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Abstract

In preparation to the commencement of the LHC considerable effort is devoted to

improving the current understanding of QCD radiation. We are concerned here with

this issue as manifested in soft gluon bremsstrahlung and non-perturbative effects.

We study different observables that are sensitive to soft radiation and deduce the

implications for current and future colliders.

We specifically address the possible small-x broadening effects, not accounted for

in conventional Qt resummations, in the Higgs Qt spectrum at hadronic colliders. As

a probe for this we study the DIS Breit current hemisphere Qt spectrum at HERA.

We resum the large logarithms to NLL accuracy, match the result to NLO predictions

and smear it with a non-perturbative Gaussian function. Comparing our predictions

to HERA data ought to reveal the existence or absence of such small-x effects.

Next we study the impact of jet algorithms on QCD resummation. There are

very few resummed predictions for jet-defined quantities, which are often considered

in QCD studies relevant (for instance) to the LHC, due to the lack of theoretical

insight to all orders in the presence of jet algorithms. We consider the simple case

of energy flow into a gap between two jets and compute the dependence of primary

emissions on the kt clustering algorithm. We show how non-global logarithms in this

case are even more significantly reduced than suggested before in the literature and

estimate the impact of our findings on ZEUS photoproduction data.

We then study the azimuthal correlation distribution for dijet production in DIS

at HERA. We perform an NLL resummation and combine the result with NLO

predictions. We point to the extension of this work to hadronic collisions at the

Tevatron. The results of this analysis are important as this observable is commonly

studied by experimentalists, e.g. to extract non-perturbative parameters.

Finally we calculate the power corrections to energy flows in hadronic collisions.

This study provides the technology for further analyses of similar observables involv-

ing non-trivial colour algebra and dipole geometry.

Chapters 1 to 3 of this thesis are introductory and review chapters while chapters

4 to 7 represent the main results.
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Chapter 1

Introduction

With the upcoming LHC collider valuable data are to be collected, providing the

means for potential discoveries and advancements in various fields of particle physics.

This machine will collide protons at a centre-of-mass energy of 14 TeV, thus becoming

the largest and highest energy collider in the world. For comparison with the HERA

collider we show in fig. 1.1 the kinematics regions that are accessible by two machines.

For optimal success of the program of searching for new physics (at the LHC) one

needs to establish as good an understanding as possible of the physics involved in the

comparison between such data and theory. In this context the role of the theory of

strong interactions, quantum chromodynamics (QCD), is dominant since quarks and

gluons are always involved in such studies. This theory describes the interactions

between these particles with various approaches, e.g. lattice, perturbative and non-

perturbative, that attempt to provide as accurately as possible theoretical predictions

for many measured quantities.

The understanding of soft gluon radiation and non-perturbative effects, which

form the bulk of QCD dynamics (e.g. in Higgs production), plays an important role

in studies that aim to enhance QCD knowledge. To illustrate this point we show in

fig. 1.2 a typical jet-event at the LHC in which two protons with momenta P1 and P2

collide head-on. Here we note that several sub-processes cannot be computed from

first principles. In fact only the hard process, which contains potential new physics

such as the Higgs production, can be dealt with from first principles to a few orders

in αs (the strong coupling) and in some cases the accompanying soft radiation to all

18
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Figure 1.1: Comparison of the kinematics of HERA and the LHC. x and Q are the

momentum fraction of the proton carried by the parton and the hard scale involved.

Diagram is taken from ref. [1].

orders to a certain logarithmic accuracy. Precision in QCD is limited not just by what

powers of αs are controlled, but also by the lack of good understanding of dynamics

such as the all-orders behaviour (manifested in the resummation of large logarithms)

and the inevitable process of conversion of partons into hadrons, hadronisation.

It is even more difficult to get a grasp of this dynamics in hadronic collisions than

in processes involving at least one lepton in the initial state, such as e+e− annihila-

tion into hadrons and deep inelastic lepton-proton scattering (DIS). For instance in

hadronic collisions interactions between remnants of both incoming protons, which

are part of the underlying event, are also a major piece of non-perturbative effects.

However these are absent in e+e− annihilation into jets and DIS studies.

It is therefore of benefit to use existing collider data such as those from HERA

to probe QCD aspects that will still be relevant at the LHC. In this thesis we study

observables that can be measured at both existing colliders and the LHC. We outline

below the contents of this thesis referring the reader to fig. 1.2, which pinpoints the

specific issues we are concerned.
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Figure 1.2: A typical jet-event at the LHC. This thesis is concerned with or related

to the uncertainties associated with this process as shown here.

We begin by looking at the small-x enhancement1 of non-perturbative intrinsic

kt effects, where x can be interpreted as the momentum fraction of the incoming

hadron carried by the struck parton, in transverse momentum (Qt) distribution of

vector bosons (from Drell-Yan production) and Higgs boson. These distributions

are often considered in identifying and studying the properties of massive bosons.

Resummation of large logarithms that appear in the study of such distributions

is established up to next-to-next-to-leading log (NNLL)2 combined with next-to-

leading order (NLO) accuracy for the Higgs Qt spectrum [2, 3]. To account for

non-perturbative effects one smears the perturbative result with a non-perturbative

Gaussian function, representing the intrinsic kt distribution of the incoming partons.

It has been pointed out by Berge et al that such distributions may acquire a broader

shape through Balitsky-Fadin-Kuraev-Lipatov (BFKL [4, 5, 6, 7]) enhancements of

non-perturbative intrinsic-kt effects, by means of modelling logarithms of 1/x to

all orders into a Gaussian, as it has been observed for semi-inclusive deep inelastic

1Such small-x effects manifest themselves (in impact parameter space) as a factor proportional

to 1/x in the exponent of the Gaussian function describing the intrinsic transverse momentum (kt)

distribution.
2Here we refer to NNLL accuracy in the logarithm of the integrated cross-section. For reference,

most resummations, e.g. those for several event shapes at LEP and HERA, achieve only a next-to-

leading logarithmic (NLL) accuracy.
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scattering (SIDIS) Qt distribution [8, 9]. These small-x effects may be particularly

strong at the LHC and thus they are important for Higgs studies.

As a probe for this effect we study3 the Qt distribution of the DIS Breit current

hemisphere in chapter 4. In the Breit frame [11, 12, 13] the incoming quark showers

the remnant hemisphere, to NLL accuracy, with soft emissions giving rise to a trans-

verse momentum for the incoming quark, which then scatters off the electron and

showers the current hemisphere. The mechanism of acquiring a vectorial transverse

momentum through recoil in this case is very similar to that of Qt distributions in

Drell-Yan vector boson and Higgs production at hadronic colliders. This similarity

can be used to probe the non-perturbative (small-x) behaviour of such distributions.

Furthermore the study we perform exploits a cleaner environment in terms of addi-

tional non-perturbative effects (as we stated before), such as multiple hard scattering

and the underlying event. Thus we study this distribution resumming the large loga-

rithms (in Q/Qt, with Q being the hard scale) to NLL accuracy, performing an NLO

matching and smearing the result with a non-perturbative (intrinsic-kt) Gaussian

function.

Next we look at jets in the final state and the impact of clustering algorithms on

soft gluon resummation. For many observables that are valuable for LHC studies,

one typically defines the final state in terms of clusters of jets rather than individual

hadrons [14, 15, 16, 17]. This reconstruction has an impact on observables which

are sensitive to emissions in a limited region of the phase-space [18, 19, 20] (non-

global observables [21, 22]). Examples include energy flow into a gap between jets in

hadronic collisions at the Tevatron [23, 24, 25] and in DIS photoproduction at HERA

[26, 27, 28]. These observables receive extra single logarithms4 (which are leading

in the case of inter-jet energy flow) relative to “global” observables. Currently these

extra logarithms can only be resummed numerically in the large Nc limit for two-jet5

observables [21, 22], where Nc is the number of colour degrees of freedom.

It was shown by Appleby and Seymour [18] that employing a clustering algorithm

3Published in ref. [10].
4Super-leading (double) logarithms may also be present for these observables in processes in-

volving four hard partons [29].
5In this thesis we count the number of jets including both initial and final-state ones.
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on the final-state hadrons reduces the size of non-global logarithms in the case of

energy flow into a gap between two jets. Furthermore it was noted by Banfi and

Dasgupta [19] that the clustering requirement has a non-trivial impact on the global

(primary) part of the resummed distribution, previously thought to just be the ex-

ponentiation of the single-gluon contribution. In this thesis we extend6 the analysis

of Banfi and Dasgupta [19] in chapter 5 and show that the result presented there

in fact exponentiates and calculate additional terms that arise at higher orders. We

also point out that the non-global component is even more reduced than previously

claimed by Appleby and Seymour [18], after correction of an oversight in the numer-

ical code, and estimate the impact of our findings on ZEUS photoproduction data.

Thus we conclude that this method essentially makes any unaccounted-for O(1/N2
c )

terms in the non-global component negligible. This study gives us the technology to

proceed with studies of non-global observables with jet-defined final states such as

dijet azimuthal correlations.

Thus we proceed in chapter 6 with studying the dijet azimuthal correlation dis-

tribution (∆φ ≡ π − δφjets, with δφjets being the difference in azimuth between the

leading hard jets in the final state) both in DIS and hadronic collisions. This quantity

has recently been measured by the DØ collaboration at the Tevatron [30, 31] and the

H1 collaboration at HERA [32, 33]. There have been many studies for this observ-

able with various approaches aiming to extract non-perturbative parameters such as

unintegrated parton distribution functions (PDFs) [34, 35], intrinsic kt distributions

[35] and small-x (BFKL) effects [36, 37]. However no resummed calculations have

been performed due to the lack of theoretical insight to all orders in the presence of

a jet algorithm. Now that we have the technology to deal with such algorithms [20]

we can provide theoretical predictions for this observable.

Thus we perform7 a full NLL resummation (we resum logarithms of 1/∆φ in the

small ∆φ region) to this observable and match the resummed result to NLOJET++

[39, 40] predictions. In this study we concentrate on the DIS case and use the jet

6Published in ref. [20]. See the acknowledgment section for details of contributions of collabo-

rators to this thesis.
7See ref. [38].
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recombination method in which the azimuth of a jet is defined by the average Et-

weighted azimuths of particles in the jet [15]. This definition, as we shall show,

makes the observable global and thus no non-global component is present and the

resummed result, to NLL accuracy, has no dependence on the jet algorithm. This is

the recombination scheme used by the H1 collaboration to measure this observable

[32]. On the other hand the jet recombination scheme in which the four-momentum

of a jet is defined by the addition of four-momenta of hadrons inside the jet, implies

that the observable is non-global. The DØ collaboration employed the latter recom-

bination scheme to measure the observable [30, 31]. In our study we point to the

hadronic collisions case using both recombination schemes and briefly discuss the

implications of our findings in chapter 5 on the result in the non-global case.

Finally we turn our attention to non-perturbative (hadronisation) effects. Such

effects are incalculable from first principles and are usually estimated by models (for

a review see ref. [41]). A popular and successful model that described the data

well proved to be the renormalon (dispersive approach) model8 [44]. Here one ex-

trapolates the strong coupling, which diverges at the QCD scale (ΛQCD), into the

non-perturbative domain and replaces the perturbative coupling below some infrared

matching scale with this extrapolation. As a result of this, for example, event-shape

variables receive “power corrections”, amounting to a shift of their resummed distri-

butions by an amount proportional to 1/Q, where Q is the hard scale of the process

[45, 46, 47]. Mean values of event shapes also receive corrections which are pro-

portional to 1/Q [46, 47, 48, 49]. Qt distributions acquire leading non-perturbative

(intrinsic kt) corrections through a Gaussian smearing function which can also be

derived from the renormalon model [50].

The dispersive approach has in fact been successful for observables involving up

to three jets [51, 52, 53, 54]. However for four-jet observables there are currently very

few studies of non-perturbative power-behaved corrections (e.g. in ref. [55]) since

they involve non-trivial colour algebra. Thus we investigate9 in chapter 7 of this

thesis non-perturbative power corrections to the energy flow distribution in hadronic

8For recent experimental reviews see refs. [42, 43].
9Published in ref. [56].
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collisions. We find that the resummed distribution acquires a correction which is not

a simple shift as in the case of event shapes in e+e− annihilation into two jets and

DIS. The reason for this is the matrix structure of the colour flow in the resummed

result [57, 58, 59, 60]. In our analysis we neglect the impact of non-global logarithms

[21, 22] and the possible super-leading logarithms [29]. Nonetheless this work reveals

the technology to further study non-perturbative power corrections in observables

involving complicated colour flows and dipole geometry.

In the next chapter we provide a brief overview of QCD and the parton model.

We use the process of DIS to illustrate the physics relevant to this thesis.
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Chapter 2

Review of QCD, DIS and the

parton model

2.1 Introduction

In this chapter we briefly discuss the basics of QCD. We review its Lagrangian and the

derivation of Feynman rules. Then we discuss one of the most important processes

that give us insight into QCD, namely DIS. We present the cross-section for this

process and define the Breit frame of reference. We then discuss the property of

collinear factorisation [61, 62, 63, 64] and Dokshitzer-Gribov-Lipatov-Altarelli-Parisi

(DGLAP) evolution [65, 66, 67, 68].

2.2 Review of QCD

The theory of QCD is one of the building blocks of the Standard Model. It was

introduced to explain the phenomenon of strong interactions between quarks and

gluons. Its main feature is that it is a non-Abelian gauge theory with three colour

degrees of freedom. The QCD Lagrangian is given by:

L =
∑

f

[
q̄α
f (iγµ∂

µ −mf ) qα
f − gs

(
q̄α
f γµt

a
αβqβ

f

)
Aµ

a

]
− 1

4
F a

µνF
µν
a , (2.2.1)

where the sum runs over all the flavours f , q are the quark fields (spinors1) with

indices α and β running from 1 to Nc (quark colours), γµ are the Dirac matrices,

1We have suppressed spinor indices. The sum over repeated indices is assumed.
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mf are the quark masses, gs =
√

4παs, ta are the SU(Nc) group generators in the

fundamental representation (Nc×Nc matrices), with index a running from 1 to N2
c −1

(gluon colours), Aa
µ are the gauge fields and Fµν is the gluon field strength tensor:

F a
µν = ∂µAa

ν − ∂νAa
µ − gsfabcAb

µAc
ν , (2.2.2)

with fabc being the structure constants.

From this Lagrangian Feynman rules can be derived. For instance the quark

propagator can be read off from the first term by making the replacement ∂µ → −ipµ

and taking the inverse of the term between the quark field and its Dirac conjugate

and multiplying it by a factor i.

The interaction terms (those containing gs) originate by imposing gauge invari-

ance, that is the invariance of the Lagrangian under the local SU(Nc) transformation:

qα(x) → [exp(itaθa(x))]αβqβ(x), for arbitrary θa(x). These terms are used to derive

Feynman rules for vertices. The last term in eq. (2.2.2) is absent in quantum elec-

trodynamics (QED), and gives rise to gluon self-interactions and thus the property

of asymptotic freedom [69, 70].

Feynman diagrams can then be used to predict measured cross-sections. In the

next section we report on the DIS process and how its cross-section is calculated.

2.3 Deep inelastic electron-proton scattering

DIS2 is one of the most powerful tools for testing the parton model of QCD. For

instance it provides accurate measurements of variables that describe the structure

of the proton and the strong coupling at different scales. In this process an electron

scatters off a quark from the proton (at Born level) by the exchange of a virtual hard

photon as shown in fig. 2.1. In all what follows we neglect the proton mass since it

is much smaller than the photon virtuality.

2We explicitly use this process in chapters 4 and 6. Furthermore the results we derive in chapters

5 and 7 are relevant to dijet photoproduction in DIS.
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γ∗(q)

r

e−(l)

P

p

e−(l − q)

Figure 2.1: The process of DIS at Born level.

2.3.1 Leading-order kinematics

We consider the process in which a real gluon is emitted in DIS off a massless quark

(fig. 2.2), or alternatively photon-gluon fusion (fig. 2.3).

We introduce the standard DIS variables: ξ, x and z. These satisfy the following

relations: p = xP/ξ, x = Q2/(2P.q), z = P.r/P.q = p.r/p.q and Q2 = −q2, where

p, q , r and k are the momenta of the incoming parton, the virtual photon and

the two outgoing partons respectively (as shown in figs. 2.2 and 2.3) and P is the

momentum of the proton. The variable x represents the momentum fraction of

the struck quark relative to the proton and x/ξ is the momentum fraction of the

incoming parton relative to the proton. Thus 0 < x < ξ < 1. We also define the

variable y = P.q/P.l = p.q/p.l ' Q2/(xs), with s being the centre-of-mass energy

squared and l being the momentum of the incoming electron. This variable describes

the scattering angle of the electron.

2.3.2 Leading-order cross-section

The total cross-section for this process can be factored into a leptonic tensor, Lµν ,

corresponding to the Feynman amplitude squared for the emission of the virtual

photon from the electron summed and averaged over spin, and a hadronic tensor,

W µν , corresponding to the Feynman amplitude squared for the diagrams in fig. 2.2
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rq

p

+

kp

rq

k

Figure 2.2: Leading-order Feynman diagrams for the emission of a real gluon in DIS

with an incoming quark.

k

q

p

+

kp

rq r

Figure 2.3: Leading-order Feynman diagrams for photon-gluon fusion in DIS with

an incoming gluon.

or 2.3 summed and averaged over colours, spins and/or polarisations accordingly.

It is convenient to divide the hadronic tensor into two pieces contributing to the

longitudinal and transverse structure functions. Namely:

W µν =

(
−gµν +

qµqν

q2

)
W1 +

(
P µ +

1

2x
qµ

)(
P ν +

1

2x
qν

)
W2, (2.3.1)

with gµν being the metric tensor. Hence:

W1 =
1

2

(
4ξ2

Q2
pµpν − gµν

)
W µν , (2.3.2)

W2 =
2x2

Q2

(
12ξ2

Q2
pµpν − gµν

)
W µν . (2.3.3)

The structure functions F̃1(x,Q2) and F̃2(x, Q2) are defined by: F̃1 = W1 and

F̃2 = W2 Q2/(2x). The transverse and longitudinal structure functions are given by:

F̃T = 2F̃1 and F̃L = F̃2/x− 2F̃1. Since we shall particularly be interested in the DIS

final state (mainly in chapters 4 and 6) we utilise the generalised structure functions

which do not contain virtual corrections and are unintegrated over z:

Fi(x, z,Q2) =
αs

2π

∫ 1

x

dξ

ξ

[
CF Ci,q(ξ, z)q

(
x

ξ
,Q2

)
+ TfCi,g(ξ, z)g

(
x

ξ
,Q2

)]
, (2.3.4)

where q(x,Q2) =
∑nf

j=1 e2
j(qj(x,Q2) + q̄j(x,Q2)), with qj standing for the PDF

for quark j and the sum extending over the nf active quark flavours, and Tf =
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TR

∑nf

j=1 e2
j . Here CF and TR are the usual QCD colour factors, CF = (N2

c −
1)/(2Nc) = 4/3 and TR = 1/2 (where we assume Nc = 3).

The leading-order coefficient functions are given by [71]:

CT,q(ξ, z) =
z2 + ξ2

(1− ξ)(1− z)
+ 2zξ + 2, (2.3.5)

CL,q(ξ, z) = 4zξ, (2.3.6)

CT,g(ξ, z) = [ξ2 + (1− ξ)2]
z2 + (1− z)2

z(1− z)
, (2.3.7)

CL,g(ξ, z) = 8ξ(1− ξ). (2.3.8)

After multiplying the hadronic tensor by the leptonic one and inserting the flux

factors, the leading-order cross-section can be expressed as:

d3σ

dxdQ2dz
=

2πα2
em

Q4

(
[1 + (1− y)2]FT (x, z) + 2(1− y)FL(x, z)

)
, (2.3.9)

where αem is the electromagnetic coupling constant. Alternatively we can normalise

the leading-order cross-section to the Born cross-section, σ0, which satisfies:

d2σ0

dxdQ2
=

2πα2
em

Q4
[1 + (1− y2)]q(x,Q2). (2.3.10)

Hence for a fixed x and Q we have:

1

σ0

dσ

dz
=

1

q(x,Q2)

(
FT (x, z) +

2(1− y)

1 + (1− y)2
FL(x, z)

)

=
1

q(x,Q2)

(
F2(x, z)

x
− y2

1 + (1− y)2
FL(x, z)

)
. (2.3.11)

We notice that the cross-section has soft and/or collinear singularities (ξ → 1

and/or z → 1 for the incoming quark channel and z → 1 or 0 for the incoming

gluon channel3). Soft singularities cancel when virtual corrections are considered,

while collinear singularities do not. The uncancelled singularities are a sign of non-

perturbative effects and are absorbed into PDFs. We discuss this in further detail

in the next section.

2.3.3 The Breit frame

It proves convenient to introduce the Breit frame4 of reference [11, 12, 13] which

is defined by the rest frame of 2xP + q. We choose to align the +z-axis along the

3Note that there are no soft singularities for the incoming gluon channel. Also note that there

are no virtual corrections at O(αs) for this channel.
4We use this frame in chapters 4 and 6.
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HR Hc

z

Figure 2.4: The Breit frame is the frame in which, at Born level, the momentum

of the incoming quark is exactly reversed after absorbing the virtual photon. The

current hemisphere (right) points in the current direction of the photon. The remnant

hemisphere (left) contains all “remnants” of the proton (to a good accuracy).

photon momentum.

We divide the Breit space into two hemispheres whose plane of intersection is

normal to the z-axis and define the remnant hemisphere, HR, to be the one pointing

in the direction of motion of the incoming proton. We define the current hemisphere,

Hc, to be the opposite one. Fig. 2.4 shows a schematic diagram for the two hemi-

spheres. To a good approximation the final-state particles that are present in the

current hemisphere will come purely from the hard interaction whereas those in the

remnant hemisphere are a mixture of remnants and scattered ones.

2.4 Collinear factorisation

The concepts of asymptotic freedom and confinement in QCD lead to the notions

of perturbative and non-perturbative physics. The former describes high energy

collisions of essentially free quarks and gluons, with calculable corrections expressed

as an expansion in αs, while the latter describes interactions at large scales and

low energies, where αs becomes large and cross-sections cannot be calculated with

Feynman diagrams alone.

One of the main features of the theory of QCD is the ability to separate short

distance perturbative physics effects from long distance non-perturbative ones. This

means that, for processes containing hadrons in the initial state, one can study the
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partonic sub-process separately from the overall interaction and then numerically

convolute the hard cross-section with universal PDFs, which can only be extracted

from experiments. For instance the leading-order cross-section for DIS is expressed

in terms of structure functions. These are convolutions of coefficient functions (ac-

counting for the partonic sub-process) with PDFs (e.g. eq. (2.3.4) which represents

the real emission contribution). In hadronic collisions one can write the cross-section

for an observable V as:

σ(V ) ∼
∫

dxadxbfa/A(xa, µ
2
f )fb/B(xb, µ

2
f )σhard(µ

2
f , Q

2, V ), (2.4.1)

where Q is the hard scale and σhard is the cross-section for the observable at the

partonic level. Here xi represents the momentum fraction of the ith incoming parton

that undergoes the hard interaction with respect to its parent incoming hadron. The

non-perturbative PDFs fi/j(xi, µ
2
f ) are process-independent and (multiplied by dxi)

represent the probability of finding a parton i with momentum fraction between xi

and xi + dxi in hadron j. They depend on a factorisation scale µf in analogy to the

strong coupling which depends on a renormalisation scale µr.

The origin of this factorisation scale is the “renormalisation” of the bare PDFs

by absorbing into them the collinear singularities to legs i. This is a similar idea

to ultraviolet singularities being absorbed into the running of the strong coupling.

Thus it is plausible that PDFs obey some sort of a renormalisation group equation

that comes about due to the fact that the observable cross-section must ultimately

be independent of the choice of µf . In fact such an equation in this case is called

the DGLAP evolution equation and we shall discuss it in further detail in the next

section.

2.5 DGLAP evolution

DGLAP evolution is an equation that governs the scale dependence of PDFs. It is

a matrix equation in flavour space, with (2nf + 1)× (2nf + 1) dimensions. The full
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matrix form of this equation is:

µ2 ∂

∂µ2




u(x, µ2)

ū(x, µ2)

...

g(x, µ2)



≡ αs(µ

2)

2π
P ⊗ q(x, µ2) =

αs(µ
2)

2π

∫ 1

x

dξ

ξ
×

×




Puu(ξ, αs(µ
2)) Puū(ξ, αs(µ

2)) · · · Pug(ξ, αs(µ
2))

Pūu(ξ, αs(µ
2)) Pūū(ξ, αs(µ

2)) · · · Pūg(ξ, αs(µ
2))

...
...

. . .
...

Pgu(ξ, αs(µ
2)) Pgū(ξ, αs(µ

2)) · · · Pgg(ξ, αs(µ
2))







u(x/ξ, µ2)

ū(x/ξ, µ2)

...

g(x/ξ, µ2)




,

(2.5.1)

where µ is the scale of the PDFs. The functions Pqiqj
, Pqig, Pgqj

, and Pgg are known as

the splitting functions. They respectively describe the probabilities of the transitions:

qj → qi, g → qi, qj → g and g → g (by the emission of real and/or virtual partons).

Here ξ is the momentum fraction of the final particle relative to the initial one, P

and q are the matrices of splitting functions and PDFs. The leading-order splitting

functions are given by5 [67]:

P (0)
qiqj

(ξ) = δijCF

(
1 + ξ2

1− ξ

)

+

, (2.5.2)

P (0)
qig

(ξ) = TR(ξ2 + (1− ξ)2), (2.5.3)

P (0)
gqj

(ξ) = CF
1 + (1− ξ)2

ξ
, (2.5.4)

P (0)
gg (ξ) = 2CA

(
ξ

(1− ξ)+

+
1− ξ

ξ
+ ξ(1− ξ)

)
+

+δ(1− ξ)
11CA − 4nfTR

6
, (2.5.5)

with CA = Nc. The plus prescription is defined such that for any smooth function

f(ξ) and a divergent function g(ξ) which has a singularity at ξ = 1, of the form

1/(1− ξ): ∫ 1

0

f(ξ)[g(ξ)]+dξ =

∫ 1

0

[f(ξ)− f(1)]g(ξ)dξ. (2.5.6)

The divergence in the function g(ξ) is regularised by the plus prescription and the

integral in eq. (2.5.6) is finite.

5These splitting functions include virtual corrections.
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It proves convenient for solving the DGLAP equation to work in Mellin space

conjugate to x. Here the convolution in eq. (2.5.1) becomes:

µ2∂qN(µ2)

∂µ2
=

αs(µ
2)

2π
γN(αs(µ

2))qN(µ2), (2.5.7)

where N is the moment variable conjugate to x and γN(αs(µ
2)) is the matrix of

anomalous dimensions6: γN,ij =
∫ 1

0
ξN−1Pij(ξ)dξ. Solving eq. (2.5.7) for an arbitrary

scale Q and an initial scale Q0 we obtain:

qN(Q2) = exp

(∫ Q2

Q2
0

dµ2

µ2

αs(µ
2)

2π
γN(αs(µ

2))

)
× qN(Q2

0). (2.5.8)

One can now use the leading-order anomalous dimension matrix and the leading-

order solution to the QCD β function (describing the running of the strong coupling)

to achieve single logarithmic (SL) accuracy, in which O(αn
s lnn(Q/Q0)) terms are

resummed. For this we exploit the relation:

αs(µ
2) =

αs(Q
2)

1− 2ς
, (2.5.9)

where ς = αs(Q
2)β0 ln(Q/µ), with:

β0 =
11CA − 2nf

12π
, (2.5.10)

being the first coefficient of the QCD β function. The solution then reads:

qN(Q2) = exp

(
− 1

2πβ0

ln(1− 2λ)γ
(0)
N

)
× qN(Q2

0), (2.5.11)

where λ = αs(Q
2)β0 ln(Q/Q0). We remind the reader that this is a matrix equation

and the order of matrices matters. One can now convert this equation to x space

arriving finally at the formal equation (which is valid to SL accuracy):

q(x,Q2) = exp

(
− 1

2πβ0

ln(1− 2λ)P (0)⊗
)

q(x,Q2
0), (2.5.12)

whose expansion to O(α2
s) yields7:

q(x,Q2) =
[
I+ 2 ᾱsLP (0) + ᾱ2

sL
2
(
4πβ0P

(0) + 2P (0) ⊗ P (0)
)]
⊗ q(x,Q2

0), (2.5.13)

6We do not explicitly show the expressions for the components of this matrix since we do not

require them.
7This equation is useful for the procedure of “matching” in chapters 4 and 6.
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with I(x) = δ(1−x)1, ᾱs = αs/(2π) and L = ln(Q/Q0). Clearly PDFs are expressed

here as a series in αsL (to SL accuracy). Thus the result in eq. (2.5.13) is a good

approximation only when αsL is small. If αsL ∼ 1 then the all-orders expression is

the reliable approximation.

2.6 Summary

In this chapter we reviewed the theory that we shall use in this thesis (QCD). We

briefly described the QCD Lagrangian and the process of DIS. We used this process

to illustrate some important concepts of QCD. In particular we reviewed the subject

of collinear factorisation and solved the DGLAP equation to SL accuracy.

In the next chapter we present the essential tools and techniques that are needed

in this thesis. We shall provide an overview of resummation and non-global effects,

illustrating the resummation of the energy flow distribution in e+e− annihilation

into hadrons. We shall also give an example of resummation in the case of four-jet

observables and discuss non-perturbative power corrections.
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Chapter 3

Resummation and power

corrections

3.1 Introduction

Although perturbation theory is valid at high energy (short distance) scales there is a

subtlety in calculating observable distributions when two disparate scales are involved

in the calculation, e.g a hard scale and a veto scale. The strong coupling becomes

accompanied by large logarithms of the ratio of these scales. The origin of these

logarithms is the break down of real-virtual cancellations of infrared singularities

when a cut-off (veto) is introduced on real emissions. These logarithms become

important at each order in perturbation theory when they are as large as the inverse

of the coupling. Thus one cannot rely on a truncation of the perturbative series to a

few orders to give the correct form of the spectrum and a resummation to all orders

is necessary.

In this chapter we explain in detail the origin of these logarithms and how they are

dealt with, illustrating the resummation of a simple observable, namely the energy

flow into a gap between two jets in e+e− annihilation into two quarks. We then

discuss the hadronic collisions case (complicated by the colour flow), calculating

the matrices that enter the dynamical and colour flows in the process qq̄ → qq̄.

Finally we discuss non-perturbative hadronisation effects in the renormalon model

by introducing the non-perturbative coupling moment.
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Figure 3.1: The scattering of a quark off an external field B, such as a photon.

3.2 Basics of soft gluon resummation

3.2.1 Soft gluon factorisation in hard processes

We consider the matrix element for the radiation of a gluon off a quark that undergoes

a hard scattering with an external field B as shown in fig. 3.1. The external field could

be for instance a photon coming from the electron in DIS. We write the Feynman

amplitude for this process as follows:

Mµ = ūS′
i (p2)ε

∗aα
λ (k)

[
(−igst

ij
a γα)

i(6p2+ 6k)

(p2 + k)2
Bµ + Bµ i(6p1− 6k)

(p1 − k)2
(−igst

ij
a γα)

]
uS

j (p1),

(3.2.1)

where u is the quark spinor, with indices i and j standing for quark colours and

S and S ′ standing for spins, and ε is the gluon wave-function, with indices a and

λ standing for the gluon colour and polarisation. We have defined 6 p = γµp
µ and

suppressed the spinor indices which are contained in the spinors, Dirac matrices and

the external field Bµ.

We are interested in the case where the gluon is soft, meaning that we ignore

terms which are O(ω0) and higher, with ω being the gluon energy, in the matrix

element. Thus we simplify the matrix element to:

Mµ = gsū
S′
i (p2)t

ij
a BµuS

j (p1)

(
p2.ε

∗a
λ

p2.k
− p1.ε

∗a
λ

p1.k

)
, (3.2.2)

where we use the relations 6 pu(p) = 0 and γµγν = −γνγµ + 2gµν . We have kept the

dominant piece of the amplitude in the soft limit, which goes like O(ω−1).

Multiplying by the conjugate transpose, summing over final-state spins, polari-
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sations and colours and averaging over initial-state spins and colours we arrive at:

∑
S, S′, λ, colour

|M|2 µν =
1

2Nc

|M0|2 µνg2
sCF Nc

2p1.p2

(p1.k)(p2.k)
, (3.2.3)

where we define |M0|2 µν ≡6 p2B
µ 6 p1B

ν
and used the relations

∑
λ ε∗aα

λ (k)εbβ
λ (k) =

−gαβδab,
∑

S uS
j (p)ūS

l (p) = 6 pδjl and taijt
ji
a = CF Nc. The factor 1/(2Nc) comes from

the averaging over the two spin states and the Nc colour states of the incoming quark.

Note that |M0|2 µν/2 is simply the matrix element squared for the scattering shown

in fig. 3.1 without the gluon dressing, summed and averaged over spins and colours.

Hence we have factored the amplitude squared (in the soft limit) into a hard

contribution and a soft dressing. Note that virtual corrections (in the soft limit) also

have exactly the same form with an overall minus sign. Furthermore this factorisation

works in a similar way for processes where both quarks are in the final state, e.g.

e+e− annihilation into a quark/anti-quark pair.

3.2.2 Probability of emission

The probability of the scattering shown in fig. 3.1 is given by the matrix element

squared, summed and averaged over spins, polarisations and colours accordingly and

multiplied by the phase-space. We write the probability of the scattering as follows:

dΓ = dΓharddΓsoft, (3.2.4)

where dΓhard is the probability of the hard scattering (without soft gluon dressing)

and dΓsoft is given by:

dΓsoft =
d3~k

2ω(2π)3
g2

sCF
2p1.p2

(p1.k)(p2.k)

=
dω

ω

d cos θ

sin2 θ

dφ

2π

αs

2π
CF 2k2

t

p1.p2

(p1.k)(p2.k)

=
dkt

kt

dη
dφ

2π

αs

2π
CF w12, (3.2.5)

where we assume for simplicity that the hard legs are back-to-back and defined θ

and φ to be the polar and azimuthal angles with respect to the incoming quark axis.

Here η = − ln tan(θ/2) is the rapidity of the gluon with respect to the incoming

quark axis, kt = ω sin θ is the transverse momentum of the gluon with respect to the
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quark axis and wij = 2k2
t pi.pj/(pi.k pj.k). In the case of a back-to-back dipole we

have: w12 = 4.

There are two types of singularities in this expression: when ω → 0 (soft di-

vergence) and when θ → 0 or π, or equivalently η → ±∞ (collinear singularities).

However for infrared and collinear-safe quantities [72] (those insensitive to soft and/or

collinear real radiation) these singularities cancel with the virtual corrections since

the matrix element squared in this case has exactly the same form as that in the real

emission case with an overall minus sign.

This cancellation is broken if a veto is introduced on the final-state particles, e.g.

when vetoing events with energy flowing into a gap between the two hard partons

being above some scale Q0. Thus virtual emissions which are emitted in the gap

with energy above Q0 are not vetoed and have nothing to cancel against1. This

ultimately leads to large logarithms of the ratio of the veto scale and the hard scale,

which implies the need for resummation to all orders when these scales are disparate.

We discuss how this is done in the next section.

3.2.3 Multi-particle (primary) emissions

Having factored the probability of emission into hard and soft pieces we now proceed

to higher orders in the logarithmically enhanced limit, i.e. when gluons are strongly

ordered in energy [73].

The soft factorisation that we have demonstrated does not state anything about

the vertex2 Bµ as long as the emitted gluon is independent of the vertex. One can

think of the emitted gluon as being part of the vertex and consider the emission of a

softer gluon which is blind to the first gluon. Then we can see that the probability

of this emission is also factored in the same way as before. Hence by iteration it

is clear that the probability of emitting n soft gluons which are strongly ordered in

1Quantities with a veto scale are still infrared and collinear-safe since virtual emissions with

scales below Q0 cancel with real emissions.
2Note that the vertex could change the colour of the quark that undergoes the hard scattering,

i.e. the external field being a gluon. The factorisation equally works in this case.
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energy factorises as follows [73]:

dΓn =
1

n!
Cn

F wn
12

n∏
i

dkt,i

kt,i

dηi
dφi

2π

αs(k
2
t,i)

2π
, (3.2.6)

where we allow the coupling to run at a renormalisation scale kt,i for the ith emission.

The strong ordering is assumed because the logarithmically enhanced region of the

phase-space originates when all the gluons have widely disparate scales. Here the

gluons are essentially classical and are emitted independently except for multiple

gluon branchings which are accounted for by the running of the coupling in the

Catani-Marchesini-Webber (CMW) scheme [74]. The 1/n! term comes from the

number of possible ways this energy-ordering could be achieved with n emitted gluons

while allowing for the energy scales of the gluons to be interchanged. In other words

we can either give a specific ordering (e.g. k1 ¿ k2 · · · kn ¿ Q) and remove the 1/n!

factor or allow the interchanging of these gluons and keep the 1/n! factor.

3.3 Example: energy flow into gaps between jets

in e+e− → qq̄

3.3.1 The global part

We now provide an example for the resummation of the “global” part of the en-

ergy flow distribution3 in e+e− annihilation into two jets, which was computed by

Dasgupta and Salam [22]. We write the integrated distribution for events with
∑

i∈Ω kt,i < Q0, for some Q0, with Ω being a gap of width ∆η which stretches over

all azimuth and is centred about η = 0 in the rapidity-azimuth plane, as:

Σ(Q,Q0) = σ(Q,Q0)/σ0 =
∑

n

∫
dΓnθ

(
Q0 −

n∑
i∈Ω

kt,i

)
, (3.3.1)

where σ0 is the Born cross-section, Q is the hard scale and dΓn is the differential

phase-space for the emission of n gluons, given in eq. (3.2.6). We factorise the θ

3We use this observable in chapter 5 to describe the impact of jet algorithms on QCD resum-

mation. We also use it in the case of hadronic collisions to estimate the non-perturbative power

corrections.
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function using the Mellin transform:

θ

(
Q0 −

n∑
i∈Ω

kt,i

)
=

∫
dν

2πiν
eνQ0

n∏
i

e−kt,iν , (3.3.2)

where the integral runs parallel to the imaginary axis to the right of all singularities

of the integrand. Thus we can sum over all orders arriving at the result:

Σ(Q,Q0) =

∫
dν

2πiν
eνQ0 exp

(
4CF

∫
dkt

kt

dη
dφ

2π

αs(k
2
t )

2π
(e−ktν − 1)

)
. (3.3.3)

The term (−1) accounts for the virtual corrections. We can now make the substi-

tution [75]: exp(−νkt) − 1 → −θ (ktν − 1) which is valid to SL accuracy. Thus we

write:

Σ(Q,Q0) =

∫
dν

2πiν
eνQ0 exp

(
−4CF

∫ Q/2

1/ν

dkt

kt

αs(k
2
t )

2π

∫

Ω

dη
dφ

2π

)
. (3.3.4)

Performing the η, φ and kt integrations we arrive at the result:

∫ Q/2

1/ν

dkt

kt

αs(k
2
t )

2π

∫

Ω

dη
dφ

2π
= − 1

4πβ0

ln(1− 2λ)∆η, (3.3.5)

with λ = αs((Q/2)2)β0 ln(νQ/2) and we expand αs(k
2
t ) using the QCD β function to

SL accuracy. To solve the ν integration we use the saddle point method. It may be

shown that the saddle point in the ν integral to SL accuracy is simply given by 1/Q0.

Thus we can expand the exponent about this point and throw away all subleading

logarithms, αn
s lnm(Q/Q0), with m < n , arriving finally the result:

Σ(Q,Q0) = exp (−4CF ∆ητ(Q,Q0)) , (3.3.6)

with:

τ(Q,Q0) = − 1

4πβ0

ln

(
1− 2αs((Q/2)2)β0 ln

Q

2Q0

)
. (3.3.7)

We shall correct this result for non-global effects, which we introduce in the next

subsection.

3.3.2 Non-global effects

Thus far we have only considered primary independent emissions from the hard

dipole. For “global observables” (those which are sensitive to emissions in the entire
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Figure 3.2: Gluon configurations that give rise to non-global logs at leading-order.

Ω

Figure 3.3: Gluon configurations that give rise to non-global logs at higher orders.

phase-space) this consideration is sufficient to produce all soft (collinear or wide-

angle) logarithms. However for non-global observables (those which are sensitive to

emissions in a limited region of the phase-space) there are other types of particle

configurations that give rise to extra single logarithms which first appear at O(α2
s)

[21, 22].

Consider the emission of a real or virtual softest gluon k2 off a soft gluon k1 which

is emitted off a hard dipole as shown in fig. 3.2 (k2 ¿ k1 ¿ Q). The probability

of emission for this configuration is logarithmically enhanced: if the emission k1 is

outside the gap region while k2 is inside with energy ω2 > Q0 then the right hand

side diagram in fig. 3.2 receives a veto while the left hand side one does not. Thus

we have a miscancellation which leads to large single logarithms.

At higher orders of this configuration the particles that are emitted outside the

gap can take any complex geometrical structure while being energy-ordered. They

coherently emit a single softest gluon into the gap as shown in fig. 3.3. It is only

possible to deal with this configuration in the large Nc limit. Then one may write

an evolution equation ([76]) to obtain the resummed form of these logarithms to all
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orders numerically.

We now include the effect of non-global logarithms in the resummed result for

the energy flow distribution in e+e− → qq̄. We write the result which corrects eq.

(3.3.6) as [22]:

Σ(Q,Q0) = exp (−4CF ∆ητ(Q,Q0))S(Q,Q0), (3.3.8)

where we introduce the non-global component S. This has been computed in ref.

[22] and has the following approximation for large ∆η:

S ≈ exp

(
−2CF CA

π2

3

1 + (Aτ)2

1 + (Bτ)C
τ 2 +O(1/N2

c )

)
, (3.3.9)

where A = 0.85CA, B = 0.86CA and C = 1.33. Note that the values of τ are typically

in the range 0 ≤ τ . 0.25.

Note that the non-global component in this case contributes at leading-log level.

We have ignored O(1/N2
c ) terms which are essentially leading logarithms.

3.4 Resummation

In general one may have soft and collinear double logarithms contributing to the

observable cross-section. Here one may write the resummed result for the differential

cross-section for an observable V (which vanishes in the Born limit) as [77]:

dσ

dV
∝ d

dV

([∑
n

Cnᾱn
s

]
exp [Lg1(αsL) + g2(αsL) + αsg3(αsL) + · · · ] + D(V )

)
,

(3.4.1)

where ᾱs = αs/(2π), Cn are constants and L is the logarithm of the observable,

L = ln(1/V ).

The function Lg1(αsL) resums soft and collinear (double) logarithms, αn
s Ln+1,

while the function g2(αsL) resums hard collinear or soft wide-angle (single) loga-

rithms, αn
s Ln. Subleading logarithms, αn

s Lm, for 0 < m < n, are resummed by

αi
sgi+2, for i > 0. These are usually uncontrollable by current resummation tech-

niques.

The term D(V ) in the above equation vanishes in the limit of small V . It is usu-

ally obtained from fixed-order programs alongside the constants C1 (if not available

analytically) and C2 . The procedure by which these are added to the distribution is
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known as “matching” (we shall use this in chapters 4 and 6). Matching guarantees

the correct behaviour of the spectrum in the region where resummation is not valid

(V 6→ 0).

For observables which are unaffected by collinear emissions to the hard legs (e.g

energy flows into gaps between jets) there are no double logarithms (the function g1

vanishes) and single logarithms become the leading ones.

3.5 Colour flow in hadronic collisions

Let us now consider the resummation in processes which are complicated by the

colour flow4. For simplicity we work with the energy flow into a gap Ω between the

jets in the process qq̄ → qq̄ (this was computed by Berger et al [78] and by Banfi et

al [76] including the non-global component in the large Nc limit).

3.5.1 Born matrix element

We begin by looking at the matrix element for the Born process which is shown in

fig. 3.4. We decompose the matrix element into s and t-channel pieces. We write

the matrix element as follows:

M = Mst
a
ijt

a
kl +Mtt

a
lit

a
jk, (3.5.1)

with a being the colour of the internal gluon and i, j, k and l being the colours of

the external quarks. Here Ms and Mt are the colour-blind matrix elements for the

s and t-channel processes, which are calculable using QED-like Feynman rules. We

can represent this matrix element in a colour-flow diagram as shown in fig. 3.4.

Note that talit
a
jk = δijδkl/2 − 1/(2Nc)δilδjk. This identity is known as the Fierz

identity and can be represented in graphical form as in fig. 3.5. Thus we can

decompose the matrix element in terms of the elements c1 = δilδjk and c2 = δijδkl/2−
1/(2Nc)δilδjk, which form a basis for the colour flow. We thus write:

4This study is useful for chapter 7, where we calculate the power corrections to the energy flow

distribution in hadronic collisions.
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Figure 3.4: Decomposition of the matrix element for the process qq̄ → qq̄ into s and

t-channel components.

j

− 1
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l i

= 1
2

i

jk

lil

k j

Figure 3.5: The Fierz identity in graphical representation.

M = Ms

(
CF

Nc

c1 − 1

Nc

c2

)
+Mtc2

=
CF

Nc

Msc1 +

(
Mt − 1

Nc

Ms

)
c2. (3.5.2)

We can equivalently express the matrix element in terms of a vector in colour

space whose orthogonal basis is (c1, c2). We write this vector as:

M =




CF

Nc
Ms

Mt − 1
Nc
Ms


 . (3.5.3)

The matrix element squared is given by M†SM, with S being a diagonal matrix with

elements c2
1 = N2

c and c2
2 = (N2

c −1)/4. This can be seen by expanding M∗.M using

eq. (3.5.2) and the fact that c1.c2 = 0. Thus the final result for the Born matrix

element squared, summed and averaged over spins and colours, is given by:

Σ0 =
1

N2
c

∑
spin

M†SM

=
CF

2Nc

(∑
spin

|Ms|2 +
∑

spin
|Mt|2

)
− CF

N2
c

∑
spin
M∗

tMs, (3.5.4)

where we have:

∑
spin

|Ms|2 = 2
û2 + t̂2

ŝ2
, (3.5.5)

∑
spin

|Mt|2 = 2
û2 + ŝ2

t̂2
, (3.5.6)

∑
spin
M∗

t, αβMαβ
s = 2

û2

ŝt̂
, (3.5.7)
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with
∑

spin denoting the sum over final-state spins and average over initial-state spins.

Here ŝ = (p1 + p2)
2, t̂ = (p1 − p3)

2 and û = (p1 − p4)
2 are the usual Mandelstam

variables, with pn standing for the momentum of the nth quark and we label the

quarks whose colour indices are l, k, i and j by 1, 2, 3 and 4 respectively. The

factor 1/N2
c in eq. (3.5.4) stands for the averaging over the N2

c colour states of the

incoming quark/anti-quark pair.

3.5.2 Soft gluon factorisation and resummation

Let us consider the dressing of the matrix element under consideration with a soft

virtual gluon, whose energy is greater than the veto scale Q0, in the gap region in

all possible ways such that the virtual gluon connects two external legs. This will

then be multiplied by the conjugate transpose of the Born matrix element and then

added to the conjugate transpose of the result (i.e. M†
0.M1 + M†

1.M0, with M0

standing for the Born matrix element and M1 standing for the Born matrix element

with virtual dressing) to produce the O(αs) virtual corrections. This consideration is

sufficient to capture all single logarithms [57, 58, 59, 60] except non-global logarithms

[21, 29, 76]. The attachments can be translated to the basis itself instead of the actual

matrix elements. This ultimately leads to a rotation of the basis (in colour space)

which has the form:

c′i = cjΓ̃ji, (3.5.8)

where c′i is formed by dressing ci with virtual gluons as described before. Note that

the matrix Γ̃ describes both dynamical and colour flows. To calculate this matrix

one uses the identity taijt
a
jk = CF δik. Thus we write the result as follows:

c′1 = CF (w̃13 + w̃24)c1 + (w̃12 − w̃14 − w̃32 + w̃34)c2,

c′2 =
CF

2Nc

(w̃12 − w̃14 − w̃32 + w̃34)c1 +

+(CF [w̃12 + w̃34]− 1/(2Nc)[w̃12 + w̃13 − 2w̃14 − 2w̃23 + w̃24 + w̃34])c2,

(3.5.9)
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with [51, 52, 53, 79, 80]:

w̃ij = −1

2

∫ Q

Q0

dk⊥
k⊥

αs(k
2
⊥)

2π

∫

Ω

dη
dφ

2π
wij

= −1

2
τ(Q,Q0)

∫

Ω

dη
dφ

2π
wij, (3.5.10)

where τ is defined in eq. (3.3.7)5, k⊥ is the invariant transverse momentum of

the dipole (ij), which is given by k2
⊥ = 4k2

t /wij, and kt, η and φ are measured

with respect to the axis formed by the incoming quarks6. The hard scale Q is the

transverse momentum of the outgoing hard jets. The minus sign in the expression

for w̃ij accounts for the fact that virtual corrections have a negative sign with respect

to real emissions and the factor 1/2 accounts for the fact that we only considered

attachments of the virtual gluon to the external legs of the matrix element, but not

its conjugate transpose. We shall include the attachments to the conjugate transpose

of the Born matrix element presently.

Now the matrix element squared (the M†
0M1 piece) is give by M†S(1)M, where

the matrix S(1) has the elements S
(1)
ij = c∗i .c

′
j = c∗i ckΓ̃kj = SikΓ̃kj = (SΓ̃)ij. Similarly

we can attach the virtual gluon to the conjugate transpose Born matrix element

and multiply it by the Born matrix element (i.e. the M†
1M0 piece) arriving at a

contribution of M†Γ̃†SM. By summing the two contributions we arrive at the one-

loop result for the energy flow distribution (normalised to the Born cross-section) as

follows:

Σ(1)(Q,Q0) = − 1

N2
c

∑
spin

M† (Γ†S + SΓ
)
M/Σ0 , (3.5.11)

where Γ = −Γ̃. The 2× 2-dimensional matrix Γ is defined by:

Γ =


 CF T CF

2Nc
(S − U)

S − U CF S − 1
2Nc

(T − 2U + S)


 , (3.5.12)

where:

S = w̃12 + w̃34, (3.5.13)

T = w̃13 + w̃24, (3.5.14)

U = w̃23 + w̃14. (3.5.15)

5Note that the difference between Q/2 and Q in the upper limit of the k⊥ integration is sub-

leading.
6Note that k⊥ = kt only when the legs of the dipole are back-to-back.
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By iteratively attaching energy-ordered virtual gluons to the hard matrix element

it becomes apparent that the result exponentiates in a similar fashion to the two-jet

case in e+e− annihilation into two quarks. Hence we finally arrive at the resummed

result:

Σ(Q,Q0) =
1

N2
c

∑
spin

M† exp
(−Γ†

)
S exp (−Γ)M/Σ0. (3.5.16)

Alternatively we can express this in the standard form:

Σ(Q,Q0) = Tr
[
H exp

(−Γ†
)
S exp (−Γ)

]
/Tr(HS), (3.5.17)

where the matrix H has the components Hij = 1/N2
c

∑
spinsM∗

i .Mj, with Mi being

the components of the vector M. The matrices H, Γ and S are provided in refs.

[57, 58, 59, 60].

3.6 Non-perturbative effects

In this section we illustrate the calculation of the power corrections to the energy

flow distribution in e+e− annihilation into two jets7. We begin by observing that the

kt integration in eq. (3.3.3) is perturbatively divergent since αs(k
2
t ) diverges when

kt → ΛQCD. The origin of this singularity is the factorial divergences associated

with renormalon chains [81]. We have only been able to perform this integration by

neglecting the region of integration kt < Q0, with Q0 À ΛQCD, on the grounds that

it is subleading.

To account for non-perturbative effects we introduce an effective coupling αeff [44]

which is equivalent to the perturbative coupling at high scales while being convergent

at low scales. We introduce an infrared matching scale µI characterising the scale at

which the effective coupling starts to differ from the perturbative coupling. This is

usually chosen to be 2 GeV.

We split the kt integration in the exponent of eq. (3.3.3) into perturbative and

non-perturbative contributions as follows (respectively):
∫ Q/2

0

dkt

kt

(e−νkt − 1)
αs(k

2
t )

2π
+

∫ µI

0

dkt

kt

(e−νkt − 1)
αeff(k2

t )− αs(k
2
t )

2π
, (3.6.1)

7We shall study the power corrections to energy flows in the case of hadronic collisions in chapter

7.
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where we subtract the contribution to the kt integration for kt < µI and added it

back using the effective coupling. We perform the integration in the first term of eq.

(3.6.1) perturbatively as before (i.e. using exp(−νkt)− 1 → −θ (ktν − 1)).

To obtain the leading power corrections we expand exp(−νkt) − 1 ' −νkt, in

the second term of eq. (3.6.1), where we are interested in the region νkt ¿ 1, which

corresponds kt ¿ Q0. Thus we write the second term of eq. (3.6.1) as:

− ν

∫ µI

0

dkt
αeff(k2

t )− αs(k
2
t )

2π
= −νP , (3.6.2)

with:

P =
µI

2π

(
α0(µI)− 1

µI

∫ µI

0

dktαs(k
2
t )

)

=
µI

2π

(
α0(µI)− αs(Q

2)− β0

2π

(
ln

Q

µI

+
KF

β0

+ 1

)
α2

s(Q
2) +O(α3

s)

)
,

(3.6.3)

and α0(µI) = 1/µI

∫ µI

0
dkt αeff(k2

t ). The parameter α0 is only measured through

experiments (see e.g. [42, 43]). In going from the first line of eq. (3.6.3) to the

second one we convert the coupling from the CMW scheme to the modified minimal

subtraction (MS) scheme. In the above equation we have:

KF = CA

(
67

18
− π2

6

)
− 5

9
nf . (3.6.4)

We therefore write the ν integration (eq. (3.3.3)) as follows:

Σ(Q,Q0) =

∫
dν

2πiν
eν(Q0−4CF ∆ηP) exp

(
−4CF

∫ Q/2

1/ν

dkt

kt

αs(k
2
t )

2π

∫

Ω

dη
dφ

2π

)
. (3.6.5)

Hence we arrive at the same result as before with the replacement Q0 → Q0 −
4CF ∆ηP , which amounts to a shift of the distribution to the right by an amount

equal to 4CF ∆ηP . If we one measures Q0 in units of Q the shift of the distribution

would be proportional to 1/Q.

Note that we did not account for the “Milan factor” [82], which arises when

considering a two-loop analysis for the argument of the coupling. When a two-

loop calculation for the power corrections is performed it is found that, for event

shapes, the result is equal to that computed using one-loop analysis (such as that we

calculated above) rescaled by a universal constant factor [83, 84] (M' 1.49). This

factor has not been yet accounted for in hadronic collisions.
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3.7 Summary

In this chapter we provided an overview of the various techniques and methods that

we use in this thesis. We now proceed with studying various QCD observables that

give us more insight into QCD radiation and non-perturbative effects.

In the next chapter we look at the Qt distribution of the Breit frame in DIS and

perform a resummation and correct the result for non-perturbative effects to probe

the small-x enhancement of Qt spectra at hadron colliders.
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Chapter 4

The Qt distribution of the Breit

current hemisphere in DIS as a

probe of small-x broadening effects

4.1 Introduction

With the imminent advent of the LHC, considerable effort has been dedicated to

utilising existing collider data and theoretical predictions for QCD observables to

foster an even better knowledge of crucial parameters such as the strong coupling

and parton distributions in hadrons (see e.g. [85]).

An invaluable source for such data is the HERA collider, which continues to play

an important role in phenomenological studies of QCD. The HERA-LHC workshop1

was in fact dedicated towards the aim of directly linking HERA QCD studies to

those that will be important in a discovery context at the LHC.

In the present chapter we shall highlight one such study. To illustrate our point

we choose the Qt spectrum of the Higgs boson for which very accurate theoretical

predictions exist in the literature [2, 3], as we highlighted in the introduction chapter.

Such accurate studies are important in the context of formulating improved strategies

to extract the signal and to enhance its statistical significance over backgrounds.

One concern that has been a point for some discussion (see e.g. ref. [8]) is the

1http://www.desy.de/∼heralhc
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role that might be played by neglected small-x effects that one may expect could be

relevant at the x values involved in vector boson and Higgs production at the LHC.

Here x is the momentum fraction of struck parton relative to the incoming hadron.

As we stated in chapter 1, if neglected small-x effects are indeed important in this

context, they could in principle lead to broader Qt spectra than those predicted

by conventional resummations (sometimes also referred to as Collins-Soper-Sterman

or CSS formalism [86]) alone. Henceforth we shall refer to these resummations in-

volving Qt spectra in hadron-hadron collisions with the generic label Drell-Yan Qt

resummations.

It was observed for instance by Berge et al [8] that effects due to small-x enhance-

ments that were suggested by phenomenological studies [9] for SIDIS Qt distributions,

could be very significant (especially in the context of massive vector boson produc-

tion) when extrapolated to the smaller x values that will be important at the LHC. It

was also suggested in ref. [8] that such effects could be visible with Tevatron (Run II)

data if one concentrates on forward production of vector bosons alone, rather than

integrating over all rapidities. On the other hand, studies for many event-shape vari-

ables in the current hemisphere of the Breit frame in DIS have been very successful,

down to moderately small x values (x ≈ 10−2), based on resummation [47, 87, 88]

that did not account for BFKL small-x effects. The comparison to HERA data for

several event-shape variables can be found in [47].

It is also clear however that event shapes are somewhat different from Qt spectra

of the Drell-Yan type, significantly due to their direct sensitivity to gluon emissions,

rather than purely through recoil. This difference means that event-shape variables

receive non-perturbative corrections that scale as 1/Q [49], where Q is the DIS hard

scale. These power corrections arise in a way similar to that we described in section

3.6, and are due to soft gluon emissions alone and hence are independent of x. The

quantity we shall study in the present chapter is closer in nature to the Drell-Yan

Qt spectra since the leading non-perturbative effects here scale as 1/Q2 and can be

associated with what is commonly known as “intrinsic kt” of partons inside hadrons.

Thus one would expect any missing small-x effects that appear in the present context

(perhaps as suggested by Berge et al [8] in terms of a small-x enhanced smearing
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of the conventional resummation), to manifest themselves in a very similar way in

the Drell-Yan case. It is thus conceivable that for the Qt distribution we present

here, deviations are seen from the resummed form, even at x values already studied

successfully for event-shape variables.

To be more precise, the observable we study here is the distribution 1/σ dσ/dQt,

with Qt being the modulus of the transverse momentum vector of all particles in the

current hemisphere (Hc) of the DIS Breit frame:

~Qt =
∑
i∈Hc

~kt,i , (4.1.1)

where ~kt is measured with respect to the photon axis. Note that the addition over

particles mentioned above is vectorial in nature, in contrast to say that involved in

event shapes like the jet broadening observable [87], where one adds the moduli of

individual particle transverse momenta. This is also a different quantity from the

resummed z flow studied in refs. [8, 9] while also being directly related to the Drell-

Yan Qt spectra and thus should provide an independent probe of small-x broadening

effects.

To relate the quantity here to Qt spectra in Drell-Yan type processes one notes

that in the Drell-Yan case one has the massive vector boson recoiling against emis-

sions from two incoming hard partons, while for our DIS example the transverse

momentum of the current hemisphere is equal and opposite to that of the remnant

hemisphere. If one assumes the remnant hemisphere Qt spectrum to be entirely gen-

erated by emissions from a single incoming leg the relationship to Drell-Yan Qt is

obvious: we just have to account for the form-factor of one incoming parton instead

of two and thus we have, at the level of form-factors, ∆N
DIS(Q,Qt) =

√
∆N

DY(Q,Qt).

The variable N indicates moment space, conjugate to x.

This simple relationship breaks down at NLL level, due to the non-global na-

ture [21, 22] of the DIS observable. Non-globalness in the present case is a conse-

quence of looking at just a single hemisphere and provides an extra factor in the

DIS case, to do with soft emissions at large angles, which is absent for the global

Drell-Yan quantity. We shall of course account for this factor, but we stress here that

the fundamental relationship of our quantity to Drell-Yan Qt (which is exactly of the
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square-root form we wrote above, at leading-logarithmic accuracy) is unchanged by

this complication. In particular any neglect of terms that are enhanced at small x

ought to be of similar significance in the two cases.

To further this investigation we obtain here a resummed result for the above

quantity, to NLL accuracy2 and combine it with fixed-order predictions to O(α2
s)

accuracy. Our result is thus suitable for comparison with data over the entire mea-

sured range of Qt values. We also comment on the effect of smearing our result with

a Gaussian function, as is usual to accommodate the so-called intrinsic kt of the

incoming parton, which has a non-perturbative origin. The resultant prediction can

then be directly compared to data which should be of interest especially at lower x

values. If discrepancies are visible at low x then one may consider a small-x enhanced

smearing function as was the case in refs. [8, 9]. This is certainly not a substitute for

a detailed treatment based on a physical understanding of the small-x region, but

merely a phenomenological investigation into how such effects may be parameterised

if present in the first place. Subsequently one may also consider the extrapolation

of our findings to hadron colliders. We note that preliminary data from H1 are al-

ready available [89] and await the final versions together with potential data from

the ZEUS collaboration.

The outline of this chapter is as follows: in section 4.2 we put together the different

ingredients required to obtain our NLL resummed result which we compute in impact

parameter or b space as is most convenient for Qt resummations. Once we obtain

the b-space answer we find, in section 4.3, its transform to Qt space and comment on

its main features. In section 4.4 we carry out the matching of our resummed result

to the full O (α2
s) result from the fixed-order program DISENT [90, 91]. Finally

we comment on the potential role of non-perturbative effects that are expected to

take the form of a smearing of the Qt distribution with a function representing

the “intrinsic transverse momentum” of partons inside hadrons. Here one may try

different choices for the smearing function and search for any discrepancies at lower

x values, between our results and the data. We shall leave the details of this to our

2Equivalently we seek SL accuracy in the resummed exponent that we shall compute subse-

quently.
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forthcoming phenomenological investigation [92].

4.2 Resummation

At Born level the struck quark is aligned along the photon axis, the quantity in

question (Qt) vanishes and the distribution is essentially a delta function: dσ/dQt ∼
δ(Qt).

At small Qt the emission of soft and collinear gluons deform the delta function.

One may, on general grounds, expect this deformation to take the form of a Su-

dakov form-factor. This is essentially true over a large range of Qt values with the

caveat that at very small Qt, the correct result is no longer of Sudakov form. The

reason for this is the Parisi-Petronzio observation that the smallest Qt values are

in fact obtained by vectorial cancellation of emissions, rather than by suppressing

the transverse momenta of each individual emission [93]. We shall explain this issue

more quantitatively, with reference to our observable, in section 4.3. For now we

proceed with resumming the large logarithms that arise at small Qt.

To carry out the resummation we have to address two distinct kinematic regimes:

• collinear emissions (soft or hard) along the directions of the incoming and

scattered quark directions.

• soft emissions at large angles to the incoming and scattered (outgoing) quark

axis (since in the Breit frame the incoming and scattered quarks are back-to-

back at Born level). This contribution arises due to the non-global nature [21,

22] of the observable and is a correlated multi-gluon emission term, that can

only be computed in the large Nc limit.

We shall treat each region in turn starting with the collinear enhanced contri-

bution and then including the non-global term that arises from the piece of the

fixed-order matrix elements with only soft enhancement (i.e. is integrable over soft

gluon directions).
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4.2.1 Pure collinear contribution

The collinear contribution is simple to assess since one can, to the NLL accuracy we

seek, consider collinear radiation as being included in the evolution of the incoming

and outgoing hard quark jets. In order to derive the NLL pure collinear contribution

it proves useful to first consider the observable as defined in eq. (4.1.1). Since we deal

with soft and/or collinear gluon emissions alone, we look at a tiny deviation from the

Born configuration. Thus the sum over current hemisphere emissions, on the right

hand side of eq. (4.1.1), includes a contribution from the transverse momentum of

the outgoing current quark. To work in terms of secondary emissions alone one uses

conservation of transverse momentum to write eq. (4.1.1) as:

~Qt = −
∑
i∈HR

~kt,i , (4.2.1)

where the sum now runs over all final-state particles in the remnant hemisphere.

In the collinear region there is an important simplification, in that all these emis-

sions can, to our accuracy, be attributed to the showering of the incoming quark.

Note that since one is now inclusive over current-hemisphere emissions, we can ne-

glect the collinear evolution of the outgoing quark. This will correct our resummed

result by a factor of relative order αs, but not enter into the NLL form-factor we aim

to compute.

The next step is to consider multiple collinear gluon branchings on the incoming

hard leg. In this region the squared matrix element can be approximated to NLL

accuracy by a product in N space of individual gluon emissions from the hard in-

coming quark, where N is the moment variable conjugate to Bjorken x. Taking first

just soft and collinear emissions3, where we can just as well work in x space, one can

write:

1

σ0

dσ

dQ2
t

≈
∑

n

∫
dPn δ(p2

t −Q2
t ) d2~pt δ

2

(
~pt +

n∑
i∈HR

~kt,i

)
, (4.2.2)

where dPn is the differential n gluon emission probability and we introduce the vector

~pt, which is the vectorial sum of transverse momenta of particles inHR. Note that for

purely soft and collinear emissions the PDF cancels with that in σ0, the Born cross-

section. This is not correct in the hard collinear region and we will re-introduce the

3The subsequent extension to hard and collinear emissions will be straightforward.
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PDF while considering those emissions. For the final result we shall also normalise

to the cross-section including up to O(αs) corrections, rather than merely the Born

cross-section.

We first compute the integrated quantity:

1

σ0

σ(Q,Qt) =
1

σ0

∫ Q2
t

0

dσ

dQ′2
t

dQ′2
t ≈

∑
n

∫
dPn θ(Qt − pt) d2~pt δ

2

(
~pt +

∑
i∈HR

~kt,i

)
.

(4.2.3)

One can then express:

δ2

(
~pt +

∑
i∈HR

~kt,i

)
=

∫
d2~b

(2π)2
ei~b.~pt

∏
i∈HR

ei~b.~kt,i . (4.2.4)

Having achieved our aim of factorising the delta function constraint into a product

of individual gluon contributions, we integrate over ~pt which reduces the above to:

1

σ0

σ(Q,Qt) ≈
∑

n

∫
dPn Qt J1(bQt) db

∏
i∈HR

ei~b.~kt,i , (4.2.5)

where in writing the above we make use of
∫ 2π

0
dθ exp (i b pt cos θ) = 2πJ0(b pt), and

uJ1(u) =
∫ u

0
u′J0(u

′)du′, with J0 and J1 being the zeroth and first-order Bessel

functions.

The emission probability dPn factorises for soft and collinear emissions into an

essentially classical independent emission pattern (see eq. (3.2.6) in chapter 3):

dPn =
1

n!

∏
i∈HR

CF

αs(k
2
t,i)

π

d2~kt,i

πk2
t,i

dηi , (4.2.6)

where ~kt,i and ηi refer to the transverse momenta and rapidity of the ith emission

with respect to the incoming quark direction . Since the incoming quark is anti-

parallel to the photon axis, in the Breit frame, the kt immediately above is the same

to NLL accuracy as that measured with respect to the photon axis and we do not

distinguish the two. The coupling αs is defined in the CMW scheme [74]. We note

that the rapidity integration is bounded by η = 0 at large angles to the incoming

quark since we consider emissions in the remnant hemisphere alone.

Summing over all emissions in the remnant hemisphere using the factorised forms

(4.2.4) and (4.2.6) and inserting virtual corrections according to the emission pattern

(4.2.6) (with an additional factor (−1)n) we arrive at the resummed soft and collinear
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contribution to σ(Q,Qt)/σ0:

∫
Qt J1(bQt) exp[−Rsc(b)] db , (4.2.7)

where Rsc(b) is the “radiator” accounting for soft and collinear emissions by the

incoming quark:

Rsc(b) = −CF

π

∫
d2~kt

πk2
t

dη αs(k
2
t )

(
ei~b.~kt − 1

)
. (4.2.8)

We remind the reader that one needs to correct the above expression to obtain single

logarithms arising from hard collinear radiation as well as those that arise in the

large-angle region from soft emissions, which we shall do presently.

Let us for the moment concentrate on the quantity Rsc(b), which is the most

important piece of the result since it contains the leading (double) logarithms. Inte-

grating over the polar angle variable in eq. (4.2.8) we obtain:

Rsc(b) = −2CF

π

∫
dkt

kt

dη αs(k
2
t ) (J0(b kt)− 1) . (4.2.9)

Further to SL accuracy, it suffices to make the substitution [75]: (J0(bkt) − 1) →
−θ(kt − 2e−γE/b), with γE being the Euler constant, and arrive at:

Rsc(b) =
2CF

π

∫ Q

1/b̄

αs(k
2
t )

dkt

kt

ln
Q

kt

, b̄ = b eγE/2 , (4.2.10)

where we perform the rapidity integration.

Next we extend the soft-collinear result above to the full collinear one by including

hard emissions. As is easy to show (see e.g. [88]), hard emissions collinear to the

incoming quark lead to a modification of the factorisation scale µ2 in the PDFs to the

scale 1/b̄2, q(x, µ2) → q(x, 1/b̄2), and contribute an additional finite term which can

be absorbed by the replacement of Q in eq. (4.2.10) by Qe−3/4. Thus the extension

of the soft-collinear result, eq. (4.2.7), to the full collinear one is:

1

q(x, µ2)

∫
q
(
x, 1/b̄2

)
Qt J1(b Qt) exp[−R(b̄ Q)]db , (4.2.11)

with:

R(b̄ Q) =
2CF

π

∫ Q

1/b̄

αs(k
2
t )

dkt

kt

(
ln

Q

kt

− 3

4

)
. (4.2.12)

57



4.2.2 Non-global corrections

We also have to include the effects of soft emissions at large angles. Thus far we

have identified remnant emissions as those belonging to the incoming quark while

current-hemisphere emissions (over which we claim to be inclusive) are associated to

the struck final-state quark. As is the case for single-hemisphere observables, this

identification is not correct at SL level due to correlations between soft emissions

at large angles [21, 22]. Thus the remnant hemisphere distribution is affected at

SL level by soft gluons at large angles to the current quark, but still in the current

hemisphere, emitting into the remnant hemisphere.

As we stated earlier, the computation of this piece has been carried out in the large

Nc approximation4 and is universal for all observables having a linear dependence

on kt of soft large-angle emissions. We label this non-global piece S(b̄ Q), which can

be parameterised as [21]:

S (
b̄ Q

) ' exp

[
−CF CA

π2

3

(
1 + (At)2

1 + (Bt)C

)
t2

]
, (4.2.13)

where:

t(b̄ Q) = − 1

4πβ0

ln
(
1− 2αs(Q

2)β0 ln(b̄ Q)
)
, (4.2.14)

with A = 0.85 CA, B = 0.86 CA and C = 1.33.

Thus our final form for the resummed result to NLL accuracy can be expressed

as:

1

σ0

σ(Q,Qt) =
1

q(x,Q2)

∫
q
(
x, 1/b̄2

)S(b̄ Q) e−R(b̄ Q) Qt J1(bQt) db , (4.2.15)

where we chose µ = Q. The above result now incorporates all the sources of log-

arithmic enhancements to NLL or SL accuracy, specifically soft and hard collinear

emissions and soft emissions at large angles. The result for the NLL radiator R(b̄ Q)

is explicitly given in appendix A.2. In the following section we shall take the b-space

result above and convert it to one valid in Qt space over the range of Qt values that

interest us.

4Strictly speaking the full result has been computed at O(α2
s) and the large Nc approximation

starts O(α3
s).
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4.3 Result in Qt space

We start by noting that one commonly used method to derive a Qt-space result

from the b-space form is simply to evaluate the complete b integral in eq. (4.2.15)

numerically. This method is not without several well-documented shortcomings [94,

95] that are usually circumvented by “reasonable” prescriptions that are not derived

from first principles of QCD.

For instance the b integral stretches from 0 to ∞, but the function R(b̄ Q) has a

Landau pole singularity at b̄ Q = exp [1/ (2 β0 αs)], which means it is perturbatively

undefined for large b values. To get around this problem one introduces a parameter

b∗ and substitutes5 b → b∗ = b/
√

1 + b2/b2
lim [86]. This ensures one never evaluates

R(b̄ Q) or the structure functions at scales larger than some cut-off blim, whose value

is adjustable. Additionally we smear the b-space result with a non-perturbative

Gaussian function that is also not obtained from first principles, but typically through

fits to data sets [96, 97, 98, 99, 100, 101]. These prescriptions are needed in order

to do the b integral and obtain a result for finite Qt, even at relatively large Qt

values where one might expect to trust perturbative predictions and where additional

non-perturbative parameters or ad-hoc inputs should not play any significant role.

Moreover the matching to fixed-order Qt-space results is complicated by not having

an analytical resummed result in Qt space.

In what follows we provide an analytical Qt-space result which is valid for use over

a large range of Qt values and represents a clean extraction of the NLL resummed

Qt-space result, from the b integral [102, 103]. The price we pay for not evaluating

the complete b integral in detail is a formal divergence at small Qt, which one can

anticipate quite generally through considerations based on the work of Parisi and

Petronzio [93]. Thus we cannot use our result at very small Qt values since in

this region our answer is no longer a good approximation to the b integral. For

quantitative studies however, with the specified Qt range over which data is available,

our formula is valid for use as it stands. The region over which we start to see a

problem with our approximation occurs at Qt values that are too small (Qt . 1.5

5In chapter 6 we use this method to compute the resummed dijet azimuthal correlation distrib-

ution in DIS.
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GeV, see later) to study accurately via perturbative methods and in any case below

the lowest Qt data.

To obtain a resummed result in Qt space we expand the function R(b̄ Q) in

eq. (4.2.15), about the point b̂(≡ bQt) = 2e−γE to obtain:

R(b̄ Q) = R (Q/Qt) + R′(Q/Qt)
(
γE − ln 2 + ln b̂

)
+ · · · , (4.3.1)

where we use R′(b̄ Q) = ∂R(b̄ Q)/∂ ln b and neglected R′′ and higher derivatives as

they contribute only to subleading (below SL) accuracy. The non-global function S
and the b dependent parton distributions are straightforwardly expressed in Qt space

with the substitution b̄ → 1/Qt, since logarithmic derivatives of these SL functions,

analogous to R′ above, only contribute at subleading accuracy.

Using the Taylor expansion for R above, one can cast the result (4.2.15) as:

1

σ0

σ(Q,Qt) =
q (x,Q2

t )

q(x,Q2)
S(Q/Qt) e−R(Q/Qt)+(ln 2−γE)R′(Q/Qt)

∫ ∞

0

db̂J1(b̂) b̂−R′(Q/Qt)

=
q (x,Q2

t )

q(x,Q2)
S(Q/Qt) e−R(Q/Qt)−γER′(Q/Qt)

Γ(1−R′/2)

Γ(1 + R′/2)
. (4.3.2)

Incorporating, as a factor, the O(αs) constant pieces (see appendix A.1) we can write

the result as:

1

σ0

σ(Q,Qt) =
1

q(x,Q2)

(
C 0 ⊗ q(x,Q2

t ) +
αs

2π
C 1 ⊗ q(x,Q2)

)
×

× S(Q/Qt) e−R(Q/Qt)−γER′(Q/Qt)
Γ (1−R′/2)

Γ (1 + R′/2)
, (4.3.3)

where C 0 and C 1 are matrices in flavour space of coefficient functions (see appendix

A.1). While the C 0 terms are merely proportional to delta functions the C 1 pieces

are important to correct the soft-collinear resummed result for hard real and virtual

emissions at the leading O(αs) accuracy. They are straightforward to compute and

are presented in appendix A.1.

We immediately note that the above result diverges at R′ = 2, an entirely ex-

pected feature. The reason for this divergence (encountered also in the Drell-Yan

Qt resummations and the jet broadening in DIS [87]) is merely the fact that at very

small Qt the result one obtains is not described by exponentiation of the leading-

order result, which is essentially the form we have derived above [93]. As Qt → 0 the

mechanism of vectorial cancellation between emissions of formally arbitrary hardness
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takes over from the Sudakov suppression of soft and collinear radiation as the dom-

inant mechanism for producing a small Qt. However the divergence does not play a

major role for phenomenological purposes6, since over the values of Qt we intend to

study we are sufficiently away from the point R′ = 2. This will be further elaborated

in the subsection below.

4.3.1 Position and impact of the divergence

As we mentioned above, for the particular case at hand, the divergence occurs at

rather small values of Qt for the Q values7 of interest to us. The corresponding

Qt values, at and near the divergence, fall in a region that is either neglected for

phenomenological purposes or modelled with the introduction of non-perturbative

parameters, since one expects non-perturbative effects to be large here. In the Qt

region where the divergence does not have any significant numerical impact, we still

probe small enough Qt to test the perturbative resummation and non-perturbative

corrections, as is our aim.

To be precise the divergence occurs at R′ = 2. In terms of the variable Qt, using

the expression for R′ given in appendix A.2, this results in:

Qt = Q exp

(
− π

αs(CF + 2πβ0)

)
, (4.3.4)

which for the illustrative value of Q = 90 GeV gives Qt = 0.52 GeV, with αs = 0.118.

Since this region is in any case perturbatively unsafe, being quite close to the QCD

scale, we do not expect to obtain sensible results with the perturbative methods we

use. However we can safely study Qt values of a few GeV without worrying about

the impact of the formal divergence at R′ = 2.

We note that the scale associated with the divergence varies only very slowly

with the hard scale Q, since substituting the one-loop result for αs(Q
2) in eq. (4.3.4)

one obtains Qt ∼ ΛQCD(Q/ΛQCD)1/4. Thus for the scale of the divergence to exceed

even 1 GeV one has to increase the hard scale Q to beyond the TeV limit.

6 We contrast this with the dijet azimuthal correlation distribution which we shall study in

chapter 6. There the position of the divergence is too high to be ignored. In that case we resort to

the numerical method we highlighted before.
7There are data in the range 17GeV ≤ Q ≤ 116GeV.
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We can quantify this statement as follows: in the region where R′ = 2 there is

a complete breakdown of the hierarchy between leading, next-to-leading, etc. loga-

rithms. In order to determine up to which value of R′ one can use the usual hierarchy,

where NnLL terms are suppressed by αn
s with respect to leading logarithmic terms,

one can follow the procedure outlined by Dasgupta and Salam [87].

From those arguments one can infer that terms that are formally NNLL contribute

a correction that is of the same order as the terms that one keeps in the NLL

resummed result in the region where 2−R′ =
√

αs. The NNLL terms contribute at

relative O(αs) when R′ = 1 or more. Thus for R′ ≤ 1 we can safely use our resummed

Qt-space formula since omitted NNLL terms contribute as usual, at relative O(αs).

We can work out the position of both points in terms of Qt for a given Q. For

Q = 90 GeV we obtain that the critical value, where all terms in the formal hierarchy

are in fact of the same order, is Qt = 0.68 GeV and that the region where the usual

hierarchy is respected is Qt ≥ 1.5 GeV. This still allows the full range of available

data to be safely probed, including the lowest measured Qt bins.

4.4 Matching to fixed-order

Having obtained the NLL perturbative estimate we now need to combine it with the

exact O(α2
s) perturbative result to obtain accurate predictions over the entire range

where data exist. This will allow us to arrive at a result which has the form given by

eq. (3.4.1). We follow the matching prescription known as M2 matching introduced

by Dasgupta and Salam [87]. Here the final result is given by:

σr + ᾱs

(
σ(1)

e − σ(1)
r

)
+ ᾱ2

s

(
σ(2)

e − σ(2)
r

)
Σ(Q,Qt) , (4.4.1)

where ᾱs = αs/(2π) and σ
(1),(2)
r denote the coefficients of the resummed result, σr,

expanded to first and second order in ᾱs respectively, while σ
(1),(2)
e are the correspond-

ing coefficients obtained from fixed-order Monte Carlo programs such as DISENT

[90, 91]. The above matching formula adds the resummed and exact results and sub-

tracts the double-counted terms (up to O(ᾱ2
s)) that are included in the resummation.

Note that terms such as α2
s ln(Q/Qt), which are formally subleading and hence not

included in the resummation, are present in the piece ᾱ2
s

(
σ

(2)
e − σ

(2)
r

)
of eq. (4.4.1).
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Figure 4.1: Comparison between DISENT, matched resummed and pure resummed

differential distributions. MRST NLO PDFs are used with αs(M
2
Z) = 0.1205 [104].

This piece is divergent as Qt → 0 and thus we multiply it by the resummed form-

factor Σ(Q,Qt) ≡ q(x,Q2
t )/q(x,Q2)S(Q/Qt) exp [−R (Q/Qt)], to ensure sensible be-

haviour at small Qt. This procedure is obviously ad-hoc but only affects the result

at subleading-logarithmic accuracy, which is in any case beyond our quantitative

control.

Another point that needs to be re-emphasised is that the factor Σ, as we use it

here, is just an approximation to the resummed result given by a full evaluation of

the b integral. The approximation is intended for use (and is valid to NLL accuracy)

only sufficiently away from R′ = 2, the position of the divergence. As we explained

in the last section, this covers the range over which can make reasonable comparisons

with the data.

4.5 Results

The aim of this section is to display the results obtained for an NLL resummed

prediction matched to NLO predictions from DISENT. Additionally we comment

on the role that might be played by a non-perturbative Gaussian smearing function

and that small-x effects may effectively give an enhanced smearing of the spectrum

leading to a broader prediction than the one provided here as was observed also in

the SIDIS case [8, 9].
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Figure 4.2: Non-perturbative smearing of the modified resummed prediction with a

Gaussian function in kt, exp[−gk2
t ]. Here PT and NP stand for perturbative and

non-perturbative respectively. Two different choices of the smearing parameter g

are illustrated. Also shown is the pure resummed result. It can be seen that the

modification, as described in the text, does not affect the resummed result over its

region of validity.

In fig. 4.1, we display the fixed-order NLO results along with the pure resummed

and matched results for two values of the hard scale Q and corresponding Bjorken

x values. The choice of the x and Q values correspond to bins where preliminary

data already exist [89]. There one notes the divergent NLO result and the correct

small-Qt behaviour as given by the resummation as well as the role of matching in

the high-Qt tail of the distribution. We also point out that the role of the non-global

term is limited to a few percent effect after the matching to fixed-order has been

performed. Thus missing uncalculated SL terms in the non-global piece S, which

are suppressed as 1/N2
c , are not expected to change our quantitative conclusions.

We also present here the effect of smearing or convoluting our resummation with

a b-space or equivalent kt-space Gaussian function representing non-perturbative ef-

fects. Such intrinsic kt effects have been the subject of much phenomenological

investigation in Drell-Yan–like processes [86, 99, 105, 106]. The non-perturbative

smearing function we choose has the simple form: FNP(kt) = exp[−gk2
t ], and we

perform a two-dimensional convolution:
∫

d2~kt g/πFNP
(
| ~Qt − ~kt|

)
I(kt) with the re-
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summed distribution I(kt) = 1/σ dσ/dk2
t , to obtain the smeared result as a function

of Qt. We carry out the smearing with different values of g, two of which are il-

lustrated in fig. 4.2. The value of g = 0.5 GeV−2 corresponds to a reasonable mean

intrinsic kt value of 1.25 GeV. We also illustrate the effect of using a smaller g value

of 0.1 GeV−2, which leads as shown to a broader Qt distribution. Ideally one would

need to compare our predictions with the data at different x values in order to as-

certain whether one sees any visible broadening of the NLL resummed spectra at

smaller x, such as that mimicked by a change in the smearing parameter g. If this is

the case one may investigate the dependence of the smearing parameter g on Bjorken

x, a step we leave to forthcoming work [92].

We should point out that in convoluting the resummed prediction with the non-

perturbative Gaussian (intrinsic kt) distribution it was necessary to provide an ex-

trapolation of our resummed result for I(kt) down to kt = 0. We have chosen this

extrapolation as introduced by Ellis and Veseli [94] so as not to modify the NLL

resummed result as well as to obtain the correct limiting behaviour of the integrated

cross-section ∝ k2
t , as determined by evaluating the b integral for the integrated

quantity σ(kt), in the limit kt → 0.

Thus we substitute for kt an effective variable (k∗t )
2 = k2

t + Q2
0 exp (−k2

t /Q
2
0)

and make the replacement σ(kt) → σ(k∗t ) (1− exp (−ak2
t )), where Q0 and a should

be chosen so as not to modify the resummed result in the range where it is valid,

as in ref. [94]. These additional parameters should only modify the very low (non-

perturbative) Qt region where our NLL result is in any case not valid as it stands.

One can think of the parameters a and Q0 as being non-perturbative inputs that

can be varied alongside the smearing parameter g to obtain a good fit to data in the

lowest Qt region.

For the plot in fig. 4.2 we chose to take Q0 = 1.2 GeV and a = 1/Q2
0 as these

choices do not impact our resummed result over most of its range of validity. This

can be clearly seen from fig. 4.2 where we plot the pure resummed and modified

resummed results with these choices of parameters. The dominant impact in the very

low Qt region, beyond the control of NLL resummation, is in fact that of the smearing

function exp (−gk2
t ), for which different choices have been already mentioned.
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Figure 4.3: Comparison between H1 data [89] and the matched-resummed result

including the non-perturbative correction. Note that the differential distribution in

Q2
t is shown (rather than in Qt as before).

Finally we show in fig. 4.3 a comparison between preliminary H1 data [89] and our

theoretical prediction which is valid both at NLL and NLO accuracies, and accounts

for non-perturbative intrinsic kt effects.

4.6 Conclusions

We have introduced here a DIS variable that, as we have explained, has a very simple

relationship to vector boson and Higgs Qt spectra at hadron colliders. The aim of

doing this has been to use HERA data to compare resummed theoretical predictions

with experiment, keeping an eye on comparisons at lower x values. This comple-

ments the extensive studies of DIS event shapes that have been carried out thus far

which employed the standard resummation formalism (and non-global logarithms),

supplemented by 1/Q power corrections [49]. We recall that the program of com-

paring DIS event shapes to the data was quite successful without any special role

visible for small-x effects [47].

Given however that only moderately small x values, x ∼ 10−2, can be reasonably
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accessed in these studies, it is clearly better to choose a variable that is potentially

more sensitive to small-x dynamics than event-shape variables, in order to determine

the role of these effects. We expect such a variable to be the Qt spectrum we

have defined here, where it will be interesting to establish if a small-x enhanced

broadening of the resummation we presented is indeed visible in the data. This was

apparently the case in SIDIS studies [9] and, if present, we expect these effects to

manifest themselves for our observable too. Given the simple relationship of our

results to those for Drell-Yan–like observables it should then be easy to extrapolate

our conclusions to hadron collider studies, where it is important to reach a firm

conclusion on the issue of small-x broadening.

We have shown a comparison between our result and preliminary H1 prediction

[89], and we await the data in its final form before making detailed phenomeno-

logical analyses and drawing conclusions on this issue. This will be the subject of

forthcoming work.

In the next chapter we proceed with revisiting the energy flow distribution in

e+e− annihilation into two jets to investigate the impact of jet algorithms on QCD

resummation.
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Chapter 5

On QCD resummation with kt

clustering

5.1 Introduction

One of the most commonly studied QCD observables is the flow of transverse energy

(Et) into gaps between jets in various QCD hard processes. Since the Et flow away

from jets is infrared and collinear-safe it is possible to make perturbative predictions

for the same, which can be compared to experimental data for a given hard process.

However since one typically examines configurations where Et is small compared to

the hard scale Q of the process (e.g. jet transverse momenta in hadronic collisions)

the perturbative predictions involve large logarithms in the ratio Q/Et. We have

seen in section 3.3 that the resummation of logarithmically enhanced terms of the

form αn
s lnn(Q/Et) has proved a challenge that is still to be fully met - complete

calculations are available only in the large Nc limit [21, 22, 76]. Studies of the Et

flow have in fact directly led to developments in the theoretical understanding of

QCD radiation and this process is still ongoing [29].

Another feature of the energy flow away from jets is its sensitivity to non-

perturbative effects1. We showed in section 3.6 that one may expect significant

1/Q power corrections to energy flow distributions of a similar origin to those ex-

1In fact we use this observable to study non-perturbative effects in hadronic collisions. See

chapter 7.
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tensively studied for various jet-shape observables [47]. Moreover the Et flow in

hadronic collisions is a standard observable used to develop an understanding of the

underlying event and to assess its role after accounting for perturbatively calculable

QCD radiation [78, 107].

Given that Et flow studies potentially offer so much valuable information on QCD

over disparate scales, involving perturbative parameters such as the strong coupling

αs, QCD evolution, coherence properties of QCD radiation and non-perturbative

effects, it is not surprising that they have been the subject of substantial theoretical

effort over the last decade.

In this chapter we focus on the aspect of resummed predictions for the Et flow

into gaps between jets. Perhaps the most significant problem involved in making

such predictions is the non-global nature of the observable [21, 22]. As we stated

before, in order to resum the leading single logarithms one has to address not just

a veto on soft emissions coupled to the underlying primary hard parton antennae

(the primary emission term), but additionally correlated emissions or non-global

contributions such as those represented in fig 3.3. For this latter contribution one

has to resort to the large Nc limit to provide merely a leading-logarithmic estimate

for the away-from-jet Et flow. This situation can be contrasted with the case of event

shapes and Drell-Yan Qt resummations which have been pushed to NLL and NNLL

accuracy respectively. The impact of finite Nc corrections in non-global observables is

thus a factor in the theoretical uncertainty involved in the corresponding resummed

predictions.

Given that the non-global component has a substantial quantitative impact over

a significant range of Et values for a given hard scale Q and that it is computable

only in the large Nc approximation, it is clearly desirable to reduce the sensitivity

of a given observable to non-global logarithms. An important observation in this

regard, which we highlighted in the introduction chapter, was made by Appleby and

Seymour [18]: if one employs the kt clustering algorithm [14, 15] to define the final

state such that the energy flow into a gap between jets is due to soft kt-clustered

mini-jets (rather than individual hadrons), the non-global logarithms are significantly
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reduced in magnitude2. This observation was exploited to study the case of Et flow

in dijet photoproduction at HERA where a result was provided for the primary

emission component of the Et distribution and the reduced non-global component

was modelled [108].

However it has subsequently been found by Banfi and Dasgupta that the kt

clustering algorithm also has a non-trivial impact on the primary emission component

of the result [19]. This was not taken into account by Appleby and Seymour [18, 108]

and also affects the ability to make resummed predictions for a host of other jet

observables such as dijet azimuthal correlations between jets (∆φ), which we shall

study in the next chapter. In fact the findings of Banfi and Dasgupta [19] are not

just specific to the kt algorithm but would also crop up in the case of jet observables

defined using iterative cone algorithms.

In the present chapter we shed more light on the resummation of the primary or

independent emission component of the result and its dependence on the clustering

algorithm. While the leading O (
α2

s ln2(Q/Et)
)

clustering-dependent behaviour was

computed analytically by Banfi and Dasgupta [19], the full resummed result for the

primary emission component was computed only numerically in the case of a single

hard emitting dipole (e+e− → 2 jets or DIS 1 + 1 jets). Here while sticking to a

single hard dipole we shed more light on the structure of the primary emission term

and analytically compute it to an accuracy that is sufficient for a wide range of

phenomenological applications.

The analytical insight and calculations we provide here will also make the gen-

eralisation of the kt-clustered primary emission result to the case of several hard

emitters (dijets produced in photoproduction or hadron-hadron processes), involv-

ing a non-trivial colour flow, relatively straightforward.

The above resummation of the primary component of the answer assumes greater

significance when we discuss our second observation: once an error is corrected in the

numerical code used for the purposes of refs. [18, 108] the non-global component of

the result is reduced even more compared to the earlier estimate. With a very small

non-global component (which can be numerically computed in the large Nc limit)

2For recent progress on aspects of the kt algorithm itself see refs. [16, 17].
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and a primary emission component that correctly treats the dependence on the jet

algorithm, one is better placed to make more accurate resummed predictions than has

been the case till now. This is true not just for the Et flow but also as we mentioned

for a variety of jet observables for which there are either no resummed predictions

as yet, or only those employing jet algorithms not directly used in experimental

studies [109].

This chapter is organised as follows. In the following section we define the ob-

servable in question and revisit the issue of the dependence of the primary and

non-global pieces on the jet clustering algorithm. Following this we demonstrate

how the primary or independent emission piece can be computed to all orders in

αs, accounting to sufficient accuracy for the effects of the clustering algorithm. We

explicitly describe the case of three and four-gluon emission contributions to demon-

strate the steps leading to our all-orders result. Following this we re-examine the

non-global component of the answer and find that this is significantly smaller than

earlier calculations of the same [18]. We put our findings together to examine their

impact on photoproduction data for the ZEUS collaboration [28] and lastly point to

the conclusions one can draw and future extensions of our work.

5.2 Resummation of the primary emissions

Let us consider for simplicity the process e+e− → 2 jets. The calculations for

processes involving a larger number of jets and more complex jet topologies can

be done along similar lines.

We examine the Et flow in a region Ω which we choose as a slice in rapidity3 of

width ∆η centred on η = 0. We then define the gap transverse energy as:

Et =
∑
i∈Ω

Et,i , (5.2.1)

where the index i refers to soft jets obtained after kt clustering of the final state. We

3Since we deal with back-to-back jets we can define the rapidity with respect to the jet axis or

equivalently, for our purposes, the thrust axis.
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shall concentrate on the integrated Et cross-section which is defined as:

Σ(Q,QΩ) =
1

σ

∫ QΩ

0

dσ

dEt

dEt , (5.2.2)

with σ being the total cross-section for e+e− → hadrons, with centre-of-mass energy

Q.

The SL result for the above, without kt clustering (where the sum over i in

eq. (5.2.1) refers to hadrons in the gap rather than jet clusters), was computed by

Dasgupta and Salam [22] and is presented in section 3.3. The result can be expressed

as:

Σ(Q,QΩ) = ΣP (t) S(t) , t =
1

2π

∫ Q/2

QΩ

dkt

kt

αs(k
2
t ) . (5.2.3)

The above result contains a primary emission or “Sudakov” term4 ΣP (t) and a non-

global term S(t).

The primary emission piece is built up by considering only emissions attached to

the primary hard partons, namely those emitted from the hard initiating qq̄ dipole

in our example, while the non-global term arises from coherent soft emission from

a complex ensemble of energy-ordered soft emitters alongside the hard initiating

dipole. More precisely we have:

ΣP (t) = e−4CF t∆η , (5.2.4)

which is the result of resumming uncancelled kt-ordered virtual emission contribu-

tions in the gap region. The non-global component, as we stated before, is computed

numerically in the large Nc limit.

Next we turn to the kt-clustered case. The result stated by Appleby and Sey-

mour [18] defines the primary or Sudakov piece to be unchanged by clustering since

it appears to be the exponentiation of a single gluon emitted inside the gap. The re-

mainder is recomputed numerically implementing clustering [18]. As already shown

by Banfi and Dasgupta [19], this remainder comprises the genuine non-global con-

tribution and corrections to primary emissions due to clustering. The corrections

to the primary emission term first appear while considering two gluons emitted by

4We use the term “Sudakov” in a loose sense since the primary emission result leads to an

exponential that is analogous to a Sudakov form-factor.
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the hard qq̄ dipole and persist at all orders. Below we provide a reminder of the

two-gluon emission case (discussed in ref. [19]) and subsequently consider explicitly

the three and four-gluon emission cases before writing down the result to all orders

as a function of the radius parameter R.

5.2.1 Two-gluon emission

In order to examine the role of the kt algorithm we point out that in our case (kt-

ordered soft limit) one can start the clustering procedure with the lowest transverse-

energy parton or equivalently the softest parton. One examines the “distances” of

this particle (i) from its neighbours in the rapidity-azimuth plane (η-φ), defined

by dij = E2
t,i

(
(δηij)

2 + (δφij)
2), where Et,i is the transverse energy of the softest

parton. If the smallest of these distances is less than E2
t,iR

2, particle i is recombined

or clustered into its nearest neighbour and the algorithm is iterated. On the other

hand if all dij are greater than E2
t,iR

2, particle i is counted as a jet and removed from

the process of further clustering. The process continues until the entire final state

is made up of jets. Also in the limit of strong energy ordering, which is sufficient

to obtain the leading logarithms we are concerned with here, the recombination of a

softer particle with a harder one gives a jet that is aligned along the harder particle.

The dependence of the primary emission term on the jet algorithm starts naturally

enough from the two-gluon emission level. While the Sudakov result exp (−4CF t∆η)

comes about due to assuming real-virtual cancellations such that one is left with only

virtual emissions with kt ≥ QΩ in the gap region (for the integrated distribution), kt

clustering spoils this cancellation.

Specifically let us take two real gluons k1 and k2 that are ordered in energy

(ω1 À ω2). We consider as in ref. [19] the region where the softer gluon k2 is in the

gap whilst the harder k1 is outside. Additionally we take the case that the gluons

are clustered by the jet algorithm which happens when (δη)2 + (δφ)2 ≤ R2 with

δη = η2 − η1 and similarly δφ = φ2 − φ1. We shall denote this condition with the

symbol θ21. Since k2 is clustered to k1 it gets pulled outside the gap, the recombined

jet being essentially along k1. Thus the double real emission term does not contribute

to the gap energy differential distribution dσ/dEt. Now let k1 be a virtual gluon. In
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this case it cannot cluster k2 out of the gap and we do get a contribution (proportional

to C2
F ) to the gap energy differential distribution. Thus a real-virtual cancellation

which occurs for the unclustered case fails here and the mismatch for the integrated

quantity (Σ(t)) amounts to:

Cp
2 =

(−4CF t)2

2!

∫

k1 /∈Ω

dη1
dφ1

2π

∫

k2∈Ω

dη2
dφ2

2π
θ21 =

(−4CF t)2

2!

2

3π
R3 , (5.2.5)

where we report the result computed by Banfi and Dasgupta [19] for R ≤ ∆η. Here

we introduce the primary emission term Cp
n that corrects the Sudakov result at O(αn

s )

due to the clustering requirement.

The fact that the result scales as the third power of the jet radius parameter

is interesting in that by choosing a sufficiently small value of R one may hope to

virtually eliminate this piece and thus the identification of the primary result with

the Sudakov exponent would be at least numerically accurate. However for such

small R the non-global term would then be significant which defeats the main use

of clustering. If one chooses to minimise the non-global component by choosing e.g.

R = 1, then one must examine the primary emission terms in higher orders in order

to estimate their role. To this end we start by looking at the three and four-gluon

emission cases below.

5.2.2 Three-gluon emission

Consider the emission of three energy-ordered gluons k1, k2 and k3 with ω3 ¿ ω2 ¿
ω1, off the primary qq̄ dipole and employing the inclusive kt clustering algorithm [14,

15] as explained previously.

We consider all the various cases that arise when the gluons (which could be real

or virtual) are in the gap region or outside. We also consider all the configurations

in which the gluons are affected by the clustering algorithm. We then look for

all contributions where a real-virtual mismatch appears due to clustering, that is

not included in the exponential Sudakov term. The Sudakov itself is built up by

integrating just virtual gluons in the gap, above the scale QΩ. The corrections to

this are summarised in table 5.1.

In order to obtain the various entries of the table one just looks at the angular
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θ32 θ31 θ21 k3 ∈ Ω k2 ∈ Ω k1 ∈ Ω k3 , k2 ∈ Ω k3 , k1 ∈ Ω k2 , k1 ∈ Ω

0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 W 0

0 1 0 0 0 0 W 0 0

0 0 1 0 0 0 W 0 0

1 1 0 W 0 0 W W 0

1 0 1 0 0 0 0 W 0

0 1 1 0 0 0 W 0 0

1 1 1 W 0 0 W W 0

Table 5.1: Contributions of different configurations of particles to ΣP at O(α3
s).

We define θij = θ (R2 − (ηi − ηj)
2 − (φi − φj)

2), e.g. θ13 = 1 means (η1 − η3)
2 +

(φ1 − φ3)
2 ≤ R2. We also define W = (−4CF t)3/3!, so the entries “W” indicate

a miscancellation which leads to a SL correction to the Sudakov result, while the

entries “0” indicate a complete real-virtual cancellation. We have discarded the case

where all particles are in the gap since such configurations are already included in

the exponential Sudakov result.

configuration in question, draws all possible real and virtual contributions and looks

for a mismatch between them generated by the action of clustering. We translate

table 5.1 to:

Cp
3 =

1

3!
(−4CF t)3 ×

×
( ∫

k1 /∈Ω

dη1
dφ1

2π

∫

k2 /∈Ω

dη2
dφ2

2π

∫

k3∈Ω

dη3 θ32 θ31 +

+

∫

k1 /∈Ω

dη1
dφ1

2π

∫

k2∈Ω

dη2
dφ2

2π

∫

k3∈Ω

dη3 [θ31 + (1− θ31)(1− θ32)θ21] +

+

∫

k1∈Ω

dη1
dφ1

2π

∫

k2 /∈Ω

dη2
dφ2

2π

∫

k3∈Ω

dη3 θ32

)
, (5.2.6)

where we use the freedom to set φ3 = 0. We identify three equal contributions

consisting of the integrals in which there is only one theta function constraining

only two particles: the integral over θ31 and that over θ21 in the third line and the

last integral over θ32. The set of configurations θ32, θ31 and θ21 is just the set of

constraints on all possible pairs of gluons. In fact we can generalise the number of
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these configurations to the case of any number n of gluons by n(n− 1)/2, which will

enable us to resum R3 terms to all orders. We shall return to this observation later.

The integrals of the above type reduce essentially to the clustered two-gluon emission

case, as calculated in eq. (5.2.5), and the integral over the third “unconstrained”

gluon is just ∆η.

Explicitly we write eq. (5.2.6) as:

Cp
3 =

1

3!
(−4CF t)3 ×

×
( ∫

k1 /∈Ω

dη1
dφ1

2π

∫

k2 /∈Ω

dη2
dφ2

2π

∫

k3∈Ω

dη3 θ32 θ31 +

+

∫

k1 /∈Ω

dη1
dφ1

2π

∫

k2∈Ω

dη2
dφ2

2π

∫

k3∈Ω

dη3 [θ31θ32 − θ31 − θ32] θ21 +

+3×
∫

k1∈Ω

dη1
dφ1

2π

∫

k2 /∈Ω

dη2
dφ2

2π

∫

k3∈Ω

dη3 θ32

)
. (5.2.7)

Computing the various integrals above (for simplicity we take R ≤ ∆η/2, which is

sufficient for our phenomenological purposes) one obtains:

Cp
3 =

1

3!
(−4CF t)3×

×
[(

π

3
− 32

45

)
R5

π2
+ f̃2

R5

π2
−

(
π

3
− 32

45

)
R5

π2
− 32

45

R5

π2
+ 3× 2

3π
∆η R3

]
, (5.2.8)

with f̃2 ' 0.2807 and we have written the results in the same order as the five

integrals that arise from the various terms in eq. (5.2.7). Hence:

Cp
3 =

1

3!
(−4CF t)3

(
3× 2

3π
∆η R3 + f2 R5

)
, (5.2.9)

where f2 ' −0.04360. We note the appearance of an R5 term which, as we shall

presently see, persists at higher orders. This term is related to a clustering constraint

on three gluons at a time via the product of step functions θ32 θ21(θ31 − 1) with

k2, k3 ∈ Ω and k1 /∈ Ω.

Next we look at the emission of four soft, real or virtual energy-ordered gluons.

This will help us move to a generalisation with any number of gluons.

5.2.3 Four-gluon emission case and beyond

Now we take the case of four-gluon emission and identify the patterns that appear

at all orders. A table corresponding to table 5.1 is too lengthy to present here. The
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result can however be expressed in an equation similar to that for the three-gluon

emission case. We have:

Cp
4 =

1

4!
(−4CF t)4 ×

×
( ∫

1 in

∫

2 in

∫

3 out

∫

4 in

θ43 +

+

∫

1 in

∫

2 out

∫

3 in

∫

4 in

(θ42 + θ32[1− θ43][1− θ42]) +

+

∫

1 out

∫

2 in

∫

3 in

∫

4 in

(θ41 + θ−41[θ31 θ−43 + θ43 θ21 θ−42 +

+θ21 θ−42 θ−43 θ−31θ−32]) +

+

∫

1 in

∫

2 out

∫

3 out

∫

4 in

θ42 θ43 +

+

∫

1 out

∫

2 in

∫

3 out

∫

4 in

θ43 (θ41 + θ−41 θ−42 θ21) +

+

∫

1 out

∫

2 out

∫

3 in

∫

4 in

(θ41 θ42 + θ41 θ−42 θ−43 θ32 +

+θ−41 θ−43 θ31 [θ42 + θ−42 θ32]) +

+

∫

1 out

∫

2 out

∫

3 out

∫

4 in

θ41 θ42 θ43

)
, (5.2.10)

where θ−ij = 1 − θij and “in” or “out” pertains to whether the gluon is inside the

gap region or out. For brevity we do not write the differential phase-space factor for

each gluon which is as always dη dφ/(2π). We identify six R3 terms exactly of the

same kind as computed before and similarly four R5 terms. Explicitly we have:

Cp
4 =

1

4!
(−4CF t)4 ×

×
(

6×
∫

1 in

∫

2 in

∫

3 out

∫

4 in

θ43 +

+4×
[ ∫

1 in

∫

2 out

∫

3 out

∫

4 in

θ42 θ43 +

+

∫

1 in

∫

2 out

∫

3 in

∫

4 in

θ32 (θ43 θ42 − θ43 − θ42)

]
+

+3×
∫

1 out

∫

2 in

∫

3 out

∫

4 in

θ21 θ43 (1− θ41 − θ42 + θ41 θ42) +

+

∫

1 out

∫

2 in

∫

3 in

∫

4 in

θ21

(
θ42 θ43 − θ42 − θ43 − θ41 θ−42 θ−43

)×

×(
θ31 θ32 − θ31 − θ32

)
+

+

∫

1 out

∫

2 out

∫

3 in

∫

4 in

θ32 θ31 [θ41(1− θ43)(θ42 − 2)− θ43] +

+

∫

1 out

∫

2 out

∫

3 out

∫

4 in

θ41 θ42 θ43

)
. (5.2.11)
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We discuss below each set of integrals, generalise the result to the case of n emitted

gluons and then resum all orders.

• The integral:

1

4!
(−4CF t)4 6×

∫

1 in

∫

2 in

∫

3 out

∫

4 in

θ43 . (5.2.12)

The integrals over particles 1 and 2 give (∆η)2. The remaining integrals reduce

to the result computed for the two-gluon emission case, i.e. the R3 term. The

factor 6 accounts for the number of pairs of gluons n(n − 1)/2, for n = 4.

Explicitly we have for this term:

1

4!
(−4CF t)4 4× 3

2
∆η4−2 2

3π
R3 . (5.2.13)

For n emitted gluons the R3 term, which is always related to the clustering of

two gluons, is given by:

1

n!

n(n− 1)

2
(−4CF t∆η)n∆η−2 2

3π
R3 , n ≥ 2 . (5.2.14)

Hence to all orders one can sum the above to obtain:

e−4CF t∆η (−4CF t)2

2

2

3π
R3 . (5.2.15)

• The integrals:

1

4!
(−4CF t)4 4×

( ∫

1 in

∫

2 out

∫

3 out

∫

4 in

θ42 θ43+

+

∫

1 in

∫

2 out

∫

3 in

∫

4 in

θ32 [θ43 θ42 − θ43 − θ42]

)
. (5.2.16)

The integral over particle 1 gives ∆η, while the rest of the integrals reduce to

the ones we calculated earlier which gave the R5 result. The factor 4 stands

for the number of triplet combinations formed by four gluons. For n emitted

gluons this factor is n(n− 1)(n− 2)/3!. Explicitly we have for this case:

1

4!
(−4CF t)4 4× 3× 2

6
∆η4−3f2 R5 . (5.2.17)

At the nth order we obtain:

1

n!
(−4CF t∆η)n n(n− 1)(n− 2)

6
∆η−3f2 R5 , n ≥ 3 . (5.2.18)

Summing all orders we get:

e−4CF t∆η (−4CF t)3

6
f2 R5 . (5.2.19)
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• The integral:

1

4!
(−4CF t)4 3×

∫

1 out

∫

2 in

∫

3 out

∫

4 in

θ21 θ43 . (5.2.20)

This integral can be factored into two separate integrals involving the constraint

on k1 and k2 and on k3 and k4 respectively. Each of these reduces to the R3

result obtained in the two-gluon emission case. Thus we get:

1

4!
(−4CF t)4 3×

(
2

3π

)2

R6 . (5.2.21)

At nth order this becomes:

1

n!

n(n− 1)(n− 2)(n− 3)

8
(−4CF t∆η)n∆η−4

(
2

3π

)2

R6 , n ≥ 4 , (5.2.22)

which can be resummed to:

e−4CF t∆η (−4CF t)4

8

(
2

3π

)2

R6. (5.2.23)

The factor 3 (and generally n(n − 1)(n − 2)(n − 3)/8) is the number of con-

figurations formed by four (and generally n) gluons such that we have two

pairs of gluons, each being formed by a soft in-gap gluon clustered to a harder

out-of-gap one.

• The remaining integrals give at most an O(R7) term because they constrain

all the four gluons at once. In fact for gap sizes ∆η ≥ 3R, these integrals

go purely as R7 with no dependence on ∆η. Since here however we use the

condition ∆η ≥ 2R, which allows us to make use of the whole range of HERA

data, these integrals do not depend purely on R. They are a function of R

and ∆η which have an upper bound of order R7. This can be seen by noting

that there are three azimuthal integrations that each produce a function which

has a maximum value proportional to R, so the result of integrating over all

azimuthal variables is a factor that is bounded from above by O(R3). Similarly

there are four rapidity integrations with a clustering constraint on all four

gluons implying that they can produce an O(R4) term at most. In general the

result at nth order of constraining n gluons at once, is bounded from above by

a factor of order R2n−1.
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We can write the result for all these as (−4CF t)4/4! y(R, ∆η), and resum such

terms to all orders (in the same manner as before) to:

e−4CF t∆η (−4CF t)4

4!
y(R, ∆η) , (5.2.24)

where y(R, ∆η) is at most O(R7). We do not calculate these terms (though it

is possible to do so) since the accuracy we achieve by retaining the R3, R5 and

R6 terms, we have already computed, is sufficient as we shall show.

The five-gluon emission case is too lengthy to analyse here. The same patterns

as pointed out above persist here, but new terms that are at most O(R9) appear

when all five gluons are constrained. There is also an R8 term, coming from the

combination of R3 and R5 terms in the same manner that the R6 term arose as a

combination of two R3 terms.

5.3 All-orders result

From the above observations we can assemble an all-orders result to R6 accuracy,

where we shall consider R to be at most equal to unity. The final result for primary

emissions alone and including the usual Sudakov logarithms (for ∆η ≥ 2R) is:

ΣP (t) = e−4CF t∆η×

×
(

1 + (−4CF t)2R3

3π
+ (−4CF t)3f2

6
R5 + (−4CF t)4 R6

18π2
+

(−4CF t)4

4!
O(R7)

)
.

(5.3.1)

Formally one may extend this accuracy by computing a few more terms such

as those integrals that directly give or are bounded by an R7 behaviour and this

is possible though cumbersome. It should also be unnecessary from a practical

viewpoint, especially keeping in mind that R = 0.7 is a preferable value to R = 1,

in the important case of hadron collisions5. In fact even at R = 1 the R3 term

significantly dominates the result over the range of t values of phenomenological

interest, as we shall see below.

5This is because the underlying event will contaminate jets less if one chooses a smaller R.
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Figure 5.1: Comparison of the analytical results to a numerical Monte Carlo (MC)

estimate.

We further note that if one keeps track of all the terms that come about as a

combination of R3 and/or R5 terms in all possible ways at all orders, one ends up

with the following form for eq. (5.3.1):

ΣP (t) = e−4CF t∆η exp

(
(−4CF t)2

2!

2

3π
R3 +

(−4CF t)3

3!
f2 R5 +

(−4CF t)4

4!
O(R7)

)
,

(5.3.2)

the expansion of which agrees with eq. (5.3.1). In the above by O(R7) we mean

terms that, while they may depend on ∆η, are at most as significant as an R7

term. We also mention that in the formal limit ∆η → ∞, there is no dependence

of the clustering terms on ∆η and they are a pure power series in R. The limit

of an infinite gap appears in calculations where the region considered includes one

of the hard emitting partons. An example of such cases (which have a leading

double-logarithmic behaviour) is once again the quantity ∆φ in e.g. DIS or hadron

collisions.

Fig. 5.1 represents a comparison between the leading R3 result (i.e. the pure

fixed-order result of ref. [19] combined with the resummed Sudakov exponent), the

resummed R3, R5 and R6 result (eq. (5.3.1)) and a numerical Monte Carlo estimate

with and without clustering. The Monte Carlo program in question is essentially that
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described in ref. [21] with the modification of kt clustering where we compute just

emissions off the primary dipole “switching off” the non-global correlated emission.

We note that the resummed analytical form (5.3.1) is in excellent agreement with

the numerical result which contains the full R and ∆η dependence. We have tested

this agreement with a range of values of R. We take this agreement as indicating

that uncomputed R7 and higher terms can safely be ignored even at R = 1 and

even more so at fractional values of R, e.g. R = 0.7. To provide an idea about the

relative role of terms at different powers of R in eq. (5.3.1) we note that for R = 1

and t = 0.25 the resummed R3 term increases the Sudakov result exp (−4CF t∆η) by

19%, the R5 term represents a further increase of 1.5% to the result after inclusion

of the resummed R3 term and the R6 term has a similar effect on the result obtained

after including up to R5 terms.

Next6 we comment on the size of the non-global component at different values of

R.

5.4 Revisiting the non-global contribution

We have seen above how the primary emission piece is dependent on the jet clustering

algorithm. It was already noted by Appleby and Seymour [18] that the non-global

contribution is significantly reduced by clustering. Here we point out that after

correction of an oversight in the code used there, the non-global component is even

more significantly reduced than previously stated in the literature. Indeed for R = 1

and the illustrative value of t = 0.15, which corresponds to a gap energy QΩ = 1

GeV for a hard scale Q = 100 GeV, the non-global logarithms are merely a 5%

effect as opposed to the 20% reported previously [18] and the over 65% effect in the

unclustered case.

In fig. 5.2 we plot the curves for the primary and full results (in the large Nc

limit) for the integrated quantity Σ(t) as a function of t defined earlier. We note

that for R = 0.5 the primary result is essentially identical to the Sudakov result. The

6See the acknowledgment section for details of contributions of collaborators to the work pre-

sented in this thesis.
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Figure 5.2: Comparison of the Sudakov result, the correct primary result and the full

result including non-global logarithms, for different values of R and with ∆η = 1.

All quantities are shown in the large Nc limit for ease of comparison.

non-global contribution (which is the ratio of the full and primary curves) is however

still quite significant. Neglecting it leads to an overestimate of 40% for t = 0.15.

Increasing the jet radius in a bid to lower the non-global component we note that

for R = 0.7 the impact of the non-global component is now just over 20% while the

difference between the full primary result and the Sudakov result is small (less than

5%). The situation for R = 1 is a bit different. Here it is the non-global logarithms

that are only a 5% effect (compared to the 20% claimed earlier [18]) while the full

primary result is bigger than the Sudakov term by around 11%.

The value R = 1 is in fact the one used in the HERA analysis of gaps-between-jets

in photoproduction. It is now clear that such analysis will have a very small non-

global component and a moderate effect on primary emissions due to clustering. In
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order to completely account for the primary emission case for dijet photoproduction

one would need to generalise the calculations presented here for a single qq̄ dipole

to the case of several hard emitting dipoles. An exactly similar calculation would

be needed for the case of hadron-hadron collisions and this is work in progress.

It is straightforward however to at least estimate the effect of our findings on the

photoproduction case and we deal with this in the following section.

5.5 Gaps between jets at HERA- the ZEUS analy-

sis

We can test the perturbative framework presented in this chapter with energy flow

measurements in the photoproduction of dijets. These energy flow observables are

defined with two hard jets in the central detector region separated by a gap in

pseudorapidity. A gap-event is defined when the sum of the hadronic transverse

energy in the gap is less than a cut-off, and the gap fraction is defined as the ratio of

the gap cross-section to the total inclusive cross-section. The energy flow observables

measured by H1 [27] and ZEUS [28] use the kt clustering definition of the hadronic

final state, and the transverse energy in the gap is given by the sum of the mini-

jet contributions. In this section we focus on the ZEUS measurements and provide

revised theoretical estimates for them. These revisions lead to changes that are

minor in the context of the overall theoretical uncertainty, but should become more

significant once the matching to fixed higher orders is carried out and an estimate of

the next-to-leading logarithms is obtained. The H1 data was considered in ref. [108],

where the theoretical analysis consisted of only the resummed primary emission

contribution without taking into account the effect of kt clustering.

The ZEUS data was obtained by colliding 27.5 GeV positrons with 820 GeV

protons, with a total integrated luminosity of 38.6 pb−1 in the 1996-1997 HERA

running period. The full details of the ZEUS analysis can be found in ref. [28], but
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the cuts relevant to the calculations in this section are:

0.2 < y < 0.75 ,

Q2 < 1 GeV2 ,

ET, 1 > 6 GeV ,

ET, 2 > 5 GeV ,

|η1, 2| < 2.4 ,

|0.5(η1 + η2)| < 0.75 ,

2.5 < ∆η < 4 , (5.5.1)

where y is the inelasticity (as defined in subsection 2.3.1), Q2 is the virtuality of the

photon, ET, 1 and ET, 2 are the transverse energies of the two outgoing hardest jets

with respect to the proton axis, η1 and η2 are the pseudorapidities of the two hardest

jets (in the final state) with respect to the proton axis and ∆η is the gap size (which

is chosen to equal the rapidity difference between the leading jets |η1 − η2|). The

further requirement for the gap sample is Et, gap < QΩ, for QΩ = 0.5, 1, 1.5 and 2

GeV, and the clustering parameter R is always taken to be unity.

The theoretical prediction for the gap fraction is composed of the primary piece,

with corrections due to clustering, and the non-global piece. We shall now describe

each in turn.

The resummed primary contribution, ignoring the clustering corrections, is ob-

tained from the factorisation methods of Sterman et al [57, 58, 59, 60, 109] and is

described in ref. [108]. The four-jet case of photoproduction requires a matrix for-

malism similar to that we discussed in section 3.5 and the exponents of the Sudakov

factors in the gap cross-section are anomalous dimension matrices over the basis of

possible colour flows of the hard sub-process. The emissions of soft gluons cause

mixing of the colour basis (eq. (3.5.8)). Diagonalisation of the anomalous dimension

matrices (by consideration of the eigenvectors and eigenvalues), allows the resummed

four-jet primary emission differential cross-section to be written as [108]:

dσ

dη
=

∑
L,I

H̃ILS̃LI exp

(
− (λ∗L(η, Ω) + λI(η, Ω))

∫ pt

QΩ

dµ

µ

αs(µ
2)

2π

)
, (5.5.2)

where the sums extends over the components of the hard and soft matrices H̃ and
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S̃ (defined in the colour basis in which the anomalous dimension matrices are diago-

nal7), λ denotes the eigenvalues of the anomalous dimension matrices, η = ∆η/2 and

pt is the hard scale of the process. This was computed by Appleby and Seymour [108]

for the case of photoproduction and energy flow observables measured by H1. In this

section we recompute this differential gap cross-section for the observable defined by

the ZEUS collaboration. The uncertainty in the renormalisation scale is quantified

by varying the hard scale in the resummation by a factor of 2 (upper bound) and

0.5 (lower bound).

We now need to account for the effect of clustering on eq. (5.5.2). Since we do not

have as yet the full result for the four-jet case of photoproduction we simply estimate

the full correction as the square of the correction arising in the two-jet case we have

dealt with, using the appropriate colour factors for each hard sub-process. This

was also the method used by Appleby and Seymour to approximate the non-global

contribution for the four-jet case in ref. [108]. While we emphasise that this is only a

rough way of examining the impact of the clustering-dependent terms, given the size

of the effects we deal with, it is clear that no significant differences ought to emerge

if one were to properly compute the various dipole contributions. We also include

the revised and virtually negligible non-global component in an identical fashion to

arrive at the best current theoretical estimates.

The results for the ZEUS gap-fraction with a kt-defined final state are shown8 in

figs. 5.3 and 5.4. We consider here two different values for the gap energy QΩ. For the

value of QΩ = 0.5 GeV one notes that the full prediction, accounting approximately

for all additional sources of SL enhancements, is somewhat higher than the pure

“Sudakov-type” prediction. This is due to the extra primary terms we computed

here, non-global corrections being negligible. For a larger value of QΩ = 1.0 GeV,

the difference between the clustered and unclustered primary results is negligible.

We also note the large theoretical uncertainty on the predictions as represented by

the renormalisation scale dependence. This is to be expected in light of the fact that

7See chapter 7 for a detailed treatment of the diagonalisation of the anomalous dimensions.
8The predictions we display here are readily made available for the ZEUS collaboration as the

current best theoretical estimate.
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Figure 5.3: The gap fraction for the ZEUS analysis with a kt-defined final state

(R = 1.0 and QΩ = 0.5 GeV). The solid line shows the effect of resummed primary

emissions, the primary emission clustering correction factor and the non-global sup-

pression factor. The overall theoretical uncertainty in all three contributions is shown

by the dotted lines. The dashed line indicates the gap fraction obtained by only in-

cluding primary resummed emissions without accounting for clustering.

these predictions are not matched to fixed-order results and account only for the

leading logarithms. Improvements along both these directions should be possible in

the immediate future after which the role of the various effects we highlighted here

should be revisited.

5.6 Conclusions

In the present chapter we have shed further light on resummations of kt-clustered

final states. We have shown that both the primary and non-global components of the

resummed result are affected by clustering and dealt with the resummation of each

in turn. For the non-global component we found that the results after applying clus-

tering are different from those presented earlier [18]. The new results we presented

here indicate an even smaller non-global component than previously believed.

We have also shown how the primary emission clustering effects can be resummed
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Figure 5.4: The gap fraction for the ZEUS analysis with a kt-defined final state

(R = 1.0 and QΩ = 1.0 GeV). The solid line shows the effect of resummed primary

emissions, the primary emission clustering correction factor and the non-global sup-

pression factor. The overall theoretical uncertainty in all three contributions is shown

by the dotted lines. The dashed line indicates the gap fraction obtained by only in-

cluding primary resummed emissions without accounting for clustering.

to all orders as an expansion in the clustering parameter R and computed a few terms

of the series. The analytical results we have provided here for a single emitting dipole

should be generalisable to the case of several hard dipoles (multi-jet processes). This

should then enable one to write a correct resummed result for primary emissions to a

high accuracy and deal with the reduced non-global component in the large Nc limit.

Such progress is relevant not just to energy flow studies but to any jet observable

of a non-global nature, requiring resummation. An example is the azimuthal angle

between jets (∆φ) we mentioned previously, which we shall study in the next chapter.

The work we have carried out should enable NLL calculations of such jet observables

to sufficient accuracy to enable phenomenological studies of the same.

Lastly we have also mentioned the impact of our new findings on the ZEUS gaps-

between-jets analysis. Since the non-global effects are very small for R = 1 the main

new effect is the additional clustering-dependent primary terms we computed here.

Approximating the effect of these terms for the case of photoproduction somewhat
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changes the theoretical predictions, but this change is insignificant given the large

theoretical uncertainty that arises due to missing higher orders and unaccounted for

next-to-leading logarithms. We consider both these areas as avenues for further work

and hope that more stringent comparisons can thus be made in the very near future.

89



Chapter 6

Dijet azimuthal correlations in

QCD hard processes

6.1 Introduction

As we emphasised at length in the introduction chapter, studies of soft gluon ra-

diation and non-perturbative effects in QCD observables are of vital importance.

They help us better understand the dynamics of QCD and enhance the accuracy of

theoretical predictions for measured quantities.

Successful examples of such studies are manifested in event-shape variables at

LEP and HERA. Resummed estimates for these observables, combined with NLO

predictions and corrected for non-perturbative effects, have been very successful in

describing the data [46, 47]. Parameters such as the strong coupling and the effec-

tive non-perturbative coupling [48] can then be consistently extracted by studying

distributions and mean values of such observables [42, 43].

Going beyond the case of two hard partons is more challenging in terms of theory

but is also a more stringent test of our understanding of QCD dynamics. Multi-jet

event-shape variables have been studied by Banfi et al [51, 52, 53, 54, 79]. However

for jet-defined quantities, e.g. several dijet distributions, there are currently very few

resummed predictions because of the lack of theoretical insight to all orders in the

presence of a jet algorithm. Many measurements are already established (see e.g.

[30, 32]) and await comparison to theoretical estimates.
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Effort has recently been devoted to improve the understanding of the effect of jet

algorithms on QCD resummation [18, 19, 20, 108]. As we have seen in chapter 5,

a clustering algorithm has an impact on the resummation of observables which are

sensitive to emissions in a limited region of the phase-space (non-global observables

[21, 22]), such as energy flow outside jets. These receive single logarithms which

are currently accounted for numerically in the large Nc limit for processes involving

only two hard partons. It was shown in ref. [18] that employing a kt algorithm on

the final-state particles reduces these logarithms in the case where only two hard

partons are present. However the resummation of jet-defined quantities proved to be

non-trivial [19] and we have explained the full impact of the kt clustering algorithm

on resummation in chapter 5.

With the technique of resummation using a clustering algorithm one can proceed

with studying jet-defined quantities. In the present chapter we focus on the dijet

azimuthal correlation distribution. We consider the process of production of two

hard jets (in the final state) in DIS or hadronic collisions. We study the azimuthal

correlation defined by the azimuthal angle between the two leading hard jets in the

final state. This study is similar to that of the DIS angular correlation introduced and

analysed by Banfi et al [110], however our observable here is a jet-defined quantity

being sensitive to the final-state jets (not hadrons).

This observable has been measured by the H1 collaboration [32]. The data ob-

tained in these measurements were compared to fixed-order NLO predictions which

showed the necessity of higher-order corrections. A resummation has therefore been

suggested and it is this we aim to do here. A different approach, namely that employ-

ing unintegrated PDFs, has been followed by Hansson and Jung and it is interesting

to compare our predictions with those of ref. [35].

In the soft and/or collinear region, i.e. close to the Born configuration in which

the outgoing jets are back-to-back in the hadronic centre-of-mass frame, the dijet az-

imuthal correlation distribution receives large logarithms. This region is also strongly

affected by non-perturbative effects. In this chapter we calculate the resummed dis-

tribution to NLL accuracy both in DIS and hadronic collisions. We find that the

differential cross-section tends to a constant in the logarithmically enhanced region.
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We also provide a matching to NLO results obtained from NLOJET++ [39, 40] in

the DIS case.

This chapter is organised as follows. In the next section we discuss the kinematics

of dijet production in DIS and the observable definition in the soft and collinear limit.

We then provide a resummed prediction for the DIS case in section 6.3 and discuss

the numerical approach we use to obtain the result in section 6.4. In section 6.5 we

match the resummed result to NLO result and in section 6.6 we discuss our findings.

Finally we briefly describe the extension of this work to hadronic collisions in section

6.7.

6.2 Kinematics

We consider the process in which soft gluons are emitted in dijet production in DIS

(q + p0 → p1 + p2 +
∑n

i ki), with q, p0, p1, p2 and ki standing for the momenta of the

virtual photon, the incoming parton, the two outgoing hard partons and the ith soft

gluon. We write the transverse momenta of particles with respect to the photon axis

in the Breit frame (or equivalently the hadronic centre-of-mass frame), in which the

incoming parton and virtual photon collide head-on, as:

~pt,0 = (0, 0),

~qt = (0, 0),

~pt,1 = pt,1(1, 0),

~pt,2 = pt,2(− cos ε, sin ε),

= pt,2(cos(π − ε), sin(π − ε)),

~kt,i = kt,i(cos φi, sin φi), (6.2.1)

where we define the +z-axis to be parallel to the photon axis and consider the

outgoing hard particle “1” to be at azimuthal angle φ1 = 0. We also consider a

small recoil (azimuthal) angle, ε (positive or negative), of the hard outgoing partons,

due to the emission of soft gluons. We define pt as the transverse momentum of the

outgoing hard partons (pt = pt,1 ≈ pt,2 to NLL accuracy).
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The azimuthal angle of a jet in the “Et-weighted scheme” is defined by [14, 15]:

φjet =

∑
i∈jet Et,iφi∑
i∈jet Et,i

, (6.2.2)

where the sum runs over all final-state particles inside the jet with Et,i and φi being

the transverse energy and azimuthal angle of the ith particle as defined above. At

leading order we have two back-to-back hard jets in the final state. Thus ∆φ ≡
|π − δφjets| = 0.

Thus we write the azimuths of the leading outgoing jets, in the soft and/or

collinear regime, as:

φjet1 ≈
∑
i∈jet1

kt,i φi/pt, (6.2.3)

φjet2 ≈ π +
n∑
i

kt,i sin φi/pt +
∑

j∈jet2

kt,j(φj − π)/pt, (6.2.4)

where we use ε ≈ −∑n
i kt,i sin φi/pt, which is sufficient for NLL accuracy. Hence the

observable we study has the following approximation (in the soft and/or collinear

region):

∆φ = |π − δφjets| ,

=

∣∣∣∣∣
∑

i

kt,i

pt

(sin φi − θi1φi − θi2(π − φi))

∣∣∣∣∣ , (6.2.5)

where θij = 1 if particle i is clustered to jet j and is zero otherwise.

In the next section we discuss the definition of the observable with respect to the

axes defined by the outgoing legs. This will help us confirm the continuous globalness

of the observable, compare our predictions with CAESAR [111] and determine the

radiator (see appendix B).

6.2.1 Globalness of the observable

A “continuously global” observable [21, 22, 47, 111] (V ) is one that satisfies, for the

emission of a single soft and collinear gluon to an external leg (l) (l = {0, 1, 2}),

∂ ln V (k
(l)
t , φ(l), η(l))

∂ ln k
(l)
t

= a0, (6.2.6)
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where k
(l)
t , φ(l) and η(l) are the transverse momentum, azimuthal angle and rapidity

of the emission with respect to leg (l). Here a0 represents the power of kt in the

observable definition with respect to the incoming leg “0”.

To show that our observable is continuously global we write its definition in terms

of the variables kt, η and φ with respect to the legs “0”, “1” and “2”. To do so we

introduce a rotation about the y-axis of the Breit frame (or hadronic centre-of-mass

frame) and write the components of the vector k (three-momentum of the gluon) in

the rotated frame, in which the +z-axis becomes parallel to the three-momentum of

leg (l). The rotation angle is θl in the x− z plane, where θl is the angle between the

+z-axis and the three-momentum of leg (l). Thus we can write:




kt cos φ

kt sin φ

kt sinh η


 =




cos θl 0 − sin θl

0 1 0

sin θl 0 cos θl







k
(l)
t cos φ(l)

k
(l)
t sin φ(l)

k
(l)
t sinh η(l)


 . (6.2.7)

From this we arrive at:

kt = k
(l)
t

√
[cos θl cos φ(l) − sin θl sinh η(l)]

2
+ [sin φ(l)]2, (6.2.8)

sin φ =
sin φ(l)

√
[cos θl cos φ(l) − sin θl sinh η(l)]

2
+ [sin φ(l)]2

=
cosh ηl sin φ(l)/ sinh η(l)

√
[1− sinh ηl cos φ(l)/ sinh η(l)]

2
+ [cosh ηl sin φ(l)/ sinh η(l)]2

. (6.2.9)

Thus we deduce that for a soft and collinear emission to the incoming leg (“0”)

we have in the Et-weighted scheme1:

∆φ(0) = k
(0)
t /pt

∣∣sin φ(0)
∣∣ , (6.2.10)

while for a soft and collinear emission to legs “1” and “2” we have:

∆φ(1),(2) ' 2

3
k

(1),(2)
t /pt cosh2 (η1,2) exp(−2η(1),(2))

∣∣sin3 φ(1),(2)
∣∣ , (6.2.11)

where ηl is the rapidity of leg (l) with respect to the z-axis. Thus eq. (6.2.6) is

satisfied.

1Eqs. (6.2.10) and (6.2.11) are useful in determining the “radiator” for the resummed result

[111] (see appendix B). They can also be used to implement our observable into CAESAR [111]

(see later).
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The above implies that the observable in the Et-weighted scheme is continuously

global. This means that no non-global component is present and the resummed

result to NLL accuracy has no dependence on the jet algorithm [47]. This is the

recombination scheme used by the H1 collaboration to measure this observable [32].

However if one employs a recombination scheme in which the four-momentum of

the jet is defined by the addition of four-momenta of particles in the jet, then our

observable becomes non-global. In this case one would need to calculate the addi-

tional non-global component as well as the dependence on the jet algorithm. The DØ

collaboration employed the latter recombination scheme to measure the observable

[30, 31].

In the next section we perform a resummation to NLL accuracy. We specify to

the DIS case and generalise our results to hadronic collisions in a later section. We

also assume the jets are recombined using the Et-weighted scheme.

6.3 Factorisation and resummation

To calculate the resummed distribution we begin by factorising the integrated dis-

tribution for events with ∆φ < ∆ for some ∆ as follows:

Σ(∆) ≡
∫ ∆

0

dσ

dx dQ2 d∆φ
d∆φ =

∑
a=q,g

∫
dBσa

B
∑

n

∫
dP a

n [θ (∆−∆φ)− 1] , (6.3.1)

from which the differential distribution dσ/(dx dQ2 d∆φ) can be obtained by differen-

tiation at ∆ = ∆φ. In eq. (6.3.1) the term (−1) accounts for the virtual corrections

contribution, dP a
n is the differential probability of the classical independent emis-

sion of n gluons in the soft and collinear regime with an incoming parton a (a = q

for quark and a = g for gluon), where for the case q → qg, with g being leg “2”

[51, 52, 53, 80]:

dP q
n =

1

n!

n∏
i

dkt,i

kt,i

dηi
dφi

2π

Nc

2

(
w02(ki) + w12(ki)− 1

N2
c

w01(ki)

)
, (6.3.2)

and for the case g → qq̄:

dP g
n =

1

n!

n∏
i

dkt,i

kt,i

dηi
dφi

2π

Nc

2

(
w02(ki)− 1

N2
c

w12(ki) + w01(ki)

)
, (6.3.3)
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with:

wkj(k) =
αs(k

2
⊥,k,j)

2π
2k2

t

pk.pj

k.pk k.pj

. (6.3.4)

In eqs. (6.3.2) and (6.3.3) k⊥,k,j is the invariant transverse momentum of the emission

with respect to the dipole in consideration. In fact k2
⊥,k,j = 4k2

t /wkj(k) for the dipole

“kj”.

In eq. (6.3.1) σa
B is the Born cross-section for the production of two hard partons

in DIS with an incoming parton a. It is given by2:

dBσq
B =

∑

δ=T,L

2πα2
em

Q4

αs(µr)

2π

dξ

ξ
dzCF ϕδ(y)Cδ,q(ξ, z, Emin)q

(
x

ξ
, µ2

f

)
, (6.3.5)

dBσg
B =

∑

δ=T,L

2πα2
em

Q4

αs(µr)

2π

dξ

ξ
dzTfϕδ(y)Cδ,g(ξ, z, Emin)g

(
x

ξ
, µ2

f

)
, (6.3.6)

where all the variables and constants have the same meaning as those defined in

section 2.3 and µr and µf are the renormalisation and factorisation scales, which we

chose to equal either Q or pt. The index δ denotes the transverse and longitudinal

pieces and the functions ϕδ(y) are given by:

ϕT (y) = 1 + (1− y)2, (6.3.7)

ϕL(y) = 2(1− y). (6.3.8)

In eq. (6.3.5) and (6.3.6) we only consider events with pt > Emin, with Emin being

some cut-off scale, so the coefficient functions have an explicit dependence on Emin

through the theta function θ(pt − Emin), with pt = Q
√

z(1− z)(1− ξ)/ξ.

We factorise the theta function by introducing the transformation:

θ (∆−∆φ) =
1

π

∫ +∞

−∞

db

b
sin(b∆)

n∏
i

exp

(
ib

kt,i

pt

[sin φi − θi1φi − θi2(π − φi)]

)
.

(6.3.9)

Thus the resummed result is given by:

Σ(∆) =

∫
dBσB

1

π

∫ +∞

−∞

db

b
sin(b∆) exp(−R(b̄)), (6.3.10)

where we suppressed the index a (the radiator explicitly depends on the index a),

2This is presented in detail in subsection 2.3.2.
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and (to NLL accuracy) [75]:

R = −
∫

dP

[
exp

(
ib

kt

pt

|sin φ− θ1φ− θ2(π − φ)|
)
− 1

]
,

=

∫
dPθ

(
kt − pt

αb̄

)
, (6.3.11)

where α = |θ1φ + θ2(π − φ) − sin φ|, with θj = θ (R2 − (η − ηj)
2 − (φ− φj)

2), and

b̄ = |b|eγE . Hence for the b integral we can replace
∫ +∞
−∞ → 2

∫ +∞
0

.

We present the result for the radiator and the expansion of the resummed result to

O(α2
s) in appendix B. Furthermore, to account for the contribution of hard collinear

emissions to the incoming leg we evolve the PDFs as described in appendix B, which

results in the substitutions: qa(x/ξ, µ2
f ) → qa(x/ξ, µ2

f/b̄
2) (where qq(x, µ2

f ) = q(x, µ2
f )

and qg(x, µ2
f ) = g(x, µ2

f )). Thus the Born weight σB becomes explicitly dependent

on b and we move it inside the b integral. We also rescale b̄ → b such that we write

the result as:

Σ(∆) =

∫
dB 2

π

∫ +∞

0

db

b
σB(µ2

f/b
2) sin(b∆)e−R(b), (6.3.12)

with ∆ = ∆e−γE .

6.4 Result in ∆ space

In contrast to Qt distributions (such as that we studied in chapter 4) the result in

∆ space, evaluated using the saddle point method, has a divergence at R′(1/∆) = 1

of the same nature to that we discussed in subsection 4.3.1 (see appendix B for the

derivative of the radiator). This corresponds to a quite high value of ∆ (for the

illustrative value of Q/pt = 6 and for an incoming gluon we arrive at ∆ ∼ 0.13) and

thus the result in this way is not suitable for phenomenological purposes. We remind

the reader that in section 4.3.1 we found that the divergence for the Qt distribution

occurs at R′(Q/Qt) = 2 (which corresponds to a very small value of Qt). This

enabled most of the Qt range to be safely studied.

An alternative approach which we highlighted in section 4.3 can be used in this

case, that is to evaluate the b integral numerically. As we already pointed out in

section 4.3 the radiator has a Landau pole singularity which can be overcome by
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making the replacement b → b∗ = b/
√

1 + b2/b2
lim in both the radiator and PDFs,

where we choose blim = µf/Q0, with Q0 being a cut-off scale3. Furthermore we freeze

the radiator for values of b∗ below “1”, i.e. we evaluate the integral over b from 0 to

bmin, where bmin = blim/
√

b2
lim − 1, freezing the radiator at the value “0”, and then

integrate over b from bmin up to bmax, where bmax = exp(1/(2β0αs(µ
2
r))), using the

full expression for the radiator.

Thus we can write the expression to be used in the numerical code as follows:

Σ(∆) =

∫
dB

(
σB(µ2

f )
2

π
Si(∆bmin) +

2

π

∫ bmax

bmin

db

b
sin(b∆)σB(µ2

f/b
∗2)e−R(b∗)

)
, (6.4.1)

with Si being the “sin integral” function, defined by Si(x) =
∫ x

0
sin(t)/t dt.

6.5 Matching

For an ideal matching one would need to compute the fixed-order result for the

distribution analytically in order to obtain the constant coefficients C q
1 and C g

1

(in analogy to the constant term C 1 for the Qt distribution, which is presented in

appendix A.1). The resummed result would then be given by eq. (6.4.1) with the

replacement (after restoring the index a):

σa
B(µ

2
f/b

∗2) → σa
B(µ

2
f )

C a
0 ⊗ q(x/ξ, µ2

f/b
∗2) + αs(µr)/(2π)C a

1 ⊗ q(x/ξ, µ2
f )

qa(x/ξ, µ2
f )

, (6.5.1)

where the matrices C a
0 are presented in appendix B.4.2, and for σa

B(µ
2
f ) we just set

b∗ → 1 in eq. (6.5.1).

Currently the leading-order analytical result is not available. It is only possible

to obtain the term C1 = Cq
1 + Cg

1 , where:

Ca
1 =

∫
dBσa

B(µ
2
f )

C a
1 ⊗ q(x/ξ, µ2

f )

qa(x/ξ, µ2
f )

, (6.5.2)

from NLOJET++ by subtracting the logarithms at O(αs). For optimal results of the

matching we would need to separate the quark and gluon channel contributions to

C1 (i.e. calculate or extract Cq
1 and Cg

1 ) in order to write the resummed result using

3We choose Q0 such that the scale of PDFs (µf/b∗) is always above the minimum required by

the PDF data set we use (CTEQ6M [112]), Q0 = 1GeV.
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eq. (6.5.1) (which affects O(α2
s ln2(1/∆)) terms in the expansion of the resummed

result).

The matching is complicated not only by not having a fixed-order analytical

result, but also by not having an analytical NLL resummed result in ∆ space. Both

these problems were overcome when we studied the Qt distribution in chapter 4,

however here we do encounter both these difficulties. In fact for the dijet azimuthal

correlation distribution a decent matching would need to be carried out in b space

rather than ∆ space, which means the matching would also need to be performed

numerically.

Since we do not have an analytical fixed-order result we combine the resummed

result to NLOJET++ results in ∆ space in the following way4:

Σmat(∆) = Σ(∆)
[
1 +

(
Σ(1)

e − Σ(1)
r

)
/Σ0

]
+

(
Σ(2)

e − Σ(2)
r

)
Σ̃(∆), (6.5.3)

where now the result has a form similar to that in eq. (3.4.1). Here Σ(∆) is the

resummed result, Σ
(1)
r and Σ

(2)
r are the first and second order terms in the expansion

of the resummed result and Σ0 is the Born cross-section. Expressions for Σ0, Σ
(1)
r

and Σ
(2)
r are presented in appendix B.4.2. Here Σ

(1)
e and Σ

(2)
e are the first and second

order coefficients of the NLOJET++ predictions for the integrated distribution. The

form-factor Σ̃ is given by:

Σ̃(∆) =

(∑
a

∫
dBσa

B exp[−Ra
DL(1/∆)]

)
/Σ0, (6.5.4)

with RDL being the double logarithmic piece of the radiator which is presented in

appendix B.4.2 (with the substitution b̄ → 1/∆). Once again the introduction of

this form-factor is ad-hoc and only affects our result at subleading accuracy. Its

role here is analogous to that for the Qt distribution we presented in chapter 4, that

is to eliminate the effect of subleading O(α2
sL) terms, which we do not control, at

small ∆. Furthermore since we do not account for the coefficients Cq
1 and Cg

1 , the

O(α2
sL

2) terms are not fully controlled5. However these terms are also suppressed

by the form-factor.

4The matching to NLOJET++ we provide here can be improved by separating quark and gluon

channel contributions. We leave this for our forthcoming work [38].
5In chapter 4 we controlled all O(α2

sL
2) terms since we computed the term C 1.
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Figure 6.1: Subtraction of the logarithms from NLOJET++ predictions. The differ-

ence d(Σ
(1)
e − Σ

(1)
r )/d ln ∆ tends to zero when ∆ → 0. This indicates an agreement

between our results and NLOJET++ predictions.

6.6 Results and discussion

In this section we present a result for the matched distribution and discuss the

theoretical uncertainties in our prediction.

In fig. 6.1 we present a comparison between the terms dΣ
(1)
e /dL and dΣ

(1)
r /dL,

where L = ln(∆). We notice that there is an agreement between NLOJET++

predictions and our results at small ∆ (since the difference vanishes), indicating that

the terms H11 and H12, which respectively represent the coefficients of ln(1/∆) and

ln2(1/∆) in the expansion of the resummed result to O(αs) (see appendix B.4.2),

agree with those in NLOJET++ results. Thus the subtraction Σ
(1)
e − Σ

(1)
r contains

no logarithmic dependence and (formally) tends to the constant αs/(2π)C1 when

∆ → 0.

We also note that all the coefficients of logarithms that we control (H11, H12, H23

and H24, which are presented in appendix B.4.2) have been checked against those

predicted by CAESAR [111] and we have an agreement. We did not however consider

the computation of the resummed result using CAESAR since (as we stated before)

the divergence at R′ = 1 (using the saddle point method, which is implemented by

CAESAR) corresponds to a high value of ∆.

In fig. 6.2 we present our results for the matched result compared to NLO-
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Figure 6.2: Preliminary matched-resummed result compared to the NLO prediction.

CTEQ6M [112] PDFs are used.

JET++ predictions. We plot the differential distribution 1/σ dσ/d∆φ, which is nor-

malised to the total NLO cross-section σ. The differential distribution is obtained

by differentiating Σ(∆) at ∆ = ∆φ (see eq.(6.3.1)). The NLO result diverges when

∆φ → 0, while the matched result tends to a constant. The difference between the

matched and resummed result at small ∆φ is a constant factor, which amounts to

Σmat ≈ (1 + αs/(2π)C1)Σ. The results here were obtained using: Q = 20 GeV,

µr = µf = Q, Emin = 5GeV, x = 0.01 and |η1,2| < 1.

The matching prescription we presented above results in some theoretical uncer-

tainties. The most significant one is the lack of knowledge about the terms Cq
1 and Cg

1

since we do not control all the O(α2
sL

2) logarithms in the expansion of the resummed

result. In addition we have uncertainties associated with factorisation and renormal-

isation scales, fixed higher-order corrections (due to large differences between leading

and next-to-leading order results) and the numerical b-space integration. We leave

the analyses of these issues for our forthcoming work [38].

6.7 Dijet azimuthal correlations in hadronic colli-

sions

We report below the result for the dijet azimuthal correlation distribution in hadronic

collisions. This has been measured at DØ using the jet recombination scheme in
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which the four-momentum of a jet is obtained by the sum over the four-momenta of

particles in the jet [30, 31] (we refer to this scheme as the “four-momentum” scheme).

Here we report the result which uses eq. (6.2.2) and briefly discuss the result in the

other scheme.

In the “Et-weighted” scheme the observable ∆φ has exactly the same expression

as that in the DIS case (i.e. eq. (6.2.5)). The resummed result is given by [111]:

Σ(∆) =

∫
dB̃ 2

π

∫ ∞

0

db

b
σ̃B(µ2

f/b
2) sin(b∆)e−

eR(b)S(b) , (6.7.1)

where σ̃B(b) is the Born cross-section for the production of two hard partons in

hadronic collisions, which also contains PDFs from both incoming legs evolved to

µ2
f/b

2, and dB̃ is the corresponding phase-space. We have suppressed the sum over

various channels. Here R̃ is the radiator and is presented in eq. (B.4.15) in appendix

B. The function S is given by:

S(b) = Tr[He−ζ(λ)Γ†Se−ζ(λ)Γ]/Tr(HS) , (6.7.2)

where H, Γ and S are the hard, anomalous dimension and soft matrices. These

depend on the kinematics of the process [57, 58, 59, 60]. The matrices H and S are

identical to those we presented in section 3.5. The matrix Γ contains integrations

over directions in the entire phase-space, as apposed to those in section 3.5, which

are performed in a limited region of the phase-space. Here the matrix Γ has the form

given in eq. (3.5.12) but with:

S = 0, (6.7.3)

T = ln
−t̂

ŝ
+ iπ, (6.7.4)

U = ln
−û

ŝ
+ iπ, (6.7.5)

with ŝ, û and t̂ being the Mandelstam variables which are defined just after eq.

(3.5.5). In eq. (6.7.2) the single logarithmic function ζ(λ) (with λ = αs(Q
2)β0 ln(b))

accounts for soft wide-angle emissions and is presented in eq. (B.4.12) in appendix

B.

We can further our study by looking at the hadronic collisions case using the same

jet definition as that used by the DØ collaboration (“four-momentum” scheme). Here
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the four-momentum of a jet is given by:

pµ
jet =

∑
i∈jet

pµ
i , (6.7.6)

where the sum runs over the four-momenta of all particles in the jet. Thus:

∆φ ≈
∑

i/∈outgoing jets

kt,i sin φi/pt, (6.7.7)

where the sum runs over particles which are not clustered to the outgoing jets. Hence

the observable in this scheme is non-global and the analysis of the resummed result,

to NLL accuracy, requires the inclusion of the non-global component in addition to

the impact of the kt algorithm on the resummation, similar to that we discussed in

chapter 5.

Both of these components are currently not available. However the current indi-

cation is that the effect of these pieces may not be significant [20, 113], particularly

since these pieces contain only single logarithms while the distribution is dominated

by double logarithms originating from soft and collinear emissions to the incoming

legs. In any case one could estimate these components preliminarily in a similar way

to that we presented in section 5.5. We leave this to our forthcoming work.

6.8 Conclusions

In the present chapter we have, for the first time, dealt with the resummation of the

dijet azimuthal correlation distribution both in DIS and hadronic collisions to NLL

accuracy. We used the “Et-weighted” scheme to define the azimuths of the final-state

particles, which lead to the simplification of the calculation since the observable is

global in this case. However in the “four-momentum” scheme the observable is non-

global and formally the resummation is not complete to NLL accuracy. The full

estimate of the resummed result in the latter case is an avenue for future work.

We have also provided a matched result to fixed-order NLO predictions using

NLOJET++. We found an agreement between our resummed prediction expanded

to first order in αs and NLOJET++ results. There is also an agreement between the

coefficients of the logarithms we control and those estimated by the CAESAR pro-

gram. The matching we provided here can be improved by separating the incoming
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quark and gluon channel contributions to the term we referred to as C1. We leave

this for our forthcoming work.

Another step one can take towards more accurate predictions for this observable

is to study the non-perturbative effects, which are expected to be of the “intrinsic

kt” type. Furthermore the sensitivity to small-x effects may be present and this

observable forms a good testing ground for these effects.

In addition to being a means towards better understanding of the resummation

of jet-defined quantities, the analysis we carried out here should enable, in the near

future, the comparison of our predictions with data and other approaches, such as

that of ref. [35] which implements unintegrated PDFs.

In the next chapter we study the power corrections to the energy flow distribution

in hadronic collisions.
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Chapter 7

Aspects of power corrections in

hadron-hadron collisions

7.1 Introduction

The principle issue that limits the accuracy of theoretical predictions in QCD is the

presence of non-perturbative physics responsible for the confinement of quarks and

gluons (hadronisation). The success of perturbative QCD, despite a lack of quantita-

tive understanding of the confinement process, is a major achievement that is based

on identifying infrared and collinear-safe observables [72] which are as insensitive

as possible to non-perturbative effects such as hadronisation. In such instances the

role of non-perturbative hadronisation effects is reduced to the level of corrections

to the perturbative estimates which take the form of an inverse-power law in the

hard scale Q, 1/Qp, where p depends on the observable. For some observables, such

as the total cross-section in e+e− annihilation to jets, where p = 4, the corrections

in question are insignificant and can safely be ignored in comparisons to data. For

other observables such as event-shape variables [46, 47] it was noted however, as we

stated before, that the power corrections scale as 1/Q and obscure the perturbative

analysis significantly.

Over the past decade, theoretical efforts essentially based on renormalons (see

ref. [81] and references therein) have given a clearer picture of the origin and role of

power corrections. Within the renormalon model these corrections are shown to be
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related to a factorial divergence of the perturbative QCD expansion at high orders

and the consequent error in truncating what is in fact an asymptotic series [81]. This

observation allows one to estimate power corrections from a lowest-order Feynman

graph, modified to incorporate the relevant subset of higher-order terms (renormalon

bubble insertions).

From a phenomenological viewpoint the most widely used formulation of the

renormalon model is one that uses a dispersive representation of the running cou-

pling [44], thereby introducing a dispersive variable m that plays the role of a fake

gluon mass. This scale is a natural trigger for power corrections arising in the in-

frared regime for observables that are otherwise dominated by a hard scale Q. The

most appealing feature of the dispersive approach is the hypothesis of a universal

infrared-finite coupling αeff . The size of the power corrections in this approach are

governed by moments of this universal coupling:
∫ +∞
0

dm2/m2αeff(m2)(m2/Q2)p. For

most event-shape variables (for example) p = 1/2 [46], and the relevant coupling mo-

ment or equivalently the related quantity α0 (which we introduced in section 3.6)

has been extracted from data for different event shapes in both e+e− annihilation

and DIS [42, 43]. The values of α0 thus obtained have generally confirmed the uni-

versality hypothesis to within the expected uncertainties due to missing higher-order

corrections [46]. These studies have not only enabled successful studies of several

observables, but also lent credence to the notion that the QCD coupling may be a

meaningful (finite and universal) concept all the way down to the smallest energy

scales, and have thus renewed hope of a better understanding of the confinement

domain from first principles of QCD.

The successes of renormalon-inspired studies have thus far been limited to ob-

servables which involve just two hard partons at Born level such as event shapes in

e+e− → two jets and DIS (1+1) jets. Some of the most interesting QCD observables

however do not fall into the above class. Examples include three-jet event shapes

in e+e− annihilation and DIS [51, 52, 53, 54], dijet event shapes in hadron collisions

[114] and single-jet inclusive cross-sections at hadron colliders [55]. These observ-

ables contain more than two hard partons at Born level and additionally pertain

to processes that have gluons at Born level where one may question the extension
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of the dispersive approach, which (strictly speaking) was formulated for observables

involving only quarks at the Born level [81]. The program of understanding power

corrections has not been put to test in such situations which will be of importance at

the LHC, for instance, although some progress is being made on the phenomenolog-

ical side for three-jet event shapes [54]. In fact for the case of observables involving

four hard partons at the Born level there are as yet no complete theoretical predic-

tions for power corrections.

Applying the renormalon model, in many such cases, reduces (as for e+e− an-

nihilation to jets or DIS event shapes) to an analysis of soft gluon radiation with

transverse momenta kt ∼ ΛQCD, which are associated with a universal infrared-finite

coupling. Given the rich structure (colour and geometry-dependence) of soft gluon

radiation for processes like dijet production in hadron collisions, it is indeed enticing

to see how a perturbative structure may influence predictions for power corrections

as predicted by the renormalon model. Signs of perturbatively calculable colour

structure in the non-perturbative power-behaved component would strongly suggest

that the renormalon-inspired picture of these corrections is an extension of soft gluon

radiation, with a modified but universal coupling, thereby conclusively establishing

the model.

In this chapter we provide a calculation of the power correction to the transverse

energy (Et) flow away from jets accompanying hard dijet production in hadron colli-

sions. A variant of this observable (the “pedestal” height) was suggested several years

ago by Marchesini and Webber as a means of separating perturbative bremsstrahlung

from the contribution of the soft underlying event in hadron collisions [107]. To date

however a satisfactory understanding of the away-from-jet energy flow has proved

elusive. In the region of small Et the distribution dσ/dEt contains large logarithms

of the form αn
s lnn−1(Pt/Et)/Et, where Pt is the hard scale (jet transverse momenta)

of the problem. As we mentioned in earlier chapters, these logarithms can only be

resummed in the large Nc limit [21, 22, 76] which limits the accuracy of perturbative

estimates that can be made in this case alongside the lack of any estimates of the

NLL contributions. One may also expect power corrections of the form 1/Pt to the

resummed distribution as for the case of event-shape distributions in e+e− annihila-

107



tion and DIS. Once again there is no estimate for these power corrections and it is

this that we aim to provide here. Combining the power corrections we compute with

resummed Et flow distributions gives a more complete theoretical account which

should facilitate comparisons to experiment.

While at hadron colliders the ever-present soft underlying event may obstruct

clean studies of power-behaved corrections arising from the bremsstrahlung com-

ponent of the Et flow, our calculations here are also easily adapted to the case of

rapidity gaps in dijet photoproduction at HERA, and are in principle more readily

tested in that environment. Moreover there are theoretical ideas concerning ob-

servables such as inclusive jet cross-sections at hadron colliders, where it may be

possible to disentangle the underlying event from the non-perturbative physics in

the bremsstrahlung component, due to a singular 1/R (R being a jet radius para-

meter) behaviour of the latter [55]. A full estimate of this piece however involves a

calculation similar to the one we introduce here and thus the present calculations

can be used as a guide in moving towards better estimates of the inclusive jet cross-

sections as well. Another related class of observables, to which the techniques we

use here are directly applicable, is the important case of event shapes at hadronic

colliders [114]. Resummed perturbative estimates already exist for these quantities

and identical considerations to those of this chapter will be required when dealing

with the issue of power corrections. While other problems such as lack of knowledge

about next-to-leading logarithms also need to be addressed, the calculation of the

power correction is ultimately an important ingredient which, as we stressed above,

also serves as a case study for hadron-hadron observables more generally.

This chapter is organised as follows. In the following section we define the ob-

servable more precisely and review the perturbative result in Mellin space conju-

gate to Et, which involves colour matrices in the resummed anomalous dimensions

[57, 58, 59, 60]. We then compute the power correction to each of the matrix el-

ements of the anomalous dimension by considering the appropriate combination of

dipoles involved in that matrix element. The calculation of the power correction in

each dipole term is performed using the appropriate scale of the running coupling

(the invariant transverse momentum of the dipole, k⊥ [51, 52, 53, 79]). The final step
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is to take the inverse Mellin transform of the result, for which it proves convenient

to diagonalise the power-corrected anomalous dimension matrices. We find that the

power correction to the Et distribution is not a simple shift of the resummed dis-

tribution by a fixed amount proportional to 1/Pt as is the case for event shapes in

e+e− → two jets and DIS (to a good approximation).

7.2 Resummed perturbative result

Here we outline the resummed result for the Et flow distribution, specialising for

simplicity (as in chapter 5) to the case of a slice in rapidity of width ∆η, which we

take to be centred at η = 0 (the rapidity η is defined with respect to the beam axis).

The observable we compute is once again the distribution:

Σ(Pt, Et) =
1

σ

∫ Et

0

dσ

dE ′
t

dE ′
t, Et =

∑
i∈Ω

Et,i, (7.2.1)

where σ is the total cross-section for dijet production in hadronic collisions, Ω denotes

the rapidity slice and Et is obtained by summing over all objects (partons/jets) in

the gap.

As we have stated many times now, the resummed prediction Σ(Pt, Et) up to SL

accuracy (resumming all the terms αn
s lnn(Pt/Et)), can be thought of as comprising

two distinct pieces with different dynamical origins: global and non-global.

The global component, which we discussed at length in section 3.5, [21, 22] is a

result of considering multiple soft emissions, both real and virtual, attached just to

the primary or Born hard partons. Due to infrared-safety of the observable real and

virtual emissions cancel below the scale Et, while real emissions above this scale are

vetoed. Thus the resummed result for this piece is just the summation of virtual

graphs above the scale Et, attached to the primary hard partons [57, 58, 59, 60].

In actual fact the factorisation of real emissions and the consequent cancellation

with virtual ones takes place in Mellin space conjugate to Et, analogous to that we

presented in section 3.3. This complication can be ignored for the leading logarithmic

terms, but to analyse the impact of power corrections on the resummed distribution

we need to compute the result in Mellin space and then invert the transform to Et
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space. To be more precise the perturbative resummed result (considering just the

global term for now) reads:

Σ(Pt, Et) =

∫
dν

2πiν
eνEtR(ν), (7.2.2)

where ν is the Mellin variable conjugate to Et and the integration contour is taken,

in the usual manner, parallel to the imaginary axis and to the right of all singularities

of the integrand. We have:

R(ν) = Tr
(
He−Γ†(ν)Se−Γ(ν)

)
/Σ0. (7.2.3)

In the above Γ is essentially an “anomalous dimension matrix” and H and S are

the hard and soft matrices which we introduced in section 3.5 for the case qq̄ → qq̄.

The matrix elements Hij represent the product1 of the Born amplitude in colour

channel i and its complex conjugate in colour channel j, and the matrix S represents

the normalisation arising from the colour algebra (i.e. the elements c∗i .cj, which we

introduced in section 3.5). The squared matrix element for the Born scattering in

this notation is just Σ0 = Tr(HS). We shall return to the detailed structure of Γ in

the next section.

We now turn to the second piece of resummed distribution: the non-global con-

tribution. The above result, resumming essentially virtual corrections above the

veto scale Et which dress the hard scattering, is not the complete description at

single-logarithmic accuracy [21, 22]. An additional non-global piece S(Pt, Et), which

is different than that in the two-jet case, arises (starting at the two-gluon emission

level, O(α2
s)) and is also single-logarithmic. The dynamical origin of this piece, as we

explained in earlier chapters, is multiple soft energy-ordered radiation with an arbi-

trary complex geometry (“hedgehog” configurations of soft gluons, similar to that in

fig 3.3, as opposed to emissions strongly ordered in angle). As we emphasised before,

it has thus far been possible to treat this term only in the large Nc approximation,

which limits the accuracy of perturbative calculations in the present instance.

However it has been pointed out and clarified in a series of papers [18, 19, 20, 108]

(including the work we presented in chapter 5) that the role of the non-global com-

1This is analogous to M†
jMi, with the colour-averaging factor 1/N2

c and sum over spins, where

Mi and Mj stand for the components of the vector M in eq. (3.5.3).
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ponent can be significantly reduced by defining the observable in terms of soft jets

rather than individual hadrons in the gap. This can be achieved by running a cluster-

ing algorithm on the final states such that all objects are included in jets. We have

shown that the clustering procedure (with a large cluster radius R = 1) virtually

eliminates the non global component while giving rise to additional global terms [20]

that were at most modest corrections to the pure virtual dressing as represented here

by eq. (7.2.3). Moreover the power corrections associated to the non-global compo-

nent of the result would start at a higher-order in αs (albeit potentially accompanied

by logarithms of Pt/Et) which we ignore. This was also the procedure employed for

the case of non-global DIS event shapes [46], where power corrections were computed

in the exponentiated single-gluon piece of the resummed distribution, which was a

phenomenological success. For all these reasons we shall choose to concentrate for

the rest of this chapter on the global component (eq. (7.2.3)), ignoring the non-global

component.

In the following section we explicate the structure of Γ in terms of the various

hard colour dipoles from which one considers soft gluons to be emitted according to

the usual antenna pattern. Non-perturbative power corrections are then computed

on a dipole-by-dipole basis, adapting the procedure for a qq̄ dipole developed for the

case of e+e− annihilation to two jets. Having obtained the power corrections to Γ(ν)

we then invert the Mellin transform to examine the result for the Et distribution.

7.3 The anomalous dimension and power correc-

tions

We first write down the structure of the resummed anomalous dimension matrix Γ(ν)

and then note that it contains an integral over the running coupling which is for-

mally divergent. Making the ansatz of a universal infrared-finite coupling cures this

divergence and introduces calculable power corrections to the perturbative anom-

alous dimensions. In what follows and for the rest of this chapter we specialise to

the case of the sub-process qq̄ → qq̄ since identical considerations are involved for all

other sub-processes.
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First we summarise the results we obtained in section 3.5. For the sub-process

q (p1, r1) + q̄ (p2, r2) → q (p3, r3) + q̄ (p4, r4), where pi and ri are respectively four-

momenta and colour indices, we can choose to work in the t-channel singlet-octet

colour basis:

c1 = δr1r3δr2r4 , c2 =
1

2

(
δr3r4δr1r2 −

1

Nc

δr1r3δr2r4

)
. (7.3.1)

For this basis we have:

S =


 N2

c 0

0 N2
c−1
4


 , (7.3.2)

and the anomalous dimension matrix Γ is:

Γ =


 CF T CF

2Nc
(S − U)

S − U CF S − 1
2Nc

(T − 2U + S)


 . (7.3.3)

In the above S, T and U are combinations of dipole contributions with each contri-

bution given by the corresponding dipole antenna. Thus one has:

S = w̃12 + w̃34, (7.3.4)

T = w̃13 + w̃24, (7.3.5)

U = w̃23 + w̃14, (7.3.6)

where each dipole contribution w̃ij reads:

w̃ij =

∫
d3~k

2ω(2π)3
g2

s

(pi.pj)

(pi.k) (pj.k)
u(kt, ν). (7.3.7)

In the above result we integrate the soft gluon emission probability, given by the

dipole antenna pattern, over the gluon phase-space (with ~k and ω being respectively

the three-momentum and energy of the gluon, as usual) with a “source” function

u(kt, ν) and g2
s = 4παs. The source is a result of factorising the real soft emission

phase-space in Mellin space (see for instance ref. [76]) and accounting additionally

for virtual corrections:

u(k) =
(
1− e−νkt

)
, (7.3.8)

if the emission is in Ω and is zero elsewhere. The source thus represents the impact

of real-virtual contributions which completely cancel, to our accuracy, for emissions

112



outside Ω. Now introducing the variables η and φ, respectively being the rapidity

and azimuth of the emission with respect to the beam direction, one can write:

w̃ij =

∫
dkt

kt

αs(k
2
⊥,i,j)

2π
dη

dφ

2π

(
1− e−νkt

)
fij(η, φ), (7.3.9)

with fij(η, φ) being the functional dependence on rapidity and azimuth that arises

from the dipole antenna patterns and which we shall use below. We note that the

argument of the running coupling for emission from a dipole is ([51, 52, 53, 79, 80])

k2
⊥,i,j = 2(pi.k)(pj.k)/(pi.pj), which is the transverse momentum of the gluon k with

respect to the dipole axis in the dipole rest frame. This must be distinguished from

kt, the transverse momentum of the gluon with respect to the beam direction, which

is the quantity that directly enters the observable definition. In fact we have, in

terms of the functions fij introduced above, k⊥,ij = kt

√
2/fij.

7.3.1 Power corrections dipole-by-dipole

Now we proceed to an extraction of the leading power-behaved contribution. In

order to do this we first note that the integral over kt in eq. (7.3.9), which can

be rewritten as one over the related variable k⊥, is divergent if one uses the usual

perturbative definition of αs, due to the divergence of the running coupling at k⊥ =

ΛQCD. In order to isolate and cure this pathological behaviour, as we did in section

3.6 for the two-jet case, we introduce the infrared-finite effective coupling (αeff) and

change the variable of integration from kt to k⊥ in eq. (7.3.9). We then follow the

method of Dokshitzer and Webber [45] to write αeff(k2
⊥) = αs,PT(k2

⊥) + δαs,NP(k2
⊥),

where PT and NP stand for perturbative and non-perturbative respectively. In

doing so we have assumed that the actual coupling αeff is in fact finite even at

arbitrarily small k⊥, and can be split into the usual perturbative component αs,PT and

a modification δαs,NP which is due to non-perturbative effects. Both the perturbative

and non-perturbative components separately diverge, but the divergences cancel in

their sum due to the assumed finiteness of the physical coupling αeff . Moreover,

since we do not modify the perturbative results at large scales, the non-perturbative

physics as represented by the modification δαs,NP must vanish above some infrared

“matching” scale µI . Effectively the addition of the δαs,NP term represents removal
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of the badly-behaved perturbative contribution below µI and its replacement with

the well-behaved integral over the infrared-finite physical coupling αeff .

Thus for the observable itself one has from dipole (ij):

∫

k∈Ω

dη
dφ

2π

dk⊥,i,j

k⊥,i,j

αs,PT(k2
⊥,i,j)

2π

(
1− e−νkt

)
fij(η, φ)+

+

∫

k∈Ω

dη
dφ

2π

dk⊥,i,j

k⊥,i,j

δαs,NP(k2
⊥,i,j)

2π

(
1− e−νkt

)
fij(η, φ). (7.3.10)

The integral involving the perturbative coupling represents the usual perturbative

contribution from dipole (ij). The leading logarithmic perturbative contribution

arises from the region where one can make the approximation:

(
1− e−νkt

) ≈ θ

(
kt − 1

ν

)
. (7.3.11)

The perturbative results were reported at length by Berger et al [78] (also presented

in section 3.5). In what follows we shall consider in more detail the non-perturbative

contribution from the integral involving δαs,NP.

In order to evaluate the non-perturbative contribution we first consider that the

leading such term arises from the region µI ¿ 1/ν, which translates to a requirement

on Et to be above a few GeV. In this region one can expand the exponential in an

exactly analogous way as for event-shape distributions [45]. The leading term is

given by the first term in the expansion: 1− exp(−νkt) ≈ νkt, and this corresponds

to a linear 1/Pt power correction. We ignore quadratic and higher power corrections

that would scale as 1/P 2
t and beyond, once again following the case of event-shape

variables. We also note that in the shape function approach [115, 116], where one

may study non-perturbative effects even into the region Et ∼ ΛQCD, higher powers

of ν need also to be retained. Working with just the leading term gives us the

non-perturbative correction from the (ij) dipole which can then be written as:

w̃ij = w̃PT
ij + νPCij. (7.3.12)

Here the non-perturbative quantity P is the first moment of the coupling modification

δαs,NP:

P =

∫ µI

0

dk⊥
k⊥

k⊥
δαs,NP(k2

⊥)

2π
, (7.3.13)
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which also enters 1/Q (Q being the hard scale) power corrections to event shapes

and can be related to the parameter α0, extracted from fits to event shape data, as

(see eq. (3.6.3)):

P =
µI

2π

(
α0(µI)− αs(P

2
t )− β0

2π

(
ln

Pt

µI

+
KF

β0

+ 1

)
α2

s(P
2
t ) +O(α3

s)

)
, (7.3.14)

where α0(µI) = 1/µI

∫ µI

0
dk⊥ αeff(k2

⊥).

The coefficients Cij represent the integral over directions:

Cij =

∫

k∈Ω

dη
dφ

2π

1√
2
f

3/2
ij , (7.3.15)

where fij arises from the dipole antenna pattern as indicated in eq. (7.3.9), and

a further factor proportional to
√

fij comes from rewriting kt in terms of k⊥ as

we stated before. The explicit form of the fij functions is reported in appendix C.

Performing the integrals over η and φ in eq. (7.3.15) yields the coefficients Cij that

correspond to the non-perturbative contribution to w̃ij in eq. (7.3.12), which we do

not explicitly display for economy of presentation.

Having computed the power corrections proportional to ν for each dipole, we can

include these corrections to the anomalous dimension matrix in eq. (7.3.3), which

can then be written as:

Γ = τΓPT + νPΓNP, (7.3.16)

where the non-perturbative contribution ΓNP is built up by combining the dipole

contributions Cij as in the perturbative case. In the case of the perturbative term ΓPT

we explicitly extracted the integral over the transverse momentum of the coupling:

τ =

∫ Pt

1/ν

dkt

kt

αs,PT(k2
t )

2π
, (7.3.17)

which is analogous to that we introduced in eq. (3.3.7), and arises by making the

substitution (7.3.11) in the first term of (7.3.10). Then the matrix ΓPT is the usual

perturbative anomalous dimension containing integrals over gluon directions inside

the region2 Ω. In the following section we shall consider the evaluation of the inverse

Mellin transform to take our results from ν space to Et space.

2These integrals (referred to as Wij in appendix C) are similar to those which yield the Cij

except that the functions fij are involved rather than f
3/2
ij /

√
2.
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7.4 Power corrections in the Et cross-section

After accommodating the leading power corrections (those expected to give rise to

1/Pt effects), eq. (7.2.2) assumes the explicit form:

Σ(Pt, Et) =

∫
dν

2πiν
eνEt×

× Tr
[
H exp

(
−τΓ†PT − νPΓ†NP

)
S exp (−τΓPT − νPΓNP)

]
/Σ0. (7.4.1)

In order to invert the Mellin transform (perform the ν integral above) it is simplest

to diagonalise the matrix τΓPT + νPΓNP. In the basis in which the matrix Γ is

diagonal the matrices H and S become H̃ = R−1HR−1† and S̃ = R†SR, where R

is a matrix containing the eigenvectors of Γ as column entries. After diagonalisation

we can write the result for Σ(Pt, Et) in terms of components as:

Σ(Pt, Et) =

∫
dν

2πiν
eνEte−λiδijH̃jke

−λ∗kδklS̃li/Σ0, (7.4.2)

where λi are the eigenvalues of the matrix Γ. For the case of the qq̄ → qq̄ sub-process,

which we use as an example, Γ, H̃ and S̃ are 2×2 matrices and the above result can

be written explicitly in terms of the elements of the various matrices as:

Σ(Pt, Et) =

∫
dν

2πiν
eνEt

1

Σ0

×

×
(
H̃11S̃11e

−(λ1+λ∗1) + H̃12S̃21e
−(λ1+λ∗2) + H̃21S̃12e

−(λ∗1+λ2) + H̃22S̃22e
−(λ2+λ∗2)

)
,

(7.4.3)

where the above result contains both perturbative and non-perturbative contribu-

tions. To separate these we note that the eigenvalues can be expanded so as to

retain only the first-order in ν correction to the perturbative value, which depends

logarithmically on ν:

λi = τ(ν)λPT
i + νPλNP

i +O(ν2). (7.4.4)

We emphasise here that while λPT
i are simply the eigenvalues of ΓPT, λNP

i are not

the eigenvalues of ΓNP. Instead they are coefficients of the O(ν) component of the

expansion of the eigenvalues of τΓPT + νPΓNP and they depend on the components

of both ΓNP and ΓPT.
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The matrices H̃ and S̃ also differ from their pure perturbative forms by corrections

which depend on ν. Let us define the matrix D such that Dij = H̃ijS̃ji. We expand

the elements Dij to first order in ν and write the result as:

Σ(Et, Pt) =
∑
i,j

∫
dν

2πiν
eν(Et−P[λNP

i +λ∗NP
j ])

(
DPT

ij +
ν

τ(ν)
PDNP

ij

)
e−τ(ν)(λPT

i +λ∗PT
j )/Σ0,

(7.4.5)

where the sum runs over the components of the matrix Dij and we ignore higher-order

terms in the expansion of Dij(ν).

We ignore for the moment the correction terms involving DNP
ij which shall be

presently considered. We first write down the pure perturbative result ΣPT(Pt, Et)

obtained by ignoring all non-perturbative components. Then performing the in-

tegral over ν (easily performed by contour integration) and retaining only leading

perturbative logarithms we get:

ΣPT(Pt, Et) =
∑
i,j

DPT
ij e−(λPT

i +λ∗PT
j )τ(Et)/Σ0, (7.4.6)

where the effect of the ν integration amounts to merely replacing ν by 1/Et. Including

the non-perturbative correction to the eigenvalues we find by examining eq. (7.4.5)

that the impact of the non-perturbative term amounts to a shift of the perturbative

result in each of the terms in the sum in eq. (7.4.6):

Et → Et −P
(
λNP

i + λ∗NP
j

)
. (7.4.7)

Looking at the distribution in Et, with Et being measured in units of the hard scale

Pt, amounts to a 1/Pt non-perturbative shift in each term in the sum above, as is

the case for two-jet event-shape variables [115, 45]. However in contrast to the case

of event shapes it should be clear that the overall impact of the power correction is

not simply a shift of the perturbative distribution by a fixed amount since each term

in the sum on the right hand side of eq. (7.4.6) receives its own characteristic shift

depending on the sum of the eigenvalues λNP
i + λ∗NP

j entering the term in question.

Moreover we have still not accounted for the non-perturbative contribution to

the colour basis as contained in the DNP
ij terms. To evaluate these one performs

the contour integral in question which yields a power correction of the form P/Et.
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Figure 7.1: Power corrections to the energy flow distribution. PT stands for the pure

perturbative result ΣPT(Pt, Et) as presented in eq. (7.4.6), PT+NP stands for the

result including the non-perturbative correction and ignoring the terms DNP
ij , while

PT+NP2 stands for the result presented in eq. (7.4.8).

Computing the full result for this piece we arrive at our final result for Σ(Pt, Et):

Σ(Pt, Et) =
∑
i,j

e−∆PT
ij τ(Et−∆NP

ij )×

×
[
DPT

ij + DNP
ij

P
Et −∆NP

ij

1

τ
(
Et −∆NP

ij

)G

(
αs,

Pt

Et −∆NP
ij

)]
/Σ0, (7.4.8)

where ∆NP
ij = P(λNP

i + λ∗NP
j ) and ∆PT

ij = λPT
i + λ∗PT

j , and the function G is approx-

imately a constant of order αs(Pt), varying very slowly with Et over the range of

Et we consider here. It is a function of the logarithmic derivative of the single-log

resummed perturbative result and hence scales as αs. We also note the presence of

1/τ(Et−∆NP
ij ), which is a reflection of the fact that the correction terms (containing

DNP
ij ) go as ν/τ .

7.5 Results

In this section we illustrate the impact of non-perturbative power corrections on the

energy flow distribution we discussed above.

In fig. 7.1 we show the result for Σ(Pt, Et). We present the pure perturbative

result (eq. (7.4.6)), the result including non-perturbative corrections without the
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DNP
ij component (PT+NP) and the result presented in eq. (7.4.8) (PT+NP2).

The results above were obtained for the illustrative value of pt = 80 GeV. We have

performed the integration over the functions f
3/2
ij for the non-perturbative component

(given in eq. (7.3.15)) numerically. We also assumed that the rapidity gap has width

∆η = 1.

We notice that the effect of the term DNP
ij is in fact very small and thus we take

this as an indication that neglected higher orders in the expansion of Dij are even

more suppressed. We also note that the corrections to the result are larger when

Et is small. Furthermore there is clearly no indication of a pure shift in the overall

result as we stated before.

7.6 Conclusions

In this chapter we have revealed for the first time a calculation of the power cor-

rections in hadronic collisions. We illustrated the computation for the energy flow

distribution using the process qq̄ → qq̄. The generalisation to other channels is

straightforward and only requires the numerical computation of the diagonalised

anomalous dimensions and the corresponding hard and soft matrices.

We found that the result does not correspond to the usual shift found in studies

of two-jet event shapes and energy flows (see section 3.6). The reason for this is the

non-trivial colour algebra involved in the case of hadronic collisions.

The techniques we used here should enable better estimates of power corrections

for observables which have a similar nature to the one we introduced here (such as

the inclusive jet cross-section we mentioned earlier).

Once again our computation does not account for the Milan factor which we

highlighted in section 3.6. As we mentioned there this factor has not been accounted

for in the hadronic collisions case and a two-loop analysis is required in order to

estimate it.
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Chapter 8

Conclusions

In this thesis we have studied different aspects of soft gluon and non-perturbative

effects in QCD observables. The aim was to achieve a better understanding of QCD

dynamics which, for instance, dominate important physics at the LHC.

In chapter 4 we studied the distribution 1/σ dσ/dQt, where Qt is the modulus

of the transverse momentum vector of particles in the current hemisphere of the

DIS Breit frame. We resummed the large logarithms in the small Qt region, to

NLL accuracy, including the non-global logarithms involved and combined the result

to NLO predictions. This observable, as we pointed out, is simply related to the

Drell-Yan vector boson and predicted Higgs Qt spectra at hadronic colliders.

Having obtained the theoretical prediction we compared our results to preliminary

HERA predictions [89]. After obtaining the final form of the data we ought to be

able to assess the role or absence of small-x (BFKL) effects, neglected in conventional

resummation of such quantities. This we leave for our forthcoming phenomenological

investigation.

We then revisited, in chapter 5, the impact of the kt clustering algorithm on pre-

dictions of energy flows into gaps between hard jets. We analytically computed the

dependence of the primary emission term on the jet algorithm, which gave signifi-

cantly more insight than a previous numerical study of the same. We also pointed

out that the non-global component of the answer is reduced even more significantly

by the clustering than suggested previously in the literature. We provided improved

predictions for the latest ZEUS photoproduction data, assessing the impact of our
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latest findings.

As a future avenue the proper calculation of the clustering-dependent component

in hadronic collisions and dijet photoproduction (together with a prediction for the

non-global component) should be straightforward.

Next we studied the azimuthal correlation distribution for dijet production in

QCD hard processes in chapter 6. This observable is sensitive to soft and/or collinear

emissions in the back-to-back region, giving rise to single and double logarithms. We

provided resummed predictions to NLL accuracy for both DIS at HERA and hadronic

collisions at the Tevatron and performed an NLO matching to NLOJET++ results

in the DIS case.

The task of fully computing a matched result and comparing our predictions to

HERA data, as we explained in chapter 6, is well on the way. Having done this we

plan to compute the non-perturbative corrections and proceed with studying this

observable using the jet definition employed by the DØ collaboration.

Finally in chapter 7 we studied the power corrections to the inter-jet energy flow

distribution in hadronic collisions. The “usual” simple shift of the distribution does

not manifest itself in this case because of the complicated colour algebra involved. We

calculated the power corrections to this distribution using the renormalon-inspired

techniques that were employed in e+e− annihilation into jets and DIS cases. We

have illustrated the impact of such corrections in the simple case of qq̄ → qq̄, where

we calculated the corresponding anomalous dimension matrices.

The next step in the analysis of these power correction is to compute the Milan

factor, which requires a two-loop analysis of the argument of the coupling. Once

this is done, and in light the work of chapter 5, one can provide the most accurate

predictions which can be compared to energy flow data in hadronic collisions together

with those from DIS photoproduction. This allows us to test many perturbative

frameworks we have developed in this thesis, which are very important for the LHC,

particularly the universality of non-perturbative effects manifested in the coupling

moment.
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Appendix A

Fixed-order result and the

radiator for the DIS Breit current

hemisphere Qt distribution

A.1 Fixed-order result

In all what follows the symbols have the same meaning as those introduced in chapter

2 and chapter 4. The observable we study here is the modulus of the vectorial sum of

transverse momenta of all particles in the current hemisphere pt = |~pt| =
∣∣∣∑i∈Hc

~kt,i

∣∣∣.
The momenta of particles in the Breit frame are given by:

P =
Q

2x
(1, 0, 0,−1), (A.1.1)

p =
Q

2ξ
(1, 0, 0,−1), (A.1.2)

q = Q(0, 0, 0, 1), (A.1.3)

r =
Q

2
(z0, z1, z2, z3), (A.1.4)

k =
Q

2
(z0, z1, z2, z3), (A.1.5)

where

z2
1 + z2

2 = z2
1 + z2

2 = −(z1z1 + z2z2) = z2
⊥, (A.1.6)
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Figure A.1: The phase-space. See table A.1 for the values of pt in different regions.

Region Particles in region pt QBzQ

A both outgoing particles 0 Qz⊥

B and C one outgoing particle Qz⊥/2 Qz⊥/2

D None 0 0

Table A.1: Values of pt and QBzQ in different regions of the phase-space.

and

z0 = 2z − 1 +
1− z

ξ
, (A.1.7)

z0 = 1− 2z +
z

ξ
, (A.1.8)

z3 = 1− 1− z

ξ
, (A.1.9)

z3 = 1− z

ξ
, (A.1.10)

z⊥ = 2

√
z(1− z)(1− ξ)

ξ
. (A.1.11)

The vectors ~rt = Q/2(z1, z2) and ~kt = Q/2(z1, z2) are the transverse momentum

vectors of the outgoing particles. They are equal in magnitude and opposite in

direction. Their modulus is Qz⊥/2.

At O(αs) we identify four distinct regions of the phase-space each with a different

distribution of particles as shown in fig. A.1 and summarised in table A.1.
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A.1.1 A relation between pt and the jet broadening

It proves convenient for the calculation of the Qt distribution at O(αs) to consider

the jet broadening [87]. This is defined as:

BzQ =

∑
i∈Hc

|~pi × ~n|
Q

, (A.1.12)

where ~n is a unit vector along the z-axis. The values of the jet broadening in different

regions of the phase-space are shown in table A.1.

Clearly QBzQ = pt in regions “B”, “C” and “D”. Thus one can subtract the

contribution of region “A” to the jet broadening leading-order distribution to get

the Qt one.

A.1.2 Setting-up the calculation of the cross-section

The integrated cross-section for events with pt < Qt is obtained by restricting the

phase-space in eq. (2.3.4) with a theta function of the form θ(Qt − pt). One can

write:

1

σ0

σ(1)(Qt, Q, x) =
1

q(x,Q2)

αs

2π

∫ 1

x

dξ

ξ

{
CF q

(
x

ξ
,Q2

)
F2,q

(
ξ,

Q

Qt

)
+

+ Tfg

(
x

ξ
,Q2

)
F2,g

(
ξ,

Q

Qt

)
− y2

1 + (1− y)2

[
CF q

(
x

ξ
,Q2

)
FL,q

(
ξ,

Q

Qt

)
+

+ Tfg

(
x

ξ
,Q2

)
FL,g

(
ξ,

Q

Qt

)]}
, (A.1.13)

where

Fi,j

(
ξ,

Q

Qt

)
=

∫ 1

0

dzCi,j(ξ, z) θ (Qt − pt) , (A.1.14)

and Ci,j are the coefficient functions (see equations (2.3.5) to (2.3.8)). Our aim here

is to solve the integral in eq. (A.1.13) neglecting terms that vanish when Qt → 0,

which we do not require. We are particularly interested in extracting the logarithms

and the term C 1 that appears in eq. (4.3.2). Terms which we neglect are supplied

to the distribution by matching to NLO results.

To work with real emissions alone we exploit the unitarity relation:

σ
(1)
pt<Qt

= σ
(1)
tot − σ

(1)
pt>Qt

, (A.1.15)
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where σ
(1)
tot is the total leading-order cross-section. The term σ

(1)
pt>Qt

, which represents

the integrated distribution for events with pt > Qt at O(αs), does not acquire virtual

corrections.

The jet broadening fixed-order results have been calculated by Dasgupta and

Salam [87]. We use those results and subtract the contribution of region “A” to get

the Qt distribution. We have:

σ
(1)
BzQ<B = σ

(1)
tot −

(
σ

(1)
BzQ>B(region B) + σ

(1)
BzQ>B(region C) + σ

(1)
BzQ>B(region A)

)
,

(A.1.16)

σ
(1)
pt<Qt

= σ
(1)
tot −

(
σ

(1)
pt>Qt

(region B) + σ
(1)
pt>Qt

(region C)
)

. (A.1.17)

Hence:

σ
(1)
pt<Qt

= σ
(1)
BzQ<B + σ

(1)
BzQ>B(region A), (A.1.18)

where B = Qt/Q.

We now compute the integrated distribution with BzQ > Qt/Q in region A, which

we denote by σ
(1)
A . Let σ

(1)
A,i,j represent the contribution to σ

(1)
A of F2/x (i = 2) or FL

(i = L), with j standing for the incoming gluon (j = g) or quark (j = q) channel

contributions such that:

σ
(1)
A =

1

q(x, Q2)

αs

2π
×

×
(

CF σ
(1)
A,2,q + Tfσ

(1)
A,2,g −

y2

1 + (1− y)2

[
CF σ

(1)
A,L,q + Tfσ

(1)
A,L,g

])
. (A.1.19)

Using table A.1 and eq. (A.1.11) one can write:

σ
(1)
A,i,j(Qt, Q, x) =

∫ 1

1
2

dξ

ξ
qj

(
x

ξ
,Q2

) ∫ ξ

1−ξ

dz Ci,j(ξ, z)×

× θ

(
4z(1− z)(1− ξ)

ξ
− Q2

t

Q2

)
. (A.1.20)

We have used the fact that1 1/2 < ξ < 1 and 1− ξ < z < ξ in region “A” according

to fig. A.1. The theta function imposes the conditions: ξ < 1/(1 + Q2
t /Q

2) (and

hence Qt < Q since ξ > 1/2) and: ξmin < z < ξmax, where:

ξmax
min

=
1

2

(
1±

√
1− (Qt/Q)2ξ

1− ξ

)
. (A.1.21)

1Strictly speaking we also have ξ > x, which means that a theta function θ(1−x/ξ) is embodied

in PDFs.
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The condition on z we mentioned just before eq. (A.1.21) can only be applied if

ξ > 1−Qt/(2Q), since we already have 1− ξ < z < ξ. Thus the integral splits into

two parts:

σ
(1)
A,i,j(Qt, Q, x) =

∫ 1−Qt
2Q

1
2

dξ

ξ
qj

(
x

ξ
,Q2

) ∫ ξ

1−ξ

dzCi,j(ξ, z)+

+

∫ 1
1+(Qt/Q)2

1−Qt
2Q

dξ

ξ
qj

(
x

ξ
,Q2

) ∫ ξmax

ξmin

dzCi,j(ξ, z). (A.1.22)

A.1.3 Quark contribution

The quark contribution to F2/x is given by:

σ
(1)
A,2,q(Qt, Q, x) =

∫ 1−Qt
2Q

1
2

dξ

ξ
q

(
x

ξ
,Q2

) ∫ ξ

1−ξ

dz

(
z2 + ξ2

(1− ξ)(1− z)
+ 6zξ + 2

)
+

+

∫ 1
1+(Qt/Q)2

1−Qt
2Q

dξ

ξ
q

(
x

ξ
,Q2

) ∫ ξmax

ξmin

dz

(
z2 + ξ2

(1− ξ)(1− z)
+ 6zξ + 2

)
. (A.1.23)

Performing the z integral we get:

σ
(1)
A,2,q(Qt, Q, x) =

∫ 1−Qt
2Q

1
2

dξ

ξ
q

(
x

ξ
,Q2

)(
−1 + ξ2

1− ξ
ln

1− ξ

ξ
− 12ξ3 − 10ξ2 + 1

2(1− ξ)

)
+

+

∫ 1
1+(Qt/Q)2

1−Qt
2Q

dξ

ξ
q

(
x

ξ
,Q2

) {
− 6ξ2 − 2ξ − 1

2(1− ξ)

√
1− (Qt/Q)2ξ

1− ξ
−

− 1 + ξ2

1− ξ

[
ln

(
1−

√
1− (Qt/Q)2ξ

1− ξ

)
− ln

(
1 +

√
1− (Qt/Q)2ξ

1− ξ

)]}
. (A.1.24)

In order to separate the large logarithms we use eq. (2.5.6) to write:

∫ 1

0

f(ξ)g(ξ)dξ =

∫ 1

0

f(1)g(ξ)dξ +

∫ 1

0

f(ξ)[g(ξ)]+dξ, (A.1.25)

with f(ξ) and g(ξ) being a smooth function and a divergent function which has a

singularity of the form 1/(1−ξ) at ξ = 1. The first term in the right hand side of eq.

(A.1.25) contains logarithms of (1− ξ) and the second one is regularised by the plus

prescription which we introduced in eq. (2.5.6). We use this in eq. (A.1.24) and we
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set Qt → 0 in the regularised part arriving at:

σ
(1)
A,2,q(Qt, Q, x) =

∫ 1

x

dξ

ξ
q

(
x

ξ
,Q2

) {
δ(1− ξ)

(
2 ln2 Q

Qt

+ 4 ln 2 ln
Q

Qt

−

− 3 ln
Q

Qt

+ 2 ln2 2− 3

2
ln 2 + 3− π2

2

)
− (1 + ξ2)

[
θ(2ξ − 1)

1− ξ
ln

1− ξ

ξ

]

+

−

− (12ξ3 − 10ξ2 + 1)

[
θ(2ξ − 1)

2(1− ξ)

]

+

}
. (A.1.26)

A.1.4 Gluon contribution

The gluon contribution to F2/x is given by:

σ
(1)
A,2,g(Qt, Q, x) =

∫ 1−Qt
2Q

1
2

dξ

ξ
g

(
x

ξ
,Q2

) ∫ ξ

1−ξ

dz

{
[ξ2 + (1− ξ)2]×

× z2 + (1− z)2

z(1− z)
+ 8ξ(1− ξ)

}
+

∫ 1
1+(Qt/Q)2

1−Qt
2Q

dξ

ξ
g

(
x

ξ
,Q2

)
×

×
∫ ξmax

ξmin

dz

{
[ξ2 + (1− ξ)2]

z2 + (1− z)2

z(1− z)
+ 8ξ(1− ξ)

}
, (A.1.27)

which simplifies to:

σ
(1)
A,2,g(Qt, Q, x) =

∫ 1−Qt
2Q

1
2

dξ

ξ
g

(
x

ξ
,Q2

){
− 24ξ3 + 36ξ2 − 16ξ + 2−

− (4ξ2 − 4ξ + 2) ln
1− ξ

ξ

}
+

∫ 1
1+(Qt/Q)2

1−Qt
2Q

dξ

ξ
g

(
x

ξ
, Q2

) {
2(1 + 2ξ2 − 2ξ)×

×
[
ln

(
1 +

√
1− (Qt/Q)2ξ

1− ξ

)
−

(
1−

√
1− (Qt/Q)2ξ

1− ξ

)]
−

− 2(1 + 6ξ2 − 6ξ)

√
1− (Qt/Q)2ξ

1− ξ

}
. (A.1.28)

There are no singularities in this equation2. One can check this by expanding the

integrals as in eq. (A.1.25). Therefore we just set Qt to zero everywhere arriving at:

σ
(1)
A,2,g(Qt, Q, x) =

∫ 1

x

dξ

ξ
g

(
x

ξ
, Q2

) [
(−24ξ3 + 36ξ2 − 16ξ + 2)θ (2ξ − 1)−

− (4ξ2 − 4ξ + 2)θ (2ξ − 1) ln
1− ξ

ξ

]
. (A.1.29)

2This can be seen by noting that there are no soft singularities for this channel (as we stated

just after eq. (2.3.11)). The only logarithms that arise for this channel come from the region where

the incoming gluon splits into a collinear quark/anti-quark pair, which happens only in regions B

and C.
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A.1.5 Longitudinal quark contribution

Following the same steps as before we find that the quark contribution to FL is given

by:

σ
(1)
A,L,q(Qt, Q, x) =

∫ 1−Qt
2Q

1
2

dξ

ξ
q

(
x

ξ
,Q2

)
2ξ (2ξ − 1) +

+

∫ 1
1+(Qt/Q)2

1−Qt
2Q

dξ

ξ
q

(
x

ξ
,Q2

)
2ξ

√
1− Q2

t /Q
2ξ

1− ξ
. (A.1.30)

This also has no singularities. We have:

σ
(1)
A,L,q(Qt, Q, x) =

∫ 1

x

dξ

ξ
q

(
x

ξ
,Q2

)
2ξ (2ξ − 1) θ (2ξ − 1) . (A.1.31)

A.1.6 Longitudinal gluon contribution

The longitudinal gluon contribution is given by:

σ
(1)
A,L,g(Qt, Q, x) =

∫ 1

x

dξ

ξ
g

(
x

ξ
,Q2

)
8ξ(1− ξ)(2ξ − 1)θ (2ξ − 1) . (A.1.32)

A.1.7 The final answer

The leading-order cross-section for events with pt < Qt is given by eq. (A.1.13)

where, after using (A.1.18), we arrive at:

F2,q

(
ξ,

Q

Qt

)
= δ(1− ξ)

[
−2 ln2 Q

Qt

+
3

2
ln 2− π2

6

]
−

− 2
1 + ξ2

(1− ξ)+

ln
Q

Qt

+
1 + ξ2

1− ξ
ln ξ − (1 + ξ2)

[
ln(1− ξ)

1− ξ

]

+

+
6ξ2 − 2ξ − 1

2(1− ξ)+

−

− (1 + ξ2)

[
θ(2ξ − 1)

1− ξ
ln

1− ξ

ξ

]

+

− (12ξ3 − 10ξ2 + 1)

[
θ(2ξ − 1)

2(1− ξ)

]

+

, (A.1.33)

F2,g

(
ξ,

Q

Qt

)
= −[ξ2 + (1− ξ2)]

[
4 ln

Q

Qt

− 2 + 2 ln
1− ξ

ξ

]
− 8ξ(1− ξ)+

+ (−24ξ3 + 36ξ2 − 16ξ + 2)θ (2ξ − 1)− (4ξ2 − 4ξ + 2)θ (2ξ − 1) ln
1− ξ

ξ
, (A.1.34)

FL,q = 2ξ (2ξ − 1) θ (2ξ − 1) , (A.1.35)

and:

FL,g = 8ξ (2ξ − 1) (1− ξ)θ (2ξ − 1) , (A.1.36)
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where we use the results for the leading-order BzQ distribution from ref. [87]. In

obtaining the last two equations we exploit the fact that the leading-order BzQ

distribution does not acquire any longitudinal contributions [87].

The above results are only valid in the DIS factorisation scheme [117] and can

only be used with PDFs which are defined in that scheme. To go to the MS scheme

we add3 the leading-order MS coefficient functions [118] (see also ref. [88]) to the

functions F2,j. We get:

FMS
2,q

(
ξ,

Q

Qt

)
= δ(1− ξ)

[
−2 ln2 Q

Qt

+ 3 ln
Q

Qt

+
3

2
ln 2− π2

2
− 9

2

]
−

− 2

[
1 + ξ2

1− ξ

]

+

ln
Q

Qt

+ 1− ξ − (1 + ξ2)

[
θ(2ξ − 1)

1− ξ
ln

(
1− ξ

ξ

) ]

+

−

− (12ξ3 − 10ξ2 + 1)

[
θ(2ξ − 1)

2(1− ξ)

]

+

, (A.1.37)

FMS
2,g

(
ξ,

Q

Qt

)
= −4[ξ2 + (1− ξ)2] ln

Q

Qt

+ 4ξ(1− ξ)+

+

{
2(2ξ − 1)(−6ξ2 + 6ξ − 1)− 2[ξ2 + (1− ξ)2] ln

1− ξ

ξ

}
θ (2ξ − 1) . (A.1.38)

In eq. (A.1.37) we use the fact that:

1 + ξ2

(1− ξ)+

=

(
1 + ξ2

1− ξ

)

+

− 3

2
δ(1− ξ). (A.1.39)

The (2nf +1)× 1 matrices C 0 and C 1 are defined such that their transposes are

given by:

C T
0 (z) =




e2
u δ(1− z)

e2
u δ(1− z)

...

0




, (A.1.40)

and:

C T
1 (z) =




CF e2
u

{
FMS

2,q (z, 1)− y2

1+(1−y)2
FL,q(z, 1)

}

CF e2
u

{
FMS

2,q (z, 1)− y2

1+(1−y)2
FL,q(z, 1)

}

...

Tf

{
FMS

2,g (z, 1)− y2

1+(1−y)2
FL,g(z, 1)

}




. (A.1.41)

3We exclude the longitudinal pieces in the addition because they are scheme-independent.
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A.2 The radiator

The radiator for the Qt distribution we studied in chapter 4 is given by:

R(Q/Qt) = Lg1(αsL) + g2(αsL) , (A.2.1)

where L = ln(Q/Qt) and in the MS scheme we have:

g1(αsL) = − CF

πβ0

[
1 +

ln(1− 2λ)

2λ

]
, (A.2.2)

g2(αsL) =
3CF

4πβ0

ln(1− 2λ) +
CF KF

4π2β2
0

[
ln(1− 2λ) +

2λ

1− 2λ

]
−

− CF β1

2πβ3
0

[
2λ + ln(1− 2λ)

1− 2λ
+

1

2
ln2(1− 2λ)

]
, (A.2.3)

with λ = αs(Q
2)β0L and:

β1 =
17C2

A − 5CAnf − 3CF nf

24π2
. (A.2.4)

In obtaining this we use eq.(4.2.12) and the two-loop QCD β function to replace the

scale of αs with Q2 and moved from the CMW [74] scheme to the MS scheme (see

e.g. ref. [87]). The derivative of the radiator with respect to ln b at b̄ Q = Q/Qt is

given by:

R′(Q/Qt) =
2CF

πβ0

λ

1− 2λ
. (A.2.5)

The expansion of the resummed result (eq.(4.3.3)) to O(ᾱs) and O(ᾱ2
s), which is

needed in eq. (4.4.1), yields:

σ(1)
r /σ0 = G11L + G12L

2 − 2
C 0 ⊗P (0) ⊗ q(x,Q2)

q(x,Q2)
L +

C 1 ⊗ q(x,Q2)

q(x,Q2)
, (A.2.6)

σ(2)
r /σ0 = G22L

2 + G23L
3 +

1

2
G2

12L
4+

+
C 1 ⊗ q(x,Q2)

q(x,Q2)

(
G11L + G12L

2
)

+ 2
C 0 ⊗P (0) ⊗P (0) ⊗ q(x,Q2)

q(x,Q2)
L2−

− 2
(
(G11 + 2πβ0)L

2 + G12L
3
) C 0 ⊗P (0) ⊗ q(x,Q2)

q(x,Q2)
, (A.2.7)

where P (0) is the matrix of leading-order splitting functions (defined in eqs. (2.5.2)

to (2.5.5)) and the coefficients Gmn are given in table A.2. In the above we exploit

eq. (2.5.13). One can clearly see that the expansion of the resummed result to O(αs)

reproduces the leading-order result given by eq. (A.1.13).
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G12 −2 CF

G11 3 CF

G23 −6 C2
F − 16

3
π CF β0

G22 −π2

3
CF CA + 9

2
C2

F − 2 CF KF + 6 π CF β0

Table A.2: The coefficients Gnm that enter the fixed-order expansion of the resummed

result.
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Appendix B

The radiator for the dijet

azimuthal correlation distribution

in DIS

We present here the radiator for the dijet azimuthal correlation distribution in DIS.

We do this for the process q(0) → q(1)+g(2) and generalise the result at the end. In

all what follows all symbols have the same meaning as those introduced in chapter

6.

B.1 Dipole “02”

We write the contribution of this dipole to the radiator, I02, as follows:

I02 =
Nc

2

∫
dk⊥
k⊥

αs(k
2
⊥)

2π
dη

dφ

2π
2k2

t

p0.p2

p0.k p2.k
θ
[
kt − pt

αb̄

]
θ [pt − kt] , (B.1.1)

with

k2
⊥ = 2

(k.p0)(k.p2)

p0.p2

= 2k2
t

cosh(η2 − η) + cos φ

eη2−η
. (B.1.2)

Hence:

I02 = Nc

∫
dk⊥
k⊥

αs(k
2
⊥)

2π
dη

dφ

2π

1

r2
θ

[
k⊥ − pt

√
2r

αb̄

]
θ
[√

2rpt − k⊥
]
, (B.1.3)

where we define:

r2 =
cosh(η2 − η) + cos φ

eη2−η
. (B.1.4)
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The soft and collinear enhancement around leg “2” comes from the phase-space where

η − η2 = φ− π = 0. For this reason we define:

η − η2 = ρ sin θ, (B.1.5)

φ− π = ρ cos θ, (B.1.6)

such that we arrive at:

I02 = Nc

∫
dk⊥
k⊥

αs(k
2
⊥)

2π
ρdρ

dθ

2π

1

r2
θ

[
k⊥ − pt

√
2r

αb̄

]
θ
[√

2rpt − k⊥
]
. (B.1.7)

Evaluating the integral over k⊥ we find:

Nc

∫ ptr
√

2

ptr
√

2/αb̄

dk⊥
k⊥

αs(k
2
⊥)

2π
=

CA

4πβ0

[
ln(1+2αsβ0 ln(r

√
2))− ln

(
1 + 2αsβ0 ln

r
√

2

αb̄

)
+

+
β1

β0

αs


1 + ln(1 + 2αsβ0 ln(r

√
2))

1 + 2αsβ0 ln(r
√

2)
−

1 + ln
(
1 + 2αsβ0 ln r

√
2

αb̄

)

1 + 2αsβ0 ln r
√

2
αb̄




]
. (B.1.8)

The calculation of the contribution of dipole “02” to the radiator proceeds in the

following way. We first expand 1/r2 = 2/ρ2. We perform the η and φ integrations

in the whole phase-space using the definition α = | sin φ| and then subtract the

contribution from the circles of radius R (in the η − φ plane) which are centred at

the outgoing legs, and add their contribution with α = | sin φ− φ| or | sin φ− π + φ|
accordingly. Then we add the contribution from higher-order terms in the expansion

of 1/r2.

B.1.1 Contribution with α = | sin φ| in the whole phase-space

To NLL accuracy we can write result for the k⊥ integral in eq. (B.1.8) as follows:

CA

4πβ0

[
ln (1 + 2αsβ0 ln ρ)− ln

(
1 + 2αsβ0 ln

1

cos θb̄

)
+

+
β1

β0

αs

(
1 + ln(1 + 2αsβ0 ln ρ)

1 + 2αsβ0 ln ρ
− 1 + ln

(
1 + 2αsβ0 ln 1

b̄

)

1 + 2αsβ0 ln 1
b̄

)]
, (B.1.9)

where we use the symmetry of the θ integral and chose the region −π/2 < θ < π/2

such that | cos θ| = cos θ. Here we replace dθ/(2π) → dθ/π. From eq. (B.1.7) one

can deduce that αb̄ > 1, a condition that can be applied to the ρ integral such that

ρ > g(b̄)/ cos θ, with g(b̄) being the function that satisfies sin(g) = 1/b̄. To NLL
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accuracy it suffices to write g(b̄) = 1/b̄ for this case. The upper limit on the ρ

integral is π/ cos θ. Thus we may write the contribution under consideration, Iall
02 , as:

Iall
02 =

CA

4πβ0

∫ π/2

−π/2

dθ

π

∫ π/ cos θ

g/ cos θ

2

ρ
dρ× k⊥ integral, (B.1.10)

where “k⊥ intergal” stands for the result appearing in eq. (B.1.9). The above integral

can be solved and one can remove all subleading terms leaving only up to NLL terms.

We write the result for this as:

Iall
02 =

CA

4πβ0

[
− β1

β2
0

(
1

2
ln2(1− 2λ) +

ln(1− 2λ) + 2λ

1− 2λ

)
− L

2λ + ln(1− 2λ)

λ
−

− 2 ln 2

(
2λ

1− 2λ
+ ln(1− 2λ)

)
− 2 ln π ln(1− 2λ)

]
, (B.1.11)

with λ = αs(p
2
t )β0L and L = ln b̄. We have used the fact that

∫ π/2

−π/2
dθ/π ln(sec θ) =

ln 2. Next we calculate the contribution from the region around leg “2” with α =

| sin φ| (which we shall subtract later).

B.1.2 Contribution with α = | sin φ| around leg “2”

We now calculate the contribution of the region around leg “2” with α = | sin φ|,
I−c2
02 , i.e. perform the following integral:

I−c2
02 =

CA

4πβ0

∫ π/2

−π/2

dθ

π

∫ R

g/ cos θ

2

ρ
dρ× k⊥ integral. (B.1.12)

The result to NLL accuracy reads:

I−c2
02 =

CA

4πβ0

[
− β1

β2
0

(
1

2
ln2(1− 2λ) +

ln(1− 2λ) + 2λ

1− 2λ

)
− L

2λ + ln(1− 2λ)

λ
−

− 4 ln 2
λ

1− 2λ
− 2 ln R ln(1− 2λ)

]
. (B.1.13)

Next we calculate the contribution of the region around leg “2” with α = | sin φ −
π + φ|.

B.1.3 Contribution with α = | sin φ− π + φ| around leg “2”

We now calculate the term:

I+c2
02 =

CA

4πβ0

∫ π/2

−π/2

dθ

π

∫ R

g/ cos θ

2

ρ
dρ× k⊥ integral, (B.1.14)
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where now g satisfies g− sin g = 1/b̄, which to NLL accuracy gives: g = 3
√

6/b̄. The

result for the “k⊥ integral” now has the form:

CA

4πβ0

[
ln (1 + 2αsβ0 ln ρ)− ln

(
1 + 2αsβ0 ln

6

ρ2 cos3 θb̄

)
+

+
β1

β0

αs


1 + ln(1 + 2αsβ0 ln ρ)

1 + 2αsβ0 ln ρ
−

1 + ln
(
1 + 2αsβ0 ln 1

ρ2b̄

)

1 + 2αsβ0 ln 1
ρ2b̄




]
. (B.1.15)

The result reads:

I+c2
02 =

CA

4πβ0

[
L

(
1− 2λ

2λ
ln(1− 2λ)− 3− 2λ

2λ
ln

(
1− 2

3
λ

))
+

+
β1

2β2
0

(
1

2
ln2(1− 2λ)− 3

2
ln2

(
1− 2

3
λ

)
+ ln(1− 2λ)− 3 ln

(
1− 2

3
λ

))
−

− (ln 3 + 4 ln 2)

(
ln

(
1− 2

3
λ

)
− ln(1− 2λ)

)
− 2 ln R ln(1− 2λ)

]
. (B.1.16)

The last term in the equation just above cancels that in I−c2
02 , thus there is no

dependence of the radiator on the radius parameter R.

Since there are no singularities around leg “1” in the case of dipole “02” one

can deduce that the addition and subtraction of the contributions around leg “1”

with the corresponding definitions of the observable cancel each other. We therefore

discard the calculation of this piece.

B.1.4 Soft and collinear enhancement around leg “0”

To calculate the contribution from higher-order terms in the expansion of 1/r2 (which

correspond to soft and collinear emissions from the incoming leg) we restore the

integral in consideration to its original form, eq. (B.1.3), and subtract the piece we

already calculated. We thus write the contribution of the remaining terms, I
(0)
02 , as:

I
(0)
02 = Nc

∫
dk⊥
k⊥

αs(k
2
⊥)

2π
dη

dφ

2π

(
1

r2
− 2

(η − η2)2 + (φ− π)2

)
×

× θ

[
k⊥ − ptr

√
2

αb̄

]
θ
[
ptr
√

2− k⊥
]
θ

[
η − ln

ktξ

Q

]
. (B.1.17)

In this equation we introduce the cut-off on η, θ [η − ln(ktξ/Q)] (which only con-

tributes for soft and collinear emissions to the incoming leg), originating from the
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requirement that ω < E0, with ω and E0 being the energies of the soft gluon and

the incoming leg respectively.

The singularities around η − η2 = φ − π = 0 cancel between the two terms in

this subtraction. To avoid such singularities we introduce a small cut-off ε on the

integral over η around η2 and show that this cancels as anticipated. Let us start by

evaluating the φ and η integrals. We have:

∫ +∞

ln
ktξ

QeB0

dη

∫ 2π

0

dφ

2π

1

r2
= 2η2 − 2 ln

ktξ

Q
+ 2B0 − 2 ln 2− 2 ln ε

= 2 ln
Q2

02

p2
t

− 2 ln
kt

pt

+ 2B0 − 2 ln 2− 2 ln ε, (B.1.18)

where Q2
ij = 2pi.pj and we use the fact that ηi = ln(2ξpi.p0/(Qpt)). To account for

hard collinear emissions to the incoming leg we have replaced Q by QeB0 (see e.g

refs. [88, 111]) in this equation, where Bi stands for the “hard collinear factor” for

leg “i”. We have:

Bi = −3

4
, for quark legs,

Bi = −11CA − 4TRnf

12CA

, for gluon legs. (B.1.19)

Note that we neglect the dependence of the theta functions containing r on η and φ,

which is valid to NLL accuracy (see below).

The integral over η and φ of the subtracted term gives:

∫ +∞

−∞
dη

∫ 2π

0

dφ

2π

2

(η2 − η)2 + (π − φ)2
= 2 ln π − 2 ln ε, (B.1.20)

where we use the freedom to set kt → 0 in the theta function θ[η − ln(ktξ/Q)] since

this term is regular as η → −∞ (i.e. the theta function we just mentioned contributes

below NLL accuracy in this case). Clearly the terms containing ln ε cancel between

the contributions in eqs. (B.1.18) and (B.1.20) and we are left with the following

integral over k⊥:

I
(0)
02 =

CA

2π

∫
dk⊥
k⊥

αs(k
2
⊥)

(
2 ln

Q2
02

p2
t

+ 2B0 − 2 ln 2− 2 ln π − 2 ln
k⊥
pt

)
×

× θ
[
k⊥ − pt

αb̄

]
θ [pt − k⊥] , (B.1.21)

where we set r → 1/
√

2, which is valid to NLL accuracy in the region where η → −∞.

The k⊥ integration over the first four terms in right hand side of the above equation
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gives the result:

− CA

4πβ0

ln(1− 2λ)

(
2 ln

Q2
02

p2
t

+ 2B0 − 2 ln 2− 2 ln π

)
. (B.1.22)

Notice that the term containing ln π will cancel that in eq. (B.1.11). The integral

over the term which contains ln k⊥/pt gives:

CA

4πβ0

[
− β1

β2
0

(
1

2
ln2(1− 2λ) +

ln(1− 2λ) + 2λ

1− 2λ

)
− L

2λ + ln(1− 2λ)

λ
−

− 2 ln
1

α2

λ

1− 2λ

]
. (B.1.23)

Averaging1 over φ using α = | sin φ| (we are away from legs “1” and “2” and thus we

are safe to use the | sin φ| definition of the observable) and assembling the result we

get:

I
(0)
02 =

CA

4πβ0

[
− β1

β2
0

(
1

2
ln2(1− 2λ) +

ln(1− 2λ) + 2λ

1− 2λ

)
− L

2λ + ln(1− 2λ)

λ
−

− 4 ln 2
λ

1− 2λ
− 2 ln(1− 2λ)

(
ln

Q2
02

p2
t

+ B0 − ln 2− ln π

)]
. (B.1.24)

Note that since we now include hard collinear emissions to the incoming legs PDFs

must be evolved to the scale µ2
f/b̄

2.

B.1.5 The final result for dipole “02”

Assembling all the bits of the answer we arrive at the final result for dipole “02”:

I02 = Iall
02 − I−c2

02 + I+c2
02 + I

(0)
02 . Thus we arrive at the following result:

I02 =
CA

4πβ0

[
L

(
1− 2λ

2λ
ln(1− 2λ)− 3− 2λ

2λ
ln

(
1− 2

3
λ

))
+

+
β1

2β2
0

(
1

2
ln2(1− 2λ)− 3

2
ln2

(
1− 2

3
λ

)
+ ln(1− 2λ)− 3 ln

(
1− 2

3
λ

))
−

− (ln 3 + 4 ln 2)

(
ln

(
1− 2

3
λ

)
− ln(1− 2λ)

)
−

− β1

β2
0

(
1

2
ln2(1− 2λ) +

ln(1− 2λ) + 2λ

1− 2λ

)
− L

2λ + ln(1− 2λ)

λ
−

− 4 ln 2
λ

1− 2λ
− 2 ln(1− 2λ)

(
ln

Q2
02

p2
t

+ B0

) ]
. (B.1.25)

1This means we replace ln(1/α2) → ∫ 2π

0
dφ/(2π) ln(1/α2). This is valid to NLL accuracy.
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B.2 Dipole “01”

The result for this dipole is the same as that for dipole “02” with the substitutions

CA → −1/CA and Q02 → Q01.

B.3 Dipole “12”

The expression for the contribution of dipole “12” to the radiator, I12, has the form

given in eq. (B.1.3) but now with:

1

r2
=

1 + cosh ∆η

cosh(η − η1) + cosh(η − η2)

(
1

cosh(η − η2) + cos φ
+

1

cosh(η − η1)− cos φ

)
,

(B.3.1)

where ∆η = η2 − η1. We first use the same definition for ρ and θ as before and

concentrate on the first term of eq. (B.3.1). One can expand:

ρ
1 + cosh ∆η

cosh(η − η1) + cosh(η − η2)

1

cosh(η − η2) + cos φ
=

2

ρ
+O(1). (B.3.2)

To NLL accuracy it suffices to consider r = ρ/
√

2 in the expression for the k⊥

integral in this case (eq. (B.1.8) with r being defined in eq. (B.3.1)). Thus the result

for integrating over k⊥, η and φ (using only the first term in the expansion of 1/r2)

is identical to that for dipole “02” (i.e. Iall
02 − I−c2

02 + I+c2
02 ). Thus we write the result

as:

Isc
12 = 2× CA

4πβ0

[
L

(
1− 2λ

2λ
ln(1− 2λ)− 3− 2λ

2λ
ln

(
1− 2

3
λ

))
+

+
β1

2β2
0

(
1

2
ln2(1− 2λ)− 3

2
ln2

(
1− 2

3
λ

)
+ ln(1− 2λ)− 3 ln

(
1− 2

3
λ

))
−

− (ln 3 + 4 ln 2)

(
ln

(
1− 2

3
λ

)
− ln(1− 2λ)

)
− 2 (ln π + ln 2) ln(1− 2λ)

]
, (B.3.3)

where Isc
12 stands for the contribution from the soft and collinear region to both legs

“1” and “2” and the factor 2 accounts for the fact that we get the same result for

the second term in the expression of 1/r2 in eq. (B.3.1).

We now treat higher-order terms in the expansion (B.3.2). We write the contri-

bution form these terms as:

Isw
12 = 2×CA

2π

∫
dk⊥
k⊥

αs(k
2
⊥)

∫ +∞

−∞
dη

∫ 2π

0

dφ

2π

(
1

r2
1

− 2

(η2 − η)2 + (π − φ)2

)
, (B.3.4)
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where Isw
12 stands for the contribution from the soft wide-angle region to both legs

“1” and “2”, 1/r2
1 stands for the first term in eq. (B.3.1) and the factor 2 stands for

the fact that we get the same result by considering the second term in eq. (B.3.1).

Integrating over the first term in eq. (B.3.4) we get:

− 2× CA

4πβ0

ln(1− 2λ)

(
2 ln cosh

∆η

2
− 2 ln ε

)
. (B.3.5)

The second term in eq. (B.3.4) gives:

− 2× CA

4πβ0

ln(1− 2λ)(2 ln π − 2 ln ε), (B.3.6)

where we introduce a cut-off around η = η2, which cancels when subtracting the two

terms. Below we write the full result for this dipole.

B.3.1 The final result for dipole “12”

Assembling the result for dipole I12 we arrive at:

I12 = 2× CA

4πβ0

[
L

(
1− 2λ

2λ
ln(1− 2λ)− 3− 2λ

2λ
ln

(
1− 2

3
λ

))
+

+
β1

2β2
0

(
1

2
ln2(1− 2λ)− 3

2
ln2

(
1− 2

3
λ

)
+ ln(1− 2λ)− 3 ln

(
1− 2

3
λ

))
−

− (ln 3 + 4 ln 2)

(
ln

(
1− 2

3
λ

)
− ln(1− 2λ)

)
− 2 ln

Q12

pt

ln(1− 2λ)

]
, (B.3.7)

where we use the fact that 2 cosh(∆η/2) = Q12/pt.
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B.4 The assembled result

The assembled result for all dipole contributions is given by2:

R(b̄) =
C1 + C2

2πβ0

[
L

(
1− 2λ

2λ
ln(1− 2λ)− 3− 2λ

2λ
ln

(
1− 2

3
λ

))
+

+
β1

2β2
0

(
1

2
ln2(1− 2λ)− 3

2
ln2

(
1− 2

3
λ

)
+ ln(1− 2λ)− 3 ln

(
1− 2

3
λ

))
−

− (ln 3 + 4 ln 2)

(
ln

(
1− 2

3
λ

)
− ln(1− 2λ)

) ]
+

+
C0

2πβ0

[
− β1

β2
0

(
1

2
ln2(1− 2λ) +

ln(1− 2λ) + 2λ

1− 2λ

)
− L

2λ + ln(1− 2λ)

λ
−

− 4 ln 2
λ

1− 2λ

]
−

− 1

2πβ0

ln(1− 2λ)

(
CA ln

Q2
qg

p2
t

− 1

CA

Q2
qq̄

p2
t

+ CA ln
Q2

q̄g

p2
t

+ 2C0B0

)
, (B.4.1)

where Ci represents the colour factor of the ith leg (Ci = CF for quarks and Ci = CA

for gluons) and B0 accounts for hard collinear emissions to the incoming leg “0”.

Changing the coupling from the CMW scheme [74] to the MS scheme results in

the addition of the terms:

KF

2πβ0

(
C1 + C2

2πβ0

[
3

2
ln

(
1− 2

3
λ

)
− 1

2
ln(1− 2λ)

]
+

C0

2πβ0

[
ln(1− 2λ) + 2

λ

1− 2λ

])
,

(B.4.2)

to the radiator. Similarly changing the scale of the coupling from pt to Q results in

the additions of the terms:

ln
Q2

p2
t

(
C1 + C2

2πβ0

[
3

2
ln

(
1− 2

3
λ

)
− 1

2
ln(1− 2λ)

]
+

C0

2πβ0

[
ln(1− 2λ) + 2

λ

1− 2λ

])
,

(B.4.3)

where λ becomes αs(Q
2)β0L. Finally we account for hard collinear emissions to the

outgoing legs by simply adding the SL function [111]:

− 1

πβ0

ln

(
1− 2

3
λ

)
[C1B1 + C2B2] , (B.4.4)

to the radiator. We can alternatively express the final result for the radiator in the

2We also generalise to the case of arbitrary incoming leg.
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standard form:

R(b̄) = (C1 + C2)

[
Lr1(αsL) + r2(αsL) + r′1(αsL)

(
− ln 3− 4 ln 2 + 3 ln

Q

pt

)]
+

+ C0

[
LR1(αsL) + R2(αsL) + R′

1(αsL)

(
− ln 2 + ln

Q

pt

)]
+

+ ζ(λ)

(
CA ln

QgqQgq′

Qqq′Q
+ 2CF ln

Qqq′

Q

)
+ ζ(λ)C0B0 + ζ(λ/3)(C1B1 + C2B2),

(B.4.5)

where:

r1 =
1

2πβ0

[
1− 2λ

2λ
ln(1− 2λ)− 3− 2λ

2λ
ln

(
1− 2

3
λ

)]
, (B.4.6)

r2 =
β1

4πβ3
0

[
1

2
ln2(1− 2λ)− 3

2
ln2

(
1− 2

3
λ

)
+ ln(1− 2λ)− 3 ln

(
1− 2

3
λ

)]
+

+
KF

8π2β2
0

[
3 ln

(
1− 2

3
λ

)
− ln(1− 2λ)

]
, (B.4.7)

R1 = − 1

2πβ0

2λ + ln(1− 2λ)

λ
, (B.4.8)

R2 = − β1

2πβ3
0

[
1

2
ln2(1− 2λ) +

ln(1− 2λ) + 2λ

1− 2λ

]
+

+
KF

4π2β2
0

[
ln(1− 2λ) +

2λ

1− 2λ

]
, (B.4.9)

r′1 =
∂r1

∂ ln b̄
=

1

2πβ0

[
ln

(
1− 2

3
λ

)
− ln(1− 2λ)

]
, (B.4.10)

R′
1 =

∂R1

∂ ln b̄
=

1

2πβ0

4λ

1− 2λ
, (B.4.11)

ζ(λ) = − 1

πβ0

ln (1− 2λ) . (B.4.12)

The derivative of the radiator, to NLL accuracy, is given by:

R′ =
∂R

∂ ln b̄
= (C1 + C2)

(
− ln 3− 4 ln 2 + 3 ln

Q

pt

)
r′1 + C0

(
− ln 2 + ln

Q

pt

)
R′

1,

(B.4.13)

and the double logarithmic piece of the radiator is:

RDL(b̄) = (C1 + C2)Lr1(αsL) + C0LR1(αsL). (B.4.14)

141



B.4.1 Radiator for the hadronic collisions case

The radiator in the case of hadronic collisions can be expressed as:

R̃(b̄) = (C2 + C3)

[
Lr1(αsL) + r2(αsL) + r′1(αsL)

(
− ln 3− 4 ln 2 + 3 ln

Q

pt

)]
+

+ (C0 + C1)

[
LR1(αsL) + R2(αsL) + R′

1(αsL)

(
− ln 2 + ln

Q

pt

)]
+

+ ζ(λ)(C1B1 + C0B0) + ζ(λ/3)(C2B2 + C3B3)+

+ ζ(λ) (C0 + C1 + C2 + C3) ln
Q12

Q
, (B.4.15)

where the subscripts 0, 1, 2 and 3 stand for the two incoming legs and the two

outgoing legs respectively. This can easily be obtained by observing the expression

for the observable when a single soft and collinear emission to leg “l” is considered

(see eqs. (6.2.10) and (6.2.11)) [111].

B.4.2 Expansion of the resummed result

We can express the expansion of the resummed result (in the DIS case) to O(α2
s) in

b space as follows:

σa
B(µ

2
f/b̄

2)e−R(b̄) = σa
B(µ

2
f )(1 + ᾱsσ

(1)
r + ᾱ2

sσ
(2)
r ), (B.4.16)

where a stands for quark or gluon channels (as in eq. (6.3.1)), ᾱs = αs/(2π) and:

σ(1)
r = h11L + h12L

2, (B.4.17)

σ(2)
r = h22L

2 + h23L
3 + h24L

4, (B.4.18)

with

h11 = G11 − 2
C a

0 ⊗P (0) ⊗ q(x/ξ, µ2
f )

qa(x/ξ, µ2
f )

, (B.4.19)

h12 = G12, (B.4.20)

h22 = G22 − 2 [G11 + 2πβ0]
C a

0 ⊗P (0) ⊗ q(x/ξ, µ2
f )

qa(x/ξ, µ2
f )

+

+2
C a

0 ⊗P (0) ⊗P (0) ⊗ q(x/ξ, µ2
f )

qa(x/ξ, µ2
f )

+
1

2
G2

11, (B.4.21)

h23 = G23 − 2G12

C a
0 ⊗P (0) ⊗ q(x/ξ, µ2

f )

qa(x/ξ, µ2
f )

+ G11G12, (B.4.22)

h24 =
1

2
G2

12, (B.4.23)
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where we exploit eq. (2.5.13). Here the matrix C q
0 is equal to C 0 which we introduced

in appendix A.1, while C g
0 (this also has 2nf +1 dimensions) is defined such that its

transpose is given by:

C g,T
0 (z) =




0

0

...

δ(1− z)




. (B.4.24)

The coefficients Gnm are given by:

G11 = −
[
4C0B0 +

4

3
(C1B1 + C2B2) + 4

(
CA ln

QgqQgq′

Qqq′Q
+ 2CF ln

Qqq′

Q

)
+

+4C0

(
− ln 2 + ln

Q

pt

)
+

4

3

(
− ln 3− 4 ln 2 + 3 ln

Q

pt

)
(C1 + C2)

]
,(B.4.25)

G12 = −2

(
C0 +

C1 + C2

3

)
, (B.4.26)

G22 = −8πβ0

(
C0B0 +

C1B1 + C2B2

9

)
− 2KF

(
C0 +

C1 + C2

3

)
+

−8πβ0

(
2C0

[
− ln 2 + ln

Q

pt

]
+

4

9
(C1 + C2)

[
− ln 3− 4 ln 2 + 3 ln

Q

pt

])
+

−8πβ0

(
CA ln

QgqQgq′

Qqq′Q
+ 2CF ln

Qqq′

Q

)
, (B.4.27)

G23 = −8πβ0

3

(
2C0 +

4

9
(C1 + C2)

)
. (B.4.28)

The formal expansion of the resummed distribution to O(α2
s) in ∆ space is ex-

pressed as:

Σr(∆) = Σ0 + Σ(1)
r + Σ(2)

r , (B.4.29)

where Σ0 is the Born cross-section for dijet production in DIS. We have:

Σ0 =
∑
a=q,g

dBσa
B(µ

2
f ), (B.4.30)

Σ(1)
r = H11 ln

1

∆
+ H12 ln2 1

∆
, (B.4.31)

Σ(2)
r = H22 ln2 1

∆
+ H23 ln3 1

∆
+ H24 ln4 1

∆
, (B.4.32)

with Hij = ᾱi
s

∑
a=q,g dBσa

B(µ
2
f )hij for all but the H22 term. For H22 we have:

H22 = ᾱ2
s

∑
a=q,g

dBσa
B(µ

2
f )(h22 + π2/4 G2

12). (B.4.33)
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Appendix C

The functions fij

We present here expressions for the functions fij which are needed in chapter 7.

We define η3 and η4 to be the rapidities of the outgoing hard legs. We specify the

kinematics of the particles as follows:

p1 = x1

√
s/2 (1, 0, 0,−1) , (C.0.1)

p2 = x2

√
s/2 (1, 0, 0, 1) , (C.0.2)

p3 = Pt (cosh η3, 1, 0, sinh η3) , (C.0.3)

p4 = Pt (cosh η4,−1, 0, sinh η4) , (C.0.4)

k = kt (cosh η, cos φ, sin φ, sinh η) , (C.0.5)

where s is the hadronic centre-of-mass energy squared, related to ŝ (the partonic

centre-of-mass energy squared) by ŝ = x1x2s, with x1 x2 being the momentum frac-

tions of the incoming protons, carried by the struck partons “1” and “2” respectively.

The functions fij(η, φ) = k2
t pi.pj/(pi.k pj.k), are given by:

f12 = 2, (C.0.6)

f13 =
eη3−η

cosh(η3 − η)− cos φ
, (C.0.7)

f14 =
eη4−η

cosh(η4 − η) + cos φ
, (C.0.8)

f23 =
e−η3+η

cosh(η3 − η)− cos φ
, (C.0.9)

f24 =
e−η4+η

cosh(η4 − η) + cos φ
, (C.0.10)

f34 =
cosh(η3 − η4) + 1

(cosh(η3 − η)− cos φ)(cosh(η4 − η) + cos φ)
. (C.0.11)
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We present below the results for Wij =
∫
Ω

dηdφ/(2π)fij which enter the pertur-

bative part of the anomalous dimension matrix:

W12 = 2∆η, (C.0.12)

W13 =

∣∣∣∣∆η + ln
sinh(η3 + ∆η/2)

sinh(η3 −∆η/2)

∣∣∣∣ , (C.0.13)

W14 =

∣∣∣∣∆η + ln
sinh(η4 + ∆η/2)

sinh(η4 −∆η/2)

∣∣∣∣ , (C.0.14)

W23 =

∣∣∣∣∆η − ln
sinh(η3 + ∆η/2)

sinh(η3 −∆η/2)

∣∣∣∣ , (C.0.15)

W24 =

∣∣∣∣∆η − ln
sinh(η4 + ∆η/2)

sinh(η4 −∆η/2)

∣∣∣∣ , (C.0.16)

W34 = −2

∣∣∣∣∣ln
[

cosh
(

∆η−η3−η4

2

)

cosh
(

∆η+η3+η4

2

)
]∣∣∣∣∣ + W13 + W24. (C.0.17)

The last equation is only valid if η3η4 > 0. If η3η4 < 0 then W34 = W13 + W14. In

the above we assume that the gap Ω is centred at η = 0 with width ∆η and that it

stretches over all azimuths.

The non-perturbative components Cij =
∫
Ω

dηdφ/(2π)f
3/2
ij /

√
2, are easily com-

puted numerically.
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