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Abstract: In this paper, we clarify a serious misinterpretation and consequent misuse of

the Principle of Maximum Conformality (PMC), which also can serve as a mini-review

of PMC. In a recently published article, P. M. Stevenson has claimed that “the PMC is

ineffective and does nothing to resolve the renormalization-scheme-dependence problem”,

concluding incorrectly that the success of PMC predictions is due to the PMC being a

“laborious, ad hoc, and back-door” version of the Principle of Minimal Sensitivity (PMS).

We show that such conclusions are incorrect, deriving from a misinterpretation of the PMC

and an overestimation of the applicability of the PMS. The purpose of the PMC is to achieve

precise fixed-order pQCD predictions, free from conventional renormalization schemes and

scale ambiguities. We demonstrate that the PMC predictions satisfy all the self-consistency

conditions of the renormalization group and standard renormalization-group invariance;

the PMC predictions are thus independent of any initial choice of renormalization scheme

and scale. The scheme independence of the PMC is also ensured by commensurate scale

relations, which relate different observables to each other. Moreover, in the Abelian limit,

the PMC dovetails into the well-known Gell-Mann–Low framework, a method universally

revered for its precision in QED calculations. Due to the elimination of factorially divergent

renormalon terms, the PMC series not only attains a convergence behavior far superior to

that of its conventional counterparts but also deftly curtails any residual scale dependence

caused by the unknown higher-order terms. This refined convergence, coupled with its

robust suppression of residual uncertainties, furnishes a sound and reliable foundation for

estimating the contributions from unknown higher-order terms. Anchored in the bedrock

of standard renormalization-group invariance, the PMC simultaneously eradicates the fac-

torial divergences and eliminates superfluous systematic errors, which inversely provides

a good foundation for achieving high-precision pQCD predictions. Consequently, owing

to its rigorous theoretical underpinnings, the PMC is eminently applicable to virtually all

high-energy hadronic processes.

Keywords: perturbative quantum chromodynamics; principle of maximum conformality;

principle of minimal sensitivity

P. M. Stevenson has recently claimed [1] that the Principle of Maximum Confor-

mality (PMC) [2–7], developed by Brodsky et al., “is ineffective and does not solve the

renormalization-scheme-dependence problem”. His argument is not built on new evidence
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but rather on a reassertion of the Principle of Minimal Sensitivity (PMS) [8,9], which he

himself proposed in 1980. Moreover, he leans heavily on his earlier 1983 criticism [10] of the

effectiveness of the method of Brodsky–Lepage–Mackenzie (BLM) proposed in 1982 [11].

Back then, the vigorous debate between the PMS and the BLM aroused people’s great

interest in the QCD scale-setting problem, a discussion that significantly advanced both the

theoretical understanding and the precision of perturbative QCD (pQCD).

The QCD Lagrangian for massless quarks is invariant under conformal transforma-

tions. This symmetry is broken by quantum corrections due to the fact that the conformal

symmetry of a quantum field theory implies that the β-function must vanish [12]. Steven-

son states in Appendix B of Ref. [1] that one can choose a proper/optimal renormalization

scheme to achieve exact conformality; this statement is incorrect. Stevenson’s suggested pro-

cedure, the PMS, mandates that the optimal renormalization scheme and scale be identified

by forcing the derivative of any given fixed-order series with respect to the renormalization

scheme and scale choices to vanish. In doing so, it tacitly presumes that all contributions

from uncalculated higher-order terms are null, which is an unfounded assumption that

contravenes standard renormalization-group invariance (RGI) [13]. Stevenson states that

none of the points listed on Page 2 of Ref. [1], especially Equations (8) and (11) there, are

“in any way dependent upon the PMS”. This is, in fact, a disguised replacement of concept

since those points are surely correct for any physical observable that corresponds to an

infinite-order series. For simplicity, one can consider applying the PMS to a fixed-order

series. Stevenson’s Equations (8) and (11) are the PMS basic approximations for fixed-order

series. In essence, the PMS procedure is nothing more than finding the extreme point of

a given fixed-order series. Since the idea is transparent, the further developments of the

PMS method are then mainly concentrated on how to improve the quantitative analysis

with better numerical precision [14–16]. This explains why Stevenson’s comments on

BLM/PMC are still only based on early arguments at that time, even though many years

have since passed. Moreover, his successive comments and assumed “PMC samples” given

in Ref. [17] are unfortunately full of typos and wrong deductions, indicating he does not

understand the PMC at all. To show how to apply the PMC correctly, we have put a detailed

explanation of his misuse in Appendix A.

On the other hand, there have been a number of important developments in the BLM

method. In 1984 and 1992, Grunberg observed that the above criticism can be softened using

the method of effective charges [18,19]. In 1994, Brodsky et al. found that the criticism can

be clarified using commensurate scale relations (CSRs) among effective charges [20]. The

CSRs can relate the pQCD approximants of physical observables to each other, which then

ensures that the BLM pQCD predictions are independent of the choice of renormalization

scheme. The interested reader may consult Ref. [20] for a detailed explanation of scheme

independence in the BLM predictions. Ref. [20] gives an explanation of leading-order CSRs

and a novel demonstration of the scheme independence of CSRs to all orders using the

PMC language has been finished in 2021 [21]. The transitivity and symmetry properties of

the commensurate scales are the scale transformations of the renormalization “group” as

originally defined by Stueckelberg and Petermann [22,23]. Thus, Stevenson’s claim that

“the BLM/PMC does nothing to resolve the renormalization-scheme-dependence problem”

was already clarified in the BLM language more than 20 years ago. This observation was

more recently confirmed in 2012, e.g., Ref. [24] which presents a demonstration that the

BLM/PMC predictions satisfy all the RG self-consistency conditions, such as reflectivity,

symmetry, and transitivity. This reference also demonstrates that, in contrast, the PMS

predictions do not satisfy those self-consistency conditions, explicitly transitivity, so that

the PMS relations between observables depend on the choice of intermediate renormaliza-

tion scheme.
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It should be emphasized that the goal of resolving the conventional scale-setting

ambiguity is not to find the optimal scheme and/or optimal scale of the initial pQCD series

but to achieve an improved pQCD series that is free of any choice of scheme and scale. The

BLM/PMC achieves this goal.

The BLM method automatically resums both the color-octet gluon exchange and the

quark-pair vacuum-polarization contributions into the running behavior of αs, which is a

function of β0 = 11CA − 2
3 n f , at leading order, where CA = 3 is the color factor and n f is

the number of active quark flavors. The BLM method has achieved many successes and has

so far been cited over 1200 times. The PMS paper [9] has also been cited over 1200 times,

although most of the citations are not for the PMS method itself, but for the suggested

method of extended RGEs, which provides a convenient way of analyzing the scheme and

scale-running behavior simultaneously. However, when one calculates the QCD corrections

at higher than the next-to-leading order (NLO), the problem of correctly resumming the n f

power series into the coupling αs is encountered.

Since the BLM/PMC method works well, it has aroused great interest in understanding

the underlying principles and in finding correct methods for extending it to all orders.

Many attempts have been tried in the literature, which includes the dressed skeleton

expansion, the large β0-expansion, the BLM expansion with an overall effective scale, the

sequential BLM etc. [25–35]. The emphasis of most of those references is just to eliminate

the n f -terms or to improve the pQCD convergence; however, such procedures to extend

BLM do not simultaneously satisfy all the RG self-consistency conditions. Thus, although

these early methods have led to some improvements, the criticisms of BLM made in some

references are incorrect since the problems are actually due to improper extension of BLM

to higher orders. In fact, such methods do not retain its most important feature: namely

that the BLM prediction should be independent of any choice of renormalization scheme

and scale.

In 2011, the BLM procedure was extended into an all-orders method of PMC [2,3], the

purpose of which is to simultaneously solve both the conventional renormalization scheme

and scale ambiguities. The PMC is stimulated by the observation that if good matching of

the expansion coefficients with the corresponding coupling αs can be achieved, then exactly

scheme-independent predictions can be obtained. This demonstrates that dealing with

the {βi}-terms involved in the renormalization-group equation (RGE), which control the

breaking of conformality in the perturbative series, is more fundamental than dealing with

the n f -terms alone [20]. The PMC thus perfects essential features of BLM.

In 2012, “degeneracy relations” among different orders of a pQCD series were sug-

gested; these relations ensure that the transformation of the n f -terms into {βi}-terms is

made uniquely [6,7]. In 2015, we demonstrated that such degeneracy relations are gen-

eral properties of QCD theory [36]. Recently, we have derived new degeneracy relations

with the help of the RGEs involving both the β-function and the quark mass anomalous

dimension γm-function [37], which leads to an alternative PMC scale-setting procedure

that simultaneously fixes the correct magnitudes of the αs and the MS-scheme quark mass

of the perturbative series. The characteristic operator has been suggested to formalize those

PMC procedures [38].

The PMC determines the magnitude of αs using the RGE; its arguments (the so-

called PMC scales) are obtained by shifting the initial argument of αs to eliminate all the

RGE-involved non-conformal {βi}-terms. The PMC scales thus reflect the virtuality of

the propagating gluons for the QCD processes. The resulting perturbative series then

matches the scheme-independent conformal series with β = 0. The PMC inherits all the

good features of BLM. For example: (1) In the Abelian limit, the PMC reduces to the Gell-

Mann–Low (GML) method [39]—this analytic limit provides an important constraint on
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the renormalization scale-setting problem in QCD. In contrast, the PMS cannot satisfy this

limit, and it cannot reproduce the GML scale for QED observables; (2) The PMC achieves

scheme- and scale-independent pQCD predictions; and (3) Because of the elimination

of the factorially divergent renormalon terms, which could be αn
s βn

0n! by using large β0-

approximation [27,28], the PMC series naturally becomes more convergent. There are

cases which accidentally have large cancellations among the conformal and non-conformal

coefficients for a specific choice of scale under a conventional scale-setting approach and

the elimination of the divergent renormalon terms alone may lead to an even weaker

convergence than conventional series. This, however, does not mean that the conventional

series is better than the PMC one since the PMC series is scale-invariant and represents the

intrinsic perturbative nature of the series, whereas the conventional series is largely scale-

dependent and the large cancellation for a specific scale usually disappears on choosing

another scale. In fact, we have shown that the PMC provides a systematic way to extend

BLM scale-setting from the NLO level to all orders; see the reviews [40–42], in which many

successful examples are also given.

The main argument that the PMC “does not work” lies below Equation (4) of Ref. [1].

Stevenson’s Equation (4) itself is correct, showing that the RGE determines the scale-

running behavior of αs. This RGE is surely scheme-dependent. He then states that since

the PMC is a scale-setting approach, it cannot solve the scheme-fixing problem and thus

cannot work. However, this argument is incorrect, being based on a misunderstanding of

the PMC. In fact, if the scheme-dependent RGE is correctly applied to the pQCD series to

set the correct magnitude of αs, then a scale-invariant conformal series is obtained. Since

the conformal coefficients are well matched to the corresponding αs coefficients at each

order, the resulting PMC series will be simultaneously scheme-independent. In fact, the

above-mentioned CSRs among different PMC pQCD approximants also ensure the scheme

independence of the PMC predictions. Thus, the PMC does indeed solve the scheme and

scale ambiguities simultaneously.

We remark that the PMC uses the RGE to reabsorb the n f -terms specifically related to

the UV-divergent diagrams. The PMC procedure works with any initial scheme definition.

Stevenson claims his Equation (7) to be valid in general, but this also includes variations

of the color parameters. This cannot be correct since a change in the color structure

corresponds to a change in the gauge structure of the initial SU(N) theory, which ends up

mixing results from different theories. Introducing terms that modify the color structure of

the β0 and β1 coefficients implies that the finite and divergent parts of the UV-divergent

diagrams run with different {βi} terms. This is not correct and leads to incorrect results: the

{βi} coefficients entering the RGE must be identical to those defined by the renormalization

scheme. Thus, Stevenson’s Equation (16) is incorrect.

The work of Banks and Zaks [43] directly contradicts a further statement by Stevenson:

the QCD strong coupling develops a conformal window in the interval 34N3
c

13N2
c −3

< N f <

11
2 Nc and has a non-interacting fixed point at N f =

33
2 [42–45], which corresponds to the

asymptotically free limit of QCD. Stevenson then fully contradicts himself when he states

that the C(δ) in Equation (6) is scheme invariant since it depends only on β0 and β1, but

then in his Equations (20) and (21) he shows that it is scheme-dependent. Indeed, we hold

both the C(δ) and the C∗
1 conformal coefficient to be scheme invariant according to the

“proper” extended RGE transformations. We refer to “proper” scheme transformations as

those that may be achieved by an RGE transformation. Thus, any scheme change translates

into a scale transformation, leaving the C(δ) formally invariant. This corresponds to having

the right-hand side of Equation (7) of Ref. [1] void of any dependence on color factors.

Moreover, if the color structure for the coupling is altered, then for self-consistency,

the structure of the entire fixed-order calculation must also be varied accordingly; however,
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one cannot adopt such a procedure since a change in the color structure corresponds to a

change of the initial SU(N) theory (e.g., from QCD to QED, see Ref. [46]). Thus, any relation

among couplings in different schemes, which may have perturbative validity in QCD but

which cannot be considered to be “proper” extended RGE transformations, should be

considered to be matching relations among quantities defined in different approximations

or obtained using different approaches. In fact, starting from a given exact theory and

using different approximations or approaches, different “scheme” definitions may be

obtained. This is only a matter of using different strategies for calculations. However,

in this case too, results can be improved using the PMC, and the residual dependence

on the particular implicit definition of the “scheme” can be suppressed perturbatively by

including higher-order calculations.

It can also be explicitly shown that the results obtained using PMC are scheme-

independent (see, e.g., Ref. [47]). As an important example, the scheme independence

of the generalized Crewther relation provides a fundamental relation between the non-

singlet Adler function and the Bjorken sum rules for polarized deep-inelastic electron

scattering [12,31,48–52]; this example confirms that the scheme independence can be

achieved using the PMC [21,53].

We emphasize that, in order to apply the PMC correctly, it is important to distinguish

the nature of different n f -terms, i.e., whether they are related to ultraviolet-finite contribu-

tions (such as light-by-light scattering in QED) or the running of the QCD coupling, or the

running of quark masses, and, in a deeper analysis, to particular UV-divergent diagrams (as

discussed in Ref. [42]). Once all n f -terms have been associated with the correct diagrams

or parameters, the conformal coefficients become RGE invariant and match the coefficients

of a conformal theory. Moreover, a deep insight into the QCD strong coupling αs(Q2) at all

scales, including Q2 = 0, has been recently achieved (see, e.g., Refs. [54,55]), again showing

the results are consistent with the PMC.

The PMC provides a consistent prescription for scale fixing by reabsorbing all scheme-

dependent terms of, say, a cross-section into the running coupling and the PMC scale; this

leads to the minimization/cancellation of the effects of scale and scheme uncertainties

in the perturbative series. It should be emphasized that the CSRs between the pQCD

approximates are impervious to the choice of renormalization scheme.

We now comment on Stevenson’s second point of view on the PMC predictions:

specifically, that the reason “why the PMC predictions often seem quite good” is because

the PMC introduces “residual scheme dependence” and has to introduce some way to

suppress it, thus rendering it a back-door imitation of the PMS. These deductions on

“maximum conformality” are simply not valid, being based on an early misunderstanding

of BLM/PMC and completely disregarding recent developments in BLM/PMC. Principally,

as explained above, as the successor of BLM, the PMC prediction is scheme-independent

and has no residual scheme dependence. Practically, a conventional scheme for defining the

running coupling αs suffers from a complex and scheme-dependent RGE, which is usually

solved perturbatively at higher orders owing to the entanglement of its scheme-running

and scale-running behaviors. If the complex {βi}-terms in the higher-order pQCD series

are not dealt with precisely. These complications may lead to residual scheme dependence

even after applying the PMC. For example, not all n f -terms should be transformed as the

{βi}-terms; if the n f -terms are from the UV-free light-by-light diagrams, they should be

treated as conformal coefficients and be unchanged when applying the PMC. This can,

however, be avoided using the C-scheme coupling α̂s suggested in 2016 [56], whose scheme-

running and scale-running behaviors are governed by the same scheme-independent

RGE. Consequently, one can achieve an analytic solution for αs at any fixed order. In fact,

using the C-scheme coupling together with the PMC single-scale-setting approach [57],
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a demonstration that the PMC prediction is scheme-independent to all orders for any

renormalization scheme was provided in 2018 [47].

There are, of course, uncertainties related to the unknown higher-order terms. In

the case of any perturbative series, for example, there are two kinds of residual scale

dependences for the PMC series [58] due to uncalculated higher-order contributions. The

PMC scale itself has a perturbative expansion in αs. This leads to the first kind of residual

scale dependence for the PMC scale. In addition, the last terms of the pQCD approximant

are unfixed since its magnitude cannot be determined; this is the second kind of residual

scale dependence. These residual scale dependencies are distinct from the conventional

scale ambiguities and are suppressed due to the perturbative nature of the PMC scale.

The PMC “single-scale” method was introduced in 2017 [57] in order to suppress the

residual scale dependence; this method also renders the PMC scale-setting procedures

simpler and more easily automated. The single effective PMC scale is determined by

requiring all the RGE-involved non-conformal terms to vanish simultaneously; it can be

regarded as the overall effective momentum flow of the process. The PMC single-scale

method exactly removes the second kind of residual scale dependence. The overall effective

PMC scale displays stability and convergence with increasing order in pQCD, which can

approach the precision of Nn−1LL-accuracy for a NnLO pQCD series when the power of

αs of its leading-order terms is ≥ 1; and the first kind of residual scale dependence is thus

highly suppressed.

In addition to eliminating the renormalization scheme and scale ambiguities at fixed-

order, the predictive power of pQCD depends on the important issue of finding a reliable

way to estimate the magnitudes of unknown higher-order terms using information from

the known pQCD series. The PMS cannot do this self-consistently since the contributions

of the unknown terms are set to zero at the first stage. In contrast, after applying the

PMC, the scheme- and scale-invariant series provide a precise basis for estimating the

unknown contributions. In 2020, we uncovered an additional property of renormalizable

SU(N)/U(1) gauge theories [59], called “Intrinsic Conformality (iCF)”, which underlies the

scale invariance of physical observables. This property demonstrates that the scale-invariant

perturbative series displays the intrinsic perturbative nature of a pQCD observable. In 2022,

following the idea of iCF, we then suggested another novel single-scale-setting approach

that utilizes the PMC [60] and proved the two PMC single-scale methods to be equivalent.

This equivalence indicates that using the RGE to fix the value of the effective coupling

is equivalent to requiring each loop term to satisfy scale invariance simultaneously and

vice versa.

In 2018 [61] and 2022 [62], it was found that using the Padé- approximation and

Bayesian approaches accordingly, the PMC series provides a reliable basis for obtain-

ing constraints on the predictions for the uncalculated higher-order contributions, thus

extending the predictive power of pQCD.

In summary, we have shown that Stevenson’s criticisms of the PMC are unfounded,

being based only on incorrect features of the PMS, as well as a disregard for the considerable

achievements of BLM/PMC, which have been developed over recent years.

It has been shown that the purpose of the PMS is to determine an optimal scheme

and optimal scale for a given pQCD series. To achieve the goal, the PMS assumes that all

uncalculated higher-order terms contribute zero, which then fixes the desired optimal val-

ues by mathematically requiring the partial derivatives of the pQCD series with respect to

scheme and scale choices to vanish. The PMS method does provide a scheme-independent

estimate around the determined optimal point, but it violates the symmetry and transitivity

properties of the RG [24] and does not even reproduce the GML scale for QED observables.

The PMS predictions thus have serious flaws and weak points. The convergence of the PMS
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series is often questionable, which does not agree with the usual perturbative behavior of

the series, even worse than that of conventional series. This explains why the PMS cannot

offer correct lower-order predictions [16]. Moreover, the PMS cannot achieve a reliable

prediction on the contributions of uncalculated higher-order terms. As an explicit example,

in 1987 and 1990, Kramer and Lampe [63,64] analyzed the jet production fractions in e+e−

annihilation, showing that the optimal PMS scale increases without bound at small energy

scales of the jet fraction, which indicates that the PMS scale does not have the correct

physical behavior in the limit of small jet energy.

On the other hand, the PMC method provides a systematic way of eliminating con-

ventional renormalization schemes and scale ambiguities; it has a rigorous theoretical

foundation, satisfying standard RGI and all self-consistency conditions derived from the

RG. We emphasize that the CSRs between physical observables ensure the PMC predictions

are independent of the choice of renormalization scheme.

The PMC scales are obtained by shifting the argument of αs to eliminate all non-

conformal {βi}-terms; the PMC scales thus reflect the physical virtuality of the propagating

gluons in the QCD process. The factorially divergent renormalon contributions are elimi-

nated, as they are summed into αs, and thus, the resulting pQCD convergence is, in general,

greatly improved. In the Abelian limit, the PMC method reduces to the GML method for

precision tests of QED [46]. The resulting scale-invariant and convergent PMC method

retains the underlying principles and features of the BLM method, extending it unam-

biguously to all orders. The resulting conformal series obtained by applying the PMC is

scheme and scale-independent. The resulting scale-invariant and convergent PMC series

thus also provides a reliable basis for obtaining constraints on uncalculated higher-order

contributions, greatly extending the predictive power of pQCD. The PMC thus improves

precision tests of the Standard Model and increases the sensitivity of experiments to new

physics beyond the standard model.
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Abbreviations

The following abbreviations are used in this manuscript:

PMC Principle of Maximum Conformality

PMS Principle of Minimal Sensitivity

QED quantum electrodynamics

QCD quantum chromodynamics

pQCD perturbative quantum chromodynamics

BLM Brodsky–Lepage–Mackenzie

GML Gell-Mann–Low

RG renormalization group

RGE renormalization-group equation
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RGI renormalization-group invariance

CSR commensurate scale relation

NLO next-to-leading order

UV ultraviolet

iCF Intrinsic Conformality

Appendix A. Explanations on the Stevenson’s Misuse of PMC

In his article [17], Stevenson continues his arguments of Ref. [1] on the BLM/PMC and

presents two extreme examples to support his viewpoints. Since BLM has developed into

PMC, we will use PMC to replace BLM/PMC throughout this Appendix. We observe that

Stevenson misuses the BLM/PMC scale-setting procedures in these two examples, thus

leading to incorrect PMC predictions. Thus, all his comments on PMC are incorrect. In the

following, we will first give the correct PMC procedures and then explain why we say his

PMC predictions are wrong. In particular, we show that if the PMC scale-setting procedures

have been correctly used, one can achieve scheme-independent PMC predictions, well

satisfying the required RGI.

Following the notation of Refs. [1,17], a pQCD series (for simplicity but without loss

of generality, we consider the case where the LO αs-power is 1) is given as

ρ = c0a + c1a2 + · · · , (A1)

where a = αs/π and the αs running behavior is governed by the RGE or β-function,

β(a) ≡ da

d ln µ
= −ba2(1 + ca + · · · ), (A2)

with

b =
1

2

(

11 − 2

3
n f

)

, c =
1

8b

(

102 − 38

3
n f

)

, (A3)

and the value of the NLO running-coupling a at scale µ is given by the root of

1

a

(

1 + ca ln

∣

∣

∣

∣

ca

1 + ca

∣

∣

∣

∣

)

= b ln
(

µ/Λ̃
)

, (A4)

where Λ̃ is the free QCD parameter.

Appendix A.1. Brief Introduction of PMC Procedures

For clarity, we briefly introduce the main steps of the PMC method for dealing with

the NLO pQCD series (A1), which can be rewritten as

ρ = c0a + (B + A n f )a2 + · · · . (A5)

We reiterate that the coefficient A of the n f -term must be associated with the RGE. There

may be other n f -terms that are not related to the running behavior of αs; such n f terms

must be treated as conformal terms, and they thus must be incorporated into the parameter

B [7,20].

Then, we can use the RGE to fix the correct magnitude of αs for the considered pQCD

series. For this purpose, we rewrite Equation (A5) in the following form with the help of

the general QCD degeneracy relations [36], e.g.,

ρ = c0,0a + (c1,0 + c1,1b)a2 + · · · . (A6)
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By absorbing the non-conformal term c1,1b into a new effective coupling a∗ that is defined

via the expression (i.e., Equation (A.10) in Ref. [17] or Equation (3.4) in Ref. [42])

a∗ = a − ba2 ln(µ∗
r /µr) + · · · , (A7)

one obtains the following conformal series:

ρPMC = c0,0a∗ + c1,0a2
∗ + · · · . (A8)

Comparing Equations (A6)–(A8), we have

µ∗
r = µr exp(−c1,1/c0,0) = µr exp(3A),

and the conformal coefficient c1,0 equivalent to c1,0 = c1|n f =33/2. In Ref. [1], Steven-

son incorrectly claimed, “However, making b vanish (by setting n f = 33/2) does not

produce a conformal theory (the β function does not vanish but becomes of the form

ha3(1 + · · · ), where h = −bc = −(153 − 19n f )/12 = 107/8)”. In fact, the NLO con-

formal coefficient c1,0 = c1|n f =33/2, but the higher-order conformal coefficients ci>1,0 are

not simply equal to ci|n f =33/2, but instead contain some subtracted terms. For example,

c2,0 = c2|n f =33/2 − c1,1(bc)|n f =33/2, where (bc) is the second coefficient of the β-function.

These subtracted terms are designed to make the higher-order coefficients of the β func-

tion vanish, and the choice of n f = 33/2 is merely a mathematical treatment. Strictly

speaking, the relationship between c2 and c2,0 arises from the degeneracy relations, i.e.,

c2 = c2,0 + 2b c2,1 + b2c2,2 + (bc)c1,1. Since a∗ is fixed by the β-terms of the process, it

represents the effective coupling of the process, and we can obtain its correct magnitude by

substituting µ∗
r into Equation (A4). It should be clarified that Equation (A7) (i.e., Equation

(A.10) in Ref. [17] or Equation (3.4) Ref. [42]) describes the running behavior of a, guiding

us on how to incorporate the non-conformal β-terms into the effective coupling a∗ to obtain

the leading-log accuracy PMC scale µ∗
r (to achieve higher accuracy, see Refs. [7,57]). It,

however, does not allow us to determine the precise value of a∗, which still needs to be

derived by solving the corresponding β-function (for example, the specific value of the

NLO a∗ should be determined from Equation (A4)). However, in Ref. [17], Stevenson

directly used Equation (A7) to derive the magnitude of a∗, which is incorrect.

Appendix A.2. Comments on the Stevenson’s First Example

The e+e− total cross-section ratio Re+e− = σ(e+e− → hadrons)/σ(e+e− → µ+µ−) =
3 ∑q e2

q[1 + R(Q)], where Q =
√

s is the e+e− center-of-mass collision energy at which the

ratio is measured, is known up to O(α4
s ) in the MS-scheme [65–68]. The PMC analysis in

this order can be found in the review [41]. Stevenson’s first example is based on the NLO

series [17], i.e.,

R(Q) = r0a + r1a2 + · · · , (A9)

whose perturbative coefficients ri={0,1} at the scale µr = Q in the MS-scheme are [66]

r0 =
3

4
γNS

0 , (A10)

r1 =
3

4
γNS

1 +
3

8
pNS

1 b(n f ), (A11)
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where b(n f ) = (33 − 2n f )/6 and

γNS
0 = CF =

4

3
, (A12)

γNS
1 = −1

8
C2

F +
133

144
CFCA − 11

36
CFTFn′

f =
125

36
− 11

54
n′

f , (A13)

pNS
1 = CF

(

55

12
− 4ζ3

)

=
55

9
− 16

3
ζ3. (A14)

Here the n′
f -terms in Equation (A13) represent the n f -terms that are not related to the

β-function, which cannot be adopted for fixing the correct running behavior of αs. When

using the PMC method, these must be treated as conformal terms.

More explicitly, as for the suggested first example of R(Q) with two active flavors at

Q = 1 GeV and Λ̃MS = 0.2 GeV. For Q = 1 GeV, n f should be equal to 3, since Q is larger

than the strange quark mass. However, the conclusion will not change for either choice, so

we adopt this suggestion for ease of comparison. We have b = 29/6 and c = 115/58 for the

first two β-coefficients. According to Equations (A10)–(A14), the first two coefficients of the

initial scale-dependent series for the case of µ = Q are

r0 = 1, (A15)

r1 =
365

24
− 11ζ3 −

11

72
n′

f +

(

−55

72
+

2

3
ζ3

)

n f (A16)

= B + An f ,

where

A = −55

72
+

2

3
ζ3 = 0.0374824, (A17)

B =
1073

72
− 11ζ3 = 1.68015, (A18)

which leads to r1 = 2A + B = 1.75512, and then the NLO conventional series for µ = Q is

R(µ = Q)|MS = aMS(Q) + r1(Q)a2
MS

(Q) = 0.0993138, (A19)

where aMS(Q) is derived from the NLO RGE solution (A4), e.g., aMS(Q) = 0.0862557.

By applying the PMC, the initial series (A9) will be improved to a scale-independent

conformal series:

RPMC = a∗ + r1,0a2
∗ = 0.0971576, (A20)

where the NLO conformal coefficient r1,0 is

r1,0 =
33

2
A + B = 2.29861,

and the PMC scale µ∗ is

µ∗ = Q exp(3A) = 1.11901 GeV.

The magnitude of a∗ can be numerically derived from Equation (A4), e.g., a∗ = 0.0817833.

We point out that in Stevenson’s treatment, the n′
f -terms were wrongly adopted for fixing

the magnitude of αs, e.g., the coefficient −11/72 was wrongly put into the coefficient A,

thus leading to incorrect PMC predictions and discussions. Moreover, in footnote 4 of

Ref. [17], Stevenson stated that “This error makes matters worse, in that the BLM result is not

even the same as using the MS(µ = µ∗
r ) scheme”. Here his meaning of “MS(µ = µ∗

r ) scheme”
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is to set µ = µ∗ in the initial MS-series. Using the wrong BLM/PMC prediction to make the

comparison, this comment is incorrect. Moreover, we emphasize that the purpose of PMC

is not to find the optimal scale for the pQCD series but to obtain scale-invariant predictions.

Thus, a simple choice of µ = µ∗ in the initial series generally cannot provide the same

precise prediction as that of the PMC. It is interesting to note that for this particular NLO

example, by setting MS(µ = µ∗) for the initial series, one can obtain the same numerical

result as that of the PMC, e.g.,

R(µ = µ∗)|MS = aMS(µ
∗) +

[

r1(Q) + b ln

(

µ∗

Q

)]

a2
MS

(µ∗)

= 0.0971576, (A21)

where the RGE has been implicitly adopted to obtain the full µ-dependence of the series.

Appendix A.3. Comments on the Stevenson’s Second Example

Using the above-mentioned NLO e+e− total cross-section ratio as the platform, Steven-

son’s second example concerns the scheme dependence/independence of the PMC predic-

tions. Again, for ease of comparison, we first introduce the same notation as Refs. [1,17] to

facilitate the calculations and discussions.

Following Refs. [1,17], one can convert a pQCD series from the I-scheme to another

II-scheme using the following relation between the strong coupling constants under dif-

ferent schemes. For higher-order pQCD series, one must also transform the expansion

coefficients properly via different schemes, so as to obtain the correct pQCD prediction

under different schemes. For example, the correct formulas for transforming a pQCD series

among different schemes up to N3LO-level can be found in Ref. [69]. Here, we accept

this simple scheme transformation for the discussion since it is correct at the presently

considered NLO level, i.e.,

aI = aII

(

1 + v
(I,II)
1 aII + · · ·

)

, (A22)

where the NLO coefficient

v
(I,II)
1 = v

(I,II)
10 n f + v

(I,II)
11 .

Due to the Celmaster–Gonsalves (CG) relation [70,71], we have

Λ̃I = Λ̃II exp(v
(I,II)
1 /b). (A23)

In the following, II will be the MS-scheme, throughout, and I represents any other scheme.

For brevity, we use v1 to denote v
(I,MS)
1 , and correspondingly, v10 = v

(I,MS)
10 and

v11 = v
(I,MS)
11 . Thus, we can directly use the MS-scheme formulas listed in Section A.2.

Using the transformation (A22), one can transform the MS-series (A9) into that under the

I-scheme,

R(Q) = rI
0aI + rI

1a2
I + · · · , (A24)

with coefficients

rI
0 = r0 = r0,0 = 1, (A25)

rI
1 = r1 − r0v1 = r1,0 + r1,1b − r0v1, (A26)

where the (−r0v1)-term comes from the transformation of αs under different schemes,

e.g., Equation (A22), which should be treated as a non-conformal term and be used for
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fixing the correct magnitude of αs under the I-scheme. Following the standard scale-setting

procedures, we obtain the PMC series under the I-scheme:

RPMC = a∗ + r1,0a2
∗, (A27)

where a∗ = a∗(µ∗
I ) and

rI
1,0 = r1,0 =

33

2
A + B,

µ∗
I = Q exp

(

− r1,1

r0,0
+

v1

b

)

. (A28)

To discuss the scheme invariance of the PMC predictions, in addition to the MS-

scheme, Stevenson suggested two different schemes with two active flavors, which are

characterized by two typical choices of v10 and v11, e.g., the ii-scheme, for v10 = 0 and

v11 = 2, and the iii-scheme, for v10 = 1 and v11 = 0.

For the ii-scheme, we have

rii
1 = r1 − 2 = −0.244883, (A29)

Λ̃ii = Λ̃MSev1/b = 0.302509 GeV, (A30)

and the NLO coupling aii(Q) under the ii-scheme can be solved from Equation (A4) as

aii(Q) = 0.108568. Then the NLO conventional result under the ii-scheme is

R(µ = Q)|ii = aii(Q) + rii
1 a2

ii(Q) = 0.105682. (A31)

To compare with the result (A19) under MS-scheme, the conventional series is

scheme-dependent.

After applying the PMC, the corresponding conformal coefficient and scale are

rii
1,0 = r1,0 = 2.29861,

µ∗
r,ii = 1.69256 GeV, (A32)

which lead to

Rii
PMC = a∗,ii + rii

1,0a2
∗,ii = 0.0971576, (A33)

where the NLO a∗,(ii) can be solved from Equation (A4) as a∗,(ii) = 0.0817833. A comparison

of Equations (A20) and (A33) shows that the PMC predictions under both the MS-scheme

and ii-scheme are the same.

Similarly, for the iii-scheme, we have

riii
1 = r1 − 2 = −0.244883, (A34)

Λ̃iii = Λ̃MSev1/b = 0.302509 GeV, (A35)

aiii(Q) = 0.108568. (A36)

Thus, we obtain the same NLO conventional result as that of the ii-scheme, i.e.,

R(µ = Q)|iii = aiii(Q) + r
(iii)
1 a2

iii(Q) = 0.105682. (A37)



Symmetry 2025, 17, 411 13 of 16

Accidentally, the predictions of conventional series are the same for ii-scheme and iii-

scheme, both of them are different from the result of the MS-scheme. After applying the

PMC, we have

riii
1,0 = r1,0 = 2.29861,

µ∗
r,iii = 1.69256 GeV, (A38)

which lead to

Riii
PMC = a∗,iii + riii

1,0a2
∗,iii = 0.0971576, (A39)

where the NLO a∗,iii can be solved from Equation (A4) as a∗,(iii) = 0.0817833. A comparison

of Equations (A20) and (A39) shows that the PMC predictions under both the MS-scheme

and iii-scheme are the same.

Equations (A20), (A33) and (A39) show that by applying the PMC correctly, one

can obtain exactly the same pQCD predictions under different schemes. So Stevenson’s

conclusion that the PMC cannot solve the renormalization-scheme-dependence problem

is incorrect, which is due to his misuse of PMC, e.g., he does not correctly deal with

the (−r0v1)-term so as to set the correct magnitude of αs and then to achieve the correct

PMC series.

As a final remark, in Appendix B of Ref. [1], Stevenson claimed,

“We may use the renormalization scheme (RS) choice to achieve exact conformality, with

our result for R being energy independent. There are several ways to do this. One is

to adjust the scheme, decreasing the µ/Λ̃ value until the coefficient r1 becomes so large

and negative that r1a = −1. The NLO result is then R = a(1 − 1) = 0. Alternatively,

we may make µ/Λ̃ arbitrarily large, and hence a arbitrarily small; the r1 coefficient

then becomes large and positive, approaching 1/a as a → 0; our NLO result is then

a(1 + 1) = 2a → 0. We may easily extend these stratagems to higher orders (no actual

Feynman-diagram calculations are needed!) to achieve R = 0 to any order.”

This argument is evidently incorrect and misleading. Since QCD is a non-conformal

theory, one can only approach conformality to the maximum extent via a step-by-step

method, as the PMC does. At the NLO level, the magnitude of the strong coupling can

be derived from Equation (A4), and by utilizing the CG relation (A23), we can rewrite

Equation (A4) into proper form for any renormalization scheme that is defined by a differ-

ent choice of v1, i.e.,

1

a′

(

1 + ca′ ln

∣

∣

∣

∣

ca′

1 + ca′

∣

∣

∣

∣

)

= b ln

(

µ

Λ̃ exp(v1/b)

)

, (A40)

where a′ is strong coupling under corresponding scheme, b and c are scheme-independent

coefficients of the RGE. This indicates that a scheme change at the NLO level is equivalent

to a proper scale change. In other words, a′(µ) in Equation (A40) can also be regarded as

a(µ exp(−v1/b)).

Moreover, Stevenson’s argument, as quoted above, essentially suggests that by select-

ing a specific and extreme renormalization scale, one could arbitrarily adjust the pQCD

prediction to any value, even zero. However, this statement is indistinguishable from

describing renormalization scale dependence. Can one truly assert that fixing the renormal-

ization scale to a specific value that sets the pQCD prediction to zero amounts to achieving

conformality, even exact conformality? Clearly, such a claim is untenable!



Symmetry 2025, 17, 411 14 of 16

References

1. Stevenson, P.M. ‘Maximal conformality’ does not work. Phys. Lett. B 2023, 847, 138288. [CrossRef]

2. Brodsky, S.J.; Wu, X.G. Scale Setting Using the Extended Renormalization Group and the Principle of Maximum Conformality:

the QCD Coupling Constant at Four Loops. Phys. Rev. D 2012, 85, 034038. [CrossRef]

3. Brodsky, S.J.; Giustino, L.D. Setting the Renormalization Scale in QCD: The Principle of Maximum Conformality. Phys. Rev. D

2012, 86, 085026. [CrossRef]

4. Brodsky, S.J.; Wu, X.G. Application of the Principle of Maximum Conformality to Top-Pair Production. Phys. Rev. D 2012,

86, 014021. [CrossRef]

5. Brodsky, S.J.; Wu, X.G. Eliminating the Renormalization Scale Ambiguity for Top-Pair Production Using the Principle of Maximum

Conformality. Phys. Rev. Lett. 2012, 109, 042002. [CrossRef] [PubMed]

6. Mojaza, M.; Brodsky, S.J.; Wu, X.G. Systematic All-Orders Method to Eliminate Renormalization-Scale and Scheme Ambiguities

in Perturbative QCD. Phys. Rev. Lett. 2013, 110, 192001. [CrossRef]

7. Brodsky, S.J.; Mojaza, M.; Wu, X.G. Systematic Scale-Setting to All Orders: The Principle of Maximum Conformality and

Commensurate Scale Relations. Phys. Rev. D 2014, 89, 014027. [CrossRef]

8. Stevenson, P.M. Resolution of the Renormalization Scheme Ambiguity in Perturbative QCD. Phys. Lett. B 1981, 100, 61. [CrossRef]

9. Stevenson, P.M. Optimized Perturbation Theory. Phys. Rev. D 1981, 23, 2916. [CrossRef]

10. Celmaster, W.; Stevenson, P.M. Scale Scheme Ambiguities in the Brodsky-lepage-mackenzie Procedure. Phys. Lett. B 1983, 125, 493.

[CrossRef]

11. Brodsky, S.J.; Lepage, G.P.; Mackenzie, P.B. On the Elimination of Scale Ambiguities in Perturbative Quantum Chromodynamics.

Phys. Rev. D 1983, 28, 228. [CrossRef]

12. Braun, V.M.; Korchemsky, G.P.; Müller, D. The Uses of conformal symmetry in QCD. Prog. Part. Nucl. Phys. 2003, 51, 311.

[CrossRef]

13. Wu, X.G.; Ma, Y.; Wang, S.Q.; Fu, H.B.; Ma, H.H.; Brodsky, S.J.; Mojaza, M. Renormalization Group Invariance and Optimal QCD

Renormalization Scale-Setting. Rept. Prog. Phys. 2015, 78, 126201. [CrossRef]

14. Stevenson, P.M. An Explicit Formula for the Renormalization Scheme Invariants of Perturbation Theory. Phys. Rev. D 1986,

33, 3130. [CrossRef]

15. Stevenson, P.M. Optimization of QCD Perturbation Theory: Results for R(e+e−) at fourth order. Nucl. Phys. B 2013, 868, 38.

[CrossRef]

16. Ma, Y.; Wu, X.G.; Ma, H.H.; Han, H.Y. General Properties on Applying the Principle of Minimum Sensitivity to High-order

Perturbative QCD Predictions. Phys. Rev. D 2015, 91, 034006. [CrossRef]

17. Stevenson, P.M. Brodsky et al’s defense does not work. arXiv 2024, arXiv:2312.11049.

18. Grunberg, G. Interpretation Of The Brodsky-lepage-mackenzie Criterium. Phys. Lett. B 1984, 135, 455. [CrossRef]

19. Grunberg, G. Method of effective charges and BLM criterion. Phys. Rev. D 1992, 46, 2228. [CrossRef]

20. Brodsky, S.J.; Lu, H.J. Commensurate scale relations in quantum chromodynamics. Phys. Rev. D 1995, 51, 3652. [CrossRef]

21. Huang, X.D.; Wu, X.G.; Yu, Q.; Zheng, X.C.; Zeng, J.; Shen, J.M. Generalized Crewther relation and a novel demonstration of the

scheme independence of commensurate scale relations up to all orders. Chin. Phys. C 2021, 45, 103104. [CrossRef]

22. de Breidenbach, E.C.G.S.; Petermann, A. Normalization of constants in the quanta theory. Helv. Phys. Acta 1953, 26, 499.

23. Peterman, A. Renormalization Group and the Deep Structure of the Proton. Phys. Rept. 1979, 53, 157. [CrossRef]

24. Brodsky, S.J.; Wu, X.G. Self-Consistency Requirements of the Renormalization Group for Setting the Renormalization Scale. Phys.

Rev. D 2012, 86, 054018. [CrossRef]

25. Lu, H.J.; de Melo, C.A.R.S. Dressed skeleton expansion and the coupling scale ambiguity problem. Phys. Lett. B 1991, 273, 260.

[CrossRef]

26. Grunberg, G.; Kataev, A.L. On Some possible extensions of the Brodsky-Lepage-MacKenzie approach beyond the next-to-leading

order. Phys. Lett. B 1992, 279, 352. [CrossRef]

27. Beneke, M.; Braun, V.M. Naive nonAbelianization and resummation of fermion bubble chains. Phys. Lett. B 1995, 348, 513.

[CrossRef]

28. Neubert, M. Scale setting in QCD and the momentum flow in Feynman diagrams. Phys. Rev. D 1995, 51, 5924. [CrossRef]

29. Lovett-Turner, C.N.; Maxwell, C.J. All orders renormalon resummations for some QCD observables. Nucl. Phys. B 1995, 452, 188.

[CrossRef]

30. Ball, P.; Beneke, M.; Braun, V.M. Resummation of (beta0 alpha-s)**n corrections in QCD: Techniques and applications to the tau

hadronic width and the heavy quark pole mass. Nucl. Phys. B 1995, 452, 563. [CrossRef]

31. Brodsky, S.J.; Gabadadze, G.T.; Kataev, A.L.; Lu, H.J. The Generalized Crewther relation in QCD and its experimental consequences.

Phys. Lett. B 1996, 372, 133. [CrossRef]

32. Brodsky, S.J.; Ellis, J.R.; Gardi, E.; Karliner, M.; Samuel, M.A. Pade approximants, optimal renormalization scales, and momentum

flow in Feynman diagrams. Phys. Rev. D 1997, 56, 6980. [CrossRef]

http://doi.org/10.1016/j.physletb.2023.138288
http://dx.doi.org/10.1103/PhysRevD.85.034038
http://dx.doi.org/10.1103/PhysRevD.86.085026
http://dx.doi.org/10.1103/PhysRevD.86.014021
http://dx.doi.org/10.1103/PhysRevLett.109.042002
http://www.ncbi.nlm.nih.gov/pubmed/23006077
http://dx.doi.org/10.1103/PhysRevLett.110.192001
http://dx.doi.org/10.1103/PhysRevD.89.014027
http://dx.doi.org/10.1016/0370-2693(81)90287-2
http://dx.doi.org/10.1103/PhysRevD.23.2916
http://dx.doi.org/10.1016/0370-2693(83)91333-3
http://dx.doi.org/10.1103/PhysRevD.28.228
http://dx.doi.org/10.1016/S0146-6410(03)90004-4
http://dx.doi.org/10.1088/0034-4885/78/12/126201
http://dx.doi.org/10.1103/PhysRevD.33.3130
http://dx.doi.org/10.1016/j.nuclphysb.2012.11.005
http://dx.doi.org/10.1103/PhysRevD.91.034006
http://dx.doi.org/10.1016/0370-2693(84)90314-9
http://dx.doi.org/10.1103/PhysRevD.46.2228
http://dx.doi.org/10.1103/PhysRevD.51.3652
http://dx.doi.org/10.1088/1674-1137/ac1934
http://dx.doi.org/10.1016/0370-1573(79)90014-0
http://dx.doi.org/10.1103/PhysRevD.86.054018
http://dx.doi.org/10.1016/0370-2693(91)91681-K
http://dx.doi.org/10.1016/0370-2693(92)90404-R
http://dx.doi.org/10.1016/0370-2693(95)00184-M
http://dx.doi.org/10.1103/PhysRevD.51.5924
http://dx.doi.org/10.1016/0550-3213(95)00383-4
http://dx.doi.org/10.1016/0550-3213(95)00392-6
http://dx.doi.org/10.1016/0370-2693(96)00057-3
http://dx.doi.org/10.1103/PhysRevD.56.6980


Symmetry 2025, 17, 411 15 of 16

33. Braaten, E.; Chen, Y.Q. Renormalons in electromagnetic annihilation decays of quarkonium. Phys. Rev. D 1998, 57, 4236.

[CrossRef]

34. Hornbostel, K.; Lepage, G.P.; Morningstar, C. Scale setting for alpha(s) beyond leading order. Phys. Rev. D 2003, 67, 034023.

[CrossRef]

35. Mikhailov, S.V. Generalization of BLM procedure and its scales in any order of pQCD: A Practical approach. JHEP 2007, 6, 9.

[CrossRef]

36. Bi, H.Y.; Wu, X.G.; Ma, Y.; Ma, H.H.; Brodsky, S.J.; Mojaza, M. Degeneracy Relations in QCD and the Equivalence of Two

Systematic All-Orders Methods for Setting the Renormalization Scale. Phys. Lett. B 2015, 748, 13. [CrossRef]

37. Huang, X.D.; Wu, X.G.; Zheng, X.C.; Yan, J.; Wu, Z.F.; Ma, H.H. Precise determination of the top-quark on-shell mass Mt via its

scale-invariant perturbative relation to the top-quark MS mass mt(mt). Chin. Phys. C 2024, 48, 053113. [CrossRef]

38. Yan, J.; Wu, X.G.; Shen, J.M.; Huang, X.D.; Wu, Z.F. Scale-invariant total decay width Γ(H → bb̄) using the novel method of

characteristic operator. arXiv 2024, arXiv:2411.15402.

39. Gell-Mann, M.; Low, F.E. Quantum electrodynamics at small distances. Phys. Rev. 1954, 95, 1300. [CrossRef]

40. Wu, X.G.; Brodsky, S.J.; Mojaza, M. The Renormalization Scale-Setting Problem in QCD. Prog. Part. Nucl. Phys. 2013, 72, 44.

[CrossRef]

41. Wu, X.G.; Shen, J.M.; Du, B.L.; Huang, X.D.; Wang, S.Q.; Brodsky, S.J. The QCD renormalization group equation and the

elimination of fixed-order scheme-and-scale ambiguities using the principle of maximum conformality. Prog. Part. Nucl. Phys. 2019,

108, 103706. [CrossRef]

42. Giustino, L.D.; Brodsky, S.J.; Ratcliffe, P.G.; Wu, X.G.; Wang, S.Q. High precision tests of QCD without scale or scheme ambiguities:

The 40thanniversary of the Brodsky–Lepage–Mackenzie method. Prog. Part. Nucl. Phys. 2024, 135, 104092. [CrossRef]

43. Banks, T.; Zaks, A. On the Phase Structure of Vector-Like Gauge Theories with Massless Fermions. Nucl. Phys. B 1982, 196, 189.

[CrossRef]

44. Gardi, E.; Grunberg, G.; Karliner, M. Can the QCD running coupling have a causal analyticity structure? JHEP 1998, 7, 7.

[CrossRef]

45. Giustino, L.D.; Sannino, F.; Wang, S.Q.; Wu, X.G. Thrust distribution for 3-jet production from e+e− annihilation within the QCD

conformal window and in QED. Phys. Lett. B 2021, 823, 136728. [CrossRef]

46. Brodsky, S.J.; Huet, P. Aspects of SU(N(c)) gauge theories in the limit of small number of colors. Phys. Lett. B 1998, 417, 145.

[CrossRef]

47. Wu, X.G.; Shen, J.M.; Du, B.L.; Brodsky, S.J. Novel demonstration of the renormalization group invariance of the fixed-order

predictions using the principle of maximum conformality and the C-scheme coupling. Phys. Rev. D 2018, 97, 094030. [CrossRef]

48. Bjorken, J.D. Inequality for Backward electron-Nucleon and Muon-Nucleon Scattering at High Momentum Transfer. Phys. Rev.

1967, 163, 1767. [CrossRef]

49. Bjorken, J.D. Inelastic Scattering of Polarized Leptons from Polarized Nucleons. Phys. Rev. D 1970, 1, 1376. [CrossRef]

50. Broadhurst, D.J.; Kataev, A.L. Connections between deep inelastic and annihilation processes at next to next-to-leading order and

beyond. Phys. Lett. B 1993, 315, 179. [CrossRef]

51. Crewther, R.J. Relating inclusive e+e− annihilation to electroproduction sum rules in quantum chromodynamics. Phys. Lett. B

1997, 397, 137. [CrossRef]

52. Gabadadze, G.T.; Kataev, A.L. On connection between coefficient functions for deep inelastic and annihilation processes. JETP

Lett. 1995, 61, 448.

53. Shen, J.M.; Wu, X.G.; Ma, Y.; Brodsky, S.J. The Generalized Scheme-Independent Crewther Relation in QCD. Phys. Lett. B 2017,

770, 494. [CrossRef]

54. Deur, A.; Brodsky, S.J.; Roberts, C.D. QCD running couplings and effective charges. Prog. Part. Nucl. Phys. 2024, 134, 104081.

[CrossRef]

55. Deur, A.; Shen, J.M.; Wu, X.G.; Brodsky, S.J.; de Teramond, G.F. Implications of the Principle of Maximum Conformality for the

QCD Strong Coupling. Phys. Lett. B 2017, 773, 98. [CrossRef]

56. Boito, D.; Jamin, M.; Miravitllas, R. Scheme Variations of the QCD Coupling and Hadronic τ Decays. Phys. Rev. Lett. 2016,

117, 152001. [CrossRef]

57. Shen, J.M.; Wu, X.G.; Du, B.L.; Brodsky, S.J. Novel All-Orders Single-Scale Approach to QCD Renormalization Scale-Setting. Phys.

Rev. D 2017, 95, 094006. [CrossRef]

58. Zheng, X.C.; Wu, X.G.; Wang, S.Q.; Shen, J.M.; Zhang, Q.L. Reanalysis of the BFKL Pomeron at the next-to-leading logarithmic

accuracy. JHEP 2013, 1310, 117. [CrossRef]

59. Giustino, L.D.; Brodsky, S.J.; Wang, S.Q.; Wu, X.G. Infinite-order scale-setting using the principle of maximum conformality:

A remarkably efficient method for eliminating renormalization scale ambiguities for perturbative QCD. Phys. Rev. D 2020,

102, 014015. [CrossRef]

http://dx.doi.org/10.1103/PhysRevD.57.4236
http://dx.doi.org/10.1103/PhysRevD.67.034023
http://dx.doi.org/10.1088/1126-6708/2007/06/009
http://dx.doi.org/10.1016/j.physletb.2015.06.056
http://dx.doi.org/10.1088/1674-1137/ad2dbf
http://dx.doi.org/10.1103/PhysRev.95.1300
http://dx.doi.org/10.1016/j.ppnp.2013.06.001
http://dx.doi.org/10.1016/j.ppnp.2019.05.003
http://dx.doi.org/10.1016/j.ppnp.2023.104092
http://dx.doi.org/10.1016/0550-3213(82)90035-9
http://dx.doi.org/10.1088/1126-6708/1998/07/007
http://dx.doi.org/10.1016/j.physletb.2021.136728
http://dx.doi.org/10.1016/S0370-2693(97)01209-4
http://dx.doi.org/10.1103/PhysRevD.97.094030
http://dx.doi.org/10.1103/PhysRev.163.1767
http://dx.doi.org/10.1103/PhysRevD.1.1376
http://dx.doi.org/10.1016/0370-2693(93)90177-J
http://dx.doi.org/10.1016/S0370-2693(97)00157-3
http://dx.doi.org/10.1016/j.physletb.2017.05.022
http://dx.doi.org/10.1016/j.ppnp.2023.104081
http://dx.doi.org/10.1016/j.physletb.2017.07.024
http://dx.doi.org/10.1103/PhysRevLett.117.152001
http://dx.doi.org/10.1103/PhysRevD.95.094006
http://dx.doi.org/10.1007/JHEP10(2013)117
http://dx.doi.org/10.1103/PhysRevD.102.014015


Symmetry 2025, 17, 411 16 of 16

60. Yan, J.; Wu, Z.F.; Shen, J.M.; Wu, X.G. Precise perturbative predictions from fixed-order calculations. J. Phys. G 2023, 50, 045001.

[CrossRef]

61. Du, B.L.; Wu, X.G.; Shen, J.M.; Brodsky, S.J. Extending the Predictive Power of Perturbative QCD. Eur. Phys. J. C 2019, 79, 182.

[CrossRef]

62. Shen, J.M.; Zhou, Z.J.; Wang, S.Q.; Yan, J.; Wu, Z.F.; Wu, X.G.; Brodsky, S.J. Extending the predictive power of perturbative QCD

using the principle of maximum conformality and the Bayesian analysis. Eur. Phys. J. C 2023, 83, 326. [CrossRef]

63. Kramer, G.; Lampe, B. Optimized Perturbation Theory Applied to Jet Cross-sections in e+e− Annihilation. Z. Phys. C 1988, 39, 101.

[CrossRef]

64. Kramer, G.; Lampe, B. Jet production rates at LEP and the scale of αs. Z. Phys. A 1991, 339, 189. [CrossRef]

65. Baikov, P.A.; Chetyrkin, K.G.; Kuhn, J.H. Order alpha**4(s) QCD Corrections to Z and tau Decays. Phys. Rev. Lett. 2008,

101, 012002. [CrossRef]

66. Baikov, P.A.; Chetyrkin, K.G.; Kuhn, J.H.; Rittinger, J. Vector Correlator in Massless QCD at Order O(α4
s ) and the QED beta-

function at Five Loop. JHEP 2012, 7, 17. [CrossRef]

67. Baikov, P.A.; Chetyrkin, K.G.; Kuhn, J.H. Adler Function, Bjorken Sum Rule, and the Crewther Relation to Order α4
s in a General

Gauge Theory. Phys. Rev. Lett. 2010, 104, 132004. [CrossRef]

68. Baikov, P.A.; Chetyrkin, K.G.; Kuhn, J.H.; Rittinger, J. Adler Function, Sum Rules and Crewther Relation of Order O(α4
s ): The

Singlet Case. Phys. Lett. B 2012, 714, 62–65. [CrossRef]

69. Ma, Y. and Wu, X.G. Renormalization scheme dependence of high-order perturbative QCD predictions. Phys. Rev. D 1979,

97, 036024. [CrossRef]

70. Celmaster, W.; Gonsalves, R.J. QCD Perturbation Expansions in a Coupling Constant Renormalized by Momentum Space

Subtraction. Phys. Rev. Lett. 1979, 42, 1435. [CrossRef]

71. Celmaster, W.; Gonsalves, R.J. The Renormalization Prescription Dependence of the QCD Coupling Constant. Phys. Rev. D 1979,

20, 1420. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1088/1361-6471/acb281
http://dx.doi.org/10.1140/epjc/s10052-019-6704-9
http://dx.doi.org/10.1140/epjc/s10052-023-11531-w
http://dx.doi.org/10.1007/BF01560397
http://dx.doi.org/10.1007/BF01282948
http://dx.doi.org/10.1103/PhysRevLett.101.012002
http://dx.doi.org/10.1007/JHEP07(2012)017
http://dx.doi.org/10.1103/PhysRevLett.104.132004
http://dx.doi.org/10.1016/j.physletb.2012.06.052
http://dx.doi.org/10.1103/PhysRevD.97.036024
http://dx.doi.org/10.1103/PhysRevLett.42.1435
http://dx.doi.org/10.1103/PhysRevD.20.1420

	AppendixA
	Brief Introduction of PMC Procedures
	Comments on the Stevenson's First Example
	Comments on the Stevenson's Second Example

	References

