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periments through the seesaw mechanism, and survive below the seesaw scale from

an accidental symmetry of the potential. Furthermore, the seesaw mechanism is

implemented in such a way that R-parity is a natural residual symmetry—leading

to a stable, weakly-interacting particle to explain dark matter.
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Chapter 1

Introduction

1.1 The Standard Model of Particle Physics

The current understanding of all of particle physics is contained within the

standard model (SM)[6, 7, 8, 9, 10, 11]. The theory is defined by the symmetries

that it obeys and the transformations of the particle content under those symme-

tries. Once specified, the lagrangian that contains every possible renormalizable

interaction that respects those symmetries is written and the theory is formally

complete.

1.1.1 Particle Content

The SM is laid out in Table 1.1. The SU(3)c×SU(2)L×U(1)Y gauge symmetry

permits the lagrangian

LSM = LKE + Lyuk − VH (1.1)

where

SU(3)c × SU(2)L × U(1)Y

Q 3 2 +1
3

uR 3̄ 1 +4
3

dR 3̄ 1 −2
3

L 1 2 −1
eR 1 1 −2
Φ 1 2 +1

Table 1.1: The Standard Model. The particles are listed by their representations of
the gauge groups except for U(1)Y where the hypercharge is given.

1



LKE = i	̄Qγ
µDµ	Q + i	̄uR

γµDµ	uR
+ i	̄dR

γµDµ	dR

+ i	̄Lγ
µDµ	L + i	̄eR

γµDµ	eR
+ (DµΦ)† DµΦ

− 1

4
GA

µνG
µν
A − 1

4
WA

µνW
µν
A − 1

4
BµνB

µν (1.2)

Lyuk = yu	̄QΦ̃	uR
+ yd	̄QΦ	dR

+ ye	̄LΦ	eR
+ h.c. (1.3)

VH = −m2|Φ|2 + λ|Φ|4 (1.4)

and the fields are defined by1

	L ≡
(
	νe

	eL

)
	eL

R

≡ (1∓ γ5)	e 	Q ≡
(
	uL

	dL

)
, etc. (1.5)

Φ̃ ≡ iτ2Φ
∗ (1.6)

GA
µν ≡ ∂µG

A
ν − ∂νG

A
µ + g3f

ABC
3 GB

µG
C
ν

WA
µν ≡ ∂µW

A
ν − ∂νW

A
µ + gLε

ABCWB
µ W

C
ν

Bµν ≡ ∂µBν − ∂νBµ (1.7)

There are three copies of the fields Q, uR, dR, L, and eR while there is only one Φ

field. Each copy of the field is called a generation or family, and in Eqs. (1.2)–(1.3)

this family index has been suppressed. Furthermore, the indices corresponding to

SU(3)c × SU(2)L have also been omitted from those equations.

The theory as written has a total of 18 parameters—the three gauge couplings

g3, gL, gY ; the higgs-sector mass and self-coupling m2, λ; and the 13 degrees of free-

dom in the yukawa couplings yu, yd, ye
2—though these are not the ones typically

1Appendix A defines all the notation conventions of this document, including definitions omitted
here.

2In family space the yukawa couplings are 3 × 3 complex matrices, thus overall there are 54
degrees of freedom among them. The SU(3)Q×SU(3)uR

×SU(3)dR
×SU(3)L×SU(3)eR

×U(1)Φ
symmetry can be used to eliminate 41 of them, leaving 13 free. These can be chosen to be the three
leptonic yukawa couplings, the three up sector quark yukawa couplings, and the 7 parameters of
yd. The latter may be subdivided into the three down generation masses, one CP phase, and three
mixing angles.
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measured by experimentalists. In point, nature has demonstrated that the only

respected symmetries are SU(3)c and U(1)em, while the weak force is short-ranged

and governed by the massive vector bosons W±, Z. Furthermore, the leptons have

distinct and measurable masses which are absent in Eq. (1.1). All these ‘discrep-

ancies’, however, are well understood in the SM through spontaneous symmetry

breaking (SSB) and the Higgs Mechanism.

1.1.2 Spontaneous Symmetry Breaking and The Higgs Mechanism

Spontaneous symmetry breaking is the idea that the ground state of a system

contains only a subset of the symmetries respected by the underlying theory. Thus,

the theory actually has more symmetry than realized by the observed lowest-energy

state. This idea is not unique to particle physics or the SM, but is prevalent in many

areas of physics; for example, ferromagnetism.

In the SM, SSB is achieved through the spin-0 higgs boson, Φ. The idea is that

the higgs field acquires a non-zero classical background, called a vacuum expectation

value (VEV), and the quantum theory must be written as perturbations around this

classical background. The theory still maintains the full symmetry, however the

ground state—the one in which the VEV of Φ is non-zero—breaks this symmetry,

and thus it is not seen in nature.

Writing the higgs field doublet as

Φ =

(
Φ+

1√
2
(Φ1 + iΦ2)

)
(1.8)

and taking Φ+ = 0 to preserve electric charge conservation, yields the potential VH

depicted in Figure 1.1. As the figure demonstrates, Φ1 = Φ2 = 0 is not a stable

point, and so the fields prefer a non-zero classical value. With the non-zero classical

background being defined as 〈Φ〉, and choosing

〈Φ〉 =

(
0
v√
2

)
(1.9)
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VH/m
4

Φ1/m

Φ2/m

Figure 1.1: The standard model higgs potential for λ = 0.5, m2 > 0. The point
Φ1 = Φ2 = 0 is clearly unstable so the vacuum state has one or both non-zero (thus
breaking the symmetry).

the shift to the true vacuum state, Φ → Φ+ 〈Φ〉, yields the SU(3)c×U(1)em theory

seen by experimentalists. The SU(2)L gauge bosons W±
µ ≡ ηµν√

2
(W ν

1 ∓ iW ν
2 ) acquire

a mass, MW = gLv/2, with the longitudinal degree of freedom coming from the

charged Φ. The neutral W µ
3 and Bµ mix

L ⊃ v2

8

(
W µ

3 Bµ
)( g2

L −gLgY

−gLgY g2
Y

)(
W µ

3

Bµ

)
(1.10)

to yield the massless photon Aµ and the massive Zµ (whose longitudinal component

is the CP -odd neutral Φ):(
Zµ

Aµ

)
=

(
cos θW − sin θW

sin θW cos θW

)(
W µ

3

Bµ

)
(1.11)

M2
Z =

1

4

(
g2

L + g2
Y

)
v2 (1.12)

with θW the weak mixing angle, tan θW = gY /gL.

The acquisition of mass for the gauge fields through the consumption of a scalar

field (one that by the Goldstone Theorem would otherwise be massless) is known

as the Higgs Mechanism[7, 8, 11], and explains why the weak force is observed as
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short-ranged. A further consequence of this mechanism is the existence of the CP -

even neutral component of Φ, with a mass mh = m
√

2. It is therefore predicted by

the SM that experimentalists will see a fundamental scalar (somewhere before the

TeV scale) which can be identified as this higgs boson.

Finally, the shift to the true vacuum gives the fermions of the theory a mass

through their yukawa couplings to the higgs:

me =
1√
2
yev mu =

1√
2
yuv md =

1√
2
ydv (1.13)

with the neutrino remaining massless.

The resulting theoretical picture can then be summarized as in Figure 1.2:

SU(3)c×SU(2)L×U(1)Y is broken by the vacuum state since 〈Φ〉 6= 0. This leaves

SU(3)c intact and produces a massless photon, as well as three massive gauge bosons

whose longitudinal modes come from the higgs field. The remaining higgs degree

of freedom obtains a non-zero, positive mass and should be seen by experiment.

Furthermore, the quarks, electron, muon, and tau pick up masses from the yukawa

couplings to the higgs while the neutrino remains massless.

1.1.3 Additional Symmetries

In addition to the gauge symmetries, Eq. (1.1) has several global U(1) sym-

metries that are an accidental byproduct of the form of the lagrangian[12]. These

symmetries are baryon number B, electron lepton number Le, muon lepton num-

ber Lµ, and tau lepton number Lτ ; the corresponding charges of the particles are

detailed in Table 1.2. All of these symmetries are anomalous—that is, if one at-

tempted to make them local symmetries the symmetry would be violated at loop

level. For example, the symmetry B − L, where L ≡ Le + Lµ + Lτ , has a non-zero

loop diagram when two SU(2)L gauge bosons enter, one hypothetical B − L gauge

boson leaves, and fermions run in the loop. This diagram, which is proportional

5



SU(3)c × SU(2)L × U(1)Y

ground state breaks
SU(2)L × U(1)Y

through 〈Φ〉 6= 0

SU(3)c × U(1)em

• W±, Z massive gauge bosons.
• 3 Higgs degrees of freedom consumed

by massive gauge fields.
• One massive higgs boson.
• Massive quarks, electron, muon, tau.
• Massless neutrinos.

Figure 1.2: The standard model and theoretical understanding of why the weak
force is short ranged and only electromagnetic charge is conserved

Q uR dR

(
νe

e

)
eR

(
νµ

µ

)
µR

(
ντ

τ

)
τR

B +1
3

+1
3

+1
3

0 0 0 0 0 0
Le 0 0 0 +1 +1 0 0 0 0
Lµ 0 0 0 0 0 +1 +1 0 0
Lτ 0 0 0 0 0 0 0 +1 +1

Table 1.2: Accidental symmetries in the standard model. B is baryon number
which is the only accidental symmetry of the quarks due their mixing with the
CKM matrix[4, 5]. L ≡ Le + Lµ + Lτ is lepton number and in the standard model
it is conserved for each generation separately.

to Tr(B − L) = 1, is interesting since the addition of a fermionic, three-generation

singlet with B−L = −1 would precisely cancel this quantity leaving B−L anomaly

free; however, as it stands the SM only has B−L and the aforementioned symmetries

as global symmetries.

In addition to the global U(1) symmetries, the standard model also has an

important U(1) symmetry that is explicitly broken. It is called the chiral sym-

metry and can be seen by taking yu = 0, yd = 0, ye = 0. The resultant la-

grangian is then invariant under U(1)L × U(1)R where (	Q,	L) → e
iγ5θL(	Q,	L)
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and (	uR
,	dR

,	eR
) → e

iγ5θR(	uR
,	dR

,	eR
). The yukawa couplings of Eq. (1.3)

clearly break this symmetry to U(1)L+R since they mix, for example, L and eR. As

the yukawa couplings explicitly break this symmetry, all quantum corrections must

be proportional to these yukawa couplings since the symmetry must be restored as

yi → 0.

1.2 Neutrinos

As stated the SM has massless neutrinos, but experiments have detected neu-

trino oscillations[13, 14, 15, 16, 17, 18, 19, 20]—neutrinos changing from one flavor

to another—which indicates that they have a non-zero mass whose eigenstate is

not a flavor eigenstate[21, 22]. If the neutrino is assumed to be like other standard

model particles, then it has a dirac mass originating from a yukawa coupling of the

form

yν	̄LΦ̃	νR
(1.14)

which means that the right-handed neutrino, νR, must be introduced. Furthermore

there is an upper bound on the mass of the neutrino from direct searches the strictest

of which is mνe < 2.0 eV. Thus Eq. (1.14) implies that

yν ∼
2 eV

174 GeV
∼ 10−8 ∼ 10−6ye � ye (1.15)

so that it would appear the neutrino’s yukawa coupling is at least six orders of

magnitude less than its SU(2)L partner. As this seems ‘unnatural’ (or at least in

need of an explanation) when considering that the up and down quarks have yukawa

couplings within 2 orders of magnitude of each other, there is incentive to postulate

that yν is actually around ye but that neutrinos get a small mass through another

means such as the seesaw mechanism[23, 24, 25, 26, 22].

The seesaw mechanism exploits the singlet nature of νR: because it doesn’t

transform under the SM gauge group, it can have a mass term
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MR	
T
νR
C	νR

(1.16)

called a majorana mass. The left- and right-handed neutrinos then have a mass

matrix

Mν =

(
0 yν〈Φ〉

y†ν〈Φ〉 MR

)
(1.17)

which, assuming MR � 〈Φ〉, has the heavy eigenvalues MR and the light eigenvalues

mν = −〈Φ〉2 y†νM−1
R yν . (1.18)

The yukawa coupling for the neutrino is then permitted to be around ye due to

the suppression of 〈Φ〉 /MR. Using the experimental upper limit for neutrino mass,

103 GeV . MR . 1015 GeV (using yν = ye ∼ 10−5 for the lower limit; yν =
√

4π for

the upper limit).

At this point it may be argued that not much has been gained: the original

small mass of the neutrino has been explained at the expense of introducing a

new mass scale MR that is just as inexplicable. Additionally, the presence of the

majorana mass term of Eq. (1.16) means the nature of the neutrino is fundamentally

different than that of the other SM particles. It may well be simpler to just assume

this character from the start and add the non-renormalizable term

L ⊃ λν

Λ
(	LΦ)2 (1.19)

to the theory. Of course this reintroduces an inexplicable new scale Λ � MPl with

the same range as MR.

It therefore appears that if the small neutrino mass is to be explained, a new,

unexpected scale must be introduced. If this scale is the Λ of Eq. (1.19), then the

new particles have a mass around Λ and will not likely be found in any foreseeable

collider (there may be other low-scale implications, however). On the other hand,

if this new scale is MR, then a right-handed neutrino is a necessity of the theory—

meaning U(1)B−L becomes anomaly-free (see Section 1.1.3) and may then be gauged.
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The new scale MR is then associated with the scale at which B −L breaks, making

this ‘unexpected’ mass a physical mass of the theory (as opposed to Λ where there

is no immediately obvious physical significance).

1.3 Supersymmetry

The SM has a major theoretical issue distinct from its failure to explain neu-

trino masses and has been a major driving force for physics beyond the standard

model (BSM). The problem has many names, among which are “the gauge-hierachy

problem”, “the hierarchy problem”, and “the Planck-weak hierarchy problem”, but

they all reflect the fact that the higgs mass is susceptible to large corrections from

loops. The inverse propagator of the higgs is

= +

+ + + · · ·

= p2 −m2 +
Λ2

16π2

(
−
∑

i

Ci
Fy

2
i + CΦλ+

∑
A

CA
g g

2
A

)
+ · · ·

(1.20)

and if the SM is the full theory until gravity becomes strong, then Λ = MPl �MW

so that the higgs field prefers a VEV near the planck scale. Clearly this situation

is unacceptable since precision electroweak data places 〈Φ〉 = 174 GeV � MPl.

Given the differing signs in Eq. (1.20), it is possible that some terms cancel, but for

Λ = MPl the expression in parentheses would need to cancel to the 30th decimal

place to keep m2 at the electroweak scale. Furthermore, the couplings involved in

Eq. (1.20) are unrelated to each other and logically there is no reason for them to

conspire to cancel to 1 in 10−30—unless there is a symmetry behind the cancellation.

The argument just given may seem a bit suspicious as neutrino oscillations
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have demonstrated that there is new physics at or above 1 TeV, so it may be

more appropriate to use Λ = 1 TeV. Yet if this physics is just the introduction of

the right-handed neutrino, the problem will persist: the new physics will need to

fundamentally alter the character of the higgs scalar above a TeV (something the

mere addition of right-handed neutrinos does not do).

It is also worth noting that the SM fermions do not have this issue due to

the chiral symmetry discussed in Section 1.1.3. Thus if it were possible to associate

some chiral symmetry with the scalar higgs field, its mass would also be protected.

Supersymmetry (SUSY) does just this by imposing a symmetry between bosons

and fermions—grafting the fermion’s chiral symmetry onto the scalar bosons in the

process[27].

As SUSY is a symmetry between bosons and fermions, it is best described

when the fields are placed in multiplets containing both types of particles (called

supermultiplets)[28]. This may be accomplished with the introduction of the an-

ticommuting grassmann variables θα, θ̄α̇, and the spacetime coordinate yµ ≡ xµ +

iθσµθ̄. With these tools the matter content is contained in a chiral multiplet given

by

Φ(y) = Φ(y) +
√

2θψΦ(y) + FΦ(y) θ2, (1.21)

while the gauge fields are expressed in terms of real supermultiplets as

VA(y) = −θσµθ̄V A
µ (y) + iθ2θ̄vA†(y)− iθ̄2θvA(y) +

1

2
θ2θ̄2

(
DA(y)− i∂µV A

µ (y)
)
.

(1.22)

The fermionic components ψΦ, vA of Eqs. (1.21) and (1.22) are weyl spinors;

that is, they are two component objects. The component Φ is a complex scalar field

and V A
µ is the usual vector field. The components FΦ and DA are auxiliary fields

in that they may be eliminated by the equations of motion—they are necessary for

accounting purposes as the number of bosonic degrees of freedom must equal the
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number of fermionic degrees of freedom in a theory that is symmetric under their

exchange.

The lagrangian of a SUSY theory is determined by two functions: the kähler

potential, K, and the superpotential, W , as follows

L =
1

2

∫
d4θ K +

∫
d2θ W + h.c. (1.23)

The kähler potential is a real or vector superfield since K† = K; the superpotential

is a chiral superfield. The gauge field kinetic terms enter through W from the

superderivatives

Dα =
∂

∂θα
+ 2iσµ

αα̇θ̄
α̇ ∂

∂yµ
(1.24)

Dα̇ = − ∂

∂θ̄α̇
(1.25)

which are used to construct the superstrength

Vα = −1

4
D2

e
−2VATADαe

2VGTG (1.26)

and this appears in the superpotential as V αVα.

1.3.1 Minimal Supersymmetric Standard Model

Of particular interest to a SUSY theory of nature is the minimal supersymmet-

ric standard model (MSSM)—the SM extended to include SUSY with the minimal

particle content. The MSSM fields are given in Table 1.3. The MSSM potentials

are taken to be

K = Q†
e
GAλA+WAτA+ 1

3
BQ+ uc†

e
GAλA− 4

3
Buc + dc†

e
GAλA+ 2

3
Bdc

+ L†eW
AτA−BL+ ec†

e
2Bec

+H†
ue

WAτA+BHu +H†
de

WAτA−BHd (1.27)

W = yuQHuu
c + ydQHdd

c + yeLHde
c + µHuHd

+
1

4g2
Y

BαBα +
1

8g2
L

Tr(W αWα) +
1

12g2
3

Tr(G αGα) . (1.28)
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SU(3)c × SU(2)L × U(1)Y

Q 3 2 +1
3

uc 3̄ 1 −4
3

dc 3̄ 1 +2
3

L 1 2 −1
ec 1 1 +2
Hu 1 2 +1
Hd 1 2 −1

Table 1.3: The Minimal Supersymmetric Standard Model. The particles are listed
by their representations of the gauge groups except for U(1)Y where the hypercharge
is given.

The MSSM is defined such that it conserves R-parity; that is, the gauge invariant

interactions

W6R =
1

2
λijkLiLje

c
k + (λ′)

ijk
LiQjd

c
k +

1

2
(λ′′)

ijk
uc

id
c
jd

c
k + (µ′)

i
HuLi (1.29)

are forbidden by the discrete symmetry

(Q, uc, dc, L, ec) → −(Q, uc, dc, L, ec)

(Hu, Hd) → (Hu, Hd) . (1.30)

The transformations of Eq. (1.30) actually define matter parity which is trivially

related to R-parity through the particle’s spin:

PR = (−1)3(B−L)+2s = (−1)2sPM (1.31)

While R-parity prevents rapid proton decay, it also makes the lightest super-

symmetric particle (LSP) stable as it would have PR = −1 meaning its decay to SM

particles (with PR = +1) would violate R-parity. The fact that the LSP is stable is

useful as it provides a candidate for the non-baryonic dark matter of the universe.

The conservation of R-parity is therefore an attractive feature of SUSY models.

Unfortunately the MSSM has R-parity added by hand; however, since it’s related to

B−L, it is possible to have it as a remnant symmetry if B−L is gauged[29, 30, 31].
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As outlined the MSSM with R-parity3 provides the minimal model that con-

tains supersymmetry; however, as a scalar particle otherwise identical to the electron

has not yet been found, SUSY must be a broken symmetry. Since SUSY was intro-

duced to protect the higgs mass, it is important to add SUSY breaking terms that

do not ruin this feature. The terms that keep the higgs mass protected but violate

SUSY are known as soft SUSY breaking terms and for the MSSM they are given as

−Lsoft =
1

2

(
M3g

α
AgA

α +MLwα
AwA

α +MY b2 + h.c.
)

+
(
auQHuu

c + adQHdd
c + aeLHde

c + h.c.
)

+m2
QQ

†Q+m2
ucuc†uc +m2

dcdc†dc +m2
LL

†L+m2
ecec†ec

+m2
Hu
H†

uHu +m2
Hd
H†

dHd + (bHuHd + h.c.) (1.32)

Sadly, Eq. (1.32) adds 105 free parameters to the theory[27], most of which

lead to effects that are ruled out by experiment (large CP violation, flavor changing

neutral currents, etc[32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,

48, 49, 50, 51]). Due to this large number of degrees of freedom, as well as the

notion that SUSY should be broken in a spontaneous fashion (i.e. similar to the way

electroweak is broken to electromagnetism), an organizing principle has been sought

to relate these parameters and generate SUSY breaking in a way that naturally

yields small effects to known experimental limits. One highly attractive method

that does just that is found in the context of theories incorporating gravity and is

known as anomaly mediated supersymmetry breaking[52, 53].

1.4 Gravity

As the reader may have noticed, the SM model does not include gravitational

interactions. At the energies of current and conceivable future experiments this is

easily justified since gravity is entirely insignificant compared to the electroweak

3This label is redundant as the model was defined to contain R-parity, but sometimes things
need to be explicit.
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and strong interactions of particles. Yet a complete theory of nature would include

gravity as part of its description, and the early universe presents a regime where

both particle interactions and gravity are equally important. Thus, it is worth

considering particle theories in the presence of gravity.

One very compelling aspect of supersymmetry is that gauging it, or making it

a local symmetry, requires the existence of gravity. This can be seen as follows: since

SUSY is a symmetry between fermions and bosons, its parameters, ξα, carry spinor,

or fermionic, indices. Following the typical procedure to gauge this symmetry, ξα →

ξα(xµ), introducing variations of the lagrangian proportional to ∂µξ
α that must be

cancelled by an additional gauge field. Because the parameter ξ carries fermionic

indices, the new gauge field required to make the action invariant will have to carry

both a spacetime index µ and fermionic index α. Such an object, a spinorial 4-vector,

describes a spin-3/2 particle. Now because a new fermionic field has been added,

invariance under SUSY will mandate its bosonic partner, a spin-2 field, be added. It

can then be shown that this spin-2 particle couples to the energy-momentum tensor

of the matter fields and is therefore identifiable as the graviton, or the particle

mediating gravitational interactions.

While making SUSY local introduces a graviton coupling to matter, its kinetic

term still needs to be added to the theory. Since the theory is gravity, it is expected

that the kinetic energy should take the form dictated by general relativity. To

obtain this expression, it is therefore necessary to briefly discuss the classical theory

of gravity.

1.4.1 Classical Gravity

To motivate the general theory of relativity, it is helpful to formulate the

newtonian field theory of gravity. First consider a test mass m, in the presence of a

mass M , located at distance r from M . The newtonian theory states that m feels a
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force

~F = −GNmM

r2
r̂. (1.33)

Defining the gravitational field ~g by

m~g ≡ ~F (1.34)

yields

~g = −GNM

r2
r̂. (1.35)

Gauss’s law relates the mass M to the flux of this field as∫
dA ~g · n̂ =

∫
dΩ r2~g · r̂ = −4πGNM. (1.36)

The use of the divergence theorem then gives a differential equation for ~g:

∇ · ~g = −4πGNρ (1.37)

with ρ the mass density of M . Finally, taking ~g ≡ −∇Φ, yields

∇2Φ = 4πGNρ. (1.38)

Eq. (1.38) represents the newtonian field equation when gravity is sourced by a mass

density ρ. Making this expression consistent with special relativity modifies it to

Rαβ −
1

2
gαβR =

8πGN

c2
Tαβ, (1.39)

where

Rα
µβν = ∂βΓα

µν − ∂νΓ
α

µβ + Γρ
µνΓ

α
ρβ − Γρ

µβΓα
ρν (1.40)

Rµν = Rα
µαν (1.41)

R = gµνRµν (1.42)

Γα
µν =

1

2
gαβ(∂µgβν + ∂νgβµ − ∂βgµν) (1.43)

det g =
1

4!
εαβµνεα

′β′µ′ν′gαα′gββ′gµµ′gνν′ . (1.44)

and gµν contains the Φ of Eq. (1.38).

In a manner analogous to an electric field existing independent of the charge,

the Einstein equation Eq. (1.39) permits gravitation effects without the presence of
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matter/energy: taking Tαβ = 0 yields

Rαβ −
1

2
gαβR = 0. (1.45)

Eq. (1.45) describes what is called ‘pure gravity’—gravity without any sources—

and is essentially the field equation of gravity. Given this status, it is expected that

Eq. (1.45) may be obtained, through variational techniques, from some lagrangian.

Indeed this is true, and

LGRAV = − c3

16πGN

R
√
− det g (1.46)

yields Eq. (1.45) as its Euler-Lagrange equations when varied with respect to gαβ.

Because Eq. (1.45) describes gravity without sources, it represents the ‘free-

field’ lagrangian for a gravitational theory. Due to this, LGRAV is precisely the

kinetic energy term for the graviton (since the graviton is massless, the free-field

theory only contains kinetic energy terms). Recalling that the ultimate particle

theory is desired to be supersymmetric, Eq. (1.45) must be extended to capture

both the graviton and its spin-3/2 partner, the gravitino. The resulting theory

is called supergravity (SUGRA), and is most easily formulated in the context of

superconformal invariance, discussed in Section 2.3.
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Chapter 2

Anomaly Mediated Supersymmetry Breaking

Anomaly mediated supersymmetry breaking (AMSB) is the idea that the

anomaly of superconformal invariance generates SUSY breaking terms in the visible

sector when SUSY breaking in the hidden sector gives the auxiliary component of

a SUGRA multiplet a VEV[52, 53, 54]. As SUGRA fields will always couple to the

hidden sector, this AMSB contribution is always present, though it is not always the

dominant contribution. If it is assumed that AMSB is the only significant source

of SUSY breaking, then the form of the breaking is completely determined by su-

perconformal invariance. In this case AMSB may be naively thought of as ‘placing

conformal compensators’, which then leads to the ‘AMSB rule’ for the introduction

of SUSY breaking.

2.1 Supercouplings

When discussing the breaking of supersymmetry it is often helpful to treat

the SUSY parameters of the theory as superfields themselves[55, 56]. The rationale

behind this is that a constant superfield—that is, one that is independent of su-

perspacetime (θ, θ̄, xµ)—does not break supersymmetry because the generators of

SUSY involve superspacetime derivatives:

Qα =
∂

∂θα
− iσµ

αα̇θ̄
α̇ ∂

∂xµ
Q̄α̇ =

∂

∂θ̄α̇
+ iθασµ

αα̇

∂

∂xµ
. (2.1)

Therefore, when operated upon by a generator, a constant superfield yields zero

and thus preserves SUSY. Due to this fact, any SUSY parameter may be viewed

as a constant superfield. Consequently, extending the SUSY parameters to have

superspace (θ, θ̄) dependence will introduce supersymmetry breaking as the coupling
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will no longer be invariant under the action of the generator.

The parameters can not be extended in an arbitrary fashion, however, because

they may always be re-written as a ‘dummy’ superfield times a complex number.

Therefore the superspace extended parameters, or supercouplings for short, must

obey the same rules as the superfields themselves. Essentially this means that

parameters in the superpotential must be chiral supercouplings while those in the

kähler potential must be real supercouplings.

Treating the parameters as supercouplings provides a powerful tool for ana-

lyzing the structure of SUSY breaking as well as loop effects. These ideas are best

demonstrated in a toy model first written by Wess and Zumino:

KWZ = ZΦ†
(

1 +
�
Λ2

)
Φ (2.2)

WWZ =
1

2
MΦ2 +

1

3!
λΦ3 (2.3)

where Z is the wavefunction renormalization constant made into a real supercou-

pling, Λ is a real supercoupling cut-off, and λ, M are chiral supercouplings.

Using the Wess-Zumino model, it is straightforward to show the general prop-

erty that the superpotential receives no loop corrections. Consider, for example,

the one-loop correction to the superpotential term λΦ3. If such a correction were

present, the divergent correction would necessarily take the form

∆λWDIVRG
WZ =

(
cλ3

16π2
ln
µ

Λ

)
Φ3 (2.4)

which is the typical correction to a yukawa coupling. Yet a term such as Eq. (2.4)

can not appear inWWZ because of the real supercoupling Λ: the superpotential may

only contain chiral superfields and supercouplings. Because any divergent correction

to the superpotential would contain a Λ, it can be concluded that no divergent

correction to the superpotential is possible.

The exclusion of divergent corrections to the superpotential does not eliminate
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U(1) U(1)R

Φ +1 0
M −2 2
λ −3 2

Table 2.1: The transformational properties of the superfields and supercouplings in
the Wess-Zumino model. For the U(1) the Φ is chosen to have its conventional mass
dimension as its charge, the supercouplings M, λ are then chosen to keep Eq. (2.3)
invariant. For the U(1)R, Φ may not transform if it is desired to have both MΦ2

and λΦ3; therefore, the supercouplings must be chosen to transform to keep d2θW
invariant.

the possibility of finite corrections; however, these too must vanish. To see how this

must be the case, it is useful to also consider a U(1) × U(1)R symmetry with the

transformations given by Table 2.1. Any finite corrections to WWZ can only depend

on λ or M as these are the only chiral supercouplings; additionally, the corrections

must preserve the U(1)×U(1)R symmetry so they must come in the ratio of λ/M:

∆WFINITE
WZ = c0

M2

λ
Φ + c1

λ2

M
Φ4 + · · · (2.5)

As either λ → 0 or M → 0 these terms are divergent and therefore not finite

corrections. As the limit of either coupling being independently zero is relevant as

a special case of a constant superfield, these terms must be forbidden.

The previous argument establishes that the superpotential, and therefore its

parameters, do not receive quantum corrections. This is true to all orders in pertur-

bation theory, as demonstrated by the generality of the argument. The couplings

in the kähler potential, on the other hand, will receive radiative corrections be-

cause they may acquire dependence on the real supercoupling Λ. Thus the only

renormalization in a non-gauge SUSY theory is the wavefunction constant.

Inclusion of gauge groups is fairly straightforward as the introduction of gauge

fields does not disrupt the previous argument (which indeed must be valid for g → 0);

therefore, the only new features the gauge groups add are their couplings. These
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gauge couplings may also be made supercouplings, called τG, and will receive diver-

gent contributions causing them to ‘run’.

2.2 Transmitting Radiatively

Section 2.1 discussed making parameters of a SUSY theory into supercou-

plings which would then give rise to SUSY breaking terms. The idea was also used

to establish that the only couplings that are renormalized in a SUSY theory are the

wavefunction and the gauge couplings. Therefore, if the theory transmits the break-

ing of supersymmetry through quantum corrections, the SUSY breaking is entirely

captured by the supercouplings Zi
j and τG. For such a theory, the supercouplings

may be expanded in θ,

lnZi
j = lnZi

j + Ai
jθ2 +

(
A†
)

i
j θ̄2 −

(
m2
)

i
jθ2θ̄2 (2.6)

τG =
1

2
$G −

iΘ

4π
−MG$Gθ

2, (2.7)

permitting the identification of the components: (m2)i
j is the scalar mass-squared,

Θ is the vacuum polarization angle, MG is the gaugino mass, and the Ai
j contribute

to the SUSY breaking terms as follows1:

−`i = LmAm
i

−bij = µimAm
j + (i↔ j)

−aijk = Y ijmAm
k + (i↔ k) + (j ↔ k)

−zijk` = λijkmAm
` + (i↔ `) + (j ↔ `) + (k ↔ `)

... (2.8)

The usefulness in this expansion is that the theory that radiatively transmits SUSY

breaking will yield expressions for the components of Zi
j and τG directly. This then

leads to immediate expressions for the SUSY breaking terms. In the case of AMSB,

this is the ‘AMSB rule’ which details how to make Zi
j and $G supercouplings.

1See Appendix A for the definitions of the SUSY breaking terms
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2.3 Supergravity

To justify the existence of the ‘AMSB rule’, it is first necessary to discuss

certain aspects of supergravity, as this is the origin of AMSB[52]. The basic ideas

are also present in Einstein gravity, so this will be the launching point.

The lagrangian for pure gravity (see Section 1.4) is

LGRAV = − c3

16πGN

R
√
− det g (2.9)

with gµν the metric as determined by the Einstein equation, R the Ricci scalar, and

R = gµνRα
µαν (2.10)

Rα
µαν = ∂αΓα

µν − ∂νΓ
α

µα + Γβ
µνΓ

α
βα − Γβ

µαΓα
βν (2.11)

Γα
µν =

1

2
gαβ(∂µgβν + ∂νgβµ − ∂βgµν) (2.12)

det g =
1

4!
εαβµνεα

′β′µ′ν′gαα′gββ′gµµ′gνν′ . (2.13)

The scale transformation gµν → Ω2gµν (Ω2 a constant) leaves Γα
µν invariant since it

involves the metric and the inverse. Thus Rα
µαν is also invariant, so that the Ricci

scalar only transforms due to the presence of the inverse metric. Under this scaling,

then,

gµν → Ω2gµν gµν → 1

Ω2
gµν det g → Ω8 det g (2.14)

Γα
µν → Γα

µν Rα
µαν → Rα

µαν R→ Ω2R (2.15)

which does not leave Eq. (2.9) invariant. Yet the two theories yield identical euler-

lagrange equations hinting they are the same physical description. To make this

symmetry manifest in the lagrangian, the constant of Eq. (2.9) can be made to

transform non-trivially:

c3

8πGN

→ 1

Ω2

c3

8πGN

. (2.16)

The fact that the constant transforms under this scaling hints that it may be better
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thought of as an expectation value of some scalar field, η, as then the ‘true’ theory

is based upon the lagrangian

LSIGRAV = −1

2
ηR
√
− det g (2.17)

with the field η transforming, η → (1/Ω2)η. The symmetry is broken when η

acquires a VEV,

〈η〉 =
c3

8πGN

, (2.18)

yielding Eq. (2.9).

With the introduction of the scalar field η, this scaling symmetry can now be

made local; that is, Ω2 → Ω2(x) (clearly a constant can not depend on spacetime,

by definition). In this context the character of η is revealed: it acts in a manner

analogous to the gauge field Aµ—compensating for the spacetime transformation of

the metric ‘field’ by scaling. Given this, it is appropriate to label η a gauge field.

Yet η also represents the gauge freedom, since it may be eliminated by suitably

choosing Ω2(x), viz.

Ω2(x) = η(x). (2.19)

In this sense it differs from a typical gauge field because it itself defines the gauge.

The natural consequence of this property is that the physical parameters can not

depend on η(x), but this is easily seen to be true as an invariant ‘tilded’ metric, g̃µν ,

may be defined,

g̃µν ≡ η(x)gµν , (2.20)

and the theory can then be completely written in terms of g̃µν .

The final result of the above is that, with the assistance of η, pure Einstein

gravity has been made scale invariant. This symmetry actually implies an extended

set of transformations called conformal invariance[57, 58], giving η(x) the name

“conformal compensator”.
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It should be emphasized that there is no new physical content to this rewriting

of the theory: no measured parameter can depend on η and it may always be

eliminated from the theory to yield the usual Einstein theory. The advantage to

introducing η is in its simplification of calculations. This situation is analogous

to that of supersymmetry where the auxiliary fields F and D are introduced—

these additional fields are not required by the theory but allow calculations to be

performed without invoking the equations of motion. Because η may always be

absorbed into the metric, in this sense η is an auxiliary component of the metric

‘field’.

The idea of supergravity is to extend the conformally invariant Einstein theory

to be supersymmetric. A SUSY theory will require the scalar field η be part of

a chiral multiplet labeled φ which is also dubbed the “conformal compensator”.

Furthermore, the conformal transformations will necessarily operate on the full chiral

multiplet, leading to an even larger symmetry known as superconformal invariance.

The field φ, just like η, is not a physical degree of freedom. It is more anal-

ogous to an auxiliary component of the supergravity multiplet that may be easily

eliminated to yield the usual SUGRA theory. In this scenario, though, the compar-

ison with the F and D fields is even more appropriate since the standard auxiliary

fields break SUSY by acquiring a non-zero VEV. Similarly, the field φ may acquire

non-zero higher components leading to SUSY breaking, and it is here that there are

interesting effects.

It is well established that SUSY breaking must occur in a hidden sector that

doesn’t couple directly to the visible sector[27]; though there is no known way to

prevent a gravitational interaction. Because of this fact, the conformal compensator

itself can act as a messenger of SUSY breaking—gravity demands it couple to both

the hidden and visible sectors.

Alternatively, the scenario may be pictured in the following manner: the hid-
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den sector breaks SUSY in some manner, perhaps through an O’Raifeartaigh fashion.

Because the conformal compensator couples to this SUSY breaking, it picks up a

non-zero F -component,

∂

∂θ2
φ ∼ 〈Fhidden〉 . (2.21)

Choosing the gauge where φ = MPl, this may be re-expressed as

φ = MPl

(
1 + Fφθ

2
)
. (2.22)

where Fφ has been defined as 〈Fhidden〉 /MPl. The non-zero F -component of φ then

appears in the visible sector due to the conformal compensator’s coupling with these

fields.

The transmitting of SUSY breaking through this means is unavoidable in any

SUGRA model containing conformal invariance; yet because

Fφ ∼
〈Fhidden〉
MPl

(2.23)

it can easily be subdominant to other contributions[52]. Alternatively, if the hidden

sector is ‘sufficiently hidden’[52], then Fφ can be the dominant source of SUSY

breaking. Hence, the supposition of AMSB is that however SUSY is ultimately

broken, the conformal compensator’s F -term is the dominant source transmitting

this breaking.

2.4 Placing Conformal Compensators

Though critical for understanding the mechanism of transmitting SUSY break-

ing, the SUGRA origin of the conformal compensator can be ignored if the presence

of φ is taken as read. In this simplified mindset the form of the supersymme-

try breaking is determined strictly by the appearance of φ, which is dictated by

the superconformal invariance of the SUGRA theory. Fortunately, superconformal

invariance contains weyl scale transformations and a U(1)R symmetry which are
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dW R
θ −1

2
+1

θ̄ −1
2
−1

dθ +1
2
−1

dθ̄ +1
2

+1

Table 2.2: Weyl weight and R charges of superspace coordinates

dW R
K +2 0
W +3 +2

Table 2.3: Derived weyl weight and R charge assignments for the kähler and super
potentials

sufficient to determine how the conformal compensator shows up in the lagrangian.

The transformations of φ under these symmetries are given by its weyl weight,

dW (φ) = +1, and R charge, +2/3[56, 55].

To see how to place φ’s, consider a general supersymmetric theory given by

the lagrangian

L =
1

2

∫
d4θ K +

∫
d2θ W +

∫
d2θ

∑
G

$G

16πCG

Tr[(VG)α (VG)α ] + h.c. (2.24)

where

K = Zi
jΦi exp

[
2VA

G

(
TG
A
)
A

]
j

kΦk + · · · (2.25)

W = LiΦi +
1

2!
µijΦiΦj +

1

3!
Y ijkΦiΦjΦk +

1

4!

λijk`

Λ
ΦiΦjΦkΦ` + · · · (2.26)

The charges of the superspace coordinates θ, θ̄—given in Table 2.2—determine the

necessary charges of the kähler and super potentials to keep the lagrangian invariant;

their appropriate charges are shown in Table 2.3. If we define “tilded” fields so that

dW (Φ̃i) = dW (Ṽ A
G ) = R(Φ̃i) = R(Ṽ A

G ) = 0, then we may write

W = W̃XW K = K̃XK (2.27)
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where the “tilded” potentials are functions of only the “tilded” fields. Since the

“tilded” fields have no charges, the resulting potentials don’t either; hence all the

transformational weights belong to the Xn:

dW (XK) = +2 dW (XW) = +3 (2.28)

R(XK) = 0 R(XW) = +2 (2.29)

Now because the Xn carry charges, they can only depend on the conformal

compensator φ (we’ve already removed any other fields’ dependence into the poten-

tials). Therefore invariance necessitates

XK = φ†φ XW = φ3 (2.30)

We can now write the most general superconformal invariant lagrangian. It is

given by

L =
1

2

∫
d4θ φ†φK̃ +

∫
d2θ φ3W̃ + h.c. (2.31)

This picture explicitly demonstrates the φ couplings as required by supercon-

formal invariance at a cost of using non-canonically normalized fields. It is possible

to return to the usual fields by defining

Φi = φΦ̃i Dα =
φ†

φ1/2
D̃α Ṽ A

G = φ3/2Ṽ A
G (2.32)

with the last equation being a consequence of the second. It is then clear that the

lagrangian of Eq. (2.31), combined with the field redefinitions Eq. (2.32), leads to a

lagrangian

K = Zi
jΦi exp

(
2VA

GT
G
A

)
j

kΦk + · · · (2.33)

W = Liφ2Φi +
1

2!
µijφΦiΦj +

1

3!
Y ijkΦiΦjΦk +

1

4!

λijk`

Λφ
ΦiΦjΦkΦ` + · · · (2.34)

The dimensionful terms of Eq. (2.34) explicitly break the conformal invariance,

and setting them to zero restores the conformal symmetry at tree level; however,

when quantum corrections are included a mass parameter, µ, will be introduced.
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The theory will then need to be regularized, which can be done with a cutoff Λ.

This type of regulator is a convenient choice since the form of Eq. (2.34) establishes

that Λ must come paired with a φ should it give rise to non-renormalizable terms2.

The functional dependence of various parameters on µ will always be of the form

µ/Λ, so that the renormalized parameters will become supercouplings by the rule

µ→ µ

φ
(Chiral Superfields)

µ→ µ

|φ|
(Real Superfields) (2.35)

Eq. (2.35) is the ‘AMSB rule’ for determining the SUSY breaking parameters.

To derive expressions for the supersymmetry breaking terms, a form for Zi
j that

can be ‘promoted’ using the ‘AMSB rule’ is required. Formally solving the beta

function,

d lnZi
j

d lnµ
= γi

j, (2.36)

yields just such an expression:

lnZi
j(lnµ) = lnZi

j(ln Λ)−
∫ ln Λ

ln µ

dt γi
j. (2.37)

The supercoupling is given as

lnZi
j(lnµ) = lnZi

j(ln Λ)−
∫ ln Λ

ln µ
|φ|

dt γi
j (2.38)

and the components, which yield the SUSY breaking expressions, may be gotten by

taking derivatives with respect to θ2 and θ̄2.

So, for example, the Ai
j term is gotten by

2The result that the ultra violet (UV) cutoff gets paired with a φ is independent of whether or
not it yields non-renormalizable terms; it is merely a useful illustration here
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d

dθ2
lnZi

j(lnµ)

∣∣∣∣
θ=θ̄=0

=

[
d

dθ2

∫ ln µ
|φ|

ln Λ

dt γi
j

]
θ=θ̄=0

(2.39)

= γi
j(lnµ)

[
d

dθ2
ln

µ

|φ|

]
θ=θ̄=0

− γi
j(ln Λ)

[
d

dθ2
ln Λ

]
θ=θ̄=0

+

[∫ ln µ
|φ|

ln Λ

dt
∂

∂θ2
γi

j

]
θ=θ̄=0

(2.40)

= −1

2
γi

j(lnµ)Fφ. (2.41)

The last line follows because neither the anomalous dimension, γi
j, or Λ have explicit

θ, θ̄ dependence (γi
j due to it being a physical quantity, Λ due to the UV physics

being held fixed).

The scalar masses may be obtained in a similar manner, though there is a

subtle complexity as it requires the evaluation of

d

dθ̄2

[
γi

j(lnµ/|φ| )
]
. (2.42)

While the anomalous dimension has no explicit φ dependence, it does contain im-

plicit dependence through the gauge and yukawa couplings of which it is a function;

that is,

[
d

dθ̄2

[
γi

j

(
ln

µ

|φ|

)]]
θ=θ̄=0

=
∑

G

∂γi
j

∂$G

[
d

dθ̄2
$G

(
ln

µ

|φ|

)]
θ=θ̄=0

+
∂γi

j

∂Y `mn

[
d

dθ̄2
Y `mn

(
ln

µ

|φ|

)]
θ=θ̄=0

+
∂γi

j

∂Y`mn

[
d

dθ̄2
Y`mn

(
ln

µ

|φ|

)]
θ=θ̄=0

(2.43)

The gauge and yukawa couplings’ implicit dependence on θ̄ can be obtained in the

same fashion as the wavefunction renormalization constant; i.e. formally solving

their RGEs.

The same techniques may be applied to the gauge supercoupling, yielding the

full set of AMSB expressions:
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U(1)
X −2
X +2
Ψ +1
Ψ −1
S 0

Table 2.4: The U(1) charges and particle content of a toy model that demonstrates
decoupling of thresholds in AMSB

(
m2
)

i
j = −1

4
|Fφ|2

[
1

2

∂γi
j

∂$G

β$G
+

∂γi
j

∂Y `mn
β`mn

Y + h.c.

]
(2.44)

aijk = −βijk
Y Fφ (2.45)

MG = − β$G

2$G

Fφ. (2.46)

Eqs. (2.44)–(2.46) are powerful expressions because they are the solutions to the

RGE at any scale µ. This statement is valid both above and below a threshold, M ,

provided that the threshold does not introduce any new SUSY breaking comparable

to Fφ; that is, any effects of the theory aboveM vanish in the theory belowM [59, 60].

2.5 Thresholds

To witness the insensitivity of AMSB to thresholds M � Fφ, it is helpful

to consider a toy model having the particle content given in Table 2.4 and the

superpotential given by

WDCPL = fXΨΨ + yS
(
XX −M2φ2

)
. (2.47)

In the SUSY limit the scalar components of X and X acquire a VEV equal to M

thus introducing a threshold. At this point all the fields except Ψ gain a mass

of M � Fφ. Including the effects of SUSY breaking due to AMSB, it is a mere

algebraic feat to show
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〈X〉 = M +O
(
F 2

φ

M

)
+O

(
m2

an

M

)
(2.48)

〈
X
〉

= M +O
(
F 2

φ

M

)
−O

(
m2

an

M

)
(2.49)

〈FX〉 = MFφ (2.50)

〈FX〉 = MFφ (2.51)

〈S〉 = −
F †

φ

y
(2.52)

〈D〉 =
1

2g

(
m2

X
−m2

X

)
= −|Fφ|2

4g

∂γ+
X

∂f
βf (2.53)

with the D-term acquiring a VEV because X has the f coupling and X does not;

hence, the AMSB expression for their scalar masses are different.

Above the threshold M , Ψ has a scalar mass given by AMSB(
m2

Ψ

)+
= −5

4
g4m2

an (2.54)

while below M there is no gauge group and W− = 0 so that AMSB predicts(
m2

Ψ

)−
= 0 (2.55)

The fact that AMSB predicts Ψ’s scalar mass to be zero below M raises two

questions: how the contribution of the gauge group given by Eq. (2.54) disappeared,

and why the D-term VEV—acquired at the threshold—vanished. Both issues are

resolved by noting that the Ψ’s act as messengers giving a gauge mediated super-

symmetry breaking (GMSB) contribution at the threshold M . This is because the

lagrangian from Eq. (2.47) contains the term∫
d2θ WDCPL ⊃ f〈FX〉ΨΨ = fMFφΨΨ = MΨFφΨΨ (2.56)

which appears in loops.

For example, the scalar Ψ couples to the Ψ’s through the D-term potential
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VD =
1

2
g2

[(
|X|2 −

∣∣X∣∣2 )2

+ |Ψ|2
(
|X|2 −

∣∣X∣∣2 )
− |Ψ|2

(
|X|2 −

∣∣X∣∣2 )+
1

4

(
|Ψ|2 −

∣∣Ψ∣∣2 )2
]

(2.57)

leading to the diagram

Ψ Ψ

Ψ
Ψ

Ψ

ΨΨ

g2 g2

f 〈F ∗
X〉

f 〈FX〉

∼ g4f 2|FX |2

(16π2)2M2
Ψ

= g4 |Fφ|2

(16π2)2 (2.58)

which is exactly the same structure and size as the AMSB contribution above the

threshold. In fact, Eq. (2.58), along with the other diagrams involving gauge fields,

yields (
m2

Ψ

)−
=
(
m2

Ψ

)+
+
(
m2

Ψ

)
GMSB

= 0 (2.59)

The GMSB diagrams such as Eq. (2.58) cancel the higher-scale AMSB con-

tributions to Ψ’s scalar mass; however, they do not remove the D-term portion

acquired at the threshold. Rather, this term’s cancellation can be seen as a re-

sult of the D VEV actually being zero below the threshold—GMSB diagrams like

Eq. (2.58), with Ψ replaced by X, X cause the scalar masses of these fields to be

zero below M resulting in the VEV of D vanishing. Alternatively, the cancellation

can be seen directly through contributions such as
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Ψ
∆c

Ψ

∆c

Ψ

g2
Ψ

f 2M f 2M

f 〈F ∗
X〉

f 〈FX〉
Ψ Ψ

∼ g2f 6|FX |2M2

(16π2)2M2
ΨM

2
= g2f 4 |Fφ|2

(16π2)2

(2.60)

which cancel the D-term contribution to the scalar Ψ.

The result of the argument just given is that AMSB decouples any effects of

an intermediate threshold and the resulting scalar masses depend solely on the low-

scale physics. There is, as mentioned, a caveat to this statement which is that the

threshold must not give any additional SUSY breaking that is comparable to Fφ.

This condition may be re-expressed as stating that the messengers Ψ must have their

mass appear as Mφ in the superpotential; or, alternatively, that the VEV of FX

must be MFφ. If these three equivalent conditions are violated, then the threshold

does not decouple and the AMSB expressions are no longer valid below this scale.

2.6 Minimal Supersymmetric Standard Model and Anomaly Media-

tion

The naive application of AMSB to the MSSM is an unmitigated disaster: elec-

troweak symmetry is not broken by the higgs fields, but electric charge conservation

is violated[61, 62, 63, 64, 65, 66, 67, 68, 69, 70]. The latter problem can be seen

directly from application of the AMSB formulae to the sleptons; for example, the

right-handed selectron’s mass is given as

m2
ec = −22m2

ang
4
Y < 0. (2.61)
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The negative mass-square is a result of the negligible yukawa couplings for the elec-

tron yielding a strictly gauge group dependent mass. Since U(1)Y is asymptotically

enslaved, the beta function is positive, and so the mass-square must be negative.

This means that any scalar without yukawa couplings and with only IR-free gauge

charges will have a negative mass squared—hence in the MSSM both chiralities of

selectron and muon (and likely the stau) will be tachyonic.

While electrically charged scalars obtain the wrong sign scalar mass-squared

(thus acquiring a VEV and breaking electric charge), the unified electroweak sym-

metry is not broken by the higgs fields. The culprit here is the µ term which provides

tree-level conformal symmetry breaking.

In the MSSM, the conformal compensator appears as

W = yuQHuu
c + ydQHdd

c + yeLHde
c + µφHuHd. (2.62)

The resulting scalar potential for the neutral higgs fields is then

VNH =
(
m2

Hu
+ |µ|2

) ∣∣H0
u

∣∣2 +
(
m2

Hd
+ |µ|2

) ∣∣H0
d

∣∣2
− FφµH

0
uH

0
d − F †

φµ
∗H0∗

u H
0∗
d +

1

8

(
g2

L + g2
Y

) (∣∣H0
u

∣∣2 − ∣∣H0
d

∣∣2 )2

. (2.63)

From the potential Eq. (2.63), two constraints may be obtained. The first is the

requirement that the potential as given be bounded from below. While it is typically

argued that this is to ensure positive energy states, that is not the case as there may

be non-renormalizable terms yielding higher powers of the higgs fields. Such terms,

with the correct sign, would eventually turn the potential positive; however, in doing

so they would also push the higgs VEV to a value well beyond the one required for

electroweak symmetry breaking. Thus, to ensure the correct higgs VEV the potential

of Eq. (2.63) must be bounded from below. The most stringent constraint will come

when
〈
H0

u

〉
=
〈
H0

d

〉
, leading to the condition

m2
Hu

+m2
Hd

+ 2|µ|2 ≥
∣∣∣Fφµ+ F †

φµ
∗
∣∣∣ ≥ 2|Fφµ| . (2.64)
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Eq. (2.64) can not be satisfied for Fφ ∼ 10 TeV unless µ ∼ Fφ, which implies the

scalar massesm2
Hu
∼ m2

Hd
∼ m2

an � |Fφ|2 are completely irrelevant to the constraint:

m2
Hu

+m2
Hd

+ 2|µ|2 ≈ 2|µ|2 ≥ 2|Fφµ| (2.65)

The second requirement of Eq. (2.63) is the instability condition for SU(2)L×

U(1)Y , which ensures that the gauge group is broken. The instability manifests

itself as a negative eigenvalue for the higgs mass matrix,(
m2

Hu
+ |µ|2 −F †

φµ
∗

−Fφµ m2
Hd

+ |µ|2
)
, (2.66)

which may be accomplished by requiring the determinant to be negative. This yields

(
m2

Hu
+ |µ|2

) (
m2

Hd
+ |µ|2

)
≈ |µ|4 < |Fφµ|2 . (2.67)

Clearly both Eq. (2.65) and Eq. (2.67) can not be satisfied simultaneously, and so

the higgs fields do not acquire a VEV.

2.7 Next-to Minimal Supersymmetric Standard Model and Anomaly

Mediation

Since the MSSM already has the µ problem without AMSB, it may be ar-

gued that AMSB just exaggerates the issue and so the explanation to the MSSM µ

problem should solve the troubles of electroweak symmetry breaking when SUSY is

broken with AMSB. Unfortunately, this is not the case for the minimal model, the

next-to minimal supersymmetric standard model (NMSSM)[71]. The best way to

understand the underlying problem is through a toy model. Consider a superpoten-

tial given by

Wtoy =
1

3
κN3 (2.68)
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where N is a singlet field with no gauge symmetries. The resulting scalar potential,

including SUSY breaking, is

Vtoy = |κ|2 |N |4 +
1

3

(
aκN

3 + a∗κN
∗3)+m2

N |N |
2 . (2.69)

Taking account for the complex phases by letting

N = |N | eiδN κ = |κ| eiδκ aκ = |aκ| eiδaκ , (2.70)

the minimization condition for the phase δN is

sin(3δN + δaκ) = 0. (2.71)

The resulting minimum condition for |N |,

0 = 2|κ|2 |N |2 + |aκ| |N | cos(3δN + δaκ) +m2
N

= 2|κ|2 |N |2 + |aκ| |N |+m2
N , (2.72)

is then independent of any phases leaving 〈N〉 real. The solution to Eq. (2.72) states

〈N〉 =
−|aκ| ±

√
|aκ|2 − 8|κ|2m2

N

2|κ|2
(2.73)

where the soft couplings aκ and mN are determined by AMSB via Eqs. (2.44) and

(2.45):

aκ =
Fφ

16π2
6κ3

m2
N =

|Fφ|2

(16π2)2 12κ4.
(2.74)

Substituting these into Eq. (2.73) gives

〈N〉 =
|Fφ|
16π2

|κ|
4

(
−6±

√
−60

)
(2.75)

yielding a contradiction: 〈N〉 must be real, but the large negative under the radical

demonstrates this can not be so.

The source of the problem can be identified by examining the potential of N .

To expose the difficulty, it is helpful to define
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x ≡ κ〈N〉
man

(2.76)

and re-write Eq. (2.69) as

〈Vtoy〉
4m4

an

=
1

4κ2
x4 + x3 + 3κ2x2 (2.77)

where the AMSB expressions of Eq. (2.74) have been substituted. For the potential

to have a non-trivial minimum it is necessary that the cubic term dominate for some

value of x (since this term is the only one that provides a negative contribution to

the potential); however, for large κ, the x2 term will always be larger than the

cubic term. Meanwhile, for small κ the quartic term will dominate the expression.

Therefore, if there is any chance for the x3 term to create a minimum other than

zero, it must be that κ ' 1. This leaves the potential as

〈Vtoy〉
4m4

an

=
1

4
x4 + x3 + 3x2 (2.78)

where it now becomes clear that neither large x, x ∼ 1, nor small x will have the

cubic term dominate the expression—leaving the only minimum as the trivial one.

Thus, the heart of the problem is that AMSB predicts the cubic term’s coefficient

such that it will always be weaker than either the quartic or quadratic regardless of

the parameter regime.

The same problem carries over to the full NMSSM, as pointed out in [71]. In

this model, the additional coupling of N to Hu and Hd does not alter the relative

strengths of N ’s quartic, cubic, or quadratic terms, but it does add a linear term

to the potential, aλvuvdN . The induced linear term shifts the trivial minimum

away from zero, but keeps it small. The minimization condition for N can then be

approximated as

µ̃2
N〈N〉 −

1

2
√

2
aλv

2 sin 2β = 0 (2.79)

with µ̃2
N ' m2

an being essentially the AMSB predicted soft SUSY breaking mass for

N . The maximum value occurs when sin 2β = 1 so we have that
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〈N〉 .
aλv

2

2µ̃2
N

√
2
' 1

2
√

2

v2

man

' 22 Gev (2.80)

The small 〈N〉 then results in a chargino mass which falls below the LEP II bound

of about 94 GeV.
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Chapter 3

Mixing the Left-Right Model, Supersymmetry, and Anomaly

Mediation

This chapter introduces the supersymmetric left-right model and takes the

theory “through the scales” ending at the SUSY scale, below which it is the standard

electroweak theory. It also argues the presence of “light” SU(2)L triplets and doubly-

charged SU(2)L singlet fields, whose phenomenology has been the subject of many

papers[72, 73, 74, 75, 76, 77].

3.1 The Left-Right Model

The SUSYLR model is defined by Table 3.1. It contains right-handed B−L =

±2 triplets to break SU(2)R × U(1)B−L to U(1)Y . Because these triplets have

B − L = ±2, Eq. (1.31) implies that R-parity will be a residual symmetry after

the breaking—thus, the model naturally enforces R-parity conservation yielding a

stable LSP.

Parity has also been enforced in Table 3.1, so that the theory necessarily

contains left-handed triplets. While the seesaw mechanism may be achieved with

only SU(2)R higgs fields, demanding parity introduces seesaw like couplings for

the left-handed sleptons which, combined with the right-handed seesaw couplings,

provides both chiralities of sleptons positive mass-squares.

The fully parity symmetric superpotential is

WSUSYLR = WY +WH +WGSPNR +WGSVNR (3.1)

where
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Fields SU(3)c × SU(2)L × SU(2)R × U(1)B−L

Q 3 2 1 +1
3

Qc 3̄ 1 2 −1
3

L 1 2 1 −1
Lc 1 1 2 +1
Φa 1 2 2 0
∆ 1 3 1 +2
∆̄ 1 3 1 −2
∆c 1 1 3 −2
∆̄c 1 1 3 +2
S 1 1 1 0
N 1 1 1 0

Table 3.1: Assignment of the fermion and Higgs fields’ representations of the left-
right symmetry group (except for U(1)B−L where the charge under that group is
given.)

WY = iya
QQ

T τ2ΦaQ
c + iya

LL
T τ2ΦaL

c + ifcL
cT τ2∆

cLc + ifLT τ2∆L (3.2)

WH = (M∆φ− λSS)
[
Tr
(
∆c∆̄c

)
+ Tr

(
∆∆̄

) ]
+M2

Sφ
2S +

1

2
µSφS

2 +
1

3
κSS

3

+ λab
NN Tr

(
ΦT

a τ2Φbτ2
)

+
1

3
κNN

3 (3.3)

WGSPNR =
λA

MXφ
Tr2
(
∆∆̄

)
+

λc
A

MXφ
Tr2
(
∆c∆̄c

)
+

λB

MXφ
Tr(∆∆) Tr

(
∆̄∆̄

)
+

λc
B

MXφ
Tr(∆c∆c) Tr

(
∆̄c∆̄c

)
+

λC

MXφ
Tr
(
∆∆̄

)
Tr
(
∆c∆̄c

)
+

λS

MXφ
Tr
(
∆∆̄

)
S2 +

λc
S

MXφ
Tr
(
∆c∆̄c

)
S2 + · · · (3.4)

WGSVNR =
λD

MPlφ
Tr(∆∆) Tr(∆c∆c) +

λ̄D

MPlφ
Tr
(
∆̄∆̄

)
Tr
(
∆̄c∆̄c

)
+

(λσ)ab

MPlφ
Tr
(
∆∆̄

)
Tr
(
ΦT

a τ2Φbτ2
)

+
(λc

σ)ab

MPlφ
Tr
(
∆c∆̄c

)
Tr
(
ΦT

a τ2Φbτ2
)

+
2λαε

ab

MPlφ
Tr
(
∆Φaτ2Φ

T
b τ2∆̄

)
+

2λc
αε

ab

MPlφ
Tr
(
∆cτ2Φ

T
a τ2Φb∆̄

c
)

+
λN

MPlφ
Tr
(
∆∆̄

)
N2 +

λc
N

MPlφ
Tr
(
∆c∆̄c

)
N2

+
λs

MPlφ
Tr
(
ΦT

a τ2Φbτ2
)
S2 +

λM

MPlφ
S2N2 + · · · (3.5)
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The fields transform under parity as

Q↔ −iτ2Qc ∗ L↔ −iτ2Lc ∗ Φa → Φ†
a

∆ ↔ ∆c † ∆̄ ↔ ∆̄c † (S,N) → (S∗, N∗)
(3.6)

which demands that the couplings be related:

ya
Q =

(
ya

Q

)†
ya

L = (ya
L)† f = f ∗c M∆ = M∗

∆

λS = λ∗S M2
S =

(
M2

S

)∗
µS = µ∗S κS = κ∗S

λN = λ†N κN = κ∗N . (3.7)

The superpotential of Eq. (3.1) has also had a discrete Z3 symmetry imposed

where the fields transform

(Q,Qc, L, Lc,∆,∆c,Φa, N) → e
2iπ/3(Q,Qc, L, Lc,∆,∆c,Φa, N),

(∆̄, ∆̄c) → e
4iπ/3(∆̄, ∆̄c)

(3.8)

and S invariant. This symmetry is necessary to keep one singlet light below the

right-handed scale since it forbids terms such as

W 6Z3 = κ12SN
2 + κ21S

2N + λc
NN Tr

(
∆c∆̄c

)
(3.9)

which would generate a large, O(vR), SUSY mass for N . This symmetry is not

gauged, therefore it is global symmetry which is susceptible to violation due to

gravitational effects1. Due to these considerations, Eq. (3.1) contains the planck

suppressed, Z3 violating, non-renormalizable terms of Eq. (3.5).

The Z3 violating non-renormalizable terms are not, however, the only ones

possible: Eq. (3.4) displays terms which conserve the discrete symmetry, but are

nonetheless gauge invariant. As these terms do not violate the Z3, they quite pos-

sibly originate from the next new scale of physics which is conceivably below MPl.

To allow this possibility the terms in Eq. (3.4) are suppressed by MX and not MPl.

1For example, if a particle charged under this symmetry falls into a blackhole, there is no way to
ascertain the amount of this charge the blackhole contains. This can be contrasted with a gauged
symmetry where Gauss’s law may be utilized to determine the charge enclosed
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3.2 Vacuum Structure

The potential generated by Eq. (3.1) is

V = VF + VD + VSB + VSBNR (3.10)

with the F and D term potentials given by

VF = Tr
(
F †

∆F∆ + F †
∆̄
F∆̄

)
+ F ∗

NFN + Tr
(
F †

Φa
FΦa

)
+ Tr

(
F †

∆cF∆c + F †
∆̄cF∆̄c

)
+ F ∗

SFS (3.11)

VD =
1

2

∑
G

DG
RD

G
R +

∑
G

DG
LD

G
L +D2

BL. (3.12)

The F and D term expressions, along with the SUSY breaking potentials, may be

found in Appendix B.1.

The potential Eq. (3.10) is clearly intractable; however, not all the terms are

important at all scales. If it is assumed that M∆ ∼ MS ∼ µS � Fφ, then the the

breaking of SU(2)R × U(1)B−L can be considered in the SUSY limit. Furthermore,

provided MX �M∆ ∼MS ∼ µS, all the non-renormalizable terms are insignificant.

In these limits (and taking the VEV of the sneutrino to be zero), then

−F †
∆c = (M∆ − λSS) ∆̄

c
(3.13)

−F †
∆̄c = (M∆ − λSS) ∆c (3.14)

−F ∗
S = −λS

[
Tr
(
∆c∆̄

c)
+ Tr

(
∆∆̄

) ]
+M2

S + µSS + κSS
2 (3.15)

Evidently Eqs. (3.13) and (3.14) give S a VEV

〈S〉 =
M∆

λS

(3.16)

Eq. (3.15) then implies that ∆c, ∆̄
c

acquire a VEV of

〈∆c〉
〈
∆̄

c〉
=
M2

S

λS

+

(
µS

λS

+
κSM∆

λ2
S

)
M∆

λS

(3.17)

where it becomes clear that M∆ ∼ µS ∼ MS ∼ vR—taking vR as the characteristic

right-handed breaking scale.

Inclusion of the non-renormalizable terms shifts the right-handed scale by

O(v2
R/MX) which is small compared to vR. It is important to emphasize that the
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non-renormalizable terms alter the VEV while preserving SUSY—the ultimate ex-

pression for the VEV should decouple the SUSY preserving and SUSY violating

parts. This distinction is pertinent as it is entirely conceivable (and it turns out

desirable) to have

v2
R

MX

∼ Fφ (3.18)

which results in the non-renormalizable terms yielding a contribution of the same

order of magnitude of the SUSY breaking ones. Even though the terms are of the

same size, the previous argument guarantees that non-renormalizable contributions

never break SUSY2—an important feature as it ensures AMSB provides the only

source of SUSY breaking.

While the SUSY limit implies SU(2)R×U(1)B−L is broken, it does not specify

which components of the SU(2) triplets get a VEV. This implies the existence of a

continuously connected set of degenerate vacua[78]. Indeed, the degenerate vacua

can be deduced from the form of the superpotential of Eq. (3.1): by asserting that

the sneutrino has a zero VEV, the yukawa couplings of Eq. (3.2) play no role in

determining the vacuum structure; hence, they can be neglected for this discussion.

Furthermore, setting the gauge couplings to zero and taking MX ,MPl →∞ unveils a

complexified U(6) symmetry for the SU(2) triplets. The U(6) is revealed by defining

two new fields

� ≡ (∆, ∆̄c) �̄ ≡ (∆̄,∆c) (3.19)

which are complex 6 vectors. The terms in Eq. (3.3) can then be written in terms of

the quantity Tr
(
��̄
)
, resulting in the freedom to rotate between the 6 components

of � and �̄.

When SU(2)R × U(1)B−L breaks, ∆c and ∆̄c acquire a VEV which can be

2It should also be emphasized, albeit in smaller text, that this is not generically true for fields
with zero vacuum expectation value in the SUSY limit and non-zero VEV when SUSY is broken.
This is because the zero point of the potential may be highly unstable and susceptible to inducing
large VEVs
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rotated into one component of � and �̄; hence the complexified U(6) is broken

to a complexified U(5). This SSB yields 22 massless real degrees of freedom. The

superhiggs mechanism ensures that 6 are eaten or become massive, leaving 16. These

16 degrees of freedom then parameterize the degenerate vacua.

In terms of goldstone particles, the 16 degrees of freedom lie in the SU(2)L

triplets ∆, ∆̄ and the doubly-charged right-handed particles ∆c−−, ∆̄c++. If it is

demanded that SU(2)L be preserved, then the U(6) is broken only by the right-

handed triplets. The result is that the vacuum degeneracy of interest is parame-

terized through the four real degrees of freedom in ∆c−− and ∆̄c++. This may be

expressed as

〈∆c〉 =
vR√

2
e
iθc

(
0 cosαCV

e
iδ sinαCV 0

)
(3.20)

〈
∆̄c
〉

=
v̄R√

2
e
−iθc

(
0 e

iδ̄ sinαCV

cosαCV 0

)
(3.21)

where αCV 6= 0 represents a vacuum that violates charge conservation.

The vacuum degeneracy is explicitly broken when gauge couplings are in-

cluded, but because of the choice of SU(2)L preservation, only by the SU(2)R D-

terms. Their VEV contributes a term to the potential that is dependent upon αCV :

〈V 〉VDC = +
1

8
g2

R

(
v̄2

R − v2
R

)2
cos2 2αCV (3.22)

For the charge conserving potential, αCV = 0 and 〈V 〉VDC is at its maximal value;

thus, the charge violating vacuum is the lower, favored state[78].

Naturally, a dynamically-favored, charge-violating vacuum implies that a vi-

able theory must include additional terms that explicitly break the U(6). One

option is to break R-parity thus making the seesaw yukawa couplings relevant to

the vacuum structure[78]. Another option is to include additional particle content

with couplings that explicitly break this symmetry[79, 80]. Alternatively, it is pos-
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sible to use the given theory if terms generated from a higher scale of physics—that

is, non-renormalizable terms—exist that explicitly break the symmetry[81, 80, 82].

Such terms are present in Eq. (3.4), namely λB, λc
B, λD, λ̄D, and they are higher

in magnitude than the D-term contributions. This is because the contribution to

the potential from the D-term is proportional to the square of the difference of the

VEVs

〈V 〉DVDC ∼
(
v̄2

R − v2
R

)2 ∼M4
SUSY (3.23)

with the last expression following from the fact that the D-term VEV comes from

the difference in the soft SUSY breaking masses. The non-renormalizable terms,

however, are

〈V 〉NR
VDC ∼

v4
R

MX

(
v̄2

R − v2
R

)
∼MXM

3
SUSY �M4

SUSY (3.24)

assuming v2
R ∼ MXMSUSY. It is therefore quite easy to achieve a contribution to

the potential from these non-renormalizable terms that places the charge conserving

vacuum lower than that of the charge violating one. In fact, it is important to realize

that because the doubly-charged particles are the goldstone bosons of the U(6), and

this symmetry is responsible for the vacuum degeneracy, requiring the mass-squares

of these goldstone bosons to be positive is exactly the same condition as requiring

the charge conserving vacuum to be lower than the charge violating one. Hence

ensuring one will imply the other.

3.3 The Theory Between vR and Fφ

Once SU(2)R breaks, the effective theory will contain the doubly-charged

∆c−−, ∆̄c++, a pair of left-handed triplets, and the particle content of the NMSSM

with an extra set of higgs doublets. This theory shall be called the NMSSM++ as

it connotates the presence of doubly-charged particles as well as the notion that it

is ‘incrementally more than’ the NMSSM.
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The doubly-charged particles and the left-handed triplets survive below vR

because of the U(6) symmetry discussed in Section 3.2. The non-renormalizable

terms give them a SUSY mass of

µ∆,∆̄ ∼ µDC ∼
v2

R

MX

(3.25)

which is precisely the mass of the fermionic components. The scalars, however, will

receive a bilinear term due to the explicit breaking of superconformal invariance,

resulting in a mass matrix of the form

MDC,∆,∆̄ ∼
v2

R

MX

(
v2

R

MX
−Fφ

−F †
φ

v2
R

MX

)
. (3.26)

The eigenvalues of MDC,∆,∆̄ need to be positive, which will be accomplished by

requiring

v2
R

MX

& Fφ. (3.27)

As it is desired that these particles survive to the Fφ scale, the condition

v2
R

MX

= Fφ(1 + ε∆) (3.28)

is imposed, resulting in Eq. (3.26) having the eigenvalues of 2|Fφ|2 and ε∆|Fφ|2.

In addition to providing a mass for the U(6) goldstones, the non-renormalizable

terms of Eq. (3.1) also provide important contributions to the electroweak breaking

higgses. For instance, the term

λc
N

MPlφ
Tr
(
∆c∆̄c

)
N2 +

λM

MPlφ
S2N2 (3.29)

generates a SUSY mass term for N when ∆c, ∆̄c, and S get a VEV. Taking this

term in the superpotential to be written as µNφN
2, the mass is

µN ≡
λc

N

MPl

〈∆c〉
〈
∆̄

c〉
+

λM

MPl

〈S〉2 ' v2
R

MPl

. (3.30)

Once again the explicit superconformal breaking yields a bilinear term of

−µNFφN
2 ≡ −bNN2 (3.31)
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with bN given as

bN = µNFφ '
v2

R

MPl

Fφ. (3.32)

If bN is to be of the expected order of M2
SUSY, then it must be that

v2
R ∼

MPlM
2
SUSY

Fφ

∼
(
1010–1011 GeV

)2
(3.33)

and this results in a range for MX :

MX ∼
v2

R

Fφ

∼
(
1015–1018 GeV

)
. (3.34)

Finally, the non-renormalizable terms will also split the masses between the

two higgs doublets as the terms

(λc
σ)ab

MPlφ
Tr
(
∆c∆̄c

)
Tr
(
Φaτ2Φ

T
b τ2
)

+
2λc

αε
ab

MPlφ
Tr
(
∆cτ2Φ

T
a τ2Φb∆̄

c
)

(3.35)

generate a SUSY mass for the Φ’s with the second term providing an asymmetry

between Φ1 and Φ2. This asymmetry will allow a larger mass, say of order Fφ, for

one set of doublets while the remaining pair stays light.

Taking all these elements under consideration, the resulting theory between

vR and Fφ may be written. The superpotential is given as

WNMSSM++ = iya
uQ

T τ2Huau
c + iya

dQ
T τ2Hdad

c + iya
LL

T τ2Hdae
c

+ fce
c∆c−−ec + ifLT τ2∆L

+ iλabNHT
uaτ2Hdb + iµabφHT

uaτ2Hdb +
1

2
µNφN

2 +
1

3
κN3

+ µDCφ∆c−−∆̄c++ + µ∆φTr
(
∆∆̄

)
(3.36)

where the SU(2)L doublets Hua, Hda come from the bidoublets Φa, and the yukawa

couplings obey

ya
Q = ya

u + ya
d (3.37)

at the scale vR.

The significant new features of the NMSSM++ are the yukawa couplings f
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and fc in Eq. (3.36), which survive to the low-scale theory due to the complexified

U(6). Since these are new leptonic couplings, they introduce new terms in the

AMSB expression for both the right- and left-handed sleptons. The new yukawa

couplings may then be selected to turn both chiralities of sleptons positive.

To make this explicit, the slepton masses are

m2
ec =

1

2

|Fφ|2

(16π2)2

[
8f †c (ya

L)T (ya
L)∗ fc + 12(ya

L)† ff †ya
L

+ 8f †c fc

[
(ya

L)† ya
L + 4f †c fc + Tr

(
f †c fc

) ]
+ 4(ya

L)† ya
L

[
(yn

L)† yn
L + 2f †c fc

]
+ 2(ya

L)† yn
L

[
2(yn

L)† ya
L + Tr

(
3(yn

d )† ya
d + (yn

L)† ya
L

)
+ 4(λmn

N )∗ λma
N

]
− 2g2

Y

(
24f †c fc + 3(ya

L)† ya
L + 26g2

Y

)
− 6g2

L(ya
L)† ya

L + h.c.

]
(3.38)

m2
L =

1

2

|Fφ|2

(16π2)2

[
6f(ya

L)T (ya
L)∗ f † + 4ya

Lf
†
c fc(y

a
L)†

+ 6
[
(ya

L)† ya
L + 12ff † + 2 Tr

(
f †f
) ]
ff † + 2

[
yn

L(yn
L)† + 3ff †

]
ya

L(ya
L)†

+ yn
L(ya

L)†
[
2ya

L(yn
L)† + Tr

(
3(yn

d )† ya
d + (yn

L)† ya
L

)
+ 4(λmn

N )∗ λma
N

]
− g2

Y

(
18ff † + 3ya

L(ya
L)† + 13g2

Y

)
− 3g2

L

(
14ff † + ya

L(ya
L)† + 3g2

L

)
+ h.c.

]
(3.39)

Lepton flavor violating experiments constrain the f ’s off-diagonal elements[83] so

severely that they may be taken to be zero. The f ’s are then diagonal in flavor

space,

f = diag(f1, f2, f3) , fc = diag(fc1, fc2, fc3) , (3.40)

which, along with the usual neglecting of first and second generation yukawa cou-

plings, simplifies Eqs. (3.38) and (3.39) to
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m2
ec = m2

an

[
40f 4

c1 + 8f 2
c1

(
f 2

c2 + f 2
c3

)
− 48f 2

c1g
2
Y − 52g4

Y

]
(3.41)

m2
L1

= m2
an

[
84f 4

1 + 12f 2
1

(
f 2

2 + f 2
3

)
− 6f 2

1

(
3g2

Y + 7g2
L

)
− 13g4

Y − 9g4
L

]
(3.42)

m2
µc = m2

an

[
40f 4

c2 + 8f 2
c2

(
f 2

c1 + f 2
c3

)
− 48f 2

c2g
2
Y − 52g4

Y

]
(3.43)

m2
L2

= m2
an

[
84f 4

2 + 12f 2
2

(
f 2

1 + f 2
3

)
− 6f 2

2

(
3g2

Y + 7g2
L

)
− 13g4

Y − 9g4
L

]
(3.44)

m2
τc = m2

an

[
40f 4

c3 + 10(ya
τy

a
τ )

2 + 8f 2
c3

(
f 2

c1 + f 2
c2

)
+ 6(ya

τy
a
b )

2 + 12ya
τy

a
τ

(
2f 2

c3 + f 2
3

)
+ 8λnmym

τ λ
npyp

τ − 48f 2
c3g

2
Y − 6ya

τy
a
τ

(
g2

Y + g2
L

)
− 52g4

Y

]
(3.45)

m2
L3

= m2
an

[
84f 4

3 + 5(ya
τy

a
τ )

2 + 3(ya
τy

a
b )

2 + 12f 2
3

(
f 2

1 + f 2
2

)
+ 2ya

τy
a
τ

(
9f 2

3 + 2f 2
c3

)
+ λnmym

τ λ
npyp

τ − 6f 2
3

(
3g2

Y + 7g2
L

)
− 3ya

τy
a
τ

(
g2

Y + g2
L

)
− 13g4

Y − 9g4
L

]
(3.46)

Eqs. (3.41)–(3.46) demonstrate that the sleptons may be made positive by requiring

f1(Fφ) ' f2(Fφ) ' fc1(Fφ) ' fc2(Fφ) & 0.6 (3.47)

with the 0.6 coming from the detailed analysis of Section 3.5.2.

The f and fc’s as well as the (left and right) doubly-charged masses are ex-

perimentally constrained from muonium-antimuonium oscillations[84] which occurs

through the tree-level exchange of a doubly-charge particle. The constraint imposes

the condition

fc1fc2

4
√

2m2
DC

≈ f1f2

4
√

2m2
∆,∆̄

< 3× 10−3GF . (3.48)

For the minimum f values of Eq. (3.47), this implies a lower bound on the masses

of the doubly-charged fields of

mDC ,m∆ ≥ 2 TeV (3.49)

or the ε∆ of Eq. (3.28) is around 1/100. An exciting result of this limit is that

masses near this lower bound are accessible at the LHC and may therefore be found

in the near future.
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3.4 The Theory Between Fφ and MSUSY

At Fφ the doubly-charged particles and SU(2)L triplets need to be integrated

out; we also choose, at this scale, to integrate out one set of higgs doublets (which

is permissible due to asymmetric µab—see Section 3.3). The remaining particle con-

tent below Fφ is that of the NMSSM, though the actual theory contains additional

couplings originating from the higher-scale non-renormalizable terms. To distin-

guish this model as having additional (though natural) couplings, but still having

the NMSSM particle content, the theory below Fφ is referred to as the ÑMSSM.

The superpotential for the ÑMSSM is

WÑMSSM = iyuQ
T τ2Huu

c + iydQ
T τ2Hdd

c + iyeL
T τ2Hde

c

+ iλNHT
u τ2Hd +

1

2
µNN

2 +
1

3
κN3 (3.50)

with the SUSY breaking potential

V ÑMSSM
SB = m2

QQ
†Q+m2

ucuc†uc +m2
dcdc†dc +m2

LL
†L+m2

ecec†ec

+m2
Hu
H†

uHu +m2
Hd
H†

dHd +m2
NN

∗N

+
[
iauQ

T τ2Huu
c + iadQ

T τ2Hdd
c + iaeL

T τ2Hde
c + h.c.

]
+

[
iaλNH

T
u τ2Hd −

1

2
bNN

2 +
1

3
aκN

3 + h.c.

]
− 1

2

(
M3g

α
AgA

α +ML(wL)α
A (wL)A

α +MY b2
Y + h.c.

)
. (3.51)

The resulting higgs-sector potential is

VÑMSSM = VF + VD + VHSB (3.52)

VF = |λ|2 |N |2
(
|Hu|

2 + |Hd|
2 )+

∣∣iλHT
u τ2Hd + µNN + κN2

∣∣2 (3.53)

VD =
1

8

(
g2

Y + g2
L

) (
|Hu|

2 − |Hd|
2 )2 +

1

2
g2

L

∣∣H†
uHd

∣∣2 (3.54)

VHSB = m2
Hu
H†

uHu +m2
Hd
H†

dHd +m2
NN

∗N

+

[
iaλNH

T
u τ2Hd −

1

2
bNN

2 +
1

3
aκN

3 + h.c.

]
(3.55)

The extra terms µN and bN present in Eq. (3.52) are fortuitous since Section 2.7

demonstrated that the NMSSM with AMSB produces a very small singlet VEV
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leading to a tiny higgsino mass[71]. As discussed in Section 3.3, the NMSSM++

naturally generates a SUSY breaking bilinear term for N , which carries over to the

ÑMSSM. This term is conceivably of the correct size and magnitude to force the

net mass-square of N negative and cure the small singlet VEV problem. To see how

this works it is useful to define the tilded parameters

ãλ ≡ aλ + λµN (3.56)

ãκ ≡ aκ + 3κµN (3.57)

m̃2
N ≡ m2

N + µ2
N − bN (3.58)

which encapsulate the deviation of the ÑMSSM from the NMSSM.

Taking the VEVs of the fields as

〈Hu〉 =
1√
2

(
0
vu

)
〈Hd〉 =

1√
2

(
vd

0

)
〈N〉 =

n√
2

(3.59)

as well as defining

vu = v sin β vd = v cos β (3.60)

the minimization conditions of Eq. (3.52) may be written:

m2
Hu
− 1

8

(
g2

L + g2
Y

)
v2 cos 2β +

1

2
λ2
(
n2 + v2 cos2 β

)
− n√

2

(
ãλ +

λκn√
2

)
cot β = 0

(3.61)

m2
Hd

+
1

8

(
g2

L + g2
Y

)
v2 cos 2β +

1

2
λ2
(
n2 + v2 sin2 β

)
− n√

2

(
ãλ +

λκn√
2

)
tan β = 0

(3.62)

m̃2
N + κ2n2 +

1

2
λ2v2 +

nãκ√
2
− 1

2
v2

(
ãλ

n
√

2
+ λκ

)
sin 2β = 0

(3.63)

Notice that Eq. (3.63) has Eq. (3.58) in lieu of the typicalm2
N . Using Eq. (3.32)

this may be re-written:

m̃2
N = m2

N + µ2
N − µNFφ

≈ m2
N − µNFφ

'
(

λ4

(16π2)2Fφ − µN

)
Fφ (3.64)
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Figure 3.1: Constant n contours in the µN–κ(vR) plane where the curves, from top
to bottom, correspond to n = −10000,−7500,−5000,−2500 and −1000 GeV. A
constant value of tan β = 3.25 has been assumed with Fφ = 33 TeV and λ(vR) = 0.5.

where the second line follows from the fact that µN ∼ O
(

M2
SUSY

Fφ

)
∼ O

(
Fφ

(16π2)2

)
and therefore the µ2

N term is negligible compared to the the other terms. The last

line substitutes the AMSB expression for the scalar mass-squared assuming it is

dominated by the λ contribution. It is clear from Eq. (3.64) that the λ4 suppression

makes it relatively easy to adjust µN to turn m̃2
N negative. Thus, the singlet N can

achieve a VEV of the necessary size to evade the experimental higgsino mass bound.

Given that constraints from perturbativity limit λ(MSUSY) . 0.5 and that

µ = λn√
2
, it is only necessary for n & 300 GeV to achieve chargino masses above the

LEP II bound. Such a scenario is easily done in the ÑMSSM, as show in Figure 3.1.

In the figure, constant n contours are plotted in the µN–κ(vR) plane treating the

VEVs of the Higgs doublets as constant background values with tan β = 3.25,

Fφ = 33 TeV, and λ(vR) = 0.5. The ample parameter space demonstrates that the

additional terms inherent in the model easily provide a means to resolve the conflict

between AMSB and the NMSSM.

Perhaps unsurprisingly, the resulting mass spectrum of the ÑMSSM is quite

similar to the NMSSM and most results can be obtained by the simple substitution
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of the appropriate variables with their tilded form. Typically µN is small compared

to MSUSY so that the untilded variables are usually very good approximations to

the tilded ones.

For example, the neutral higgses mass matrix is

M2
S =

(
M2

HN µ2
HSN

(µ2
HSN)

T
M2

SN

)
(3.65)

with

M2
HN = v2

u

4
(g2

Y + g2
L) + nvd√

2vu

(
ãλ + λκn√

2

)
vdvu

4
(4λ2 + g2

Y + g2
L)− n√

2

(
ãλ + λκn√

2

)
vdvu

4
(4λ2 + g2

Y + g2
L)− n√

2

(
ãλ + λκn√

2

)
v2

d

4
(g2

Y + g2
L) + nvu√

2vd

(
ãλ + λκn√

2

) 
(3.66)

(
µ2

HSN

)T
=
(
λ2nvu − vd√

2
ãλ − λκvdn λ2nvd − vu√

2
ãλ − λκvun

)
(3.67)

M2
SN = 2n2κ2 +

n√
2
ãκ +

vuvd√
2n
ãλ (3.68)

which is identical to the NMSSM matrix if µN is neglected. This is also true of the

charged higgs where

M2
C =

1

4

(
g2

L − 2λ2
)

+
n√
2

(
ãλ +

λκn√
2

)
csc 2β (3.69)

The pseudoscalar mass matrix, however, does get altered because it picks up a

contribution from the SUSY breaking bN term. Generically bN is significant in size

for any reasonable higgsino mass, so this term ensures that the heaviest pseudoscalar

is mostly singlet. This can be seen from the mass matrix (after rotating out the

zero-mode),

M2
P =(

n
2
√

2

(
ãλ + λκn√

2

)
csc 2β v√

2

(
aλ − λµN −

√
2λκn

)
v√
2

(
aλ − λµN −

√
2λκn

)
vuvd

n
√

2

(
ãλ + 2λκn

√
2
)
− 3ãκ

n√
2

+ 2bN + 8κµN
n√
2

)
,

(3.70)

for when the (2, 2) entry is dominated by bN : TrM2
P ≈ 2bN .
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As the superpartners to the scalar higgs only get mass from the superpotential,

their mass matrices remain unchanged from the NMSSM. For completeness, the

charged higgsino mass matrix is

Mχ± =

(
0 µT

χ±

µχ± 0

)
µχ± =

(
M2

√
2MW sin β√

2MW cos β µ

)
(3.71)

in the basis
(
W̃+, H̃+

u , W̃
−, H̃−

d

)
; while the neutralino mass matrix is

Mχ0 =


M1 0 MZsβsθW

−MZcβsθW
0

0 M2 −MZsβcθW
MZcβcθW

0
MZsβsθW

−MZsβcθW
0 − λ√

2
n − λ√

2
vd

−MZcβsθW
MZcβcθW

− λ√
2
n 0 − λ√

2
vu

0 0 − λ√
2
vd − λ√

2
vu

√
2κn+ µN

 (3.72)

in the basis
(
B̃, W̃ , H̃u, H̃d, Ñ

)
.

3.5 Phenomenological Consequences

Running Scheme: The numerical values of this section are based on the param-

eter running scheme as follows:

• The gauge coupling values are run from the electroweak scaleMZ toMSUSY = 1

TeV using the one-loop SM RGEs. They are then run from MSUSY to Fφ using

the NMSSM one-loop RGEs. Finally, the gauge couplings are run from Fφ to

the right-handed scale vR = 2 × 1011 GeV using the NMSSM++ one-loop

RGEs.

• The yukawa couplings are specified at vR using the ‘only third-generation’

approximation for ya
Q and ya

L. The seesaw couplings are equal at vR by parity,

assumed to be diagonal at this scale due to lepton flavor violation constraints,

and approximated as

f = diag(f1, f1, f3) (3.73)
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mSUGRA
αY = αL at

MGUT ∼ 1016 GeV

m0 universal scalar mass at MGUT

m1/2 universal gaugino mass at MGUT

A0 universal trilinear A-term value at MGUT

tan β ratio of higgs VEVs
sgn(µ) sign of the higgs’s SUSY mass term

mGMSB

Λ the scale of SUSY breaking
Mmess mass of the messengers
N5 number of pairs of messengers (assumed to

come in complete SU(5) multiplets)
tan β ratio of higgs VEVs
sgn(µ) sign of the higgs’s SUSY mass term

mAMSB [53]
MSSM+AMSB

m2
0 universal constant added to scalar mass-

squares to avert tachyonic sleptons
Fφ the scale of SUSY breaking
tan β ratio of higgs VEVs
sgn(µ) sign of the higgs’s SUSY mass term

Table 3.2: Popular SUSY breaking schemes.

for simplicity. These yukawa couplings are then run down from vR to MSUSY

[1, 85] with matching at the various thresholds.

• As AMSB is valid until Fφ, the SUSY breaking terms need not be run but can

be evaluated directly at Fφ using the AMSB expressions. From Fφ to MSUSY

the SUSY breaking parameters are run using the RGEs of the NMSSM [86].

The numerical values are expectedly parameter-choice dependent, so they are

compared with the other popular SUSY breaking scenarios of minimal supergrav-

ity (mSUGRA), minimal gauge mediated supersymmetry breaking (mGMSB) and

minimal anomaly mediated supersymmetry breaking (mAMSB). The m* models are

defined by their inputs and assumptions as shown in Table 3.2

3.5.1 The Spectrum Qualitatively

The overall spectrum of SUSYLR+AMSB is shown in Figure 3.2 and Figure 3.3

with the m* models for comparison. The m* models’ parameters were chosen so
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tan β = 3.25 sgn(µ) = +1
SUSYLR mAMSB mSUGRA mGMSB

Fφ = 33 TeV
f1(vR) = 3.5
f3(vR) = 3.5

m0 = 645 GeV
Fφ = 33 TeV

m0 = 209 GeV
m1/2 = −300 GeV
A0 = 265 GeV

Λ = 99 TeV
Mmess = 792 TeV

N5 = 1

Table 3.3: The input parameters for Figure 3.2 and Figure 3.3. Each model has
tan β = 3.25 and sgn(µ) = +1.

that the gluino mass matched with SUSYLR+AMSB and were calculated using

ISAJET[87] through the online tool SUPERSIM. The specific parameters used are

given in Table 3.3

Figure 3.3 shows a very striking feature for SUSYLR+AMSB: the sleptons and

the squarks are very close in mass. This result is highly dependent on the seesaw

couplings (for example, taking f1(vR) = f3(vR) = 1.4 yields sleptons roughly 200

GeV less; the squarks unchanged) but is a possibility that is difficult to achieve in

other models.

3.5.2 Sleptons

As the sleptons are made positive by f and fc, it should come as no surprise

that their masses rely heavily upon these couplings’ values—therefore making it

logical to analyze these couplings when discussing slepton masses. It is convenient to

establish a range the f ’s may take, and an upper bound may be obtained by requiring

the theory be perturbative at the vR scale. This constraint yields fmax(vR) =
√

4π ≈

3.5. A lower bound can be gotten by requiring positive slepton masses, and this will

be derived shortly—for the present it suffices to take fmin(vR) = 0.

Figure 3.4 shows the running of fc1 as a function of energy for the two extremes

of fc3(vR). It is immediately apparent from the figure that there is a fixed point

for fc1(MSUSY) around 0.6 for any value of fc1(vR) & 1, though the value is clearly

influenced by fc3. The behavior demonstrated in Figure 3.4 actually shows the
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Figure 3.2: The relative masses of the gluino, neutralinos, and charginos in SUSYLR
(Fφ = 33 TeV, f1(vR) = f3(vR) = 3.5), mAMSB (Fφ = 33 TeV, m0 = 645 GeV)
mSUGRA (m0 = 209 GeV, m1/2 = −300 GeV, A0 = 265 GeV) mGMSB (Λ = 99
TeV, Mmess = 792 TeV, N5 = 1) for tan β = 3.25 and sgnµ = +1.
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ũ d̃

ν̃e

ẽ

ũc

d̃c

ẽc
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Figure 3.3: The relative masses of the first generation left-handed, first generation
right-handed, lightest third generation, and heaviest third generation sfermions in
SUSYLR, mAMSB, mSUGRA, mGMSB, for the parameters as defined in Table 3.3.
The final column consists of gluino masses for comparison with Figure 3.2
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Figure 3.4: Plots of fc1 verses the log of the energy scale. The lines correspond, in
ascending order, to fc1(vR) values of 0.25, 0.5, 0.75, 1, 2.25 and 3.5 for (a) fc3(vR) = 0
and (b) fc3(vR) = 3.5.

qualitative feature of all the seesaw couplings; each of f1, f3, fc1, fc3 tend to a

fix point as quantified in Table 3.4. For initial values of f1(vR) = fc1(vR) and

f3(vR) = fc3(vR) greater than 1.5, these values are correct up to 2%. The higher

fixed point value for the right-handed fc’s is a result of slower running caused by

the broken SU(2)R symmetry.

The fixed-point behavior implies an upper bound for the slepton masses, as

can be seen in Figure 3.5. The plot displays the dependence of the selectron masses

on the initial value of f1(vR) = fc1(vR) = f3(vR) = fc3(vR) ≡ f . Below f ≈ 0.5

the selectron mass-squares are negative. At f ≈ 0.5, the seesaw couplings begin
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f3 f1 fc3 fc1

Fixed Point Value 0.64 0.64 0.67 0.67

Table 3.4: Fixed point values of the seesaw couplings at Fφ assuming initial values
are above 1.5.
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Figure 3.5: Plot ofmẽc (dashed) andmẽ as a function of f1(vR) = fc1(vR) = f3(vR) =
fc3(vR) ≡ f for Fφ = 33 TeV. The greyed-out region has been excluded by LEP II.
The line around 417 GeV is the mass of the lightest neutralino.

dominating the scalar mass expression and there is a steep rise from their quartic

dependence. The ascent levels off, however, around f ∼ 1 where the asymptotic

limit is due to the fixed-point behavior.

The masses of the other sleptons follow the behavior of Figure 3.5, and, as

can be seen in the plot, this results in a mild degeneracy between the left- and

right-handed slepton masses. The mild degeneracy at first seems a bit contrary to

Eqs. (3.41) and (3.42), where the f 4
1 factor is twice as large for left-handed sleptons

as it is for the right-handed sleptons; however, this term is limited in size by the

fixed-point of f1 and the negative SU(2)L contribution happens to be a little less

than half of this value. The accidental cancelation between these terms then yields

the degeneracy.
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The similarities of left- and right-handed slepton masses is an interesting situa-

tion phenomologically since it numerically falls in between mSUGRA/mGMSB (with

large splittings) and mAMSB (with a high degeneracy). In mSUGRA, left-handed

slepton masses get large positive contributions from ML as they run from the UV,

where in mGMSB the boundary conditions dictate the left-handed to right-handed

mass ratio to be α2 : α1. For these two theories then, the left-handed sleptons are

always heavier than the right-handed ones. Meanwhile, in mAMSB both sectors get

the same (and dominant) contribution from m0 so they are highly degenerate. Fur-

thermore, accidental cancellations in the anomaly-induced splittings related to the

gauge and D-term contributions[62, 88] result in splittings dominated by loop-level

effects which are quite small[62].

To demonstrate just how this may be important, mAMSB predicts a mass

splitting ∆e = m2
ẽL
− m2

ẽR
∼ 751 GeV2[62, 88] for tan β = 3.25 and Fφ = 33

TeV (note that the value of m2
0 is irrelevant for the mass difference). The percent

difference, defined as

% difference ≡ ∆e

(mẽL
+mẽR

)2
, (3.74)

is highly dependent on the masses of the selectrons; but for selectron masses around

450 GeV, the percent difference is less than 1%. The situation in SUSYLR+AMSB

is quite different as Figure 3.6 shows: the difference can rise as high as 5%. While

a hadron collider would not be able to see this, a lepton collider can achieve a

roughly 2% resolution of slepton masses from the end-point lepton distribution of

the selectron decays[89]. Therefore such a distinction is feasible, and measurements

of mild mass differences around 3 − 5% will single out this model from mSUGRA

and mGMSB while potentially discriminating it from mAMSB (though this will be

highly dependent on the values of the seesaw couplings).

Finally, the slepton masses provide an interesting bound when it is demanded

that the theory have a viable dark matter candidate. Figure 3.7 shows constant
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Figure 3.6: Contours of constant
m2

ẽ−m2
ẽc

(mẽ+mẽc )2
× 100% in the f3(vR)–f1(vR) plane. The

unlabeled contours on the left side of the plot, from left to right, correspond to
2%, 3%, 4% and 5%. The dashed vertical (horizontal) contour corresponds to a τ̃1
(ẽc)constant contour of mass equal to that of the LSP (417 GeV). The shaded region
is excluded by LEP II bounds of 81.9 GeV (94 GeV) on the mass of τ̃1 (ẽc).

mass contours for the right-handed selectron in the fc3(vR)–fc1(vR) plane with the

shaded region excluded by LEP II. The dashed lines, on the other hand, define

the region with a viable dark matter as they represent mτ̃1 = mχ̃0
1

(vertical) and

mẽc = mχ̃0
1

(horizontal). Clearly, insisting the theory explain dark matter yields a

much more stringent bound than the experimental constraints. What makes this

more interesting is that, as Figure 3.7 indicates, the seesaw couplings need to be

within 10% of their fixed-point value, fc1(Fφ) ∼ fc3(Fφ) ∼ f1(Fφ) ∼ f3(Fφ) ∼ 0.6

if the LSP is the lightest neutralino. Therefore, a successful explanation of dark

matter leaves the seesaw couplings larger than about 0.5. Noting that the lightest

neutralino has a mass of approximately the wino (see Section 3.5.4), and using the

expression of the selectron mass from AMSB, it is straightforward to place a bound

on f(Fφ) ≡ f1(Fφ) = f3(Fφ) of:

f(Fφ) & 0.58. (3.75)
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Figure 3.7: Mass contours for the right-handed selectron mass, mẽ in the f3(vR)–
f1(vR) plane at Fφ = 33 TeV. The horizontal and vertical shaded areas are ruled out
due to LEP II bounds on the lightest stau (mτ̃1 > 81.9 GeV) and selectron (mẽ > 94
GeV) masses respectively. The dashed vertical contour is mẽ = mχ̃0

1
= 417 GeV

indicating the point where the LSP is neutralino. The dashed horizontal curve
corresponds to mτ̃1 = mχ̃0

1
. The fixed point behavior of f1 is apparent after f1 ∼ 1

at which point the contours curve more drastically.

3.5.3 Squarks

The main feature of SUSYLR+AMSB is a natural means to avoid tachyonic

sleptons; however, the squark masses also have a couple of noteworthy features.

First, as in mAMSB, the squark masses decrease with energy because the SU(2)L×

U(1)Y gauge couplings become larger and hence their negative contribution increases

in magnitude. Therefore, it is conceivable that the negative contribution equals the

positive contribution and the squark masses become zero at a certain energy scale,

Mq0[90]. If this does happen, the squark mass-squares would be negative for energies

above Mq0, resulting in a vacuum that breaks SU(3)c. This scenario has been

considered in mAMSB[90], where it was determined that the squark mass squares

do turn negative before MPl, but at a high, Mq0 ∼ MGUT � Fφ energy scale. The

issue must be reconsidered here because the new particle content alters the slope
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of the SU(2)L × U(1)Y gauge couplings, resulting in the couplings running faster

(for the hypercharge coupling, the effect is quite large). Despite this faster running,

the squark masses still turn negative at a high scale, Mq0 ∼ 109 GeV � Fφ, though

slightly before the vR scale. Typically the effect of these negative mass-squares

would be expected to turn up from physics at temperatures near Mq0, where the

vacuum would be capable of breaking color; however, at such temperatures the

vacuum of the theory is also affected by temperature corrections. Consequently

the mass-square term of the squarks picks up a temperature dependence of the

form µ2(T )q̃ ' (−M2
AMSB + λT 2). The first term only grows logarithmically with

temperature, whereas the second term grows quadratically. The coefficient λ is

positive, and even though it is ‘small’, the mass-square remains positive definite

because T is so large. Thus the temperature effects alone ensure the color gauge

symmetry remains intact in the early universe.

It is also worth noting that the right-handed squarks are slightly heavier than

left-handed squarks because of the negative SU(2)L contribution. This is different

from mSUGRA and mGMSB (though the result is essentially the same in mAMSB)

where all gauge couplings yield positive contributions. In these theories, then, the

left-handed squarks are always heavier (this can be seen in Figure 3.3).

3.5.4 Bosinos and the Lightest Supersymmetric Particle

Because all superpartners eventually decay into the LSP, its makeup is an im-

portant part of SUSY collider phenomenology and dark matter prospects; therefore,

understanding that makeup is vital. Cosmological constraints rule out a charged

or colored LSP as dark matter[91], limiting the choices to the sneutrino or lightest

neutralino. The former, in typical models, makes a poor dark matter candidate

as its relic abundances are too light and much of its mass range is ruled out by

direct detection [92, 93]. The responsibility of dark matter therefore falls upon an
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LSP being the lightest neutralino—a typical candidate in common SUSY scenarios

(except in mGMSB where the LSP is always the gravitino, so the neutralino is the

next-to lightest supersymmetric particle [94]).

Due to R-parity conservation, the lightest neutralino will be some mixture

of the B − L = 0 fields: the neutral wino, the bino, the neutral higgsinos, and

the singlino. In the SUSYLR+AMSB model, the singlet VEV, n, is typically large

compared to the other elements of Eq. (3.72), so the singlino decouples and becomes

the heaviest neutralino.

The relative gaugino composition of the lightest neutralino is fairly easily cal-

culated and relatively independent of the point in parameter space: it follows from

the gaugino mass ratio which, in AMSB models, depends on both the gauge cou-

plings and the α−1 beta functions b. For the NMSSM++ the latter quantity is more

important since this is where the effects of the light triplets and doubly-charged hig-

gses are felt the most severely (as demonstrated by Table 3.5). The gaugino mass

bY bL b3

MSSM 33
5

1 −3

NMSSM++ 78
5

6 −3

Table 3.5: Values of the α−1 beta function in the MSSM and NMSSM++.

ratio of the NMSSM++ is M3 : M2 : M1 ∼ 1.3 : 1 : 1.3. This is a striking ratio due

to its close proximity of the gaugino masses, unlike other popular scenarios (see Ta-

ble 3.6). The nearly-degenerate gaugino masses then implies that the NMSSM++

has a light neutralino with a large wino component and a non-negligible bino com-

ponent. This is in stark contrast to mAMSB where the ratio implies the gaugino

composition is all wino. It also contrasts the mSUGRA and mGMSB where the

lightest neutralino is always mostly bino.

Furthermore, in the NMSSM++ the mass of the LSP may be larger because
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M3 : M2 : M1

NMSSM++ 1.3 : 1 : 1.3
mAMSB 8 : 1 : 3.5
mSUGRA 3 : 1 : 0.3
mGMSB 3 : 1 : 0.3

Table 3.6: The gaugino mass ratios for four SUSY breaking scenarios, including the
low-energy SUSYLR+AMSB (NMSSM++)

of the gaugino contribution. This is because the gaugino mass terms are bounded

by

MY . 1350 GeV ML . 980 GeV. (3.76)

which comes from the limit Fφ . 63 TeV. This is important in terms of available

parameter space: in mAMSB, ML . 200 GeV [88], and experiment has ruled out

much of its parameter space; for the NMSSM++ this is no longer the case.

The higgsino composition, on the other hand, is not independent of other

parameters and is therefore not as predictable. Numerical results indicate, however,

that the µ value is typically slightly smaller than ML, resulting in an LSP that

is mostly higgsino, significantly wino, and non-negligibly bino. The next lightest

neutralino, χ̃2, is then all higgsino, while χ̃0
3 is mostly wino and significantly higgsino

(the composition is complementary to the lightest neutralino χ̃0
1). Finally, χ̃0

4 is

mostly bino (as already established, χ̃0
5 is all singlino).

Another important particle in decays is the chargino, which is a mixture of

wino and higgsino. As already noted, the µ term is typically smaller than ML,

which implies, from Eq. (3.71), that the lightest chargino, χ̃+
1 , is mostly higgsino

with some wino; therefore, the heaviest chargino, χ̃+
2 is mostly wino with some

higgsino—a similar composition to χ̃0
3, and complementary to χ̃0

1.

In addition to the composition, the mass difference between the charginos

and neutralinos is also important since the charginos will decay to the LSP. As the
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neutral higgsino and wino form isospin doublets and triplets with the appropriate

charginos, there is potential for a very small mass difference between the lightest

neutralino and the lightest chargino. This is very pronounced in mAMSB where

the mass difference of the lightest neutralino and chargino is on the order of 100s

of MeVs, including leading radiative corrections. Analytical approximations for the

difference have been given in [62, 95, 88] for large µ; however, such approximations

are not as useful here since µ ∼MY ∼ML.

To obtain an expression for the mass difference of the lightest neutralino and

chargino relevant to NMSSM++, it is necessary to consider the two mass matrices

given in Eqs. (3.72) and (3.71). Comparison of the two reveals that the neutralino

matrix has a mixing dependent on tan β that is absent in the chargino matrix. As

tan β → 1, the extra mixing parameter of the neutralinos goes to zero; hence, for

tan β = 1 the mass difference is minimal. The eigenvalues of the two matrices may

then be expanded for tan β = 1 using the approximation MY ∼ ML > µ � MZ .

This yields, to first order:

∆χ̃1 ≡ mχ̃±1
−mχ̃0

1
> 2 sin2 θW

M2
Z

MY

. (3.77)

The neglected second order term is positive definite so that ∆χ̃1 truly represents

the minimal value for the mass splitting. As a check of the expression, ∆χ̃1 → 0

as tan θW → 0; since tan θW → 0 restores the custodial SU(2), this is the expected

behavior. Additionally, MY →∞ restores the custodial SU(2) when tan β = 1, and

indeed ∆χ̃1 → 0.

Since Eq. (3.77) depends on 1/MY , while all other parameters are known, its

minimum occurs when MY is maximized; this is fortunate because Eq. (3.76) gives

an upper bound for MY . Application of this limit yields

∆min
χ̃1

> 1.4 GeV (3.78)

Evidently, this is larger than the mAMSB value of a few 100s of MeV. For a quan-
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Figure 3.8: Mass difference of the lightest chargino and neutralino as a function

of µ for λ = 0.26, tan β = 3.25, and the singlino mass term, 2
(
µN + 1√

2
nκ
)

=

2MY . From top to bottom, ML = 1.1µ, 1.5µ, 2µ and 3µ. The line at 165 MeV is
the asymptotic value for large ML in mAMSB, while the dotted curve represents
where squark masses are about a TeV—below this curve, the Higgs mass would be
considered fine-tuned to some extent.

titative comparison, numerical examples of the NMSSM++ mass differences are

displayed in Figure 3.8 as a function of µ ≡ 1√
2
λn.

3.5.5 Dark matter

Due to the preservation of R-parity, the LSP is stable and therefore is a po-

tential dark matter candidate. Section 3.5.4 gives its composition, which is predom-

inantly higgsino, some wino, and a tiny but non-negligible bino (around 1%). The

annihilation rate for a mostly higgsino/wino LSP is far too large for its relic density

at freeze out to be sufficiently high enough to explain the observed Ωm ≈ 0.20. This

issue has already been resolved, however, in mAMSB with a wino LSP[96]. In that

case the abundance of LSP at freeze out is not the source of dark matter, rather

the late decay of the gravitino—which occurs after LSP freeze out—generates the

LSP in a non-equilibrium environment. The generation of these non-thermal LSPs

is sufficient to achieve the appropriate dark matter abundance[96].
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In the SUSYLR+AMSB model, the same mechanism will also allow an accept-

able dark matter abundance to be obtained. This is because the argument given in

[96] depends on three properties which are not specific to the wino:

1. the LSP mass,

2. the LSP interactions with the gravitino, and

3. the LSP annihilation rate.

For SUSYLR+AMSB the LSP mass is very similar to those of [96]. Further-

more, as the mass is the same, the interaction with the gravitino is equivalent since

this is purely gravitational (i.e. only mass dependent). Finally, the annihilation

rate for the higgsino/wino combination is similar to that of the wino because both

take place through t-channel chargino exchange and the higgsino couplings to the

chargino with the same strength, αL.

Another consideration for dark matter is the direct detection limit given by

nucleus recoil experiments. The current bounds are set by CDMS Soudan and

EDELWEISS, and the dark matter of the ÑMSSM evades these bounds. Perhaps

more importantly, however, is that the projected sensitivity of the currently-planned,

near-future experiments will probe the mass and cross section of this model’s dark

matter. Thus the model—at least as far as its dark matter candidate—may be ruled

out or confirmed shortly.

3.5.6 Collider Signatures

At the LHC the studied SUSY signals are done in the mSUGRA framework.

The pertinent signals are chargino decays yielding dilepton or trilepton signals[97,

90, 98, 27]. The processes for these events are
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pp→ q̃Lq̃L q̃L → qχ̃+
1 χ̃+

1 → `+νχ̃0
1 (3.79)

pp→ q̃Lq̃L

{
q̃L

q̃L

→ qχ̃+
1

→ qχ̃0
2

χ̃+
1

χ̃0
2

→ `+νχ̃0
1

→ `+`−χ̃0
1

(3.80)

where there is a great deal of “schematicity”. In this scenario the right-handed

squark plays no role because it decays directly to the LSP due to the LSP being

mostly bino.

However, in the mAMSB scenario the LSP is mostly wino and the lightest

chargino is also purely wino. Therefore the left-handed squarks do not utilize the

process Eq. (3.80), but rather decay directly to the LSP instead. The direct decay

to the LSP has no chance of detection, because it manifests as missing energy plus

a jet, which has far too large a background. The decay chain Eq. (3.79) is then the

only one available for mAMSB, but this decay is dominantly χ̃+
1 → π+χ̃0

1 and not

leptons. Due to the small mass difference of χ̃+
1 and χ̃0

1 the resulting pion is far

too soft to be detected. Alternatively the right-handed squarks do favor decays to

heavier neutralinos since they are mostly bino. The process,

pp→ q̃cq̃c q̃c → qcχ̃0
2 χ̃0

2 → `+`−χ̃0
1, (3.81)

however, does not yield same-sign dileptons or trilepton signals.

Interestingly enough, the use of SUSYLR with AMSB permits the restoration

of the dilepton and trilepton channels. This is because in certain parameter regimes

the left-handed squarks will favor decays to χ̃0
3 or χ̃+

2 due to their higher wino

content. These particles may then decay leptonically:

pp→ q̃Lq̃L q̃L → qχ̃+
2 χ̃+

2 → `+νχ̃0
1

pp→ q̃Lq̃L

{
q̃L

q̃L

→ qχ̃+
2

→ qχ̃0
3

χ̃+
2

χ̃0
3

→ `+νχ̃0
1

→ `+`−χ̃0
1

(3.82)

For other parts of the parameter space, the situation is similar to the mAMSB
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decays; however, the larger mass difference yields additional potential for detection

if it is large enough to produce a τ or a hard µ. Sadly, this advantage is muted by

a faster chargino decay which eliminates chances of long-lived charged tracks and

no muon chamber activity. Regardless, similar situations have been analyzed and

found to be manageable for both lepton colliders[99] and the Tevatron [95, 100].

3.5.7 The Higgs Boson

The lightest higgs boson—the particle that would appear as the SM higgs and

hence the particle that prompted the introduction of SUSY—plays an important

role in limiting the SUSY breaking parameter, Fφ, providing both an upper and

lower bound.

As is well established, the lightest higgs mass at tree-level is at most MZ ,

meaning the full one-loop radiative corrections are responsible for producing a mass

in excess of the LEP II bound (provided it wasn’t missed through invisible decays).

The most important contribution is due to top and stop loops, and the expressions

may be found in [101]. As the top mass is known, it falls on the stop mass to provide

a sufficiently large contribution to evade the LEP II limit. This constraint yields a

lower bound for the stop mass, mt̃ & 600 GeV, which immediately implies

Fφ & 33. (3.83)

Simultaneously, the same corrections to the lightest higgs mass are expected

to be of the same order as this higgs’s mass if the theory is not to be considered

“fine-tuned”. That is, if it is expected that SUSY solves the gauge-hierachy problem,

the squark masses’ contribution to the lightest higgs mass must not conveniently

cancel to yield the correct mass of the higgs. This naturalness argument states that

the squarks masses must be less than about 1 TeV to avoid any ‘fine-tuning’. This

translates into an upper bound for Fφ,
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Fφ . 63 TeV. (3.84)

3.5.8 Exotics

While the SU(2)L triplets and right-handed doubly-charged particles must

have a SUSY mass around Fφ ∼ 33 TeV to resolve the issue of tachyonic sleptons,

this does not eliminate the possibility of their being seen at the LHC. Or rather,

it does ensure that the corresponding fermions will not be seen at the LHC (whose

center of mass energy, as a reminder, is 14 TeV), but not the scalar particles.

As argued, the scalar triplets and doubly-charged particles split in mass due

to SUSY breaking (see Eq. (3.26)), yielding a lighter mass of
√
ε∆|Fφ| ' 1.5 TeV.

Such a mass would be accessible to the LHC, and may then be seen through its

striking four lepton decays[102].

In addition to the LHC, the upcoming muonium-antimuonium oscillation ex-

periments would also be sensitive enough to detect an O(1 TeV) doubly-charged

particle since their couplings to the first and second generation leptons must be

large in this model.
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Chapter 4

Conclusion

This thesis considered the supersymmetric left-right model in the context of

anomaly mediated supersymmetry breaking. The model was motivated by phe-

nomenological considerations to explain neutrino oscillations and to provide a vi-

able dark matter candidate. The bottom-up approach was taken to yield a minimal

extension of the MSSM that incorporated this phenomenology through the seesaw

mechanism and automatic R-parity conservation. This minimal extension achieved

these goals through the addition of B−L = ±2 triplets. These new particles, which

were motivated through independent reasons, were then shown to solve the tachy-

onic slepton problem of AMSB in the context of the MSSM through the introduction

of the seesaw couplings.

The resulting combined model, SUSYLR+AMSB, retained the characteristic

UV insensitivity and powerful predictability inherent in AMSB while retaining in-

fluence from the new particle content. The new high-scale couplings were shown to

survive the UV insensitivity “washout” due to an accidental symmetry of the model

that was broken solely by non-renormalizable operators. This explicit breaking

resulted in low mass values for the left-handed triplets and right-handed doubly-

charged particles despite an O(1011 GeV) scale of B − L breaking.

The low energy consequences of the theory were then explored, taking into con-

sideration experimental constraints on the triplets and doubly-charged couplings. It

was shown that the particles satisfy the lepton flavor violation limits and the most

stringent bound of muonium-antimuonium oscillation. Furthermore, the limits of

future planned experiments such as PRISM[103] will probe a majority of the pa-

rameter space related to these new particles thus providing a means of falsifying the
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model. Additionally, it was demonstrated that these exotic particles were capable

of having masses within the reach of the LHC and so there are multiple means of

discovery.

This thesis proceeded to investigate the viability of EWSB and the size of

the Bµ term. The model was revealed to contain a natural solution to the EWSB

problem of combining the NMSSM with AMSB. The Bµ term in the theory was

demonstrably sizable to permit a large singlet VEV and still satisfy EWSB con-

straints.

Finally, the low-energy features were considered, and the general features of

the superpartners’s mass spectrum were given. The same spectrum was compared to

other SUSY breaking scenarios, including the mAMSB, and shown to significantly

differ. The slepton masses were then explored to determine constraints and depen-

dence on the seesaw parameters. Subsequently, the higgsino and gaugino masses,

which is related to the dark matter composition, were investigated and bounds

were obtained on the gaugino parameters. The scenario of relic abundance for dark

matter was addressed, where it was pointed out that the model can use late-stage

gravitino decay to obtain the appropriate abundance. Furthermore the direct detec-

tion cross-section was explained to be within experimental limits, but within reach

of near future experimental sensitivities.
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Appendix A

Notation Conventions

In this appendix we summarize our notational conventions.

A.1 Explanation of Symbols

[A,B] commutator of A and B, defined in Eq. (A.5)

{A,B} anti-commutator of A and B, defined in Eq. (A.6)

Aµ photon vector field

αG ‘fine-structure’ constant for the group G

Bµ hypercharge or B − L vector field

Bµν hypercharge or B − L field strength

B hypercharge or B − L vector superfield

Bα field strength for hypercharge or B − L vector superfield

CG quadratic casimir invariant/dynkin index for the group G

CG
R quadratic casimir invariant in representation R of the group G

C charge conjugation acting on a dirac field

Dµ gauge covariant derivative

Dα superderivative

Dα̇ superderivative conjugate

∂µ partial derivative with respect to spacetime

δ a small (compared to one) number

δb
a kronecker delta

δAB kronecker delta

δ(x) the dirac delta function
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e base of natural logarithm, see Section A.2

ε a small (compared to one) number

εa1a2···an totally antisymmetric levi-civita tensor density

ηµν minkowski (flat) spacetime metric tensor, defined in Eq. (A.3)

fABC
G structure constants for the group G

Fφ 〈F 〉 of the conformal compensator divided by MPl

GA
µ gluon vector field

GA
µν gluon field strength

GA gluon vector superfield

G α field strength for gluon vector superfield

GN Newton’s gravitational constant, see Section A.2

g3 gauge coupling constant for SU(3)c

gBL gauge coupling constant for SU(2)B−L

gG gauge coupling constant for the group G

gL gauge coupling constant for SU(2)L

gR gauge coupling constant for SU(2)R

gY gauge coupling constant for the hypercharge U(1)

ḡY GUT normalized gauge coupling constant for the hypercharge U(1)

gµν metric tensor

Γα
µν affine connection

γµ dirac matrix

γi
j anomalous dimension

i square-root of minus one, see Section A.2

K kähler potential

L lagrangian density, referred to as lagrangian

λA Gell-Mann lambda matrices
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man Fφ/16π2

MG the gaugino mass for the group G

MGUT the grand unification scale

MPl the planck mass or reduced planck mass

MSUSY the SUSY scale

MX the next higher scale of new physics

MZ the mass of the Z boson

MW the mass of the W boson

PL,R projection operator acting on dirac field

PL,R projection operator relating dirac and weyl fields

P̄L,R projection operator relating dirac and weyl fields

∂µ partial derivative with respect to spacetime

Φ scalar field or higgs boson

Φi generic chiral superfield or a higgs bidoublet superfield

Φi the scalar component of the superfield Φi

φ conformal compensator

$G multiplicative inverse of αG

	 dirac field (four component spinor)

ψ weyl field (two component spinor)

R ricci scalar

R(Φi) R charge of Φi or representation of Φi for a group G

Rµν ricci tensor

Rα
µβν riemann tensor

SG
R dynkin index in representation R of the group G

σi pauli matrices

σµ the identity and σi
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TG generator for the group G(
TG

R

)
A

the Ath generator for the group G in representation R(
TG

R

)
A the Ath generator for the group G in representation R

τ2 second pauli matrix

τA pauli matrices

τG gauge supercoupling for the group G

Θ vacuum polarization angle

θα grassmann variable

θ̄α̇ grassmann variable conjugate

V A
µ generic vector field with group index A

VG vector superfield for the group G

VG field strength for vector superfield VG

WA
µ SU(2)L, SU(2)R vector field

WA
µν SU(2)L, SU(2)R field strength

WA SU(2)L, SU(2)R vector superfield

W α field strength for SU(2)L, SU(2)R vector superfield

W superpotential

Zµ standard model Z boson

Zi
j wavefunction renormalization constant

Zi
j wavefunction renormalization superconstant

Z set of integers

ζi
j anomalous mass dimension

77



A.2 Physical and Mathematical Constants

GN 6.67× 10−11 m3/kg·s2

h 6.626× 10−34 J·s

~ 1.054× 10−34 J·s = 6.582× 10−22 MeV·s

c 299 792 458 m/s

e lim
x→0

(1 + x)1/x = 2.718 · · ·

i
√
−1

π 3.141 59 · · ·

γE lim
n→∞

( n∑
k=1

1

k
− lnn

)
= 0.577 · · ·

A.3 Field Theory

Field theory takes quantum mechanics and makes it consistent with special

relativity. As such it treats space and time on equal footing: taking both as param-

eters of the theory and postulating that the particle or field (which depends upon

spacetime) is an operator. Because space and time are on equal footing, the the-

ory’s space and time dependence is most easily written in terms of the contravariant

four-vector

xµ ≡ (t, ~x) (A.1)

with µ ∈ {0, 1, 2, 3} and defining time as the zeroth component. Lengths are deter-

mined by a metric, gµν , and given as

ds2 =
∑

µ

∑
ν

gµνdx
µdxν (A.2)

Since field theory1 deals with flat spacetime, the metric gµν is the minkowski metric,

given the symbol ηµν , and defined by

1at least the field theory considered in this text
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ηµν =


+1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (A.3)

Invariant products of four-vectors involve the metric through∑
µ

∑
ν

ηµνx
µxν

and it is convenient to define the covariant four-vector

xµ ≡
∑

ν

ηµνx
ν . (A.4)

The invariant products of four-vectors may then be expressed as∑
µ

xµxµ =
∑

µ

xµx
µ = xµxµ,

where the last equal, because the combination is always a subscript/superscript pair,

contains an implicit sum—this is the Einstein summation convention which states

that any subscript/superscript pair with the same index is assumed to be summed

over.

The language of field theory is also the language of quantum mechanics, so

that the commutator,

[A,B] ≡ AB −BA, (A.5)

appears and the fields themselves are chosen to have non-vanishing commutation

relations. Furthermore, since the theory will require fermions, the anti-commutator,

{A,B} ≡ AB +BA, (A.6)

is introduced so that the fermionic fields have non-vanishing anticommutation rela-

tions.
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A.3.1 Scalar Fields

A real, spin zero field Φ of mass m has the ‘free’ (i.e. non-interacting) la-

grangian

L =
1

2
(∂µΦ)(∂µΦ)− 1

2
m2Φ2 (A.7)

yielding the klein-gordon equation

∂µ∂µΦ−m2Φ = 0 (A.8)

from applying the variational principle.

The field Φ and its conjugate momentum

Π ≡ δL
δ∂0Φ

= ∂0Φ (A.9)

obey the canonical equal-time commutation relations

[Π(~x, t),Φ(~x ′, t)] = −iδ3(~x− ~x ′)

[Π(~x, t),Π(~x ′, t)] = 0

[Φ(~x, t),Φ(~x ′, t)] = 0 (A.10)

A.3.2 Fermion Fields

A spin one-half field 	 of mass m has the ‘free’ (i.e. non-interacting) lagrangian

L = i	γµ∂µ	−m		 (A.11)

yielding the dirac equation

iγµ∂µ	−m	 = 0 (A.12)

from applying the variational principle.

The lagrangian Eq. (A.11) involves

	 ≡ 	
†γ0, (A.13)

and the objects γµ which, along with an additional object γ5, obey
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{γµ, γν} = 2ηµν {γµ, γ5} = 0 (γµ)† = γ0γµγ0 (A.14)

where

γ5 = γ5 = iγ0γ1γ2γ3 =
i

4!
εαβµνγ

αγβγµγν = γ†5. (A.15)

The smallest realization of the γ’s in 3+1 spacetime dimensions are 4× 4 matrices,

making 	 a four-component object. To make this explicit 	 is given a subscript

index a that runs from 1 to 4. The conjugate of 	a is then defined as

	
a ≡ 	

∗
a (A.16)

leading to 	 carrying a superscript index.

The field 	a and its conjugate momentum

Πa ≡ δL
δ∂0	a

= 	
a (A.17)

obey the canonical equal-time anticommutation relations

{	a(~x, t),	b(~x
′, t)} = δ3(~x− ~x ′)δa

b{
Πa(~x, t),Πb(~x ′, t)

}
= 0

{	a(~x, t),	b(~x
′, t)} = 0. (A.18)

A.3.2.1 Dirac vs. Weyl Spinors

The four component dirac spinor 	a defined in Section A.3.2 may be split

into two, two-component objects called weyl spinors. Let this two-component weyl

spinor be denoted ψα, where α runs over 1 and 2.

The products of dirac spinors may be explicitly written using indices:

	γµ
	↔ 	

a
(γµ)a

b
	b (A.19)

	
T
C	↔ 	aC

ab
	b (A.20)

	C	
T ↔ 	

a
Cab	

b
. (A.21)

The projection operators on dirac fields can then be defined as
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(PL)a
b =

1

2
(1− γ5)a

b (PR)a
b =

1

2
(1 + γ5)a

b. (A.22)

To relate the dirac and weyl spinors, four hybrid projection operators must also be

defined. These satisfy(
P̄L

)
a

α(PL)α
b = (PL)a

b
(
P̄R

)
aα̇

(PR)α̇b = (PR)a
b

(PL)α
a
(
P̄L

)
a

β = δβ
α (PR)α̇a (P̄R

)
aβ̇

= δα̇
β̇

(A.23)

Given these projection operators,

(PL)α
a
	a = ψLα 	

a(
P̄L

)
a

α = ψα
R

(PR)α̇a
	a = ψ†α̇R 	

a(
P̄R

)
aα̇

= ψ†Lα̇ (A.24)

In addition, the canonical anticommutation relations Eq. (A.18) imply the existence

of

ψα
L = εαβψLβ ψRα = εαβψ

β
R (A.25)

ψ†Rα̇ = εα̇β̇ψ
†β̇
R ψ†α̇L = εα̇β̇ψ†

Lβ̇
. (A.26)

With these hybrid projection operators, quantities involving the dirac fields and a

PL,R may then be expressed in terms of the weyl spinors. For example

	PLγ
µ
	 = 	PLγ

µ
PR	↔ 	

a(
P̄L

)
a

α(PL)α
b(γµ)b

c
(
P̄R

)
cα̇

(PR)α̇d
	d (A.27)

	PRγ
µ
	 = 	PRγ

µ
PL	↔ 	

a(
P̄R

)
aα̇

(PR)α̇b (γµ)b
c
(
P̄L

)
c

α(PL)α
d
	d (A.28)

The gamma matrices, and consequently the charge conjugation matrix, become

(PL)α
b(γµ)b

c
(
P̄R

)
cα̇

= σµ
αα̇ (PR)α̇b (γµ)b

c
(
P̄L

)
c

α = σ̄µα̇α (A.29)

C
ab
(
P̄L

)
a

α
(
P̄L

)
b

β = εαβ (PL)α
a(PL)β

b
Cab = εαβ

C
ab
(
P̄R

)
aα̇

(
P̄R

)
bβ̇

= εα̇β̇ (PR)α̇a (PR)β̇b
Cab = εα̇β̇ (A.30)

with
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εαβ =

(
0 −1
1 0

)
εα̇β̇ =

(
0 1
−1 0

)
(A.31)

εαλελβ = δα
β εα̇λ̇ελ̇β̇ = δα̇

β̇
(A.32)

σ0
αα̇ =

(
1 0
0 1

)
σ1

αα̇ =

(
0 1
1 0

)
σ2

αα̇ =

(
0 −i
i 0

)
σ3

αα̇ =

(
1 0
0 −1

)
(A.33)

(σ̄µ)α̇α = εα̇β̇εαβσµ

ββ̇
(A.34)

Using these results a dictionary can be constructed relating dirac and weyl spinors.

A.3.2.2 Weyl-Dirac Spinor Dictionary

Choosing the convention that

ψRψL ≡ ψα
RψLα ψ†Lψ

†
R ≡ ψ†Lα̇ψ

†α̇
R (A.35)

the dictionary takes the form

	1PL	2 = ψ1Rψ2L

	1PR	2 = ψ†1Lψ
†
2R

	
T
1 CPL	2 = −ψ1Lψ2L

	
T
1 CPR	2 = −ψ†1Rψ

†
2R

	1PLC	
T

2 = ψ1Rψ2R

	1PRC	
T

2 = ψ†1Lψ
†
2L

	1γ
µ
PL	2 = ψ†1Lσ̄

µψ2L

	1γ
µ
PR	2 = ψ1Rσ

µψ†2R (A.36)

A.4 Gauge Groups

Let G be a gauge group of dimension d(G) having the gauge coupling constant

gG, the structure constants fABC
G , the fundamental symmetric constants dABC

G , and
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the generators TG
R for a representation R. The ‘fine structure’ constant of G is given

by

αG ≡
g2

G

4π
(A.37)

and its multiplicative inverse is denoted

$G ≡
1

αG

=
4π

g2
G

. (A.38)

The generators of G obey[(
TG

R

)
A,
(
TG

R

)
B
]

= i

∑
C

fABC
G

(
TG

R

)
C (A.39)

and also define the quadratic casimir invariant CG
R and dynkin index SG

R through

CG
R δi

j =
∑

A

[(
TG

R

)
A
(
TG

R

)
A
]
i

j (A.40)

SG
Rδ

AB = Tr
[(
TG

R

)
A
(
TG

R

)
B
]
. (A.41)

In the fundamental representation, denoted by a subscript zero, the generators

may be taken as n× n matrices obeying[(
TG

0

)
A,
(
TG

0

)
B
]

= i

∑
C

fABC
G

(
TG

0

)
C (A.42)

{(
TG

0

)
A,
(
TG

0

)
B
}

=
1

n
δAB +

∑
C

dABC
G

(
TG

0

)
C (A.43)

with the normalization convention

Tr
[(
TG

0

)
A
(
TG

0

)
B
]

= SG
0 δ

AB =
1

2
δAB. (A.44)

In the adjoint representation, denoted by a subscript A, the structure constants

are the generators,[(
TG
A
)

A
]
BC

= ifABC =
1

SG
0

Tr
([(

TG
0

)
A,
(
TG

0

)
B
] (
TG

0

)
C
)

(A.45)

and the quadratic casimir invariant is equal to the dynkin index

CGδ
AB ≡ CG

Aδ
AB = SG

Aδ
AB =

∑
C,D

fACD
G fBCD

G (A.46)
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A.4.1 Gauge Covariant Derivative

Let the gauge group G be a product of n simple groups and p U(1) groups,

G = G1 ×G2 × · · · ×Gn × U1(1)× U2(1)× · · · × Up(1). (A.47)

with the respective gauge fields(
V G1

µ , V G2
µ , . . . , V Gn

µ , B1
µ, B

2
µ, . . . , B

p
µ

)
(A.48)

The gauge covariant derivative is then given by

(a1,a2,...,an+p)D
(b1,b2,...,bn+p)
µ =

[
n+p∏
j=1

δbj
aj

]
∂µ − i

n∑
j=1

[
n+p∏
k 6=j

δbk
ak

]
d(Gj)∑
Aj=1

gj

[(
T

Gj

R

)Aj

]bj

aj

(
V Gj

µ

)Aj

− i

n+p∑
j=n+1

[
n+p∏
k 6=j

δbk
ak

]
gj

(
T

Uj−n(1)
R

)bj

aj
Bj−n

µ

(A.49)

The above expression explicitly separates the group into products of simple or U(1)

groups; however, it may just as easily be considered that G has the generators TA

where

TA =



TA
G1

for 1 ≤ A ≤ d(G1)

T
A−d(G1)
G2

for 1 ≤ A− d(G1) ≤ d(G2)
...

T
A−

Pn−1
j=1 d(Gj)

Gn
for 1 ≤ A−

∑n−1
j=1 d(Gj) ≤ d(Gn)

TU1(1) for A =
∑n

j=1 d(Gj) + 1

TU2(1) for A =
∑n

j=1 d(Gj) + 2
...
TUp(1) for A =

∑n
j=1 d(Gj) + p

, (A.50)

the gauge field VA
µ defined as
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VA
µ =



(
V G1

µ

)A
for 1 ≤ A ≤ d(G1)(

V G2
µ

)A−d(G1)
for 1 ≤ A− d(G1) ≤ d(G2)

...(
V Gn

µ

)A−Pn−1
j=1 d(Gj) for 1 ≤ A−

∑n−1
j=1 d(Gj) ≤ d(Gn)

B1
µ for A =

∑n
j=1 d(Gj) + 1

B1
µ for A =

∑n
j=1 d(Gj) + 2

...
Bp

µ for A =
∑n

j=1 d(Gj) + p

, (A.51)

and the gauge couplings gA given by

gA =



g1 for 1 ≤ A ≤ d(G1)
g2 for 1 ≤ A− d(G1) ≤ d(G2)
...

gn for 1 ≤ A−
∑n−1

j=1 d(Gj) ≤ d(Gn)

gn+1 for A =
∑n

j=1 d(Gj) + 1

gn+1 for A =
∑n

j=1 d(Gj) + 2
...
gn+p for A =

∑n
j=1 d(Gj) + p

. (A.52)

The gauge covariant derivative may then be expressed more simply as

iD
j
µ = δj

i ∂µ − i

d(G)∑
A=1

gA

(
TA
)j

i
VA

µ (A.53)

with d(G) =
∑n

j=1 d(Gj) + p.

A.4.2 The Standard Model Gauge Group

The SM gauge group, SU(3)c × SU(2)L × U(1)Y , has the gauge couplings g3,

gL, gY , and the gauge fields G, W , and B, respectively.

The value for the SM gauge couplings evaluated at MZ are
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$3 = 8.50± 0.15

$L = 29.61± 0.05

$Y = 35.98± 0.03

$Y = 59.97± 0.05

$em = 128

g3 = 1.22± 0.02

gL = 0.6514± 0.0006

gY = 0.5910± 0.0004

ḡY = 0.4616± 0.0002

gem = e = 0.31

In the fundamental representation, the generators of SU(3)c are the Gell-Mann

λ matrices divided by two, the generators of SU(2)L are the pauli matrices divided

by two, and the generators of U(1)Y are, by the convention used here, half of the

particle’s hypercharge.

The quadratic casimir invariant for a field in the fundamental representation

of SU(3)c is 4/3 and of SU(2)L is 3/4.

The structure constants of SU(3)c, denoted fABC
3 , have the non-zero values

f 123
3 = 1 (A.54)

f 147
3 = f 246

3 = f 257
3 = f 345

3 =
1

2
(A.55)

f 156
3 = f 367

3 = −1

2
(A.56)

f 458
3 = f 678

3 =

√
3

2
; (A.57)

the structure constants of SU(2)L, denoted fABC
2 , are the levi-civita tensor density,

fABC
2 = εABC ; (A.58)

the structure constants of U(1)Y are all zero.

The fundamental symmetric constants of SU(3)c, denoted dABC
3 , have non-zero
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entries

d118
3 = d228

3 = d338
3 =

1√
3

(A.59)

d146
3 = d157

3 = d256
3 = d344

3 = d355
3 =

1

2
(A.60)

d247
3 = d366

3 = d377
3 = −1

2
(A.61)

d448
3 = d558

3 = d668
3 = d778

3 = − 1

2
√

3
(A.62)

d888
3 = − 1√

3
; (A.63)

the fundamental symmetric constants of SU(2)L are all zero.

The gauge covariant derivative for the SM gauge group is

(a3,a2,a1)D
(b3,b2,b1)
µ = δb3

a3
δb2
a2
δb1
a1
∂µ − ig3(TA)b3

a3
GA

µ δ
b2
a2
δb1
a1

− igLδ
b3
a3

(TA)b2
a2
WA

µ δ
b1
a1
− igY δ

b3
a3
δb2
a2

(T )b1
a1
Bµ (A.64)

A.5 Supersymmetry

Supersymmetry is a symmetry between bosonic degrees of freedom and fermi-

onic degrees of freedom; one means of treating these on equal footing is the introduc-

tion of superspacetime coordinates—extending the bosonic spacetime parameters xµ

to include fermionic counterparts.

A.5.1 Superspacetime Coordinates

The fermionic counterpart to xµ is the four component spinor �. Just like the

spinors of Section A.3.2, � may be broken down into two two-component objects:

(PL)α
a
�a = θα �̄

a
(
P̄L

)
a

α = θα

(PR)α̇a
�a = θ̄α̇

�̄
a
(
P̄R

)
aα̇

= θ̄α̇. (A.65)

where, because PL� is related to �̄P̄L, the four component spinor � has only 4

degrees of freedom instead of the usual 8 (as desired to match the degrees of freedom
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in xµ). In fact, any four component spinor that has PL	 related to 	P̄L is given the

special name of majorana spinor.

The coordinates θ, θ̄ obey the anticommutation relations

{θα, θβ} = 0 {θ̄α̇, θα} = 0 {θ̄α̇, θ̄β̇} = 0 (A.66)

and as in Section A.3.2,

θα = εαβθ
β θα = εαβθβ θ̄α̇ = εα̇β̇ θ̄

β̇ θ̄α̇ = εα̇β̇ θ̄β̇. (A.67)

Once again, the convention for products is

θ2 = θαθα = εαβθβθα θ̄2 = θ̄α̇θ̄
α̇ = εα̇β̇ θ̄

β̇ θ̄α̇ (A.68)

Differentiation with respect to the fermionic spacetime coordinates is taken as

d

dθα

θβ = δα
β

d

dθ̄α̇
θ̄β̇ = δβ̇

α̇ (A.69)

and integration of a function f is defined by∫
dθα f ≡

d

dθα
f

∫
dθ̄α̇ f ≡ d

dθ̄α̇

f (A.70)

A grassmann volume is also defined as

d4θ ≡ d2θd2θ̄ (A.71)

where the d2θ and d2θ̄ represent products of the differentials, or

d2θ ≡ dθαdθα = εαβdθβdθα d2θ̄ ≡ dθ̄α̇dθ̄
α̇ = εα̇β̇dθ̄

β̇dθ̄α̇ (A.72)

Given the fermionic components θα, θ̄α̇, a superspacetime vector, zA, may be

constructed

zA ≡
(
xµ, θα, θ̄α̇

)
. (A.73)

The components of zA may be rotated into each other: a rotation from the basis z

to z′ is given as
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z′A = RA
Bz

B (A.74)

RA
B =

Rν
µ Rν

α Rν
α̇

Rβ
µ Rβ

α Rβ
α̇

Rβ̇
µ Rβ̇

α Rβ̇
α̇

 (A.75)

and

∂

∂zA
=
∂z′B

∂zA

∂

∂z′B
=

[
∂

∂zA
RB

Cz
C

]
∂

∂z′B
(A.76)

The standard transformation of superspacetime coordinates from xµ to yµ is from

the rotation matrix

R̃A
B =

δν
µ

1
2
iσν

αα̇θ̄
α̇ −1

2
iθασν

αα̇

0 δβ
α 0

0 0 δβ̇
α̇

 (A.77)

yielding the transformations

∂

∂xµ
→ ∂

∂yµ
(A.78)

∂

∂θα
→ ∂

∂θα
− iσν

αα̇θ̄
α̇ ∂

∂yν
(A.79)

∂

∂θ̄α̇
→ ∂

∂θ̄α̇
+ iθασν

αα̇

∂

∂yν
(A.80)

A.5.2 Supersymmetric Models

A generic lagrangian involving the chiral superfields Φi and based upon the

gauge groups G—with corresponding vector superfields VG and field strengths VG—

is

L =
1

2

∫
d4θ K +

∫
d2θ W +

∫
d2θ

∑
G

τG
8πCG

Tr[(VG)α (VG)α ] + h.c. (A.81)

where
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K = Zi
jΦi exp

(
2VA

GT
G
A

)
j

kΦk + · · · (A.82)

W = LiΦi +
1

2!
µijΦiΦj +

1

3!
Y ijkΦiΦjΦk +

1

4!

λijk`

Λ
ΦiΦjΦkΦ` + · · · (A.83)

lnZi
j = lnZi

j + Ai
jθ2 +

(
A†
)

i
j θ̄2 −

(
m2
)

i
jθ2θ̄2 (A.84)

Zi
j wavefunction renormalization constant(

A†
)

i
j =

(
Ai

j
)∗

= Ai
j (A.85)

Φi = Φ∗
i (A.86)

τG =
1

2
$G −

iΘ

4π
−MG$Gθ

2 (A.87)

$G =
1

αG

=
4π

g2
G

(A.88)

gG the gauge coupling constant for the group G

Θ the vacuum polarization angle

MG the gaugino mass for the group G

CG quadratic casimir invariant for the group G

The signs of the SUSY breaking terms are defined by specifying the SUSY breaking

potential, which is taken to be

VSB =
1

2

(
m2
)

i
jΦiΦj + `iΦi +

1

2!
bijΦiΦj +

1

3!
aijkΦiΦjΦk +

1

4!
zijk`ΦiΦjΦkΦ` + h.c.

(A.89)

The anomalous dimensions, γi
j; and β-functions, βi

L, βij
µ , βijk

Y , β$G
at a given energy

scale µ are

16π2γi
j = 16π2d lnZi

j

d lnµ
= 16π

∑
G

CG
R(Φi)

$G

δi
j − YipqY

jpq (A.90)

βi
L =

dLi

d lnµ
= −1

2
Ljγj

i (A.91)

βij
µ =

dµij

d lnµ
= −1

2
µipγp

j + (i↔ j) (A.92)

βijk
Y =

dY ijk

d lnµ
= −1

2
Y ijpγp

k + (i↔ k) + (j ↔ k) (A.93)

β$G
=

d$G

d lnµ
= − 1

2π

[∑
{Φi}

SG
R(Φi)

− 3CG

]
(A.94)

91



with the last equal sign being valid to one-loop. The value CG
R(Φi)

is the quadratic

Casimir invariant in the representation R (which is the representation of the field

Φi) of the group G, while SG
R(Φi)

is the dynkin index—the definitions of these objects

may be found in Appendix A.4.
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Appendix B

SUSYLR+AMSB: Briefing

This appendix provides an overview of the model given in the text, providing

a complete picture of the physics starting at the high scale vR and coming down to

the electroweak scale. Schematically, the model is pictured in Figure B.1, starting

MX

vR

mDC

MSUSY

AMSB
valid

SU(3)c × SU(2)L × SU(2)R × U(1)B−L

〈∆c〉,
〈
∆̄c

〉
, 〈S〉

NMSSM++

ÑMSSM

1

Figure B.1: A schematic of the SUSYLR+AMSB model showing the complete pic-
ture through all the energy scales.

above the vR scale as a parity-conserving SUSYLR model with AMSB generating

the SUSY breaking. The theory then breaks down to the NMSSM++ below vR,

maintaining the anomaly mediated supersymmetry breaking through the threshold

decoupling. The AMSB form is valid until mDC ∼ Fφ, below which the theory is

the ÑMSSM. This remains the theory until MSUSY, where the superpartners are
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integrated out leaving the standard electroweak model.

B.1 Above vR

B.1.1 Particles

B.1.1.1 Leptons

L1 =

(
νe

e

)
L2 =

(
νµ

µ

)
L3 =

(
ντ

τ

)
(B.1)

Lc
1 =

(
ec

−νc
e

)
Lc

2 =

(
µc

−νc
µ

)
Lc

3 =

(
τ c

−νc
τ

)
(B.2)

B.1.1.2 Quarks

Q1K =

(
uK

dK

)
Q2K =

(
cK
sK

)
Q3K =

(
tK
bK

)
(B.3)

Qc
1K =

(
dc

K

−uc
K

)
Qc

2K =

(
sc

K

−ccK

)
Qc

3K =

(
bcK
−tcK

)
(B.4)

K is the color index, running over r,g,b for Q and r̄,ḡ,b̄ for Qc

B.1.1.3 Higgs

Φa =

(
Φ0

da Φ+
ua

Φ−
da Φ0

ua

)
(B.5)

∆ =

(
∆+
√

2
∆++

∆0 −∆+
√

2

)
∆̄ =

(
∆̄−
√

2
∆̄0

∆̄−− − ∆̄−
√

2

)
(B.6)

∆c =

(
∆c−
√

2
∆c 0

∆c−− −∆c−
√

2

)
∆̄c =

(
∆̄c+
√

2
∆̄c++

∆̄c 0 − ∆̄c+
√

2

)
(B.7)
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B.1.2 Symmetries

B.1.2.1 Gauge Group

Fields SU(3)c × SU(2)L × SU(2)R × U(1)B−L

Q 3 2 1 +1
3

Qc 3̄ 1 2 −1
3

L 1 2 1 −1
Lc 1 1 2 +1
Φa 1 2 2 0
∆ 1 3 1 +2
∆̄ 1 3 1 −2
∆c 1 1 3 −2
∆̄c 1 1 3 +2
S 1 1 1 0
N 1 1 1 0

B.1.2.2 SU(2)

Q→ ULQ Qc → URQ
c L→ ULL Lc → URL

c

∆ → UL∆U †
L ∆̄ → UL∆̄U †

L ∆c → UR∆cU †
R ∆̄c → UR∆̄cU †

R

Φa → ULΦaU
†
R S → S N → N (B.8)

B.1.2.3 Parity

Q↔ −iτ2Qc ∗ L↔ −iτ2Lc ∗ Φa → Φ†
a

∆ ↔ ∆c † ∆̄ ↔ ∆̄c † S,N → S∗, N∗ (B.9)

B.1.2.4 Discrete Z3

(Q,Qc, L, Lc,∆,∆c,Φa, N) → e
2iπ/3(Q,Qc, L, Lc,∆,∆c,Φa, N) (B.10)

(∆̄, ∆̄c) → e
4iπ/3(∆̄, ∆̄c) (B.11)

S → S (B.12)
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B.1.3 Superpotential

WSUSYLR = WY +WH +WGSPNR +WGSVNR (B.13)

WY = iya
QQ

T τ2ΦaQ
c + iya

LL
T τ2ΦaL

c + ifcL
cT τ2∆

cLc + ifLT τ2∆L (B.14)

WH = (M∆φ− λSS)
[
Tr
(
∆c∆̄c

)
+ Tr

(
∆∆̄

) ]
+M2

Sφ
2S +

1

2
µSφS

2 +
1

3
κSS

3

+ λab
NN Tr

(
ΦT

a τ2Φbτ2
)

+
1

3
κNN

3 (B.15)

WGSPNR =
λA

MXφ
Tr2
(
∆∆̄

)
+

λc
A

MXφ
Tr2
(
∆c∆̄c

)
+

λB

MXφ
Tr(∆∆) Tr

(
∆̄∆̄

)
+

λc
B

MXφ
Tr(∆c∆c) Tr

(
∆̄c∆̄c

)
+

λC

MXφ
Tr
(
∆∆̄

)
Tr
(
∆c∆̄c

)
+

λS

MXφ
Tr
(
∆∆̄

)
S2 +

λc
S

MXφ
Tr
(
∆c∆̄c

)
S2 + · · · (B.16)

WGSVNR =
λD

MPlφ
Tr(∆∆) Tr(∆c∆c) +

λ̄D

MPlφ
Tr
(
∆̄∆̄

)
Tr
(
∆̄c∆̄c

)
+

(λσ)ab

MPlφ
Tr
(
∆∆̄

)
Tr
(
ΦT

a τ2Φbτ2
)

+
(λc

σ)ab

MPlφ
Tr
(
∆c∆̄c

)
Tr
(
ΦT

a τ2Φbτ2
)

+
2λαε

ab

MPlφ
Tr
(
∆Φaτ2Φ

T
b τ2∆̄

)
+

2λc
αε

ab

MPlφ
Tr
(
∆cτ2Φ

T
a τ2Φb∆̄

c
)

+
λN

MPlφ
Tr
(
∆∆̄

)
N2 +

λc
N

MPlφ
Tr
(
∆c∆̄c

)
N2

+
λs

MPlφ
Tr
(
ΦT

a τ2Φbτ2
)
S2 +

λM

MPlφ
S2N2 + · · · (B.17)
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B.1.4 Potential

V = VF + VD + VSB + VSBNR (B.18)

VF = |M∆ − λSS|2 Tr
[∣∣∆̄c∣∣2 + |∆c|2 +

∣∣∆̄∣∣2 + |∆|2
]

+
∣∣−λS

[
Tr
(
∆c∆̄

c)
+ Tr

(
∆∆̄

) ]
+M2

S + µSS + κSS
2
∣∣2 (B.19)

VD =
1

2

∑
G

DG
RD

G
R +

∑
G

DG
LD

G
L +D2

BL (B.20)

VSB =
1

2

(
M3g

α
AgA

α +ML(wL)α
A (wL)A

α +MR(wR)α
A (wR)A

α +MBLb2 + h.c.
)

+m2
QQ

†Q+m2
QcQc †Qc +m2

LL
†L+m2

LcLc † Lc

+m2
∆ Tr|∆|2 +m2

∆̄ Tr
∣∣∆̄∣∣2 +m2

N |N |
2 +

(
m2

Φ

)
ab

Φ†
aΦb

+m2
∆c Tr|∆c|2 +m2

∆̄c Tr
∣∣∆̄c∣∣2 +m2

S|S|
2

+

[
−2M2

SFφS −M∆Fφ

[
Tr
(
∆c∆̄

c)
+ Tr

(
∆∆̄

) ]
− 1

2
µSFφS

2 + h.c.

]
+

[
ab

QQΦbQ
c + ab

LLΦbL
c + afcL

c∆cLc + afL∆L

+
1

3
aκS

S3 + aab
λN
N Tr

(
ΦT

a τ2Φbτ2
)

+
1

3
aκN

N3

]
(B.21)

VSBNR =

[
λAFφ

MX

Tr2
(
∆∆̄

)
+
λc

AFφ

MX

Tr2
(
∆c∆̄

c)
+
λBFφ

MX

Tr(∆∆) Tr
(
∆̄∆̄

)
+
λc

BFφ

MX

Tr(∆c∆c) Tr
(
∆̄

c
∆̄

c)
+
λCFφ

MX

Tr
(
∆∆̄

)
Tr
(
∆c∆̄

c)
+
λSFφ

MX

Tr
(
∆∆̄

)
S2 +

λc
SFφ

MX

Tr
(
∆c∆̄

c)
S2

+
λDFφ

MPl

Tr(∆∆) Tr(∆c∆c) +
λ̄DFφ

MPl

Tr
(
∆̄∆̄

)
Tr
(
∆̄

c
∆̄

c)
+

(λσ)ab Fφ

MPl

Tr
(
∆∆̄

)
Tr
(
ΦT

a τ2Φbτ2
)

+
(λc

σ)ab Fφ

MPl

Tr
(
∆c∆̄

c)
Tr
(
ΦT

a τ2Φbτ2
)

+
2λαε

abFφ

MPl

Tr
(
∆Φaτ2Φ

T
b τ2∆̄

)
+

2λc
αε

abFφ

MPl

Tr
(
∆cτ2Φ

T
a τ2Φb∆̄

c)
+
λNFφ

MPl

Tr
(
∆∆̄

)
N2 +

λc
NFφ

MPl

Tr
(
∆c∆̄

c)
N2

+
λsFφ

MPl

Tr
(
ΦT

a τ2Φbτ2
)
S2 +

λMFφ

MPl

S2N2 + h.c.

]
(B.22)
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B.1.5 F -terms

−F †
∆c =

1

2
fc

[
τ1
(
Lc T τ3L

c − τ3L
c T Lc

)
+ iτ3L

c T τ2(1 + τ3)L
c − iLc T τ2L

c
]

+ (M∆ − λSS) ∆̄
c
+

2λc
A

MX

Tr
(
∆c∆̄

c)
∆̄

c
+

2λc
B

MX

Tr
(
∆̄

c
∆̄

c)
∆c

+
λC

MX

Tr
(
∆∆̄

)
∆̄

c
+

λc
S

MX

∆̄
c
S2 +

2λD

MPl

Tr(∆∆) ∆c +
λc

N

MPl

∆̄
c
N2

+
(λc

σ)ab

MPl

∆̄
c
Tr
(
ΦT

a τ2Φbτ2
)

+
2λc

αε
ab

MPl

[
τ2Φ

T
a τ2Φb∆̄

c − 1

2
Tr
(
τ2Φ

T
a τ2Φb∆̄

c) ]
(B.23)

−F †
∆̄c = (M∆ − λSS) ∆c +

2λc
A

MX

Tr
(
∆c∆̄

c)
∆c +

2λc
B

MX

Tr(∆c∆c) ∆̄
c

+
λC

MX

Tr
(
∆∆̄

)
∆c +

λc
S

MX

∆cS2 +
2λ̄D

MPl

Tr
(
∆̄∆̄

)
∆̄

c
+

λc
N

MPl

∆cN2

+
(λc

σ)ab

MPl

∆c Tr
(
ΦT

a τ2Φbτ2
)

+
2λc

αε
ab

MPl

[
∆cτ2Φ

T
a τ2Φb −

1

2
Tr
(
∆cτ2Φ

T
a τ2Φb

) ]
(B.24)

−F †
∆ =

1

2
f
[
τ1
(
LT τ3L− τ3L

TL
)

+ iτ3L
T τ2(1 + τ3)L− iLT τ2L

]
+ (M∆ − λSS) ∆̄ +

2λA

MX

Tr
(
∆∆̄

)
∆̄ +

2λB

MX

Tr
(
∆̄∆̄

)
∆

+
λC

MX

Tr
(
∆c∆̄

c)
∆̄ +

λS

MX

∆̄S2 +
2λD

MPl

Tr(∆c∆c) ∆ +
λN

MPl

∆̄N2

+
(λσ)ab

MPl

∆̄ Tr
(
ΦT

a τ2Φbτ2
)

+
2λαε

ab

MPl

[
Φaτ2Φ

T
b τ2∆̄− 1

2
Tr
(
Φaτ2Φ

T
b τ2∆̄

) ]
(B.25)

−F †
∆̄

= (M∆ − λSS) ∆ +
2λA

MX

Tr
(
∆∆̄

)
∆ +

2λB

MX

Tr(∆∆) ∆̄

+
λC

MX

Tr
(
∆c∆̄

c)
∆ +

λS

MX

∆S2 +
2λ̄D

MPl

Tr
(
∆̄

c
∆̄

c)
∆̄ +

λN

MPl

∆N2

+
(λσ)ab

MPl

∆ Tr
(
ΦT

a τ2Φbτ2
)

+
2λαε

ab

MPl

[
∆Φaτ2Φ

T
b τ2 −

1

2
Tr
(
∆Φaτ2Φ

T
b τ2
) ]
(B.26)

−F ∗
S = −λS

[
Tr
(
∆c∆̄

c)
+ Tr

(
∆∆̄

) ]
+M2

S + µSS + κSS
2

+
2λS

MX

Tr
(
∆∆̄

)
S +

2λc
S

MX

Tr
(
∆c∆̄

c)
S +

2λs

MPl

Tr
(
ΦT

a τ2Φbτ2
)
S +

2λM

MPl

SN2

(B.27)
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B.1.6 D-terms

DG
L = −1

2
gL Tr

(
2∆c † τG∆c + 2∆̄

c †
τG∆̄

c − Φaτ
GΦ†

a

)
(B.28)

DG
R = −1

2
gR Tr

(
2∆†τG∆ + 2∆̄

†
τG∆̄ + Φ†

aτ
GΦa

)
(B.29)

DBL = −gBL Tr
(

∆c † ∆c − ∆̄
c †

∆̄
c
)

(B.30)

B.2 NMSSM++: vR → Fφ

B.2.1 Particles

B.2.1.1 Leptons

L1 =

(
νe

e

)
L2 =

(
νµ

µ

)
L3 =

(
ντ

τ

)
(B.31)

B.2.1.2 Quarks

Q1K =

(
uK

dK

)
Q2K =

(
cK
sK

)
Q3K =

(
tK
bK

)
(B.32)

K is the color index, running over r,g,b

B.2.1.3 Higgs

Hua =

(
H+

ua

H0
ua

)
Hda =

(
H0

da

H−
da

)
(B.33)

∆ =

(
∆+
√

2
∆++

∆0 −∆+
√

2

)
∆̄ =

(
∆̄−
√

2
∆̄0

∆̄−− − ∆̄−
√

2

)
(B.34)
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B.2.2 Symmetries

B.2.2.1 Gauge Group

Fields SU(3)c × SU(2)L × U(1)Y

Q 3 2 +1
3

uc 3̄ 1 −4
3

dc 3̄ 1 +2
3

L 1 2 −1
ec 1 1 +2
Hua 1 2 +1
Hda 1 2 −1
∆ 1 3 +2
∆̄ 1 3 −2

∆c−− 1 1 −4
∆̄c++ 1 1 +4
N 1 1 0

B.2.3 Superpotential

WNMSSM++ = iya
uQ

T τ2Huau
c + iya

dQ
T τ2Hdad

c + iya
LL

T τ2Hdae
c

+ fce
c∆c−−ec + ifLT τ2∆L

+ iλabNHT
uaτ2Hdb + iµabφHT

uaτ2Hdb +
1

2
µNφN

2 +
1

3
κN3

+ µDCφ∆c−−∆̄c++ + µ∆φTr
(
∆∆̄

)
(B.35)

B.2.4 F -terms

−F †
∆ =

1

2
f
[
τ1
(
LT τ3L− τ3L

TL
)

+ iτ3L
T τ2(1 + τ3)L− iLT τ2L

]
+ µ∆∆̄ (B.36)

−F †
∆̄

= µ∆∆̄ (B.37)

−F †
Hua

= iya
uQ

T τ2u
c − iλabNHT

dbτ2 − iµabHT
dbτ2 (B.38)

−F †
Hda

= iya
dQ

T τ2d
c + iya

LL
T τ2e

c + iλabNHT
uaτ2 + iµabHT

uaτ2 (B.39)

−F ∗
N = iλabHT

uaτ2Hdb + µNN + κN2 (B.40)
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B.2.5 D-terms

DG
L = −1

2
gL

[
H†

uaτ
GHua +H†

daτ
GHda

]
(B.41)

DY = −1

2
gY

[
H†

uaHua −H†
daHda

]
(B.42)

B.2.6 Anomalous Dimensions

B.2.6.1 Leptons

γL3 = − 1

8π2

(
ya∗

τ y
a
τ + 6|f3|2 −

3

2
g2

L −
1

2
g2

Y

)
(B.43)

γL1 = − 1

8π2

(
6|f1|2 −

3

2
g2

L −
1

2
g2

Y

)
(B.44)

γτc = − 1

8π2

(
2ya∗

τ y
a
τ + 4|fc3|2 − 2g2

Y

)
(B.45)

γec = − 1

8π2

(
4|fc1|2 − 2g2

Y

)
(B.46)

B.2.6.2 Quarks

γQ3 = − 1

8π2

(
ya∗

t y
a
t + ya∗

b y
a
b −

8

3
g2
3 −

3

2
g2

L −
1

18
g2

Y

)
(B.47)

γQ1 = − 1

8π2

(
−8

3
g2
3 −

3

2
g2

L −
1

18
g2

Y

)
(B.48)

γtc = − 1

8π2

(
2ya∗

t y
a
t −

8

3
g2
3 −

8

9
g2

Y

)
(B.49)

γuc = − 1

8π2

(
−8

3
g2
3 −

8

9
g2

Y

)
(B.50)

γbc = − 1

8π2

(
2ya∗

b y
a
b −

8

3
g2
3 −

2

9
g2

Y

)
(B.51)

γdc = − 1

8π2

(
−8

3
g2
3 −

2

9
g2

Y

)
(B.52)
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B.2.6.3 Higgs

γN = − 1

8π2

(
2|κ|2 + 2λab∗λab

)
(B.53)

γab
Hu

= − 1

8π2

(
3ya∗

t y
b
t + λacλbc − δab

(
3

2
g2

L +
1

2
g2

Y

))
(B.54)

γab
Hd

= − 1

8π2

(
3ya∗

b y
b
b + ya∗

τ y
b
τ + λca∗λcb − δab

(
3

2
g2

L +
1

2
g2

Y

))
(B.55)

γ∆ = − 1

8π2

(
2|f3|2 + 2|f2|2 + 2|f1|2 − 4g2

L − 2g2
Y

)
(B.56)

γ∆̄ = − 1

8π2

(
−4g2

L − 2g2
Y

)
(B.57)

γ∆c−− = − 1

8π2

(
2|fc3|2 + 2|fc2|2 + 2|fc1|2 − 8g2

Y

)
(B.58)

γ∆̄c−− = − 1

8π2

(
−8g2

Y

)
(B.59)

B.2.7 AMSB Scalar Masses

B.2.7.1 Leptons

m2
ec = m2

an

[
40f 4

c1 + 8f 2
c1

(
f 2

c2 + f 2
c3

)
− 48f 2

c1g
2
Y − 52g4

Y

]
(B.60)

m2
L1

= m2
an

[
84f 4

1 + 12f 2
1

(
f 2

2 + f 2
3

)
− 6f 2

1

(
3g2

Y + 7g2
L

)
− 13g4

Y − 9g4
L

]
(B.61)

m2
µc = m2

an

[
40f 4

c2 + 8f 2
c2

(
f 2

c1 + f 2
c3

)
− 48f 2

c2g
2
Y − 52g4

Y

]
(B.62)

m2
L2

= m2
an

[
84f 4

2 + 12f 2
2

(
f 2

1 + f 2
3

)
− 6f 2

2

(
3g2

Y + 7g2
L

)
− 13g4

Y − 9g4
L

]
(B.63)

m2
τc = m2

an

[
40f 4

c3 + 10(ya
τy

a
τ )

2 + 8f 2
c3

(
f 2
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a
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)
+ λnmym
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npyp
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3

(
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Y + 7g2
L

)
− 3ya

τy
a
τ

(
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L

)
− 13g4

Y − 9g4
L

]
(B.65)
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B.2.7.2 Quarks

m2
Q3

=
1

9
|man|2

[
54(ym

t y
m
t )2 + 54(ym

b y
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b )2 + 9ym

b y
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b y
m
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b λ
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t λ
mpyn

t λ
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t y
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]
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]
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9
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108(ym
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]
(B.68)

B.3 ÑMSSM: Fφ →MSUSY

B.3.1 Particles

B.3.1.1 Leptons

L1 =

(
νe

e

)
L2 =

(
νµ

µ

)
L3 =

(
ντ

τ

)
(B.69)

B.3.1.2 Quarks

Q1K =

(
uK

dK

)
Q2K =

(
cK
sK

)
Q3K =

(
tK
bK

)
(B.70)

K is the color index, running over r,g,b

B.3.1.3 Higgs

Hu =

(
H+

u

H0
u

)
Hd =

(
H0

d

H−
d

)
(B.71)
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B.3.2 Symmetries

B.3.2.1 Gauge Group

Fields SU(3)c × SU(2)L × U(1)Y

Q 3 2 +1
3

uc 3̄ 1 −4
3

dc 3̄ 1 +2
3

L 1 2 −1
ec 1 1 +2
Hu 1 2 +1
Hd 1 2 −1
N 1 1 0

B.3.3 Superpotential

WÑMSSM = iyuQ
T τ2Huu

c + iydQ
T τ2Hdd

c + iyeL
T τ2Hde

c

+ iλNHT
u τ2Hd +

1

2
µNN

2 +
1

3
κN3 (B.72)

B.3.4 Potential

VÑMSSM = VF + VD + VSB (B.73)

VF = |λ|2 |N |2
(
|Hu|

2 + |Hd|
2 )+

∣∣iλHT
u τ2Hd + µNN + κN2

∣∣2 (B.74)

VD =
1

8

(
g2

Y + g2
L

) (
|Hu|

2 − |Hd|
2 )2 +

1

2
g2

L

∣∣H†
uHd

∣∣2 (B.75)

VSB +m2
Hu
H†

uHu +m2
Hd
H†

dHd +m2
NN

∗N

+

[
iaλNH

T
u τ2Hd −

1

2
bNN

2 +
1

3
aκN

3 + h.c.

]
(B.76)

B.3.5 F -terms

−F †
Hu

= iyuQ
T τ2u

c − iλNHT
d τ2 (B.77)

−F †
Hd

= iydQ
T τ2d

c + iyeL
T τ2e

c + iλNHT
u τ2 (B.78)

−F ∗
N = iλHT

u τ2Hd + µNN + κN2 (B.79)
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B.3.6 D-terms

DG
L = −1

2
gL

[
H†

uτ
GHu +H†

dτ
GHd

]
(B.80)

DY = −1

2
gY

[
H†

uHu −H†
dHd

]
(B.81)
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