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We calculated the scattering of gluon, scalar and quarks in gauge theory in the light

cone gauge. Some computation techniques suited for the light cone gauge are introduced.

We observed some inadequacies of the counter terms suggested in our earlier work, and

we suggest a new way of fixing counter terms using Lorentz invariance as a guide. Gluon

scattering with massive matter fields in the loop are presented for completeness. The

helicity amplitude method is extensively used in this work and is also modified to simplify

the light cone gauge calculation.
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CHAPTER 1
INTRODUCTION

Gauge theory is generally thought of as the fundamental theory that governs most of

the important interactions in particle physics. The standard model of particle physics is

based on a gauge theory with a gauge group SU(3) ⊗ SU(2) ⊗ U(1) minimally coupled

to some matter fields. The electro-weak part of this theory has relatively small coupling,

and the perturbative calculations produced results that agree with the experiments

extremely well. The strong interaction (QCD) has a coupling constant of the size 0.1 at

high momentum (short distance) where the perturbative calculation can still give some

useful predictions. However, the coupling is of order one around 1 GeV and will tend

to infinity at lower momenta. The perturbative calculations cease to make sense at this

scale, yet it is at this scale that some interesting phenomena happen. For example, at high

energy QCD can be described by quark and gluon fields, while at low energy the quarks

become confined and the description in terms of pions and baryons is more relevant. At

high energy the quarks enjoy an SU(2)L ⊗ SU(2)R symmetry, but at low energy the axial

vector part of this symmetry is spontaneously broken down. These phenomena are beyond

the grasp of perturbation theory, and the quantitative results mainly come from lattice

computation. The quest for an analytic solution to the low energy spectrum or a dual

description of QCD that suits the low energy and strong coupling has been the focus of

many physicists.

Besides its phenomenological importance, gauge theory is also interesting in its

own right because of its close connection with topology. A gauge theory consists of a

curvature field Fµν, satisfying the Bianchi identity dF = 0. In QED, the entries of F

are simply the electric and magnetic filed E and B, while the Bianchi identity is two of

the four Maxwell equations ∇ · ~B = 0 and −∂ ~B/∂t = ∇ × ~E. In general, the Bianchi

identity says the two form Fµνdxµdxν is closed, so we cannot simply vary the field strength

to obtain the Euler-Lagrange equation. Instead, we write F as dA for some 1-form A,

known as the connection 1-form, and vary A rather than F . Although not all closed forms
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(forms satisfying dω = 0) are exact (forms can be written as ω = dτ), writing F as dA

causes no problem in the perturbative calculations, because we are only interested in

small fluctuations around A = 0. Yet for a non-perturbative computation, a non-trivial

configuration of the A field can give important results such as the anomalous breaking of

the axial U(1) symmetry. In those cases, we have to manually sum over configurations of

different winding numbers. The A field, as its name suggests, is a connection in the gauge

bundle, more concretely, the 1-form Aa
µt

adxµ acting on the tangent vector ∂µ = ∂/∂xµ,

converts it to a vector Aa
µta in the direction of the fibre (elements of the Lie group

translate a field in the ’vertical’ direction). With this connection, we can compare two

fields in nearby space-time points using the covariant derivative Dµ = ∂µ − Aµ. The

geometrical nature of the gauge theory is not explored in this dissertation, however, the

problem of gauge fixing is still important for this work.

Putting aside gauge theory for a moment, we also have a possible alternative

description of the strong interaction: string theory. It was initially proposed in order

to model the dynamics of the flux tube which is the explanation of confinement in the

strong interactions. In analogy with the point particle, where the equation of motion is

such that the path traversed by a particle(world line) in space-time is the shortest path,

the bosonic string theory studies a one dimensional extended object and the equation of

motion is such that the two dimensional surface swept by the string (world sheet) is a

minimal surface. An open string has two free ends, they can be given the Chan-Paton

degrees of freedom, which are rather like a label that labels the different states of the end

of the string. These states can be taken to transform in a representation of a Lie group,

say, in the fundamental for one end and anti-fundamental for the other. With this setup,

the open string is like a pion which has presumably a quark and an anti-quark at each

end and connected by the flux tube. In fact, the scattering amplitude of the open strings

reproduces the scattering of gluons in the low energy limit.

12



The similarity was explored in [1], where ’t Hooft looked at the SU(N) gauge theory

as N → ∞. In this limit, the adjoint representation of SU(N) can be approximated

by N ⊗ N̄ . The A field transforming in the adjoint representation, now carries two

indices Ai
j in the large N limit, where i and j transform in the N and N̄ respectively.

Hence a gluon line can be drawn as two lines carrying the i and j index each. With this

representation, a Feynman diagram will look like Fig.1-1. The i
j index corresponds to the

Chan-Paton factors. Any closed index loop such as in the middle of Fig.1-1 will be a trace

Trδi
j producing a factor of N . If a Feynman diagram is drawn with crossed lines, we will

lose factors of N , so by keeping only the leading terms in the power of N , we pick out

all the planar diagrams. There is a clear analogy between the planar diagrams and the

open string scattering diagrams Fig.1-2, where the arrows now indicate the Chan-Paton

factors. By summing over all the planar diagrams, we hope to learn something about the

non-perturbative nature of the gauge theory.

’t Hooft also pioneered the light-cone parametrization of these planar diagrams in

[1]. The correspondence between the two graphs in Fig.1-3 is that, a rectangle maps to

a propagator, a line (cut) maps to the blank space between two propagators, and the

beginning(end) of a line is the splitting(merging) point of two propagators, or simply

a 3-point vertex. The success of this parametrization is because in the light-cone, a

propagator contains a step function θ(x+p+). This factor says if a propagator is to

propagate forward in x+, it has to carry positive p+. This parametrization is also used in

[6, 7, 8, 9].

The correspondence between gauge field theory and string theory was revolutionized

by the AdS/CFT correspondence due to Maldacena [2], a certain superstring theory on an

AdS5 × S5 background is equivalent to the N = 4 supersymmetric gauge theory. Detailed

proposals of this correspondence were made by Gubser, Klebanov and Polyakov [3] and

by Witten [4]. Their idea is the holographic concept, where the Minkowski space M4 is

the boundary of the AdS space, and the correlators in M4 are computed from the bulk of

13



AdS. The field theory and its perturbative expansions grasp the weak coupling limit, while

the string theory description naturally grasps the strong coupling limit. For example, in

[5], the author studied the energy of a string hanging between two static sources in the

classical limit (in the context of AdS/CFT duality, classical limit in the string theory

corresponds to the strong coupling limit in the field theory), which shows a force that

obeys inverse square law, in accordance with the fact that N = 4 SYM is a conformal

theory. Despite all the above, a lot of the details of the correspondence still await filling

in.

So the establishment of the detailed correspondence between string theory and gauge

theory becomes urgent. In [6, 7], the authors proposed a local world sheet description

of the (supersymmetric) gauge theory, which maps a Feynman diagram to a world

sheet representation. The vertices in this description become the merging and splitting

of strings, and the summation of Feynman diagrams becomes a path integral on the

(discretized) world sheet. The Feynman rules, or the vertex functions were realized by

inserting a local world sheet operator close to the splitting or merging point. There is no

need for the representation of a four point vertex, because it is automatically generated

when two insertions for three point vertices coincide and produce a contraction term. This

is rather fortuitous, for a four point vertex is very unnatural in a string diagram. The

summation of all the planar diagrams becomes the summation over whether or not there

is a cut in each of the lattice sites. This treatment still has many loose ends to tie up. For

example, the problem of renormalization which requires not only a local representation of

the bare diagrams on the world sheet but also a local representation of the counter terms.

The problem of renormalization for scalar fields on the world sheet was addressed in [8],

but was only partially solved for gauge theory in [9] due to some complications.

It is absolutely necessary therefore, to study the renormalization for gauge fields

on the world sheet, making sure that the world sheet path integral description at

the least will reproduce all the perturbative results before we jump into studying its
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non-perturbative side. The checks include, whether all the divergences appearing in the

perturbative expansion can be absorbed into target space local counter terms, and whether

these counter terms can have a local world sheet representation. And most importantly in

the case of (supersymmetric) gauge theory, how the regulators will affect gauge covariance

and supersymmetry.

Since ’t Hooft’s planar diagram representation was most easily given in the light cone

parametrization, it is natural that we chose to study the gauge theory on the world sheet

also in light cone gauge. In this case, in order to study the gauge invariance property, we

have to deal with some collateral complications due to the light cone gauge choice and also

the issue of infrared divergence which is inherent to a gauge theory. These tasks have been

the main focus of my work. In the two papers [13, 14], we studied the gluon scattering in

the light cone gauge in great detail and found the need for some counter terms that were

quite unexpected. An infrared regulator is also proposed in [14] that is very different from

dimensional regulation yet still respects gauge covariance. In [15], the extension to the

gauge theory coupled to general matter was made, and some results that are peculiar to

N = 4 were observed. Also the cancelation of counter terms between different species was

achieved, whose importance will be explained later.

As an extension, the scattering of quarks and scalars in addition to gluons was

computed, which showed a need for some new counter terms not given in the previous

work. The complete determination of these new counter terms is still a work in progress.

And the usage of Lorentz covariance as a guide to fix counter terms will be initiated in the

future work section.

The organization of the dissertation is as follows, in Chapter 2, the helicity amplitude

method is briefly introduced. This method, when modified to suit the light cone, can

greatly increase the flexibility of light-cone gauge, and offers an alternative way to obtain

light cone Feynman rules. Some computational details are also given in the same chapter.

In Chapter 3, I shall describe the box-reduction technique which occupied a bulk of
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the work done in [14], and is essential to our achievement of the cancelation of artificial

divergence and the extraction of infrared divergence. In Chapter 4, I shall simply list the

results, since the details of the computation are complicated and not very illuminating.

Discussion about some known features of supersymmetric gauge theory is given in Chapter

4 too. In Chapter 5, the Bremsstrahlung calculation on the light cone is presented, and

the real processes are combined with virtual processes to obtain an IR finite result.

In Chapter 6, I shall give the scattering of gluon with massive matter in the loop for

completeness, and the photon scattering amplitude is also presented. I shall conclude this

dissertation by pointing out some remaining problems and the outlook for some future

work. In the appendices, I shall spell out the spinor notations used in the paper and all

the Feynman rules obtained by using the method of Chapter 2.

Figure 1-1. Double line notation

Figure 1-2. Open string scattering diagram
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CHAPTER 2
COMPUTATION TECHNIQUES IN THE LIGHT CONE

2.1 Mini Introduction to Spinor Helicity Amplitude Method

This method exploits the covering group of SO(3, 1): SL(2, C). Lorentz invariance

will be represented as SL(2, C) invariance. By dotting a momentum into the sigma

matrices, we obtain a 2 by 2 matrix: pµ → pµσµ. If p were light like, we will have

det(p · σ) = p2 = 0, so the matrix p · σ can be decomposed into a product of two spinors:

p · σαα̇ = pαpα̇ (2–1)

where we have used the same letter for both the momentum and its spinor. pα (pα̇) is the

left (right) handed spinor that satisfies the massless Dirac equation. The notation using

bracket is commonly used in the literature:

pa → |p〉; pȧ → |p]; pa → 〈p|; pȧ → [p| (2–2)

Polarization vectors for the gauge particles are also cleverly chosen to minimize the

computation [10, 21, 22]. The reader can refer to [11] for a review, and to [12] for some

more simplifications and extensions to massive fields.

As an example, a left handed polarization vector εµ can be given by (up to a

normalization factor) εȧa = ηȧpa ⇔ |η ]〈p|, or equivalently εaȧ = paηȧ ⇔ |p 〉[η|. The

handedness can be seen by remembering that γµ or σµ is the Clebsch-Gordon coefficient

for the projection

1 ⊗
(

1

2

)

L

→
(

1

2

)

R

(2–3)

and that | p〉 is the spinor of a left handed fermion. We have ε · σ̄| p〉 = |η ]〈p |p 〉 = 0. This

means that the photon must be left handed so the product of it with a left handed fermion

will not have a right handed component.
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Another way of seeing the same fact is by inspecting whether the field strength Fµν

constructed out of εµ is anti-selfdual (right handed) or self-dual (left handed).

Fµν = −i [pȧaηḃpb − pḃbηȧpa] = −i
[

papbp[ȧηḃ]

]

= −ipapbεȧḃ[p |η ]

The ε symbol in the spinor language is given by

εµνρσ = εȧa
bḃ

ċc
dḋ = 4i

[

δḋ
ȧ δb

a δḃ
ċ δd

c − δḃ
ȧ δb

c δḋ
ċ δd

a

]

so

1

2
det gεµνρσFρσ = iεµνρσpρAσ = −

[

0 − εȧḃ pbpa[p | η ]

]

= iF µν (2–4)

hence ∗F = iF .

The reference spinor η can be chosen to our advantage. The most efficient way is to

pick it to be a spinor of one of the momenta in the problem. As an illustration, consider

the amplitude M(1, 2, 3, 4,−,−, +, +). Pick

ε1 ∼ |1 〉[4|; ε2 ∼ |2 〉[4|; ε3 ∼ |1 〉[3|; ε4 ∼ |1 〉[4| (2–5)

They have the property that only the pair ε2 and ε3 have non-vanishing inner product.

These polarization vectors are not properly normalized yet, their normalization factors will

be put back in at the last step.

Let us look at the t-channel exchange diagram:

[

ε1 · ε4(p4 − p1)
δ + εδ

1(2p1 + p4) · ε4 + εδ
4(−2p4 − p1) · ε1

]

igδσ

(p1 + p4)2

[

...

]σ

(2–6)

I did not bother to write down the vertex on the right since the left vertex is already zero.
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The four-point contact vertex is in fact zero too. Recall that the four-point vertex

always involves two pairs of polarization vectors dotted into each other, while we only have

one non-zero pair available.

Finally the s-channel exchange diagram:

[

ε1 · ε2(p1 − p2)
δ + εδ

2(2p2 + p1) · ε1 + εδ
1(−2p1 − p2) · ε2

]

× igδσ

(p1 + p2)2

[

ε3 · ε4(p3 − p4)
σ + εσ

4 (2p4 + p3) · ε3 + εσ
3 (−2p3 − p4) · ε4

]

(2–7)

The underlined terms are all zero, and we are left with

− 4
i

s
(ε2 · ε3) · (p2 · ε1) · (p3 · ε4) = − i

2s
[43]〈21〉[24]〈21〉[34]〈31〉 (2–8)

As the last step, we need to put in the normalization factors for the polarization

vectors: −[14][24]〈31〉〈41〉/4, I get

− 2i
[34]2〈12〉2

st
= −2i

〈12〉4
〈12〉〈23〉〈34〉〈41〉 (2–9)

The second presentation is holomorphic in the left handed spinors, which will turn out to

be interesting later on.

As a slightly more non-trivial example, I shall compute the amplitude M(+, +,−,−,−)

Fig.2-1.

I shall define the polarization vectors to be

ε1 =
√

2
|4]〈1|
[14]

; ε2 =
√

2
|4]〈2|
[24]

ε3 =
√

2
|3]〈1|
〈13〉 ; ε4 =

√
2
|4]〈1|
〈14〉 ; ε5 =

√
2
|5]〈1|
〈15〉 (2–10)
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Here I have used p1 and p4 as reference legs. A general observation is that a vertex that

involves both legs that are used as reference vanishes, so diagrams 2,3 and 4 are zero.

A closer look at the products between a pair of polarization vectors shows that all the

diagrams involving four point vertices are zero. We are thus left with only three diagrams

to compute.

I will start with some small building blocks according to Fig.2-2:

Aµ = [54]〈41〉εµ
4 − [45]〈51〉εµ

5 Bµ = [35]〈51〉εµ
5 − [53]〈31〉εµ

3

Cµ =
1

2
[43]〈12〉(p2 − p3)

µ + [43]〈32〉εµ
3 − [32]〈21〉εµ

2 Dµ = [42]〈21〉εµ
2 − [41]〈12〉εµ

1

(2–11)

With these building blocks, we can calculate further larger blocks Fig.2-3:

Eν = Aρε1µ [gµν(1 − 2 − 3)ρ + gνρ(2 + 3 − 4 − 5)µ + gρµ(4 + 5 − 1)ν]

= 0 + Aν[4|2 + 3|1〉 + 0 = −Aν[4|5]〈5|1〉

F ν = Aσε3ρ [gνρ(1 + 2 − 3)σ + gρσ(3 − 4 − 5)ν + gσν(4 + 5 − 1 − 2)ρ]

= εν
3

[

1

2
[54]〈41〉[4|2− 3|1〉 − 1

2
[45]〈51〉[5|2 − 3|1〉

]

+ Aν[3| − 2|1〉

= εν
3

[

[54]〈41〉[42]〈21〉 − [45]〈51〉[52]〈21〉
]

− Aν[3|2|1〉

= εν
3[54]〈21〉[23]〈31〉 − Aν[32]〈21〉

Gν = Bρε4σ [gρσ(3 + 5 − 4)ν + gσν(4 − 1 − 2)ρ + gνρ(1 + 2 − 3 − 5)σ]

= 0 + εν
4

[

1

2
[35]〈51〉[5|4 − 2|1〉 − 1

2
[53]〈31〉[3|4− 2|1〉

]

+
1

2
Bν[4|2 − 3 − 5|1〉

= εν
4

[

[35]〈51〉[54]〈41〉 − [53]〈31〉[34]〈41〉
]

+ Bν[4|2|1〉

= εν
4 [35]〈41〉[42]〈21〉+ Bν [42]〈21〉 (2–12)
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Finally

EµCµ = −Aµ[4|5]〈5|1〉
[

1

2
[43]〈12〉(p2 − p3)

µ + [43]〈32〉εµ
3 − [32]〈21〉εµ

2

]

= −1

2
[4|5]〈5|1〉[43]〈12〉

[

[54]〈41〉[4|2− 3

2
|1〉 − [45]〈51〉[5|2 − 3

2
|1〉
]

−0 − 1

2
[4|5]〈5|1〉[32]〈21〉[4|5]〈5|1〉[54]〈21〉

= −1

2
[4|5]〈5|1〉[43]〈12〉

[

[54]〈41〉[4|2− 3

2
|1〉 − [45]〈51〉[5|2 − 3

2
|1〉
]

= −1

2
[4|5]〈5|1〉〈2|1〉2[54]

[

− [43][42]〈41〉 − [43][52]〈51〉 + [32][45]〈51〉
]

= −1

2
[45]2〈21〉3〈51〉[42][32] (2–13)

F µDµ =

[

ε3µ[54]〈21〉[23]〈31〉 − Aµ[32]〈21〉
][

[42]〈21〉εµ
2 − [41]〈12〉εµ

1

]

= ε2 · ε3[54][42]〈21〉2[23]〈31〉 − 0 + ε5 · ε2[45]〈51〉[32][42]〈21〉2 + 0

=
1

2
[34]〈21〉[54][42]〈21〉2[23]〈31〉 +

1

2
[54]〈21〉[45]〈51〉[32][42]〈21〉2

=
1

2
[54]〈21〉4[42]2[23] (2–14)

GµDµ =

[

ε4ν [35]〈41〉[42]〈21〉+ Bν[42]〈21〉
][

[42]〈21〉εµ
2 − [41]〈12〉εµ

1

]

= 0 − 0 + [42]2〈21〉2
[

ε5 · ε2[35]〈51〉 − ε3 · ε2[53]〈31〉
]

− 0

=
1

2
[42]2〈21〉2

[

[54]〈21〉[35]〈51〉 − [34]〈21〉[53]〈31〉
]

=
1

2
[42]3〈21〉4[35] (2–15)

Assemble them together:
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G · D
〈21〉[12]〈35〉[53]

+
F · D

〈21〉[12]〈45〉[54]
+

E · C
〈23〉[32]〈45〉[54]

= 〈21〉3[42]
[42]2〈54〉〈32〉 − [42][23]〈53〉〈32〉 + [45][12]〈51〉〈53〉

2[12]〈53〉〈54〉〈32〉

= 〈21〉3[42]
[21][41]〈51〉〈13〉

2[12]〈53〉〈54〉〈32〉 (2–16)

After putting back the normalization factor:

(−i)2

√
2

5

[14][24]〈13〉〈14〉〈15〉 (2–17)

we get

−
√

2
5〈12〉4

2〈12〉〈23〉〈35〉〈54〉〈41〉 (2–18)

To go to large Nc, we simply multiply it by (−igs

√

Nc/2)3.

2.2 The Light Cone Setup

The light cone gauge Feynman rules are usually obtained by the lagrangian method,

namely, we first set A− = 0 and integrate out A−. Then the Feynman rules can be read off

from the lagrangian, which is a function only of A1 and A2.

Here, I combine the covariant vertex functions with the above spinor helicity method

to obtain the Feynman rules in a more flexible way. But this will require us to fix ηa =

ηȧ = [1, 0]T .

The gluon propagator in light cone gauge is

−i(gµν − gµ+kν

k+ − gν+kµ

k+ )

k2 + iε
(2–19)

Note the metric is diag(1,−1,−1,−1) throughout the dissertation. The numerator can be

factored into
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(gµν − gµ+kν

k+
− gν+kµ

k+
) = −(εµ

∨εν
∧ + εµ

∧εν
∨) − gµ+gν+

k+2
k2 (2–20)

Where ε∧,∨ are light cone gauge polarization vectors given by

εµ
∨ =

1√
2
(
k1 − ik2

k0 + k3
, 1,−i,−k1 − ik2

k0 + k3
) =

1√
2
(
k∧

k+
, 1,−i,−k∧

k+
) ; ε∧ = ε∗∨

ε∨ = −
√

2|η]〈k | ; ε∧ = −
√

2|k ]〈η | (2–21)

They satisfy ε · ε∗ = −1 and k · ε = 0. These polarization vectors are defined both on-shell

and off-shell. Note from now on, the definition of |k], |k〉, [k| and 〈k| will be that of the

appendix A, which is slightly different from the conventional ones.

The Feynman rules are obtained by dotting the polarization vectors into the covariant

three or four point vertices.

The tri-gluon vertex Fig.2-4, for example, becomes

Vggg = gf abc(−ε∗1µ)(−ε∗2ν)(−ε∗3ρ)[g
µν(p1 − p2)

ρ + gνρ(p2 − p3)
µ + gρµ(p3 − p1)

ν]

Setting ε1, ε2 = ε∧, ε3 = ε∨, the above becomes

gf abc[(p2 − p3)
+ p∧1

p+
1

− (p2 − p3)
∧ + (p3 − p1)

+ p∧2
p+

2

− (p3 − p1)
∧] = 2gf abc (p1 + p2)

+

p+
1 p+

2

K∧
21

(2–22)

where Kµ
i,j := (p+

i pµ
j − p+

j pµ
i ). They are related to spinor products according to

K∨
i,j = p+

i p+
j [pi|pj] = p+

i p+
j pȧ

i pjȧ

The spinor notation here is also different from the conventional one [20]. The reader can

refer to the appendix for an explanation of the spinor notation.
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The gluon propagator Eq.2–19 almost factorizes into the product of two polarisation

vectors. While the third term on the rhs of Eq.2–20 will make an extra contribution to

the four point vertex. For example, consider the t-channel diagram Fig.2-5, the first two

terms of Eq.2–20 can be associated with the two tri-gluon vertices, the third term, which

describes the mediation of A−, gives

ε∗1µε∗4σV σµα i

(p1 + p4)2
ε∗2νε

∗
3ρV

νρβ
δ+
α δ+

β (p1 + p4)
2

(p+
1 + p+

4 )2
=

iε∗1 · ε∗4(p+
4 − p+

1 )ε∗2 · ε∗3(p+
2 − p+

3 )

(p+
1 + p+

4 )2
(2–23)

What’s happening here is that the explicit factor of k2 in the third term of Eq.2–20

cancels the propagator, effectively making a four point contact vertex.

The fermion-gluon vertex Fig.2-6 is the usual ig γµ ta. We can set µ = ∧ or ∨ by

dotting −ε∗∧,∨, into µ.1 Multiplying the spinors to the gamma matrix, we get (assuming

now the fermion is left-handed)

ig(ta)bc

√

2p+
1 p+

2 (−ε∗µ∧ )
[

0 pα̇
2

]

∣

∣

∣

∣

0 (σµ)αα̇

(σ̄µ)α̇α 0

∣

∣

∣

∣

[

pα
1

0

]

= −ig(ta)bc

√

2p+
1 p+

2 (−
√

2)[p2 |η]〈q|p1〉

= −2ig(ta)bc

√

p+
1 p+

2

(

q∧

q+
− p∧1

p+
1

)

= −2igta
√

p+
1 p+

2

q+p+
1

K∧
p1,q → −2igta

p+
2

q+p+
1

K∧
p1,q(2–24)

In Eq.2–24, in order to avoid defining what is
√

p+, I chose to associate p+
2 instead of

√

p+
1 p+

2 to a vertex. This won’t cause any problem, since a fermion line either always

closes, or end up as an external particle (then the phase of the root can be defined

arbitrarily).

1 Calling polarizations by ∨ or ∧ is potentially confusing, especially if you are looking
at the diagram up-side-down. So,sometimes it is clearer to associate ∧ with ’in’ and ∨
with ’out’.
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The fermion propagator is given by ipµγµ/(p2 + iε). We can decompose p · γ according

to

p · σ =
√

2

[

p− −p∧

−p∨ p+

]

=
√

2p+

[

− p∧

p+

1

]

[

− p∨

p+ 1
]

+

[

p2

√
2p+

0

0 0

]

=
√

2p+|p 〉[p |+ p2

√
2p+

|η 〉[η |

p · σ̄ =
√

2

[

p+ p∧

p∨ p−

]

=
√

2p+

[

1
p∨

p+

]

[

1 p∧

p+

]

+

[

0 0

0 p2

√
2p+

]

=
√

2p+|p ]〈p |+ p2

√
2p+

|η ]〈η | (2–25)

Since the fermion propagator almost factorizes too, it is also possible to contract a

pair of vertices here. For example, the second term of Eq.2–25 will contribute to Fig.2-7

according to

−g2(td)ce(t
a)eb

√

2p+
1 p+

2 [p2|(−ε∗3 · σ̄)
i(p1 + p4) · σ
(p1 + p4)2

(−ε∗4 · σ̄)|p1〉

→ −g2(td)ce(t
a)eb

√

2p+
1 p+

2 [p2 |(
√

2|η ]〈p3 |) ·
i

(p1 + p4)2

·( (p1 + p4)
2

√
2(p+

1 + p+
4 )

|η 〉[η |) · (
√

2|p4 ]〈η |) |p1 〉

= −2ig2(td)ce(t
a)eb

√

p+
1 p+

2

p+
1 + p+

4

→ −2ig2(td)ce(t
a)eb

p+
2

p+
1 + p+

4

(2–26)

The scalar Feynman rules have no suspense in them at all, and can be read off

from any field theory book. The Feynman rules that pertain to our calculation will be

summarized in the appendix. The main property of the Feynman rules above is the

absence of p−.

2.3 Brief Description of the Calculational Procedure

In the Fig.2-8, the k’s and q are the dual momenta. They are related to the real

momenta coming into the three legs according to p1 = k1 − k2, p2 = k4 − k1 and

p3 = k2 − k4. The unregulated integrands have a symmetry under ki → ki + a, which
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would ensure that each diagram depends only on the real momenta. But here, as in

[13, 14], we use a regulator exp (−2δq∧q∨) that breaks this symmetry. Hence, a regulated

amplitude can depend on the individual dual momenta. This seemingly unwieldy regulator

is designed for the world sheet description, but the result doesn’t differ too much when a

cut off regulator is used.

The calculation roughly goes as follows,

1. Exponentiate all propagators according to

i

p2 + iε
=

∫ ∞

0

dT eiTp2

For the schematic diagram Fig.2-8. We have

Γ =

∫

d4q

(2π)4

i

(q − k2)2

i

(q − k1)2

i

(q − k4)2

=

∫

d4q

(2π)4
d3Ti exp

{

i
∑

Ti(q − ki)
2

}

2. Integrate out q−, leaving a delta function relating q+ to the Feynman parameters(this

step requires the absence of q− in all Feynman rules).

Γ =

∫

dq+d2q⊥
(2π)3

1

2
d3Tiδ(

∑

Tik
+
i −

∑

Tiq
+) exp

{

i
∑

Ti(q − ki)
2

}

3. Integrate q1, q2 using exp [−δq2
⊥] as a damping factor.

Γ =

∫

dq+

16π2
dxiδ(

∑

xi − 1)δ(
∑

xik
+
i − q+)

1

x2x4(k2 − k4)2

where xi := Ti/
∑

Ti.

Here is the rub: we cannot simply integrate over x2,x1 and x4, because the prefactor

of this diagram will have up to second order poles at q+ = k+
i . In order to show the
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cancellation of these poles (gauge artificial divergences), we proceed as follows: first

eliminate one Feynman parameter in favour of q+:

k+
2 < q+ < k+

1 : x1 =
x(q+ − k+

2 )

k+
1 − k+

2

, x4 =
(1 − x)(q+ − k+

2 )

k+
4 − k+

2

, x2 = 1 − x1 − x4, x ∈ [0, 1]

k+
1 < q+ < k+

4 : x1 =
(1 − x)(q+ − k+

4 )

k+
1 − k+

4

, x2 =
x(q+ − k+

4 )

k+
2 − k+

4

, x4 = 1 − x1 − x2, x ∈ [0, 1]

Now dx2dx1dx4δ(
∑

xi − 1)δ(
∑

xik
+
i − q+) = dq+dxJ . After integrating out x, we are

left with a function of q+ which is defined differently in different regions: k+
2 < q+ < k+

1

and k+
1 < q+ < k+

4 . All these can be visualized very clearly when we represent a Feynman

diagram on the light cone world sheet. The details can be found in [13, 14].

Our observation is that, in each region, all poles cancel.2 Hence we can perform the

final q+ integral and obtain the results.

To summarize the computation procedure, perform the q+ integral last.

PSfrag replacements

1 2

34
5

=

Figure 2-1. Five-point amplitude

2 in the case helicity conserving amplitude, all poles cancel up to infrared terms, but
since infrared divergence is always proportional to a tree, they are easy to recognize and
deal with.
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PSfrag replacements

1 22

3
3

4 5 5 µ
µ

µ µ

Aµ = Bµ = Cµ = Dµ =

Figure 2-2. Some building blocks that can be computed separately

PSfrag replacements

1

2

3
344 55 5

µµ

µEµ = F µ = Gµ =

Figure 2-3. Second level building blocks

PSfrag replacements

ν, b, p2µ, a, p1

ρ, c, p3

Figure 2-4. Tri-gluon vertex

PSfrag replacements

µ, p1 ν, p2

ρ, p3σ, p4

Figure 2-5. Propagator in the t-channel is contracted

PSfrag replacements
µ, a

q

c, p1 b, p2

Figure 2-6. Fermion-gluon vertex
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PSfrag replacements

b, p1 c, p2

ρ, ∧, p3σ, ∨, p4

Figure 2-7. Fermion propagator contracted

PSfrag replacements

q
k2

k1

k4

1 2

3

Figure 2-8. Here we assume only (k2 − k4)
2 6= 0, and k+

4 > k+
1 > k+

2
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CHAPTER 3
BOX REDUCTION

This chapter contains a lot of technical details, the reader may skip it for first

reading.

Our general procedure for evaluating box diagrams is

1. Evaluate a box diagram that is free of artificial, collinear and infrared divergences

using text book method (combining denominator with Feynman’s trick, shift the

momentum, perform momentum and Feynman parameter integrals, etc).

2. Evaluate a box that contains collinear or infrared divergence but is free of artificial

divergence by subtracting those collinear or infrared divergences in the form of

triangle diagrams, and then use method 1.

3. A box that has artificial divergences has to be reduced to triangle diagrams.

In the next section, I will describe how to achieve 2 and 3. The dual momenta assignment

given by Fig.3-1 will be used through out all the calculations.

3.1 Box with a Helicity Violating Sub-diagram

The Feynman rules for the gluon, scalar and fermion in the light cone gauge are very

similar. Any three point vertex will have the following form: R(k+
i )K∧,∨

ij , where R(k+) is

a rational function of the + component of external momenta and K∧,∨
ij = (p+

i p∧,∨
j − p+

j p∧,∨
i )

is introduced in the appendix. This allows us to write the numerator of any box diagram

as

R(k+)K∧,∨
ij K∧,∨

kl K∧,∨
mn K∧,∨

op (3–1)

We can also label a box by the helicity of the four corners, regardless of the details of the

boxes. For example the following Fig.3-2 will be abbreviated as ∧ ∧ ∨∨ box.

R(k+) in general will contain poles of k+. These poles are usually interpreted using

Cauchy principle value or some other prescriptions. We chose to show directly that

these poles are all fake, namely, when we compute a physical quantity, these poles will
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be cancelled. To show this would entail us to express the amplitude as a holomorphic

functions of k+ and analyze the poles one by one. But the box integrand in general will

have a denominator that is quadratic in the Feynman parameters and k+. Integrating it

by force will introduce logarithm and di-logarithms with various arguments. Although we

know of certain relations between (combinations of) di-logarithms and double logarithms,

the application of these relations is hard to automate.

Fortunately, for the case at hand, all box diagrams can be reduced to triangle-like

integrands, whose manipulations are considerably easier. Here I describe the box reduction

technique in detail.

The lower half of the box Fig.3-2 is the ’t channel’ of (+ + +−) scattering process,

which is zero. So we can replace this ’t channel’ with minus the ’s channel’, which will

result in a triangle diagram. But since the amplitude is only truly zero on-shell, while the

two internal lines are certainly off-shell, I will get some more terms that are proportional

to the virtuality of the two internal lines (p2
5 and p2

6). Schematically, I have Fig.3-3:

More concretely, Fig.3-3 is written as

1

(p1 + p6)2
K∧

16K
∧
52

= − 1

(p1 + p2)2
K∧

21K
∧
65 +

p2
6

(p1 + p6)2(p1 + p2)2
K∧

52K
∧
21 +

p2
5

(p1 + p6)2(p1 + p2)2
K∧

21K
∧
16

(3–2)

Clearly, in this case, the box is reduced into three triangle-like diagrams.

Here I list its contribution: First, define some functions that occur ubiquitously:
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Hs : =
(k+

4 − q+)(−k+
2 + q+)sδeγ

(k+
2 − k+

4 )2
, k+

2 < q+ < k+
4

Ht : =
(k+

3 − q+)(q+ − k+
1 )tδeγ

(−k+
1 + k+

3 )2
, k+

3 < q+ < k+
1

Hd : =
(k+

3 − q+)(−k+
2 + q+)sδeγ

(k+
3 − k+

2 )(k+
4 − k+

2 )
, k+

2 < q+ < k+
3

=
(q+ − k+

3 )(k+
4 − q+)sδeγ

(k+
4 − k+

2 )(k+
4 − k+

3 )
, k+

3 < q+ < k+
4

Hl : =
(−k+

4 + q+)(k+
3 − q+)tδeγ

(k+
3 − k+

4 )(−k+
1 + k+

3 )
, k+

3 < q+ < k+
1

=
(−k+

4 + q+)2tδeγ

(k+
4 − k+

1 )(k+
4 − k+

3 )
, k+

1 < q+ < k+
4

Hu : =
(k+

1 − q+)(q+ − k+
2 )sδeγ

(k+
1 − k+

2 )(k+
4 − k+

2 )
, k+

2 < q+ < k+
1

=
(q+ − k+

1 )(−k+
4 + q+)sδeγ

(k+
4 − k+

1 )(k+
2 − k+

4 )
, k+

1 < q+ < k+
4

Hr : =
(−k+

2 + q+)2tδeγ

(k+
1 − k+

2 )(k+
3 − k+

2 )
, k+

2 < q+ < k+
3

=
(k+

2 − q+)(q+ − k+
1 )tδeγ

(−k+
1 + k+

2 )(−k+
1 + k+

3 )
, k+

3 < q+ < k+
1 (3–3)

Next, I list the results for the two model boxes ∨ ∧ ∧∨ and ∧ ∨ ∨∧.

• ∨ ∧ ∧∨:

i

8π2
Tr
[

tatbtctd
]

×
k+

2 < q+ < k+
3 :

+ 1/4
(q+ − k+

4 )(q+ − k+
2 )

(k+
2 − k+

4 )s
K∧

43K
∨
21 log(Hs) + 1/8

(q+ − k+
2 )2(k+

1 − k+
4 )(k+

3 − k+
4 )

k+
2 − k+

4

log(Hr)

− 1/4
(q+ − k+

4 )(q+ − k+
2 )

(k+
2 − k+

4 )s
K∧

43K
∨
21 log(Hr )
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k+
3 < q+ < k+

1 :

+ 1/4
(q+ − k+

4 )(q+ − k+
2 )

(k+
2 − k+

4 )s
K∧

43K
∨
21 log(Hs)

+ 1/8
(k+

3 − k+
4 )(k+

2 − k+
1 )

(k+
3 − k+

1 )(k+
2 − k+

4 )

(

(−k+
3 k+

2 + k+
4 k+

3 − k+
4 k+

2 + 2q+k+
2 − q+2

)k+
1

+ k+
3 k+

4 k+
2 + q+2

k+
3 − 2q+k+

4 k+
3 − q+2

k+
2 + q+2

k+
4

)

log(Ht)

+ 1/4
(q+ − k+

4 )(q+ − k+
2 )

(k+
2 − k+

4 )s
K∧

43K
∨
21 log(Ht) − 1/8

(q+ − k+
4 )2(k+

2 − k+
1 )(−k+

2 + k+
3 )

k+
2 − k+

4

log(Hl )

− 1/4
(q+ − k+

4 )(q+ − k+
2 )

(k+
2 − k+

4 )s
K∧

43K
∨
21 log(Hl) + 1/8

(q+ − k+
2 )2(k+

1 − k+
4 )(k+

3 − k+
4 )

k+
2 − k+

4

log(Hr)

− 1/4
(q+ − k+

4 )(q+ − k+
2 )

(k+
2 − k+

4 )s
K∧

43K
∨
21 log(Hr)

k+
1 < q+ < k+

4 :

+ 1/4
(q+ − k+

4 )(q+ − k+
2 )

(k+
2 − k+

4 )s
K∧

43K
∨
21 log(Hs) − 1/8

(q+ − k+
4 )2(k+

2 − k+
1 )(k+

3 − k+
2 )

k+
2 − k+

4

log(Hl)

− 1/4
(q+ − k+

4 )(q+ − k+
2 )

(k+
2 − k+

4 )s
K∧

43K
∨
21 log(Hl )

Now assume that its coefficient is C +A/(q+ − k+
4 )2 − 1/(q+ − k+

4 )1, what to do next is

to combine this with the coefficients of the log H terms, then extract the polynomial part

through partial fraction and perform the integrals to get its contribution.

− 1/36 · (k+
4 − k+

3 )(k+
2 − k+

3 )(k+
1 − k+

4 )(k+
1 − k+

2 )C + 1/8 · k+
1 − k+

2 − k+
4 + k+

3

s
K∧

43K
∨
21

− 1/24 · (k+
1

2
+ k+

3
2 − k+

1 k+
2 − k+

4 k+
1 − k+

3 k+
2 − k+

4 k+
3 + 2k+

4 k+
2 )C

s
K∧

43K
∨
21

+ 1/8 log(s) · −k+
4 + k+

2 + 2A

s
K∧

43K
∨
21 − 1/24 log(s) · (k+

2 − k+
4 )2C

s
K∧

43K
∨
21

+ 1/24 log(t) · (k+
4 − k+

3 )(k+
2 − k+

3 )(k+
1 − k+

4 )(k+
1 − k+

2 )C

− 1/8 log(t) · −k+
4 + k+

2 + 2A

s
K∧

43K
∨
21 + 1/24 log(t) · (k+

2 − k+
4 )2C

s
K∧

43K
∨
21 (3–4)
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If its coefficient were C + A/(q+ − k+
4 )2 − 1/(q+ − k+

4 )1, then the result can be obtained

from the above by replacing k+
2 ↔ −k+

4 , k+
1 (k+

3 ) ↔ −k+
1 (−k+

3 ).

What is not included in Eq.3–4 is of the form:

[

...

(q − ki)2
+

...

q − ki

]

log H (3–5)

where ... only depends on the external momenta. The second order poles will have to

cancel eventually, the first order pole always combines to become proportional to a tree

amplitude with a universal structure.

• ∧ ∨ ∨∧

k+
2 < q+ < k+

3 :

− 1/8
(q+ − k+

4 )2(−k+
1 + k+

2 )(k+
3 − k+

2 )

k+
2 − k+

4

log(Hs)

+ 1/8
(q+ − k+

3 )2(k+
1 − k+

4 )(−k+
1 + k+

2 )

k+
3 − k+

1

log(Hd)

− 1/4
(−k+

1 + q+)(q+ − k+
3 )

(k+
3 − k+

1 )(−t)
K∧

14K
∨
32 log(Hd)

+ 1/8
(−k+

1 + q+)2(k+
3 − k+

4 )(k+
3 − k+

2 )

k+
3 − k+

1

log(Hu)

+ 1/4
(−k+

1 + q+)(q+ − k+
3 )

(k+
3 − k+

1 )(−t)
K∧

14K
∨
32 log(Hu)

k+
3 < q+ < k+

1 :
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− 1/8
(k+

3 − k+
4 )(k+

2 − k+
1 )

(k+
2 − k+

4 )(k+
3 − k+

1 )

(

(−k+
3 k+

2 + 2q+k+
2 − k+

4 k+
2 + k+

3 k+
4 − q+2

)k+
1

+ k+
3 k+

4 k+
2 + k+

3 q+2 − 2k+
3 q+k+

4 + q+2
k+

4 − q+2
k+

2

)

log(Hs)

− 1/4
(−k+

1 + q+)(q+ − k+
3 )

(k+
3 − k+

1 )(−t)
K∧

14K
∨
32 log(Hs) − 1/4

(−k+
1 + q+)(q+ − k+

3 )

(k+
3 − k+

1 )(−t)
K∧

14K
∨
32 log(Ht)

− 1/8
(q+ − k+

3 )2(k+
1 − k+

4 )(k+
2 − k+

1 )

k+
3 − k+

1

log(Hd ) + 1/4
(−k+

1 + q+)(q+ − k+
3 )

(k+
3 − k+

1 )(−t)
K∧

14K
∨
32 log(Hd )

+ 1/8
(−k+

1 + q+)2(k+
3 − k+

4 )(k+
3 − k+

2 )

k+
3 − k+

1

log(Hu)

+ 1/4
(−k+

1 + q+)(q+ − k+
3 )

(k+
3 − k+

1 )(−t)
K∧

14K
∨
32 log(Hu)

k+
1 < q+ < k+

4 :

+ 1/8
(q+ − k+

2 )2(k+
1 − k+

4 )(k+
3 − k+

4 )

k+
2 − k+

4

log(Hs)

− 1/8
(−k+

3 + q+)2(k+
1 − k+

4 )(k+
2 − k+

1 )

k+
3 − k+

1

log(Hd)

+ 1/4
(−k+

3 + q+)(−k+
1 + q+)

(k+
3 − k+

1 )(−t)
K∧

14K
∨
32 log(Hd)

− 1/8
(−k+

1 + q+)2(k+
3 − k+

4 )(k+
3 − k+

2 )

k+
3 − k+

1

log(Hu)

− 1/4
(−k+

3 + q+)(−k+
1 + q+)

(k+
3 − k+

1 )(−t)
K∧

14K
∨
32 log(Hu)

Now assume that its coefficient is C + A/(q+ − k+
1 )2 − 1/(q+ − k+

1 )1, its contribution

would be
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− 1/36 · (k+
4 − k+

3 )(k+
2 − k+

3 )(k+
1 − k+

4 )(k+
1 − k+

2 )C + 1/8 · −k+
4 + k+

3 + k+
1 − k+

2

(−t)
K∧

14K
∨
32

− 1/24 · (k+
2 k+

1 − 2k+
3 k+

1 + k+
4 k+

3 + k+
1 k+

4 + k+
2 k+

3 − k+
4

2 − k+
2

2
)C

(−t)
K∧

14K
∨
32

+ 1/24 log(s) · (k+
4 − k+

3 )(k+
2 − k+

3 )(k+
1 − k+

4 )(k+
1 − k+

2 )C

+ 1/8 log(s) · −k+
1 + 2A + k+

3

(−t)
K∧

14K
∨
32 − 1/24 log(s) · (k+

3 − k+
1 )2C

(−t)
K∧

14K
∨
32

− 1/8 log(t) · −k+
1 + 2A + k+

3

(−t)
K∧

14K
∨
32 + 1/24 log(t) · (k+

3 − k+
1 )2C

(−t)
K∧

14K
∨
32 (3–6)

Just as in Eq.3–4, the pole terms are dropped here.

3.2 Box without a Helicity Violating Sub-diagram

But of course, not all boxes are going to have a helicity violating subtree, I now turn

to a second, much more complicated case Fig.3-4.

Assuming this box diagram can be written as

[

A

(q+ − k+
1 )2

+
B

(q+ − k+
1 )

]

K∨
16K

∧
52K

∨
3,−5K

∧
−6,4 (3–7)

Here I have used the notation of dual momenta to make the formalism more symmetric

looking. Write
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[

A

(q+ − k+
1 )2

+
B

(q+ − k+
1 )

]

K∨
16K

∧
52

=
A

(q+ − k+
1 )2

(K∨
16K

∧
52 + K∧

16K
∨
52 − K∧

16K
∨
52) +

B

(q+ − k+
1 )

(K∨
16K

∧
52 − K∧

16K
∨
52 + K∧

16K
∨
52)

=
A

(q+ − k+
1 )2

(K∨
16K

∧
52 + c.c) +

B

(q+ − k+
1 )

(K∨
16K

∧
52 − c.c)

− (
A

(q+ − k+
1 )2

− B

(q+ − k+
1 )

)K∧
16K

∨
52

=
A

(q+ − k+
1 )2

1

2
(k+

1 − q+)(−k+
1 + q+)s

+
A

(q+ − k+
1 )2

1

2

[

(k+
4 − k+

1 )(k+
2 − q+) + (k+

1 − k+
2 )(q+ − k+

4 )
]

(q − k1)
2

+
A

(q+ − k+
1 )2

1

2
(−k+

1 + k+
2 )(−k+

1 + q+)(q − k4)
2

+
A

(q+ − k+
1 )2

1

2
(−k+

4 + k+
1 )(k+

1 − q+)(q − k2)
2

+
B

(q+ − k+
1 )

(K∨
21K

∧
65 − c.c)

(q+ − k+
1 )

(k+
4 − k+

2 )

− (
A

(q+ − k+
1 )2

− B

(q+ − k+
1 )

)K∧
16K

∨
52 (3–8)

Notice that the first four terms in Eq.3–8 contain covariant products of momenta: s,

(q − k1)
2, (q − k4)

2 (q − k2)
2. The coefficient of s is simply −sA/2 (the annoying

1/(q+ − k+
1 )2 has disappeared, the fifth term also has this property). Terms like (q − ki)

2

will simply cancel one of the four propagators, effectively making a triangle-like terms.

Now Let us look at the sixth term of Eq.3–8. Putting back the factor of K∨
3,−5K

∧
−6,4

gives [A/(q+ − k+
1 )2 − B/(q+ − k+

1 )]K∧
16K

∨
52K

∨
3,−5K

∧
−6,4. Now that two ∧’s (or ∨) are next

to each other, this term is in fact nothing but the previous model diagram.

In summary, the evaluation of the second, fifth and sixth terms of Eq.3–8 goes

through without further twist. However, the first(hence forth called half scalar box), third

and fourth term have collinear divergence individually (on top of the infrared divergence),

some more manipulations are needed.
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Subtraction of Collinear Divergence: A collinear divergence in a virtual process

happens when the momenta flowing through two internal propagators connected to a

common massless external leg become parallel. For a box diagram, there can be a collinear

divergence at each massless corner. When only transverse components propagates in the

loop, the vertex function will vanish due to helicity conservation. So, a bona fide box in

light cone gauge will have no collinear problem. However, in the manipulations of Section

3.2, we have tampered with the vertex structures of the lower sub-tree, so there will be

collinear divergences in some of the resulting pieces. But they will cancel when all the

pieces are collected.

The collinear divergence in a box diagram can be located into two triangle-like

diagrams. This process is rather like doing a partial fraction. Consider

K∨
3,−5 · K∧

−6,4

i

(q − k1)2

i

(q − k4)2

i

(q − k3)2

i

(q − k2)2
(3–9)

Take limit q → k4 (so the right propagator is soft). Eq.3–9 becomes

K∨
3,−5 · K∧

4,3

i

(q − k1)2

i

(q − k4)2

i

(q − k3)2

i

s
(3–10)

Take limit q → k1 (so the bottom propagator is soft). Eq.3–9 becomes

K∨
3,−5 · K∧

1,4

i

(q − k1)2

i

(q − k4)2

i

t

i

(q − k2)2
(3–11)

Naturally, if these two ’poles’ are subtracted from Eq.3–9, we should have a term free of

collinear divergence, which will be demonstrated next.

According to Chapter 2, the Schwinger representation of Eq.3–9 is (with H given by

x1x3t + x2x4s + µ2, where µ is a small mass used here to regulate temporarily the possible

collinear divergences)
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∫

T 3dTδ(Σxi − 1)d4xi

2T (2π)3
exp

(

−iT q2
⊥ + iTH

)

[

(k+
4 − k+

3 )q∨ + x2K
∨
43 + x1K

∨
32

][

(k+
3 − k+

2 )q∧ + x4K
∧
43 + x1K

∧
14

]

=

∫

T 3dTδ(Σxi − 1)d4xi

2T (2π)3
exp

(

−iT q2
⊥ + iTH

)

[

1

2
(k+

4 − k+
3 )(k+

3 − k+
2 )q2

⊥ + x2x4K
∨
43K

∧
43 + x1x4K

∨
32K

∧
43 + x2x1K

∨
43K

∧
14 + x2

1K
∨
32K

∧
14

]

=

∫

T 3dTδ(Σxi − 1)d4xi

16π2T
exp iTH

[

1

2

(k+
4 − k+

3 )(k+
3 − k+

2 )

(iT )2
+

x2x4

iT
K∨

43K
∧
43 +

x1x4

iT
K∨

32K
∧
43 +

x2x1

iT
K∨

43K
∧
14 +

x2
1

iT
K∨

32K
∧
14

]

Integrate over T :

∫

1

8π2
δ(Σxi − 1)dxi

[− 1

4H
(k+

4 − k+
3 )(k+

3 − k+
2 ) +

x2x4

2H2
K∨

43K
∧
43 +

x1x4

2H2
K∨

32K
∧
43 +

x2x1

2H2
K∨

43K
∧
14 +

x2
1

2H2
K∨

32K
∧
14]

The first two terms won’t have collinear divergence, the µ can be set to zero, but the rest

will have to be evaluated with a small µ to regulate the collinear divergences.

There are basically two types of Feynman parameter integrals in this case. The others

are either finite or could be obtained from these two.

∫

Σxi≤1

x2
1

(x1x3t + x2x4s + µ2)2

=
1

2st
log2 µ2

s
− s

2t(s + t)2
log2 s

t
+

2

st
log

µ2

s
+

1

t(s + t)
log(

s

t
) +

4

st
− π2s

2t(s + t)2

∫

Σxi≤1

x1x2

(x1x3t + x2x4s + µ2)2

= − 1

2(s + t)2
log2 s

t
− 2

st
log

µ2

s
− 1

t(s + t)
log(

s

t
) − 2

st
− π2

2(s + t)2
(3–12)

Collecting all the divergent terms from Eq.3–9:
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(3–9)div =
iA

8π2

[

1

8(−t)
log2 µ2 +

1

2(−t)
log µ2 − 1

4(−t)
log s log µ2

]

K∨
32K

∧
14

− iA

8π2

1

4(−t)
log µ2 · (K∨

43K
∧
14 + K∧

43K
∨
32) (3–13)

Eq.3–10 and Eq.3–11 simply give

K∨
3,−5 · K∧

4,3

i

(q − k1)2

i

(q − k4)2

i

(q − k3)2

i

s

=

∫

T 2dTdx1dx3dx4δ(
∑

xi − 1)

2T (2π)3

[

−k+
4 − k+

3

(−t)
q∨ − x1

(−t)
K∨

32 −
0

(−t)
K∨

43

]

K∧
43 exp (−iT q⊥

2 + iTH)

=
1

8π2
[log µ2 + 2 − log (−t)]

1

2s(−t)
K∧

43K
∨
32

K∨
3,−5 · K∧

1,4

i

(q − k1)2

i

(q − k4)2

i

t

i

(q − k2)2

=

∫

T 2dTdx1dx2dx4δ(
∑

xi − 1)

2T (2π)3

[

−k+
4 − k+

3

(−t)
q∨ − x1

(−t)
K∨

32 −
x2

(−t)
K∨

43

]

K∧
14 exp (−iq⊥

2 + iH)

=
1

8π2
[(log s − 2) log µ2 − 1

2
log2 µ2 − (

1

2
log2 s + 4 − 2 log s)]

1

2s(−t)
K∨

32K
∧
14

+
1

8π2
[log µ2 + 2 − log s]

1

2s(−t)
K∨

43K
∧
14

This, multiplied by −sA/2, is the same as the half scalar box contribution Eq.3–13.

The complete contribution of Eq.3–9 with Eq.3–10 and 3–11 subtracted is (pole terms

omitted)
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1

8π2
A log

s

t

[

− 1

8

s(−k+
3 + k+

4 )(−k+
2 + k+

3 )

(−t) − s

−1

4

s

((−t) − s)(−t)
K∧

14K
∨
32 +

1

4

s

((−t) − s)(−t)
K∧

14K
∨
43 +

1

4((−t) − s)
K∧

43K
∨
32

]

+
1

8π2
A[log2 s

t
+ π2]

[

− 1

16

s(−k+
3 + k+

4 )(−k+
2 + k+

3 )(−t)

((−t) − s)2

−1

8

s2

((−t) − s)2(−t)
K∧

14K
∨
32 +

1

8

s

((−t) − s)2
K∧

14K
∨
43 +

1

8

s

((−t) − s)2
K∧

43K
∨
32

]

(3–14)

So, when evaluating Eq.3–9, which is collinearly divergent by itself, I shall subtract

Eq.3–10 and 3–11 from it, to make 3–9 finite.

Next I will show that Eq.3–10 and Eq.3–11 also cancel the collinear divergence in the

third and fourth term of Eq.3–8. Putting the triangle-like terms in Eq.3–8 together with

Eq.3–10, 3–11:

[

(−k+
1 + k+

2 )(−k+
1 + q+)(q − k4)

2 + (−k+
4 + k+

1 )(k+
1 − q+)(q − k2)

2
]

1

(q+ − k+
1 )2

i

(q − k1)2

i

(q − k2)2

i

(q − k3)2

i

(q − k4)2
K∨

3,−5K
∧
−6,4

+ K∨
3,−5 · K∧

4,3

i

(q − k1)2

i

(q − k4)2

i

(q − k3)2

i

s
s

+ K∨
3,−5 · K∧

1,4

i

(q − k1)2

i

(q − k4)2

i

t

i

(q − k2)2
s (3–15)

Suppose q − k1 = λ(p1 − p2), q − k2 = (1 + λ)(p1 − p2). The above expression becomes

1

(q − k1)2

1

(q − k2)2
K∨

3,−5 ×
[

(−k+
1 + k+

2 )

λ(k+
1 − k+

2 )

1

(1 + λ)t
(1 + λ)K∧

14 + 0 + 0 +
1

λs
s
1

t
K∧

14

]

= 0

Suppose q − k1 = λ(p4 − p1), q − k4 = (λ − 1)(p4 − p1). The above expression becomes
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1

(q − k1)2

1

(q − k4)2
K∨

3,−5 ×
[

0 +
(−k+

4 + k+
1 )

−λ(k+
4 − k+

1 )

1

(λ − 1)t
(K∧

14 + λK∧
24) + K∧

4,3

1

(1 − λ)t

1

s
s + K∧

1,4

1

t

1

λs
s

]

= 0

Thus all the collinear divergences cancel.

The complete contribution of 3–10 and 3–11 and third fourth term of Eq.3–8 are quite

complicated. I observed that the rational part of their contribution is zero, so if there is a

way to get the logarithmic parts through some other methods (such as unitarity), we can

be spared all these ordeals.

To summarize, I have subtracted 3–10 and 3–11 from Eq.3–9 and then added them

back to the triangle-like terms in Eq.3–8 to make both parties collinearly finite. I want to

add that the introduction of µ will not mess up gauge covariance as people would normally

think.

PSfrag replacements

1

k+
2

2k+
1

3

k+
4

4 k+
3

q+

Figure 3-1. Dual momentum assignment with k+
2 < k+

3 < k+
1 < k+

4

PSfrag replacements

∧ ∧

∨∨

p6 ↓ p5 ↓

↗ p1 p2 ↖

p3 ↙↘ p4

Figure 3-2. Model box with a helicity violating subtree
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PSfrag replacements = + +−

Figure 3-3. Graphical representation of box reduction

PSfrag replacements

∨ ∧

∨∧

p6 ↓ p5 ↓

↗ p1 p2 ↖

p3 ↙↘ p4

Figure 3-4. Model box with alternating helicity
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CHAPTER 4
MASSLESS AMPLITUDES

I will be following [21] and decompose an n-particle amplitude into

Mn =
∑

perm′

Tr(ta1ta2 ...tan)M(p1, ε1; p2, ε2; ...; pn, εn) (4–1)

where perm′ is over non cyclic permutations for complex representations, non cyclic

and non reflexive permutations for real representations. In the following results, the

representation is assumed to be the adjoint representation.

4.1 Two Point Functions

A factor of −ig2/(16π2)f cadf dbc = ig2/(16π2)Tr
[

tatb
]

will be omitted in the following

list.

4.1.1 Gluon Self-Energy

Refer to Fig.4-1

Π(g+, g+; s) = −1

3

[

k∧2
1 + k∧

1 k∧
3 + k∧2

3

]

Π(g+, g+; q) =
4

3

[

k∧2
1 + k∧

1 k∧
3 + k∧2

3

]

Π(g+, g+; g) = −2

3

[

k∧2
1 + k∧

1 k∧
3 + k∧2

3

]

(4–2)

where the first two arguments in Π tell the species of particle and the helicity, and

the third denotes the particle in the loop. For the above assignment of helicity, the

contribution should be zero due to Lorentz covariance. They are only nonzero because the

regulator used here doesn’t respect Lorentz covariance. This is purely an artifact, and it

has to be cancelled by a counter term. Also, it can be observed that Π(g+, g+, s) × Ns +

Π(g+, g+; q)F × Nf + Π(g+, g+; g)× Ng = 0 in the N = 4 SYM case.
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Π(g+, g+; s) =
1

6
p+p∧

Π(g+, g+; q) = −2

3
p+p∧

Π(g+, g+; g) =
7

3
p+p∧ + IR terms (4–3)

The notation g+ simply means that I am using |η]〈η | or gµ+ as polarization vector. The

first two terms should also be zero due to Lorentz covariance, so they have to be set to

zero with counter terms.

Here are the helicity conserving 2 point functions:

Π(g+, g−; s) =

∫ 1

0

dxx(1 − x)p2 log x(1 − x)p2δeγ

= p2

[

5

18
− 1

6
log p2δeγ

]

Π(g+, g−; q) = 2

∫ 1

0

dx
[

x2 + (1 − x)2
]

p2 log x(1 − x)p2δeγ

= p2

[

26

9
− 4

3
log p2δeγ

]

Π(g+, g−, g) = 2

∫ 1

0

dx

[

x

1 − x
+

1 − x

x
+ x(1 − x)

]

p2 log x(1 − x)p2δeγ

= p2

[

−67

9
+

11

3
log p2δeγ +

∫ 1

0

dx

[

2

1 − x
+

2

x

]

log x(1 − x)p2δeγ

]

(4–4)

Here x is in fact (q+ − k+
1 )/(k+

3 − k+
1 ).

Several comments are in order:

In the last line of Eq.4–4, the x integral is certainly divergent, this is due to the

artificial divergence. This divergent integral is what we call the infrared term (with x

interpreted as (q+ − k+
1 )/(k+

3 − k+
1 ). Temporarily forgetting about these infrared terms, it

is easily observed that the sum of these diagrams is zero with the N = 4 field content. I

shall comment on this later.
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In the above list, all quadratic divergence 1/δ are omitted. Due to the way the light

cone world sheet computation is setup, all the tadpoles are being dropped. These tadpoles

will only contribute to the quadratic 1/δ divergence. As a result, the 1/δ terms can

actually have non-trivial p+ dependence. When the p+ dependence is of the type 1/p+, it

can be interpreted as a world sheet cosmological constant as in [13]. While in other cases,

the p+ dependence could be of the form (1/p+) log p+, whose interpretation has not been

fully understood yet.

There is one small point about numerics that I want to point out here. The 2 point

function naturally comes with a color structure of f cadf dbc = −Tr
[

tatb
]

, when we try to fit

the 2 point functions into the big picture as in Fig.4-2, the trace factor becomes (assuming

that ta is in a real representation):

fabeTr[tetf ]f fcd = Tr[(−i)[ta, tb](−i)[tc, td]]

= −Tr[tatbtctd] + Tr[tatbtdtc] + Tr[tbtatctd] − Tr[tbtatdtc]

→ −2Tr[tatbtctd] (4–5)

Also, there is always another factor of i2 coming from the two propagators connecting to

the 2 point function.

As a comparison, I shall give the two point function that describes the ’propagation’

of A−. The argument g+ means that I am taking the polarization vector to be gµ+.

Π(g+, g+; s) = p+2

[

4

9
− 1

6
log p2δeγ

]

Π(g+, g+; q) = p+2

[

20

9
− 4

3
log p2δeγ

]

Π(g+, g+, g) = p+2

[

8

9
− 1

3
log p2δeγ

]

We observe that the logarithmic piece that will give a cut matches between Π(g+, g−)

and Π(g+, g+) when the loop particle is fermion or scalar. This is a hint that we shall use

counter terms to enforce the total agreement between Π(g+, g−) and Π(g+, g+), due to the
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consideration of Lorentz covariance. This observation shall be a guide to fix counter terms

later on.

Clearly, there is a mismatch when the gluon is in the loop. This mismatch is due to

the presence of infrared divergences in Π(g+, g−, g), while Π(g+, g+, g) is free of infrared

divergence.

4.1.2 Fermion and Scalar Self-Energy

Π(q̄+, q+) =

∫ 1

0

dx
−2 + 3x − 3x2

(1 − x)x
p2 log x(1 − x)p2δeγ

= p2

[

−6 + 3 log p2δeγ +

∫ 1

0

dx

[ −2

1 − x
+

−2

x

]

log x(1 − x)p2δeγ

]

The divergent x integral is likewise interpreted as infrared term.

I shall also give the result when I use |η〉 or | η] as spinors instead of |p〉 or | p].

Π(q̄ +, q+) =
√

2p+
[

2 − log p2δeγ
]

where p flows with the direction of the fermion line. We again observe a mismatch of

log p2 term, due to the infrared divergence.

The scalar self-energy diagram is given by

Π(s, s) =

∫ 1

0

dx
−2 + 4x − 4x2

(1 − x)x
p2 log x(1 − x)p2δeγ

= p2

[

−8 + 4 log p2δeγ +

∫ 1

0

dx

[ −2

1 − x
+

−2

x

]

log x(1 − x)p2δeγ

]

4.2 Three Point Functions

The general structure of 3 point function Fig.4-3 is

(

const + log p2
o

)

tree + α term + const(k2⊥ + k1⊥ + k4⊥)
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The α term will arise if the off-shell leg has unlike helicity.

A factor of g3/8π2f daef ebff fcd = ig3/8π2Tr[tatbtc] is omitted.

4.2.1 Gluon Vertex Correction

Γ(g+, g+, g−; s) =
−2p+

3

p+
1 p+

2

K∧
2,1

[

1

6
log p2

oδe
γ − 1

9
− α

1

6

p+
1 p+

2

p+2
3

]

Γ(g+, g+, g−; q) =
−2p+

3

p+
1 p+

2

K∧
2,1

[

4

3
log p2

oδe
γ − 32

9
+ α

2

3

p+
1 p+

2

p+2
3

]

Γ(g+, g+, g−; g) =
−2p+

3

p+
1 p+

2

K∧
2,1

[

−11

3
log p2

oδe
γ +

70

9
− α

1

3

p+
1 p+

2

p+2
3

]

+ IR terms (4–6)

where α = 1 if leg 3 is off shell and 0 otherwise, and po is the momentum of the only

off-shell leg. The infrared terms present in the gluon triangle diagram will eventually be

combined with infrared terms from other diagrams to become proportional to a tree. They

are given in [14] and are not repeated here.

All of the above also contain an anomalous term:

Γ(g+, g+, g−; s)ano =
1

3
(k∧

2 + k∧
1 + k∧

4 )

Γ(g+, g+, g−; q)ano = −4

3
(k∧

2 + k∧
1 + k∧

4 )

Γ(g+, g+, g−; g)ano =
2

3
(k∧

2 + k∧
1 + k∧

4 )

here the k’s are dual momenta, they arise because δ is an exponential damping factor

of the transverse dual momenta. Had we used a cut off regulator ((q⊥ − k1⊥)2 < Λ for

example) instead of δ, the anomalous terms would change according to

(k2⊥ + k1⊥ + k4⊥) → (k2⊥ − k1⊥) + (k4⊥ − k1⊥)

These polynomial terms must be canceled by counter terms.

The MHV triangles (with all three legs having the same helicity) give
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Γ(g+, g+, g+; s) =
(K∧

21)
3

p+
1 p+

2 p+
3

[

2

3p2
o

]

Γ(g+, g+, g+; q) =
(K∧

21)
3

p+
1 p+

2 p+
3

[−8

3p2
o

]

Γ(g+, g+, g+; g) =
(K∧

21)
3

p+
1 p+

2 p+
3

[

4

3p2
o

]

(4–7)

Here, we again observe that with N = 4 SYM field content, the gluon vertex correction

vanishes.

As a comparison, I shall give the result when the off shell leg takes on + component.

Γ(g+, g−, g+; s) = −(p+
1 − p+

2 )

[

1

6
log p2

oδe
γ − 5

18

]

Γ(g+, g−, g+; q) = −(p+
1 − p+

2 )

[

4

3
log p2

oδe
γ − 26

9

]

Γ(g+, g−, g+; g) = −(p+
1 − p+

2 )

[

−5

3
log p2

oδe
γ +

31

9

]

+ IR terms

Γ(g+, g+, g+) = 0 (4–8)

Although Γ(g+, g−, g+) are not directly used in the computation of the scattering

amplitudes, they are a guide to fix the counter terms

4.2.2 Fermion Vertex Correction

The fermion vertex correction Fig.4-4 is given by

Γ(q+, q̄+, g+) =
2

q+
K∧

p2,q

[

−3 log p2
oδe

γ + 6
]

+ IR terms (4–9)

The notation here is that: q means an incoming fermion line while q̄ means an outgoing

fermion line; q+ means that the fermion is right handed; g+ means that the gluon

is right handed which corresponds to ∧. The reader can refer to Fig.4-4. The factor

ig3/(8π2)Tr[tatbtc] is omitted as usual. The other combination is
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Γ(q+, q̄+, g−) =
2p+

2

q+p1

K∨
p1,q

[

−3 log p2
oδe

γ + 6
]

+ IR terms (4–10)

While Γ(q−, q̄−, g+), Γ(q+, q̄+, g−); and Γ(q−, q̄−, g−), Γ(q+, q̄+, g+) are related by

charge conjugation1 . These results up to the IR terms are the same with any one of the

legs being off shell.

We can also have the case when a gluon is off shell but taking on + component.

Γ(q+, q̄+, g+) = 2p+
2

[

− log p2
oδe

γ + 2
]

+ IR terms

4.2.3 Scalar Vertex Correction

Scalar vertex Fig.4-5 is given by

Γ(s, s, g+) =
2

q+
K∧

2,1

[

−4 log p2
oδe

γ +
17

2

]

+ (k∧
2 + k∧

1 + k∧
4 ) + IR terms (4–11)

with Γ(s, s, g−) equal to Γ(s, s, g+) with the obvious change of ∧ to ∨. This result is also

the same up to IR terms with any one of the legs being off-shell.

4.2.4 Four-Point Functions

The box diagrams are too cumbersome to present here, but I do want to point out

that, up to the infrared terms, the total contribution of the box diagrams in a specific

amplitude is surprisingly simple. I shall list the rational part of the contribution of some

boxes in conjunction with the scattering processes in which they occur.

4.3 Scattering Amplitudes

I shall start with gluon scattering, with a factor of ig4/(8π2)Tr[tatbtctd] omitted.

1 up to the external line factors which are defined asymmetrically, see the explanation
below Eq.2–24
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4.3.1 Helicity Violating Amplitudes

The tree level amplitude for four gluons with the same helicity is zero. At one loop,

the amplitude is

A(g+, g+, g+, g+; s) =
4

3

K∧
43K

∧
32K

∧
21K

∧
14

p+
1 p+

2 p+
3 p+

4 st

A(g+, g+, g+, g+; q) = −16

3

K∧
43K

∧
32K

∧
21K

∧
14

p+
1 p+

2 p+
3 p+

4 st

A(g+, g+, g+, g+; g) =
8

3

K∧
43K

∧
32K

∧
21K

∧
14

p+
1 p+

2 p+
3 p+

4 st
(4–12)

The tree level amplitude with only one unlike helicity is zero too. At one loop level, the

amplitude is

A(g+, g+, g+, g−; s) =
1

6
(s + t)

K∧2
13 p+

2 p+
4

K∧
43K

∨
32K

∨
21K

∧
14

A(g+, g+, g+, g−; q) =
−2

3
(s + t)

K∧2
13 p+

2 p+
4

K∧
43K

∨
32K

∨
21K

∧
14

A(g+, g+, g+, g−; g) =
1

3
(s + t)

K∧2
13 p+

2 p+
4

K∧
43K

∨
32K

∨
21K

∧
14

(4–13)

It is easily observable that the helicity violating amplitude is zero if there is any amount of

supersymmetry [17]. For example:

N = 1 : −16

3
× 1

2
+

8

3
× 1 = 0 − 2

3
× 1

2
+

1

3
× 1 = 0

N = 2 : −16

3
× 1 +

8

3
× 1 +

4

3
× 2 = 0 − 2

3
× 1 +

1

3
× +

1

6
× 2 = 0

N = 3(4) : −16

3
× 2 +

8

3
× 1 +

4

3
× 6 = 0 − 2

3
× 2 +

1

3
× 1 +

1

6
× 6 = 0 (4–14)

Since for gluon scattering up to one loop, adding supersymmetry is simply taking into

account the multiplicity of each species, hence N = 3 is the same as N = 4.

In the list of amplitudes, the fermions are assumed to be dirac, this explains the

strange looking 1/2 multiplicity for the fermions in the first line of Eq.4–14.
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4.3.2 Helicity Conserving Amplitudes

The helicity conserving amplitude is non-zero at tree level. They are given by [20]

A(g+, g+, g−, g−) = ig2fabef ecd −2K∧4
12 p+

3 p+
4

K∧
43K

∧
32K

∧
21K

∧
14p

+
1 p+

2

A(g+, g−, g+, g−) = ig2fabef ecd −2K∧4
13 p+

2 p+
4

K∧
43K

∧
32K

∧
21K

∧
14p

+
1 p+

3

(4–15)

The factor f abef ecd can be converted to −1/C(G)Tr
[

[ta, tb][tc, td]
]

→ −2/C(G)Tr
[

tatbtctd
]

.

Here I have chosen ta to be the structure constants, while most literature picks ta to be in

the fundamental representation. So, instead of the one loop amplitude gaining a factor of

Nc, here the tree amplitude is down by a factor of Nc.

At one loop level, the amputated Green’s function is (with external leg corrections

omitted)
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A(g+, g+, g−, g−; s) =
−2K∧4

12 p+
3 p+

4

K∧
43K

∧
32K

∧
21K

∧
14p

+
1 p+

2

[

1

18
+

1

6
log δeγt

]

− 1

6
×+

1

3

A(g+, g+, g−, g−; q) = −2

{ −2K∧4
12 p+

3 p+
4

K∧
43K

∧
32K

∧
21K

∧
14p

+
1 p+

2

[

19

9
− 2

3
log δeγt

]

− 1

3
×+

2

3

}

A(g+, g+, g−, g−; g) =
−2K∧4

12 p+
3 p+

4

K∧
43K

∧
32K

∧
21K

∧
14p

+
1 p+

2

[

−
(

log2 s

t
+ π2

)

− 11

3
log δeγt +

73

9

]

−1

3
×+

2

3
(4–16)

A(g+, g−, g+, g−; s) =
−2K∧4

13 p+
2 p+

4

K∧
43K

∧
32K

∧
21K

∧
14p

+
1 p+

3

[

− s2t2

2(s + t)4

(

log2 s

t
+ π2

)

+
s(2t2 − 5st − s2)

6(s + t)3
log

s

t
+

1

6
log δeγs +

ts

2(s + t)2
+

1

18

]

−1

6
×+

1

3

A(g+, g−, g+, g−; q) = −2

{ −2K∧4
13 p+

2 p+
4

K∧
43K

∧
32K

∧
21K

∧
14p

+
1 p+

3

[

st(t2 + s2)

2(s + t)4

(

log2 s

t
+ π2

)

+
s(5t2 + st + 2s2)

3(s + t)3
log

s

t
− 2

3
log δeγs +

ts

(s + t)2
+

19

9

]

−1

3
×+

2

3

}

A(g+, g−, g+, g−; g) =
−2K∧4

13 p+
2 p+

4

K∧
43K

∧
32K

∧
21K

∧
14p

+
1 p+

3

[

− (s2 + st + t2)2

(t + s)4

(

log2 s

t
+ π2

)

+
s

3

(14t2 + 19st + 11s2)

(s + t)3
log

s

t
− 11

3
log δeγs +

ts

(s + t)2
+

73

9

]

−1

3
×+

2

3
(4–17)

The symbol × above is the relevant four point vertex: −2(p+
1 p+

3 + p+
2 p+

4 )/[(p+
1 +

p+
4 )(p+

2 +p+
3 )] or 2(p+

2 p+
3 +p+

1 p+
4 )[(p+

1 +p+
2 )(p+

3 +p+
4 )]+2(p+

1 p+
2 +p+

3 p+
4 )/[(p+

1 +p+
4 )(p+

2 +p+
3 )].

Here I also give the rational contribution of the corresponding box diagrams:
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B(g+, g+, g−, g−; s) =
4

9
− all α terms

B(g+, g+, g−, g−; q) = −16

9
− all α terms

B(g+, g+, g−, g−; g) =
8

9
− all α terms

B(g+, g−, g+, g−; s) =
1

9
+

st

2(s + t)2

−2K∧4
13 p+

2 p+
4

K∧
43K

∧
32K

∧
21K

∧
14p

+
1 p+

3

B(g+, g−, g+, g−; q) = −4

9
− 2st

(s + t)2

−2K∧4
13 p+

2 p+
4

K∧
43K

∧
32K

∧
21K

∧
14p

+
1 p+

3

B(g+, g−, g+, g−; g) =
2

9
+

st

(s + t)2

−2K∧4
13 p+

2 p+
4

K∧
43K

∧
32K

∧
21K

∧
14p

+
1 p+

3

(4–18)

So, the rational part of a box diagram vanishes in N = 4 SYM together with the

earlier observation that two and three point functions vanish in N = 4 SYM. This agrees

with the ’no-triangle’ assertion and some other technical observations that are commonly

used nowadays to simplify the computation of N = 4 SYM amplitudes. Using a box

reduction procedure [18], an integrand with d powers of momenta in the numerator and n

propagators can be reduced to tensor box integrals of degree up to d + 4 − n. For gauge

interactions, all three point vertices have one power of momenta, so there is n powers

of momenta in the numerator of an n-gon diagram. Then the result of reduction is a

combination of degree four box integrals, and some of the degree four box integrals can be

further reduced to triangle and bubble integrals. In N = 4 SYM, due to the ultraviolet

cancelation between different species, the degree of an n-gon integrand will be n-4, so

the result of reduction is thus scalar box integrals. This essentially is the ’no triangle’

assertion, which we did observe in Section 4.2 of vertex corrections. While it can also be

shown that the scalar box integrals will not in any way produce rational terms, this I have

explicitly shown in the above list.

The gluon scattering in N = 4 SYM is very simple (up to infrared terms):
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A(g+, g+, g−, g−; SY M) =
−2K∧4

12 p+
3 p+

4

K∧
43K

∧
32K

∧
21K

∧
14p

+
1 p+

2

[

−
(

log2 s

t
+ π2

)

]

A(g+, g−, g+, g−; SY M) =
−2K∧4

13 p+
2 p+

4

K∧
43K

∧
32K

∧
21K

∧
14p

+
1 p+

3

[

−
(

log2 s

t
+ π2

)

]

(4–19)

without any need for counter terms.

4.3.3 Restoring Gauge Covariance

So far, we have only studied the pure gluon scattering, and we have encountered some

non-gauge-covariance (non-Lorentz-Covariance) such as the hanging four point vertex.

We have to complete everything to a tree in order to maintain Lorentz covariance. At

four point level, the spinor structure of the leading order amplitude is the unique one that

agrees with all the helicity assignment. So for the result to be Lorentz covariant, it has to

be proportional to the leading order. This remains true to all orders if supersymmetry is

present according to [17], which says MHV amplitudes are proportional to tree amplitudes.

We cannot just simply use a counter-term to cancel the hanging four point vertex,

because they are not polynomials in external momenta. However, we can adjust the

relative strength of the exchange diagram to the contact diagram by adding a term

proportional to p2 to the self-energy term Eq.4–4. This modification only changes the

field strength renormalization by a constant, hence is perfectly allowed. With this term,

the coefficient of s and t channel exchange diagram is shifted. So if we pick the numerical

factor in front of p2 to be −1/6, −1/3, −1/3 for scalar, fermion and gluon respectively,

then they will match the coefficient of the lone four point vertex, completing it to a full

tree. This brings about a change in the numerical factor: 1/18 → −5/18, 19/9 → 13/9,

73/9 → 67/9 [14].

I have also done the computation with dimension regulation. The procedure was

to use dimension regulation to regulate the transverse momentum integral, and as

soon as this is done, ε will be set to zero. Hence the infrared regulator is still k+. The

computation shows that the hanging four point vertex and the pure number will vanish,
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this is expected since I have used a gauge invariant regulator. The numerical factor in this

scheme will come out in agreement with [23], who used dimension regulation through and

through, (not that the numerical factor is any thing important, as it can be altered by a

redefinition of coupling constant).

This type of counter-term will be put to a more severe test later on when we consider

the scattering of not just gluons but quarks and scalars. These counter terms had better

be universal in the sense that they are only the property of the self-energy bubble, and

should not depend upon what process it is embedded into.

4.3.4 All 2-2 Processes

A(s, s, g+, g−) =
8K∧2

13 K∨2
14

sp+
3 p+

4 p+2
1

[

9 − 2(s + 2t)

(s + t)
log δeγs − 2s

(s + t)
log δeγt

−s2 + st + t2

(s + t)2

(

log2 s

t
+ π2

)

]

− 1

2
×
[

1 +
(p+

2 − p+
1 )(p+

4 − p+
3 )

(p+
1 + p+

2 )2

]

+ 1

A(g+, s, g−, s) =
−8K∧2

21 K∨2
32

stp+
1 p+

3 p+2
2

[

9 − 2 log δeγs − 2 log δeγt −
(

log2 s

t
+ π2

)

]

− 1 × (−2)

A(s, s, s, s) =

[

59s2 + 77st + 59t2

3st
− 3(2s + 3t)

s
log δeγs

− 3(2t + 3s)

t
log δeγt − 2(s2 + t2)

st

(

log2 s

t
+ π2

)

]

− 1

2
×
[

(p+
1 − p+

2 )(p+
3 − p+

4 )

(p+
1 + p+

2 )2
+

(p+
4 − p+

1 )(p+
2 − p+

3 )

(p+
2 + p+

3 )2

]

while A(s, s, s, s)0 = 2(s2 + st + t2)/(st).The above are the processes only involving

bosons, the scheme for picking counter term described in Section 4.3.3 remains valid,

namely, we can find a universal set of numerical factors that will complete all the

above amplitudes into trees. This set can be chosen as -1/3 for Π(g+, g−; g), -1/3 for

Π(g+, g−; q), -1/6 for Π(g+, g−; s) and -1/2 for Π(s, s).
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However, when fermions are involved, I failed to find a universal set of counter terms

that will fix the problem. I shall list the result of the computation first.

A(q−, q−, q̄−, q̄−) =
−4K∧

21K
∨
43

tp+
1 p+

2

[

67

9
− 11

3
log δeγt −

(

log2 s

t
+ π2

)

]

− 1

3
× −4p+

3 p+
4

(p+
1 + p+

4 )2

(4–20)

A(q−, q̄−, q−, q̄−) =
4K∧

13K
∨
24(s + t)

stp+
1 p+

3
[

67

9
− 11

3

t

s + t
log δeγs − 11

3

s

s + t
log δeγt − 2s2 + st + 2t2

2(s + t)2

(

log2 s

t
+ π2

)

]

−1

3
×
[

4p+
2 p+

4

(p+
1 + p+

4 )2
− 4p+

2 p+
3

(p+
1 + p+

2 )2

]

(4–21)

The notation here is that a ’q’ represents an incoming fermion line, a ’q̄’ represents

an outgoing one, ’+’ corresponds to right handedness while ’−’ corresponds to left

handedness. So the process corresponding to Eq.4–20 and Eq.4–21 is Fig.4-6:

A(q−, q̄−, q+, q̄+) =
−4K∧

14K
∨
32

sp+
1 p+

3

[

67

9
− 11

3
log δeγs −

(

log2 s

t
+ π2

)

]

− 1

3
× −4p+

2 p+
4

(p+
1 + p+

2 )2

In fact, by charge conjugation, A(q−, q̄−, q + q̄+) can be related to A(q−, q̄−, q̄−, q−),

which then can be obtained from rotating A(q−, q−, q̄−, q̄−) clockwise by one notch (up

to the external line factors). As was explained in Section 2.2, instead of associating
√

p+ to each fermion line, I only associate a factor of p+ to an outgoing line, but

nothing to an incoming line. This is simply because a square root always causes

troubles in automated computation. For example, −4K∧
14K

∨
32/(sp+

1 p+
3 ) should really

be −4K∧
14K

∨
32/(s

√

p+
1 p+

2 p+
3 p+

4 ), which is quite clear as the latter is Lorentz covariant (can

be written as spinor products), but the former is not. The phase of the square root here

can be given arbitrarily.
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A(s, s, q−, q̄−) =

4K∧
13K

∨
14

sp+
1 p+

3

[

92

9
− 29

6
log δeγs − 2t + s

2(s + t)

(

log2 s

t
+ π2

)

]

− 2

3
× 2p+

4 (p+
2 − p+

1 )

(p+
1 + p+

2 )2

So far, the effect of using a non-covariant regulator is the mismatch between the

exchange vertex and 4 point vertex in the final result. However, in the case of gluon

fermion scattering, the mismatch is much worse.

A(g+, g−, q−, q̄−) =
−8K∧2

13 K∨
32K

∨
24

stp+
1 p+

2 p+2
3

[

6 − 3 log δeγs −
(

log2 s

t
+ π2

)

]

−1

3
× s channel tree

A(g+, g−, q+, q̄+) =
8K∧

14K
∧
13K

∨2
32

stp+
1 p+

2 p+
3 p+

4

[

6 − 3 log δeγs −
(

log2 s

t
+ π2

)

]

−1

3
× s channel tree

Here we see that the mismatch is between s and t channel. By s-channel tree, I mean the

s-channel exchange diagram and also its descendent four point vertex.

A(g+, q−, g−, q̄−) =
−8K∧2

21 K∨
43K

∨
32

stp+
1 p+

3 p+2
2

[

6 − 3 log δeγt −
(

log2 s

t
+ π2

)

]

Here, it is mere coincidence that everything matches (the planar condition eliminates the

u-channel tree).

The problem of fixing counter terms will be revisited in the future work discussion.

PSfrag replacements

a b
q

p k3

k1

Figure 4-1. Two-point function and the dual momentum assignment
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PSfrag replacements

a

b c

d
e f

Figure 4-2. A self-energy diagram embedded in a scattering process
PSfrag replacements

∧, a, p1 ∧, b, p2

∨, c, p3

k1

k4k2 q

Figure 4-3. Triangle diagram
PSfrag replacements

∧, a

r, b, p1 r, c, p2
k1

k4k2

q

Figure 4-4. Fermion vertex correction corresponding to Eq.4–9

PSfrag replacements ∧, a q

b, p1 c, p2
k1

k4k2

Figure 4-5. Scalar vertex correction corresponding to Eq.4–11

PSfrag replacements

p1, l p1, lp2, l p2, l

p3, l p3, lp4, l p4, l

Figure 4-6. Four-fermion scattering corresponding to Eq.4–20 and Eq.4–21
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CHAPTER 5
BREMSSTRAHLUNG IN LIGHT CONE

In this chapter, I shall deal with the infrared terms.

5.1 A List of Infrared Terms

All the amplitudes given in Section 4.3.4 are amputated Green’s function, the

external leg corrections are not included. As we can see that the self-energy diagram

always contains a term log δeγp2x(1 − x), which gives a multi-particle branch cut on

the positive real axis, stopping us from doing wave function renormalization. This can

be cured by summing over collinear emissions or absorptions from the external legs.

The analysis of [14] showed that doing so is equivalent to replacing log δeγp2x(1 − x)

with log δeγ∆2x(1 − x), ∆ being the jet resolution. For Π(g, g, g, g; s) or Π(g, g, g, g, q),

this substitution alone is enough to regulate the infrared divergence (the triangle or

box diagrams involving fermions or scalars are devoid of further infrared divergences).

While all the other processes (whenever there is a gluon propagator juxtaposed between

two massless external legs), the computation is fraught with IR terms. But these IR

terms when combined finally, are universal, which shows that they are physical infrared

divergences, instead of light cone gauge artifices. Here I list all of them first.

All momenta appearing below are dual momenta, with the real momenta given by

p+
1 = k+

1 − k+
2 , p+

2 = k+
4 − k+

1 , p+
3 = k+

3 − k+
4 , p+

4 = k+
2 − k+

3 and k+
2 < k+

3 < k+
1 < k+

4 , see

Fig.5-1.
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The above is always multiplied by the corresponding tree amplitude (by a tree, I mean

whatever I wrote in front of the square bracket in the list of amplitudes). As long as the

process has infrared divergence, the infrared divergence will be of the above form.

The infrared terms above will be combined with soft Bremsstrahlung and collinear

emission (absorptions) along with the self-energy insertions on the external legs to give a

finite result. The basic idea is the same as the standard treatment of infrared divergence.

That is, we insist on measuring jets (within a certain resolution ∆) rather than gluons or

quarks.

5.2 Bremsstrahlung Process

I will be focusing on final state bremsstrahlung radiation (region between leg 3 and 4)

Fig.5-2, and study the four gluon core scattering process as an example.

pi, i = 1 . . . 4 and k are assumed to be incoming, and k will be called the extra one

for now. The momenta of the 2-2 core process will be denoted as ji, i = 1 . . . 4 (j for jet).

Possible sources of divergence associated with region 34 are

1. k is collinear with p3 or p4

2. k is soft.

We can look at roughly how each type of divergences get canceled. From Fig.5-3, it is

quite natural to guess that the collinear divergence arising from k being parallel with p3 is

going to be cancelled by the corresponding self-energy bubble on leg 3. The cancellation

will work as long as k is not too soft. We can make sure of this by setting k+ away from

zero as a cut off. What happens when k → 0 is that we lose coherence. More concretely,

when k is not too soft, we only need to worry about the case when it is attached to p3.

When k ∼ 0, it can be attached to either p3 or p4. So we will be considering the following

cancelation of Fig.5-4.

There is no natural boundary as to when k is soft enough. In fact, we can first impose

an artificial boundary A, such that when k+ > A we use the scheme in Fig.5-3, when

k+ < A we use the scheme in Fig.5-4. When the dust settles the A dependence disappears.
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The method described above was used in [14], it involves a careful analyzing of phase

space to avoid double counting. However the beautiful Parke-Taylor expression for helicity

amplitudes greatly simplifies the computation: the first diagram in Fig.5-2 is given by (in

the large Nc limit)

∣

∣

∣

∣

(g
√

Nc)
3 〈p1|p2〉4
〈p1|p2〉〈p2|p3〉〈p3|k〉〈k|p4〉〈p4|p1〉

∣

∣

∣

∣

2

=
g6N3

c

2

(p1 · p2)
4

(p1 · p2)(p2 · p3)(p3 · k)(k · p4)(p4 · p1)
(5–1)

It’s quite clear from Eq.5–1 that when k is collinear with p3,4 or soft, there will be

divergences.

As stated before, we have to set k+ away from zero in order to cut off infrared

divergence, but this does not regulate collinear divergence, so a temporary cut-off ε will be

used tentatively to cut off collinear divergence.

In order to parameterize the phase space, define (refer to Fig.5-5)

x =
2Q · (−p3)

Q2
, y =

2Q · (−p4)

Q2
, Q = p1 + p2 (5–2)

The integration region of x and y is depicted in Fig.5-5, we will only be integrating x and

y in the ’L’ shaped region. R is related to detector resolution according to R := ∆2/s.

The physical meaning of these cuts is quite clear: when x ∼ 1, k · p4 = 1/2(k + p4)
2 =

1/2(Q + p3)
2 = 1/2Q2(1 − x) = 0; when x, y ∼ 1, k · Q ∼ 0 (since Q is time-like, k ∼ 0).

Here and after, s and t will denote the Mandelstam invariants for the 2-2 core process.

A trick used in [24] turned out useful. Write

1

(p3 · k)(k · p4)
=

1

(p3 · k)(k · (p3 + p4))
+

1

(p4 · k)(k · (p3 + p4))

=
2

s(1 − y)

2

s(2 − x − y)
+

2

s(1 − x)

2

s(2 − x − y)
(5–3)
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The first term will only diverge when p3 and k are collinear and(or) k is soft. The

second term will only diverge when p4 and k are collinear and(or) k is soft. For the second

term, the integration of x and y in area A: 1 − R < x < 1 − ε; 1 − x < y < 1 is divergent,

but finite in the area B : 1 − R < y < 1; 1 − y < x < 1 − R. These two areas will be

treated slightly differently.

• Region A:

Since x ∼ 1, p4 and k are either collinear or k is soft. All x at innocuous places can be

set to be 1. Further define L to be a reference (light-like, L0 > 0) 4-vector, such that

L · p = p+. Now the 3 body phase space integral is given by

sx

64(2π)5
dΩ3dxdΩ4k

dΩ3 is the angular integral of p3. dΩ4k includes the angular integral of p4 and k, dx

represents the integral of the norm of ~p3. Note that if the phase space integral is isotropic,

it can be written as the standard form sdx dy/128π3 for a 3-body final state. We can

factorize the phase space integral into [1/(8(2π)2)dΩ3] [sx/(8(2π)3)dxdΩ4k]. Here p3 is

picked out as ’the special one’, since in region A, p3 is always hard, and is almost equal to

j3 of the 2-2 core process. I will integrate out [sx/(8(2π)3)dΩ4k], while the [1/(8(2π)2)dΩ3]

part is what should be compared to the 2-2 process.

The second term of Eq.5–3 is parameterized as

g6N3
c

2

(p1 · p2)
4

(p1 · p2)(p2 · p3)(p4 · k)(k · (p4 + p3))(p4 · p1)
(5–4)

=
g6N3

c s4

4s(p2 + p3)2(p4 + p1)2
· 1

(p4 · k)(k · (p4 + p3))

=
g6N3

c s4

s(p2 + p3)2(p4 + p1)2
· 1

s(1 − x)s(2 − x − y)
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As x ∼ 1, (p2 + p3)
2 ∼ t, (p1 + p4)

2 ∼ yt. The first approximation is always good in

region A, the second is good as long as p4 is not too soft. Plug in the phase space integral,

thus arriving at

∫

sx

64π3

g6N3
c s2

st(yt)
· 1

(1 − x)(2 − x − y)
dxdΩ4k

=

∫

x

64π3
g2NcA

2
core ·

1

(1 − x)(2 − x)
(
1

y
+

1

2 − x − y
)dxdΩ4k (5–5)

where Acore = g4N2
c (s/t)2, let us drop the factor g2NcA

2
core hereafter.

dΩ4k can be expressed as

dΩ4k :=
2dudv

√

(u1 − u)(u − u0)

u := 1 − 2(1 − y)

x

v := 1 − 2|k+|
|Q+ + p+

3 |
∼ 1 − 2|k+|

|j+
4 |

, (|k+| < λ|j+
4 |)

w := 1 − 2|p+
3 |(1 − x)

|Q+ + p+
3 |x

:= 1 − 2b(1 − x)

x
, b =

|j+
3 |

|j+
4 |

(5–6)

We can first pick a particular value of p3, then go to the CM frame of p1 + p2 + p3 to

evaluate the invariant expression δ(k + p4 + p1 + p2 + p3)δ(k
2)δ(p2

4)d
4k d4p4. Notice in this

frame, u is in fact cos( ˆp3k), v is cos(L̂k) and w is cos ˆp3L. Then after some exercises in

Euclidean geometry in Fig.5-6, we can obtain the expression for dΩ4k.

u0,1 := vw ±
√

(1 − v2)(1 − w2) are the lower/upper limit of u (y) integral. The limit

placed upon k+ is for breaking the Bose symmetry between p4 and k and to make sure

that the approximation (p1 + p4)
2 ∼ yt works (the λ dependence will drop out).

Performing the u integral using
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∫ 1

−1

1

a + bx

1√
1 − x2

=
π√

a2 − b2
(a > b > 0)

= − π√
a2 − b2

(−a > b > 0)

∫ 1

1−2λ

dv

∫ 1−ε

1−R

dx
sx

64π3
A2

core ·
1

(1 − x)(2 − x)

2

x

(
2π

√

( 2
x
− 1 + u1)(

2
x
− 1 + u0)

+
2π

√

( 2
x
− 1 − u1)(

2
x
− 1 − u0)

) (5–7)

The first square root can be obtained from the second one by replacing v by −v. So I will

only compute the second square-root. The following indefinite integral will perhaps be

useful:

∫

dx
1√

x2 + 1

1

a + bx
=

1√
a2 + b2

log
−b + ax +

√

(a2 + b2)(x2 + 1)

a + bx

The second term of Eq.5–7 becomes

1

16π2

∫ 1

1−2λ

dv

1 − v

[

log
1 − v

ε(1 + v)

+ log
− [(1 − v) + (1 + v − 2b)R] +

√

[(1 − v) + (1 + v − 2b)R]2 + 8bR2(1 + v)

4bR

]

(5–8)

here we have treated the two cut-off’s R and ε differently: ε is set to zero with fixed v

(fixed k+) while R is taken to be small but non-zero. This treatment agrees with the

strategy given in the paragraph above Eq.5–1. Notice the second term in the square

bracket is finite (when k+ is kept away from zero), while the first will be combined with

self mass contributions to cancel the ε dependence.

We can make a change of variable (the y below is not the previous y):
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− [(1 − v) + (1 + v − 2b)R] +

√
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dv
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(5–9)

then the integral becomes
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(5–10)

where y0 ' R(1 − λ)/λ; y1 = 1. The above integral becomes
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1 − v
log

1 − v

ε(1 + v)

=
1

16π2

[

− 1

2
log2 R − dilog

1

λ
+ log R

1 − λ

λ
log λ − π2

3
− dilog(1 + b)

+

∫ 1

1−2λ

dv

1 − v
log

1 − v

ε(1 + v)

]

(5–11)

We can do one more thing to make it more symmetric: as b always comes in pairs with

1/b, we may replace dilog(1+ |j+
3 /j+

4 |) with −1/4 log2 |j+
3 /j+

4 |−π2/12 by using the formula

dilog[1/(1 − x)] + dilog[1/x] = −π2/6 − 1/2 log2 (1/x − 1).

The first term of Eq.5–7 is obtained from the above by substituting v to −v and the

limit of y integral becomes y ∈ [0, Rλ/(1 − λ)]. We get
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1

16π2

[

dilog
1

1 − λ
+ log R

λ

1 − λ
log

1

1 − λ
+

∫ 1

1−2λ

dv

1 + v
log

1 + v

ε(1 − v)

]

=
1

16π2

{

− dilog
1

λ
− π2

6
− log R log (1 − λ) − 1

2
log2 λ +

1

2
log2 (1 − λ)

+
1

2

[

−2dilogλ − log2 (1 − λ) +
π2

3
+ 2 log ε log (1 − λ)

]}

= log
ε

R
log (1 − λ) (5–12)

In fact, by noticing that du/
√

(u1 − u)(u − u0) behaves like (π times) δ function as x ∼ 1,

I can set y = 1 − x(1 − u)/2 to be 1 − x(1 − v)/2 ∼ (1 + v)/2 in the first term of Eq.5–5,

which will lead to the same result in a much quicker way.

• Region B

Now p4 is the hard momentum, (p4 + p1)
2 is equal to t, while (p3 + p2)

2 is approximated as

xt. The three body phase space integral should likewise be factored as dΩ4dydΩ3k. Since

there is no need here to hold k+ fixed, and the restriction |k+| < λ′|Q+ + p+
4 | can be lifted,

sy/(8(2π)3)dydΩ3k is simply sdxdy/(16π2). Here I have used a different partition: λ′,

because the partition associated to leg 3 need not be the same as leg 4.

∫

g6N3
c sydydΩ3k

(8(2π)3)

s4

s(p2 + p3)2(p4 + p1)2

1

s(1 − x)s(2 − x − y)

=

∫

g6N3
c sdxdy

16π2

s4

s(xt)t
· 1

s(1 − x)s(2 − x − y)
=

1

16π2

π2

12
g2NcA

2
core (5–13)

I have dealt with the first term of Eq.5–3, the second is similar:

1

16π2

[

− 1

2
log2 R − dilog

1

λ′ + log R
1 − λ′

λ′ log λ′ − π2

3
− dilog(1 + |j+

4 /j+
3 |)

+

∫ λ′|j+

3
|

0

dk+

k+
log

k+

ε(|j+
3 | − k+)

+
π2

12

+ dilog
1

1 − λ′ + log R
λ′

1 − λ′ log
1

1 − λ′ +

∫ λ′|j+

3
|

0

dk+

|j+
3 | − k+

log
|j+

3 | − k+

εk+

]

(5–14)
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So far, I have covered the first diagram of Fig.5-2 when k does not dominate over

neither p3 nor p4 (k+ < λ|j+
4 |, k+ < λ′|j+

3 |). To complete the region k+ > λ|j+
4 |, we need to

do a computation in region 14.

g6N3
c s4

4s(p2 + p3)2(p4 + p1)2
· 1

(p4 · k)(k · (p4 + p3))

=
g6N3

c s3

8(p2 + p3)2(k · (p4 + p3))

[

− 1

p4 · k
1

p4 · (k − p1)
+

1

p4 · p1

1

p4 · (k − p1)

]

(5–15)

with (k + p4)
2 < Rs and |k+| > λ|j+

4 |. One point that I should have emphasized earlier is

that in the presence of 1/(p4 · k), we can only make approximations controlled by O(p4 · k),

and similarly in the presence of 1/(p4 · p1), we can only make approximations controlled by

O(p4 · p1), otherwise there will be errors of the type R log ε. This rule makes the evaluation

of the first term much easier: we can set k to be parallel to p4 in all the irrelevant terms.

− g6N3
c s3

8(p2 + p3)2(k · (p4 + p3))

1

p4 · k
1

p4 · (k − p1)
= − g6N3

c s3

8t(k · (p4 + p3))

1

p4 · k
1

p4 · (k − p1)

Now set up a parametrization for region 14:

x̃ =
2p1 · (p1 − p4 − k)

(p1 − p4 − k)2
ỹ =

−2k · (p1 − p4 − k)

(p1 − p4 − k)2

Abbreviate (p1 − p4 − k) as T . Then k · p4 can be worked out as 1/2(1 − x̃)T 2. With this

parametrization:

− g6N3
c s3

8t(k · (p4 + p3))

1

p4 · k
1

p4 · (k − p1)
= −g6N3

c s3

tỹs

1

(1 − x̃)T 2

1

(2 − x̃ − ỹ)T 2

In the limit x̃ = 1, T 2 = |t|. In fact, the above expression can be calculated without effort,

simply by identifying λ as 1 − λ and b as p+
1 /|p+

4 | (p1 and p4 here are the core values), we

can borrow the result from Eq.5–11.
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−
∫

g6N3
c T 2dx̃dΩ4k

64π3

s3

tỹs

1

(1 − x̃)T 2

1

(2 − x̃ − ỹ)T 2

=
g2NcA

2
core

16π2

[

− 1

2
log2 R̃ − dilog

1

1 − λ
+ log R̃

λ

1 − λ
log (1 − λ) − π2

3
− dilog(1 +

j+
1

|j+
4 |

)

+

∫ |j+

4
|

λ|j+

4
|

dk+

|j+
4 | − k+

log
|j+

4 | − k+

ε̃k+

]

+
1

16π2

[

dilog
1

λ
+ log R̃

1 − λ

λ
log

1

λ
+

∫ |j+

4
|

λ|j+

4
|

dk+

k+
log

k+

ε̃(|j+
4 | − k+)

]

(5–16)

Comparing this to Eq.5–11, 5–12, we see that the λ dependence cancels.

Now we look at the second term of Eq.5–15, it in fact can be interpreted as a false

jet, since it will make a contribution when p4 is parallel with p1, thus the final state will

be a three well separated jets unless p4 is soft. Our task is to compute this term in the

region 2k · p4 < Rs with |j+
4 | > |k+| > λ|j+

4 |. This region can be dissembled into a part

{1 − x̃ < R̃}⋂{ỹ < 1 − R̃}, which produces a 1/(16π2)π2/12 (the restriction on k+ makes

no difference).

There is the other part: {1 − x̃ < R̃}⋂{1 − ỹ < R̃}⋂{|k+| > λ|j+
4 |}. Here I only lay

out the strategy if one were to compute it honestly. First compute in region {1 − ỹ < R̃}

with no restriction on k+, then subtract the entire region of {x̃ < 1 − R̃}⋂{1 − ỹ < R̃}

again with no restriction on k+. The validity of this strategy lies in the fact that there

exists an upper limit of order O(R̃) for |p+
4 |, beyond which there is no intersection with

the region {1 − x̃ < R̃}⋂{1 − ỹ < R̃}, while the limit |k+| > λ|j+
4 | translated to

|p+
4 | < (1 − λ)|j+

4 | is well beyond the said upper limit.

Yet in practice, the condition that we can only make approximation of order p4 ·p1 = 0

makes the evaluation (and interpretation) quite hard. So we make a compromise, and

allow for errors of R log ε, trusting that it will go away with a complete calculation. I shall

set not only p4 · p1 = 0 but also p4 · k = 0. Then, this term will cancel against some

disconnected diagrams which will be explained later.

So the completed result for Eq.5–4 is
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1

16π2

[

− 1

2
log2 R̃ − π2

4
− dilog(1 +

j+
1

|j+
4 |

) +

∫ |j+

4
|

0

dk+

|j+
4 | − k+

log
|j+

4 | − k+

ε̃k+

]

+
1

16π2

[

− 1

2
log2 R − π2

4
− dilog(1 +

|j+
3 |

|j+
4 |

) +

∫ |j+

4
|

0

dk+

k+
log

k+

ε(|j+
4 | − k+)

]

(5–17)

It makes a similar contribution associated to leg 3, with some suitable substitutions.

Let us take a look at the self-energy bubble on leg 4 Fig.5-7, calculated with a cut off

Ki
4,kK

i
4,k/p

+
4 k+ > µ2 to regulate the on shell divergence. ε should be in this case identified

with µ2/s and ε̃ with µ2/|t|.

The wave function renormalization of these diagrams are (with the 1/2 from ’
√

Z’ and

another 2 since it enters as a cross term):

left:

∫ 1

0

1

16π2

[

1

x
+

1

1 − x

]

log x(1 − x)µ2

middle:

∫ 1

0

1

16π2

(1 − x)3

x
log x(1 − x)µ2

right:

∫ 1

0

1

16π2

x3

1 − x
log x(1 − x)µ2 (5–18)

where x is |k+|/|j+
4 |. Not all of Eq.5–18 will contribute to region 34. For now, I only take

the first line. Combine Eq.5–18 to the expression above:

1

16π2

[

− 1

2
log2 R − 1

2
log2 R̃ − π2

2
− dilog(1 +

|j+
3 |

|j+
4 |

) − dilog(1 +
j+
1

|j+
4 |

)

+

∫ |j+

4
|

0

dk+

k+
log

k+2s

j+2
4

+

∫ |j+

4
|

0

dk+

|j+
4 | − k+

log
(|j+

4 | − k+)2|t|
j+2
4

]

Thus, the effect of a self-mass insertion is to replace ε by 1/sx(1 − x) or 1/|t|x(1 − x).

Fig.5-8 represents all the diagrams that contribute to the Bremsstrahlung process.

The second diagram of Fig.5-2 or Fig.5-8, when combined with the second line of Eq.5–18,

will contribute to leg 4:
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1

16π2

[

− 1

2
log2 R − π2

4
− dilog(1 +

|j+
3 |

|j+
4 |

)

+

∫ |j+

4
|

0

dk+

k+
log

k+2s

j+2
4

+

∫ 1

0

(−3 + 3x − x2) log x(1 − x)Rs

]

(5–19)

Note its contribution here should be attributed to region 34. This diagram won’t

contribute to region 14, because it remains finite when p4 → 0.

The third is similar to the second:

1

16π2

[

− 1

2
log2 R̃ − π2

4
− dilog(1 +

j+
1

|j+
4 |

)

+

∫ |j+

4
|

0

dk+

k+
log

k+2|t|
j+2
4

+

∫ 1

0

(−3 + 3x − x2) log x(1 − x)R|t|
]

(5–20)

Note that it is credited to region 14.

In summary, the contribution from Bremsstrahlung plus self-mass insertion to region

34 is

1

16π2

[

− 2 log2 ∆2

s
− π2 − 2

(

−π2

6
− 1

2
log2 |j+

3 |
|j+

4 |

)

+2

∫ |j+

4
|

0

dk+

k+
log

k+2s

j+2
4

+ 2

∫ |j+

3
|

0

dk+

k+
log

k+2s

j+2
3

+
67

9
− 11

3
log ∆2

]

And a symmetric contribution to region 14:

1

16π2

[

− 2 log2 ∆2

|t| − π2 − 2

(

−π2

6
− 1

2
log2 p+

1

|p+
4 |

)

+2

∫ |j+

4
|

0

dk+

k+
log

k+2|t|
j+2
4

+ 2

∫ j+

1

0

dk+

k+
log

k+2|t|
j+2
1

+
67

9
− 11

3
log ∆2

]

As a summary, although the kinematics in 14 and 34 region are very different, the results

are almost symmetric up to the false jets that I haven’t included. Next, we study how to

combine these results to the virtual process, and defer the discussion of the false jets.

73



5.3 Combining with the Infrared Terms from the Virtual Process

The list of infrared terms in Section 5.1 can be rewritten in a more symmetric form

that is independent of the relative size of the dual momenta:

Region 34:

−1

8π2

[
∫ |p+

4
|

0

dk+

k+
log

k+2s

|p+
4 ||p+

3 |
+

∫ |p+

3
|

0

dk+

k+
log

k+2s

|p+
3 ||p+

4 |

+

∫ |p+

3
|

−|p+

4
|

dk+

k+
log

(|p+
3 | − k+)|p+

4 |
(|p+

4 | + k+)|p+
3 |

]

(5–21)

Region 12:

−1

8π2

[
∫ |p+

1
|

0

dk+

k+
log

k+2s

|p+
1 ||p+

2 |
+

∫ |p+

2
|

0

dk+

k+
log

k+2s

|p+
1 ||p+

2 |

+

∫ |p+

2
|

−|p+

1
|

dk+

k+
log

(|p+
2 | − k+)|p+

1 |
(|p+

1 | + k+)|p+
2 |

]

Region 41:

−1

8π2

[
∫ |p+

1
|

0

dk+

k+
log

k+2(−t)

|p+
1 ||p+

4 |
+

∫ |p+

4
|

0

dk+

k+
log

k+2(−t)

|p+
1 ||p+

4 |

+

∫ |p+

1
|

|p+

4
|

dk+

k+
log

(|p+
1 | − k+)|p+

4 |
(k+ − |p+

4 )|p+
1 |

]

Region 23:

−1

8π2

[
∫ |p+

2
|

0

dk+

k+
log

k+2(−t)

|p+
2 ||p+

3 |
+

∫ |p+

3
|

0

dk+

k+
log

k+2(−t)

|p+
2 ||p+

3 |

+

∫ |p+

2
|

|p+
3
|

dk+

k+
log

(|p+
2 | − k+)|p+

3 |
(k+ − |p+

3 )|p+
2 |

]
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The first two terms of Eq.5–21 cancels the divergence of Eq.5–19, while the last term

integrates to be −1/(16π2)
[

−π2 − log2 (p+
3 /p+

4 )
]

. Finally, all the non-covariance pieces

cancel and everything falls together nicely:

1

8π2
[− log2 ∆2

s
+

π2

3
+

67

18
− 11

6
log ∆2] (5–22)

is the total contribution of virtual and Bremsstrahlung processes to region 34. While for

region 14 we have similarly:

1

8π2
[− log2 ∆2

|t| − 2π2

3
+

67

18
− 11

6
log ∆2] (5–23)

Thus, we can write down the total scattering probability:

P (g+, g+, g−, g−; g)1 =

P (g+, g+, g−, g−; g)0

[

1 +
g2

sNc

8π2
×

[

− 2 log2 ∆2

s
− 2 log2 ∆2

|t| − π2

3
+

67

9
− 11

3
log

δ∆4eγ

|t| + log2 s

|t|

]]

P (g+, g−, g+, g−; g)1 =

P (g+, g−, g+, g−; g)0

[

1 +
g2

sNc

8π2
×

[

− 2 log2 ∆2

s
− 2 log2 ∆2

|t| − π2

3
+

67

9
− 11

3
log

δ∆4eγ

s

(s2 + st + t2)2

(t + s)4
log2 s

|t| −
s

3

(14t2 + 19st + 11s2)

(t + s)3
· log

s

|t| −
ts

(t + s)2

]]

And the probability with N = 4 SYM is
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P (g+, g+, g−, g−; SY M)1

= P (g+, g+, g−, g−)0

[

1 +
g2Nc

8π2

[

− 2 log2 ∆2

s
− 2 log2 ∆2

|t| − π2

3
+ [

67

9
− 5

18
Ns −

26

9
Nf ]

+ log
δeγ∆4

|t| [−11

3
+

1

6
Ns +

4

3
Nf ] + log2 s

|t|

]]

P (g+, g−, g+, g−; SY M)1

= P (g+, g+, g−, g−)0

[

1 +
g2Nc

8π2

[

− 2 log2 ∆2

s
− 2 log2 ∆2

|t| − π2

3
+ [

67

9
− 5

18
Ns −

26

9
Nf ]

+ log
δeγ∆4

s
[−11

3
+

1

6
Ns +

4

3
Nf ]

+
1

2(s + t)4
log2 s

|t| [s
2t2Ns + 2st(s2 + t2)Nf + 2(s2 + st + t2)2]

+
1

6(s + t)3
log

s

|t| [−s(2t2 − 5st − s2)Ns + 4s(5t2 + st + 2s2)Nf − 2s(14t2 + 19st + 11s2)]

+
st

2(s + t)2
[−Ns + 4Nf − 2]

]]

(5–24)

5.4 The Inclusion of Disconnected Diagrams

In this section I will discuss certain disconnected diagrams Fig.5-9, whose importance

was explained in [16].

Only the cross term between the first and others in Fig.5-9 has the correct power in

coupling constant, and the factor 2Ek(2π)3δ3(~k − ~k′) = (2π)4δ4(k − k′) corresponding to

the forward particle line will force the two extra legs to have the same momentum.

The fourth and fifth diagram of Fig.5-9 look rather like self-energy diagrams, and

indeed they will receive the same factor of 1/2 discount just as self-energy diagrams on the

external legs do. The fourth (resp. fifth) diagram will have to be evaluated first with p4

(resp. p1) off shell. When the dust settles, any term that do not contain p2
1 or p2

4 will be

dropped just the same as we are wont to drop the tadpole diagrams.

We have insisted on having two partons scattering into two jets, so the two extra

gluons have to be soft. The Feynman rules give (with the approximation k ∼ 0)
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(

−ig

√

Nc

2

)2

A2
core

{

− 8p1 · p4

(k + p1)2(k − p4)2

}

∼ −g6N3
c

s2

t2
t

2(k · p1)(k · p4)
(5–25)

to be evaluated in the region (k − p3)
2 < ∆2 and (k − p4)

2 < ∆2.

Next I show that it will cancel the false jet terms. Setting p4 · p1 = 0 and p4 · k = 0 in

the second term of Eq.5–15:

g6N3
c s3

8(p2 + p3)2(k · (p4 + p3))

1

p4 · p1

1

p4 · (k − p1)
∼ g6N3

c s3

4ts

1

p4 · p1

1

p4 · (k − p1)

The third diagram of Fig.5-8 will double the above. To make comparison with the

disconnected diagrams, we need to identify k with p4 and p4 with −k:

2 × g6N3
c s3

4ts

1

p4 · p1

1

p4 · (k − p1)
→ g6N3

c s3

2ts

1

(−k · p1)(−k · (p4 − p1))
(5–26)

The fifth and seventh diagram will give a similar contribution:

2 × g6N3
c s3

8(p2 + p3)2(k · (p1 + p2))

1

p1 · p4

1

p1 · (k − p4)
∼ g6N3

c s3

2ts

1

p1 · p4

1

p1 · (k − p4)

Now identify k with p1 and p1 with k:

g6N3
c s3

2ts

1

p1 · p4

1

p1 · (k − p4)
→ g6N3

c s3

2ts

1

(k · p4)(k · (p1 − p4))
(5–27)

The sum of Eq.5–26 and Eq.5–27 cancels Eq.5–25. The cancelation above is ad hoc

and certainly not the prettiest. For one thing, we have made approximations of order

O(R log ε), for another, the interpretation of the disconnected diagrams as false jets is not

intuitive. However we can see the similarity between Fig.5-9 and the false jet terms: 5–26

(resp. 5–27) would be a lot more natural had p4(resp. p1) be an incoming(resp. outgoing)

particle. While if we could change the sign of k0 in Fig.5-9, they would all become true

77



loop diagrams. So both the false jets and Fig.5-9 have the ’incoming-outgoing-reversed’

problem. I believe a better way of dealing with them is possible.

In [14], the false jets come more naturally. They come from the diagrams with leg

4 absorbing a gluon collinear with itself, or leg 1 emitting a gluon collinear with itself.

These processes suffer collinear divergences, and they are cured by the fourth and fifth

diagram in Fig.5-9, while the cross term between them is canceled by the second and third

in Fig.5-9.

PSfrag replacements

1

k+
2

2k+
1

3

k+
4

4 k+
3

q+

Figure 5-1. Dual momentum assignment

PSfrag replacements

p1p1 p2 p2

p3p3p4 p4k k

Figure 5-2. Two diagrams with an extra ’unseen’ gluon the arrows indicate helicities,all
momenta are incoming

Figure 5-3. Cancelation of collinear divergence
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Figure 5-4. Cancelation of the soft bremsstrahlung radiation against a virtual process

PSfrag replacements

x = 1

y = 1

0 R ε

Figure 5-5. Phase space integration region of x and yPSfrag replacements

~L −~k

−~p3

u
v

w

Figure 5-6. Configuration of ~k, ~p3 and ~L in the CM frame of p1 + p2 + p3

Figure 5-7. Self-energy bubble on leg 4, they will cancel the ε dependence in the
Bremsstrahlung

PSfrag replacements

34, 14, 23 34 14 23

k

12, 14, 23 12 14 23

Figure 5-8. All non-vanishing Bremsstrahlung processes, the numbers underneath them
are the regions they contribute to
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PSfrag replacements

p1p1

p1 p1p1

p2p2

p2 p2p2

p3p3

p3 p3p3

p4p4

p4 p4p4

k k′

k′

k′

k

k

k

Figure 5-9. Disconnected Bremsstrahlung with two extra ’unseen’ gluons
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CHAPTER 6
GLUON SCATTERING WITH MASSIVE MATTER FIELDS

I only computed gluon scattering amplitude with massive matter in the loop, for these

are the only processes without any internal gluon propagators. If it were not so, we have

to devise a way to regulate the infrared divergences. Dimension regulation certainly works,

and the entire problem is reduced to calculating the ’box coefficients’. But this is simply

bringing coals to Newcastle, as there are people who have already developed the technique

and can do it a hundred times faster than me. The new thing about our calculation is

the physical infrared cut off that does have a meaning, yet I haven’t worked out how to

incorporate this cut off into massive amplitudes.

6.1 Computation Technique

The main difficulty for the massive field calculation is the Feynman parameter

integrals. Indeed, I can only reduce all Feynman parameter integrals into a set of three

definitive integrals. They are

I(s) :=

∫ 1

0

dx
s

sx(1 − x) + M
=

4s√
s2 + 4Ms

sinh−1

√

s

4M

J(s) :=

∫ 1

0

dx
1

x
log

sx(1 − x) + M

M
= 2

(

sinh−1

√

s

4M

)2

K(s, t) :=

∫ 1

0

dx
st

stx(1 − x) + M(s + t)
log

(sx(1 − x) + M)(tx(1 − x) + M)

M2
(6–1)

Where M is in fact −m2 + iε. As M → 0:

I(s) ∼ 2 log
s

M

J(s) ∼ 1

2
log2 s

M

K(s, t) ∼ −π2 + 2 log
s

M
log

t

M

K(s, t) − 2J(s) − 2J(t) ∼ −π2 − log2 s

t
(6–2)

For example, a simple integral:
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∫ 1

0

δ(x1 + x2 + x3 + x4 − 1)dx1dx2dx3dx4
x1x2(1 − x1 − x2)

(x1x3t + x2x4s + M)2

can be reduced to

− M

s2(s + t)
J(s) − M

t2(s + t)
J(t) − M

2st(s + t)
K(s, t) +

1

2st

The definition of Eq.6–1 is in accord with [27, 31]. The last integral of Eq.6–1 can

be expressed as dilogarithm and logarithms. In [30], the author gave two equivalent

expressions of the box integrals, one in terms of dilogarithms the other in terms of

hypergeometric functions. But for the purpose of this paper, I find it most convenient to

use Eq.6–1 to spell out the results.

The Feynman rules for scalar fields remain good, but the decomposition Eq.2–25

does not, since it introduces 1/q+ factors into the Feynman rules. This will complicate

the already complicated Feynman parameter integral. Also q+ and q− will be treated

the same in contrast to the massless case, where q− is integrated out and q+ is given by
∑

xik
+
i /
∑

xi.

In order to organize the gamma matrix algebra in the fermion part of the calculation,

we make use of the factorizability of gluon polarisation vectors Eq.2–21 to reduce products

of gamma matrices to products of Kµ
ij = p+

i pµ
j − p+

j pµ
i , which had been proved to be quite

handy. For example, if we are to calculate the diagram Fig.4-1. We would write down:

Π(g+, g−, q) = (ig)2Tr(tatb)
Tr ([(q − k1) · γ + m]γµ[(q − k3) · γ + m]γν) (−εµ

∨)(−εν
∧)

(−i) [(q − k1)2 − m2] (−i) [(q − k3)2 − m2]
(6–3)

The numerator can be written as
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Tr

[
∣

∣

∣

∣

m (q − k1) · σ
(q − k1) · σ̄ m

∣

∣

∣

∣

∣

∣

∣

∣

0 −
√

2|η〉[k3 − k1|
−
√

2|k1 − k3]〈η| 0

∣

∣

∣

∣

×
∣

∣

∣

∣

m (q − k3) · σ
(q − k3) · σ̄ m

∣

∣

∣

∣

∣

∣

∣

∣

0 −
√

2|k1 − k3〉[η|
−
√

2|η]〈k3 − k1| 0

∣

∣

∣

∣

]

= 2[η|q − k1|η 〉[k3 − k1|q − k3|k1 − k3〉 + 2〈k1 − k3|q − k1|k3 − k1] 〈η|q − k3|η]

+〈k1 − k3|m|η〉 [k3 − k1|m|η] + [η|m|k3 − k1]〈η|m|k1 − k3〉 (6–4)

For the notation of spinor, see the appendix. The standard procedure of momentum

integration tell us to shift q → q + xk1 + (1 − x)k3, and to replace qµqν by q2gµν/4, etc:

[η|q − k1|η 〉[k3 − k1|q − k3|k1 − k3〉

= [η|(1 − x)(k3 − k1)|η〉[k3 − k1|x(k1 − k3)|k1 − k3〉 + [η|σ̄µ
ȧa|η〉[k3 − k1|σ̄ν

ḃb
|k1 − k3〉

gµνq
2

4

= (1 − x)
√

2(k3 − k1)
+
√

2
x(k1 − k3)

2

2(k1 − k3)+
+ [η|k3 − k1]〈k1 − k3|η〉

q2

2

= −x(1 − x)(k1 − k3)
2 +

q2

2
(6–5)

here we have used an identity:

σ̄µ
ȧaσ̄

ν
ḃb
gµν = 2εȧḃεab; σaȧ

µ σbḃ
ν gµν = 2εabεȧḃ (6–6)

For a more complicated example, a string of spinor products becomes (with q shifted

to q + x2k2 + x1k1 + x4k4 + x3k3)

[p1|q − k2|p4〉[η|q − k3|p3〉
= [p1|q + x1(k1 − k2) + x4(k4 − k2) + x3(k3 − k2)|p4〉

[η|q + x2(k2 − k3) + x1(k1 − k3) + x4(k4 − k3)|p3〉

= [p1|η]〈p3|p4〉
q2

2
+ [p1|x4p2|p4〉[η|x2p4 − x1p2|p3〉

= (−1)
1

p+
3 p+

4

K∧
43

q2

2
+

√
2x4

p+
1 p+

2 p+
4

K∨
12K

∧
42(

√
2x2

p+
3

K∧
34 −

√
2x1

p+
3

K∧
32) (6–7)
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Basically, all of the spinor products can be reduced to one of the Kij’s, and the reader

can find in the appendix some practical details as to how to organize the products of Kij’s.

After the momentum integral is done, we can perform the Feynman parameter integrals

using Eq.6–1.

However, there is one more complication due to the δ regulator: the integration over

q∧(∨) is different from q+(−). Since the momentum integration is no longer homogeneous,

the replacement of qµqν by q2gµν/4 is problematic. But fortunately, when doing the

contraction of qµqν → gµνq2/4, q∧(∨) and q+(−) will never coexist. For example, in the first

line of Eq.6–5, only q+ will appear in the first bracket while only q∧, q∨, q− appears in the

second bracket. So, when we make the replacement qµqν → gµνq2/4, we should remember

that q2 actually means q2
‖. Another example, if we have a spinor product such as in the

first line of Eq.6–7, q∧, q∨, q− will appear in both brackets, then q2 means q2
⊥ this time.

6.2 Self-Energy Diagrams

A factor of −ig2/(16π2)f cadf dbc = ig2/(16π2)Tr
[

tatb
]

will be omitted.

For Fig.4-1, the results are

Π(g+, g−; s)m = −
[

1

6
p2 log δeγm2 +

1

12

(p2 − 4m2)2

p2
I(p2) − 5

18
p2 +

4

3
m2

]

Π(g+, g−; q)m = −4

3
p2 log δeγm2 − 2

3

(p2 − 4m2)(p2 + 2m2)

p2
I(p2) +

26

9
p2 +

16

3
m2

(6–8)

The gluon mass counter term in the expressions above has been removed already.

6.3 Triangle Diagrams

A factor of g3/(8π2)f daef ebff fcd = ig3/(8π2)Tr[tatbtc] is omitted.

For Fig.4-3:
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Γ(g+, g+, g−; s)m =
−2p+

3

p+
1 p+

2

K∧
21

[

1

6
log m2δeγ + (p2

o − 4m2)(
(p2

o − 4m2)

12p4
o

+ α
p+

1 p+
2

p+2
3

m2

p4
o

)I(p2
o)

−α
p+

1 p+
2

p+2
3

m2

p2
o

J(p2
o) −

1

9
+

4m2

3p2
o

− α
1

6

p+
1 p+

2

p+2
3

(1 +
24m2

p2
o

)

]

Γ(g+, g+, g−; q)m = −2
−2p+

3

p+
1 p+

2

K∧
21

[

− 2

3
log m2δeγ

+(p2
o − 4m2)(−(p2

o + 2m2)

3p4
o

+ 2α
p+

1 p+
2

p+2
3

m2

p4
o

)I(p2
o)

−2α
p+

1 p+
2

p+2
3

m2

p2
o

J(p2
o) +

16

9
+

8m2

3p2
o

− α
1

3

p+
1 p+

2

p+2
3

(1 +
24m2

p2
o

)

]

(6–9)

where α = 1 if leg 3 is off shell and 0 otherwise, and po is the off shell momentum. Their

anomalous terms are identical with the massless result, which agrees with the fact that

anomalous terms are UV effects.

For an MHV triangle:

Γ(g+, g+, g+; s)m =
(K∧

21)
3

p+
1 p+

2 p+
3

[

− 4m2(p2
o − 4m2)

p6
o

I(p2
o) +

4m2

p4
o

J(p2
o) +

2(p2
o + 24m2)

3p4
o

]

Γ(g+, g+, g+; q)m = −2
(K∧

21)
3

p+
1 p+

2 p+
3

[

− 8m2(p2
o − 4m2)

p6
o

I(p2
o) +

8m2

p4
o

J(p2
o) +

4(p2
o + 24m2)

3p4
o

]

(6–10)

6.4 Scattering Amplitudes

A factor of ig4/(8π2)Tr[tatbtctd] is omitted.

A(g+, g+, g+, g+; s)m = 8
K∧

43K
∧
32K

∧
21K

∧
14

p+
1 p+

2 p+
3 p+

4 st

[

1

6
− m4

st
K(s, t)

]

A(g+, g+, g+, g+; q)m = −16
K∧

43K
∧
32K

∧
21K

∧
14

p+
1 p+

2 p+
3 p+

4 st

[

1

3
− 2m4

st
K(s, t)

]

(6–11)
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A(g+, g+, g+, g−; s)m

=
K∧2

13 p+
2 p+

4

K∧
43K

∨
32K

∨
21K

∧
14

[

− (2t + s)tm2

2(s + t)s
(1 − 4m2

s
)I(s) − (2s + t)sm2

2(s + t)t
(1 − 4m2

t
)I(t)

+
(2s + t)t2m2

(s + t)2s
J(s) +

(2t + s)s2m2

(s + t)2t
J(t) +

stm2

2(s + t)2
(1 − 2

m2(s + t)

st
)K(s, t)

+
2(2s2 − st + 2t2)m2

st
+

(s + t)

6

]

A(g+, g+, g+, g−; q)m

= −2
K∧2

13 p+
2 p+

4

K∧
43K

∨
32K

∨
21K

∧
14

[

− (2t + s)tm2

(s + t)s
(1 − 4m2

s
)I(s) − (2s + t)sm2

(s + t)t
(1 − 4m2

t
)I(t)

+
2(2s + t)t2m2

(s + t)2s
J(s) +

2(2t + s)s2m2

(s + t)2t
J(t) +

stm2

(s + t)2
(1 − 2

m2(s + t)

st
)K(s, t)

+
4(2s2 − st + 2t2)m2

st
+

(s + t)

3

]

(6–12)

In contrast to the massless case, the external leg factors are included in the results

below for the helicity conserving amplitudes, since we can perform wave function

renormalization now.

A(g+, g+, g−, g−; s)m

=
−2K∧4

12 p+
3 p+

4

K∧
43K

∧
32K

∧
21K

∧
14p

+
1 p+

2

[

(
m2

2s
− 2m2

3t
− 2m4

st
+

4m4

3t2
+

1

12
)I(t) +

m4

s2
K(s, t)

−2m2

s
+

4m2

3t
+

1

18
− 1

6
log δeγm2 − 1

3

]

− 1

6
×+

1

3

A(g+, g+, g−, g−; q)m

= −2
−2K∧4

12 p+
3 p+

4

K∧
43K

∧
32K

∧
21K

∧
14p

+
1 p+

2

[

(
m2

s
+

2m2

3t
− 4m4

st
+

8m4

3t2
− 1

3
)I(t) + (−m2

s
+

2m4

s2
)K(s, t)

−4m2

s
+

8m2

3t
+

19

9
+

2

3
log δeγm2 − 2

3

]

+
2

3
×− 4

3
(6–13)
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A(g+, g−, g+, g−; s)m =
−2K∧4

13 p+
2 p+

4

K∧
43K

∧
32K

∧
21K

∧
14p

+
1 p+

3
[

(−tm2(17st + s2 + 4t2)

6(s + t)3s
+

2tm4(2t + 5s)

3(s + t)2s2
+

t(5st − 2s2 + t2)

12(s + t)3
)I(s)

+(−sm2(17st + t2 + 4s2)

6(s + t)3t
+

2sm4(5t + 2s)

3(s + t)2t2
+

s(5st − 2t2 + s2)

12(s + t)3
)I(t)

+(
2stm2

(s + t)3
− s2t2

(s + t)4
)(J(s) + J(t)) + (− 2stm2

(s + t)3
+

m4

(s + t)2
+

s2t2

2(s + t)4
)K(s, t)

+
2m2(2t2 + 2s2 + 3st)

3(s + t)st
+

s2 + t2 + 11st

18(s + t)2
− 1

6
log δeγm2 − 1

3

]

− 1

6
×+

1

3

A(g+, g−, g+, g−; q)m = −2
−2K∧4

13 p+
2 p+

4

K∧
43K

∧
32K

∧
21K

∧
14p

+
1 p+

3
[

(
tm2(5s2 + 2t2 − 5st)

3(s + t)3s
+

4tm4(2t + 5s)

3(s + t)2s2
− t(5s2 + 2t2 + st)

6(s + t)3
)I(s)

+(
tm2(5t2 + 2s2 − 5st)

3(s + t)3t
+

4sm4(5t + 2s)

3(s + t)2t2
− s(5t2 + 2s2 + st)

6(s + t)3
)I(t)

+(
4stm2

(s + t)3
+

st(s2 + t2)

(s + t)4
)(J(s) + J(t)) + (

m2(s − t)2

(s + t)3
+

2m4

(s + t)2
− st(s2 + t2)

2(s + t)4
)K(s, t)

+
4m2(2t2 + 2s2 + 3st)

3(s + t)st
+

19s2 + 19t2 + 47st

9(s + t)2
+

2

3
log δeγm2 − 2

3

]

+
2

3
×− 4

3
(6–14)

The last numerical factors −1/3 and −2/3 inside each square bracket is due to the

amputation of external legs: [limp2→0 Π(p2)/p2]1/2.

6.5 Photon Photon Scattering

The amplitude of photon-photon scattering can be obtained from the above results

fairly easily, all we need to do is to replace g4Tr[tatbtctd] with e4 and sum all the crossings.

The reader might think that we should also remove the triangle diagrams from the

amplitudes since these diagrams involve tri-gluon vertices which are absent in an abelian

gauge theory. But, these diagrams will automatically cancel each other when we sum over

all crossings. This cancellation goes by the name of U(1) decoupling. The amplitudes are

listed in the appendix.

When we sum over all the crossings, the counter term that is proportional to the

four point vertex will vanish, while the pure number 2/3 will become 2, which has to
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be subtracted to restore gauge covariance. We obtain the following photon scattering

amplitude:

A(+, +, +, +) =
ie4

4π2

4K∧
43K

∧
32K

∧
21K

∧
14

p+
1 p+

2 p+
3 p+

4 st

[

2 − 4m4

st
K(s, t) − 4m4

su
K(s, u) − 4m4

tu
K(t, u)

]

A(+, +, +,−) =
ie4

4π2

stK∧2
13 p+

2 p+
4

2uK∧
43K

∨
32K

∨
21K

∧
14

{

2 +

[

4m2

s
+

4m2

t
+

4m2

u

]

[J(s) + J(t) + J(u)]

+

[

−2m2

u
− 4m4

st

]

K(s, t) +

[

−2m2

t
− 4m4

su

]

K(s, u) +

[

−2m2

s
− 4m4

tu

]

K(t, u)

}

A(+, +,−,−) =
ie4

4π2

−tK∧4
12 p+

3 p+
4

sK∧
43K

∧
32K

∧
21K

∧
14p

+
1 p+

2
{[

8m2

s
+

4m2

t
− 2t

s
− 1

]

I(t) +

[

8m2

s
+

4m2

u
− 2u

s
− 1

]

I(u)

+

[

8m2

s
− 4t2 + 4st + 2s2

s2

][

J(t) + J(u)

]

+

[

2m2

t
− 4m4

st

]

K(s, t) +

[

2m2

u
− 4m4

su

]

K(s, u)

+

[

2(4t2 + 4st + s2)m2

stu
− 4m4

tu
+

2t2 + 2st + s2

s2

]

K(t, u) − 2

}

A(+,−, +,−) =
ie4

4π2

−stK∧4
13 p+

2 p+
4

u2K∧
43K

∧
32K

∧
21K

∧
14p

+
1 p+

3
{[

8m2

u
+

4m2

t
− 2t

u
− 1

]

I(t) +

[

8m2

u
+

4m2

s
− 2s

u
− 1

]

I(s)

+

[

8m2

u
− 4t2 + 4ut + 2u2

u2

][

J(t) + J(s)

]

+

[

2m2

t
− 4m4

ut

]

K(u, t) +

[

2m2

s
− 4m4

su

]

K(s, u)

+

[

2(4t2 + 4ut + u2)m2

stu
− 4m4

ts
+

2t2 + 2ut + u2

u2

]

K(t, s) − 2

}

(6–15)

The spinor structure above has been set up to be uni-modular and invariant under

crossings of two legs. The results here agree with [27] and [31]. Note that in the first

term of Eq.(127.18) of [31], the authors seemed to have left out terms of −4/s + 2/t

and −4/s + 2/u in the coefficient of B(t) and B(u) (their B function is effectively our

I function) respectively, as Eq.(127.18) will not lead to Eq.(127.20) without those two

terms.
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CHAPTER 7
CONCLUSIONS AND FUTURE WORK

7.1 Conclusion

To conclude, I have studied the renormalization of gauge theory on the light cone

world sheet. In order to do so, I computed all the four point amplitudes in gauge theory.

The box reduction technique was developed to extract the artificial divergences and IR

divergences. The artificial divergences are the rational functions containing 1/q+ poles,

they come from the light cone gauge propagators and were shown to cancel in a gauge

invariant quantity. The IR divergences, regulated by setting q+ away from zero, were

combined with the Bremsstrahlung contributions to give a Lorentz covariant scattering

cross section. The calculation of Bremsstrahlung contributions was also done in the light

cone fashion to facilitate the comparison with the virtual processes. A mismatch in the

rational parts of the amplitudes were prevalent, the restoration of gauge covariance was

only partially addressed. Finally, the scattering of gluon by gluon with general massive

matter was computed for completeness, and the light by light scattering amplitudes were

obtained along the way.

Next I give some discussion on some unresolved issues and an outlook for the future

work.

7.2 Restoring Gauge Covariance in the Light Cone

In [13, 14, 15], we insisted on only allowing counters terms that are polynomials in

the target space. Thus, when we saw that there was a hanging four-point vertex in an

amplitude, we could not put in a four point vertex as a counter term, but instead we

modified the self-energy by a term const×p2 to adjust the strength of the exchange diagrams.

But this scheme does not restore the gauge covariance for all the amplitudes.

Here I suggest a new system of putting in counter terms. Diagrams such as Π(g+, g+) enter

the amplitudes as ’double quartic’ graphs, similarly Γ(g+, g−, g+) enters as ’quartic swordfish’

diagrams, both of which are treated as 1PIR graphs in the canonical light cone formalism.
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Treating them as 1PIR graphs forbids us to adjust their strength, for they usually contribute a

multiple of four point vertices, which is not a polynomial in the momenta.

In Chapter 4, I compared Π(g+, g−; s) with Π(g+, g+; s) and Π(g+, g−; q) with Π(g+, g+; q).

Here I give the result again:

Π(g+, g−; s) = p2

[

5

18
− 1

6
log p2δeγ

]

Π(g+, g+; s) = p+2

[

4

9
− 1

6
log p2δeγ

]

Π(g+, g−; q) = p2

[

26

9
− 4

3
log p2δeγ

]

Π(g+, g+; q) = p+2

[

20

9
− 4

3
log p2δeγ

]

The non-rational parts of the self-energy contributions are the same regardless of the index on

Πµν . We have also reason to believe that, when there is no infrared divergence, the rational part

should also match due to Lorentz covariance. More specifically, vacuum polarization should be

of the form Πµν =
(

gµνp2 − pµpν
)

Π(p2). This tells us that

Π(g+, g−) = ε∧ · ε∨p2Π(p2) = −p2Π(p2)

Π(g+, g+) = 0

Π(g+, g+) = −p+2Π(p2)

Hence, apart from the factor of p2 and p+2, Π(g+, g−) should be equal to Π(g+, g+). Therefore,

we have to invoke counter terms to force this equality. I chose to associate to each Π(g+, g+; s)

a term −1/6, and to Π(g+, g+; q) a term 2/3, I cannot quite find what is the correct value for

Π(g+, g+; g) because of the infrared divergence. So I simply defined it to be −1/3, chosen such

that these counter terms vanish with N = 4 SYM field content. These counter terms are going

to affect the four point vertex that is derived from the exchange diagrams.

The gluon vertex correction diagram has a similar problem:
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Γ(g+, g−, g+; s) =
−2p+

3

p+
1 p+

2

K∧
2,1

[

1

6
log p2

oδe
γ − 1

9

]

Γ(g+, g−, g+; s) = −(p+
1 − p+

2 )

[

1

6
log p2

oδe
γ − 5

18

]

Γ(g+, g−, g+; q) =
−2p+

3

p+
1 p+

2

K∧
2,1

[

4

3
log p2

oδe
γ − 32

9

]

Γ(g+, g−, g+; q) = −(p+
1 − p+

2 )

[

4

3
log p2

oδe
γ − 26

9

]

The logarithmic piece matches, so I will associate to Γ(g, g, g; s) a term −1/6, to Γ(g, g, g; q) a

term 2/3 and to Γ(g, g, g; g) a term −1/3 to enforce the total agreement between Γ(g+, g−, g+)

and Γ(g+, g−, g+). Again, the number for Γ(g, g, g; g) is hand picked so that there is no need

for counter terms in N = 4 SYM. These counter terms will affect the strength of the exchange

vertex.

There are also mismatches between Γ(s, s, g+) and Γ(s, s, g+), which we cannot easily

determine due to the IR divergence, so we throw in two arbitrary numbers and adjust these

two numbers to make all the amplitudes work. The numbers are determined to be −1/2 for

Γ(s, s, g+) and 0 for Γ(s, s, g+) and Γ(q, q, g).

Note that all of the modifications above can be achieved by polynomials in the external

momenta1 . I shall report how this counter term system is working out. First, I list all am-

plitudes in Table.7-1, note that by s-pt I mean the 4 point vertex that is derived from the

s-channel exchange diagram.

The effect of the old regularization scheme is listed in Table.7-2.

We see by comparing 7-1 and 7-2 that all the bosonic amplitudes are fixed as long as there

is only one species of scalar, while fermionic amplitudes generally have problems.

The new scheme gives Table.7-3.

By comparing 7-1 and 7-3, all the mismatches are fixed. But of course, this scheme answers

as many questions as it raises. The loose threads include how to determine the counter term

1 the structure
(

−2p+
3 /p+

1 p+
2

)

K∧
2,1 doesn’t look like a polynomial, but actually its p+

dependence comes from the polarization vectors
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for those diagrams that have IR divergences, and whether they vanish in N = 4 SYM and

how to realize them on the light cone world sheet. Finally, I want to point out an interesting

observation that whenever a genuine four point vertex (meaning not derived from an exchange

diagram) exists, the amplitude will have a constant mismatch.

7.3 Triangle Anomaly

Although I have stuck to the adjoint representation, in which the cubic invariant dabc is

zero, it is still necessary to look at how anomaly calculation turn out in the light cone. The first

PSfrag replacements

k1k1

k2k2

k3 lk3 l

a, p1,∧a, p1,∧

b, p2,∧b, p2,∧

c, kµc, kµ

Figure 7-1. Triangle anomaly

diagram of Fig.7-1 is given by

−Tr
[

itbitaitc
] Tr [ε2 · σ̄(q − k2) · σε2 · σ̄(q − k1) · σ(k3 − k1) · σ̄(q − k3) · σ]

(−i)(q − k2)2(−i)(q − k1)2(−i)(q − k3)2

= iTr
[

tbtatc
] 2〈η|(q − k2)|k1 − k2]〈η|(q − k1)(k3 − k1)(q − k3)|k2 − k3]

(−i)(q − k2)2(−i)(q − k1)2(−i)(q − k3)2

= −2Tr
[

tbtatc
]

〈η|(q − k2)|k1 − k2]
{ 〈η|(q − k3)|k2 − k3]

(−i)(q − k2)2(−i)(q − k3)2
− 〈η|(q − k1)|k2 − k3]

(−i)(q − k2)2(−i)(q − k1)2

}

(7–1)

After the usual steps of momentum integrals:

∫ −idxi

16π2

{

− 〈η|x3(k3 − k2)|k1 − k2]〈η|x2k2 ⊥ + x3k3 ⊥|k2 − k3]

+〈η|x2(k2 − k1)|k2 − k3]〈η|x1k1 ⊥ + x2k2 ⊥|k2 − k3]

}

= − i

16π2

2K∨
12

3p+
1 p+

2

(

p+
2 (k2 + 2k3)

∨ + p+
1 (k1 + 2k2)

∨) (7–2)

The second diagram of Fig.7-1 is similar:
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−Tr
[

itbitaitc
] Tr [ε2 · σ̄(k3 − q) · σ(k3 − k1) · σ̄(k1 − q) · σε1 · σ̄(k2 − q) · σ]

(−i)(q − k2)2(−i)(q − k1)2(−i)(q − k3)2

= iTr
[

tbtatc
] 2〈η|(k3 − q)(k3 − k1)(k1 − q)|k1 − k2]〈η|(k2 − q)|k2 − k3]

(−i)(q − k2)2(−i)(q − k1)2(−i)(q − k3)2

= −2Tr
[

tbtatc
]

〈η|(k2 − q)|k2 − k3]
{ 〈η|(k1 − q)|k1 − k2]

(−i)(q − k2)2(−i)(q − k1)2
− 〈η|(k3 − q)|k1 − k2]

(−i)(q − k2)2(−i)(q − k3)2

}

(7–3)

After the momentum integral:

∫ −idxi

16π2

{

− 〈η|x1(k1 − k2)|k2 − k3]〈η|x1k1 ⊥ + x2k2 ⊥|k1 − k2]

+〈η|x2(k2 − k3)|k1 − k2]〈η|x2k2 ⊥ + x3k3 ⊥|k2 − k3]

}

= − i

16π2

2K∨
12

3p+
1 p+

2

(

p+
1 (k2 + 2k1)

∨ + p+
2 (k3 + 2k2)

∨) (7–4)

So the sum of these two diagrams gives

i

8π2
Tr
[

{ta, tb}tc
] 2K∨

12

p+
1 p+

2

(

p+
1 (k2 + k1)

∨ + p+
2 (k3 + k2)

∨) (7–5)

The right handed fermion gives the same contribution as above (the Feynman diagram

itself gives a negative sign relative to the left handed contribution, while the trace factor gives

a second negative sign). But if we put tc to be 1 and study the axial U(1) current (commonly

known as the abelian anomaly), the divergence of this current will be twice the above result.

Or we can keep the theory chiral, and look at the divergence of the chiral current (know as the

non-abelian anomaly) only. Note that the difference between these two cases is of order A3,

which will not show up here.

∗F ∧ F is of the form K∨
12K

∨
12/(p

+
1 p+

2 ) and 0 if the two gluons have different helicity. So

some subtractions have to be made for Eq.7–5 to be of the correct form (again, due to the

regulator we used, Eq.7–5 depends on each dual momenta). I haven’t shown the calculation

for the case when the two gluons having different helicity, the result is non-zero, so it has to be

subtracted by counter terms too. Here, we see that the counter terms associated to three-point
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function are populating fast, there may or may not be an economical choice of counter term(s)

that will take care of all these problems.

7.4 Two-Loop and n-Point Amplitudes

The commonly adopted method for calculating one loop n-point amplitude is to use

(generalized) unitarity [25, 26] to calculate box-coefficients, and to use recursion relations to

recycle old results. And the results can be checked partially by looking at its collinear limit soft

limit and multi-particle factorization properties.

We have basically calculated the four particle amplitude in the light cone gauge by

brute force, should there be a need to obtain amplitudes with more legs or even higher loop

amplitudes, to way to proceed is certainly not brute force.

Let us focus on the N = 4 SYM theory as a first step. We know that in this theory,

all integrands can be reduced to scalar boxes. This is very useful if we are using dimension

regulation since the IR (or collinear) divergences are regulated. But we’d like to stick to our IR

regulator, so scalar boxes have to go through some more subtractions to become infrared safe. I

don’t know yet how is this going to tell on the procedure of computing box coefficients.

The IR divergence is local in the sense that it is present whenever there is a four-point

MHV subtree in the loop diagram, so the one loop IR structure we found in Chapter 5 will

persist into a higher point amplitude. This feature perhaps can help us to define an IR safe part

in an amplitude and ’bootstrap’ it to a larger amplitudes.
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Table 7-1. List of mismatches in all the amplitudes

Amplitude s-exch t-exch s-pt t-pt const
A(g+, g+, g−, g−; s) 0 0 - -1/6 1/2
A(g+, g+, g−, g−; q) 0 0 - 2/3 -2
A(g+, g+, g−, g−; g) 0 0 - -1/3 1
A(g+, g−, g+, g−; s) 0 0 -1/6 -1/6 0
A(g+, g−, g+, g−; q) 0 0 2/3 2/3 0
A(g+, g−, g+, g−; g) 0 0 -1/3 -1/3 0
A(s, s, g+, g−) 0 0 -1/2 - 1/2
A(g+, s, g−, s) 0 0 - - 2
A(s, s, s, s) 0 0 -1/2 -1/2 0
A(q−, q−, q̄−, q̄−) - 0 - -1/3 0
A(q−, q̄−, q−, q̄−) 0 0 -1/3 -1/3 0
A(s, s, q−, q̄−) 0 - -2/3 - 0
A(g+, g−, q−, q̄−) -1/3 0 -1/3 0 0
A(g+, g−, q+, q̄+) -1/3 0 -1/3 0 0
A(g+, q−, g−, q̄−) 0 0 - 0 0

Table 7-2. List of the effect of the old counter terms schemes

Amplitude s-exch t-exch s-pt t-pt const
A(g+, g+, g−, g−; s) -1/6 -1/6 - 0 0
A(g+, g+, g−, g−; q) 2/3 2/3 - 0 0
A(g+, g+, g−, g−; g) -1/3 -1/3 - 0 0
A(g+, g−, g+, g−; s) -1/6 -1/6 0 0 0
A(g+, g−, g+, g−; q) 2/3 2/3 0 0 0
A(g+, g−, g+, g−; g) -1/3 -1/3 0 0 0
A(s, s, g+, g−) -1/2 -1/2 0 - 0
A(g+, s, g−, s) -1/2 -1/2 - - 0
A(s, s, s, s) -1/2 -1/2 0 0 0
A(q−, q−, q̄−, q̄−) - 1/3 - 0 0
A(q−, q̄−, q−, q̄−) 1/3 1/3 0 0 0
A(s, s, q−, q̄−) 1/6 - 0 - 0
A(g+, g−, q−, q̄−) 1/3 0 0 0 0
A(g+, g−, q+, q̄+) 1/3 0 0 0 0
A(g+, q−, g−, q̄−) 0 0 - 0 0
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Table 7-3. List of the effect of the new counter terms scheme

Amplitude s-exch t-exch s-pt t-pt const
A(g+, g+, g−, g−; s) -1/3 -1/3 - -1/6 0
A(g+, g+, g−, g−; q) 4/3 4/3 - 2/3 0
A(g+, g+, g−, g−; g) -2/3 -2/3 - -1/3 0
A(g+, g−, g+, g−; s) -1/3 -1/3 -1/6 -1/6 0
A(g+, g−, g+, g−; q) 4/3 4/3 2/3 2/3 0
A(g+, g−, g+, g−; g) -2/3 -2/3 -1/3 -1/3 0
A(s, s, g+, g−) -1 -1 -1/2 - 0
A(g+, s, g−, s) -1 -1 - - 0
A(s, s, s, s) -1 -1 -1/2 -1/2 0
A(q−, q−, q̄−, q̄−) - 0 - 1/3 0
A(q−, q̄−, q−, q̄−) 0 0 1/3 1/3 0
A(s, s, q−, q̄−) -1/2 - 1/6 - 0
A(g+, g−, q−, q̄−) 1/3 0 1/3 0 0
A(g+, g−, q+, q̄+) 1/3 0 1/3 0 0
A(g+, q−, g−, q̄−) 0 0 - 0 0
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APPENDIX A
SPINOR NOTATION IN THE LIGHT CONE

γµ =

∣

∣

∣

∣

0 σµ

σ̄µ 0

∣

∣

∣

∣

σµ := (I, ~σ) σ̄µ := (I,−~σ)

εab = εab = εȧḃ = εȧḃ = iσ2

pa = εabp
b pa = pbε

ba

|p ] := pȧ |p 〉 := pa [p| := pȧ 〈p| := pa (A–1)

So far the spinor notations are common to all, and in the last line of Eq.A–1, I have

conformed to the ’hep-ph’ notation: |p ] is assigned a lower index while |p 〉 an upper

index.

In light cone, unlike what we had in Section 2.1, the reference spinor is fixed to be

ηα = ηα̇ =

∣

∣

∣

∣

1
0

∣

∣

∣

∣

ηα = ηα̇ =

∣

∣

∣

∣

0
−1

∣

∣

∣

∣

(A–2)

We can define the light cone version spinor as

pα =

∣

∣

∣

∣

− p∧

p+

1

∣

∣

∣

∣

pα̇ =

∣

∣

∣

∣

1
p∨

p+

∣

∣

∣

∣

(A–3)

The spinors satisfy the Dirac equation if p is light like. Note that they don’t have the

correct normalization, namely p · σαα̇ 6= pαpα̇, but they have the merit that pα = (−p)α.

The polarization vectors of gluon can be written as

ε∧ȧa =
√

2
|p ]〈η |
〈η |p 〉 = −

√
2|p ]〈η |, ε∨ȧa =

√
2
|η ]〈p |
[p |η ]

= −
√

2|η ]〈p | (A–4)

K∧
ij = p+

j p+
i 〈pj |pi 〉, K∨

ij = p+
i p+

j [pi |pj ]

[ η | pi | pj 〉 = 〈 pj | pi | η ] =

√
2

p+
j

K∧
ji, 〈 η | pi | pj ] = [ pj | pi | η 〉 =

√
2

p+
j

K∨
ji (A–5)

The Kij’s satisfy
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∑

j

Kµ
ij = 0

p+
i Kµ

jk + p+
k Kµ

ij + p+
j Kµ

ki = 0

K∧
liK

∧
jk + K∧

lkK
∧
ij + K∧

ljK
∧
ki = 0

∑

j

K∧
ijK

∨
jk

p+
j

= p+
i p+

k

∑

j

p2
j

2p+
j

(A–6)

The third line of Eq.A–6 is called the Schouten identity: [ij][kl] + [jk][il] + [ki][jl] = 0.

In the current case we are dealing with, i, j run from 1 to 4, but only two of the six

Kij’s are independent, say K43 and K32. And any product of Kij’s with total helicity 4

can be reduced to either (K∧
43)

4 or (K∧
43)

3K∧
32. Product of helicity 2 can be reduced to

(K∧
43)

2 and K∧
43K

∧
32. Product of helicity 0 can be reduced to 1 and K∧

32K
∨
43. The reduction

is in general a formidable task for human, but quite a piece of cake for computers, as all

our calculations are done with computers.
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APPENDIX B
FEYNMAN RULES

We remind the reader that g + (−) corresponds to a ∧ (∨) on the gluon line, q(q̄)

corresponds to an incoming (outgoing) fermion line, q + (−) corresponds to right(left)

handedness, s corresponds to a scalar.

The fermion gluon vertex Fig.B-1 is given by

V (q−, q̄−, g+) = −2ig(ta)bc
p+

2

q+p+
1

K∧
p1,q, V (q+, q̄+, g+) = −2ig(ta)bc

1

q+
K∧

p2,q

V (q−, q̄−, g−) = −2ig(ta)bc
1

q+
K∨

p2,q, V (q+, q̄+, g−) = −2ig(ta)bc
p+

2

q+p+
1

K∨
p1,q (B–1)

The gluon scalar vertex Fig.B-2 is given by

V (g + (−)) = −2ig(ta)bc
1

p+
b + p+

c

K∧(∨)
pc,pb

(B–2)

Here we have used real scalar fields and hence it transforms in a real representation.

The gluon fermion 4 point vertex Fig.B-3 is given by

V (q−, q̄−, g+, g−) = −2ig2(td)ce(t
a)eb

p+
2

p+
1 + p+

4

+ 2g2f dae(te)cb
(p+

3 − p+
4 )p+

2

(p+
3 + p+

4 )2

V (q+, q̄+, g+, g−) = 2g2f dae(te)cb
(p+

3 − p+
4 )p+

2

(p+
3 + p+

4 )2

V (q−, q̄−, g−, g+) = 2g2f dae(te)cb
(p+

3 − p+
4 )p+

2

(p+
3 + p+

4 )2

V (q+, q̄+, g−, g+) = −2ig2(td)ce(t
a)eb

p+
2

p+
1 + p+

4

+ 2g2f dae(te)cb
(p+

3 − p+
4 )p+

2

(p+
3 + p+

4 )2
(B–3)

The gluon scalar four point vertex Fig.B-4 is given by

V (g+, g−, s, s) = V (g−, g+, s, s)

= −ig2
[

(ta)ce(t
b)ed + (tb)ce(t

a)ed

]

+ g2fabe(te)cd
(p+

3 − p+
4 )(p+

2 − p+
1 )

(p+
1 + p+

2 )2

V (g+, g+, s, s) = V (g−, g−, s, s) = 0 (B–4)
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For tri-gluon vertex Fig.4-3

V (g, g, g) = −gf abc[ε∗1 · ε∗2(p1 − p2) · ε∗3 + ε∗2 · ε∗3(p2 − p3) · ε∗1 + ε∗3 · ε∗1(p3 − p1) · ε∗2]

Setting µ, ν = ∧, ρ = ∨, the above becomes

V (g+, g+, g−) = gf abc[(p2 − p3)
+ p∧1

p+
1

− (p2 − p3)
∧ + (p3 − p1)

+ p∧2
p+

2

− (p3 − p1)
∧]

= 2gf abc (p1 + p2)
+

p+
1 p+

2

K∧
21 (B–5)

The gluon four point vertex receives contribution from two sources: the left diagram

in Fig.B-6 is simply the covariant four point vertex:

V1 = ig2
{

fabef ecd[gµσgνρ − gµρgνσ] + f daef ebc[gµνgρσ − gµρgνσ] + f caef ebd[gµνgρσ − gµσgνρ]
}

(B–6)

The second is obtained by shrinking a propagator.

V2 = g2f daef ebc[ε∗1 · ε∗4(p4 − p1)α]
igα+gβ+(p1 + p4)

2

(p+
1 + p+

4 )2(p1 + p4)2
[ε∗2 · ε∗3(p2 − p3)β]

= ig2f daef ebc (ε
∗
1 · ε∗4)(ε∗2 · ε∗3)(p4 − p1)

+(p2 − p3)
+

(p+
1 + p+

4 )2

There are two cases in which the gluon four point vertex is nonzero:

V (g+, g+, g−, g−) = 2ig2

[

− f daef ebc p+
1 p+

3 + p+
2 p+

4

(p+
1 + p+

4 )(p+
2 + p+

3 )
+ f acef ebd p+

3 p+
2 + p+

1 p+
4

(p+
1 + p+

3 )(p+
2 + p+

4 )

]

V (g+, g−, g+, g−) = 2ig2

[

fabef ecd p+
2 p+

3 + p+
1 p+

4

(p+
1 + p+

2 )(p+
3 + p+

4 )
+ f daef ebc p+

1 p+
2 + p+

3 p+
4

(p+
1 + p+

4 )(p+
2 + p+

3 )

]

(B–7)

When using these vertices, we need to watch the indices of structure constants closely: not

all terms are going to make contributions to Tr[tatbtctd].
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The fermion four point vertex comes from contracting a pair of three point vertices

connected by a gluon propagator. It is given by (for configuration of Fig.B-7)

V (q, q, q̄, q̄) = −4ig2(te)da(t
e)cb

p+
3 p+

4

(p+
1 − p+

4 )2
(B–8)

with the obvious restriction that fermion line 1 and 4 having the same handedness while 2

and 3 having the same handedness.

The scalar four point vertex Fig.B-8 comes from contracting a pair of three point

vertices connected by a gluon propagator. It is given by

V (s, s, s, s) = −ig2(te)ab(t
e)cd

(p+
3 − p+

4 )(p+
1 − p+

2 )

(p+
1 + p+

2 )2
(B–9)

The scalar fermion four point vertex Fig.B-9 also comes from contracting a gluon

propagator:

V (s, s, q̄, q) = −ig2(te)ab(t
e)cd

2p+
3 (p+

2 − p+
1 )

(p+
1 + p+

2 )2
(B–10)

with the restriction that the fermion lines having the same handedness.

PSfrag replacements ∧, a ∨, a

q

c, p1c, p1 b, p2b, p2

Figure B-1. Gluon-fermion-fermion 3 point vertex
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PSfrag replacements

µ, a, q

c, pcb, pb

Figure B-2. Gluon-scalar-scalar 3 point vertex

PSfrag replacements

e e

b, p1 b, p1
c, p2 c, p2

a, p4

a, p4

d, p3

d, p3

Figure B-3. Two diagrams contribute to the fermion-gluon 4 point vertex. Note these
are not exchange diagrams but rather four point vertices gotten through
cancelling a 1/p2 factor in a fermion propagator or a gluon propagator, see
Eq.2–25

PSfrag replacements
∧, b, p4

∧, b, p4

∨, a, p3

∨, a, p3

c, p1 d, p2

Figure B-4. Scalar-gluon 4 point vertex. Again, the second diagram is not an exchange
diagram but rather a four point vertex obtained through shrinking a gluon
propagator

PSfrag replacements

ν, b, p2µ, a, p1

ρ, c, p3

Figure B-5. Tri-gluon vertex
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PSfrag replacements

ν, b, p2µ, a, p1

ρ, c, p3σ, d, p4

ν, b, p2µ, a, p1

ρ, c, p3σ, d, p4

Figure B-6. Gluon 4 point vertex

PSfrag replacements

a, p1

c, p3

b, p2

d, p4

Figure B-7. Fermion 4 point vertex

PSfrag replacements

a, p1

c, p3

b, p2

d, p4

Figure B-8. Scalar 4 point vertex

PSfrag replacements

a, p1

c, p3

b, p2

d, p4

Figure B-9. Scalar Fermion 4 point vertex

103



REFERENCES

[1] G. ’t Hooft, Nucl. Phys. B72 (1974) 461. J. M.

[2] Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998).

[3] S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Phys. Lett. B428 (1998)
105,[arxive:hep-th/9802109]

[4] E. Witten, , Adv. Theor. Math. Phys.2: 253, 1998, [arxive:hep-th/9805028]

[5] J. Maldacena, Phys. Rev. Lett. 80, 4859 (1998), [arXive:hep-th/9803002]

[6] K. Bardakci and C. B. Thorn, Nucl. Phys. B626, 287 (2002).

[7] C.B. Thorn, Nucl.Phys.B637:272-292 (2002).
Erratum-ibid.B648:457,2003. [arXive:hep-th/0203167]
S. Gudmundsson, C.B. Thorn, T.A. Tran, Nucl.Phys.B649:3-38 (2003).
[arXive:hep-th/0209102]

[8] C.B. Thorn Nucl.Phys.B699:427-452 (2004).[arXive:hep-th/0405018]

[9] S. Gudmundsson, C.B. Thorn, Phys.Rev.D66:076001 (2002). [arXive:hep-th/0203232]

[10] Z.Xu, D.H.Zhang and L.Chang, Nucl. Phys. B291:392 (1987)

[11] L. Dixon, Calculating Scattering Amplitudes Efficiently [arXive:hep-ph/9601359]

[12] G. Chalmers and W. Siegel Phys.Rev.D63:125027,2001[arXive:hep-th/0101025]
G. Chalmers and W. Siegel Phys.Rev.D59:045013,1999. [arXive:hep-ph/9801220]
G. Chalmers and W. Siegel Phys.Rev.D59:045012,1999[arXive:hep-ph/9708251]

[13] D. Chakrabarti, J. Qiu and C. B. Thorn, Phys. Rev. D72, 065022 (2005)
[arXiv:hep-th/0507280].

[14] D. Chakrabarti, J. Qiu and C. B. Thorn, Phys. Rev. D74, 045018 (2006)
[arXiv:hep-th/0602026].

[15] J. Qiu, Phys. Rev. D74, 085022(2006) [arXiv:hep-th/0607097].

[16] T.D. Lee and M. Nauenberg, Phys. Rev. 133, B1549 (1964).

[17] M.T. Grisaru and H.N.Pendleton, Nucl. Phys. B124 (1977) 81-92

[18] G. Passarino and M. Veltman, Nucl. Phys. B160:151 (1979)
D.B. Melrose, Nuovo Cimento 40A:181(1965)
W.van. Neerven and J.A.M. Vermaseren, Phys.Lett. 137B:241(1984)
G.J.van Oldenborgh and J.A.M. Vermaseren, Z.Phys. C46:425(1990)

104



[19] S. Mandelstam, Nuclear Physics B213, 149 (1983). G. Leibbrandt, Physical Review
D29, 1699 (1984). D.M.Capper, J.J.Dulwich and M.J.Litvak, Nuclear Physics B241

(1984) 463-476

[20] S. J. Parke and T. R. Taylor, Phys. Rev. Lett. 56 (1986) 2459.

[21] M. Mangano, S, Parke and Z. Xu, Nucl.Phys B298 (1988) 653-672

[22] F. Berends and W. Giele, Nucl.Phys B294 (1987) 700-732

[23] Z. Kunszt, A. Signer and T. Trocsanyi Nucl.Phys B411 (1994) 397
[arXiv:hep-ph/9305239].

[24] Z. Kunszt and D. Soper, Phys. Rev. D46:192 (1992).

[25] R. Britto, F. Cachazo and B. Feng, Nucl.Phys. B725 (2005) 275-305
[arXiv:hep-th/0412103].
R. Britto, F. Cachazo and B. Feng, Nucl.Phys. B715 (2005) 499-522
[arXiv:hep-th/0412308].

[26] Z. Bern, L. Dixon, D.C. Dunbar, D.A. Kosower, Nucl.Phys. B425 (1994)
217-260[arXiv:hep-ph/9403226]
C.F. Berger, Z. Bern, L. Dixon, D. Forde, D.A. Kosower, Phys Rev D74, 036009
(2006)

[27] R. Karplus and M. Neuman Phys.Rev. 83, 776 (1951)[arXive:hep-ph/0604195]

[28] S. Gudmundsson, C. B. Thorn, and T. A. Tran, Nucl. Phys. B649 (2002) 3,
[arXiv:hep-th/0209102]

[29] N. I. Ussyukina, A. I. Davydychev, Phys. Lett. B 298, 363 (1993)

[30] Andrei I. Davydychev [arXiv:hep-ph/9307323]

[31] V.B.Berestetskii, E.M.Lifshitz and L.P.Pitaevskii Quantum Electrodynamics Landau
and Lifshitz Course of Theorectical Phyiscs, Vol.4 page 570

105



BIOGRAPHICAL SKETCH

Jian Qiu was born in 11.2.1979 in Shanghai, China. He was raised up in a small

town Le-Ping in the Jiang-Xi province, where he finished the first two years of elementary

school. He moved back to Shanghai in 1988 and went to elementary school, middle

school and high school there. From the sixth to the twelfth grade, he also took part in

competitions in remote controlled race car.

After graduating from Shi-Er high school in 1998, he was admitted to Fudan

University to study physics. He was first interested in Nuclear physics, then slowly

shifted his interest to theoretical physics and mathematics. He then graduated from Fudan

University in 7.2002 with the bachelor’s degree.

In the same month, he left China and came to the University of Florida to pursue his

graduate study in physics. And he has been in the Physics Department ever since.

106


	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	1 Introduction
	2 Computation Techniques in the Light Cone
	2.1 Mini Introduction to Spinor Helicity Amplitude Method
	2.2 The Light Cone Setup
	2.3 Brief Description of the Calculational Procedure

	3 Box Reduction
	3.1 Box with a Helicity Violating Sub-diagram
	3.2 Box without a Helicity Violating Sub-diagram

	4 Massless Amplitudes
	4.1 Two Point Functions
	4.1.1 Gluon Self-Energy
	4.1.2 Fermion and Scalar Self-Energy

	4.2 Three Point Functions
	4.2.1 Gluon Vertex Correction
	4.2.2 Fermion Vertex Correction
	4.2.3 Scalar Vertex Correction
	4.2.4 Four-Point Functions

	4.3 Scattering Amplitudes
	4.3.1 Helicity Violating Amplitudes
	4.3.2 Helicity Conserving Amplitudes
	4.3.3 Restoring Gauge Covariance
	4.3.4 All 2-2 Processes


	5 Bremsstrahlung in Light Cone
	5.1 A List of Infrared Terms
	5.2 Bremsstrahlung Process
	5.3 Combining with the Infrared Terms from the Virtual Process
	5.4 The Inclusion of Disconnected Diagrams

	6 Gluon Scattering with Massive Matter Fields
	6.1 Computation Technique
	6.2 Self-Energy Diagrams
	6.3 Triangle Diagrams
	6.4 Scattering Amplitudes
	6.5 Photon Photon Scattering

	7 Conclusions and Future Work
	7.1 Conclusion
	7.2 Restoring Gauge Covariance in the Light Cone
	7.3 Triangle Anomaly
	7.4 Two-Loop and n-Point Amplitudes

	A Spinor Notation in the Light Cone
	B Feynman Rules
	REFERENCES
	BIOGRAPHICAL SKETCH

