9+,9—,9—; SYM),

) 2 2
¢2N, ) o A% 67 5 26
_p —g-)ol1 —2log® — —2log” — — — + [-— — —=N; N
(g+, 9+,9—.9 )o{ + 87T2{ °g T A R g Vi)
Je'A* 11 1 4 S
] — "+ N, + - Ng] +log® —
gl gt gl Floe mﬂ
¢2N., A2 72 67 5 26

2A2 2
C9log? S g L 2L 2y 2D
{ g’ = —2og Hr - Hlg g g il

= P —, g—)o|l
(g+7g+7g , g )0|: + 871'2

de?At 11 1 4

+ log——[-—+ 2N+ 2N/
+ m log %[—5(2752 _ Bst— )N, + As(522 + st + 25?) Ny — 25(14€ + 195t + 1152)]
+ Q(%t)g[—Ns +4N; — 2}” 5o

5.4 The Inclusion of Disconnected Diagrams

In this section I will discuss certain disconnected diagrams Fig.5-9, whose importance
was explained in [16].

Only the cross term between the first and others in Fig.5-9 has the correct power in
coupling constant, and the factor 2E,(27)383(k — k') = (2r)46*(k — k') corresponding to
the forward particle line will force the two extra legs to have the same momentum.

The fourth and fifth diagram of Fig.5-9 look rather like self-energy diagrams, and
indeed they will receive the same factor of 1/2 discount just as self-energy diagrams on the
external legs do. The fourth (resp. fifth) diagram will have to be evaluated first with p,
(resp. pp) off shell. When the dust settles, any term that do not contain p? or p3 will be
dropped just the same as we are wont to drop the tadpole diagrams.

We have insisted on having two partons scattering into two jets, so the two extra

gluons have to be soft. The Feynman rules give (with the approximation k ~ 0)
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2
. |N, 8p1 - P4 } 6735 t
AR N3 5-25
< g 9 ) core{ (/{Z —|—p1)2(/€—p4)2 g ¢ ¢2 2(1{7'}71)(]{7‘]94) ( )

to be evaluated in the region (k — p3)? < A? and (k — py)? < A%
Next I show that it will cancel the false jet terms. Setting ps-p; =0 and py - k=0 in

the second term of Eq.5-15:

g°N3s? 1 1 g°N3s® 1 1

~

8(p2 + p3)2(k - (pa +p3)) pa-p1pa- (k—p1) 4ts  ps-prpa- (k—p1)

The third diagram of Fig.5-8 will double the above. To make comparison with the

disconnected diagrams, we need to identify k with ps and p, with —k:

g6Nfs3 1 1 gGNS’S?’
H

1
2 X
4ts  pa-prpa-(k—p1) 2ts  (=k-p1)(=k- (pa—p1))

(5-26)

The fifth and seventh diagram will give a similar contribution:

9 g°N3s3 1 1 ¢°N3s® 1 1
8(p2 + p3)%(k - (p1 +p2)) p1 - pap1 - (kK — pa) 2ts  py-papr - (k—pa)

Now identify k with p; and p; with k:

N3 1 o\ 1 (52
2ts  p1-papr - (k—pa) 2ts  (k-pa)(k- (p1 —pa))

The sum of Eq.5—26 and Eq.5-27 cancels Eq.5-25. The cancelation above is ad hoc

and certainly not the prettiest. For one thing, we have made approximations of order
O(Rloge), for another, the interpretation of the disconnected diagrams as false jets is not
intuitive. However we can see the similarity between Fig.5-9 and the false jet terms: 5-26
(resp. 5-27) would be a lot more natural had ps(resp. p;) be an incoming(resp. outgoing)

particle. While if we could change the sign of £° in Fig.5-9, they would all become true
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loop diagrams. So both the false jets and Fig.5-9 have the 'incoming-outgoing-reversed’
problem. I believe a better way of dealing with them is possible.

In [14], the false jets come more naturally. They come from the diagrams with leg
4 absorbing a gluon collinear with itself, or leg 1 emitting a gluon collinear with itself.
These processes suffer collinear divergences, and they are cured by the fourth and fifth
diagram in Fig.5-9, while the cross term between them is canceled by the second and third

in Fig.5-9.

Figure 5-1. Dual momentum assignment

ps K b3 ps K b3
4! D2 b1 D2

Figure 5-2. Two diagrams with an extra 'unseen’ gluon the arrows indicate helicities,all
momenta are incoming

Figure 5-3. Cancelation of collinear divergence
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Figure 5-4.

lre=1

Figure 5-5. Phase space integration region of x and y

N
/
|
=Tl

Figure 5-6. Configuration of ];7 p3 and L in the CM frame of P1 -+ P2 + ps3

" By Ny

Figure 5-7. Self-energy bubble on leg 4, they will cancel the ¢ dependence in the
Bremsstrahlung

G

A AN AN AN

N AN %\ %\

12,14, 23 12

Figure 5-8. All non-vanishing Bremsstrahlung processes, the numbers underneath them
are the regions they contribute to
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P4 b3

]{3/7/ b1

b1

Figure 5-9. Disconnected Bremsstrahlung with two extra 'unseen’ gluons
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CHAPTER 6
GLUON SCATTERING WITH MASSIVE MATTER FIELDS

I only computed gluon scattering amplitude with massive matter in the loop, for these
are the only processes without any internal gluon propagators. If it were not so, we have
to devise a way to regulate the infrared divergences. Dimension regulation certainly works,
and the entire problem is reduced to calculating the ’box coefficients’. But this is simply
bringing coals to Newcastle, as there are people who have already developed the technique
and can do it a hundred times faster than me. The new thing about our calculation is
the physical infrared cut off that does have a meaning, yet I haven’t worked out how to
incorporate this cut off into massive amplitudes.

6.1 Computation Technique

The main difficulty for the massive field calculation is the Feynman parameter

integrals. Indeed, I can only reduce all Feynman parameter integrals into a set of three

definitive integrals. They are

! s 4s s
I(s) := dx = sinh~!,/——
() /0 st(l—x)+ M  /s2+4Ms ' AM

Y1 osz(l—a)+ M s\
— 2 =2 (sinht /-2
J(s) /0 dxz og i (sm 4M)

! st (sz(l —z)+ M)(tx(l —x) + M)
K(s,t) = /0 dxstx(l Sy Ry log Ve (6-1)

Where M is in fact —m? +ie. As M — 0:

s
I ~ 2log —
(s) g 77
1. 5 s
J(s) ~ §log i
2 5 g L
K(s,t) T +2longogM
K(s,t) — 2J(s) — 2J(t) ~ —7T2—log2§ (6-2)

For example, a simple integral:
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1'11’2(1 — T — $2)
(x123t + 2948 + M)?

1
/ O(x1 + x93 + 23 + 4 — 1)dx1drodrsde,
0

can be reduced to

M M

(st 1) I(s) = t2(s 4 1)

J(t)

K(s,t)+

 2st(s + 1) 2st

The definition of Eq.6-1 is in accord with [27, 31]. The last integral of Eq.6-1 can
be expressed as dilogarithm and logarithms. In [30], the author gave two equivalent
expressions of the box integrals, one in terms of dilogarithms the other in terms of
hypergeometric functions. But for the purpose of this paper, I find it most convenient to
use Eq.6-1 to spell out the results.

The Feynman rules for scalar fields remain good, but the decomposition Eq.2-25
does not, since it introduces 1/¢* factors into the Feynman rules. This will complicate
the already complicated Feynman parameter integral. Also ¢+ and ¢~ will be treated
the same in contrast to the massless case, where ¢~ is integrated out and ¢* is given by
> wiki /3o @i

In order to organize the gamma matrix algebra in the fermion part of the calculation,
we make use of the factorizability of gluon polarisation vectors Eq.2-21 to reduce products
of gamma matrices to products of Kf; = p/p — pJpl, which had been proved to be quite

handy. For example, if we are to calculate the diagram Fig.4-1. We would write down:

Tr ([(q — k1) - v + m]yul(g = k3) - v +m]v) (=€) (=€) (6-3)

H(g_|_7g—, Q) = (i9)2Tr(tatb) (_Z> [(q — k1)2 — m2] (_Z> [(q _ k3)2 _ m2]

The numerator can be written as
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Tr[ m (q—Fk1)-o ‘ 0 —V2In)[ks —

(q—Fki) -0 m —V2|k1 — k3)(n| 0
' m (q—Fks)-o ‘ 0 —V/2[ky — ks)[n] H

(q—ks)-o m —V2|n) (ks — k1|
= 2[nlq — ki|n)[ks — kilq — ks|ky — ks) + 2(k1 — ks|q — K1|ks — k1] (n|q — ks|n]
+(k1 — ks|m|n) [ks — ki[m|n] + [nlm|ks — k1]{nlm|ki — ks) (6-4)

For the notation of spinor, see the appendix. The standard procedure of momentum

integration tell us to shift ¢ — ¢+ xk; + (1 — x)ks, and to replace ¢*q” by ¢>g"* /4, etc:

nlq — kiln ) ks — kilqg — ks|ky — ks)

2
= [l(1 = 2)(ks — k1) [n) (ks — ka|e(ky — ks)|ky — ks) + [0]05,[n) [ks — kai|og, [k — >gu2q
o _ _ + ZL’(/{Zl — ]{73)2 _ _ q_2
= (1—2)V2(ks — k) \/572(/{1 yaE + [nlks — k1] (k1 — ksn) 5

7
= (- o)k~ k4 L (65)
here we have used an identity:
a0t I = 2€44€ab; a‘wabbg‘“’ = 2¢beth (6-6)

For a more complicated example, a string of spinor products becomes (with ¢ shifted

to q + $2k’2 + 1'1]{?1 + 1'4]{34 + 1’3]{73)

[p1lq — kalpa)[nlq — ks|ps)
= [p1lqg+ x1(k1 — ko) + xa(ky — ko) + 23(ks — k2)|pa)

nlq + x2(ko — ks) +x1(ky — k3) + v4(ky — k3)|p3)
2

q
= [pn] <p3|p4>— + [p1|2ap2|pa) [n|T2ps — T1p2|P3)

1 V21,4 V2 V212,
o K Ky (K3 —

= () KL VT
Ti 432 Pips Dy Py P

—K3) (6-7)
P3 Dy
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Basically, all of the spinor products can be reduced to one of the Kj;;’s, and the reader
can find in the appendix some practical details as to how to organize the products of Kj;’s.
After the momentum integral is done, we can perform the Feynman parameter integrals
using Eq.6-1.

However, there is one more complication due to the ¢ regulator: the integration over
¢V is different from ¢*(=). Since the momentum integration is no longer homogeneous,
the replacement of ¢“q” by ¢?¢g"” /4 is problematic. But fortunately, when doing the

V) and ¢t(7) will never coexist. For example, in the first

contraction of g'q” — g q*/4, ¢\
line of Eq.6-5, only ¢ will appear in the first bracket while only ¢”, ¢, ¢~ appears in the
second bracket. So, when we make the replacement ¢*¢” — ¢*“q*/4, we should remember
that ¢? actually means qﬁ. Another example, if we have a spinor product such as in the
first line of Eq.6-7, ¢", ¢", ¢~ will appear in both brackets, then ¢* means ¢? this time.
6.2 Self-Energy Diagrams
A factor of —ig?/(16m?) ferd fabe = g2 /(16m2) Tr [t*¢*] will be omitted.

For Fig.4-1, the results are

1 1 (p* —4m®)? 5 , 4
g+, 9—;8)m = — épz log de"m? + E(PT)I(ZF) - 1_8]92 + §m2
4 2 (p* — 4m*) (p* + 2m* 2% , 16
H(g+7g_7 Q)m - _gpz log (5677”2 — g( ;g )I(p2) §p2 + gmg

The gluon mass counter term in the expressions above has been removed already.
6.3 Triangle Diagrams
A factor of g%/ (8x?) fdac febf fied = g3 /(8n?) Tr[t*t*t] is omitted.

For Fig.4-3:
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_217; 1 2 2 2 (p2 — 4m2) pfp; m? 2
D(g+,9+,9=8)m = — K {— logm=oe” + (p, — 4m”) (== + —)1(p,)
pips 2|6 12p} pi? Pl
o402 2 + o+ 2
D1 Py M 1 4m 1pip 24m
o 1+22 2 (pi) 0 g oz 1+22 (1 B) )
p3 po 9 Bpo 6 p3 pO
—2pT 2
L(g+, 9+, 9= @O)m = —2 +p_?; K3\ [ — Zlogm?se?
P1 P2 3
(p2 + 2m?) pips m*
+(ps — 4m?)(—=2 + 20—=-—)1(p?)
3pd pi? Pl
o4 2 2 +. 4 2
DiPpy M 9 16 8m 1p7 Dy 24m
—2a e —gJ(po)jL? + 372 —ag e (1+ 2 ) (6-9)

where o = 1 if leg 3 is off shell and 0 otherwise, and p, is the off shell momentum. Their
anomalous terms are identical with the massless result, which agrees with the fact that
anomalous terms are UV effects.

For an MHV triangle:

4m?
I(p2) + p—J(pi) +

Kp) [ 4m2(p2 — 4m?
T(g+, g+, g+: $)m (K3) [— (v, )

2(p? + 24m2)}

pips 3 5 . 3p}
(K§)? 8m?(p2 —4m?) 8m? o 4(p?+24m?)
Llg+, 9+, 9+ ¢)m = —2 - 2 I(p;) + —J(p,) + —"5—7—"
( ) pips s s (v:) Pl v:) 3p}
(6-10)
6.4 Scattering Amplitudes
A factor of ig*/(872)Tr[t*t?t°t4] is omitted.
KAKOKAKMN[L md
Alg+, g+, g+, g+; 8)m = 8—2—22 211 {— — K(s,t ]
( ) pipspspist 6 st (1)
KANKALKAKN L 2mt
A Q) = —16—2 322 M- T (s ¢ 6-11
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A(g_l—? g+7 g+a g—; S)m

K/\Q +,t 21 t 2 4 2 2 t 2 4 2
_ 15D3 P4 | +s)m(1_ m)](s> (2s +t)sm (- m)[(t)
K)NKYL K K, 2(s+1)s s 2(s + 1)t t
(25 + t)t*m? (2t + 5)s*m? stm? m?(s + t)
—_— —_ -2 K(s,t
crozs O e TOF o el
2(2s% — st + 2t2)m?* (s +1)
+ +
st 6
K/\Q +,t 2 2 4 2 2 2 4 2
S 13vp2zv94 _ {_ (2t 4 s)tm a4 ) - (25 + t)sm a4
2(2s + t)t*m? 2(2t + s)s*m? stm? m2(s +t)
——J ———J(t 1—-2——)K{(s,t
crozs O T ror YO Gr e
2 2,2
+4(25 sstt—i- 2t°)m N (s ;— t)} (6-12)

In contrast to the massless case, the external leg factors are included in the results

below for the helicity conserving amplitudes, since we can perform wave function

renormalization now.

A(g+> g+7 g— 94—, 5>m

—2KNpdpf m?  2m?  2m' 4m 1 m
— 12293294Jr A - B n 510+ K (s, 1)
KK K K{ypips | 2s 3t st 3tz 12 s2
2m?  4m? 1 1 1 1 1
- T logde"mi—Z| —ZX 4+ =
s Tar TmTgeeem 3} 6" T3
—2K Mot pf m?  2m?  4m?*  8mt 1 m?
- = K/\K/\[(li[z/\4+ +l(— - + 53 —)@t) + (——
430832821 8 14P1 P2 s 3t st 3t 3 S
4m?  8m? 19 2 21 2 4
- 4 Zlogde’m? = =2 X - =
s T Tg tgesoem 3}+3 3
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—2K’\4p+p+
A +7 ) +7 —3S)m = 137274
(g 9909 ) K$3K§2K2A1K1A4PTP;

tm?(17st + s? + 4t%)  2tm*(2t +5s)  t(5st — 2s* + 1?)

(= ) (s)

6(s +1)3s 3(s +t)2s? 12(s +t)3
+(_sm2(17st + 1?2 +4s%)  2sm*(5t + 2s) N s(bst — 2% + s%) V(1)
6(s + )3t 3(s +t)%t2 12(s +t)3
2stm? s2t? 2stm? m? s2t?
— J J(t — K(s,t
+((s—|—t)3 (s+t)4)( () + (1) + CEDIRRCETE 2(s+t)4) (5:%)
2m?2(2t? + 2s* + 3st) N s+ + 1lst 110 SeTm? 1] 1 N 1
3(s + t)st 18 +02 6 ¢ 3 767 73
—2K{'p;py

Alg+, 9=, 9+, 9= Q)m = —2
K£3K§2K$1Kf4p1+p§
tm?(5s% + 2t2 — bst)  4tm*(2t +5s)  t(5s® + 2t% + st)

( VI (s)

3(s +1)3s 3(s+1)2s2 6(s+1t)3
+(tm2(5t2 +25° —bst) | 4sm!(5t +2s)  s(5t° + 2s% + st) V()
3(s+1t)3t 3(s + t)%t? 6(s+1)3
4stm?  st(s? +t?) m?(s — t)? 2m* st(s? +t?)
t — K(s,t
B EE Ry P D Py A P E TP A
4m?(2t? + 252 1952 4+ 19t + 4 2 2 2 4
m*(2t° + 2s* + 3st) 9s% 4 19t° + 7St+—logée'ym2—— 2 od
3(s+1t)st 9(s+t)? 3 3 3 3

The last numerical factors —1/3 and —2/3 inside each square bracket is due to the
amputation of external legs: [lim,2_o I1(p?)/p**/2.
6.5 Photon Photon Scattering

The amplitude of photon-photon scattering can be obtained from the above results
fairly easily, all we need to do is to replace g*Tr[t?t"t°t?] with ¢* and sum all the crossings.
The reader might think that we should also remove the triangle diagrams from the
amplitudes since these diagrams involve tri-gluon vertices which are absent in an abelian
gauge theory. But, these diagrams will automatically cancel each other when we sum over
all crossings. This cancellation goes by the name of U(1) decoupling. The amplitudes are
listed in the appendix.

When we sum over all the crossings, the counter term that is proportional to the

four point vertex will vanish, while the pure number 2/3 will become 2, which has to
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be subtracted to restore gauge covariance. We obtain the following photon scattering

amplitude:
ie* AKNKO KN K 4m* 4m* 4m*
A - = 43+*+324*21+*14 2_ K t_—K _—Kt
() = D pIpiptst o K8 t) — ——K(s,u) — ——K(t,u)
iet  stK{Zpipf 4m?  4m?  4m?
A )= — 1372 14 2 J J(t)+J
(b ) = g e 2 | T+ B T () + J(6) + ()]
om?  4m? 2m?  4m? om?  4m?
L LG i P S D L L I e AT k¢
b2 K4 |2 s+ [P - )
4 R Mt
A+ =) = E2 A TCA 12/\p3]Z\4 +.
Am? s K3 Ky Koy K{ypy pa
[8m?2  4m? 2t 2 4m? 2
{ 8m’ ﬂ___l}[(m {8&+ﬂ__u_1]f(u>
B t s u s
[8m? 41?2 + 4st + 252 2om2  4m? om?  4m?
- t T g (s, + |2 T
+_S = HJ()JFJ(u)]Jr{ ; St} (5,)4—[“ Su} (s,u)
[2(41% 4+ 4st + s> )m?  4m*  2t% + 2st + s?
N ( +s+s)m_m+ + 2st + s K(tu) — 2
i stu tu 52
-4 st K Mptot
A(+;_7+7_) = £2 2 1A S/\ 13/\p222\4 +,+
4 u? Ky Ky K5y K{ypy p3
[8m?  4m? 2t 8m?  4m?  2s
{ —+————1}[(t)+ [——l—————l][(s)
L u t u U S u
[8m? 41?2 + 4dut + 2u? om?  4m? om?  4m?
- UL LU e LI LU e
—l—_ " " ][J(t)—l—l](s)}—l—{ ; ut] (u,t)—l—{ . su] (s,u)
[2(41% + dut + u®)m?  4m* 212 + 2ut + u?
N (4% + dut +w’)m*  4m n +2ut +u K(t.s) 2 (6-15)
i stu ts u?

The spinor structure above has been set up to be uni-modular and invariant under
crossings of two legs. The results here agree with [27] and [31]. Note that in the first
term of Eq.(127.18) of [31], the authors seemed to have left out terms of —4/s + 2/t
and —4/s 4+ 2/u in the coefficient of B(t) and B(u) (their B function is effectively our
I function) respectively, as Eq.(127.18) will not lead to Eq.(127.20) without those two

terms.
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CHAPTER 7
CONCLUSIONS AND FUTURE WORK

7.1 Conclusion

To conclude, I have studied the renormalization of gauge theory on the light cone
world sheet. In order to do so, I computed all the four point amplitudes in gauge theory.
The box reduction technique was developed to extract the artificial divergences and IR
divergences. The artificial divergences are the rational functions containing 1/¢* poles,
they come from the light cone gauge propagators and were shown to cancel in a gauge
invariant quantity. The IR divergences, regulated by setting ¢+ away from zero, were
combined with the Bremsstrahlung contributions to give a Lorentz covariant scattering
cross section. The calculation of Bremsstrahlung contributions was also done in the light
cone fashion to facilitate the comparison with the virtual processes. A mismatch in the
rational parts of the amplitudes were prevalent, the restoration of gauge covariance was
only partially addressed. Finally, the scattering of gluon by gluon with general massive
matter was computed for completeness, and the light by light scattering amplitudes were
obtained along the way.

Next I give some discussion on some unresolved issues and an outlook for the future
work.

7.2 Restoring Gauge Covariance in the Light Cone

In [13, 14, 15], we insisted on only allowing counters terms that are polynomials in
the target space. Thus, when we saw that there was a hanging four-point vertex in an
amplitude, we could not put in a four point vertex as a counter term, but instead we
modified the self-energy by a term constxp? to adjust the strength of the exchange diagrams.
But this scheme does not restore the gauge covariance for all the amplitudes.

Here T suggest a new system of putting in counter terms. Diagrams such as II(g*,g") enter
the amplitudes as ’double quartic’ graphs, similarly I'(g+, g—, g ") enters as 'quartic swordfish’

diagrams, both of which are treated as 1PIR graphs in the canonical light cone formalism.
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Treating them as 1PIR graphs forbids us to adjust their strength, for they usually contribute a
multiple of four point vertices, which is not a polynomial in the momenta.
In Chapter 4, I compared I1(g+, g—;s) with II(g", ¢g";s) and I(g+, g—; ¢) with II(g™,g7";q).

Here I give the result again:

1
(g+,9—;s) = p° [3 - —logp25ey]

18 6
+ + +2 [4 1 2¢ v
O(g",9g":8) = p §—glogp de
2% 4
M(g+,9—39) = p* [g—glogpzée”’]
20 4
M(gt,g%59) = p™ go—glogpzée”]

The non-rational parts of the self-energy contributions are the same regardless of the index on
II*”. We have also reason to believe that, when there is no infrared divergence, the rational part
should also match due to Lorentz covariance. More specifically, vacuum polarization should be

of the form II" = (g"p* — p#p”) II(p?). This tells us that

M(g+,9—) = en-ep?T(p?) = —p°TI(p?)
M(g+,97) = 0
M(gt,g7) = —p™I(p?)

Hence, apart from the factor of p? and p*?, II(g+, g—) should be equal to II(g*, gT). Therefore,
we have to invoke counter terms to force this equality. I chose to associate to each II(g™", g%;s)
a term —1/6, and to I1(g™,g";q) a term 2/3, T cannot quite find what is the correct value for
(g™, g%; g) because of the infrared divergence. So I simply defined it to be —1/3, chosen such
that these counter terms vanish with N’ = 4 SYM field content. These counter terms are going
to affect the four point vertex that is derived from the exchange diagrams.

The gluon vertex correction diagram has a similar problem:
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—opt 1 1
F(g+,g—,g+;s) == —iKé\J |:_ logpgée“’ — —:|

pii_pg 6 9
1 5
P(g+7g_7g+;3) = _(pii_ —p;) |:6 logpgée“* — 1—8:|
—opT 4 32
L(g+.9—.9+50) = —>Kp, [g log p2de” — 3}
1 P2
4 26
C(g+,9—9"59) = —(pf —p3) [g log p2de™ — 5}

The logarithmic piece matches, so I will associate to I'(g, g,g; s) a term —1/6, to I'(g,9,9;q) a
term 2/3 and to I'(g,9,9;9) a term —1/3 to enforce the total agreement between I'(g+, g—, g+)
and T'(g+,g—,9"). Again, the number for T'(g, g, g;g) is hand picked so that there is no need
for counter terms in NV = 4 SYM. These counter terms will affect the strength of the exchange
vertex.

There are also mismatches between I'(s, s, g+) and T'(s, s,g"), which we cannot easily
determine due to the IR divergence, so we throw in two arbitrary numbers and adjust these
two numbers to make all the amplitudes work. The numbers are determined to be —1/2 for
['(s,s,9+) and 0 for ['(s,s,g") and T'(q,q, 9).

Note that all of the modifications above can be achieved by polynomials in the external
momenta' . I shall report how this counter term system is working out. First, I list all am-
plitudes in Table.7-1, note that by s-pt I mean the 4 point vertex that is derived from the
s-channel exchange diagram.

The effect of the old regularization scheme is listed in Table.7-2.

We see by comparing 7-1 and 7-2 that all the bosonic amplitudes are fixed as long as there
is only one species of scalar, while fermionic amplitudes generally have problems.

The new scheme gives Table.7-3.

By comparing 7-1 and 7-3, all the mismatches are fixed. But of course, this scheme answers

as many questions as it raises. The loose threads include how to determine the counter term

! the structure (—2p3 /pips) K2 doesn’t look like a polynomial, but actually its p*
dependence comes from the polarization vectors
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for those diagrams that have IR divergences, and whether they vanish in N/ = 4 SYM and
how to realize them on the light cone world sheet. Finally, I want to point out an interesting
observation that whenever a genuine four point vertex (meaning not derived from an exchange
diagram) exists, the amplitude will have a constant mismatch.
7.3 'Triangle Anomaly
Although I have stuck to the adjoint representation, in which the cubic invariant d® is
zero, it is still necessary to look at how anomaly calculation turn out in the light cone. The first

b7p2 A bap2 A

avplv/\ aapla/\

Figure 7-1. Triangle anomaly

diagram of Fig.7-1 is given by

Trles-0(q— ko) -oex-a(q— ki) -o(ks — ki) -a(q—ks)- o]
(—)(q — k2)?(—i)(q — k1)*(—i)(q — k3)?
2(n|(q — k2)|k1 — k2](nl(q — k1) (k3 — k1)(q — k3)|k2 — k3]
(—)(q — k2)*(—i)(qg — k1)?(—4)(q — k3)?
— omy [tbtatc] l(q — ka) k1 — ko]

{ (nl(q —ks)lke —ks] — (nl(q — k1)|k2 — k3] } (7-1)
(—i)(q — k2)?(—=i)(g — k3)?  (—9)(q — k2)*(—i)(q — k1)?

—JI&'[itbit“itc]

- ii&[ﬁ#&ﬂ

After the usual steps of momentum integrals:

/ 1672 { — (n|zs(ks — k2)|k1 — ko] (n|zaks 1 + x3ks 1 |ka — k3]

+(n|xa (ke — k1) ke — k3](n|x1ky L + x2ky 1 |ko — /-63]}

i 2Ky,
1672 3p; py

(p3 (k2 + 2k3)" + pi (k1 + 2k2)Y) (7-2)

The second diagram of Fig.7-1 is similar:
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Trles- (ks —q)-o(ks —ki)-a(ki —q) o€ -a(ka —q) - 0]
(—i)(q — k2)?(—i)(q — k1)?(—i)(q — k3)?
2(n|(ks — q) (ks — k1) (k1 — q)|k1 — ko] (n|(k2 — q)lka — k3]
(—i)(q — k2)?(—i)(qg — k1)?(—i)(q — k3)?
— Ty [tbtatC] (ks — @)k — ks]

{ (n[(ky —@)lky — ko] (nl(ks — q@)[k1 — k2] }
(=i)(q — k2)*(=i)(q — k1)*  (=i)(q — k2)*(—i)(q — ks)?

Ty [z‘tbz‘t%f]

= 4Tr [tbt“tc}

(7-3)

After the momentum integral:

—Zd.’L’Z
/ 1672 { — (n|w1 (k1 — ko) |ka — k3](n|x1ky 1 + w2ka 1 |k1 — k2]

+(n|xa (ke — k3)|k1 — ko] (n|zaky | + x3k3 1 |ko — /-63]}
i 2Ky,
1672 3p} py

(pf (k2 + 2k1)Y + pf (ks + 2k2)") (7-4)

So the sum of these two diagrams gives

T [ {7, 2] ;% (F (k2 + k)Y + pF (ks + k2)¥) (7-5)

The right handed fermion gives the same contribution as above (the Feynman diagram
itself gives a negative sign relative to the left handed contribution, while the trace factor gives
a second negative sign). But if we put ¢¢ to be 1 and study the axial U(1) current (commonly
known as the abelian anomaly), the divergence of this current will be twice the above result.
Or we can keep the theory chiral, and look at the divergence of the chiral current (know as the
non-abelian anomaly) only. Note that the difference between these two cases is of order A3
which will not show up here.

*F A F is of the form K,K),/(p{py) and 0 if the two gluons have different helicity. So
some subtractions have to be made for Eq.7-5 to be of the correct form (again, due to the
regulator we used, Eq.7-5 depends on each dual momenta). I haven’t shown the calculation

for the case when the two gluons having different helicity, the result is non-zero, so it has to be

subtracted by counter terms too. Here, we see that the counter terms associated to three-point
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function are populating fast, there may or may not be an economical choice of counter term(s)
that will take care of all these problems.
7.4 Two-Loop and n-Point Amplitudes

The commonly adopted method for calculating one loop n-point amplitude is to use
(generalized) unitarity [25, 26] to calculate box-coefficients, and to use recursion relations to
recycle old results. And the results can be checked partially by looking at its collinear limit soft
limit and multi-particle factorization properties.

We have basically calculated the four particle amplitude in the light cone gauge by
brute force, should there be a need to obtain amplitudes with more legs or even higher loop
amplitudes, to way to proceed is certainly not brute force.

Let us focus on the NV = 4 SYM theory as a first step. We know that in this theory,
all integrands can be reduced to scalar boxes. This is very useful if we are using dimension
regulation since the IR (or collinear) divergences are regulated. But we’d like to stick to our IR
regulator, so scalar boxes have to go through some more subtractions to become infrared safe. I
don’t know yet how is this going to tell on the procedure of computing box coefficients.

The IR divergence is local in the sense that it is present whenever there is a four-point
MHYV subtree in the loop diagram, so the one loop IR structure we found in Chapter 5 will
persist into a higher point amplitude. This feature perhaps can help us to define an IR safe part

in an amplitude and ’bootstrap’ it to a larger amplitudes.
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Table 7-1. List of mismatches in all the amplitudes

Amplitude s-exch t-exch s-pt t-pt const
Alg+.9+,9—,9—3s) 0 0 - -1/6 1/2
Alg+,9+,9—,9—39) 0 0 - 2/3 -2
Alg+,9+,9—,9-39) 0 0 - -1/3 1
Alg+,9—,9+,9—3s) 0 0 -1/6 -1/6 0
Alg+,9—,9+,9—39) 0 0 2/3 2/3 0
Alg+,9-,9+,9—39) 0 0 -1/3 -1/3 0
A(s,s,9+,9—) 0 0o -1/2 - 1/2
A(g+,s,9—,9) 0 0 - i} 2
A(s, s, s, s) 0 0 -1/2 -1/2 0
Alg—,q—q—,q4-) - 0 - -1/3 0
Alg—,q—.9—,79-) 0 0o -1/3 -1/3 0
A(s, 8,4—,4—) 0 - -2/3 - 0
Alg+,9—,9—,q-) -1/3 0 -1/3 0 0
Alg+,9—,q+,q+) -1/3 0 -1/3 0 0
Alg+.9—9—:q-) 0 0 - 0 0

Table 7-2. List of the effect of the old counter terms schemes

Amplitude s-exch t-exch s-pt t-pt const
Alg+,9+,9—.9—3s) -1/6 -1/6 - 0 0
Alg+,9+.9—9—9)  2/3  2/3 - 0 0
Alg+,9+.9—9—39) -1/3  -1/3 - 0 0
Alg+.9—,9+,9—3s) -1/6  -1/6 0 0 0
Alg+.9—9+,9—9)  2/3  2/3 0 0 0
Alg+,9—,9+,9—;9) -1/3 -1/3 0 0 0
A(s,s,9+,9—) -1/2 0 -1/2 0 - 0
A(g+,s,9—,9) -1/2 -1/2 - - 0
A(s, s,8,8) -1/2 -1/2 0 0 0
A(q yd— 7q ,q ) - 1/3 - 0 0
Alq—, G—,q9—,q—) 1/3 1/3 0 0 0
A(s, s,q—,q—) 1/6 . 0 - 0
Alg+,9—,9—,G—) 1/3 0 0 0 0
A(g+, g— q+ q+) 1/3 0 0 0 0
Alg+,9—,9—,G—) 0 0 - 0 0
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Table 7-3. List of the effect of the new counter terms scheme

Amplitude s-exch t-exch s-pt t-pt const
Alg+,9+,9—9—s) -1/3  -1/3 - -1/6 0
Alg+,9+,9—,9—q9) 4/3  4/3 - 2/3 0
Alg+,9+,9—9—39) -2/3 -2/3 - -1/3 0
A(g+,9—. 9+, 9— ,s) -1/3 -1/3 -1/6 -1/6 0
Alg+,9—,9+,9—q9) 4/3  4/3 2/3 2/3 0
A(g+,9—,9+.9— g) -2/3 -2/3 -1/3 -1/3 0
A(5757g+ g— ) ‘1 ‘1 ‘1/2 - 0
Alg+,s,9—,3) -1 -1 . ; 0
A(s, s, s,8) -1 -1 =12 -1/2 0
Alq—q—,7—,q-) - 0 - 1/3 0
Alg=,q—,9—,G-) 0 0 1/3 1/3 0
A(s,8,9—,q-) -1/2 - 16 - 0
Alg+,9—,9—,3-) 1/3 0 1/3 0 0
Alg+,9—,q+,q+) 1/3 0 1/3 0 0
Alg+.9—9—:q-) 0 0 - 0 0
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APPENDIX A
SPINOR NOTATION IN THE LIGHT CONE

0 o# o~ o
7“ = a0 o= (17 0) ot = (17 _U)
€qp = €0 = et — €40 = 102

Pa = Eabpb pa = prba
] :=pa |p):=0" [pl :=p" (| = pa (A-1)

So far the spinor notations are common to all, and in the last line of Eq.A—1, I have

conformed to the 'hep-ph’ notation: [p] is assigned a lower index while |p) an upper

index.

In light cone, unlike what we had in Section 2.1, the reference spinor is fixed to be

a o |1 10 B
n—n—‘oyna—na—'_l‘ (A-2)
We can define the light cone version spinor as
_p"
pr=| P pa=| (A-3)
1 oF

The spinors satisfy the Dirac equation if p is light like. Note that they don’t have the

correct normalization, namely p - %% # p®p®, but they have the merit that p® = (—p)°.

The polarization vectors of gluon can be written as

bl R i
Crao = VI = V)], evsa = VI = 2] (A-4)

K[ = pfpf (pilpi), K5 =pipl(pilp;]

V2 V2
[nlpilps) = (pilpiln] = p—+Kﬁ-= (nlpilp;]=1Ipilpiln) = -——=Kj  (A-5)
J

J

The Kj;;’s satisfy
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ZK;;:()
J

p:rK;Hk ‘l‘Pleij +p;_KIgi =0
KiKj, + KR Kj; + K Kjy = 0
N IV 2
3 Sk = o (A0
The third line of Eq.A-6 is called the Schouten identity: [ij][kl] + [7k][il] + [ki][j] = O.

In the current case we are dealing with, 7, j run from 1 to 4, but only two of the six
K;;’s are independent, say K3 and K3,. And any product of K;;’s with total helicity 4
can be reduced to either (Kj3)* or (K43)>K%,. Product of helicity 2 can be reduced to
(K43)? and Ky K%,. Product of helicity 0 can be reduced to 1 and K4, K);. The reduction

is in general a formidable task for human, but quite a piece of cake for computers, as all

our calculations are done with computers.
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APPENDIX B
FEYNMAN RULES

We remind the reader that g + (—) corresponds to a A (V) on the gluon line, ¢(q)
corresponds to an incoming (outgoing) fermion line, ¢ + (—) corresponds to right(left)
handedness, s corresponds to a scalar.

The fermion gluon vertex Fig.B-1 is given by

Dy 1
V(q_7 q_7g+) = _Qig(ta)bcq+p+ KI/J\I qQ’ V(C_I‘l‘, q_‘_hg—{_) = _229( )bC_KI/J\Z q

_ ey 1L _ e +
Vig—=q—9-) = —2ig(t )bcq:K,Yz,q, Vig+,q+,9-) = —2ig(t )bcq+ 7K, 4 (B-1)

The gluon scalar vertex Fig.B-2 is given by

B . a 1 A(V)
Vi(g+ (=)= —2ig(t )bcpb* o e )

C

Here we have used real scalar fields and hence it transforms in a real representation.

The gluon fermion 4 point vertex Fig.B-3 is given by

Vim0 g,0) = 200 )T 2 AL
_ werser (D3 = DPi)Dy
Vig+, g+, g+, g—) = 29" f(t )cbw
. werpery (P35 —Ppi)p
V(g—,q—,9—,9+) = 29> f"(t )cb(;’gT%)j o
Vig+,q+.9—,9+) = —2i92(td)ce(t“)ebpl+lii 7 292fd“e(te)cb% (B-3)

The gluon scalar four point vertex Fig.B-4 is given by

Vigt,9—,5.5) =V(g—. g+, 5,5)
+ _ o\ (nt _ ot
g ()l er + (Pee()ea] + PSP (1) oa D (pif*i(igy vi)

V(g+,9+,s,5) =V(g—,9—,58) =0 (B-4)

99



For tri-gluon vertex Fig.4-3

V(g.9,9) = —gf™[el - &5(p1 — p2) - &5+ €5 €5(p2 = ps) - €] + €5 - €1 (s — 1) - €

Setting pu, v = A, p =V, the above becomes

A A
aoc p p
Vig+,9+.9-) = af"lp2— p3)+p—i — (p2 —ps3)" + (ps — p1)+p—i — (ps —p1)"]
1 2

(p1 +p2)*
7+K2A1

— 29fabc
p;rp2

(B-5)

The gluon four point vertex receives contribution from two sources: the left diagram

in Fig.B-6 is simply the covariant four point vertex:

V'l — 292 {fabefecd[guagup o gupgua] + fdae]cebc[guugpa o gupgua] + fcaefebd [g;u/gpa

The second is obtained by shrinking a propagator.

s ot B+ 2
9" 9" (p1 + pa)
‘/*2 — g2fdaefebc[€* . 6* (p4 . pl)a] [ *
Y (p7 + Pi)2(p1 + pa)?
_ - 2 pdae pebe (ET ' EZ)(GE . Eg)(pﬁl - p1)+(p2 - p3)+
- Z.g .f f + +\2
(pi +pi)

There are two cases in which the gluon four point vertex is nonzero:

€ - €5(p2 — p3) ]

paps +pips

— 9" g7}

(B-6)

+.+ +.+
. ae rebe b1 P3 +p2p4 ace rebd
V(g+,g+,g—,g—)=2192{—fd fe + fecf
(Pt +pi)(ps +p3)

+, 4 +, 4 +, 4 +, 4
. abe pec Do P3 + D1 Py dae pebe  P1P2 T DP3Dy4
V(g+,9—, g+, 9—) = 2ig> {f be pecd fleef
(p1 + i)y +p3)
(B-7)

(pi +p3)(p3 + 1)

(p1++p§)(p§+pi)}

|

When using these vertices, we need to watch the indices of structure constants closely: not

all terms are going to make contributions to Tr[t**¢td.

100



The fermion four point vertex comes from contracting a pair of three point vertices

connected by a gluon propagator. It is given by (for configuration of Fig.B-7)

+, 4

_ . e e p3p4
V(q,¢,3,q) = —4ig*(t)aa(t%) oy
(pf —p1)?

(B-8)

with the obvious restriction that fermion line 1 and 4 having the same handedness while 2

and 3 having the same handedness.

The scalar four point vertex Fig.B-8 comes from contracting a pair of three point

vertices connected by a gluon propagator. It is given by

(p3 —pi) i —p3)

V(s,s,5,8) = —ig*(t)ap(t)e
(55,8, = —ig? (1) (1) BB

(B-9)

The scalar fermion four point vertex Fig.B-9 also comes from contracting a gluon

propagator:

2p3 (p3 — p7)

VS,S,q,q :_292 t° ab t° cd

with the restriction that the fermion lines having the same handedness.

N, a V, a

e |
N

C’ p]. b7 p2 c? pl b) p2

Figure B-1. Gluon-fermion-fermion 3 point vertex
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/"L’a7q

g

N
7 N
b, Db AN
7 N
7/ N
7 \A

Figure B-2. Gluon-scalar-scalar 3 point vertex

b7 h ¢, D2 b, P1 C, P2

Figure B-3. Two diagrams contribute to the fermion-gluon 4 point vertex. Note these
are not exchange diagrams but rather four point vertices gotten through
cancelling a 1/p? factor in a fermion propagator or a gluon propagator, see
Eq.2-25

/\7 ba D4 \/7 a, p3
/\7 b7 D4 \/7 a, ps

W AN

7 AN
/ \\ //’ \\
7 N e N
7 N 7/ N
¢, D1 d7 b2 ’ N

Figure B-4. Scalar-gluon 4 point vertex. Again, the second diagram is not an exchange
diagram but rather a four point vertex obtained through shrinking a gluon
propagator

P, C, P3

|
RN

M, a, P1 v, b’ P2

Figure B-5. Tri-gluon vertex
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077 pacp30dp4 P, €, P3

T8

[, @, D1 l/pr,u,a]h v, b, pa

Figure B-6. Gluon 4 point vertex

da 4 ¢, D3
a, p1 b7 D2

Figure B-7. Fermion 4 point vertex

/\

a, pi b D

Figure B-8. Scalar 4 point vertex

d7 Pa ¢, P3

\

/ N

a, p \b b2

Figure B-9. Scalar Fermion 4 point vertex
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