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Abstract: We continue our study of string theory in a background that interpolates
between AdS3 in the infrared and a linear dilaton spacetime IR1,1 × IRφ in the UV.
This background corresponds via holography to a CFT2 deformed by an operator
of dimension (2, 2). We discuss the structure of spatial entanglement in this model,
and compare it to the closely related TT deformed CFT2.
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1 Introduction

We have recently [1–3] initiated a detailed study of string theory in backgrounds of
the form

M3 × N , (1.1)

where N is a compact space, and M3 interpolates between a three dimensional linear
dilaton background in the ultraviolet (UV) and AdS3 in the infrared (IR).

From the UV point of view, these backgrounds can be interpreted as the bulk
description of certain two dimensional vacua of Little String Theory (LST) that
contain N � 1 fundamental strings [4, 5]. From this point of view the high energy
physics is that of the underlying LST, while at low energies one approaches a CFT
that is dual to the AdS3 background corresponding to the near-horizon geometry of
strings in the linear dilaton background.
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From the IR point of view, these backgrounds can be thought of as irrelevant de-
formations of the two dimensional conformal field theories (CFT2) dual to the above
AdS3 backgrounds by a certain universal quasi-primary operator of dimension (2, 2),
[1–3]. Superficially, one might think that such a description would be incomplete,
since it involves flowing up the renormalization group (RG), a process that is usually
ambiguous, however, we presented evidence (both worldsheet and spacetime) that in
this case the situation is much better, and one can in fact flow up the RG.

In this note we will discuss the structure of spatial entanglement in these models,
between an interval of length L and its complement. Since the models are non-local
at short distances, we expect their entanglement entropy S(L) to exhibit non field-
theoretic behavior at small L. One of our main goals is to investigate this non-locality.
In particular, we will be interested in the question what happens when the size of
the interval, L, approaches the non-locality scale of the model.

We will also discuss the dependence of the entanglement entropy on the UV
cutoff. In two dimensional QFT it is well known that S(L) depends logarithmically
on the cutoff, but the quantity

C(L) = 3L
∂S(L)

∂L
(1.2)

is finite [6]. At RG fixed points it approaches a constant, equal to the Virasoro
central charge. As L varies between 0 and ∞, the entropic c-function C(L) (1.2)
interpolates (monotonically) between the UV and IR central charges, respectively.
It is natural to ask what is the cutoff dependence of C(L) in the non-local models of
[1–3].

As explained in [1–3], the string theory models we will discuss are closely related
to TT deformed CFT2, a subject that received some attention recently following the
work of [7, 8]; see e.g. [9–17], and [18–20] for work on related systems. It is natural to
ask whether the general form of the entanglement entropy in these models is similar
to that found in the string backgrounds we will study. Unfortunately, it is difficult
to perform the full calculation in the field theory models of [7, 8], but we will show
that perturbatively in the coupling one finds a similar structure in the two cases.

The plan of this paper is the following. In section 2 we briefly review some
relevant aspects of the construction of [1–3], and of previous work on entanglement
entropy [21, 22]. In section 3 we compute the holographic entanglement entropy and
c-function (1.2) of a line segment of length L in the models of [1–3]. We work out their
behavior at large L (for the purpose of comparing to the field theory calculation),
and near a critical value Lmin, where the c-function diverges.

In section 4 we discuss the calculation of entanglement entropy in field theory.
We take as an example the theory of N complex fermions, deform it by the operator
λTT , and compute the entanglement entropy to first non-trivial order in λ. We
find that the result is very similar to the holographic calculation. In section 5 we
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generalize the holographic calculation to finite temperature. In section 6 we comment
on our results and discuss possible avenues for further work.

2 Review

2.1 An irrelevant deformation of AdS3/CFT2

The work of [1–3] was inspired by the observation [7, 8] that a particular irrelevant
deformation of a generic CFT2 by an operator bilinear in stress tensors leads to a
theory with some interesting properties.

This theory appears to be well defined at high energies, despite the fact that
it involves a flow up the renormalization group. Moreover, it seems to be, at least
to some extent, solvable. For example, the authors of [7, 8] were able to compute
the spectrum of the theory exactly. The density of states interpolates between that
of a CFT2 at low energies and one with Hagedorn growth at high energies. Thus,
it is not a standard local QFT, in the sense that the high energy behavior is not
governed by a UV fixed point. In supersymmetric models, the deformation preserves
supersymmetry, since the deforming operator is a top component of a superfield.

If the original CFT2 has a holographic (AdS3) dual, the theory of [7, 8] corre-
sponds to a double trace deformation of the original duality.1 The main observation
of [1] was that there is a single trace deformation of the CFT2, that shares many of
the properties mentioned above. In particular, it is universal, in the sense that any
CFT2 that has an AdS3 dual (at least one supported by NS B-field flux) contains
this deformation. It is under control despite being irrelevant since it corresponds to
a truly marginal deformation of the worldsheet theory,

δLws = λJ−J
−

, (2.1)

where J− is the holomorphic worldsheet SL(2, IR) current whose zero mode gives rise
to the boundary Virasoro generator L−1, and similarly for J

−, L−1 [25]. Deforming
the worldsheet theory by (2.1) corresponds to deforming the boundary CFT2 by

δL = λ̃D(x), (2.2)

where D(x) is a certain dimension (2, 2) quasi-primary constructed in [26], and λ̃ is
proportional to λ (2.1).

The deformation (2.1), (2.2) corresponds in the bulk to a deformation of the
metric, dilaton and B field, from AdS3 to a background that we will refer to as M3

1See e.g. [23, 24] for discussions of double trace deformations.
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(see (1.1)). It is described by [27]

ds2 = f−1
(
−dt2 + dx2

)
+ kα′ dU2

U2 ,

e2Φ = gs

kU2 f−1, (2.3)

dB = 2i

U2 f−1ε3,

where f = 1 + 1
kU2 , and k is the level of the worldsheet SL(2, IR) current algebra of

the model.
The background (2.3) interpolates between AdS3 (with string coupling gs) in the

infrared region U → 0, and a linear dilaton spacetime

IR1,1 × IRφ (2.4)

(with φ ∼ ln U) in the UV region U → ∞. The scale at which the geometry makes
the transition between the two depends on λ (2.1); it has been set to a convenient
value in (2.3), without loss of generality (see [1, 2] for a more detailed discussion of
this and related issues).

The UV geometry (2.4) describes a two dimensional vacuum of Little String
Theory [4]. The high energy density of states exhibits Hagedorn growth with inverse
Hagedorn temperature (see e.g. [28] for a review)

βH = 2π
√

kα′ . (2.5)

One can think of the full geometry (2.3) as obtained from (2.4) by adding N fun-
damental strings filling IR1,1 [5]. As one approaches the strings, the coupling stops
growing, and saturates at a value g2

s ∝ 1/N . From this perspective it is clear that
if the original LST is supersymmetric (in spacetime), the deformation preserves su-
persymmetry, since the strings preserve some of the supersymmetry of the original
LST.2

One can study the thermodynamics of the model (2.3) by analyzing black holes
in M3. This gives [1] an entropy that interpolates between a Cardy entropy with
c = 6kN at low energies, and Hagedorn entropy S = βHE at high energies.

As mentioned above, the single trace perturbation (2.1), (2.2) is different from the
double trace TT deformation, which is the direct analog of [7, 8]. A useful heuristic
way of thinking about the difference between the two is the following. Suppose the
boundary CFT2 corresponding to a particular string theory on AdS3 was a symmetric
product MN/SN . Then one could consider two different deformations related to that
of [7, 8] – the TT deformation of the full symmetric product, and the TT deformation

2An example of this construction is the near-horizon geometry of k NS5-branes wrapped around
a compact four dimensional manifold, e.g. T 4 or K3, which gives rise to (2.4). The background
(2.3) is obtained by adding N fundamental strings stretched along the remaining IR1,1.
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of the block M. The first can be thought of as a double trace deformation, while
the second is a single trace one. This picture is heuristic since the boundary CFT2
is not expected in general to be a symmetric product, though as discussed in [1–3]
(following [29, 30]) there are many connections.

2.2 Entanglement entropy

In this subsection we review the results on entanglement entropy in two dimensional
quantum field theory that we will use below; see e.g. [21, 22] for more detailed
discussions.

Consider a two dimensional QFT on IR1,1, in its vacuum state |0〉. The vacuum
is a pure state; thus, the corresponding density matrix, ρ = |0〉〈0|, satisfies ρ2 = ρ.
We divide a spatial slice, IR, into two regions: A = IL, an interval of length L, and
B, the complement of A. The quantity of interest is the Von-Neumann entropy of
the density matrix ρA = TrBρ, which can be thought of as the entropy seen in the
pure state |0〉 by an observer in region A that does not have access to region B.

One way to calculate it is to start with the nth Renyi entropy Rn given by

Rn = 1
1 − n

ln Trρn
A, (2.6)

continue the result to arbitrary (non-integer) n, and take the limit

SEE = lim
n→1

Rn = − d

dn
Trρn

A|n=1 = −ρA ln TrρA. (2.7)

This is known as the replica trick.
When the two dimensional QFT is conformal, the authors of [22] have shown that

the Renyi entropy (2.6) can be computed by considering the product of n copies of
the CFT, constructing the lowest dimension Zn twist field Sn (where the Zn cyclically
permutes the n copies), and computing the two point function

Trρn
A = 〈Sn(u)Sn(v)〉, (2.8)

where u and v are the endpoints of the interval IL, with L = |u − v|. The twist field
Sn is a conformal primary of dimension3

Δ(Sn) = c

24

(
n − 1

n

)
. (2.9)

Its two point function is given by

〈Sn(u)Sn(v)〉 ∼ 1
(u − v)4Δ(Sn) . (2.10)

3c is the central charge of the original CFT .
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Plugging this into (2.6), (2.7), (2.8) one finds the famous result [31]

SEE = c

3 log L

a
. (2.11)

As mentioned above, the dependence on the UV cutoff a can be eliminated by con-
sidering the c-function C(L) (1.2).

The theories we will be studying here are not conformal, so we need the gener-
alization of the results of [22] to the case of a general QFT2. One can still use the
construction of [22], except now the correlation function (2.8) is computed in the
symmetric product of perturbed CFT ’s.

In a CFT2 with a gravity dual, one can calculate the entanglement entropy (2.7)
directly by using the results of Ryu and Takayanagi [21]. The entanglement entropy
is proportional to the area of the minimal surface Σ connecting the two points u and
v on the boundary through the bulk at fixed time, and wrapping N (1.1).

This prescription is also valid for non-conformal boundary theories, whose gravity
dual is not asymptotically AdS3. For such theories the area functional that needs to
be minimized is (see e.g. [32])

SEE = 1
4GN

∫
Σ

d8σe−2Φ
√

G, (2.12)

where GN is the 10 dimensional Newton constant, σ are coordinates on the eight
dimensional hypersurface Σ, Φ is the dilaton field and G is the determinant of the
induced string frame metric on Σ. Just like in the QFT calculation, the holographic
entanglement entropy is, in general, UV divergent. To study the dependence on
the UV cutoff, one can take the radial coordinate U in (2.3) to run over the range
0 ≤ U ≤ Umax, and investigate the dependence of the results on Umax.

3 Bulk calculation: zero temperature

3.1 Holographic entanglement entropy

In this section we calculate the entanglement entropy of string theory on M3 × N
(1.1), (2.3). As explained in the previous section, to do that we need to find a
minimal surface connecting two points a distance L apart on the boundary of M3
(at fixed time), while wrapping all of N . One can think about this minimal surface as
a configuration U = U(x) which has the property that as x approaches the endpoints
of the interval, xend = ±L/2, U approaches the boundary, U → ∞; between the two
endpoints U(x) decreases to some minimal value U = U0 (which by symmetry is
achieved at x = 0) and then goes back up to infinity.

The area functional (2.12) for U(x) takes in this case the form

SEE =
√

k

4G
(3)
N

∫ L
2

− L
2

dx

√
(kU2 + 1)(U4 + α′(kU2 + 1)(∂xU)2)

U2 . (3.1)
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The equation of motion is

U3√kU2 + 1√
U4 + α′(kU2 + 1)(∂xU)2

= U0

√
kU2

0 + 1 , (3.2)

with the initial conditions U(x = 0) = U0 and ∂xU |x=0 = 0. As usual in such
calculations (see e.g. [21, 32]), the size L of the entangling region on the boundary,
and the minimal value of U along the curve U(x), U0, are related, via

L(U0) = 2
√

α′

U0

∫ ∞

1
dy

√
kU2

0 y2 + 1

y2
√

y2
(

kU2
0 y2+1

kU2
0 +1

)
− 1

, (3.3)

where y = U/U0. The integral (3.3) is convergent in the UV (i.e. as y → ∞), so we
do not need to introduce a UV cutoff.

2
k '

U0

L(U0)

Figure 1. The size of the entangling region L as a function of U0 in M3.

Figure (1) shows a numerical plot of L as a function of U0. As L → ∞, U0 → 0,
so the bottom of the minimal surface is deep inside the AdS3 region of the bulk
geometry (red curve in figure (2)). In this regime, the behavior of the entanglement
entropy is dominated by the AdS3 region, in agreement with standard RG intuition.

As L decreases, U0 increases and ultimately diverges as L approaches a minimal
value Lmin = π

2

√
kα′ (blue curve in figure (2)). For L ∼ Lmin, the behavior of the

entanglement entropy is dominated by the linear dilaton region of the geometry (2.3).
The entanglement entropy is obtained by plugging (3.2) in (3.1). One finds

SEE =
√

kα′

2G
(3)
N

∫ Umax

U0

dU

U

(kU2 + 1)√
1 −

(
kU2

0 +1
kU2+1

)
U2

0
U2

. (3.4)

The integral (3.4) is UV divergent; therefore, we introduced a UV cutoff Umax, as
discussed above. Evaluating the integral numerically, leads to the structure in figure
(3).

It is natural to ask what happens for L < Lmin. The connected solution discussed
above does not exist in that case. There is formally a disconnected solution, which
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U
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Umax

U = 0

Lmin

U ∼ 1√
k

Figure 2. The background M3 gives rise at small U to AdS3, and at large U to a linear
dilaton background. The two are smoothly connected at U ∼ 1√

k
. For large L the bottom of

the minimal RT surface is deep inside the AdS3 region (red curve), while for L ∼ Lmin it is
in the linear dilaton region (blue curve). The properties of the corresponding entanglement
entropy are accordingly different.

Lmin

L

SEE(L)

Figure 3. SEE(L).

consists of two branches, with x = ±L/2 and 0 ≤ U ≤ Umax, but that solution has
infinite SEE. We will take the attitude, here and below, that due to the non-locality
of the theory it does not make sense to talk about entanglement for intervals shorter
than Lmin.

3.2 Large and small L expansion of SEE(L)

In the last subsection we found an exact expression for the entanglement entropy
SEE(L), (3.3), (3.4). It is instructive to investigate the large and small L behavior
of SEE(L). The main motivations for this are to understand the dependence of the
entropy on the UV cutoff Umax, and for comparing to field theory results.

To study the behavior for large L, we define the variables

ρ =
√

kU0 and L̂ = L√
k

, (3.5)
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in terms of which one has

L̂(ρ) = 2
√

α′

ρ
I(ρ) I(ρ) =

∫ ∞

1
dy

√
ρ2y2 + 1

y2
√

y2
(

ρ2y2+1
ρ2+1

)
− 1

. (3.6)

Changing variables, z = ρy, one has

L̂(ρ) = 2
√

α′
∫ ∞

ρ
dz

√
z2 + 1

z2
√

z2(z2+1)
ρ2(ρ2+1) − 1

. (3.7)

We are interested in the large L, or equivalently small U0, ρ expansion of this integral.
For ρ > 1, one can write

L̂(ρ) =
√

α′
∞∑

n=0
Cn

(ρ2 + 1)n+ 1
2

ρ2n+1(2n + 1) 2F1

[
n, 2n + 1, 2(n + 1); − 1

ρ2

]
, (3.8)

where the coefficients {Cn} are defined by

1√
1 − x

=
∞∑

n=0
Cnxn for |x| < 1. (3.9)

Expanding (3.8) around ρ = 0, one obtains

L̂(ρ) = 2
√

α′

ρ

(
1 − ρ4

2 log ρ + O(ρ4)
)

. (3.10)

The first term in the above expression is what one would obtain if the full background
was AdS3. The higher terms are due to corrections to the background. Inverting
(3.10), one gets (at large L)

ρ = 2
√

α′

L̂
+ 16α′5/2

L̂5
log L̂√

α′ . (3.11)

So far we discussed the form of (3.3) for large L, or equivalently small U0. For
large U0 (i.e. in the linear dilaton regime), L behaves as

L(U0) = Lmin +
√

α′

k

1
U2

0
+ O

(
1

U4
0

)
. (3.12)

The entanglement entropy (3.4) can be analyzed in a similar way. For small U0,
one finds

SEE =
(√

kα′

2G
(3)
N

){
1
2(ρ2

max − ρ2) + log
(

ρmax

ρ

)}

+
(√

kα′

2G
(3)
N

) ∞∑
n=1

Cn(1 + ρ2)n

2ρ2(n−1)(2n − 1) 2F1

[
n − 1, 2n − 1, 2n, − 1

ρ2

]
. (3.13)
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where ρmax =
√

kUmax. Expanding (3.13) in ρ, and using (3.5), one finds

SEE =
√

kα′

2G
(3)
N

{
kU2

max
2 + log

(2Umax

U0

)
− kU2

0
4 − 3

8k2U4
0 log (U0) + O(U4

0 )
}

,(3.14)

Using (3.11) we get

SEE = c

3

⎧⎨⎩ β2
H

8π2L2
Λ

+ log
(

L

LΛ

)
− 1

4π2

(
βH

L

)2

+ 1
8π4

(
βH

L

)4

log
(

βH

L

)
+ O

(
β4

H

L4

)⎫⎬⎭ ,

(3.15)

where

LΛ =
√

α′

Umax
(3.16)

is the UV cutoff, βH is the inverse Hagedorn temperature (2.5), and c the Brown –
Henneaux central charge

c = 3�

2G
(3)
N

= 3
√

kα′

2G
(3)
N

. (3.17)

In the linear dilaton regime (i.e. L → Lmin, U0 → ∞), SEE behaves as

SEE = c

6

{
β2

H

4π2L2
Λ

+ log
(

βH(L − Lmin)
L2

Λ

)
+ O

(
(L − Lmin)0

)}
. (3.18)

It would be interesting to understand better the radius of convergence of the large
L expansion (3.15), in analogy to what was done for correlation functions in [3]. We
will leave this to future work.

3.3 Casini-Huerta c-function

From the exact expression for the entanglement entropy, (3.3), (3.4), we can compute
the c-function (1.2). A numerical evaluation yields the results in figures (4), (5). Note
that:

(i) While the entanglement entropy (3.4) depends on the UV cutoff, C(L) does not.
As mentioned above, in a QFT governed by a UV fixed point this is necessarily
the case, due to (2.11), but here the theory is non-local in the UV, and this
fact is non-trivial.

(ii) C(L) ≥ 0, and is monotonically decreasing from the UV to the IR (i.e. C ′(L) ≤
0). Thus, we see that the c-function can be generalized beyond the class of the-
ories that approach a fixed point in the UV to the non-local theories discussed
here, while preserving positivity and monotonicity.
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As L → ∞ (i.e. in the AdS3 regime), C(L) aproaches a constant; limL→∞ C(L) =
c = 6kN . The large L expansion of C(L) is (inserting (3.15) in (1.2))

C(L) = c

⎧⎨⎩1 + 1
2π2

(
βH

L

)2

+ 1
2π4

(
βH

L

)4

log
(

L

βH

)
+ O

⎛⎝(βH

L

)4
⎞⎠⎫⎬⎭ . (3.19)

As L → Lmin (i.e. in the linear dilaton regime), C(L) diverges as

C(L) = c

2

(
Lmin

L − Lmin

)
+ O

(
(L − Lmin)0

)
. (3.20)

This divergence is due to the fact that LST has a Hagedorn density of states. Indeed,
in [32] it was shown that in a theory whose spectrum contains a Hagedorn density of
non-interacting states, the entanglement entropy diverges as L approaches βH/2 (see
also [33]). In our case, the divergence happens at Lmin = βH/4. The difference of a
factor of two is likely due to the fact that here, unlike in [32], the theory is strongly
coupled.

Another difference between our analysis here and that of [32] is that there the
divergence was related to a jump of the entanglement entropy from order one to
order N 2 (in a large N gauge theory), or in the language of a holographic string dual
from an entropy of order one to order 1/g2

s . Here, the divergence is visible in leading
order in gs. This can be understood from the point of view of the heuristic model
mentioned at the end of section 2.1. It is due to the fact that we are dealing with a
TT deformation of the block M in a symmetric product MN/SN , so the analog of
the discussion of [32] is visible to leading order in 1/N .

2
k ' c

L

C(L)

Figure 4. C(L).

4 Field theory calculation

In this section we will discuss the entanglement entropy of an interval IL (see section
2.2) in TT deformed CFT2. The main motivation is to compare it to the string theory
results of the previous section, particularly the large L expansion (3.15), (3.19).
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2
k '

L

dC (L)
dL

Figure 5. C ′(L).

We will consider a specific class of examples,4 the theory of N complex left and
right-moving fermions, with c = c = N . We start by reviewing the CFT calculation
in the formalism of [22], and then calculate the leading correction to the CFT result
(2.11) in the TT deformed CFT2.

4.1 Renyi entropy of N complex fermions
As reviewed in section 2.2, to calculate the entanglement entropy of a CFT2 using
the replica trick, we start with n copies of the CFT , and construct the Zn twist field
Sn. In our case, the original CFT contains the complex left-moving fermions ψα,
α = 1, 2, · · · , N , and their right-moving counterparts ψ

α, and taking n copies of it
leads to fermions ψα

i , ψ
α

i , with i the replica index, i = 1, 2, · · · , n. The action of the
Zn generator T on the fermions is5

T : ψα
i → ψα

i+1 . (4.1)

The fermions satisfy the following “periodicity condition” in i: ψα
i+n = (−)n−1ψα

i .
After diagonalizing the action of Zn on the fermions (4.1) by a discrete Fourier

transform,

ψ̃α
k = 1√

n

n∑
j=1

ψα
j e2πi

j(k− 1
2 (n−1))
n , k = 0, 1, · · · , n − 1, (4.2)

we find

T : ψ̃α
k → ψ̃α

k e− 2πi
n (k− 1

2 (n−1)). (4.3)

The twist operator that implements the transformation (4.3) for a particular α is

Sα
n =

n−1∏
k=0

sα
k , (4.4)

4We expect the results of this section to depend only on the central charge of the original CFT,
so one can consider any theory with the right central charge.

5From here we discuss the left-moving sector only. There is an analogous story for the right-
movers.
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where sα
k is the twist field acting on ψ̃α

k . A simple way to construct it is to bosonize
the fermions ψ̃, by writing them as

ψ̃α
k = eiHα

k , (4.5)

where Hα
k is a canonically normalized scalar field, 〈H(z)H(w)〉 = − ln(z − w). Then

we have

sα
k = e

i
n

(k− 1
2 (n−1))Hα

k . (4.6)

The scaling dimension of sα
k is

Δ(sα
k ) = 1

2n2

(
k − (n − 1)

2

)2

. (4.7)

Thus, the scaling dimension of the twist operator Sα
n (4.4) is given by

Δ(Sα
n ) =

n−1∑
k=0

Δ(sα
k ) = 1

24

(
n − 1

n

)
, (4.8)

and for the total spin field, Sn = ∏N
α=1 Sα

n , we have

Δ(Sn) = Δn = c

24

(
n − 1

n

)
, (4.9)

with c = N , in agreement with (2.9).

4.2 Order λ correction to Renyi entropy

We now turn on the TT deformation in the original CFT of N fermions, which
corresponds to turning on the deformation

δL = λ
n∑

l=1
TlT l (4.10)

in the product of n CFT ’s. To compute the entanglement entropy, we need to
evaluate the two point function (2.8) in the deformed theory (4.10). To first order
in λ, we have

〈Sn(x)Sn(0)〉λ = 1
|x|4Δn

− λ
n∑

l=1

∫
d2z

〈
Tl(z)T l(z)Sn(x)Sn(0)

〉
0

+ O(λ2). (4.11)

Conformal invariance of the theory with λ = 0 implies that the three point function
in (4.11) has the form

n∑
l=1

〈
Tl(z)T l(z)Sn(x)Sn(0)

〉
λ=0

= Cn

|z|4|x − z|4|x|4(Δn−1) . (4.12)
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where Cn is a constant to be determined.
To compute this constant, one rewrites the operator ∑n

l=1 TlT l in terms of the
fermions ψ, ψ,

n∑
l=1

TlT l =
n∑

l=1

N∑
α,β=1

ψ∗α
l ∂ψα

l ψ
∗β

l ∂ψ
β

l . (4.13)

In terms of the Fourier transformed fermions ψ̃, (4.13) takes the form

n∑
l=1

TlT l =
n∑

k1,···k4=1

N∑
α,β=1

ψ̃∗α
k1 ∂ψ̃α

k2ψ̃
∗β

k3 ∂ψ̃
β

k4δk1−k2+k3−k4,0 . (4.14)

Inserting (4.14) into (4.12), we find that the only terms that contribute to the three
point function are the ones with k1 = k2 and k3 = k4. Restricting to these terms,
(4.14) takes the form TtotT tot, where Ttot = ∑

l Tl, and similarly for T . Therefore, the
constant Cn in (4.12) can be determined from the stress tensor Ward identity to be

Cn = Δ2
n , (4.15)

with Δn given by (4.9).
Plugging (4.12), (4.15) into (4.11), we find that the order λ correction to the two

point function of Sn is proportional to

∼
∫

d2z
Δ2

n

|z − x|4|z|4|x|4Δn−4 ∼ Δ2
n

|x|4Δn+2 ln(|x|Λ), (4.16)

where Λ is the UV cutoff, and we omitted an overall multiplicative constant.
The result (4.16) together with (4.11) determines the Renyi entropy (2.6), (2.8)

to order λ. To calculate the entanglement entropy SEE, we need to divide by n − 1
and take the limit n → 1 (2.7). Since Δn goes to zero like n − 1, the order λ

contribution to SEE vanishes.
It is interesting to compare the field theory analysis to the string theory results

of the previous section, (3.15). In the field theory analysis, the expansion parameter
is λ/|x|2, which is the same as the string theory expansion parameter (βH/L)2. Thus,
in the notation of section 3, we found in the field theory analysis that while the Renyi
entropy receives a correction of the form (βH/L)2 ln L, the coefficient of this term in
the entanglement entropy vanishes. This term is also absent in the expansion of the
string theory result (3.15).

Of course, it is important to stress that these two calculations are done in different
theories, as reviewed earlier in the paper. However, as we also mentioned, the two
theories are closely related, and the calculation of the entanglement entropy provides
one more example of this. It would be interesting to generalize the string theory
calculation to that of the Renyi entropy (e.g. using the results of [34]), and check
whether the agreement of the coefficient of this term persists for that case.
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In the string theory analysis (3.15), we found that while the (βH/L)2 ln L term
in the expansion was absent, there was a contribution of order (βH/L)2. It is natural
to ask what is the origin of this contribution in the field theory expansion. One way
it can arise is from contact terms. When evaluating (4.11) we used the three point
function at separated points (4.12). However, the integral over z in (4.11) is also
sensitive to contact terms. For example, we can introduce the contact term

n∑
l=1

Tl(z)T l(z)Sn(0) = Anδ2(z)∂∂Sn(0). (4.17)

Adding this to the calculation (4.11) leads to a term that goes like (βH/L)2 in (3.15),
with a coefficient that depends on the behavior of An as n → 1. The coefficient An

is not determined by standard CFT data. It has to do with the geometry of the
space of field theories (see e.g. [35]), and can be chosen at will. In particular, we can
choose it to reproduce the result of the string theory calculation.6

5 Bulk calculation: finite temperature

In this section we generalize the analysis of section 3 to finite temperature. To do
this we replace the geometry (2.3) by a black hole in M3,

ds2 = −f1

f
dt2 + 1

f
dx2 + kα′f−1

1
dU2

U2 ,

e2Φ = gs

kU2 f−1, (5.1)

dB = 2i

U2 f−1ε3 ,

where f = 1 + 1
kU2 and f1 = 1 − U2

T

U2 . The location of the horizon, UT , is related to
the temperature via:

T = 1
2π

√√√√ U2
T

α′(1 + kU2
T ) . (5.2)

When
√

kUT � 1, the horizon is deep inside the AdS3 region in M3, and is described
to a good approximation by the BTZ black hole. When

√
kUT � 1, the horizon

is deep inside the linear dilaton regime and the solution is described by the coset
SL(2,IR)×U(1)

U(1) (see e.g. [30]).

6In the bulk, the ambiguity related to the contact term (4.17) corresponds to the ambiguity of
redefining the UV cutoff; the two terms that go like β2

H in (3.15) can mix by replacing the UV
cutoff U2

max with U2
max + constant

L2 .
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5.1 Holographic entanglement entropy
Writing down the area functional (2.12) for a surface U = U(x) in the geometry (5.1)
gives rise to the equation of motion

U 2
√

U2 − U2
T

√
kU2 + 1√

U2(U2 − U2
T ) + α′(kU2 + 1)(∂xU)2

= U0

√
kU2

0 + 1, (5.3)

with the initial condition that U(x = 0) = U0 > UT and ∂xU |x=0 = 0. As in the zero
temperature case, (3.3), the size of the line segment on the boundary, L, is related
to U0 via

L(U0) = 2
√

α′

U0

∫ ∞

1
dy

√
kU2

0 y2 + 1√
y2
(

y2 − U2
T

U2
0

)√
y2
(

kU2
0 y2+1

kU2
0 +1

)
− 1

. (5.4)

The integral is again convergent in the UV and one does not need to introduce a
UV cutoff. Figure (6) shows a numerical plot of L as a function of U0. The profile
does not change much as we take UT continuously from the AdS3 region to the linear
dilaton one. The IR and UV behaviors of L(U0) are similar to those found for T = 0
in section 3, except now U0 is bounded from below by UT .

2
k '

UT

U0

L(U0)

Figure 6. The size of the entangling region L as a function of U0 in the background (5.1).

Unlike the zero temperature case, in studying the entanglement entropy for finite
temperature one needs to consider the disconnected solution as well. The entangle-
ment entropy associated with the connected solution is given by

SC
EE =

√
kα′

2G
(3)
N

∫ Umax

U0

dU

U

U2(kU2 + 1)√
U2 (U2 − U2

T )
√

1 −
(

kU2
0 +1

kU2+1

)
U2

0
U2

. (5.5)

For the disconnected solution one finds

SD
EE =

√
kα′

2G
(3)
N

∫ Umax

UT

dU
kU2 + 1√
U2 − U2

T

= c

6

(
ρ2

max + (2 + ρ2
T ) log

(
2ρmax

ρT

))
, (for ρmax � ρT ) (5.6)
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Lmin

UT in linear dilaton regime
UT  near transition

UT in AdS3  regime

UT=0

L

SEE(L)

Figure 7. The entanglement entropy of the connected solution SC
EE as a function of L in

M3 at finite temperature for different horizon radii ranging from the AdS3 regime to the
linear dilaton regime.

where ρT =
√

kUT and ρmax =
√

kUmax.
Figure (7) shows a numerical plot of SC

EE as a function of L for different values
of UT , whereas figure (8) shows the variation of the entanglement entropy of both
the connected and disconnected solutions as a function of L for a particular value of
UT . From figure (8) we see that the two solutions intersect at a critical value of L,

Lmin LC

Connected solution

Disconnected solution

L

SEE(L)

Figure 8. The entanglement entropy of the connected (black) and disconnected (red)
solution as a function of L in the background (5.1).

L = LC . As L crosses LC there is a phase transition from the connected solution to
the disconnected one. Similar phase transitions appear in [32, 36]. For L < LC the
connected solution is the dominant one, while for L > LC the disconnected solution
is dominant. At L = LC the theory undergoes a phase transition.7 This is a finite
temperature phase transition, that disappears as T → 0.

5.2 Large and small L expansion of entanglement entropy
As in the zero temperature case, we can investigate the large and small L behavior
of the entanglement entropy in the background (5.1). For large U0, L behaves as

L(U0) = π

2
√

kα′ +
√

α′

k

(2 + kU2
T )

2U2
0

+ O

(
1

U4
0

)
. (5.7)

7The difference between the connected and disconnected solutions is finite and, in particular, it
implies that LC is not sensitive to Umax; this was verified numerically.
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As expected, in the limit U0 → ∞, L approaches the same constant value (L =
Lmin = π

2

√
kα′) as in the case of zero temperature.

When the horizon is deep inside the AdS3 region, and the connected RT surface
is hanging deep in the bulk, one gets

L = 2
√

α′

UT

tanh−1
(

UT

U0

)
+ sub-leading terms. (5.8)

When the horizon is deep inside the AdS3 regime, with U0 very close to the
horizon, the connected solution takes the form

SC
EE = c

3

{
β2

H

8π2L2
Λ

+ log
[

βH

LΛ
sinh

(
πLρT

βH

)]
− 1

4ρ2
T coth2

(
πLρT

βH

)
+ O

(
L0
)}

,

(5.9)

where ρ =
√

kU0. To obtain this result, we have used the fact that ρmax � ρT , ρ0.
In the limit U0 → ∞, SC

EE behaves as

SC
EE = c

6

{
β2

H

4π2L2
Λ

+ (2 + ρ2
T )

2 log
(

βH

L2
Λ

(L − Lmin)
)

+ O
(
(L − Lmin)0

)}
. (5.10)

5.3 Casini-Huerta c-function
The behavior of the c-function (1.2) for finite temperature is exhibited in figure (9).
As L → Lmin, it diverges like

C(L) = c(2 + ρ2
T )

4

(
Lmin

L − Lmin

)
+ O

(
(L − Lmin)0

)
. (5.11)

As L increases from Lmin, C(L) decreases monotonically; at L = LC it jumps to
0, as a consequence of the phase transition from the connected to the disconnected
solution.

Lmin LC

L

C(L)

Figure 9. The c-function C(L) in the background (5.1).

For L < Lmin, the connected solution that leads to the divergence in (5.11) is
absent, however, the disconnected solution still exists, and has finite SEE (indepen-
dent of L, as before). It is natural to ask whether we should include this solution
in this case, and extend the curve in figure (9) to L < Lmin. Our view is that one
should not do this, for two reasons:
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(i) In section 3 we argued that in the non-local theory we consider, entanglement
of intervals shorter than Lmin does not make sense. This non-locality is a UV
property, and so should not be sensitive to infrared modifications, such as the
choice of a state in the theory in which we compute the entropy. Therefore, we
should impose this principle on the thermal state as well.

(ii) If we do take the disconnected solution seriously for L < Lmin, we get an
entropic c-function C(L) that is not monotonically decreasing with L. It seems
reasonable based on our results to extend the monotonicity of the c-function as
a principle beyond the class of local QFT.8

6 Discussion

The main goal of this note was to study the entanglement entropy of an interval of
length L in the models discussed in [1–3]. In particular, we were interested in the
consequences of non-locality of these models for this observable, and in comparing
its properties to that of the closely related TT deformed CFT2.

We found that the entropic c-function (1.2) has the following properties in these
models:

(i) It is independent of the UV cutoff, just like in local QFT.

(ii) It is monotonically decreasing along the RG (i.e. C ′(L) < 0), just like in local
QFT.

(iii) Unlike local QFT, where the c-function goes to a constant in the UV limit
L → 0 (equal to the central charge of the UV fixed point), in the models of
[1–3] the c-function is not bounded from above; in fact it diverges as L → Lmin,
where Lmin = π

2

√
kα′ (see figure (4)).

(iv) The large L expansion of the entanglement entropy has a similar structure to
that of TT deformed CFT2.

While our results showed agreement between the string theory analysis of the
models of [1–3] and TT deformed CFT2, we would like to mention a case where the
two seem to disagree. In the recent paper [13], Cardy discussed the entanglement
entropy of a half line in a massive QFT2 with mass parameter m in the presence of
a λTT deformation. His result, to first order in the dimensionless parameter λm2,
has the form

SEE = c

6 log 1
ma

− c2λm2

72π
(log(am))2 + O(λ2m4 log am). (6.1)

8Alternatively, this behavior may be considered as a hallmark of non-locality.
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One can perform the same calculation in the models of [1–3]. For λ = 0, this was
discussed in [21]. The mass parameter is introduced by taking the radial coordinate
in AdS3 to be bounded from below, U ≥ Umin. The entanglement entropy of the half
line is obtained by calculating the length of the line labeled by U at a given value of
the spatial coordinate x. This gives

SEE = c

6 ln Umax

Umin
= c

6 ln ξ

LΛ
, (6.2)

where ξ =
√

α′
Umin

is the correlation length of the boundary field theory.
It is easy to generalize the calculation to non-zero λ, by calculating the length

of the above line in M3 rather than AdS3. This gives

SEE = 1
2

(√
kα′

2G
(3)
N

)∫ Umax

Umin

dU

U
(kU2 + 1) = c

6

{
log ξ

LΛ
+ kα′

2

(
1

L2
Λ

− 1
ξ2

)}
. (6.3)

Comparing this to the result of [13], (6.1), with m = 1/ξ, a = LΛ, we see that the
term that goes like λm2 ln2(am) in (6.1) is absent in (6.3). It would be interesting
to understand the origin of the discrepancy between the two calculations.

It would also be interesting to generalize the calculation of section 4 to higher
orders in λ, and compare to the exact results of section 3. Another closely related
calculation that would be interesting to do is that of Wilson lines in the geometry
M3.
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