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Abstract

In preparation to the commencement of the LHC considerable effort is devoted to
improving the current understanding of QCD radiation. We are concerned here with
this issue as manifested in soft gluon bremsstrahlung and non-perturbative effects.
We study different observables that are sensitive to soft radiation and deduce the
implications for current and future colliders.

We specifically address the possible small-z broadening effects, not accounted for
in conventional (); resummations, in the Higgs ), spectrum at hadronic colliders. As
a probe for this we study the DIS Breit current hemisphere @); spectrum at HERA.
We resum the large logarithms to NLL accuracy, match the result to NLO predictions
and smear it with a non-perturbative Gaussian function. Comparing our predictions
to HERA data ought to reveal the existence or absence of such small-z effects.

Next we study the impact of jet algorithms on QCD resummation. There are
very few resummed predictions for jet-defined quantities, which are often considered
in QCD studies relevant (for instance) to the LHC, due to the lack of theoretical
insight to all orders in the presence of jet algorithms. We consider the simple case
of energy flow into a gap between two jets and compute the dependence of primary
emissions on the k; clustering algorithm. We show how non-global logarithms in this
case are even more significantly reduced than suggested before in the literature and
estimate the impact of our findings on ZEUS photoproduction data.

We then study the azimuthal correlation distribution for dijet production in DIS
at HERA. We perform an NLL resummation and combine the result with NLO
predictions. We point to the extension of this work to hadronic collisions at the
Tevatron. The results of this analysis are important as this observable is commonly
studied by experimentalists, e.g. to extract non-perturbative parameters.

Finally we calculate the power corrections to energy flows in hadronic collisions.
This study provides the technology for further analyses of similar observables involv-
ing non-trivial colour algebra and dipole geometry.

Chapters 1/ to 3 of this thesis are introductory and review chapters while chapters

4] to [T represent the main results.
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Chapter 1

Introduction

With the upcoming LHC collider valuable data are to be collected, providing the
means for potential discoveries and advancements in various fields of particle physics.
This machine will collide protons at a centre-of-mass energy of 14 TeV, thus becoming
the largest and highest energy collider in the world. For comparison with the HERA
collider we show in fig. [1.1/the kinematics regions that are accessible by two machines.

For optimal success of the program of searching for new physics (at the LHC) one
needs to establish as good an understanding as possible of the physics involved in the
comparison between such data and theory. In this context the role of the theory of
strong interactions, quantum chromodynamics (QCD), is dominant since quarks and
gluons are always involved in such studies. This theory describes the interactions
between these particles with various approaches, e.g. lattice, perturbative and non-
perturbative, that attempt to provide as accurately as possible theoretical predictions
for many measured quantities.

The understanding of soft gluon radiation and non-perturbative effects, which
form the bulk of QCD dynamics (e.g. in Higgs production), plays an important role
in studies that aim to enhance QCD knowledge. To illustrate this point we show in
fig. 1.2 a typical jet-event at the LHC in which two protons with momenta P, and P»
collide head-on. Here we note that several sub-processes cannot be computed from
first principles. In fact only the hard process, which contains potential new physics
such as the Higgs production, can be dealt with from first principles to a few orders

in a (the strong coupling) and in some cases the accompanying soft radiation to all

18



LHC parton kinematics
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Figure 1.1: Comparison of the kinematics of HERA and the LHC. z and @) are the
momentum fraction of the proton carried by the parton and the hard scale involved.

Diagram is taken from ref. [1].

orders to a certain logarithmic accuracy. Precision in QCD is limited not just by what
powers of ay are controlled, but also by the lack of good understanding of dynamics
such as the all-orders behaviour (manifested in the resummation of large logarithms)
and the inevitable process of conversion of partons into hadrons, hadronisation.

It is even more difficult to get a grasp of this dynamics in hadronic collisions than
in processes involving at least one lepton in the initial state, such as ee™ annihila-
tion into hadrons and deep inelastic lepton-proton scattering (DIS). For instance in
hadronic collisions interactions between remnants of both incoming protons, which
are part of the underlying event, are also a major piece of non-perturbative effects.
However these are absent in ete™ annihilation into jets and DIS studies.

It is therefore of benefit to use existing collider data such as those from HERA
to probe QCD aspects that will still be relevant at the LHC. In this thesis we study
observables that can be measured at both existing colliders and the LHC. We outline
below the contents of this thesis referring the reader to fig. 1.2, which pinpoints the

specific issues we are concerned.
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Small-z effects

Intrinsic k;

Soft and/or
collinear effects

Resummation Hadronisation

Jets and jet algorithms

Figure 1.2: A typical jet-event at the LHC. This thesis is concerned with or related

to the uncertainties associated with this process as shown here.

We begin by looking at the small-z enhancement! of non-perturbative intrinsic
k; effects, where x can be interpreted as the momentum fraction of the incoming
hadron carried by the struck parton, in transverse momentum () distribution of
vector bosons (from Drell-Yan production) and Higgs boson. These distributions
are often considered in identifying and studying the properties of massive bosons.
Resummation of large logarithms that appear in the study of such distributions
is established up to next-to-next-to-leading log (NNLL)?* combined with next-to-
leading order (NLO) accuracy for the Higgs Q; spectrum [2, 3]. To account for
non-perturbative effects one smears the perturbative result with a non-perturbative
Gaussian function, representing the intrinsic k; distribution of the incoming partons.
It has been pointed out by Berge et al that such distributions may acquire a broader
shape through Balitsky-Fadin-Kuraev-Lipatov (BFKL [4, /5, 6, [7]) enhancements of
non-perturbative intrinsic-k; effects, by means of modelling logarithms of 1/z to

all orders into a Gaussian, as it has been observed for semi-inclusive deep inelastic

!Such small-z effects manifest themselves (in impact parameter space) as a factor proportional
to 1/« in the exponent of the Gaussian function describing the intrinsic transverse momentum (k)

distribution.
2Here we refer to NNLL accuracy in the logarithm of the integrated cross-section. For reference,

most resummations, e.g. those for several event shapes at LEP and HERA, achieve only a next-to-

leading logarithmic (NLL) accuracy.

20



scattering (SIDIS) @, distribution [8 9]. These small-x effects may be particularly
strong at the LHC and thus they are important for Higgs studies.

As a probe for this effect we study? the @, distribution of the DIS Breit current
hemisphere in chapter 4. In the Breit frame [11) 12} 13] the incoming quark showers
the remnant hemisphere, to NLL accuracy, with soft emissions giving rise to a trans-
verse momentum for the incoming quark, which then scatters off the electron and
showers the current hemisphere. The mechanism of acquiring a vectorial transverse
momentum through recoil in this case is very similar to that of ); distributions in
Drell-Yan vector boson and Higgs production at hadronic colliders. This similarity
can be used to probe the non-perturbative (small-x) behaviour of such distributions.
Furthermore the study we perform exploits a cleaner environment in terms of addi-
tional non-perturbative effects (as we stated before), such as multiple hard scattering
and the underlying event. Thus we study this distribution resumming the large loga-
rithms (in Q/Q;, with @ being the hard scale) to NLL accuracy, performing an NLO
matching and smearing the result with a non-perturbative (intrinsic-k;) Gaussian
function.

Next we look at jets in the final state and the impact of clustering algorithms on
soft gluon resummation. For many observables that are valuable for LHC studies,
one typically defines the final state in terms of clusters of jets rather than individual
hadrons [14] 15, 16, [17]. This reconstruction has an impact on observables which
are sensitive to emissions in a limited region of the phase-space [18, 19, 20] (non-
global observables [21], 22]). Examples include energy flow into a gap between jets in
hadronic collisions at the Tevatron [23] 24] 25] and in DIS photoproduction at HERA
[26, 27, 28]. These observables receive extra single logarithms* (which are leading
in the case of inter-jet energy flow) relative to “global” observables. Currently these
extra logarithms can only be resummed numerically in the large N, limit for two-jet?
observables [21], 22], where N, is the number of colour degrees of freedom.

It was shown by Appleby and Seymour [18] that employing a clustering algorithm

3Published in ref. [10].
4Super-leading (double) logarithms may also be present for these observables in processes in-

volving four hard partons [29].
5In this thesis we count the number of jets including both initial and final-state ones.
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on the final-state hadrons reduces the size of non-global logarithms in the case of
energy flow into a gap between two jets. Furthermore it was noted by Banfi and
Dasgupta [19] that the clustering requirement has a non-trivial impact on the global
(primary) part of the resummed distribution, previously thought to just be the ex-
ponentiation of the single-gluon contribution. In this thesis we extend® the analysis
of Banfi and Dasgupta [19] in chapter 5l and show that the result presented there
in fact exponentiates and calculate additional terms that arise at higher orders. We
also point out that the non-global component is even more reduced than previously
claimed by Appleby and Seymour [18], after correction of an oversight in the numer-
ical code, and estimate the impact of our findings on ZEUS photoproduction data.
Thus we conclude that this method essentially makes any unaccounted-for O(1/N?)
terms in the non-global component negligible. This study gives us the technology to
proceed with studies of non-global observables with jet-defined final states such as
dijet azimuthal correlations.

Thus we proceed in chapter 6/ with studying the dijet azimuthal correlation dis-
tribution (A¢ = 7 — dPjets, With dgjers being the difference in azimuth between the
leading hard jets in the final state) both in DIS and hadronic collisions. This quantity
has recently been measured by the DO collaboration at the Tevatron 30, 31] and the
H1 collaboration at HERA [32] 33]. There have been many studies for this observ-
able with various approaches aiming to extract non-perturbative parameters such as
unintegrated parton distribution functions (PDFs) [34, 135], intrinsic k; distributions
[35] and small-xz (BFKL) effects [36, 37]. However no resummed calculations have
been performed due to the lack of theoretical insight to all orders in the presence of
a jet algorithm. Now that we have the technology to deal with such algorithms [20]
we can provide theoretical predictions for this observable.

Thus we perform” a full NLL resummation (we resum logarithms of 1/A¢ in the
small A¢ region) to this observable and match the resummed result to NLOJET++

[39, 40] predictions. In this study we concentrate on the DIS case and use the jet

6Published in ref. [20]. See the acknowledgment section for details of contributions of collabo-

rators to this thesis.
"See ref. [38].
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recombination method in which the azimuth of a jet is defined by the average E;-
weighted azimuths of particles in the jet [I5]. This definition, as we shall show,
makes the observable global and thus no non-global component is present and the
resummed result, to NLL accuracy, has no dependence on the jet algorithm. This is
the recombination scheme used by the H1 collaboration to measure this observable
[32]. On the other hand the jet recombination scheme in which the four-momentum
of a jet is defined by the addition of four-momenta of hadrons inside the jet, implies
that the observable is non-global. The D@ collaboration employed the latter recom-
bination scheme to measure the observable [30, 31]. In our study we point to the
hadronic collisions case using both recombination schemes and briefly discuss the
implications of our findings in chapter 5 on the result in the non-global case.

Finally we turn our attention to non-perturbative (hadronisation) effects. Such
effects are incalculable from first principles and are usually estimated by models (for
a review see ref. [41]). A popular and successful model that described the data
well proved to be the renormalon (dispersive approach) model® [44]. Here one ex-
trapolates the strong coupling, which diverges at the QCD scale (Aqcp), into the
non-perturbative domain and replaces the perturbative coupling below some infrared
matching scale with this extrapolation. As a result of this, for example, event-shape
variables receive “power corrections”, amounting to a shift of their resummed distri-
butions by an amount proportional to 1/Q, where @ is the hard scale of the process
[45, 146, 47]. Mean values of event shapes also receive corrections which are pro-
portional to 1/Q [46], 47, |48, 49]. @, distributions acquire leading non-perturbative
(intrinsic k;) corrections through a Gaussian smearing function which can also be
derived from the renormalon model [50].

The dispersive approach has in fact been successful for observables involving up
to three jets [51], 52, 53, [54]. However for four-jet observables there are currently very
few studies of non-perturbative power-behaved corrections (e.g. in ref. [55]) since
they involve non-trivial colour algebra. Thus we investigate” in chapter [7 of this

thesis non-perturbative power corrections to the energy flow distribution in hadronic

8For recent experimental reviews see refs. [42, [43].
9Published in ref. [56].
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collisions. We find that the resummed distribution acquires a correction which is not
a simple shift as in the case of event shapes in eTe™ annihilation into two jets and
DIS. The reason for this is the matrix structure of the colour flow in the resummed
result [57, 58, 59, 60]. In our analysis we neglect the impact of non-global logarithms
[21}, 22] and the possible super-leading logarithms [29]. Nonetheless this work reveals
the technology to further study non-perturbative power corrections in observables
involving complicated colour flows and dipole geometry.

In the next chapter we provide a brief overview of QCD and the parton model.

We use the process of DIS to illustrate the physics relevant to this thesis.
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Chapter 2

Review of QCD, DIS and the

parton model

2.1 Introduction

In this chapter we briefly discuss the basics of QCD. We review its Lagrangian and the
derivation of Feynman rules. Then we discuss one of the most important processes
that give us insight into QCD, namely DIS. We present the cross-section for this
process and define the Breit frame of reference. We then discuss the property of
collinear factorisation [61, 62, 63 64] and Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
(DGLAP) evolution [65], 66, 67, 68].

2.2 Review of QCD

The theory of QCD is one of the building blocks of the Standard Model. It was
introduced to explain the phenomenon of strong interactions between quarks and
gluons. Its main feature is that it is a non-Abelian gauge theory with three colour

degrees of freedom. The QCD Lagrangian is given by:
— . o —Qx a 1 a 14
L=Y" [qf (i9,0" = my) qF — g (ww%mﬁ) AZ] U (2.2.1)
f

where the sum runs over all the flavours f, ¢ are the quark fields (spinors') with

indices o and ( running from 1 to N, (quark colours), v, are the Dirac matrices,

'We have suppressed spinor indices. The sum over repeated indices is assumed.
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my are the quark masses, g, = /4ma,, t* are the SU(N,) group generators in the
fundamental representation (N, x N, matrices), with index a running from 1 to N?—1

(gluon colours), AJ, are the gauge fields and F),, is the gluon field strength tensor:
Fp, = 0y AL — 0,A% — gs fane ALAS, (2.2.2)

with fu. being the structure constants.

From this Lagrangian Feynman rules can be derived. For instance the quark
propagator can be read off from the first term by making the replacement o* — —ip*
and taking the inverse of the term between the quark field and its Dirac conjugate
and multiplying it by a factor i.

The interaction terms (those containing gs) originate by imposing gauge invari-
ance, that is the invariance of the Lagrangian under the local SU(XV,) transformation:
q“(z) — [exp(it®0q(2))]apq®(x), for arbitrary ,(x). These terms are used to derive
Feynman rules for vertices. The last term in eq. (2.2.2) is absent in quantum elec-
trodynamics (QED), and gives rise to gluon self-interactions and thus the property
of asymptotic freedom [69, [70].

Feynman diagrams can then be used to predict measured cross-sections. In the

next section we report on the DIS process and how its cross-section is calculated.

2.3 Deep inelastic electron-proton scattering

DIS? is one of the most powerful tools for testing the parton model of QCD. For
instance it provides accurate measurements of variables that describe the structure
of the proton and the strong coupling at different scales. In this process an electron
scatters off a quark from the proton (at Born level) by the exchange of a virtual hard
photon as shown in fig. 2.1, In all what follows we neglect the proton mass since it

is much smaller than the photon virtuality.

2We explicitly use this process in chapters4land[6. Furthermore the results we derive in chapters

5l and [7l are relevant to dijet photoproduction in DIS.
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oF

Figure 2.1: The process of DIS at Born level.

2.3.1 Leading-order kinematics

We consider the process in which a real gluon is emitted in DIS off a massless quark
(fig. 2.2), or alternatively photon-gluon fusion (fig. 2.3).

We introduce the standard DIS variables: £, x and z. These satisfy the following
relations: p = xP/¢, v = Q*/(2P.q), = = Pr/P.q = p.r/p.q and Q* = —¢*, where
p, ¢ , r and k are the momenta of the incoming parton, the virtual photon and
the two outgoing partons respectively (as shown in figs. 2.2 and 2.3) and P is the
momentum of the proton. The variable x represents the momentum fraction of
the struck quark relative to the proton and x/¢ is the momentum fraction of the
incoming parton relative to the proton. Thus 0 < z < £ < 1. We also define the
variable y = P.q/P.l = p.q/p.l ~ Q?/(xs), with s being the centre-of-mass energy
squared and [ being the momentum of the incoming electron. This variable describes

the scattering angle of the electron.

2.3.2 Leading-order cross-section

The total cross-section for this process can be factored into a leptonic tensor, L,
corresponding to the Feynman amplitude squared for the emission of the virtual
photon from the electron summed and averaged over spin, and a hadronic tensor,

WH¥  corresponding to the Feynman amplitude squared for the diagrams in fig. 2.2
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Figure 2.2: Leading-order Feynman diagrams for the emission of a real gluon in DIS

with an incoming quark.

T Ar—17" 9 "~ "N———T

Figure 2.3: Leading-order Feynman diagrams for photon-gluon fusion in DIS with

an incoming gluon.

or 2.3 summed and averaged over colours, spins and/or polarisations accordingly.
It is convenient to divide the hadronic tensor into two pieces contributing to the

longitudinal and transverse structure functions. Namely:
v v 1 v, L,
wH —g"+— | Wi+ | P+ —¢" | | P+ —q" | Wa, (2.3.1)
q? 2x 2x

with g,,, being the metric tensor. Hence:

452 N2
Wl Q2pup1/ gul/ w ) (232)
222 (1262
Wy = ol < QE Puby — gw,) whe. (2.3.3)

The structure functions Fy(z,Q?) and Fy(z,Q?) are defined by: F, = W; and
Fy = W, @Q?/(2z). The transverse and longitudinal structure functions are given by:
F’T = 2F’1 and FL = Fg/x — 2F1. Since we shall particularly be interested in the DIS
final state (mainly in chapters /4l and |6) we utilise the generalised structure functions

which do not contain virtual corrections and are unintegrated over z:

R @) = 2 [ ot (5.0) + nicuea (£.0)] . eas

where ¢(z,Q?) = e2(q;(z, Q%) + g;(z,Q?), with ¢; standing for the PDF

Jlj

for quark j and the sum extending over the n; active quark flavours, and 7y =
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Tr Z;Li1 e?. Here Cp and Ty are the usual QCD colour factors, Cp = (N? —

1)/(2N.) =4/3 and Tr = 1/2 (where we assume N, = 3).

The leading-order coefficient functions are given by [71]:

Crg(&:2) = %J&z@rz (2.3.5)
Crq(§,2) = 42, (2.3.6)
Cry(e.) = €+ -2 2.3
CLg(&2) = 8(1-¢). (2.3.8)

After multiplying the hadronic tensor by the leptonic one and inserting the flux

factors, the leading-order cross-section can be expressed as:

2

dx;iQazdz N 2W5‘fm (L4 @ = y))Fr(z, 2) +2(1 = y)Fr(z,2)) (2.3.9)

where a.p, is the electromagnetic coupling constant. Alternatively we can normalise

the leading-order cross-section to the Born cross-section, oy, which satisfies:

d?o, 2o’

wd? — of L+ A=yl @), (2.3.10)
Hence for a fixed x and @) we have:
Ldo 1 2(1 —y)
0'_()% = Q(fﬂ,QQ) (FT(Z’>Z) + WFL(IL’,Z)>
1 F. 2

We notice that the cross-section has soft and/or collinear singularities (§ — 1
and/or z — 1 for the incoming quark channel and z — 1 or 0 for the incoming
gluon channel?). Soft singularities cancel when virtual corrections are considered,
while collinear singularities do not. The uncancelled singularities are a sign of non-
perturbative effects and are absorbed into PDFs. We discuss this in further detail

in the next section.

2.3.3 The Breit frame

It proves convenient to introduce the Breit frame? of reference [11) 12, [13] which

is defined by the rest frame of 2zP 4 q. We choose to align the +z-axis along the

3Note that there are no soft singularities for the incoming gluon channel. Also note that there

are no virtual corrections at O(a;) for this channel.
4We use this frame in chapters 4 and 6.
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Hr H.

Figure 2.4: The Breit frame is the frame in which, at Born level, the momentum
of the incoming quark is exactly reversed after absorbing the virtual photon. The
current hemisphere (right) points in the current direction of the photon. The remnant

hemisphere (left) contains all “remnants” of the proton (to a good accuracy).

photon momentum.

We divide the Breit space into two hemispheres whose plane of intersection is
normal to the z-axis and define the remnant hemisphere, Hg, to be the one pointing
in the direction of motion of the incoming proton. We define the current hemisphere,
‘H., to be the opposite one. Fig. 2.4l shows a schematic diagram for the two hemi-
spheres. To a good approximation the final-state particles that are present in the
current hemisphere will come purely from the hard interaction whereas those in the

remnant hemisphere are a mixture of remnants and scattered ones.

2.4 Collinear factorisation

The concepts of asymptotic freedom and confinement in QCD lead to the notions
of perturbative and non-perturbative physics. The former describes high energy
collisions of essentially free quarks and gluons, with calculable corrections expressed
as an expansion in ay, while the latter describes interactions at large scales and
low energies, where o, becomes large and cross-sections cannot be calculated with
Feynman diagrams alone.

One of the main features of the theory of QCD is the ability to separate short
distance perturbative physics effects from long distance non-perturbative ones. This

means that, for processes containing hadrons in the initial state, one can study the
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partonic sub-process separately from the overall interaction and then numerically
convolute the hard cross-section with universal PDFs, which can only be extracted
from experiments. For instance the leading-order cross-section for DIS is expressed
in terms of structure functions. These are convolutions of coefficient functions (ac-
counting for the partonic sub-process) with PDFs (e.g. eq. (2.3.4) which represents
the real emission contribution). In hadronic collisions one can write the cross-section

for an observable V as:

J<V) ~ /dxadxbfa/A(xaa /‘L?‘)fb/B(xba :uff)o-hard(/i?‘a Q2) V)7 (241)

where () is the hard scale and oy, is the cross-section for the observable at the
partonic level. Here z; represents the momentum fraction of the i** incoming parton
that undergoes the hard interaction with respect to its parent incoming hadron. The
non-perturbative PDFs f;/;(z;, ,ufc) are process-independent and (multiplied by dz;)
represent the probability of finding a parton ¢ with momentum fraction between x;
and z; + dz; in hadron j. They depend on a factorisation scale s in analogy to the
strong coupling which depends on a renormalisation scale .

The origin of this factorisation scale is the “renormalisation” of the bare PDFs
by absorbing into them the collinear singularities to legs ¢. This is a similar idea
to ultraviolet singularities being absorbed into the running of the strong coupling.
Thus it is plausible that PDFs obey some sort of a renormalisation group equation
that comes about due to the fact that the observable cross-section must ultimately
be independent of the choice of py. In fact such an equation in this case is called
the DGLAP evolution equation and we shall discuss it in further detail in the next

section.

2.5 DGLAP evolution

DGLAP evolution is an equation that governs the scale dependence of PDFs. It is

a matrix equation in flavour space, with (2ny 4+ 1) x (2ny + 1) dimensions. The full
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matrix form of this equation is:

u(z, pu?)
e | | P o att <250 [
9(z, p1?)
Puu(§, as(p?)  Pua(& as(p®) --- Pug(& as(p?)) u(z /&, 1?)
y P (& as(1?)) Paa(§, as(1?)) -+ Pag(§, as(p?)) u(x /&, 1?)
Pyu(§,as(1?))  Pga(& as(p?)) -+ P&, as(p?)) g(x/& 1?)

(2.5.1)

where f1 is the scale of the PDFs. The functions FPy,q;, Py, Pyq;, and Py are known as
the splitting functions. They respectively describe the probabilities of the transitions:
¢ — Gi, § — i, ¢; — g and g — g (by the emission of real and/or virtual partons).
Here ¢ is the momentum fraction of the final particle relative to the initial one, P

and g are the matrices of splitting functions and PDFs. The leading-order splitting

functions are given by” [67]:

PO (&) = 6;Cp (11“2 (2.5.2)
9©) = +(1-€)?), (2.5.3)
0 +(1-¢)?

PO(&) = CF : : (2.5.4)

Pe) = 2C. ((1 f§)+ + 1;5 +€(1 —s>) +

b1 - g AR, (2.5.5)

with C'y = N.. The plus prescription is defined such that for any smooth function
f(€) and a divergent function g(¢) which has a singularity at & = 1, of the form
1/(1=¢): 1 1

| rowend = [ 1 - riatee (2.5

The divergence in the function g(&) is regularised by the plus prescription and the

integral in eq. (2.5.0) is finite.

SThese splitting functions include virtual corrections.
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It proves convenient for solving the DGLAP equation to work in Mellin space

conjugate to x. Here the convolution in eq. (2.5.1) becomes:

) S (o an(?) (25,7

where N is the moment variable conjugate to z and ~x(a,(p?)) is the matrix of
anomalous dimensions®: vy ;; = fol ENTLP,(€)dE. Solving eq. (2.5.7) for an arbitrary

scale () and an initial scale )y we obtain:

Q? 2 o 2
qN<Q2>=exp</ di” S(“)w(as(uz)))xq]v(@%). (2.5.8)

@ W o2m
One can now use the leading-order anomalous dimension matrix and the leading-
order solution to the QCD [ function (describing the running of the strong coupling)
to achieve single logarithmic (SL) accuracy, in which O(a? In"(Q/Qy)) terms are

resummed. For this we exploit the relation:

2y _
() = 755 (2.5.9)
where ¢ = a4(Q%) 8o In(Q/p), with:
- 110A — 2?”Lf
fo = — o (2.5.10)

being the first coefficient of the QCD £ function. The solution then reads:

av(@) e (<ol -2 ) xan(@). (251)

P90

where A\ = a,(Q?)5o In(Q/Qo). We remind the reader that this is a matrix equation
and the order of matrices matters. One can now convert this equation to x space

arriving finally at the formal equation (which is valid to SL accuracy):

q(z,Q?) = exp (— In(1— 2)\)P(0)®) q(r,Q3), (2.5.12)

1
21 5o

whose expansion to O(a?) yields”:

a(2, Q") = [1+2a,LPO + a21* (125,P" + 2P0 @ PO)| @ q(z,Q3), (25.13)

SWe do not explicitly show the expressions for the components of this matrix since we do not

require them.
"This equation is useful for the procedure of “matching” in chapters 4 and [6
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with I(z) = §(1 —2)1, as = a,/(2m) and L = In(Q/Qo). Clearly PDF's are expressed
here as a series in asL (to SL accuracy). Thus the result in eq. (2.5.13)) is a good
approximation only when a,L is small. If azL ~ 1 then the all-orders expression is

the reliable approximation.

2.6 Summary

In this chapter we reviewed the theory that we shall use in this thesis (QCD). We
briefly described the QCD Lagrangian and the process of DIS. We used this process
to illustrate some important concepts of QCD. In particular we reviewed the subject
of collinear factorisation and solved the DGLAP equation to SL accuracy.

In the next chapter we present the essential tools and techniques that are needed
in this thesis. We shall provide an overview of resummation and non-global effects,
illustrating the resummation of the energy flow distribution in ete™ annihilation
into hadrons. We shall also give an example of resummation in the case of four-jet

observables and discuss non-perturbative power corrections.
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Chapter 3

Resummation and power

corrections

3.1 Introduction

Although perturbation theory is valid at high energy (short distance) scales there is a
subtlety in calculating observable distributions when two disparate scales are involved
in the calculation, e.g a hard scale and a veto scale. The strong coupling becomes
accompanied by large logarithms of the ratio of these scales. The origin of these
logarithms is the break down of real-virtual cancellations of infrared singularities
when a cut-off (veto) is introduced on real emissions. These logarithms become
important at each order in perturbation theory when they are as large as the inverse
of the coupling. Thus one cannot rely on a truncation of the perturbative series to a
few orders to give the correct form of the spectrum and a resummation to all orders
is necessary.

In this chapter we explain in detail the origin of these logarithms and how they are
dealt with, illustrating the resummation of a simple observable, namely the energy
flow into a gap between two jets in eTe™ annihilation into two quarks. We then
discuss the hadronic collisions case (complicated by the colour flow), calculating
the matrices that enter the dynamical and colour flows in the process ¢¢ — qq.
Finally we discuss non-perturbative hadronisation effects in the renormalon model

by introducing the non-perturbative coupling moment.
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P D2 D1 D2

B B

Figure 3.1: The scattering of a quark off an external field B, such as a photon.

3.2 Basics of soft gluon resummation

3.2.1 Soft gluon factorisation in hard processes

We consider the matrix element for the radiation of a gluon off a quark that undergoes
a hard scattering with an external field B as shown in fig.[3.1. The external field could
be for instance a photon coming from the electron in DIS. We write the Feynman
amplitude for this process as follows:

i(#— k)

Z(%2"’_ k) Bt + B“—(_igstfzj’ya) uf(pl)’

MH = ﬂfl(pz)eiao‘(k‘) (_igstfzj’ya)m (pl - k)z
(3.2.1)

where u is the quark spinor, with indices ¢ and j standing for quark colours and
S and S’ standing for spins, and € is the gluon wave-function, with indices a and
A standing for the gluon colour and polarisation. We have defined p = ~,p" and
suppressed the spinor indices which are contained in the spinors, Dirac matrices and
the external field B*.

We are interested in the case where the gluon is soft, meaning that we ignore
terms which are O(w°) and higher, with w being the gluon energy, in the matrix

element. Thus we simplify the matrix element to:

(3.2.2)

s @ i D263 pr.ey”
MH = ggu; (pQ)tajB”uf(pﬁ( 22 A ’\>

p2k prk

where we use the relations pu(p) = 0 and 7,7, = =7V, + 29, We have kept the
dominant piece of the amplitude in the soft limit, which goes like O(w™1).

Multiplying by the conjugate transpose, summing over final-state spins, polari-
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sations and colours and averaging over initial-state spins and colours we arrive at:

Z ! 2p1.p2
QMV _ —_—— 2,U,l/ 2
SvS’7>\,Colour|M| 2NC|MO| gSCFNC

(p1-k) (p2-k)’
where we define |Mg|>*” =poB* p B and used the relations 3, e (k) (k) =
—g*%0a, Y_guf (p)uy (p) =poy and t§;t)" = CpN,. The factor 1/(2N.) comes from

ijva

(3.2.3)

the averaging over the two spin states and the N, colour states of the incoming quark.
Note that |Mg|?#*/2 is simply the matrix element squared for the scattering shown
in fig. 3.1/ without the gluon dressing, summed and averaged over spins and colours.

Hence we have factored the amplitude squared (in the soft limit) into a hard
contribution and a soft dressing. Note that virtual corrections (in the soft limit) also
have exactly the same form with an overall minus sign. Furthermore this factorisation
works in a similar way for processes where both quarks are in the final state, e.g.

ete” annihilation into a quark/anti-quark pair.

3.2.2 Probability of emission

The probability of the scattering shown in fig. 3.1/ is given by the matrix element
squared, summed and averaged over spins, polarisations and colours accordingly and

multiplied by the phase-space. We write the probability of the scattering as follows:
dF = tharddFsoft, (324)

where dl'aq s the probability of the hard scattering (without soft gluon dressing)

and dl'g.g is given by:

d3E 2 2p1'p2
20 (o1 ) (o k)
dw dcostdop ay 5 D1-D2
w sin?@ 2r2r CO (p1-k)(p2-k)
dk; . do o

- apL=s 2.
T 7727T27TCFU}127 (3.2.5)

dFsoft

where we assume for simplicity that the hard legs are back-to-back and defined 6
and ¢ to be the polar and azimuthal angles with respect to the incoming quark axis.
Here n = —Intan(f/2) is the rapidity of the gluon with respect to the incoming

quark axis, k; = wsin 6 is the transverse momentum of the gluon with respect to the
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quark axis and w;; = 2k} p;.p;/(pi-kp;.k). In the case of a back-to-back dipole we
have: wqy = 4.

There are two types of singularities in this expression: when w — 0 (soft di-
vergence) and when # — 0 or 7, or equivalently n — oo (collinear singularities).
However for infrared and collinear-safe quantities [72] (those insensitive to soft and/or
collinear real radiation) these singularities cancel with the virtual corrections since
the matrix element squared in this case has exactly the same form as that in the real
emission case with an overall minus sign.

This cancellation is broken if a veto is introduced on the final-state particles, e.g.
when vetoing events with energy flowing into a gap between the two hard partons
being above some scale ()g. Thus virtual emissions which are emitted in the gap
with energy above @y are not vetoed and have nothing to cancel against'. This
ultimately leads to large logarithms of the ratio of the veto scale and the hard scale,
which implies the need for resummation to all orders when these scales are disparate.

We discuss how this is done in the next section.

3.2.3 Multi-particle (primary) emissions

Having factored the probability of emission into hard and soft pieces we now proceed
to higher orders in the logarithmically enhanced limit, i.e. when gluons are strongly
ordered in energy [73].

The soft factorisation that we have demonstrated does not state anything about
the vertex? B, as long as the emitted gluon is independent of the vertex. One can
think of the emitted gluon as being part of the vertex and consider the emission of a
softer gluon which is blind to the first gluon. Then we can see that the probability
of this emission is also factored in the same way as before. Hence by iteration it

is clear that the probability of emitting n soft gluons which are strongly ordered in

IQuantities with a veto scale are still infrared and collinear-safe since virtual emissions with

scales below Qg cancel with real emissions.
2Note that the vertex could change the colour of the quark that undergoes the hard scattering,

i.e. the external field being a gluon. The factorisation equally works in this case.
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energy factorises as follows [73]:

1 i dky ; do; as<k752i)
dr, = = TT S50 g, S0 25200 3.2.6
n! leQH Fti T 2 2w ( )

where we allow the coupling to run at a renormalisation scale k;; for the ith emission.
The strong ordering is assumed because the logarithmically enhanced region of the
phase-space originates when all the gluons have widely disparate scales. Here the
gluons are essentially classical and are emitted independently except for multiple
gluon branchings which are accounted for by the running of the coupling in the
Catani-Marchesini-Webber (CMW) scheme [74]. The 1/n! term comes from the
number of possible ways this energy-ordering could be achieved with n emitted gluons
while allowing for the energy scales of the gluons to be interchanged. In other words
we can either give a specific ordering (e.g. k; < ko - -k, < Q) and remove the 1/n!

factor or allow the interchanging of these gluons and keep the 1/n! factor.

3.3 Example: energy flow into gaps between jets

in efe” — qq

3.3.1 The global part

We now provide an example for the resummation of the “global” part of the en-
ergy flow distribution® in ete~ annihilation into two jets, which was computed by
Dasgupta and Salam [22]. We write the integrated distribution for events with
Y icq ki < Qo, for some @, with Q being a gap of width An which stretches over

all azimuth and is centred about = 0 in the rapidity-azimuth plane, as:

E(Qa QO) - U(Qa QO)/JO = Z / drne (QO - Z k’t,i) 5 (331)

ieQ
where o is the Born cross-section, @) is the hard scale and dI',, is the differential

phase-space for the emission of n gluons, given in eq. (3.2.6). We factorise the 6

3We use this observable in chapter [5 to describe the impact of jet algorithms on QCD resum-
mation. We also use it in the case of hadronic collisions to estimate the non-perturbative power

corrections.
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function using the Mellin transform:

n

- dv

. ) _ vQ —ky,iv

0 (QO Z k:m> = / 5 H e kv (3.3.2)
1€Q %

where the integral runs parallel to the imaginary axis to the right of all singularities

of the integrand. Thus we can sum over all orders arriving at the result:

d dk, . doag(k?), .,
2(Q, Qo) Z/Zﬂlgye”% exp (4CF/k—td772—i%ﬂ)(e ke _ 1)) (3.3.3)

The term (—1) accounts for the virtual corrections. We can now make the substi-
tution [75]: exp(—vk:) — 1 — —6 (kv — 1) which is valid to SL accuracy. Thus we

write:

dv Q2 dky g (k) d¢
2(Q, Qo) /mye eXp( ACK /W = /Q dng_ |- (3.3.4)

Performing the n, ¢ and k; integrations we arrive at the result:

ko) [ d6 1
- =2 = ——In(1 — 2A)A 3
/1,/ ke 2w /Q Tor 47, n )An, (3.3.5)

with A = a,((Q/2)%) 5 In(rQ/2) and we expand a,(k?) using the QCD 3 function to
SL accuracy. To solve the v integration we use the saddle point method. It may be
shown that the saddle point in the v integral to SL accuracy is simply given by 1/Qo.
Thus we can expand the exponent about this point and throw away all subleading

logarithms, o In"(Q/Qy), with m < n , arriving finally the result:

¥(Q, Qo) = exp (—4CrAnT(Q, Qo)) , (3.3.6)

with:

7(Q, Qo) = —

25 1
P (1 — 20,((Q/2)7) o In 2@0) : (3.3.7)

We shall correct this result for non-global effects, which we introduce in the next

subsection.

3.3.2 Non-global effects

Thus far we have only considered primary independent emissions from the hard

dipole. For “global observables” (those which are sensitive to emissions in the entire
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Figure 3.2: Gluon configurations that give rise to non-global logs at leading-order.

Figure 3.3: Gluon configurations that give rise to non-global logs at higher orders.

phase-space) this consideration is sufficient to produce all soft (collinear or wide-
angle) logarithms. However for non-global observables (those which are sensitive to
emissions in a limited region of the phase-space) there are other types of particle
configurations that give rise to eztra single logarithms which first appear at O(a?)
[21], 22].

Consider the emission of a real or virtual softest gluon ks off a soft gluon & which
is emitted off a hard dipole as shown in fig. 3.2 (ks < k1 < Q). The probability
of emission for this configuration is logarithmically enhanced: if the emission k; is
outside the gap region while ks is inside with energy wy > )y then the right hand
side diagram in fig. 3.2 receives a veto while the left hand side one does not. Thus
we have a miscancellation which leads to large single logarithms.

At higher orders of this configuration the particles that are emitted outside the
gap can take any complex geometrical structure while being energy-ordered. They
coherently emit a single softest gluon into the gap as shown in fig. 3.3. It is only
possible to deal with this configuration in the large N, limit. Then one may write

an evolution equation ([76]) to obtain the resummed form of these logarithms to all
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orders numerically.

We now include the effect of non-global logarithms in the resummed result for
the energy flow distribution in ete™ — ¢g. We write the result which corrects eq.
(3.3.0) as [22]:

(@, Qo) = exp (—4CFrAnT(Q, Qo)) S(Q, Qo), (3.3.8)

where we introduce the non-global component S. This has been computed in ref.

[22] and has the following approximation for large An:

™™ 1+ (A7)? 9
S~ exXp (—QCFCAng + O(l/NC)) s (339)

where A = 0.85C'4, B = 0.86C'4 and C' = 1.33. Note that the values of 7 are typically
in the range 0 < 7 < 0.25.
Note that the non-global component in this case contributes at leading-log level.

We have ignored O(1/N?) terms which are essentially leading logarithms.

3.4 Resummation

In general one may have soft and collinear double logarithms contributing to the
observable cross-section. Here one may write the resummed result for the differential

cross-section for an observable V' (which vanishes in the Born limit) as [77]:
do d
av > av

where a5 = a4/(27), C,, are constants and L is the logarithm of the observable,

L=1In(1/V).

Z C’n@?] exp [Lgi(asL) + ga(as L) + asgs(asL) + -+ -] + D(V)) ,
! (3.4.1)

The function Lg;(a,L) resums soft and collinear (double) logarithms, L™
while the function go(asL) resums hard collinear or soft wide-angle (single) loga-
rithms, afL". Subleading logarithms, oL™, for 0 < m < n, are resummed by
a'gire, for i > 0. These are usually uncontrollable by current resummation tech-
niques.

The term D(V') in the above equation vanishes in the limit of small V. It is usu-
ally obtained from fixed-order programs alongside the constants C; (if not available

analytically) and Cy . The procedure by which these are added to the distribution is
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known as “matching” (we shall use this in chapters 4 and 6). Matching guarantees
the correct behaviour of the spectrum in the region where resummation is not valid
(V 4 0).

For observables which are unaffected by collinear emissions to the hard legs (e.g
energy flows into gaps between jets) there are no double logarithms (the function ¢

vanishes) and single logarithms become the leading ones.

3.5 Colour flow in hadronic collisions

Let us now consider the resummation in processes which are complicated by the
colour flow*. For simplicity we work with the energy flow into a gap €2 between the
jets in the process q7 — ¢q (this was computed by Berger et al [78] and by Banfi et

al [76] including the non-global component in the large N, limit).

3.5.1 Born matrix element

We begin by looking at the matrix element for the Born process which is shown in
fig. 3.4. We decompose the matrix element into s and ¢-channel pieces. We write

the matrix element as follows:
M = Mstfj o+ Mt ?k, (3.5.1)

with a being the colour of the internal gluon and ¢, j, k and [ being the colours of
the external quarks. Here M, and M, are the colour-blind matrix elements for the
s and t-channel processes, which are calculable using QED-like Feynman rules. We
can represent this matrix element in a colour-flow diagram as shown in fig. 3.4.
Note that ¢t = 0ij0ki/2 — 1/(2N.)d;40 ;. This identity is known as the Fierz
identity and can be represented in graphical form as in fig. 3.5. Thus we can

decompose the matrix element in terms of the elements ¢; = 0,05 and ca = 0;;651/2—

1/(2N.)6;10;1, which form a basis for the colour flow. We thus write:

4This study is useful for chapter [7, where we calculate the power corrections to the energy flow

distribution in hadronic collisions.
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Figure 3.4: Decomposition of the matrix element for the process q¢ — ¢g into s and

t-channel components.

I i I i L
E 2 2N,
¢ . . —
k J k J k

Figure 3.5: The Fierz identity in graphical representation.

C 1
M = MS (ViCI — ECQ) + MtCQ

CF

1
(Mt - EMS) Co. (352)

We can equivalently express the matrix element in terms of a vector in colour

space whose orthogonal basis is (¢1, ¢2). We write this vector as:

e M,
M = Ne : (3.5.3)
Mt - NLCMS
The matrix element squared is given by MTSM, with S being a diagonal matrix with
elements ¢? = N2 and ¢3 = (N? —1)/4. This can be seen by expanding M*. M using
eq. (3.5.2) and the fact that ¢;.co = 0. Thus the final result for the Born matrix

element squared, summed and averaged over spins and colours, is given by:

Yo =

spin

_ OF (prm M, +Z M| )——ZWM M., (3.5.4)

where we have:

— ~2 2
+t
oM = 2t (3.5.5)
spin S
u’ + 5
> M = 2——, (3.5.6)
spin t
~2
S MM = 2% (3.5.7)
spin st
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with ispin denoting the sum over final-state spins and average over initial-state spins.

2 are the usual Mandelstam

Here 8 = (p1 + p2)®, & = (p1r — ps)® and @ = (p1 — pa)
variables, with p, standing for the momentum of the n'" quark and we label the
quarks whose colour indices are [, k, ¢ and 7 by 1, 2, 3 and 4 respectively. The

factor 1/N? in eq. (3.5.4) stands for the averaging over the N2 colour states of the

incoming quark/anti-quark pair.

3.5.2 Soft gluon factorisation and resummation

Let us consider the dressing of the matrix element under consideration with a soft
virtual gluon, whose energy is greater than the veto scale )y, in the gap region in
all possible ways such that the virtual gluon connects two external legs. This will
then be multiplied by the conjugate transpose of the Born matrix element and then
added to the conjugate transpose of the result (i.e. M(T).Ml + ./\/li../\/lo, with Mg
standing for the Born matrix element and M standing for the Born matrix element
with virtual dressing) to produce the O(ay) virtual corrections. This consideration is
sufficient to capture all single logarithms [57, 58,59, [60] except non-global logarithms
[21,129,[76]. The attachments can be translated to the basis itself instead of the actual
matrix elements. This ultimately leads to a rotation of the basis (in colour space)
which has the form:

C; = Ciji, (358)

where ¢, is formed by dressing ¢; with virtual gluons as described before. Note that

the matrix I describes both dynamical and colour flows. To calculate this matrix

a +a

one uses the identity 9= Crd;. Thus we write the result as follows:

/ ~ ~ ~ ~ ~ ~
¢, = Cp(13 + Wag)cy + (W12 — Wig — W32 + Ws4)Ca,
r_ CF ~ ~ ~ ~
Cy = (W19 — Wyg — W32 + Was)C1 +
2N,

+(Cplig + W3s) — 1/(2N,)[W19 + W13 — 2114 — 2Wa3 + Wy + W34))Ca,

(3.5.9)
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with [51, 52, 53, 79, 80)]:

P _E/Q&M/d o
g 2 Jo, kL 2 Jo "2V

d¢

where 7 is defined in eq. (3.3.7)°, k. is the invariant transverse momentum of
the dipole (ij), which is given by ki = 4k?/w;;, and k;, n and ¢ are measured
with respect to the axis formed by the incoming quarks®. The hard scale Q is the
transverse momentum of the outgoing hard jets. The minus sign in the expression
for w;; accounts for the fact that virtual corrections have a negative sign with respect
to real emissions and the factor 1/2 accounts for the fact that we only considered
attachments of the virtual gluon to the external legs of the matrix element, but not
its conjugate transpose. We shall include the attachments to the conjugate transpose
of the Born matrix element presently.

Now the matrix element squared (the ./\/lg)./\/ll piece) is give by MfS(M, where

the matrix SM has the elements Si(jl) =cl.d = cjckfkj = ikfkj = (Sf‘)m Similarly

J
we can attach the virtual gluon to the conjugate transpose Born matrix element
and multiply it by the Born matrix element (i.e. the MIMO piece) arriving at a

contribution of MITTSM. By summing the two contributions we arrive at the one-

loop result for the energy flow distribution (normalised to the Born cross-section) as

follows:
| —
S0(Q. Qo) =~ M (TS + 8T) M/, (3.5.11)
: spin
where I' = —T". The 2 x 2-dimensional matrix I is defined by:
CpT Sr(S-U
r=|( * o, (5= U) , (3.5.12)
S—-U C’FS—ﬁ(T—2U—|—S)
where:
S = 1I)12 —|— U~)34, (3513)
T - U~}13 + U~)24, (3514)
U =3+ Wyy. (3.5.15)

®Note that the difference between Q/2 and @ in the upper limit of the k, integration is sub-

leading.
SNote that k; = k; only when the legs of the dipole are back-to-back.
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By iteratively attaching energy-ordered virtual gluons to the hard matrix element
it becomes apparent that the result exponentiates in a similar fashion to the two-jet
case in ete™ annihilation into two quarks. Hence we finally arrive at the resummed

result:
| —
(@, Qo) = ngspinMT exp (—I'T) Sexp (—T') M/%,. (3.5.16)
Alternatively we can express this in the standard form:
2(Q, Qo) = Tr [Hexp (—I'") Sexp (-I')] /Tr(HS), (3.5.17)

where the matrix H has the components Hy; = 1/NZ Y7 . M:.M;, with M; being
the components of the vector M. The matrices H, I' and S are provided in refs.

57, 158, 59, 60].

3.6 Non-perturbative effects

In this section we illustrate the calculation of the power corrections to the energy
flow distribution in e*e™ annihilation into two jets”. We begin by observing that the
k; integration in eq. (3.3.3) is perturbatively divergent since ay(k?) diverges when
ki — Aqcp. The origin of this singularity is the factorial divergences associated
with renormalon chains [81]. We have only been able to perform this integration by
neglecting the region of integration k;, < Qo, with Qo > Aqcp, on the grounds that
it is subleading.

To account for non-perturbative effects we introduce an effective coupling g [44]
which is equivalent to the perturbative coupling at high scales while being convergent
at low scales. We introduce an infrared matching scale u; characterising the scale at
which the effective coupling starts to differ from the perturbative coupling. This is
usually chosen to be 2 GeV.

We split the k; integration in the exponent of eq. (3.3.3) into perturbative and

non-perturbative contributions as follows (respectively):

Q/2 2 224 2y 2
/ ki vk _ 1) 2si) +/ Bt et q) Qi) Zslle) 56
0 0

kt 2w k:t o2 ’

"We shall study the power corrections to energy flows in the case of hadronic collisions in chapter
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where we subtract the contribution to the k; integration for k; < p; and added it
back using the effective coupling. We perform the integration in the first term of eq.
(3.6.1) perturbatively as before (i.e. using exp(—vk;) — 1 — —60 (kv — 1)).

To obtain the leading power corrections we expand exp(—vk;) — 1 ~ —vk;, in
the second term of eq. (3.6.1), where we are interested in the region vk, < 1, which

corresponds k; < Qp. Thus we write the second term of eq. (3.6.1) as:

1053 2\ 2
- u/ i Centhi) = as(ky) (3.6.2)
0

21

with:

p o= <a0(,u1)—i /0 " dktas(k?))
(

M1 2 Bo Q  Kr 2(()2 3
- u () = 2 (X 2E ,
2 (aatin) - @)~ 5 (10 2+ BE 4 1) (@) + Ol
(3.6.3)
and ao(pr) = 1/pr [ dky aeg (k7). The parameter aq is only measured through

experiments (see e.g. [42, 43]). In going from the first line of eq. (3.6.3) to the
second one we convert the coupling from the CMW scheme to the modified minimal

subtraction (MS) scheme. In the above equation we have:

67 w2 5

We therefore write the v integration (eq. (3.3.3)) as follows:

Q/2 2
0.0 / V@ icrsim) o, <_4CF / dky oy (k?) /dn@) (365)
1 9]

2miv L, ke 2w 2m

Hence we arrive at the same result as before with the replacement Qy — Q¢ —
4CrAnP, which amounts to a shift of the distribution to the right by an amount
equal to 4CrAnP. If we one measures (Jy in units of ) the shift of the distribution
would be proportional to 1/Q.

Note that we did not account for the “Milan factor” [82], which arises when
considering a two-loop analysis for the argument of the coupling. When a two-
loop calculation for the power corrections is performed it is found that, for event
shapes, the result is equal to that computed using one-loop analysis (such as that we
calculated above) rescaled by a universal constant factor [83, 84] (M =~ 1.49). This

factor has not been yet accounted for in hadronic collisions.
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3.7 Summary

In this chapter we provided an overview of the various techniques and methods that
we use in this thesis. We now proceed with studying various QCD observables that
give us more insight into QCD radiation and non-perturbative effects.

In the next chapter we look at the (); distribution of the Breit frame in DIS and
perform a resummation and correct the result for non-perturbative effects to probe

the small-x enhancement of (); spectra at hadron colliders.
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Chapter 4

The ()+ distribution of the Breit
current hemisphere in DIS as a

probe of small-z broadening effects

4.1 Introduction

With the imminent advent of the LHC, considerable effort has been dedicated to
utilising existing collider data and theoretical predictions for QCD observables to
foster an even better knowledge of crucial parameters such as the strong coupling
and parton distributions in hadrons (see e.g. [85]).

An invaluable source for such data is the HERA collider, which continues to play
an important role in phenomenological studies of QCD. The HERA-LHC workshop'
was in fact dedicated towards the aim of directly linking HERA QCD studies to
those that will be important in a discovery context at the LHC.

In the present chapter we shall highlight one such study. To illustrate our point
we choose the @)y spectrum of the Higgs boson for which very accurate theoretical
predictions exist in the literature [2,[3], as we highlighted in the introduction chapter.
Such accurate studies are important in the context of formulating improved strategies
to extract the signal and to enhance its statistical significance over backgrounds.

One concern that has been a point for some discussion (see e.g. ref. [§]) is the

Thttp://www.desy.de/~heralhc
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role that might be played by neglected small-x effects that one may expect could be
relevant at the x values involved in vector boson and Higgs production at the LHC.
Here x is the momentum fraction of struck parton relative to the incoming hadron.
As we stated in chapter 1, if neglected small-z effects are indeed important in this
context, they could in principle lead to broader (); spectra than those predicted
by conventional resummations (sometimes also referred to as Collins-Soper-Sterman
or CSS formalism [86]) alone. Henceforth we shall refer to these resummations in-
volving (); spectra in hadron-hadron collisions with the generic label Drell-Yan @),
resummations.

It was observed for instance by Berge et al [§] that effects due to small-z enhance-
ments that were suggested by phenomenological studies [9] for SIDIS Q; distributions,
could be very significant (especially in the context of massive vector boson produc-
tion) when extrapolated to the smaller x values that will be important at the LHC. It
was also suggested in ref. [8] that such effects could be visible with Tevatron (Run II)
data if one concentrates on forward production of vector bosons alone, rather than
integrating over all rapidities. On the other hand, studies for many event-shape vari-
ables in the current hemisphere of the Breit frame in DIS have been very successful,
down to moderately small z values (z &~ 1072), based on resummation [47, 87, [88]
that did not account for BFKL small-z effects. The comparison to HERA data for
several event-shape variables can be found in [47].

It is also clear however that event shapes are somewhat different from ); spectra
of the Drell-Yan type, significantly due to their direct sensitivity to gluon emissions,
rather than purely through recoil. This difference means that event-shape variables
receive non-perturbative corrections that scale as 1/Q [49], where @ is the DIS hard
scale. These power corrections arise in a way similar to that we described in section
3.0, and are due to soft gluon emissions alone and hence are independent of z. The
quantity we shall study in the present chapter is closer in nature to the Drell-Yan
Q; spectra since the leading non-perturbative effects here scale as 1/Q* and can be
associated with what is commonly known as “intrinsic k;” of partons inside hadrons.
Thus one would expect any missing small-z effects that appear in the present context

(perhaps as suggested by Berge et al [8] in terms of a small-x enhanced smearing
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of the conventional resummation), to manifest themselves in a very similar way in
the Drell-Yan case. It is thus conceivable that for the (); distribution we present
here, deviations are seen from the resummed form, even at x values already studied
successfully for event-shape variables.

To be more precise, the observable we study here is the distribution 1/0 do/dQ,
with @)y being the modulus of the transverse momentum vector of all particles in the
current hemisphere (H,) of the DIS Breit frame:

Qo= ki, (4.1.1)

i€H,

where Et is measured with respect to the photon axis. Note that the addition over
particles mentioned above is vectorial in nature, in contrast to say that involved in
event shapes like the jet broadening observable [87], where one adds the moduli of
individual particle transverse momenta. This is also a different quantity from the
resummed z flow studied in refs. [8, 9] while also being directly related to the Drell-
Yan @), spectra and thus should provide an independent probe of small-x broadening
effects.

To relate the quantity here to @); spectra in Drell-Yan type processes one notes
that in the Drell-Yan case one has the massive vector boson recoiling against emis-
sions from two incoming hard partons, while for our DIS example the transverse
momentum of the current hemisphere is equal and opposite to that of the remnant
hemisphere. If one assumes the remnant hemisphere ); spectrum to be entirely gen-
erated by emissions from a single incoming leg the relationship to Drell-Yan @, is
obvious: we just have to account for the form-factor of one incoming parton instead
of two and thus we have, at the level of form-factors, AN (Q, Q;) = /AN (Q, Q).
The variable N indicates moment space, conjugate to x.

This simple relationship breaks down at NLL level, due to the non-global na-
ture [21, 22] of the DIS observable. Non-globalness in the present case is a conse-
quence of looking at just a single hemisphere and provides an extra factor in the
DIS case, to do with soft emissions at large angles, which is absent for the global
Drell-Yan quantity. We shall of course account for this factor, but we stress here that

the fundamental relationship of our quantity to Drell-Yan @; (which is exactly of the
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square-root form we wrote above, at leading-logarithmic accuracy) is unchanged by
this complication. In particular any neglect of terms that are enhanced at small x
ought to be of similar significance in the two cases.

To further this investigation we obtain here a resummed result for the above
quantity, to NLL accuracy® and combine it with fixed-order predictions to O(a?)
accuracy. Our result is thus suitable for comparison with data over the entire mea-
sured range of (); values. We also comment on the effect of smearing our result with
a Gaussian function, as is usual to accommodate the so-called intrinsic k; of the
incoming parton, which has a non-perturbative origin. The resultant prediction can
then be directly compared to data which should be of interest especially at lower x
values. If discrepancies are visible at low x then one may consider a small-x enhanced
smearing function as was the case in refs. [8,19]. This is certainly not a substitute for
a detailed treatment based on a physical understanding of the small-x region, but
merely a phenomenological investigation into how such effects may be parameterised
if present in the first place. Subsequently one may also consider the extrapolation
of our findings to hadron colliders. We note that preliminary data from H1 are al-
ready available [89] and await the final versions together with potential data from
the ZEUS collaboration.

The outline of this chapter is as follows: in section 4.2 we put together the different
ingredients required to obtain our NLL resummed result which we compute in impact
parameter or b space as is most convenient for (); resummations. Once we obtain
the b-space answer we find, in section 4.3} its transform to ); space and comment on
its main features. In section 4.4 we carry out the matching of our resummed result
to the full O (a?) result from the fixed-order program DISENT [90, 91]. Finally
we comment on the potential role of non-perturbative effects that are expected to
take the form of a smearing of the @); distribution with a function representing
the “intrinsic transverse momentum” of partons inside hadrons. Here one may try
different choices for the smearing function and search for any discrepancies at lower

x values, between our results and the data. We shall leave the details of this to our

?Equivalently we seek SL accuracy in the resummed exponent that we shall compute subse-

quently.
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forthcoming phenomenological investigation [92].

4.2 Resummation

At Born level the struck quark is aligned along the photon axis, the quantity in
question (@) vanishes and the distribution is essentially a delta function: do/d@; ~
0(Q1)-

At small @); the emission of soft and collinear gluons deform the delta function.
One may, on general grounds, expect this deformation to take the form of a Su-
dakov form-factor. This is essentially true over a large range of (); values with the
caveat that at very small @), the correct result is no longer of Sudakov form. The
reason for this is the Parisi-Petronzio observation that the smallest (); values are
in fact obtained by vectorial cancellation of emissions, rather than by suppressing
the transverse momenta of each individual emission [93]. We shall explain this issue
more quantitatively, with reference to our observable, in section 4.3. For now we
proceed with resumming the large logarithms that arise at small Q).

To carry out the resummation we have to address two distinct kinematic regimes:

e collinear emissions (soft or hard) along the directions of the incoming and

scattered quark directions.

e soft emissions at large angles to the incoming and scattered (outgoing) quark
axis (since in the Breit frame the incoming and scattered quarks are back-to-
back at Born level). This contribution arises due to the non-global nature [21],
22| of the observable and is a correlated multi-gluon emission term, that can

only be computed in the large N, limit.

We shall treat each region in turn starting with the collinear enhanced contri-
bution and then including the non-global term that arises from the piece of the
fixed-order matrix elements with only soft enhancement (i.e. is integrable over soft

gluon directions).
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4.2.1 Pure collinear contribution

The collinear contribution is simple to assess since one can, to the NLL accuracy we
seek, consider collinear radiation as being included in the evolution of the incoming
and outgoing hard quark jets. In order to derive the NLL pure collinear contribution
it proves useful to first consider the observable as defined in eq. (4.1.1). Since we deal
with soft and /or collinear gluon emissions alone, we look at a tiny deviation from the
Born configuration. Thus the sum over current hemisphere emissions, on the right
hand side of eq. (4.1.1), includes a contribution from the transverse momentum of
the outgoing current quark. To work in terms of secondary emissions alone one uses
conservation of transverse momentum to write eq. (4.1.1) as:

Q= - Z Et,ia (4.2.1)

i€Hp

where the sum now runs over all final-state particles in the remnant hemisphere.

In the collinear region there is an important simplification, in that all these emis-
sions can, to our accuracy, be attributed to the showering of the incoming quark.
Note that since one is now inclusive over current-hemisphere emissions, we can ne-
glect the collinear evolution of the outgoing quark. This will correct our resummed
result by a factor of relative order ay, but not enter into the NLL form-factor we aim
to compute.

The next step is to consider multiple collinear gluon branchings on the incoming
hard leg. In this region the squared matrix element can be approximated to NLL
accuracy by a product in N space of individual gluon emissions from the hard in-
coming quark, where N is the moment variable conjugate to Bjorken x. Taking first
just soft and collinear emissions®, where we can just as well work in z space, one can

write:

1 do B B no
o0 dQ? Z/dPn 3(p; — Q7) d*pr 6 <pt + > kt> , (4.2.2)
' " 1€EHR

where dP, is the differential n gluon emission probability and we introduce the vector
pr, which is the vectorial sum of transverse momenta of particles in Hy. Note that for
purely soft and collinear emissions the PDF cancels with that in 0(, the Born cross-

section. This is not correct in the hard collinear region and we will re-introduce the

3The subsequent extension to hard and collinear emissions will be straightforward.
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PDF while considering those emissions. For the final result we shall also normalise
to the cross-section including up to O(«y) corrections, rather than merely the Born
cross-section.

We first compute the integrated quantity:

1 1 (9% do .

— = — dQ? ~ /dPnﬁ —p)) d?*p, 82 | keil .

O_QO’(Q)Qt) 00/0 Q7 Qy zn: (Q — p) d°py Pt%’iezH:R t,
(4.2.3)

One can then express:

S 7 b ib. i ibke,;

1€HR 1€HR

Having achieved our aim of factorising the delta function constraint into a product
of individual gluon contributions, we integrate over p; which reduces the above to:
1 - bR
O_OU(Q,Qt) ~ Zn:/dpn Q. 1 (bQy) dbiel;[Re , (4.2.5)
where in writing the above we make use of fOQW df exp (ibp; cos ) = 2w Jy(bp;), and
uly(u) = [ u'Jo(u')du', with Jy and J; being the zeroth and first-order Bessel
functions.
The emission probability dP, factorises for soft and collinear emissions into an

essentially classical independent emission pattern (see eq. (3.2.6) in chapter 3):

1 s(K) Pk
P, = — [] Cr~ ie) Pk (4.2.6)

n!l T wk2,
i€HR by

where lgm- and 7; refer to the transverse momenta and rapidity of the i*® emission
with respect to the incoming quark direction . Since the incoming quark is anti-
parallel to the photon axis, in the Breit frame, the k; immediately above is the same
to NLL accuracy as that measured with respect to the photon axis and we do not
distinguish the two. The coupling « is defined in the CMW scheme [74]. We note
that the rapidity integration is bounded by n = 0 at large angles to the incoming
quark since we consider emissions in the remnant hemisphere alone.

Summing over all emissions in the remnant hemisphere using the factorised forms
(4.2.4) and (4.2.6) and inserting virtual corrections according to the emission pattern

(4.2.6)) (with an additional factor (—1)") we arrive at the resummed soft and collinear
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contribution to o(Q, Q;)/oo:

/ Q0 1i(bQy) expl—Ruc(b)] db, (4.2.7)

where Rg.(b) is the “radiator” accounting for soft and collinear emissions by the

incoming quark:

&
R dn as(k}) (e“"kt - 1) : (4.2.8)

T mk?
We remind the reader that one needs to correct the above expression to obtain single
logarithms arising from hard collinear radiation as well as those that arise in the
large-angle region from soft emissions, which we shall do presently.

Let us for the moment concentrate on the quantity Rg.(b), which is the most
important piece of the result since it contains the leading (double) logarithms. Inte-

grating over the polar angle variable in eq. (4.2.8) we obtain:
QC dk
Ry (b) = =L /—tdn as(k2) (Jo(bky) — 1) . (4.2.9)

Further to SL accuracy, it suffices to make the substitution [75]: (Jo(bk:) — 1) —

—0(k; — 2e772 /b), with vg being the Euler constant, and arrive at:

Q _

2
Cr b="be" )2, (4.2.10)

9 dk
wlb) = — [ au(k})-~In
Rlb) = =5 | o)

where we perform the rapidity integration.

Next we extend the soft-collinear result above to the full collinear one by including
hard emissions. As is easy to show (see e.g. [88]), hard emissions collinear to the
incoming quark lead to a modification of the factorisation scale 2 in the PDFs to the
scale 1/b%, q(z, u?) — q(x,1/b?), and contribute an additional finite term which can
be absorbed by the replacement of @ in eq. (4.2.10) by Q e~%/4. Thus the extension

of the soft-collinear result, eq. (4.2.7), to the full collinear one is:

q(xlpﬂ) /‘1 (2,1/b*) Q¢ J1(bQy) exp[—R(bQ)]db, (4.2.11)
with:
ooy 20F (€ dk, (. Q 3
RbQ) === s O‘S(kf)k_t (mk—t - 1) : (4.2.12)
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4.2.2 Non-global corrections

We also have to include the effects of soft emissions at large angles. Thus far we
have identified remnant emissions as those belonging to the incoming quark while
current-hemisphere emissions (over which we claim to be inclusive) are associated to
the struck final-state quark. As is the case for single-hemisphere observables, this
identification is not correct at SL level due to correlations between soft emissions
at large angles [21, 22]. Thus the remnant hemisphere distribution is affected at
SL level by soft gluons at large angles to the current quark, but still in the current
hemisphere, emitting into the remnant hemisphere.

As we stated earlier, the computation of this piece has been carried out in the large

4 and is universal for all observables having a linear dependence

N, approximation
on k; of soft large-angle emissions. We label this non-global piece S(bQ), which can

be parameterised as [21]:

S (bQ) ~exp l—CFCA% (%) t2] , (4.2.13)
where:
thQ) = ~ i In (1 —20,(Q*)Bo In(bQ)) (4.2.14)

with A =0.85Cy, B=0.86Cy4 and C' = 1.33.
Thus our final form for the resummed result to NLL accuracy can be expressed

as:

* _ ) S(50) e~ F6Q)
O_OU(Q,Qt) BERoD) /q(x,1/62) ShQ)e D Q, Jy(bQy)db, (4.2.15)

where we chose u = ). The above result now incorporates all the sources of log-
arithmic enhancements to NLL or SL accuracy, specifically soft and hard collinear
emissions and soft emissions at large angles. The result for the NLL radiator R(bQ)
is explicitly given in appendix [A.2. In the following section we shall take the b-space
result above and convert it to one valid in ); space over the range of (); values that

interest us.

4Strictly speaking the full result has been computed at O(a?) and the large N, approximation

starts O(a?).
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4.3 Result in ); space

We start by noting that one commonly used method to derive a ;-space result
from the b-space form is simply to evaluate the complete b integral in eq. (4.2.15)
numerically. This method is not without several well-documented shortcomings [94,
95] that are usually circumvented by “reasonable” prescriptions that are not derived
from first principles of QCD.

For instance the b integral stretches from 0 to oo, but the function R(b@Q) has a
Landau pole singularity at b@Q = exp [1/ (2 By a)], which means it is perturbatively
undefined for large b values. To get around this problem one introduces a parameter
b* and substitutes® b — b* = b/ W [86]. This ensures one never evaluates
R(bQ) or the structure functions at scales larger than some cut-off by, whose value
is adjustable. Additionally we smear the b-space result with a non-perturbative
Gaussian function that is also not obtained from first principles, but typically through
fits to data sets [96, 97, 98] 99, 100, 101]. These prescriptions are needed in order
to do the b integral and obtain a result for finite @)y, even at relatively large Q)
values where one might expect to trust perturbative predictions and where additional
non-perturbative parameters or ad-hoc inputs should not play any significant role.
Moreover the matching to fixed-order Qs-space results is complicated by not having
an analytical resummed result in @); space.

In what follows we provide an analytical Q);-space result which is valid for use over
a large range of (), values and represents a clean extraction of the NLL resummed
Q-space result, from the b integral [102, 103]. The price we pay for not evaluating
the complete b integral in detail is a formal divergence at small ();, which one can
anticipate quite generally through considerations based on the work of Parisi and
Petronzio [93]. Thus we cannot use our result at very small @, values since in
this region our answer is no longer a good approximation to the b integral. For
quantitative studies however, with the specified (); range over which data is available,
our formula is valid for use as it stands. The region over which we start to see a

problem with our approximation occurs at ; values that are too small (Q; < 1.5

5In chapter [6l we use this method to compute the resummed dijet azimuthal correlation distrib-

ution in DIS.
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GeV, see later) to study accurately via perturbative methods and in any case below
the lowest (); data.
To obtain a resummed result in Q; space we expand the function R(bQ) in

eq. (4.2.15), about the point b(= bQ,) = 2= to obtain:

RBQ) = R(Q/Q,) + R(Q/Q,) (VE —In2+In 13) T (4.3.1)

where we use R'(bQ) = OR(bQ)/0Inb and neglected R” and higher derivatives as
they contribute only to subleading (below SL) accuracy. The non-global function &
and the b dependent parton distributions are straightforwardly expressed in (); space
with the substitution b — 1/Q,, since logarithmic derivatives of these SL functions,
analogous to R’ above, only contribute at subleading accuracy.

Using the Taylor expansion for R above, one can cast the result (4.2.15) as:

kS _ 4@ ~RQ/Q)+n 2 R (Q/Q) [ g () bR (@/Q0)
~o(Q.Q) = LEElsQ/Q) | iy
_ 1= ~r@/Q-ver(@Qo L1 = F'/2)
IR S < (7 R

Incorporating, as a factor, the O(a;) constant pieces (see appendix|A.1) we can write

the result as:

010 = o (Co® g Q) + 52010 (2. @) x

q(x, Q?)
T(1—R/2)

—R(Q/Qt)—veR'(Q/Q)
XS(Q/Qt)e F(1+R,/2) )

(4.3.3)

where C\ and C; are matrices in flavour space of coefficient functions (see appendix
A.1). While the Cy terms are merely proportional to delta functions the C'; pieces
are important to correct the soft-collinear resummed result for hard real and virtual
emissions at the leading O(ay) accuracy. They are straightforward to compute and
are presented in appendix A.1.

We immediately note that the above result diverges at R’ = 2, an entirely ex-
pected feature. The reason for this divergence (encountered also in the Drell-Yan
@Q; resummations and the jet broadening in DIS [87]) is merely the fact that at very
small @); the result one obtains is not described by exponentiation of the leading-
order result, which is essentially the form we have derived above [93]. As Q); — 0 the

mechanism of vectorial cancellation between emissions of formally arbitrary hardness
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takes over from the Sudakov suppression of soft and collinear radiation as the dom-
inant mechanism for producing a small );. However the divergence does not play a
major role for phenomenological purposes®, since over the values of Q; we intend to
study we are sufficiently away from the point R’ = 2. This will be further elaborated

in the subsection below.

4.3.1 Position and impact of the divergence

As we mentioned above, for the particular case at hand, the divergence occurs at
rather small values of @, for the ) values” of interest to us. The corresponding
@ values, at and near the divergence, fall in a region that is either neglected for
phenomenological purposes or modelled with the introduction of non-perturbative
parameters, since one expects non-perturbative effects to be large here. In the @
region where the divergence does not have any significant numerical impact, we still
probe small enough (); to test the perturbative resummation and non-perturbative
corrections, as is our aim.

To be precise the divergence occurs at R’ = 2. In terms of the variable ();, using

the expression for R’ given in appendix [A.2, this results in:

m
Qr = Qexp (—as(CF n 27%)) , (4.3.4)

which for the illustrative value of ) = 90 GeV gives Q; = 0.52 GeV, with o, = 0.118.
Since this region is in any case perturbatively unsafe, being quite close to the QCD
scale, we do not expect to obtain sensible results with the perturbative methods we
use. However we can safely study ); values of a few GeV without worrying about
the impact of the formal divergence at R’ = 2.

We note that the scale associated with the divergence varies only very slowly
with the hard scale Q, since substituting the one-loop result for a,(Q?) in eq. (4.3.4)
one obtains @y ~ Aqep(Q/ AQCD)l/ 4. Thus for the scale of the divergence to exceed

even 1 GeV one has to increase the hard scale () to beyond the TeV limit.

6 We contrast this with the dijet azimuthal correlation distribution which we shall study in
chapter 6. There the position of the divergence is too high to be ignored. In that case we resort to

the numerical method we highlighted before.
"There are data in the range 17 GeV < Q < 116 GeV.
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We can quantify this statement as follows: in the region where R’ = 2 there is
a complete breakdown of the hierarchy between leading, next-to-leading, etc. loga-
rithms. In order to determine up to which value of R’ one can use the usual hierarchy,
where N"LL terms are suppressed by o with respect to leading logarithmic terms,
one can follow the procedure outlined by Dasgupta and Salam [87].

From those arguments one can infer that terms that are formally NNLL contribute
a correction that is of the same order as the terms that one keeps in the NLL
resummed result in the region where 2 — R = |/a,;. The NNLL terms contribute at
relative O(a;) when R’ = 1 or more. Thus for R’ < 1 we can safely use our resummed
Q-space formula since omitted NNLL terms contribute as usual, at relative O(a).

We can work out the position of both points in terms of @); for a given ). For
) = 90 GeV we obtain that the critical value, where all terms in the formal hierarchy
are in fact of the same order, is (); = 0.68 GeV and that the region where the usual
hierarchy is respected is (); > 1.5 GeV. This still allows the full range of available

data to be safely probed, including the lowest measured (); bins.

4.4 Matching to fixed-order

Having obtained the NLL perturbative estimate we now need to combine it with the
exact O(a?) perturbative result to obtain accurate predictions over the entire range
where data exist. This will allow us to arrive at a result which has the form given by
eq. (3.4.1). We follow the matching prescription known as M, matching introduced

by Dasgupta and Salam [87]. Here the final result is given by:
oy + Qs (aél) — Uﬁl)) + a2 (09 — 07(?)) 2(Q,Q:), (4.4.1)

where as = a,/(27) and o"® denote the coefficients of the resummed result, o,,
expanded to first and second order in a; respectively, while 021)’(2) are the correspond-
ing coefficients obtained from fixed-order Monte Carlo programs such as DISENT
[90, 91]. The above matching formula adds the resummed and exact results and sub-
tracts the double-counted terms (up to @(a?)) that are included in the resummation.

Note that terms such as a2 In(Q/Q;), which are formally subleading and hence not

included in the resummation, are present in the piece a2 (af) — 07(12)> of eq. (4.4.1).
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Figure 4.1: Comparison between DISENT, matched resummed and pure resummed

differential distributions. MRST NLO PDFs are used with a (M%) = 0.1205 [104].

This piece is divergent as (); — 0 and thus we multiply it by the resummed form-
factor X(Q, Q¢) = q(z, Q?)/q(x, Q*) S(Q/Q:) exp [—R (Q/Q})], to ensure sensible be-
haviour at small ();. This procedure is obviously ad-hoc but only affects the result
at subleading-logarithmic accuracy, which is in any case beyond our quantitative
control.

Another point that needs to be re-emphasised is that the factor X, as we use it
here, is just an approximation to the resummed result given by a full evaluation of
the b integral. The approximation is intended for use (and is valid to NLL accuracy)
only sufficiently away from R’ = 2, the position of the divergence. As we explained
in the last section, this covers the range over which can make reasonable comparisons

with the data.

4.5 Results

The aim of this section is to display the results obtained for an NLL resummed
prediction matched to NLO predictions from DISENT. Additionally we comment
on the role that might be played by a non-perturbative Gaussian smearing function
and that small-z effects may effectively give an enhanced smearing of the spectrum
leading to a broader prediction than the one provided here as was observed also in

the SIDIS case [8, 9].
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Figure 4.2: Non-perturbative smearing of the modified resummed prediction with a
Gaussian function in ki, exp[—gk?]. Here PT and NP stand for perturbative and
non-perturbative respectively. Two different choices of the smearing parameter g
are illustrated. Also shown is the pure resummed result. It can be seen that the
modification, as described in the text, does not affect the resummed result over its

region of validity.

In fig. 4.1, we display the fixed-order NLO results along with the pure resummed
and matched results for two values of the hard scale () and corresponding Bjorken
x values. The choice of the x and ) values correspond to bins where preliminary
data already exist [89]. There one notes the divergent NLO result and the correct
small-@Q); behaviour as given by the resummation as well as the role of matching in
the high-Q; tail of the distribution. We also point out that the role of the non-global
term is limited to a few percent effect after the matching to fixed-order has been
performed. Thus missing uncalculated SL terms in the non-global piece &, which
are suppressed as 1/N?2, are not expected to change our quantitative conclusions.

We also present here the effect of smearing or convoluting our resummation with
a b-space or equivalent k;-space Gaussian function representing non-perturbative ef-
fects. Such intrinsic k; effects have been the subject of much phenomenological
investigation in Drell-Yan-like processes [86 99, 105, [106]. The non-perturbative
smearing function we choose has the simple form: FNP(k;) = exp[—gk?], and we

perform a two-dimensional convolution: [ d2k; g/ FNP <|Cjt - l{::|> I(k;) with the re-
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summed distribution I(k;) = 1/0 do/dk?, to obtain the smeared result as a function
of Q);. We carry out the smearing with different values of ¢, two of which are il-
lustrated in fig. 4.2. The value of g = 0.5GeV 2 corresponds to a reasonable mean
intrinsic k; value of 1.25 GeV. We also illustrate the effect of using a smaller g value
of 0.1 GeV~2, which leads as shown to a broader @, distribution. Ideally one would
need to compare our predictions with the data at different x values in order to as-
certain whether one sees any visible broadening of the NLL resummed spectra at
smaller x, such as that mimicked by a change in the smearing parameter g. If this is
the case one may investigate the dependence of the smearing parameter g on Bjorken
x, a step we leave to forthcoming work [92].

We should point out that in convoluting the resummed prediction with the non-
perturbative Gaussian (intrinsic k;) distribution it was necessary to provide an ex-
trapolation of our resummed result for /(k;) down to k; = 0. We have chosen this
extrapolation as introduced by Ellis and Veseli [94] so as not to modify the NLL
resummed result as well as to obtain the correct limiting behaviour of the integrated
cross-section oc kZ, as determined by evaluating the b integral for the integrated
quantity o(k;), in the limit k; — 0.

Thus we substitute for k; an effective variable (k})? = k2 + Q32 exp (—k?/Q3)
and make the replacement o(k;) — o(k}) (1 — exp (—ak?)), where Qy and a should
be chosen so as not to modify the resummed result in the range where it is valid,
as in ref. [94]. These additional parameters should only modify the very low (non-
perturbative) @, region where our NLL result is in any case not valid as it stands.
One can think of the parameters a and )y as being non-perturbative inputs that
can be varied alongside the smearing parameter g to obtain a good fit to data in the
lowest (); region.

For the plot in fig. 4.2l we chose to take Qy = 1.2GeV and a = 1/Q2 as these
choices do not impact our resummed result over most of its range of validity. This
can be clearly seen from fig. 4.2/ where we plot the pure resummed and modified
resummed results with these choices of parameters. The dominant impact in the very
low @); region, beyond the control of NLL resummation, is in fact that of the smearing

function exp (—gk?), for which different choices have been already mentioned.
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Figure 4.3: Comparison between H1 data [89] and the matched-resummed result
including the non-perturbative correction. Note that the differential distribution in

Q? is shown (rather than in Q; as before).

Finally we show in fig. [4.3/a comparison between preliminary H1 data [89] and our
theoretical prediction which is valid both at NLL and NLO accuracies, and accounts

for non-perturbative intrinsic k; effects.

4.6 Conclusions

We have introduced here a DIS variable that, as we have explained, has a very simple
relationship to vector boson and Higgs (); spectra at hadron colliders. The aim of
doing this has been to use HERA data to compare resummed theoretical predictions
with experiment, keeping an eye on comparisons at lower x values. This comple-
ments the extensive studies of DIS event shapes that have been carried out thus far
which employed the standard resummation formalism (and non-global logarithms),
supplemented by 1/@Q power corrections [49]. We recall that the program of com-
paring DIS event shapes to the data was quite successful without any special role
visible for small-z effects [47].

Given however that only moderately small = values, x ~ 1072, can be reasonably
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accessed in these studies, it is clearly better to choose a variable that is potentially
more sensitive to small-z dynamics than event-shape variables, in order to determine
the role of these effects. We expect such a variable to be the (); spectrum we
have defined here, where it will be interesting to establish if a small-x enhanced
broadening of the resummation we presented is indeed visible in the data. This was
apparently the case in SIDIS studies [9] and, if present, we expect these effects to
manifest themselves for our observable too. Given the simple relationship of our
results to those for Drell-Yan—like observables it should then be easy to extrapolate
our conclusions to hadron collider studies, where it is important to reach a firm
conclusion on the issue of small-z broadening.

We have shown a comparison between our result and preliminary H1 prediction
[89], and we await the data in its final form before making detailed phenomeno-
logical analyses and drawing conclusions on this issue. This will be the subject of
forthcoming work.

In the next chapter we proceed with revisiting the energy flow distribution in
ete” annihilation into two jets to investigate the impact of jet algorithms on QCD

resummadtion.
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Chapter 5

On QCD resummation with k;

clustering

5.1 Introduction

One of the most commonly studied QCD observables is the flow of transverse energy
(Ey) into gaps between jets in various QCD hard processes. Since the E; flow away
from jets is infrared and collinear-safe it is possible to make perturbative predictions
for the same, which can be compared to experimental data for a given hard process.
However since one typically examines configurations where E; is small compared to
the hard scale @ of the process (e.g. jet transverse momenta in hadronic collisions)
the perturbative predictions involve large logarithms in the ratio Q/E;. We have
seen in section 3.3 that the resummation of logarithmically enhanced terms of the
form o In"(Q/E;) has proved a challenge that is still to be fully met - complete
calculations are available only in the large N, limit [21, 22, [76]. Studies of the E;
flow have in fact directly led to developments in the theoretical understanding of
QCD radiation and this process is still ongoing [29].

Another feature of the energy flow away from jets is its sensitivity to non-
perturbative effects’. We showed in section 3.6/ that one may expect significant

1/@Q power corrections to energy flow distributions of a similar origin to those ex-

'In fact we use this observable to study non-perturbative effects in hadronic collisions. See

chapter (7.
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tensively studied for various jet-shape observables [47]. Moreover the E; flow in
hadronic collisions is a standard observable used to develop an understanding of the
underlying event and to assess its role after accounting for perturbatively calculable
QCD radiation [78, 107].

Given that F; flow studies potentially offer so much valuable information on QCD
over disparate scales, involving perturbative parameters such as the strong coupling
as, QCD evolution, coherence properties of QCD radiation and non-perturbative
effects, it is not surprising that they have been the subject of substantial theoretical
effort over the last decade.

In this chapter we focus on the aspect of resummed predictions for the E; flow
into gaps between jets. Perhaps the most significant problem involved in making
such predictions is the non-global nature of the observable [21, 22]. As we stated
before, in order to resum the leading single logarithms one has to address not just
a veto on soft emissions coupled to the underlying primary hard parton antennae
(the primary emission term), but additionally correlated emissions or non-global
contributions such as those represented in fig 3.3. For this latter contribution one
has to resort to the large N, limit to provide merely a leading-logarithmic estimate
for the away-from-jet F; flow. This situation can be contrasted with the case of event
shapes and Drell-Yan (); resummations which have been pushed to NLL and NNLL
accuracy respectively. The impact of finite V. corrections in non-global observables is
thus a factor in the theoretical uncertainty involved in the corresponding resummed
predictions.

Given that the non-global component has a substantial quantitative impact over
a significant range of E; values for a given hard scale () and that it is computable
only in the large N, approximation, it is clearly desirable to reduce the sensitivity
of a given observable to non-global logarithms. An important observation in this
regard, which we highlighted in the introduction chapter, was made by Appleby and
Seymour [18]: if one employs the k; clustering algorithm [14] [15] to define the final
state such that the energy flow into a gap between jets is due to soft k;-clustered

mini-jets (rather than individual hadrons), the non-global logarithms are significantly
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reduced in magnitude®. This observation was exploited to study the case of E; flow
in dijet photoproduction at HERA where a result was provided for the primary
emission component of the F; distribution and the reduced non-global component
was modelled [108].

However it has subsequently been found by Banfi and Dasgupta that the k;
clustering algorithm also has a non-trivial impact on the primary emission component
of the result [19]. This was not taken into account by Appleby and Seymour [18], 108)]
and also affects the ability to make resummed predictions for a host of other jet
observables such as dijet azimuthal correlations between jets (A¢), which we shall
study in the next chapter. In fact the findings of Banfi and Dasgupta [19] are not
just specific to the k; algorithm but would also crop up in the case of jet observables
defined using iterative cone algorithms.

In the present chapter we shed more light on the resummation of the primary or
independent emission component of the result and its dependence on the clustering
algorithm. While the leading O (a? In*(Q/ Et)) clustering-dependent behaviour was
computed analytically by Banfi and Dasgupta [19], the full resummed result for the
primary emission component was computed only numerically in the case of a single
hard emitting dipole (eTe™ — 2 jets or DIS 1 + 1 jets). Here while sticking to a
single hard dipole we shed more light on the structure of the primary emission term
and analytically compute it to an accuracy that is sufficient for a wide range of
phenomenological applications.

The analytical insight and calculations we provide here will also make the gen-
eralisation of the k;-clustered primary emission result to the case of several hard
emitters (dijets produced in photoproduction or hadron-hadron processes), involv-
ing a non-trivial colour flow, relatively straightforward.

The above resummation of the primary component of the answer assumes greater
significance when we discuss our second observation: once an error is corrected in the
numerical code used for the purposes of refs. [18] [108] the non-global component of
the result is reduced even more compared to the earlier estimate. With a very small

non-global component (which can be numerically computed in the large N, limit)

2For recent progress on aspects of the k; algorithm itself see refs. [16} [17].
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and a primary emission component that correctly treats the dependence on the jet
algorithm, one is better placed to make more accurate resummed predictions than has
been the case till now. This is true not just for the F; flow but also as we mentioned
for a variety of jet observables for which there are either no resummed predictions
as yet, or only those employing jet algorithms not directly used in experimental
studies [109].

This chapter is organised as follows. In the following section we define the ob-
servable in question and revisit the issue of the dependence of the primary and
non-global pieces on the jet clustering algorithm. Following this we demonstrate
how the primary or independent emission piece can be computed to all orders in
as, accounting to sufficient accuracy for the effects of the clustering algorithm. We
explicitly describe the case of three and four-gluon emission contributions to demon-
strate the steps leading to our all-orders result. Following this we re-examine the
non-global component of the answer and find that this is significantly smaller than
earlier calculations of the same [18]. We put our findings together to examine their
impact on photoproduction data for the ZEUS collaboration [28] and lastly point to

the conclusions one can draw and future extensions of our work.

5.2 Resummation of the primary emissions

Let us consider for simplicity the process ete™ — 2 jets. The calculations for
processes involving a larger number of jets and more complex jet topologies can
be done along similar lines.
We examine the E; flow in a region Q which we choose as a slice in rapidity® of
width An centred on n = 0. We then define the gap transverse energy as:
E =) Ey, (5.2.1)
1€Q

where the index ¢ refers to soft jets obtained after k; clustering of the final state. We

3Since we deal with back-to-back jets we can define the rapidity with respect to the jet axis or

equivalently, for our purposes, the thrust axis.
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shall concentrate on the integrated E; cross-section which is defined as:

Qo d
2(Q, Qa) = %/0 d—;dEt, (5.2.2)

with o being the total cross-section for ete~™ — hadrons, with centre-of-mass energy
Q.

The SL result for the above, without k; clustering (where the sum over i in
eq. (5.2.1) refers to hadrons in the gap rather than jet clusters), was computed by
Dasgupta and Salam [22] and is presented in section 3.3, The result can be expressed
as:

1[92 dk,

= — (k). 5.2.3
5 T (k) (5.2.3)

(Q,Q0) =Xp(t) S(t), ¢

The above result contains a primary emission or “Sudakov” term* ¥p(¢) and a non-
global term S(t).

The primary emission piece is built up by considering only emissions attached to

the primary hard partons, namely those emitted from the hard initiating ¢g dipole

in our example, while the non-global term arises from coherent soft emission from

a complex ensemble of energy-ordered soft emitters alongside the hard initiating

dipole. More precisely we have:
Yp(t) = e iCrtan (5.2.4)

which is the result of resumming uncancelled k;-ordered virtual emission contribu-
tions in the gap region. The non-global component, as we stated before, is computed
numerically in the large N, limit.

Next we turn to the k;-clustered case. The result stated by Appleby and Sey-
mour [18] defines the primary or Sudakov piece to be unchanged by clustering since
it appears to be the exponentiation of a single gluon emitted inside the gap. The re-
mainder is recomputed numerically implementing clustering [18]. As already shown
by Banfi and Dasgupta [19], this remainder comprises the genuine non-global con-
tribution and corrections to primary emissions due to clustering. The corrections

to the primary emission term first appear while considering two gluons emitted by

4We use the term “Sudakov” in a loose sense since the primary emission result leads to an

exponential that is analogous to a Sudakov form-factor.
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the hard ¢q dipole and persist at all orders. Below we provide a reminder of the
two-gluon emission case (discussed in ref. [19]) and subsequently consider explicitly
the three and four-gluon emission cases before writing down the result to all orders

as a function of the radius parameter R.

5.2.1 Two-gluon emission

In order to examine the role of the k; algorithm we point out that in our case (k-
ordered soft limit) one can start the clustering procedure with the lowest transverse-
energy parton or equivalently the softest parton. One examines the “distances” of
this particle (i) from its neighbours in the rapidity-azimuth plane (1-¢), defined
by dij = E}, ((5771»]-)2 + ((5@]»)2), where E,; is the transverse energy of the softest
parton. If the smallest of these distances is less than E7;R?, particle 7 is recombined
or clustered into its nearest neighbour and the algorithm is iterated. On the other
hand if all d;; are greater than E7;R?, particle i is counted as a jet and removed from
the process of further clustering. The process continues until the entire final state
is made up of jets. Also in the limit of strong energy ordering, which is sufficient
to obtain the leading logarithms we are concerned with here, the recombination of a
softer particle with a harder one gives a jet that is aligned along the harder particle.

The dependence of the primary emission term on the jet algorithm starts naturally
enough from the two-gluon emission level. While the Sudakov result exp (—4CrtAn)
comes about due to assuming real-virtual cancellations such that one is left with only
virtual emissions with k; > Qq in the gap region (for the integrated distribution), k;
clustering spoils this cancellation.

Specifically let us take two real gluons k; and ko that are ordered in energy
(w1 > wy). We consider as in ref. [19] the region where the softer gluon ks is in the
gap whilst the harder k; is outside. Additionally we take the case that the gluons
are clustered by the jet algorithm which happens when (01)* 4+ (6¢)* < R? with
0n = ny — ny and similarly d¢ = ¢y — ¢1. We shall denote this condition with the
symbol #5;. Since ks is clustered to k; it gets pulled outside the gap, the recombined
jet being essentially along k. Thus the double real emission term does not contribute

to the gap energy differential distribution do/dE;. Now let k; be a virtual gluon. In
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this case it cannot cluster ky out of the gap and we do get a contribution (proportional
to C%) to the gap energy differential distribution. Thus a real-virtual cancellation
which occurs for the unclustered case fails here and the mismatch for the integrated
quantity (3(¢)) amounts to:

—4CFt)? doy doo (—4Cpt)? 2
= (—/ d —/ Ay =2y, = R 5.2.5
2 2 Joe 2w Jrpeq P om of  3p 7 (52.5)

where we report the result computed by Banfi and Dasgupta [19] for R < An. Here
we introduce the primary emission term C? that corrects the Sudakov result at O(a?)
due to the clustering requirement.

The fact that the result scales as the third power of the jet radius parameter
is interesting in that by choosing a sufficiently small value of R one may hope to
virtually eliminate this piece and thus the identification of the primary result with
the Sudakov exponent would be at least numerically accurate. However for such
small R the non-global term would then be significant which defeats the main use
of clustering. If one chooses to minimise the non-global component by choosing e.g.
R =1, then one must examine the primary emission terms in higher orders in order
to estimate their role. To this end we start by looking at the three and four-gluon

emission cases below.

5.2.2 Three-gluon emission

Consider the emission of three energy-ordered gluons kq, ks and k3 with w3 < wy K
wy, off the primary ¢g dipole and employing the inclusive k; clustering algorithm [14)
15] as explained previously.

We consider all the various cases that arise when the gluons (which could be real
or virtual) are in the gap region or outside. We also consider all the configurations
in which the gluons are affected by the clustering algorithm. We then look for
all contributions where a real-virtual mismatch appears due to clustering, that is
not included in the exponential Sudakov term. The Sudakov itself is built up by
integrating just virtual gluons in the gap, above the scale Q. The corrections to
this are summarised in table 5.1l

In order to obtain the various entries of the table one just looks at the angular
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O30 | O31 | O | k3 €Q | ko €Q | k1 €Q | k3, ko €Q | k3, k1 €Q | ko, k1 €0
0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 |44 0 0
0 0 1 0 0 0 |44 0 0
1 1 0 w 0 0 |44 w 0
1 0 1 0 0 0 0 w 0
0 1 1 0 0 0 44 0 0
1 1 1 w 0 0 |44 w 0

Table 5.1: Contributions of different configurations of particles to Yp at O(a?).
We define 0;; = 6(R* — (n; — n;)* — (¢ — ¢;)?), e.g. 613 = 1 means (n; — n3)* +
(¢ — ¢3)* < R®. We also define W = (—4Crt)3/3!, so the entries “IW” indicate
a miscancellation which leads to a SL correction to the Sudakov result, while the
entries “0” indicate a complete real-virtual cancellation. We have discarded the case
where all particles are in the gap since such configurations are already included in

the exponential Sudakov result.

configuration in question, draws all possible real and virtual contributions and looks
for a mismatch between them generated by the action of clustering. We translate

table 5.1 to:

| —

Cg = '(—40Ft)3 X

d d
X (/ dThﬂ / d772ﬂ / dnsz 032 031 +
k1¢Q 27T k2¢Q 27T k3€Q

d d
+/ dﬁl%/ dUZE/ dns [031 + (1 — 031) (1 — 032)021] +
k1¢9Q T JkeeQ 27 k3eQ

d d
+/ dﬁlﬁ/ d772ﬁ/ dns 932), (5.2.6)
k’leﬂ 27T ]{32%9 27T k’gEQ

where we use the freedom to set ¢3 = 0. We identify three equal contributions

w

consisting of the integrals in which there is only one theta function constraining
only two particles: the integral over #3; and that over #5; in the third line and the
last integral over f3;. The set of configurations 635, #3; and 65 is just the set of

constraints on all possible pairs of gluons. In fact we can generalise the number of
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these configurations to the case of any number n of gluons by n(n — 1) /2, which will
enable us to resum R? terms to all orders. We shall return to this observation later.
The integrals of the above type reduce essentially to the clustered two-gluon emission
case, as calculated in eq. (5.2.5), and the integral over the third “unconstrained”
gluon is just An.

Explicitly we write eq. (5.2.6) as:

| =

Cg = ' (—4CFt)3 X

d d
X (/ dﬁlﬂ / dﬁzﬂ / dns 033 031 +
k1¢Q 27 ko@Q 21 Jpaea

d d
+/ dmﬂ/ d772ﬁ/ dns (051052 — 031 — O32] 021 +
k1¢9Q 21 Ji,eo 21 Jiseo

d d
k1eQ 2m ko gQ 27 Jizen

Computing the various integrals above (for simplicity we take R < An/2, which is

w

sufficient for our phenomenological purposes) one obtains:

1

r R\R LR (r 32\R 2R 2
22\ — (=)= 4 3x AR 5.2.8
XK:& 45) pORNR L (3 45) 2 a0 } (528)

with fQ ~ 0.2807 and we have written the results in the same order as the five

integrals that arise from the various terms in eq. (5.2.7). Hence:
p_ 1 3 2 3 5
Cg = 5(—405%) 3 X 3—A7]R + f2 R s (529)
! T

where fy ~ —0.04360. We note the appearance of an R® term which, as we shall
presently see, persists at higher orders. This term is related to a clustering constraint
on three gluons at a time via the product of step functions 63301 (03; — 1) with
ko, ks € Q and k; ¢ Q.

Next we look at the emission of four soft, real or virtual energy-ordered gluons.

This will help us move to a generalisation with any number of gluons.

5.2.3 Four-gluon emission case and beyond

Now we take the case of four-gluon emission and identify the patterns that appear

at all orders. A table corresponding to table [5.1 is too lengthy to present here. The
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result can however be expressed in an equation similar to that for the three-gluon

emission case. We have:

( 4CFt)4 X

lin J2in J3out J4in
/ / / (042 + O32[1 — Ou3][1 — O12]) +
lin J2out J3in J4in
/ / / / (Oa1 + 0_41[031 043 + 043 021 040 +
lout J2in J/3in J4in

+091 0_420_450_310_30]) +

/ / / 042 043 +

lin J2out J3out J4in

+/ / / / Oa3 (041 + 0_410_42091) +
lout J2in J 3out

+/ / / / (041 049 + 041 042043030 +
lout J2out J3in J4in

+0_41 043031 [042 + 0_42032]) +

—|—/ / / 941 642 943) s (5210)
lout J2out J/3out J4in

where 0_;; = 1 — 0;; and “in” or “out” pertains to whether the gluon is inside the

*’E_IH

X

+

+

_I_

gap region or out. For brevity we do not write the differential phase-space factor for
each gluon which is as always dnd¢p/(2r). We identify six R? terms exactly of the

same kind as computed before and similarly four R® terms. Explicitly we have:

1
(ACH)

y ( / / -
lin J2in J3out J4in
+4 x [ / / / 042 043 +
lin J2out J3out J4in
+/ / / / 932 843 642 043 - 042)
lin J2out J/3in
o LT e
lout J2in J3out J4in

+ / / / a1 (012 015 — Oz — O3 — 021 0_150_15)
lout Y2in J3in J41in

X (031 032 — 031 — O32) +
/ / Br Bs1 [0a1(1 — B3) (s — 2) — 6] +
lout J2out J3in J41in

sf 941942943) (5.2.11)
lout J2out J/3out J4in

7

cr o=
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We discuss below each set of integrals, generalise the result to the case of n emitted

gluons and then resum all orders.

lin J/2in J 3out J4in

The integrals over particles 1 and 2 give An The remaining integrals reduce

e The integral:

to the result computed for the two-gluon emission case, i.e. the B3 term. The
factor 6 accounts for the number of pairs of gluons n(n — 1)/2, for n = 4.

Explicitly we have for this term:

1 A x3 2
(—ACH)! “ O A2 B3 (5.2.13)

3T

For n emitted gluons the R? term, which is always related to the clustering of
two gluons, is given by:

1 n(n—1)

2
i (—4CptAn)"An 2 =R* n>2. (5.2.14)

3

Hence to all orders one can sum the above to obtain:

—4Cpt)* 2
e4Can#3—ﬁR3 : (5.2.15)

e The integrals:

1
E(—4Opt)44 X </ / / / ‘942 843+
. lin J2out J3out J/4in
+ / / / / 032 [043 Q42 — Q43 — 942] ) . (5216)
lin J2out J3in J4in

The integral over particle 1 gives An, while the rest of the integrals reduce to
the ones we calculated earlier which gave the R’ result. The factor 4 stands
for the number of triplet combinations formed by four gluons. For n emitted

gluons this factor is n(n — 1)(n — 2)/3!. Explicitly we have for this case:

1 44X 3x2

1 (FACR) ————=An" R (5.2.17)

At the n'* order we obtain:

| 1) —2
E(—LLC’FtAn)"n(n =D N @5 >3 (5.2.18)
Summing all orders we get:
_ 3
e4CFtA”% LR (5.2.19)

78



e The integral:

1
: lout J2in J3out J4in

This integral can be factored into two separate integrals involving the constraint
on k; and ky and on ks and k4 respectively. Each of these reduces to the R?

result obtained in the two-gluon emission case. Thus we get:
1 y 2\?
T (ACr)' 8% (o) R°. (5.2.21)

At n'* order this becomes:

2
n! s
which can be resummed to:
—4Cpt)* [ 2)?
e—4CFtA"% (37) RS. (5.2.23)

The factor 3 (and generally n(n — 1)(n — 2)(n — 3)/8) is the number of con-
figurations formed by four (and generally n) gluons such that we have two
pairs of gluons, each being formed by a soft in-gap gluon clustered to a harder

out-of-gap one.

e The remaining integrals give at most an O(R") term because they constrain
all the four gluons at once. In fact for gap sizes An > 3R, these integrals
go purely as R7 with no dependence on An. Since here however we use the
condition An > 2R, which allows us to make use of the whole range of HERA
data, these integrals do not depend purely on R. They are a function of R
and An which have an upper bound of order R”. This can be seen by noting
that there are three azimuthal integrations that each produce a function which
has a maximum value proportional to R, so the result of integrating over all
azimuthal variables is a factor that is bounded from above by O(R?). Similarly
there are four rapidity integrations with a clustering constraint on all four
gluons implying that they can produce an O(R*) term at most. In general the
result at n'® order of constraining n gluons at once, is bounded from above by

a factor of order R*"1,
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We can write the result for all these as (—4Crt)? /4! y(R, An), and resum such

terms to all orders (in the same manner as before) to:

—4Cpt)*
emmn#y(& An), (5.2.24)

where y(R, An) is at most O(R"). We do not calculate these terms (though it
is possible to do so) since the accuracy we achieve by retaining the R3, R and

RY terms, we have already computed, is sufficient as we shall show.

The five-gluon emission case is too lengthy to analyse here. The same patterns
as pointed out above persist here, but new terms that are at most O(R?) appear
when all five gluons are constrained. There is also an R® term, coming from the
combination of R* and R’ terms in the same manner that the R® term arose as a

combination of two R? terms.

5.3 All-orders result

From the above observations we can assemble an all-orders result to R® accuracy,
where we shall consider R to be at most equal to unity. The final result for primary

emissions alone and including the usual Sudakov logarithms (for An > 2R) is:

Sp(t) = e 40rtany

3

6 —4 4
X (1+(—40Ft)2§;+(—40Ft)3%R5+ (—4Cpt)* R +( Crt)
m

1872 4]

(9(1—27)) :
(5.3.1)

Formally one may extend this accuracy by computing a few more terms such
as those integrals that directly give or are bounded by an R’ behaviour and this
is possible though cumbersome. It should also be unnecessary from a practical
viewpoint, especially keeping in mind that R = 0.7 is a preferable value to R = 1,
in the important case of hadron collisions”. In fact even at R = 1 the R?® term
significantly dominates the result over the range of ¢ values of phenomenological

interest, as we shall see below.

5This is because the underlying event will contaminate jets less if one chooses a smaller R.
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Figure 5.1: Comparison of the analytical results to a numerical Monte Carlo (MC)

estimate.

We further note that if one keeps track of all the terms that come about as a
combination of R* and/or R® terms in all possible ways at all orders, one ends up

with the following form for eq. (5.3.1):

(—4Cpt)* 2 5  (—4Cpt)?
2! 37TR + 3!

(—4Cpt)* -
T@(R )) ,

(5.3.2)

Yp(t) = e ACFIAN oy ( fo R® +
the expansion of which agrees with eq. (5.3.1). In the above by O(R") we mean
terms that, while they may depend on An, are at most as significant as an R’
term. We also mention that in the formal limit An — oo, there is no dependence
of the clustering terms on An and they are a pure power series in R. The limit
of an infinite gap appears in calculations where the region considered includes one
of the hard emitting partons. An example of such cases (which have a leading
double-logarithmic behaviour) is once again the quantity A¢ in e.g. DIS or hadron
collisions.

Fig. 5.1 represents a comparison between the leading R® result (i.e. the pure
fixed-order result of ref. [19] combined with the resummed Sudakov exponent), the
resummed R3, R® and RS result (eq. (5.3.1)) and a numerical Monte Carlo estimate

with and without clustering. The Monte Carlo program in question is essentially that
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described in ref. [21] with the modification of k; clustering where we compute just
emissions off the primary dipole “switching off” the non-global correlated emission.

We note that the resummed analytical form (5.3.1) is in excellent agreement with
the numerical result which contains the full R and An dependence. We have tested
this agreement with a range of values of R. We take this agreement as indicating
that uncomputed R” and higher terms can safely be ignored even at R = 1 and
even more so at fractional values of R, e.g. R = 0.7. To provide an idea about the
relative role of terms at different powers of R in eq. (5.3.1) we note that for R = 1
and ¢t = 0.25 the resummed R? term increases the Sudakov result exp (—4CrtAn) by
19%, the R® term represents a further increase of 1.5% to the result after inclusion
of the resummed R? term and the R° term has a similar effect on the result obtained
after including up to R® terms.

Next® we comment on the size of the non-global component at different values of

R.

5.4 Revisiting the non-global contribution

We have seen above how the primary emission piece is dependent on the jet clustering
algorithm. It was already noted by Appleby and Seymour [18] that the non-global
contribution is significantly reduced by clustering. Here we point out that after
correction of an oversight in the code used there, the non-global component is even
more significantly reduced than previously stated in the literature. Indeed for R =1
and the illustrative value of ¢ = 0.15, which corresponds to a gap energy Qq = 1
GeV for a hard scale Q = 100 GeV, the non-global logarithms are merely a 5%
effect as opposed to the 20% reported previously [18] and the over 65% effect in the
unclustered case.

In fig. 5.2 we plot the curves for the primary and full results (in the large N.
limit) for the integrated quantity 3(t) as a function of ¢ defined earlier. We note

that for R = 0.5 the primary result is essentially identical to the Sudakov result. The

6See the acknowledgment section for details of contributions of collaborators to the work pre-

sented in this thesis.
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Figure 5.2: Comparison of the Sudakov result, the correct primary result and the full
result including non-global logarithms, for different values of R and with An = 1.

All quantities are shown in the large N, limit for ease of comparison.

non-global contribution (which is the ratio of the full and primary curves) is however
still quite significant. Neglecting it leads to an overestimate of 40% for ¢ = 0.15.
Increasing the jet radius in a bid to lower the non-global component we note that
for R = 0.7 the impact of the non-global component is now just over 20% while the
difference between the full primary result and the Sudakov result is small (less than
5%). The situation for R = 1 is a bit different. Here it is the non-global logarithms
that are only a 5% effect (compared to the 20% claimed earlier [18]) while the full
primary result is bigger than the Sudakov term by around 11%.

The value R = 1 is in fact the one used in the HERA analysis of gaps-between-jets
in photoproduction. It is now clear that such analysis will have a very small non-

global component and a moderate effect on primary emissions due to clustering. In
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order to completely account for the primary emission case for dijet photoproduction
one would need to generalise the calculations presented here for a single ¢qq dipole
to the case of several hard emitting dipoles. An exactly similar calculation would
be needed for the case of hadron-hadron collisions and this is work in progress.
It is straightforward however to at least estimate the effect of our findings on the

photoproduction case and we deal with this in the following section.

5.5 Gaps between jets at HERA- the ZEUS analy-
sis

We can test the perturbative framework presented in this chapter with energy flow
measurements in the photoproduction of dijets. These energy flow observables are
defined with two hard jets in the central detector region separated by a gap in
pseudorapidity. A gap-event is defined when the sum of the hadronic transverse
energy in the gap is less than a cut-off, and the gap fraction is defined as the ratio of
the gap cross-section to the total inclusive cross-section. The energy flow observables
measured by H1 [27] and ZEUS [28] use the k; clustering definition of the hadronic
final state, and the transverse energy in the gap is given by the sum of the mini-
jet contributions. In this section we focus on the ZEUS measurements and provide
revised theoretical estimates for them. These revisions lead to changes that are
minor in the context of the overall theoretical uncertainty, but should become more
significant once the matching to fixed higher orders is carried out and an estimate of
the next-to-leading logarithms is obtained. The H1 data was considered in ref. [108],
where the theoretical analysis consisted of only the resummed primary emission
contribution without taking into account the effect of k; clustering.

The ZEUS data was obtained by colliding 27.5 GeV positrons with 820 GeV
protons, with a total integrated luminosity of 38.6 pb~! in the 1996-1997 HERA

running period. The full details of the ZEUS analysis can be found in ref. [28], but
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the cuts relevant to the calculations in this section are:

0.2 <y <0.75,
Q? < 1GeV?,
Erq1>6GeV,

Er o >5GeV,

Im,2| < 2.4,

10.5(m: +m2)| < 0.75,

25 <An <4, (5.5.1)

where y is the inelasticity (as defined in subsection 2.3.1), Q? is the virtuality of the
photon, E7; and E7 o are the transverse energies of the two outgoing hardest jets
with respect to the proton axis, n; and 7, are the pseudorapidities of the two hardest
jets (in the final state) with respect to the proton axis and An is the gap size (which
is chosen to equal the rapidity difference between the leading jets |m; — n2|). The
further requirement for the gap sample is E; 4o, < Qq, for Qo = 0.5, 1, 1.5 and 2
GeV, and the clustering parameter R is always taken to be unity.

The theoretical prediction for the gap fraction is composed of the primary piece,
with corrections due to clustering, and the non-global piece. We shall now describe
each in turn.

The resummed primary contribution, ignoring the clustering corrections, is ob-
tained from the factorisation methods of Sterman et al [57, 58, 59, [60, 109] and is
described in ref. [108]. The four-jet case of photoproduction requires a matrix for-
malism similar to that we discussed in section 3.5 and the exponents of the Sudakov
factors in the gap cross-section are anomalous dimension matrices over the basis of
possible colour flows of the hard sub-process. The emissions of soft gluons cause
mixing of the colour basis (eq. (3.5.8)). Diagonalisation of the anomalous dimension
matrices (by consideration of the eigenvectors and eigenvalues), allows the resummed

four-jet primary emission differential cross-section to be written as [10§]:

do

dn > HirSprexp (— (AL, ) + Ar(n, 2)) /m d_uw) , (5.5.2)

LI o W2

where the sums extends over the components of the hard and soft matrices H and
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S (defined in the colour basis in which the anomalous dimension matrices are diago-
nal®), \ denotes the eigenvalues of the anomalous dimension matrices, n = An/2 and
py is the hard scale of the process. This was computed by Appleby and Seymour [108]
for the case of photoproduction and energy flow observables measured by H1. In this
section we recompute this differential gap cross-section for the observable defined by
the ZEUS collaboration. The uncertainty in the renormalisation scale is quantified
by varying the hard scale in the resummation by a factor of 2 (upper bound) and
0.5 (lower bound).

We now need to account for the effect of clustering on eq. (5.5.2). Since we do not
have as yet the full result for the four-jet case of photoproduction we simply estimate
the full correction as the square of the correction arising in the two-jet case we have
dealt with, using the appropriate colour factors for each hard sub-process. This
was also the method used by Appleby and Seymour to approximate the non-global
contribution for the four-jet case in ref. [L08]. While we emphasise that this is only a
rough way of examining the impact of the clustering-dependent terms, given the size
of the effects we deal with, it is clear that no significant differences ought to emerge
if one were to properly compute the various dipole contributions. We also include
the revised and virtually negligible non-global component in an identical fashion to
arrive at the best current theoretical estimates.

The results for the ZEUS gap-fraction with a k;-defined final state are shown® in
figs.5.3/land [5.4. We consider here two different values for the gap energy Q). For the
value of Qo = 0.5 GeV one notes that the full prediction, accounting approximately
for all additional sources of SL enhancements, is somewhat higher than the pure
“Sudakov-type” prediction. This is due to the extra primary terms we computed
here, non-global corrections being negligible. For a larger value of Qo = 1.0 GeV,
the difference between the clustered and unclustered primary results is negligible.
We also note the large theoretical uncertainty on the predictions as represented by

the renormalisation scale dependence. This is to be expected in light of the fact that

"See chapter [7l for a detailed treatment of the diagonalisation of the anomalous dimensions.
8The predictions we display here are readily made available for the ZEUS collaboration as the

current best theoretical estimate.
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Figure 5.3: The gap fraction for the ZEUS analysis with a k;-defined final state
(R =1.0 and Qq = 0.5 GeV). The solid line shows the effect of resummed primary
emissions, the primary emission clustering correction factor and the non-global sup-
pression factor. The overall theoretical uncertainty in all three contributions is shown
by the dotted lines. The dashed line indicates the gap fraction obtained by only in-

cluding primary resummed emissions without accounting for clustering.

these predictions are not matched to fixed-order results and account only for the
leading logarithms. Improvements along both these directions should be possible in
the immediate future after which the role of the various effects we highlighted here

should be revisited.

5.6 Conclusions

In the present chapter we have shed further light on resummations of k;-clustered
final states. We have shown that both the primary and non-global components of the
resummed result are affected by clustering and dealt with the resummation of each
in turn. For the non-global component we found that the results after applying clus-
tering are different from those presented earlier [18]. The new results we presented
here indicate an even smaller non-global component than previously believed.

We have also shown how the primary emission clustering effects can be resummed
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Figure 5.4: The gap fraction for the ZEUS analysis with a k;-defined final state
(R =1.0 and Qq = 1.0 GeV). The solid line shows the effect of resummed primary
emissions, the primary emission clustering correction factor and the non-global sup-
pression factor. The overall theoretical uncertainty in all three contributions is shown
by the dotted lines. The dashed line indicates the gap fraction obtained by only in-

cluding primary resummed emissions without accounting for clustering.

to all orders as an expansion in the clustering parameter R and computed a few terms
of the series. The analytical results we have provided here for a single emitting dipole
should be generalisable to the case of several hard dipoles (multi-jet processes). This
should then enable one to write a correct resummed result for primary emissions to a
high accuracy and deal with the reduced non-global component in the large N, limit.
Such progress is relevant not just to energy flow studies but to any jet observable
of a non-global nature, requiring resummation. An example is the azimuthal angle
between jets (A¢) we mentioned previously, which we shall study in the next chapter.
The work we have carried out should enable NLL calculations of such jet observables
to sufficient accuracy to enable phenomenological studies of the same.

Lastly we have also mentioned the impact of our new findings on the ZEUS gaps-
between-jets analysis. Since the non-global effects are very small for R = 1 the main
new effect is the additional clustering-dependent primary terms we computed here.

Approximating the effect of these terms for the case of photoproduction somewhat
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changes the theoretical predictions, but this change is insignificant given the large
theoretical uncertainty that arises due to missing higher orders and unaccounted for
next-to-leading logarithms. We consider both these areas as avenues for further work

and hope that more stringent comparisons can thus be made in the very near future.
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Chapter 6

Dijet azimuthal correlations in

QCD hard processes

6.1 Introduction

As we emphasised at length in the introduction chapter, studies of soft gluon ra-
diation and non-perturbative effects in QCD observables are of vital importance.
They help us better understand the dynamics of QCD and enhance the accuracy of
theoretical predictions for measured quantities.

Successful examples of such studies are manifested in event-shape variables at
LEP and HERA. Resummed estimates for these observables, combined with NLO
predictions and corrected for non-perturbative effects, have been very successful in
describing the data [46], 47]. Parameters such as the strong coupling and the effec-
tive non-perturbative coupling [48] can then be consistently extracted by studying
distributions and mean values of such observables [42] 43].

Going beyond the case of two hard partons is more challenging in terms of theory
but is also a more stringent test of our understanding of QCD dynamics. Multi-jet
event-shape variables have been studied by Banfi et al [51, 52, 53, 54, [79]. However
for jet-defined quantities, e.g. several dijet distributions, there are currently very few
resummed predictions because of the lack of theoretical insight to all orders in the
presence of a jet algorithm. Many measurements are already established (see e.g.

[30, 32]) and await comparison to theoretical estimates.

90



Effort has recently been devoted to improve the understanding of the effect of jet
algorithms on QCD resummation [18, 19, 20, 108]. As we have seen in chapter 5,
a clustering algorithm has an impact on the resummation of observables which are
sensitive to emissions in a limited region of the phase-space (non-global observables
[21], 22]), such as energy flow outside jets. These receive single logarithms which
are currently accounted for numerically in the large N, limit for processes involving
only two hard partons. It was shown in ref. [18] that employing a k; algorithm on
the final-state particles reduces these logarithms in the case where only two hard
partons are present. However the resummation of jet-defined quantities proved to be
non-trivial [19] and we have explained the full impact of the k; clustering algorithm
on resummation in chapter /5.

With the technique of resummation using a clustering algorithm one can proceed
with studying jet-defined quantities. In the present chapter we focus on the dijet
azimuthal correlation distribution. We consider the process of production of two
hard jets (in the final state) in DIS or hadronic collisions. We study the azimuthal
correlation defined by the azimuthal angle between the two leading hard jets in the
final state. This study is similar to that of the DIS angular correlation introduced and
analysed by Banfi et al [110], however our observable here is a jet-defined quantity
being sensitive to the final-state jets (not hadrons).

This observable has been measured by the H1 collaboration [32]. The data ob-
tained in these measurements were compared to fixed-order NLO predictions which
showed the necessity of higher-order corrections. A resummation has therefore been
suggested and it is this we aim to do here. A different approach, namely that employ-
ing unintegrated PDF's; has been followed by Hansson and Jung and it is interesting
to compare our predictions with those of ref. [35].

In the soft and/or collinear region, i.e. close to the Born configuration in which
the outgoing jets are back-to-back in the hadronic centre-of-mass frame, the dijet az-
imuthal correlation distribution receives large logarithms. This region is also strongly
affected by non-perturbative effects. In this chapter we calculate the resummed dis-
tribution to NLL accuracy both in DIS and hadronic collisions. We find that the

differential cross-section tends to a constant in the logarithmically enhanced region.
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We also provide a matching to NLO results obtained from NLOJET++ [39, 40] in
the DIS case.

This chapter is organised as follows. In the next section we discuss the kinematics
of dijet production in DIS and the observable definition in the soft and collinear limit.
We then provide a resummed prediction for the DIS case in section 6.3 and discuss
the numerical approach we use to obtain the result in section [6.4. In section 6.5/ we
match the resummed result to NLO result and in section 6.6 we discuss our findings.
Finally we briefly describe the extension of this work to hadronic collisions in section

0.7.

6.2 Kinematics

We consider the process in which soft gluons are emitted in dijet production in DIS
(q+po— p1+p2+>.. ki), with ¢, po, p1, p2 and k; standing for the momenta of the
virtual photon, the incoming parton, the two outgoing hard partons and the i** soft
gluon. We write the transverse momenta of particles with respect to the photon axis
in the Breit frame (or equivalently the hadronic centre-of-mass frame), in which the

incoming parton and virtual photon collide head-on, as:

po = (0,0),
g = (0,0),
P = pea(1,0),
Pr2 = Dpr2(—cose,sine),
= pra(cos(m — €),sin(m — €)),

Etﬂ' = l{itﬂ'(COS(ﬁi,SiH(ﬁi), (621)

where we define the +z-axis to be parallel to the photon axis and consider the
outgoing hard particle “1” to be at azimuthal angle ¢; = 0. We also consider a
small recoil (azimuthal) angle, € (positive or negative), of the hard outgoing partons,
due to the emission of soft gluons. We define p; as the transverse momentum of the

outgoing hard partons (p; = pi1 ~ pr2 to NLL accuracy).
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The azimuthal angle of a jet in the “FE;-weighted scheme” is defined by [14] [15]:

Ziejet Etz(bz
)

where the sum runs over all final-state particles inside the jet with E;; and ¢; being

Piet = (6.2.2)

the transverse energy and azimuthal angle of the i*" particle as defined above. At
leading order we have two back-to-back hard jets in the final state. Thus A¢ =
[T — 0iets| = 0.

Thus we write the azimuths of the leading outgoing jets, in the soft and/or

collinear regime, as:

Djet1 A Z kti @i/ Dt (6.2.3)
i€jetl
Gz ~ T Y kgsingi/p+ Y k(b —7)/pi, (6.2.4)
i jEjet2

where we use € & — > " k;; sin ¢; /py, which is sufficient for NLL accuracy. Hence the
observable we study has the following approximation (in the soft and/or collinear

region):

A¢ = |7T_5¢jets|>

ke, .
= 12 p_; (sin @i — Oinhi — Oia(m — 63)) |, (6.2.5)

where 0;; = 1 if particle 7 is clustered to jet j and is zero otherwise.
In the next section we discuss the definition of the observable with respect to the
axes defined by the outgoing legs. This will help us confirm the continuous globalness

of the observable, compare our predictions with CAESAR [111] and determine the

radiator (see appendix BJ).

6.2.1 Globalness of the observable

A “continuously global” observable [21], 22 47, 111] (V') is one that satisfies, for the

emission of a single soft and collinear gluon to an external leg (1) (I = {0,1,2}),

oV (k" 0, n®)
dn k"

= ap, (6.2.6)
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where kfl), #" and n¥ are the transverse momentum, azimuthal angle and rapidity
of the emission with respect to leg (I). Here ag represents the power of k; in the
observable definition with respect to the incoming leg “0”.

To show that our observable is continuously global we write its definition in terms
of the variables k;, n and ¢ with respect to the legs “0”7, “1”7 and “2”. To do so we
introduce a rotation about the y-axis of the Breit frame (or hadronic centre-of-mass
frame) and write the components of the vector k (three-momentum of the gluon) in
the rotated frame, in which the +z-axis becomes parallel to the three-momentum of
leg (1). The rotation angle is 6; in the & — 2z plane, where 6; is the angle between the

+z-axis and the three-momentum of leg (I). Thus we can write:

ki cos ¢ cos) 0 —sind, kfl) cos ¢
kpsing | = 0 1 0 D sing® | . (6.2.7)
k; sinh n sinf)y 0 cos6, kfl) sinh 77(”

From this we arrive at:

ke = kt(l)\/[cos 0, cos o) — sin 0, sinh ) + [sin pO]2, (6.2.8)
sin ¢
\/[COS 0, cos o) — sin 0, sinh ) + [sin pO]2
_ cosh n; sin ¢ / sinh n® (6.29)
\/[1 — sinh 7, cos ¢O/ sinh n®]? + [cosh 1, sin ¢O) / sinh n®)]2

sing =

Thus we deduce that for a soft and collinear emission to the incoming leg (“0”)

we have in the E,-weighted scheme?:
Ap® = kO /p, |sin ¢, (6.2.10)
while for a soft and collinear emission to legs “1” and “2” we have:

ApM 3 ~ kgl)’@)/pt cosh? (1 5) exp(—2n12)) |sin® ¢(1)’(2)| : (6.2.11)

Wl Do

where 7, is the rapidity of leg (I) with respect to the z-axis. Thus eq. (6.2.6) is

satisfied.

Egs. (6.2.10) and (6.2.11) are useful in determining the “radiator” for the resummed result
[111] (see appendix B)). They can also be used to implement our observable into CAESAR [111]

(see later).
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The above implies that the observable in the E;-weighted scheme is continuously
global. This means that no non-global component is present and the resummed
result to NLL accuracy has no dependence on the jet algorithm [47]. This is the
recombination scheme used by the H1 collaboration to measure this observable [32].
However if one employs a recombination scheme in which the four-momentum of
the jet is defined by the addition of four-momenta of particles in the jet, then our
observable becomes non-global. In this case one would need to calculate the addi-
tional non-global component as well as the dependence on the jet algorithm. The D@
collaboration employed the latter recombination scheme to measure the observable
[30, 31].

In the next section we perform a resummation to NLL accuracy. We specify to
the DIS case and generalise our results to hadronic collisions in a later section. We

also assume the jets are recombined using the Ej-weighted scheme.

6.3 Factorisation and resummation

To calculate the resummed distribution we begin by factorising the integrated dis-
tribution for events with A¢ < A for some A as follows:
2 do

S(A) = /0 mdm an:g/dBaBZ/dPa 0(A—Ap)—1], (6.3.1)
from which the differential distribution do/(dx dQ* dA¢) can be obtained by differen-
tiation at A = A¢. In eq. (6.3.1) the term (—1) accounts for the virtual corrections
contribution, dP? is the differential probability of the classical independent emis-
sion of n gluons in the soft and collinear regime with an incoming parton a (a = ¢
for quark and a = g for gluon), where for the case ¢ — qg, with g being leg “2”
51, 52, 53, 180]:

P n'Hdkm d¢z N, <w02<ki>+w12<ki)— jégwm(m), (6.32)

C

and for the case ¢ — qq:

n ' H dk’tz d¢z Ve (MOQ(kl) . %’wlg(lﬂ) + wOl(kz)) , (633)

C
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with:

O‘S(k2 ) Pk-Dj
. — 9 2 J
Wy (k) 27 & "koprk.p;

(6.3.4)

In egs. (6.3.2) and (6.3.3) k| j ; is the invariant transverse momentum of the emission
with respect to the dipole in consideration. In fact k7  ; = 4k7 /wy;(k) for the dipole
(4kj77 .

In eq. (6.3.1) o is the Born cross-section for the production of two hard partons

in DIS with an incoming parton a. It is given by*:

dBO'% Z 27Ta a/s )dgd CFSD(S( )05,q(§7 Z, Emin)q (ghufc) s (635)

6=T,L 6

27ra ag(py) d x
dBoy = Z . 5dZTfSOé( )Cs4(&, 2, Emin)g <g,u§>, (6.3.6)

5=T,L §
where all the variables and constants have the same meaning as those defined in
section 2.3 and p, and iy are the renormalisation and factorisation scales, which we
chose to equal either ) or p;. The index ¢ denotes the transverse and longitudinal

pieces and the functions ¢s(y) are given by:

pr(y) = 14+ (1 —y)? (6.3.7)

er(y) = 2(1—y). (6.3.8)

In eq. (6.3.5) and (6.3.6) we only consider events with p; > Ey, with Eyy, being

some cut-off scale, so the coefficient functions have an explicit dependence on FE,.;,

through the theta function (p; — Emin), with p, = Q/2(1 — 2)(1 — §) /€.

We factorise the theta function by introducing the transformation:

toodb ky
0 (A —A¢p) = - /_oo " sin(bA) Hexp (zb— [sin ¢; — 010 — Oia(m — gzﬁl)}) :
(6.3.9)
Thus the resummed result is given by:
o db -
Y(A) = dBaB > sin(bA) exp(—R(b)), (6.3.10)

where we suppressed the index a (the radiator explicitly depends on the index a),

2This is presented in detail in subsection [2.3.2.
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and (to NLL accuracy) [75]:
R = — /dP {exp (lb}% |sin g — 01 — Oy(m — gb)|> - 1} :

_ /dpe (k‘t - %) , (6.3.11)

where a = |61¢ + O5(m — ¢) — sin¢@|, with 6; = 0 (R* — (n —n;)* — (¢ — ¢;)?), and
b = |ble”®. Hence for the b integral we can replace fj;o — 2 f0+oo.

We present the result for the radiator and the expansion of the resummed result to
O(a?) in appendix B. Furthermore, to account for the contribution of hard collinear
emissions to the incoming leg we evolve the PDF's as described in appendix Bl, which
results in the substitutions: ¢, (z/&, u%) — qa(z/€, 13/b?) (wWhere qq(z, p3) = q(x, 415)
and qgy(z, u3) = g(x, 7). Thus the Born weight o3 becomes explicitly dependent
on b and we move it inside the b integral. We also rescale b — b such that we write

the result as:

I @ 2 ~R()
dB op(p;/b%) sin(bA)e (6.3.12)

with A = Ae &,

6.4 Result in A space

In contrast to @), distributions (such as that we studied in chapter 4) the result in
A space, evaluated using the saddle point method, has a divergence at R'(1/A) =1
of the same nature to that we discussed in subsection 4.3.1 (see appendix B! for the
derivative of the radiator). This corresponds to a quite high value of A (for the
illustrative value of @)/p; = 6 and for an incoming gluon we arrive at A ~ 0.13) and
thus the result in this way is not suitable for phenomenological purposes. We remind
the reader that in section 4.3.1 we found that the divergence for the @); distribution
occurs at R'(Q/Q;) = 2 (which corresponds to a very small value of @);). This
enabled most of the (); range to be safely studied.

An alternative approach which we highlighted in section 4.3/ can be used in this
case, that is to evaluate the b integral numerically. As we already pointed out in

section 4.3 the radiator has a Landau pole singularity which can be overcome by
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making the replacement b — b* = b/m in both the radiator and PDF's,
where we choose by, = ftr/Qo, With Qg being a cut-off scale?. Furthermore we freeze
the radiator for values of b* below “17, i.e. we evaluate the integral over b from 0 to
biin, Where byin = biim/ \/bﬁmi—l, freezing the radiator at the value “0”, and then
integrate over b from by, Up 10 biay, Where byax = exp(1/(28pas(p?))), using the
full expression for the radiator.

Thus we can write the expression to be used in the numerical code as follows:

2 2 [bmexgh o R
X(A) = /dB(aB(,ufc);Sl(Abmm)—l—;/b ?SIH(bA)UB(,u?/b 2)e~HO )), (6.4.1)

min

with Si being the “sin integral” function, defined by Si(z) = [ sin(t)/t d¢.

6.5 Matching

For an ideal matching one would need to compute the fixed-order result for the
distribution analytically in order to obtain the constant coefficients CY and CY
(in analogy to the constant term C; for the @; distribution, which is presented in
appendix (A.1)). The resummed result would then be given by eq. (6.4.1) with the
replacement (after restoring the index a):

Ci © q(w/&13/b7) + o)/ (21) CF @ q(a /€, 13)
Ga(@ /&, 117)

op(p3/b™?) — op(u}) , (6.5.1)

where the matrices CJ are presented in appendix B.4.2, and for ag(ufc) we just set
b* — 1in eq. (6.5.1).
Currently the leading-order analytical result is not available. It is only possible
to obtain the term C; = C{ + CY, where:
Ci @ q(x/ n3)
Qa(z/6,p13)

from NLOJET++ by subtracting the logarithms at O(ay). For optimal results of the

Cy = /dBU%(u?c) (6.5.2)

matching we would need to separate the quark and gluon channel contributions to

C (i.e. calculate or extract C{ and CY) in order to write the resummed result using

$We choose @ such that the scale of PDFs (uf/b*) is always above the minimum required by
the PDF data set we use (CTEQ6M [112]), Qo = 1GeV.
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eq. (6.5.1) (which affects O(a?In*(1/A)) terms in the expansion of the resummed
result).

The matching is complicated not only by not having a fixed-order analytical
result, but also by not having an analytical NLL resummed result in A space. Both
these problems were overcome when we studied the (), distribution in chapter 4,
however here we do encounter both these difficulties. In fact for the dijet azimuthal
correlation distribution a decent matching would need to be carried out in b space
rather than A space, which means the matching would also need to be performed
numerically.

Since we do not have an analytical fixed-order result we combine the resummed

result to NLOJET++ results in A space in the following way*:
Smat(A) = 2(A) [1+ (B0 — W) /5] + (2@ - £@) 5(A), (6.5.3)

where now the result has a form similar to that in eq. (3.4.1). Here 3(A) is the
resummed result, 2 and £ are the first and second order terms in the expansion
of the resummed result and ¥, is the Born cross-section. Expressions for ¥, M
and 2,@ are presented in appendix B.4.2. Here ZS) and 29 are the first and second
order coefficients of the NLOJET++ predictions for the integrated distribution. The

form-factor 3 is given by:

S(A) = (Z / dBo exp|—R%, (1 /A)]) /%0, (6.5.4)

with Rpp, being the double logarithmic piece of the radiator which is presented in
appendix B.4.2 (with the substitution b — 1/A). Once again the introduction of
this form-factor is ad-hoc and only affects our result at subleading accuracy. Its
role here is analogous to that for the (), distribution we presented in chapter |4, that
is to eliminate the effect of subleading O(a?L) terms, which we do not control, at
small A. Furthermore since we do not account for the coefficients C{ and CY, the
O(a?L?) terms are not fully controlled”. However these terms are also suppressed

by the form-factor.

4The matching to NLOJET++ we provide here can be improved by separating quark and gluon

channel contributions. We leave this for our forthcoming work [38].
°In chapter 4] we controlled all O(a2L?) terms since we computed the term C'.
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Figure 6.1: Subtraction of the logarithms from NLOJET++ predictions. The differ-
ence d(ES) — 27(«1)) /dIn A tends to zero when A — 0. This indicates an agreement

between our results and NLOJET++ predictions.

6.6 Results and discussion

In this section we present a result for the matched distribution and discuss the
theoretical uncertainties in our prediction.

In fig. 6.1/ we present a comparison between the terms ngl)/dL and dZ&l)/dL,
where L = In(A). We notice that there is an agreement between NLOJET++
predictions and our results at small A (since the difference vanishes), indicating that
the terms Hy; and Hjy, which respectively represent the coefficients of In(1/A) and
In*(1/A) in the expansion of the resummed result to O(a,) (see appendix B.4.2),
agree with those in NLOJET++ results. Thus the subtraction M — 5 contains
no logarithmic dependence and (formally) tends to the constant ag/(27)C; when
A — 0.

We also note that all the coefficients of logarithms that we control (Hyy, Hi2, Has
and Hyy, which are presented in appendix B.4.2) have been checked against those
predicted by CAESAR [111] and we have an agreement. We did not however consider
the computation of the resummed result using CAESAR since (as we stated before)
the divergence at R’ = 1 (using the saddle point method, which is implemented by
CAESAR) corresponds to a high value of A.

In fig. 6.2 we present our results for the matched result compared to NLO-
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Figure 6.2: Preliminary matched-resummed result compared to the NLO prediction.

CTEQG6M [112] PDFs are used.

JET++ predictions. We plot the differential distribution 1/¢ do/dA¢, which is nor-
malised to the total NLO cross-section o. The differential distribution is obtained
by differentiating 3(A) at A = A¢ (see eq.(6.3.1)). The NLO result diverges when
A¢ — 0, while the matched result tends to a constant. The difference between the
matched and resummed result at small A¢ is a constant factor, which amounts to
Ymat ~ (1 + as/(2m)C1)%E. The results here were obtained using: @ = 20 GeV,
pr = iy = Q, Ein = 5GeV, z = 0.01 and ;2| < 1.

The matching prescription we presented above results in some theoretical uncer-
tainties. The most significant one is the lack of knowledge about the terms Cf and CY
since we do not control all the O(a?L?) logarithms in the expansion of the resummed
result. In addition we have uncertainties associated with factorisation and renormal-
isation scales, fixed higher-order corrections (due to large differences between leading
and next-to-leading order results) and the numerical b-space integration. We leave

the analyses of these issues for our forthcoming work [3§].

6.7 Dijet azimuthal correlations in hadronic colli-
sions

We report below the result for the dijet azimuthal correlation distribution in hadronic

collisions. This has been measured at D) using the jet recombination scheme in
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which the four-momentum of a jet is obtained by the sum over the four-momenta of
particles in the jet [30, 31] (we refer to this scheme as the “four-momentum” scheme).
Here we report the result which uses eq. (6.2.2) and briefly discuss the result in the
other scheme.

In the “F;-weighted” scheme the observable A¢ has exactly the same expression

as that in the DIS case (i.e. eq. (6.2.5)). The resummed result is given by [111]:

Y(A) = / dé% /0 h %53(;@/&)sin(bZ)e—R<b>S(b), (6.7.1)

where g5(b) is the Born cross-section for the production of two hard partons in
hadronic collisions, which also contains PDFs from both incoming legs evolved to
,ufc /b?, and dB is the corresponding phase-space. We have suppressed the sum over
various channels. Here R is the radiator and is presented in eq. (B.4.15) in appendix

Bl The function § is given by:
S(b) = Tr[He_C(’\)FTSe_C()‘)F]/Tr(HS) : (6.7.2)

where H, T" and S are the hard, anomalous dimension and soft matrices. These
depend on the kinematics of the process [57, 58, 59, [60]. The matrices H and S are
identical to those we presented in section 3.5. The matrix I' contains integrations
over directions in the entire phase-space, as apposed to those in section 3.5, which
are performed in a limited region of the phase-space. Here the matrix I'" has the form

given in eq. (3.5.12) but with:

S = o0, (6.7.3)

T = In ;t +am, (6.7.4)
S

U = In ? + o, (675)

with §, @ and ¢ being the Mandelstam variables which are defined just after eq.
(3.5.5). In eq. (6.7.2) the single logarithmic function ((\) (with A = a,(Q?)5, In(b))
accounts for soft wide-angle emissions and is presented in eq. (B.4.12) in appendix
Bl

We can further our study by looking at the hadronic collisions case using the same

jet definition as that used by the D@ collaboration (“four-momentum” scheme). Here
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the four-momentum of a jet is given by:
P = D1l (6.7.6)
i€jet
where the sum runs over the four-momenta of all particles in the jet. Thus:

A ~ Z ky i sin ¢; /py, (6.7.7)

i¢outgoing jets

where the sum runs over particles which are not clustered to the outgoing jets. Hence
the observable in this scheme is non-global and the analysis of the resummed result,
to NLL accuracy, requires the inclusion of the non-global component in addition to
the impact of the k; algorithm on the resummation, similar to that we discussed in
chapter 5.

Both of these components are currently not available. However the current indi-
cation is that the effect of these pieces may not be significant [20, [113], particularly
since these pieces contain only single logarithms while the distribution is dominated
by double logarithms originating from soft and collinear emissions to the incoming
legs. In any case one could estimate these components preliminarily in a similar way

to that we presented in section 5.5. We leave this to our forthcoming work.

6.8 Conclusions

In the present chapter we have, for the first time, dealt with the resummation of the
dijet azimuthal correlation distribution both in DIS and hadronic collisions to NLL
accuracy. We used the “FEj-weighted” scheme to define the azimuths of the final-state
particles, which lead to the simplification of the calculation since the observable is
global in this case. However in the “four-momentum” scheme the observable is non-
global and formally the resummation is not complete to NLL accuracy. The full
estimate of the resummed result in the latter case is an avenue for future work.

We have also provided a matched result to fixed-order NLO predictions using
NLOJET++. We found an agreement between our resummed prediction expanded
to first order in a; and NLOJETH+ results. There is also an agreement between the
coefficients of the logarithms we control and those estimated by the CAESAR pro-

gram. The matching we provided here can be improved by separating the incoming
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quark and gluon channel contributions to the term we referred to as C;. We leave
this for our forthcoming work.

Another step one can take towards more accurate predictions for this observable
is to study the non-perturbative effects, which are expected to be of the “intrinsic
k;” type. Furthermore the sensitivity to small-z effects may be present and this
observable forms a good testing ground for these effects.

In addition to being a means towards better understanding of the resummation
of jet-defined quantities, the analysis we carried out here should enable, in the near
future, the comparison of our predictions with data and other approaches, such as
that of ref. [35] which implements unintegrated PDF's.

In the next chapter we study the power corrections to the energy flow distribution

in hadronic collisions.
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Chapter 7

Aspects of power corrections in

hadron-hadron collisions

7.1 Introduction

The principle issue that limits the accuracy of theoretical predictions in QCD is the
presence of non-perturbative physics responsible for the confinement of quarks and
gluons (hadronisation). The success of perturbative QCD, despite a lack of quantita-
tive understanding of the confinement process, is a major achievement that is based
on identifying infrared and collinear-safe observables [72] which are as insensitive
as possible to non-perturbative effects such as hadronisation. In such instances the
role of non-perturbative hadronisation effects is reduced to the level of corrections
to the perturbative estimates which take the form of an inverse-power law in the
hard scale @), 1/QP, where p depends on the observable. For some observables, such
as the total cross-section in e™e™ annihilation to jets, where p = 4, the corrections
in question are insignificant and can safely be ignored in comparisons to data. For
other observables such as event-shape variables [46, 47] it was noted however, as we
stated before, that the power corrections scale as 1/Q) and obscure the perturbative
analysis significantly.

Over the past decade, theoretical efforts essentially based on renormalons (see
ref. [81] and references therein) have given a clearer picture of the origin and role of

power corrections. Within the renormalon model these corrections are shown to be
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related to a factorial divergence of the perturbative QCD expansion at high orders
and the consequent error in truncating what is in fact an asymptotic series [81]. This
observation allows one to estimate power corrections from a lowest-order Feynman
graph, modified to incorporate the relevant subset of higher-order terms (renormalon
bubble insertions).

From a phenomenological viewpoint the most widely used formulation of the
renormalon model is one that uses a dispersive representation of the running cou-
pling [44], thereby introducing a dispersive variable m that plays the role of a fake
gluon mass. This scale is a natural trigger for power corrections arising in the in-
frared regime for observables that are otherwise dominated by a hard scale (). The
most appealing feature of the dispersive approach is the hypothesis of a universal
infrared-finite coupling aeg. The size of the power corrections in this approach are
governed by moments of this universal coupling: ;"> dm?/m?aeg(m?)(m?/Q?)P. For
most event-shape variables (for example) p = 1/2 [46], and the relevant coupling mo-
ment or equivalently the related quantity gy (which we introduced in section [3.6))
has been extracted from data for different event shapes in both e*e™ annihilation
and DIS [42, [43]. The values of «q thus obtained have generally confirmed the uni-
versality hypothesis to within the expected uncertainties due to missing higher-order
corrections [46]. These studies have not only enabled successful studies of several
observables, but also lent credence to the notion that the QCD coupling may be a
meaningful (finite and universal) concept all the way down to the smallest energy
scales, and have thus renewed hope of a better understanding of the confinement
domain from first principles of QCD.

The successes of renormalon-inspired studies have thus far been limited to ob-
servables which involve just two hard partons at Born level such as event shapes in
ete™ — two jets and DIS (1+1) jets. Some of the most interesting QCD observables
however do not fall into the above class. Examples include three-jet event shapes
in ete™ annihilation and DIS [51, 52, 53, 54], dijet event shapes in hadron collisions
[114] and single-jet inclusive cross-sections at hadron colliders [55]. These observ-
ables contain more than two hard partons at Born level and additionally pertain

to processes that have gluons at Born level where one may question the extension
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of the dispersive approach, which (strictly speaking) was formulated for observables
involving only quarks at the Born level [81]. The program of understanding power
corrections has not been put to test in such situations which will be of importance at
the LHC, for instance, although some progress is being made on the phenomenolog-
ical side for three-jet event shapes [54]. In fact for the case of observables involving
four hard partons at the Born level there are as yet no complete theoretical predic-
tions for power corrections.

Applying the renormalon model, in many such cases, reduces (as for ete™ an-
nihilation to jets or DIS event shapes) to an analysis of soft gluon radiation with
transverse momenta k; ~ Aqcp, which are associated with a universal infrared-finite
coupling. Given the rich structure (colour and geometry-dependence) of soft gluon
radiation for processes like dijet production in hadron collisions, it is indeed enticing
to see how a perturbative structure may influence predictions for power corrections
as predicted by the renormalon model. Signs of perturbatively calculable colour
structure in the non-perturbative power-behaved component would strongly suggest
that the renormalon-inspired picture of these corrections is an extension of soft gluon
radiation, with a modified but universal coupling, thereby conclusively establishing
the model.

In this chapter we provide a calculation of the power correction to the transverse
energy (E;) flow away from jets accompanying hard dijet production in hadron colli-
sions. A variant of this observable (the “pedestal” height) was suggested several years
ago by Marchesini and Webber as a means of separating perturbative bremsstrahlung
from the contribution of the soft underlying event in hadron collisions [107]. To date
however a satisfactory understanding of the away-from-jet energy flow has proved
elusive. In the region of small F; the distribution do/dFE; contains large logarithms
of the form a”In""'(P,/E,)/E,, where P, is the hard scale (jet transverse momenta)
of the problem. As we mentioned in earlier chapters, these logarithms can only be
resummed in the large N, limit [21} 22, [76] which limits the accuracy of perturbative
estimates that can be made in this case alongside the lack of any estimates of the
NLL contributions. One may also expect power corrections of the form 1/FP; to the

resummed distribution as for the case of event-shape distributions in e*e~ annihila-
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tion and DIS. Once again there is no estimate for these power corrections and it is
this that we aim to provide here. Combining the power corrections we compute with
resummed FE; flow distributions gives a more complete theoretical account which
should facilitate comparisons to experiment.

While at hadron colliders the ever-present soft underlying event may obstruct
clean studies of power-behaved corrections arising from the bremsstrahlung com-
ponent of the F; flow, our calculations here are also easily adapted to the case of
rapidity gaps in dijet photoproduction at HERA, and are in principle more readily
tested in that environment. Moreover there are theoretical ideas concerning ob-
servables such as inclusive jet cross-sections at hadron colliders, where it may be
possible to disentangle the underlying event from the non-perturbative physics in
the bremsstrahlung component, due to a singular 1/R (R being a jet radius para-
meter) behaviour of the latter [55]. A full estimate of this piece however involves a
calculation similar to the one we introduce here and thus the present calculations
can be used as a guide in moving towards better estimates of the inclusive jet cross-
sections as well. Another related class of observables, to which the techniques we
use here are directly applicable, is the important case of event shapes at hadronic
colliders [114]. Resummed perturbative estimates already exist for these quantities
and identical considerations to those of this chapter will be required when dealing
with the issue of power corrections. While other problems such as lack of knowledge
about next-to-leading logarithms also need to be addressed, the calculation of the
power correction is ultimately an important ingredient which, as we stressed above,
also serves as a case study for hadron-hadron observables more generally.

This chapter is organised as follows. In the following section we define the ob-
servable more precisely and review the perturbative result in Mellin space conju-
gate to E;, which involves colour matrices in the resummed anomalous dimensions
[57, 58, 59, 60]. We then compute the power correction to each of the matrix el-
ements of the anomalous dimension by considering the appropriate combination of
dipoles involved in that matrix element. The calculation of the power correction in
each dipole term is performed using the appropriate scale of the running coupling

(the invariant transverse momentum of the dipole, &, [51,152,53,(79]). The final step
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is to take the inverse Mellin transform of the result, for which it proves convenient
to diagonalise the power-corrected anomalous dimension matrices. We find that the
power correction to the E; distribution is not a simple shift of the resummed dis-
tribution by a fixed amount proportional to 1/P; as is the case for event shapes in

ete” — two jets and DIS (to a good approximation).

7.2 Resummed perturbative result

Here we outline the resummed result for the E; flow distribution, specialising for
simplicity (as in chapter 5) to the case of a slice in rapidity of width An, which we
take to be centred at 7 = 0 (the rapidity 7 is defined with respect to the beam axis).

The observable we compute is once again the distribution:

1 [P do
S(P, E,) = ;/0 dEédEg, E, =) Ey, (7.2.1)
1€Q)

where o is the total cross-section for dijet production in hadronic collisions, {2 denotes
the rapidity slice and E; is obtained by summing over all objects (partons/jets) in
the gap.

As we have stated many times now, the resummed prediction (P, E;) up to SL
accuracy (resumming all the terms o In"(P;/E;)), can be thought of as comprising
two distinct pieces with different dynamical origins: global and non-global.

The global component, which we discussed at length in section 3.5, [21) 22] is a
result of considering multiple soft emissions, both real and virtual, attached just to
the primary or Born hard partons. Due to infrared-safety of the observable real and
virtual emissions cancel below the scale E}, while real emissions above this scale are
vetoed. Thus the resummed result for this piece is just the summation of virtual
graphs above the scale Ej, attached to the primary hard partons [57, 58, [59, [60].
In actual fact the factorisation of real emissions and the consequent cancellation
with virtual ones takes place in Mellin space conjugate to F;, analogous to that we
presented in section 3.3 This complication can be ignored for the leading logarithmic
terms, but to analyse the impact of power corrections on the resummed distribution

we need to compute the result in Mellin space and then invert the transform to E;
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space. To be more precise the perturbative resummed result (considering just the
global term for now) reads:

(P, By / W ng ), (7.2.2)

2miv
where v is the Mellin variable conjugate to E; and the integration contour is taken,
in the usual manner, parallel to the imaginary axis and to the right of all singularities

of the integrand. We have:
R(v) = Tr <H6_FT(")Se_F(”)> /%0 (7.2.3)

In the above I' is essentially an “anomalous dimension matrix” and H and S are
the hard and soft matrices which we introduced in section 3.5/ for the case qq — ¢q.
The matrix elements H,; represent the product! of the Born amplitude in colour
channel 7 and its complex conjugate in colour channel j, and the matrix S represents
the normalisation arising from the colour algebra (i.e. the elements ¢}.c;, which we
introduced in section 3.5). The squared matrix element for the Born scattering in
this notation is just ¥y = Tr(HS). We shall return to the detailed structure of I" in
the next section.

We now turn to the second piece of resummed distribution: the non-global con-
tribution. The above result, resumming essentially virtual corrections above the
veto scale F; which dress the hard scattering, is not the complete description at
single-logarithmic accuracy [21, 22]. An additional non-global piece S(P;, E;), which
is different than that in the two-jet case, arises (starting at the two-gluon emission
level, O(a?)) and is also single-logarithmic. The dynamical origin of this piece, as we
explained in earlier chapters, is multiple soft energy-ordered radiation with an arbi-
trary complex geometry (“hedgehog” configurations of soft gluons, similar to that in
fig[3.3) as opposed to emissions strongly ordered in angle). As we emphasised before,
it has thus far been possible to treat this term only in the large N, approximation,
which limits the accuracy of perturbative calculations in the present instance.

However it has been pointed out and clarified in a series of papers [18, 19, 20, 108]

(including the work we presented in chapter [5) that the role of the non-global com-

IThis is analogous to /\/l;{/\/li7 with the colour-averaging factor 1/N2 and sum over spins, where

M; and M; stand for the components of the vector M in eq. (3.5.3).
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ponent can be significantly reduced by defining the observable in terms of soft jets
rather than individual hadrons in the gap. This can be achieved by running a cluster-
ing algorithm on the final states such that all objects are included in jets. We have
shown that the clustering procedure (with a large cluster radius R = 1) virtually
eliminates the non global component while giving rise to additional global terms [20]
that were at most modest corrections to the pure virtual dressing as represented here
by eq. (7.2.3). Moreover the power corrections associated to the non-global compo-
nent of the result would start at a higher-order in «; (albeit potentially accompanied
by logarithms of P,/E;) which we ignore. This was also the procedure employed for
the case of non-global DIS event shapes [46], where power corrections were computed
in the exponentiated single-gluon piece of the resummed distribution, which was a
phenomenological success. For all these reasons we shall choose to concentrate for
the rest of this chapter on the global component (eq. (7.2.3))), ignoring the non-global
component.

In the following section we explicate the structure of I' in terms of the various
hard colour dipoles from which one considers soft gluons to be emitted according to
the usual antenna pattern. Non-perturbative power corrections are then computed
on a dipole-by-dipole basis, adapting the procedure for a gg dipole developed for the
case of eTe™ annihilation to two jets. Having obtained the power corrections to I'(v)

we then invert the Mellin transform to examine the result for the F, distribution.

7.3 The anomalous dimension and power correc-
tions

We first write down the structure of the resummed anomalous dimension matrix I'(v)
and then note that it contains an integral over the running coupling which is for-
mally divergent. Making the ansatz of a universal infrared-finite coupling cures this
divergence and introduces calculable power corrections to the perturbative anom-
alous dimensions. In what follows and for the rest of this chapter we specialise to
the case of the sub-process q¢ — ¢q since identical considerations are involved for all

other sub-processes.
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First we summarise the results we obtained in section [3.5. For the sub-process
q(p1,71) + q(p2,72) — q(p3,73) + q(ps,74), where p; and r; are respectively four-
momenta and colour indices, we can choose to work in the ¢-channel singlet-octet

colour basis:

1 1
c1 = 5“7,35,“2714, Cy = 5 (57,37«457,17«2 — F6T17"357"2T4) . (731)
For this basis we have:
Nc2 0
S = N , (7.3.2)
0 ==
and the anomalous dimension matrix I' is:
CrT Sr(s—-U
r— 4 2x ) . (7.3.3)

S—U CpS— k(T —2U +5)

In the above S, T" and U are combinations of dipole contributions with each contri-

bution given by the corresponding dipole antenna. Thus one has:

S = Wi + Way, (7.3.4)
T = w3+ Way, (7.3.5)
U = o3+ Wy, (7.3.6)

where each dipole contribution w;; reads:

T — &k 2 (pipj) wlke. v
5= | T G ) Masl

In the above result we integrate the soft gluon emission probability, given by the
dipole antenna pattern, over the gluon phase-space (with k and w being respectively
the three-momentum and energy of the gluon, as usual) with a “source” function
u(ky,v) and g2 = 4ra,. The source is a result of factorising the real soft emission
phase-space in Mellin space (see for instance ref. [76]) and accounting additionally
for virtual corrections:

uk) = (1—e "), (7.3.8)

if the emission is in €2 and is zero elsewhere. The source thus represents the impact

of real-virtual contributions which completely cancel, to our accuracy, for emissions
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outside 2. Now introducing the variables n and ¢, respectively being the rapidity
and azimuth of the emission with respect to the beam direction, one can write:

. dky s(KL i) | do .

with f;;(n, ¢) being the functional dependence on rapidity and azimuth that arises
from the dipole antenna patterns and which we shall use below. We note that the
argument of the running coupling for emission from a dipole is ([51, 52, 53, [79, 80])
k2 ;5 = 2(pi-k)(pj-k)/(pi-p;), which is the transverse momentum of the gluon & with
respect to the dipole axis in the dipole rest frame. This must be distinguished from
k:, the transverse momentum of the gluon with respect to the beam direction, which
is the quantity that directly enters the observable definition. In fact we have, in

terms of the functions f;; introduced above, k| ;; = ki\/2/ fij.

7.3.1 Power corrections dipole-by-dipole

Now we proceed to an extraction of the leading power-behaved contribution. In
order to do this we first note that the integral over k; in eq. (7.3.9), which can
be rewritten as one over the related variable k,, is divergent if one uses the usual
perturbative definition of ay, due to the divergence of the running coupling at k, =
Aqep- In order to isolate and cure this pathological behaviour, as we did in section
3.6 for the two-jet case, we introduce the infrared-finite effective coupling (cwg) and
change the variable of integration from k; to £, in eq. (7.3.9). We then follow the
method of Dokshitzer and Webber [45] to write aeg (k%) = aspr(k?) + dasnp(k?),
where PT and NP stand for perturbative and non-perturbative respectively. In
doing so we have assumed that the actual coupling a.g is in fact finite even at
arbitrarily small £ , and can be split into the usual perturbative component o pr and
a modification da, np which is due to non-perturbative effects. Both the perturbative
and non-perturbative components separately diverge, but the divergences cancel in
their sum due to the assumed finiteness of the physical coupling aeg. Moreover,
since we do not modify the perturbative results at large scales, the non-perturbative
physics as represented by the modification das xp must vanish above some infrared

“matching” scale p7. Effectively the addition of the da, np term represents removal
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of the badly-behaved perturbative contribution below p; and its replacement with
the well-behaved integral over the infrared-finite physical coupling ag.

Thus for the observable itself one has from dipole (ij):

— ) fiy(n, o)+

v k2
/ d @dkl,z,] 7PT< L,z,g) (1
ke 2w kJ_,i,j 2w

d(b ko—l ,6045 NP(ki . ) B
b= ” ’ S (1= e M) fy . (7.3.10
" /keQ 77277 kl_,i,j 21 ( € ) f](”a ¢) ( )

The integral involving the perturbative coupling represents the usual perturbative
contribution from dipole (ij). The leading logarithmic perturbative contribution

arises from the region where one can make the approximation:

(1—e"™)~0 (k:t — %) : (7.3.11)

The perturbative results were reported at length by Berger et al [78] (also presented
in section 3.5). In what follows we shall consider in more detail the non-perturbative
contribution from the integral involving da, xp.

In order to evaluate the non-perturbative contribution we first consider that the
leading such term arises from the region p; < 1/v, which translates to a requirement
on F; to be above a few GeV. In this region one can expand the exponential in an
exactly analogous way as for event-shape distributions [45]. The leading term is
given by the first term in the expansion: 1 — exp(—vk;) ~ vk;, and this corresponds
to a linear 1/ P, power correction. We ignore quadratic and higher power corrections
that would scale as 1/P? and beyond, once again following the case of event-shape
variables. We also note that in the shape function approach [115] [116], where one
may study non-perturbative effects even into the region E; ~ Aqcp, higher powers
of v need also to be retained. Working with just the leading term gives us the

non-perturbative correction from the (ij) dipole which can then be written as:

Here the non-perturbative quantity P is the first moment of the coupling modification

5Oés,NPI

o} dlﬁ_ (SCVS Np(ki)
= k : 7.3.13
4 /0 kLo 2r ( )
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which also enters 1/Q) (@ being the hard scale) power corrections to event shapes
and can be related to the parameter g, extracted from fits to event shape data, as
(see eq. (3.6.3)):

P K
P =24 (i) - () = 22 (w4 L 1) a2r) 0 ) (319

where ag(pr) = 1/pr [3" dk aea(k?).

The coefficients C;; represent the integral over directions:

do 1 3
Ch :/ dn—— f3?, 7.3.15
! ke 7727\/5 / ( )

where f;; arises from the dipole antenna pattern as indicated in eq. (7.3.9), and
a further factor proportional to \/f_m comes from rewriting k; in terms of k; as
we stated before. The explicit form of the f;; functions is reported in appendix (Cl
Performing the integrals over n and ¢ in eq. (7.3.15) yields the coefficients C;; that
correspond to the non-perturbative contribution to w;; in eq. (7.3.12), which we do
not explicitly display for economy of presentation.

Having computed the power corrections proportional to v for each dipole, we can
include these corrections to the anomalous dimension matrix in eq. (7.3.3), which
can then be written as:

I = TFPT + I/PI‘NP, (7316)

where the non-perturbative contribution I'yp is built up by combining the dipole
contributions Cj; as in the perturbative case. In the case of the perturbative term I'pr

we explicitly extracted the integral over the transverse momentum of the coupling:

P dkey o pr(K?)
— 20t 2, PTARE ) 7.3.17
. /W P, (7.3.17)

which is analogous to that we introduced in eq. (3.3.7), and arises by making the
substitution (7.3.11) in the first term of (7.3.10). Then the matrix I'pr is the usual
perturbative anomalous dimension containing integrals over gluon directions inside
the region? . In the following section we shall consider the evaluation of the inverse

Mellin transform to take our results from v space to E; space.

2These integrals (referred to as W;; in appendix [C) are similar to those which yield the Cj;

except that the functions f;; are involved rather than ffj/ 2 /V2.
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7.4 Power corrections in the F,; cross-section

After accommodating the leading power corrections (those expected to give rise to
1/ P, effects), eq. (7.2.2)) assumes the explicit form:
dv
S(P,Ey) = | ——e"Fx
(P, Ei) / 2miv

x Tr [H exp (—TF;LT - VPFIT\IP) Sexp (—mTpyr — vPIxp)| /Xo. (7.4.1)

In order to invert the Mellin transform (perform the v integral above) it is simplest
to diagonalise the matrix 7I'pr + vPI'yp. In the basis in which the matrix I' is
diagonal the matrices H and S become H = R"'HR ! and S = RISR, where R
is a matrix containing the eigenvectors of I' as column entries. After diagonalisation

we can write the result for ¥(P;, E;) in terms of components as:

d ~ .~
Y(P, E,) = / —”e”Ete—%(sijﬂjke—wklsﬁ/zo, (7.4.2)

2miv
where \; are the eigenvalues of the matrix I'. For the case of the ¢q¢ — ¢ sub-process,

which we use as an example, I, H and S are 2 x 2 matrices and the above result can

be written explicitly in terms of the elements of the various matrices as:

dv 1

X <ﬁ11§11€_0‘1+’\;) + ﬁ12§216_(/\1+’\;) + ﬁ21§12€_(/\T+A2) + ﬁ22§22€_()‘2+/\§)> ;

(7.4.3)

where the above result contains both perturbative and non-perturbative contribu-
tions. To separate these we note that the eigenvalues can be expanded so as to
retain only the first-order in v correction to the perturbative value, which depends
logarithmically on v:

i = TN+ vPANT + O(?). (7.4.4)

PT NP

We emphasise here that while are simply the eigenvalues of I'pr, are not
the eigenvalues of I'yp. Instead they are coefficients of the O(v) component of the
expansion of the eigenvalues of 7T'pr + vPI'yp and they depend on the components

of both I'yp and I'pr.
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The matrices H and S also differ from their pure perturbative forms by corrections
which depend on v. Let us define the matrix D such that D;; = ﬁwgﬂ We expand
the elements D;; to first order in v and write the result as:

S(Ey, P) = Z/%eu(Et—P[A?PJr/\;NP]) <D5T 4 #PDEP) e—f(u)(AfT+/\;PT)/EO’

v (7.4.5)
where the sum runs over the components of the matrix D;; and we ignore higher-order
terms in the expansion of D;;(v).

We ignore for the moment the correction terms involving D" which shall be
presently considered. We first write down the pure perturbative result LT (P, Ey)
obtained by ignoring all non-perturbative components. Then performing the in-
tegral over v (easily performed by contour integration) and retaining only leading
perturbative logarithms we get:

SPT(P, E) =Y DEFe ™)) 5 (7.4.6)

.3
where the effect of the v integration amounts to merely replacing v by 1/E;. Including
the non-perturbative correction to the eigenvalues we find by examining eq. (7.4.5)

that the impact of the non-perturbative term amounts to a shift of the perturbative

result in each of the terms in the sum in eq. (7.4.6):
Ey— B —P (N7 + XN (7.4.7)

Looking at the distribution in F;, with E; being measured in units of the hard scale
P,, amounts to a 1/P, non-perturbative shift in each term in the sum above, as is
the case for two-jet event-shape variables [115, 45]. However in contrast to the case
of event shapes it should be clear that the overall impact of the power correction is
not simply a shift of the perturbative distribution by a fixed amount since each term
in the sum on the right hand side of eq. (7.4.6) receives its own characteristic shift
depending on the sum of the eigenvalues AN + )\;NP entering the term in question.

Moreover we have still not accounted for the non-perturbative contribution to
the colour basis as contained in the D%\;P terms. To evaluate these one performs

the contour integral in question which yields a power correction of the form P/E;.
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Figure 7.1: Power corrections to the energy flow distribution. PT stands for the pure
perturbative result LPT(P;, E;) as presented in eq. (7.4.6), PT+NP stands for the

result including the non-perturbative correction and ignoring the terms DXF,| while

Z]’

PT+NP2 stands for the result presented in eq. (7.4.8).

Computing the full result for this piece we arrive at our final result for (P, E;):

_APT(E, _ANP
S(P, E,) = § e~ AN T(B-ATY) o

DPT + DNP P 1

P,
G (= )| /S0, (748
9B, — A (B, — AYP) (O‘ Et—Ag.P) [To, (7:48)

where AE" = P(ANT + XNF) and AZT = APT 4+ XFT, and the function G is approx-
imately a constant of order as(P;), varying very slowly with E; over the range of
E; we consider here. It is a function of the logarithmic derivative of the single-log
resummed perturbative result and hence scales as a,. We also note the presence of

1/7(E, — A}"), which is a reflection of the fact that the correction terms (containing

NP
D;;") go as v/T.

7.5 Results

In this section we illustrate the impact of non-perturbative power corrections on the
energy flow distribution we discussed above.
In fig. 7.1 we show the result for (P, E;). We present the pure perturbative

result (eq. (7.4.0)), the result including non-perturbative corrections without the
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D}" component (PT+NP) and the result presented in eq. (7.4.8) (PT+NP2).

The results above were obtained for the illustrative value of p; = 80 GeV. We have
performed the integration over the functions fg/ ? for the non-perturbative component
(given in eq. (7.3.15)) numerically. We also assumed that the rapidity gap has width
An=1.

We notice that the effect of the term D%\;P is in fact very small and thus we take
this as an indication that neglected higher orders in the expansion of D;; are even
more suppressed. We also note that the corrections to the result are larger when
E; is small. Furthermore there is clearly no indication of a pure shift in the overall

result as we stated before.

7.6 Conclusions

In this chapter we have revealed for the first time a calculation of the power cor-
rections in hadronic collisions. We illustrated the computation for the energy flow
distribution using the process qG — ¢gq. The generalisation to other channels is
straightforward and only requires the numerical computation of the diagonalised
anomalous dimensions and the corresponding hard and soft matrices.

We found that the result does not correspond to the usual shift found in studies
of two-jet event shapes and energy flows (see section 3.6). The reason for this is the
non-trivial colour algebra involved in the case of hadronic collisions.

The techniques we used here should enable better estimates of power corrections
for observables which have a similar nature to the one we introduced here (such as
the inclusive jet cross-section we mentioned earlier).

Once again our computation does not account for the Milan factor which we
highlighted in section 3.6l As we mentioned there this factor has not been accounted
for in the hadronic collisions case and a two-loop analysis is required in order to

estimate it.
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Chapter 8

Conclusions

In this thesis we have studied different aspects of soft gluon and non-perturbative
effects in QCD observables. The aim was to achieve a better understanding of QCD
dynamics which, for instance, dominate important physics at the LHC.

In chapter 4 we studied the distribution 1/0 do/dQ;, where @; is the modulus
of the transverse momentum vector of particles in the current hemisphere of the
DIS Breit frame. We resummed the large logarithms in the small @); region, to
NLL accuracy, including the non-global logarithms involved and combined the result
to NLO predictions. This observable, as we pointed out, is simply related to the
Drell-Yan vector boson and predicted Higgs (); spectra at hadronic colliders.

Having obtained the theoretical prediction we compared our results to preliminary
HERA predictions [89]. After obtaining the final form of the data we ought to be
able to assess the role or absence of small-x (BFKL) effects, neglected in conventional
resummation of such quantities. This we leave for our forthcoming phenomenological
investigation.

We then revisited, in chapter 5, the impact of the k; clustering algorithm on pre-
dictions of energy flows into gaps between hard jets. We analytically computed the
dependence of the primary emission term on the jet algorithm, which gave signifi-
cantly more insight than a previous numerical study of the same. We also pointed
out that the non-global component of the answer is reduced even more significantly
by the clustering than suggested previously in the literature. We provided improved

predictions for the latest ZEUS photoproduction data, assessing the impact of our
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latest findings.

As a future avenue the proper calculation of the clustering-dependent component
in hadronic collisions and dijet photoproduction (together with a prediction for the
non-global component) should be straightforward.

Next we studied the azimuthal correlation distribution for dijet production in
QCD hard processes in chapter 6. This observable is sensitive to soft and/or collinear
emissions in the back-to-back region, giving rise to single and double logarithms. We
provided resummed predictions to NLL accuracy for both DIS at HERA and hadronic
collisions at the Tevatron and performed an NLO matching to NLOJET++ results
in the DIS case.

The task of fully computing a matched result and comparing our predictions to
HERA data, as we explained in chapter 6, is well on the way. Having done this we
plan to compute the non-perturbative corrections and proceed with studying this
observable using the jet definition employed by the D@ collaboration.

Finally in chapter [7 we studied the power corrections to the inter-jet energy flow
distribution in hadronic collisions. The “usual” simple shift of the distribution does
not manifest itself in this case because of the complicated colour algebra involved. We
calculated the power corrections to this distribution using the renormalon-inspired
techniques that were employed in ete™ annihilation into jets and DIS cases. We
have illustrated the impact of such corrections in the simple case of g¢ — ¢g, where
we calculated the corresponding anomalous dimension matrices.

The next step in the analysis of these power correction is to compute the Milan
factor, which requires a two-loop analysis of the argument of the coupling. Once
this is done, and in light the work of chapter |5, one can provide the most accurate
predictions which can be compared to energy flow data in hadronic collisions together
with those from DIS photoproduction. This allows us to test many perturbative
frameworks we have developed in this thesis, which are very important for the LHC,
particularly the universality of non-perturbative effects manifested in the coupling

moment.
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Appendix A

Fixed-order result and the

radiator for the DIS Breit current

hemisphere (); distribution

A.1 Fixed-order result

In all what follows the symbols have the same meaning as those introduced in chapter

2/and chapter 4. The observable we study here is the modulus of the vectorial sum of

transverse momenta of all particles in the current hemisphere p, = |p;| = ’ZZEHC l;t,i .

The momenta of particles in the Breit frame are given by:

Q

P = g(l,o,o,—l),
. 2%(1,0,0,—1),
g = Q0,0,0,1),

ro o= 5(20,21,22,2’3)7
k= %(20,21,22,23),

where

2 2 =2 =2 = = 2
i+ 25 =71+ 75 = —(Z121 + Zaza) = 29,
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Figure A.1: The phase-space. See table [A.1 for the values of p; in different regions.

Region | Particles in region Dy QB.g
A both outgoing particles 0 Rz

B and C | one outgoing particle | Qz,/2 | Qz,/2
D None 0 0

Table A.1: Values of p; and ()B,( in different regions of the phase-space.

and

1—=z
zy = 22—1+Z€
Zo = 1—212—1—5,
-z
23 = 1—Z§ ,
Z3 = 1—E,

(A.17)

(A.1.8)

(A.1.9)

(A.1.10)

(A.1.11)

The vectors 7 = Q/2(z1, z0) and k; = Q/2(%1, %) are the transverse momentum

vectors of the outgoing particles.

direction. Their modulus is Qz, /2.

They are equal in magnitude and opposite in

At O(a,) we identify four distinct regions of the phase-space each with a different

distribution of particles as shown in fig. /A.1 and summarised in table |A.1.
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A.1.1 A relation between p; and the jet broadening

It proves convenient for the calculation of the @); distribution at O(a;) to consider

the jet broadening [87]. This is defined as:

ZiGHC i % 1
Q

where 77 is a unit vector along the z-axis. The values of the jet broadening in different

B.q = , (A.1.12)

regions of the phase-space are shown in table A.1.
Clearly B.g = p; in regions “B”, “C” and “D”. Thus one can subtract the
contribution of region “A” to the jet broadening leading-order distribution to get

the @Q); one.

A.1.2 Setting-up the calculation of the cross-section

The integrated cross-section for events with p; < (); is obtained by restricting the
phase-space in eq. (2.3.4) with a theta function of the form 0(Q; — p;). One can

write:

1 o ol %{ (% ) ( 2)
O'OU ! (QvaI) - (](l’, Q2) 27_‘_/$ 5 CFq €7Q2 FQ#] 57 Qt +
Q y? x Q
+ ng (zaQQ) JT2,g (67 _> - |:CFq (_7 QQ) fL,q (fa _) +
§ Q: 1+ (1—y)? § Qy
+Tyg (g,QQ) Fr, (g, QQ) } } (A.1.13)

@) 1
Fiilé, =)= [ d=Ci;(&2)0(Qi—pi), A1.14
,(th / (6.2) 0(Q — o) (A114)

where

and C; ; are the coefficient functions (see equations (2.3.5) to (2.3.8)). Our aim here
is to solve the integral in eq. (A.1.13) neglecting terms that vanish when @; — 0,
which we do not require. We are particularly interested in extracting the logarithms
and the term C; that appears in eq. (4.3.2). Terms which we neglect are supplied
to the distribution by matching to NLO results.

To work with real emissions alone we exploit the unitarity relation:

o =ol) — ) (A.1.15)

Pt <Qt tot Upt>Qt’
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where a&ﬁ is the total leading-order cross-section. The term ol

PR which represents

the integrated distribution for events with p, > @Q; at O(a), does not acquire virtual
corrections.

The jet broadening fixed-order results have been calculated by Dasgupta and
Salam [87]. We use those results and subtract the contribution of region “A” to get

the Q; distribution. We have:

USZ)Q<B = ol — (Ug3Q>B(region B) + UgZ)Q>B(region C)+ ang>B(region A)) ,
(A.1.16)
Uz(i)<Qt = 0’53 - (‘71()1)>Qt (region B) + aéiLQt(region C)) ) (A.1.17)
Hence:
Uz(il@t = 0§3Q<B + 0§3Q>B(region A), (A.1.18)

where B = Q;/Q.

We now compute the integrated distribution with B, > Q;/@Q in region A, which
we denote by O’S) . Let 01(417)1.7]- represent the contribution to O'S) of Fy/x (i =2) or Fy,
(¢ = L), with j standing for the incoming gluon (j = g) or quark (j = ¢) channel

contributions such that:

o) = _1 o
A 2
q(x, Q%) 2w
2
1 1 Y 1 1
x (CFUX)z,q +Tj0, =2 Croflh, + Tfaﬁx,)L,gD - (AL19)

Using table [A.1 and eq. (A.1.11)) one can write:

1 d 3
O’ill,)i,j(Qthx) = [ gqj (%7622) /1—6 & Guals, )

2(1-2)1-¢ Q_?
<o(F e

We have used the fact that” 1/2 < £ <1 and 1 — ¢ < z < € in region “A” according

) . (A.1.20)

to fig. [A.1. The theta function imposes the conditions: ¢ < 1/(1 + Q?/Q?) (and

hence @y < @ since £ > 1/2) and: Epin < 2 < &max, Where:

_1 (@:/Q)%€
Cu = 5 (11— 1—T§>. (A.1.21)

1Strictly speaking we also have & > 2, which means that a theta function (1 — 2 /¢) is embodied

in PDFs.
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The condition on z we mentioned just before eq. (A.1.21) can only be applied if

€ >1—0Q:/(2Q), since we already have 1 — ¢ < z < £. Thus the integral splits into

two parts:
1-2t ¢
20 d, T
o) (Qn Q) = / qu (E,Q2> /1 (i€,
ﬁ Emax
+/ R (f,QQ)/ d2C; (€, 2). (A.1.22)
_% 5 g fmin

A.1.3 Quark contribution

The quark contribution to Fy/z is given by:

-2 3 2 2
" _ [l (g i
O'AQ,q(Qtaan)—/é fq(f’Q>/15dz((1—§)(1—2)+625+2)+

w@oar dE (@ Ema 2g
- /1Qt 1 <E’Q2) /émm dz <m + 628 + 2) . (A1.23)

2Q

Performing the z integral we get:

_&

ef\e 1-¢ ¢ 2(1-¢)
r@sar df ([ 2) 62 -26-1 | (Q/Q)%
+/Q cr(ea { -9 | i-¢
1 2 t 2 t §
- ;:i ln<1— 1—%>—m<1+ 1—%)]} (A.1.24)

In order to separate the large logarithms we use eq. (2.5.6) to write:

/0 F(€)g(€)de = / F(1)g(€)de + / FO)9(©))de. (A1.25)

with f(§) and g(§) being a smooth function and a divergent function which has a
singularity of the form 1/(1—¢&) at £ = 1. The first term in the right hand side of eq.
(A.1.25) contains logarithms of (1 — &) and the second one is regularised by the plus

prescription which we introduced in eq. (2.5.6). We use this in eq. (A.1.24) and we
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set Q¢ — 0 in the regularised part arriving at:

o', (Q1, Q. ) :/1 & (x QQ) {5(1—5)<2m2§+4ln2m§_

. e\ t t
—3111%—1-211122—;11124—3—%2)—(1+£2) [Q(TS__;)lnlggL_
_ (1263 — 10¢2 9(25—1)} A
(12¢° — 10¢ +1)[2(1_£) +}. (A.1.26)

A.1.4 Gluon contribution

The gluon contribution to Fy/z is given by:

1-9 £
O'f‘ié,g(@ta@,l‘) - [ ) %g (?Qz) /15 dz{[§2 + (1 - f)Q]X

2

22+ (1—2)2 TH@ua? df [z
219 *85(1‘@}*/1% co(pe)

X . 24 (€2 — QM B
/gmin d {[é +(1-¢)% 07 +8¢(1 5)}, (A.1.27)

which simplifies to:

00 (Q0, Q. 7) = / ’ %g (f,@) { 2463 4 3667 — 166 4+ 2—

1 3
1-¢ T@gar df [z
— 2 _ 1 9 (2 2 2
(4€° — 46 4+ 2) In : }+/1_2ch> £g<§,Q){2(1+2§ 28) %
(Q:/Q)*¢ (Q:/Q)*¢
x[ln<1+ 1—1—_§>—(1_ 1_1—_§>]_
—2(1 + 6£* — 6¢) 1—%}. (A.1.28)

There are no singularities in this equation®. One can check this by expanding the

integrals as in eq. (A.1.25). Therefore we just set Q); to zero everywhere arriving at:

1
0'1ho(Q, Q. ) = / %g (g Q2> [(—2453 +366% — 16€ +2)0 (26 — 1) —

— (42 — 46 4+2)0(26 — 1) In Ly ) (A.1.29)

2This can be seen by noting that there are no soft singularities for this channel (as we stated
just after eq. (2.3.11))). The only logarithms that arise for this channel come from the region where

the incoming gluon splits into a collinear quark/anti-quark pair, which happens only in regions B

and C.
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A.1.5 Longitudinal quark contribution

Following the same steps as before we find that the quark contribution to F7, is given

by:

1_Qt
5 d
@@= [ Fa (T ) 26— 1)

@ar df [« [, Qe
+/1_§5 K (E’Q2> 2641 — ¢ (A.1.30)

This also has no singularities. We have:

o', Q. Q,z) = / %q (?QQ) 26 (26 —1)0 (26 —1). (A.1.31)

A.1.6 Longitudinal gluon contribution

The longitudinal gluon contribution is given by:

1
7@ Q) = [ Fo (%,Cf) SE1-)@E—10(26—1).  (AL32)

A.1.7 The final answer

The leading-order cross-section for events with p, < @, is given by eq. (A.1.13)

where, after using (A.1.18)), we arrive at:

]:27(1(5 Q>_5(1—f)[ 21112Qg+ lnz—ﬁ}_

Q: 6
1+ Q 1+& ) {m(l—g)] 662 — 26 —1
— 1 In —
2(1—§)+ th 1-¢ ¢-(1+8) 1-¢ ++ 2(1 —€),
— (148 6(?5__51) In ; 5] ) — (1263 — 1062 4+ 1) 92((25__51))] ; (A.1.33)
Fay (5, %) = —[€2 4+ (1 - €7 [4ln% —2+42In %5} —8¢(1— &)+
4 (—24€% + 3667 — 16 +2)0 (26 — 1) — (4% —4€ +2)0 (26 — 1) In L 2 5, (A.1.34)
Fra=26(26-1)0(26 1), (A.1.35)
and:
Frg=86(26—1)(1 -0 (2 —1), (A.1.36)
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where we use the results for the leading-order B, distribution from ref. [87]. In
obtaining the last two equations we exploit the fact that the leading-order B.q
distribution does not acquire any longitudinal contributions [87].

The above results are only valid in the DIS factorisation scheme [117] and can
only be used with PDFs which are defined in that scheme. To go to the MS scheme
we add® the leading-order MS coefficient functions [118] (see also ref. [88]) to the

functions F» ;. We get:

<£,Q) (1—5){ 12Q+31ng+§1 2_12_9]_

Q Qi Q1 2 2
1+¢2 Q 0(2¢ — 1) 1—¢
—2{1 J 1@+1—§—(1+§2) e 1n< : )L—
1963 10e2 (26 — 1) A
(126% — 1062 + 1) —2(1_€)L, (A.1.37)
A (62) =4+ 1= €Plm S + 461 - 9+

+ {2(25 —1)(—=662 4+ 66 — 1) — 262+ (1 — €)% In ! gf} (26 —1). (A.1.38)

In eq. (A.1.37) we use the fact that:

1+ & (1 + 52) 3
_— = —=0(1=¢). A.1.39
-0,  \1-¢), 279 (A.1.59)
The (2ns+1) x 1 matrices Cy and C are defined such that their transposes are
given by:
e26(1 - 2)
e2o(1—z
Colz)=| " (, ) : (A.1.40)
0
and:
AV <l 2
CF @?L {f‘%\j{]S(Z7 1) — 1+(111—7y)2.¢.L7q<Z7 1)}
Cre2 S FMS(z,1 — ¥ Fr(21
cTxy=| " { 20 (2:1) = il )} . (A.1.41)
T { A1) — o Fra(= 1)}

3We exclude the longitudinal pieces in the addition because they are scheme-independent.
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A.2 The radiator
The radiator for the @; distribution we studied in chapter 4 is given by:

R(Q/Q:) = Lgi(asL) + ga(asL) (A.2.1)

where L = In(Q/Q;) and in the MS scheme we have:

CF ln(1—2)\)
L= —ZE |22 A.2.2
nlat) =~ 5 [y RO (A22)
305 CrKr 2\
L) = In(1—2 In(1 -2 _
ga(asl) = oIl = 22) + 125 [n< A+ 1—2/\}

Cpﬁl 2\ + hl(l - 2/\) 1 2
3 [ o s -2))| L (A23)

with A = a,(Q?)Sy L and:

. 17031 — 5C’Anf — SOFTLf

8, = e (A.2.4)

In obtaining this we use eq.(4.2.12) and the two-loop QCD £ function to replace the
scale of a, with Q% and moved from the CMW [74] scheme to the MS scheme (see
e.g. ref. [87]). The derivative of the radiator with respect to Inb at b@Q = Q/Q; is
given by:

2Cr A

R(Q/Qu) = Tl on

The expansion of the resummed result (eq.(4.3.3)) to O(a,) and O(a?), which is

(A.2.5)

needed in eq. (4.4.1)), yields:

Co®PV®q(z,Q?) Ci®q(z,Q%
M /oy = G11 L 2220 iy ! ’ A2
o /00 =CGnl+ Gz q(z,Q?) T @) (4.2)
0'7(¢2)/O'0 = G22L2 + G23L3 + %G%QI}—F
Ci® q(z,Q?) »n  5,Co®PYePOgqx,Q% ,
gy (Gnlt Gl +2 1@ Q) .
Co® P 2
— 2 (G, + 2 ) L2 + GroL?) 20F o 22‘;(‘”’ Q) (a2

where P(©) is the matrix of leading-order splitting functions (defined in eqs. (2.5.2)
to (2.5.5)) and the coefficients G, are given in table [A.2. In the above we exploit
eq. (2.5.13)). One can clearly see that the expansion of the resummed result to O(ay)

reproduces the leading-order result given by eq. (A.1.13).
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Gy | —2Cp
Gi | 3Ck

Gas | —6CF — ¥ Cro

Goo | —ZCrCy+ 302 —2CrKp + 67 Crfy

Table A.2: The coefficients G,,,,, that enter the fixed-order expansion of the resummed

result.
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Appendix B

The radiator for the dijet

azimuthal correlation distribution

in DIS

We present here the radiator for the dijet azimuthal correlation distribution in DIS.

We do this for the process ¢(0) — ¢(1) +¢(2) and generalise the result at the end. In

all what follows all symbols have the same meaning as those introduced in chapter

6.

B.1 Dipole “02”

We write the contribution of this dipole to the radiator, oy, as follows:

Ne [ dky as(k d¢ 2 Do-p2 Dy
Io» = k—e[k——_]a — k]
" / 2r 2w po-kpak L' ab [pe — ki)
with
) _ h
kiZQ(kpo)(kpz) _QkQCos (e — 7})+c0s¢‘
Po-P2 enz—n
Hence:

dk 9/62 do 1
IOQ—N/ L @l ¢—6 [kl—pt;/_rl [\/_rpt ];

27T r2

where we define:

o,  cosh(my —n) +cos ¢
= enz—n ’
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The soft and collinear enhancement around leg “2” comes from the phase-space where

N —mne = ¢ —m = 0. For this reason we define:

n—1ny = psind, (B.1.5)

p—m = pcost, (B.1.6)

such that we arrive at:

dk, ag( k dg 1
Ipo = N, / La L p —0 [kl — pt\/__T'] [\/_rpt ] . (Bl?)

27 72

Evaluating the integral over k£, we find:

P2k ag(K3)  Ca
perv/2/ab ki 27 471—50

rv2
B LI+ 20,5 n(rv2) L+ (1 T+ 20ef In ‘”52) (B.1.8)
5%\ T 11 2000 In(v2) 1+ 20,0y In 222 o

V2

N. In(142a,6 In(rv2)) —In (1 + 2055 In _5> +

«

The calculation of the contribution of dipole “02” to the radiator proceeds in the
following way. We first expand 1/r? = 2/p*. We perform the 7 and ¢ integrations
in the whole phase-space using the definition @ = |sin¢| and then subtract the
contribution from the circles of radius R (in the n — ¢ plane) which are centred at
the outgoing legs, and add their contribution with oo = |sin¢ — ¢| or |sin ¢ — 7w + ¢|
accordingly. Then we add the contribution from higher-order terms in the expansion

of 1/r2.

B.1.1 Contribution with a = |sin ¢| in the whole phase-space

To NLL accuracy we can write result for the k£, integral in eq. (B.1.8)) as follows:

Cx
47 50

1
In (14 2as6pInp) —In (14 2,5 In = | +
cos 0b

61 1+In(1+ 20,8 Inp) 1+In(1+2a,6n;) (B.19)
»30 1+ 20,8, Inp 1+ 20,60 In ¢ ’ o

where we use the symmetry of the 6 integral and chose the region —7/2 < 0 < 7/2
such that |cosf| = cos6. Here we replace df/(2n) — df/n. From eq. (B.1.7) one
can deduce that ab > 1, a condition that can be applied to the p integral such that
p > g(b)/cosf, with g(b) being the function that satisfies sin(g) = 1/b. To NLL
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accuracy it suffices to write g(b) = 1/b for this case. The upper limit on the p

integral is 7/ cos §. Thus we may write the contribution under consideration, I3, as:

all = " i /W/Cose —Qd() X k t g 1 (B 1 10)
integra ..
02 471—60 —7/2 ™ g/ cos @ P

where “k, intergal” stands for the result appearing in eq. (B.1.9). The above integral
can be solved and one can remove all subleading terms leaving only up to NLL terms.

We write the result for this as:

Ca[ B In(1 — 2)) + 2\ 2\ + In(1 — 2))
= =2 In%(1 — 2\ —L —
02 47%[ 7 ( (=204 =753 A

—2In2 (1 2)\2)\ +1In(1 — 2)\)> —2Inwin(l — 2/\)], (B.1.11)

with A = a,(p?)ByL and L = Inb. We have used the fact that fﬂ/Z df/mIn(sech) =
In2. Next we calculate the contribution from the region around leg “2” with a =

| sin ¢| (which we shall subtract later).

B.1.2 Contribution with a = |sin¢| around leg “2”

We now calculate the contribution of the region around leg “2” with o = |sin ¢|,

I52, i.e. perform the following integral:

I% = " df / 2 dp x k, integral. (B.1.12)
—ap integra 1.
02 47Tﬁ0 —n/2 T Jg/coso P .

The result to NLL accuracy reads:

1 1—-2 2 2\ +1In(1 —2
Am By ﬁo 1—2A A
- 411121 o 2InRIn(1 — 2/\)] . (B.1.13)
Next we calculate the contribution of the region around leg “2” with a@ = |sin¢ —
T+ ¢

B.1.3 Contribution with a = |sin¢ — 7 + ¢| around leg “2”

We now calculate the term:

+C2 "2 de
Iy 47rﬁ0 —dp X k, integral, (B.1.14)

—n/2 T Jg/coso P
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where now g satisfies g — sin g = 1/b, which to NLL accuracy gives: g = {/6/b. The

result for the “k| integral” now has the form:

Ca

471'0

In(1+2a:6)Inp) —In {1+ 20,06 IHL +
p? cos3 0b

51 14+ 1In(1+ 2056y In p) 1 +1In <1 + 205 o In _%')
60 1 +204360 111,0 1 +20[550

]. (B.1.15)

The result reads:
I+C2 OA

1—2\ 3—2\ 2
0 T L( ) In(1 —2\) — o\ ln(l—g)\))—i-

ﬁl 2 3 2 2 2
+2ﬁ0( In?(1 - 2)) ~ Cln (1—§A>+1n(1—2A)—31n(1—§A>)—

— (In3 +41n?2) (111 (1 - §A) —In(1 — 2)\)> —2InRIn(1 — 2>\)] . (B.1.16)

The last term in the equation just above cancels that in Iy, thus there is no
dependence of the radiator on the radius parameter R.

Since there are no singularities around leg “1” in the case of dipole “02” one
can deduce that the addition and subtraction of the contributions around leg “1”
with the corresponding definitions of the observable cancel each other. We therefore

discard the calculation of this piece.

B.1.4 Soft and collinear enhancement around leg “0”

To calculate the contribution from higher-order terms in the expansion of 1/r? (which
correspond to soft and collinear emissions from the incoming leg) we restore the
integral in consideration to its original form, eq. (B.1.3), and subtract the piece we

already calculated. We thus write the contribution of the remaining terms, 1(5‘2”, as:

700 dk, as(k d¢ 1 2
oz _N/ or Mo (7"2 (77—772)2+(¢—7T)2) .

XQ[kL—pt;\_/_] [ptr\/_ k@ { %] (B.1.17)

In this equation we introduce the cut-off on n, 0 [n — In(k,&/Q)] (which only con-

tributes for soft and collinear emissions to the incoming leg), originating from the
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requirement that w < Fy, with w and E; being the energies of the soft gluon and
the incoming leg respectively.

The singularities around n — 7, = ¢ — m = 0 cancel between the two terms in
this subtraction. To avoid such singularities we introduce a small cut-off ¢ on the
integral over n around 7y and show that this cancels as anticipated. Let us start by

evaluating the ¢ and 7 integrals. We have:

“+o00 27rd 1
/ dn/ —¢— = 27}2—21n£+230—21n2—21n6
In _kt€ 0 2mr?

n 2 Q
- Q5 ke
= 2111—2—2111——1—230—21112—21116, (B.1.18)
D Dt

where ij = 2p;.p; and we use the fact that n; = In(2¢p;.po/(Qp:)). To account for
hard collinear emissions to the incoming leg we have replaced @ by Qe®° (see e.g
refs. [88, [111]) in this equation, where B; stands for the “hard collinear factor” for

leg “7”. We have:

3
B, = 7 for quark legs,
11Cy — 4T,
B = ——2 Rnf, for gluon legs. (B.1.19)

12C 4
Note that we neglect the dependence of the theta functions containing r on 1 and ¢,
which is valid to NLL accuracy (see below).

The integral over n and ¢ of the subtracted term gives:

+oo 27r 9
=21 — 21 B.1.20
/ / 27r R E— nm ne, ( )

where we use the freedom to set k; — 0 in the theta function [y — In(k:£/Q)] since

this term is regular as n — —oo (i.e. the theta function we just mentioned contributes
below NLL accuracy in this case). Clearly the terms containing In e cancel between
the contributions in eqs. (B.1.18) and (B.1.20) and we are left with the following
integral over k| :
19 = g;‘ dkkj S(K2) ( 21n %;2 +2By—2In2 —2Inw — 21nl;—t> X
x 0 [/ﬂ - p—ﬂ Ol — k1], (B.1.21)

o
where we set r — 1/4/2, which is valid to NLL accuracy in the region where 7 — —oc.

The k. integration over the first four terms in right hand side of the above equation
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gives the result:

Ca

TPo

Qb
pt

In(1 — 2\) (2111 +230—21n2—21m>. (B.1.22)

Notice that the term containing In7 will cancel that in eq. (B.1.11). The integral

over the term which contains Ink, /p; gives:

Cal Bif1., (1 —20) 420\ 2)\ +1In(1 - 2))
In?(1 — 2\ ) -
47r50[ 60( (1=20+ =753 A
1

Averaging® over ¢ using a = |sin ¢| (we are away from legs “1” and “2” and thus we
are safe to use the |sin ¢| definition of the observable) and assembling the result we

get:

) Ca 51 B 1(1—2)\)—|—2>\ B 2)\+ln(1—2)\)_

Q02

)\
~4In?2 —2In(1 -2 Bo—In2—1Inw)|. (B.1.24
RS )Y ( M( pp e m)] (B.1.24)

Note that since we now include hard collinear emissions to the incoming legs PDF's

must be evolved to the scale u3/b.

B.1.5 The final result for dipole “02”

Assembling all the bits of the answer we arrive at the final result for dipole “02”:

Iop = I8N — I52 + I + 1Y), Thus we arrive at the following result:

o [ /12 32\ 2
Ips = L In(1 — 2)) — m(1-2
02 47r@0[ ( on =20 = =53 n( 3A)>+

ﬁl 2 3 2 2
260( In (1—2)\)—§1n (1—§A>+1n(1—2A)—31n(1—§A>)—

— (In3+4In2) (m (1 _ gx) Cn(1 — zx)) _

In(1 —2X) 4 2\ 2\ +1In(1 — 2X)
2 E— j—
( In“(1—2)\) + T o ) L 3

B
3%

— 42 A )\—21n(1—2)\)( Q02+B0> (B.1.25)

pt

!This means we replace In(1/a?) — fo% d¢/(2m)In(1/a?). This is valid to NLL accuracy.
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B.2 Dipole “01”

The result for this dipole is the same as that for dipole “02” with the substitutions
Ca— —1/C4 and Qo2 — Qo1

B.3 Dipole “12”

The expression for the contribution of dipole “12” to the radiator, I», has the form

given in eq. (B.1.3) but now with:

I 1 4 cosh An 1 N 1
72 cosh(n — ny) + cosh(n — n2) \cosh(n —ny) +cosé  cosh(n — ny) — cos ¢
(B.3.1)

where An = 1y —n;. We first use the same definition for p and 6 as before and

concentrate on the first term of eq. (B.3.1). One can expand:

1 4 cosh An 1 2
=—-+0(1). B.3.2
pcosh(n —m) + cosh(n — ny) cosh(n —na) +cos¢p  p (1) ( )

To NLL accuracy it suffices to consider r = p/y/2 in the expression for the k,
integral in this case (eq. (B.1.8) with 7 being defined in eq. (B.3.1)). Thus the result
for integrating over k,, n and ¢ (using only the first term in the expansion of 1/r?)
is identical to that for dipole “02” (i.e. I8 — I,* + I5®). Thus we write the result

as:

o [ (1-2x 32\ 2
5 =2 L In(1 — 2)) — (12
12 X4w50[ ( on =20 -3 n( 3A))+

61 2 3 2 2
260( In (1—2)\)—§1n (1—§A>+1n(1—2A)—31n(1—§A>)—

— (In3+41n2) (m (1 _ §A> Cn(1 — 2)\)> 2 (nm+1n2)In(1 — zx)] . (B3.3)

where 75 stands for the contribution from the soft and collinear region to both legs
“1” and “2” and the factor 2 accounts for the fact that we get the same result for
the second term in the expression of 1/7? in eq. (B.3.1).

We now treat higher-order terms in the expansion (B.3.2). We write the contri-

bution form these terms as:

CA dkj_ /+°° /27r ( 2 )
Y —2x Sk . (B.3.4
. g 2 \i P+ roap ) PP
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where I3} stands for the contribution from the soft wide-angle region to both legs
“1” and “2”, 1/r? stands for the first term in eq. (B.3.1) and the factor 2 stands for
the fact that we get the same result by considering the second term in eq. (B.3.1).

Integrating over the first term in eq. (B.3.4) we get:

Ca

—2
% 47Tﬁ()

A
In(1 —2X\) (2 In cosh 777 —21In e) . (B.3.5)

The second term in eq. (B.3.4) gives:

Ca
90

—2x In(1 —2\)(2In7 —21ne), (B.3.6)

where we introduce a cut-off around 1 = 7y, which cancels when subtracting the two

terms. Below we write the full result for this dipole.

B.3.1 The final result for dipole “12”

Assembling the result for dipole ;5 we arrive at:

Ca 1—2\ 3—2)\ 2
— | zn"(1—=2\)—-In"(1—=A)+In(1—=2\)—=3In{1—-=\] ) —
+25§ 211( ) 5 3 + In( )—3In 3
2 Q12
— (In3+4In2) (In 1—5)\ —In(1—-2X\)) —2In=—1In(1 —2)\)|, (B.3.7)
Dt

where we use the fact that 2 cosh(An/2) = Q12/p:.
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B.4 The assembled result

The assembled result for all dipole contributions is given by?:
- Ci+Cy

2) 3—2\ 2
R(b) = pry L( ) In(1 —2\) — o\ ln(l—g)\>>+

I 3 2 9
+2ﬁ0 ( In 2(1—2)\)——1n (1—§>\> +1In(1 —2X) — 3In (1—§>\))—

— (In3+41n2) <ln (1 - gx) —In(1— 2/\))

Co | B 12( )\)+ln(1—2)\)+2)\ 2+l -2))
216 | B2 1— 2\ )
A
—41n21_2)\]—
o1 Q% Q2
-~ In(1—2\) ( Cyln ————+Clnﬂ+203), B.4.1
2 Bo ( )( pi  Ca p} A2 0Bo | )

where C; represents the colour factor of the i' leg (C; = Cp for quarks and C; = Cy
for gluons) and By accounts for hard collinear emissions to the incoming leg “0”.
Changing the coupling from the CMW scheme [74] to the MS scheme results in

the addition of the terms:

Kp Ci+ Oy 2 1 Cy A
27Tﬁ0< 27 e [21 <1—3/\)—§1n(1—2/\)}+2ﬂﬁ0 lln(l—Z)\)—i-Ql_Q)\}),

(B.4.2)

to the radiator. Similarly changing the scale of the coupling from p; to @) results in

the additions of the terms:

Q° (C1+ Cy 1 Co A
DE( 5 {21 (1—5)\)—511&(1—2)\)}—1—2%@) [1n(1—2A)+21_2>\})7
(B.4.3)

where \ becomes a,(Q?)3yL. Finally we account for hard collinear emissions to the

outgoing legs by simply adding the SL function [111]:
1 2
——1In (1 — g)\) [ClBl + OQBQ] s (B44)

to the radiator. We can alternatively express the final result for the radiator in the

2We also generalise to the case of arbitrary incoming leg.
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standard form:

R(b) = (C1 + Cy) [Lm(ozsL) + ry(asL) + 7 (L) <— In3—4In2+ 3In ]%)} i

+ Co {LRl(ozsL) + Ry(a,L) + R (o, L) (— In2+1In g)] +
t

+C¢(N) (C’ In =—=——- QoaQar +2CpIn — Qar > + C(N)CoBy + ((N/3)(C1 By + C2Bs),
Qag @ Q@
(B.4.5)
where:
1 [1—-2A 3—2\ 2
ro= 5 { ) In(1 —2\) — ) In <1 - 5)\)} , (B.4.6)
B (1, 3 2 2
= 1 1—2\) —-In*(1-= In(1 —2)\) —3In{1—=
To I ( A) 5 In 3/\ + In( A)—3Iln 3)\ +
Kp 2
87r2ﬁ2 {3 In (1 — §>\) —In(1 — 2)\)} , (B.4.7)
1 22+ 1In(1—2))
= — B.4.
Rl 27Tﬁ0 A ’ ( 8)
B 1, 5 In(1 —2X) + 2A
= 1 1-2
fz 23 A )
Kp 2\
—|—4 23 [ln(l —2)\) + T 2)\} , (B.4.9)
87"1 1 2
o= - = In{1—=X)—In(1—-2X\ B.4.10
" Olnb  2mf [n ( 3 ) a( )} ’ ( )
0R, 1 4\
- _ = B.4.11
i Olnb  2mB1—2X\ ( )
1
A) = —In(1—-2)). B.4.12
(Y = (=2 (BA12)
The derivative of the radiator, to NLL accuracy, is given by:
=28 _ 4y (—ln3 —41n2+31n9) '+ Co (—1n2 +1n9) R,
dlnbd Dt Dt
(B.4.13)
and the double logarithmic piece of the radiator is:
Rpr(b) = (Cy + Cy)Lry(asL) + CoLRy (s L). (B.4.14)
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B.4.1 Radiator for the hadronic collisions case

The radiator in the case of hadronic collisions can be expressed as:

R(b) = (Cz + C5) {Lrl(asL) + ry(a,L) + 7 (a,L) <— In3—4In2+31n g)} +

+(Co+Cy) [LRl(asL) 4 Ra(auL) + R(a,L) (— 02+ 1n g)] +

+ C(A)(C1B1 + CoBy) + ((A/3)(CaBy + C3B3)+

+¢(\) (Co+ C1 + Cy+ C3) In % (B.4.15)

where the subscripts 0, 1, 2 and 3 stand for the two incoming legs and the two
outgoing legs respectively. This can easily be obtained by observing the expression
for the observable when a single soft and collinear emission to leg “I” is considered

(see egs. (6.2.10) and (6.2.11)) [111].

B.4.2 Expansion of the resummed result

We can express the expansion of the resummed result (in the DIS case) to O(a?) in

b space as follows:
o (13 /0%)e M) = o (1) (1 + awol) + aZo®), (B.4.16)
where a stands for quark or gluon channels (as in eq. (6.3.1)), as = a,/(27) and:

oV = hy L+ hypL? (B.4.17)

0@ = hyL? + hosL? + hyy LY, (B.4.18)

with

Cy @ PV @ q(z/¢, 13)
(7 /€, 1}) ’

hia = G, (B.4.20)

Cy @ P @ q(z/¢, 13)
Ga(7/, 17)

Cy® PO @ PO @ q(zx/¢, 13)

Ga(7/, 1})

Cy @ P @ q(z/¢, 1i3)

(7 /€, 1})

1
hoy = §G§2, (B.4.23)

hin = Gui—2

(B.4.19)

hae = Gao —2[G11 + 270)

1
+ §G§1, (B.4.21)

h23 = G23 - 2CTY12 + G11G12, (B422)
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where we exploit eq. (2.5.13)). Here the matrix C{ is equal to Cy which we introduced
in appendix [A.1, while C§ (this also has 2n; + 1 dimensions) is defined such that its

transpose is given by:

0
T 0
Cj (z) = . . (B.4.24)
(1 —2)
The coefficients G, are given by:
. ngng Qqq’
GH == 4COBO + = (ClBl —+ OQBQ) -+ 4 OA In ——= + ZOF In — +
Qqq @ Q
Q) 4 Q
+4Cy ( —In2+In—= +§ —ln3—4ln2+3ln; (Cy + Cy),(B.4.25)
Dbt t
Gy = (00 S s 02> : (B.4.26)
B B Ci+C
G22 = —871'50 (C Cl 1—502 2>—ZKF (C()‘F 1;_ 2)+
Q Q
—871 Gy | 2Cy ln2+1n; (C’1+02) —ln3—4ln2—|—3ln17 +
t t
—873y (CA In 244297 Qe Q0 +2CrIn Qqq’) , (B.4.27)
Qqq Q
87 o

The formal expansion of the resummed distribution to O(a?) in A space is ex-

pressed as:

o (A) = 5+ 50 4 xO3) (B.4.29)

where ¥ is the Born cross-section for dijet production in DIS. We have:

So = Y dBog(u}), (B.4.30)
a=q,g
>M = Hy m% + HypIn? %, (B.4.31)
»? = Hyln? % + Hys In? % + Hyy In* %, (B.4.32)
with Hy; = al Y.,  dBog(u})hi; for all but the Hyy term. For Hyy we have:
Hy = a2 Y dBog(u7)(hay + 7° /4 GY,). (B.4.33)
a=q,g9
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Appendix C

The functions f;;

We present here expressions for the functions f;; which are needed in chapter [7.

We define 13 and 74 to be the rapidities of the outgoing hard legs. We specify the

kinematics of the particles as follows:

m = 21v5/2(1,0,0,-1),

p2 = -9?32\/5/2 (1,0,0,1),

ps = P, (coshns, 1,0,sinhn;),
ps = P, (coshny,—1,0,sinhny),

k= Kk (coshn,cos¢,sin ¢, sinhn),

where s is the hadronic centre-of-mass energy squared, related to § (the partonic

centre-of-mass energy squared) by § = x122s, with ; x5 being the momentum frac-

tions of the incoming protons, carried by the struck partons “1” and “2” respectively.

The functions f;;(n, ¢) = k? pi.p;/(pi-k p;.k), are given by:

12
fis

J1a
Jos
S
N

2,
en3_7]

cosh(nz —n) — cos ¢’
6774_77

cosh(ng —n) + cos ¢’

cosh(ns —n) — cos ¢
6_774+T]

Y

cosh(ny —n) + cos ¢’
cosh(nz —ny) + 1
(cosh(ns — n) — cos ¢)(cosh(ny — ) + cos @)
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We present below the results for Wi; = [, dnd¢/(27) f;; which enter the pertur-

bative part of the anomalous dimension matrix:

Wl 2

Wis

W14

Was

W24

Wy

2An,
h An/2
Ay 1 1 Si0B0 + A/
sinh(ns — An/2
sinh(ny + An/2
An+1
a sinh(ny, — An/2
Aj—n s?nh(T):a + An/2
sinh(ns — An/2
Aj—1 s%nh(m + An/2
sinh(n, — An/2

21n[

cosh (—Anfgr”“ )

cosh (An+gs+n4 )

+ W13 + W24.

(C.0.12)

(C.0.13)
(C.0.14)
(C.0.15)

(C.0.16)

(C.0.17)

The last equation is only valid if n3n, > 0. If n3ny, < 0 then W3y = Wiz + Wiy, In

the above we assume that the gap € is centred at n = 0 with width An and that it

stretches over all azimuths.

The non-perturbative components Cy; = [, dndg/(2m) ff;/ ?/\/2, are easily com-

puted numerically.
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