ABSTRACT

Title of dissertation: v SEESAW USES: UV INSENSITIVE
SUPERSYMMETRY BREAKING
WITHOUT TACHYONS

Nicholas Setzer, Doctor of Philosophy, 2008

Dissertation directed by: Professor Rabindra Mohapatra
Department of Physics

This document contains a systematic analysis of supersymmetric left-right
models in the context of anomaly mediated supersymmetry breaking starting with
the high-scale, left-right theory and ending with the supersymmetry-scale theory. It
is shown that the combination of supersymmetric left-right models and anomaly me-
diated supersymmetry breaking retains the attractive features of anomaly mediation
while simultaneously providing a solution to the tachyonic slepton problem of the
minimal supersymmetric standard model with anomaly mediated supersymmetry
breaking.

The supersymmetric left-right theory introduces new yukawa couplings that
permit positive slepton mass-squares while retaining the ultra violet insensitivity of
anomaly mediated supersymmetry breaking as well its economy. The new couplings
are introduced by independent considerations of explaining neutrino oscillation ex-
periments through the seesaw mechanism, and survive below the seesaw scale from
an accidental symmetry of the potential. Furthermore, the seesaw mechanism is
implemented in such a way that R-parity is a natural residual symmetry—leading

to a stable, weakly-interacting particle to explain dark matter.



The resulting mass spectrum is detailed, both qualitatively and quantitatively,
providing comparisons with other popular supersymmetry breaking scenarios. It
is demonstrated that the model contains gaugino masses that are much closer in
size than other schemes, as well as the possibility of a mild squark-slepton mass
degeneracy. The issue of higgsino masses is also explored, and attention is paid to
the dark matter composition. The model is shown to have a viable dark matter
candidate that evades current direct detection bounds but will be probed by future
planned experiments.

The low-energy consequences of the model are analyzed, and the matter of
electroweak symmetry breaking is expounded. It is shown that the problem of
a higgsino mass below the LEP II bound in the next-to minimal supersymmetric
standard model with anomaly mediated supersymmetry breaking is easily avoided
by this theory. Finally, prospects for confirmation of this theory at the LHC are

investigated, as well as potential signatures in lepton flavor violation experiments.



v SEESAW USES: UV INSENSITIVE SUPERSYMMETRY
BREAKING WITHOUT TACHYONS

by

Nicholas Setzer

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
2008

Advisory Committee:

Professor Rabindra Mohapatra, Chair/Advisor
Professor Theodore Jacobson

Professor Alice Mignerey

Assistant Professor Kaustubh Agashe
Assistant Professor Zackaria Chacko



(© Copyright by
Nicholas Setzer
2008



Preface

The material contained within these pages is a compilation of work previ-
ously published in the papers [1, 2, 3] with my collaborators R. N. Mohapatra and

S. Spinner.
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Chapter 1
Introduction

1.1 The Standard Model of Particle Physics

The current understanding of all of particle physics is contained within the
standard model (SM)[6, 7, 8, 9, 10, 11]. The theory is defined by the symmetries
that it obeys and the transformations of the particle content under those symme-
tries. Once specified, the lagrangian that contains every possible renormalizable
interaction that respects those symmetries is written and the theory is formally

complete.

1.1.1 Particle Content

The SM is laid out in Table 1.1. The SU(3)¢xSU(2) xU(1)y gauge symmetry

permits the lagrangian

Lsv = Lxg + Lywk — Vi (1.1)
where
SU(g)C X SU(Q)L X U(l)y
Q 3 2 +3
UR g 1 +%
dp | 3 1 -2
L 1 2 -1
eR 1 1 —2
P 1 2 +1

Table 1.1: The Standard Model. The particles are listed by their representations of
the gauge groups except for U(1)y where the hypercharge is given.



EKE = ]'I\HIQ’}/”DH\H’Q + ﬁ@uR’y“D#\ﬂfuR + ]'l@dR’yuDu‘ﬂ’dR
+ 104D,y + 10,,4*D, ¥, + (D,®) DFD
1 1 1

4Gﬁij” - 4W£W§” — 4 BwB" (1.2)
Ly = yu@Q&)WuR + yd@QCD\UIdR + ye@L(I)lﬂfeR + h.c. (1.3)
Vi = —m?|®)> + \|®|* (1.4)
and the fields are defined by!
¥, = (ﬂj:) b, =(1Fu)b, Vo= (ﬁj:i) | ete. (1.5)
P = i, d* (1.6)

GA = 8,62 — 0,G4 + go f1POGEGS
Wi, = 0w, —0,W+ grePWrIWS
By, = 8,B, — 9, B, (1.7)

There are three copies of the fields @), ugr, dg, L, and er while there is only one ®
field. Each copy of the field is called a generation or family, and in Eqs. (1.2)-(1.3)
this family index has been suppressed. Furthermore, the indices corresponding to
SU(3)¢ x SU(2)L, have also been omitted from those equations.

The theory as written has a total of 18 parameters—the three gauge couplings
g3, g1, gy; the higgs-sector mass and self-coupling m?, \; and the 13 degrees of free-

dom in the yukawa couplings ., ya4, ¥ though these are not the ones typically

I Appendix A defines all the notation conventions of this document, including definitions omitted
here.

2In family space the yukawa couplings are 3 x 3 complex matrices, thus overall there are 54
degrees of freedom among them. The SU(3)g X SU(3)yy X SU(3)ap X SUB)L X SU(3)ep x U(1)a
symmetry can be used to eliminate 41 of them, leaving 13 free. These can be chosen to be the three
leptonic yukawa couplings, the three up sector quark yukawa couplings, and the 7 parameters of
yq- The latter may be subdivided into the three down generation masses, one C'P phase, and three
mixing angles.



measured by experimentalists. In point, nature has demonstrated that the only
respected symmetries are SU(3)¢ and U(1)e,,, while the weak force is short-ranged
and governed by the massive vector bosons W, Z. Furthermore, the leptons have
distinct and measurable masses which are absent in Eq. (1.1). All these ‘discrep-
ancies’, however, are well understood in the SM through spontaneous symmetry

breaking (SSB) and the Higgs Mechanism.

1.1.2  Spontaneous Symmetry Breaking and The Higgs Mechanism

Spontaneous symmetry breaking is the idea that the ground state of a system
contains only a subset of the symmetries respected by the underlying theory. Thus,
the theory actually has more symmetry than realized by the observed lowest-energy
state. This idea is not unique to particle physics or the SM, but is prevalent in many
areas of physics; for example, ferromagnetism.

In the SM, SSB is achieved through the spin-0 higgs boson, ®. The idea is that
the higgs field acquires a non-zero classical background, called a vacuum expectation
value (VEV), and the quantum theory must be written as perturbations around this
classical background. The theory still maintains the full symmetry, however the
ground state—the one in which the VEV of ® is non-zero—breaks this symmetry,
and thus it is not seen in nature.

Writing the higgs field doublet as

¢ = (\/%(@ibjr 1‘1<1>2)) (18)

and taking ®T = 0 to preserve electric charge conservation, yields the potential Vi
depicted in Figure 1.1. As the figure demonstrates, ®; = ®; = 0 is not a stable
point, and so the fields prefer a non-zero classical value. With the non-zero classical

background being defined as (®), and choosing

(®) = (;) (19)



Figure 1.1: The standard model higgs potential for A = 0.5, m? > 0. The point
®; = $y = 0 is clearly unstable so the vacuum state has one or both non-zero (thus
breaking the symmetry).

the shift to the true vacuum state, ® — & + (®), yields the SU(3)¢ x U(1)ep, theory
seen by experimentalists. The SU(2),, gauge bosons Wy = WT;(WI” F iWWY) acquire
a mass, My = grv/2, with the longitudinal degree of freedom coming from the

charged ®. The neutral W4 and B* mix

02 e — 410 Wt
Lo — (W BH L LY 3 1.10
8 (W3 ) (_ngY 95 B (1.10)

to yield the massless photon A* and the massive Z# (whose longitudinal component

is the C'P-odd neutral ®):
Zr\  fcosbOy —sinfy\ (Wi (1.11)
A* ) \sinfy  cosOy B+ ’

My = =(g97 + g7) v* (1.12)

A

with @y the weak mixing angle, tan 6y = gy /gr.
The acquisition of mass for the gauge fields through the consumption of a scalar
field (one that by the Goldstone Theorem would otherwise be massless) is known

as the Higgs Mechanism[7, 8, 11], and explains why the weak force is observed as



short-ranged. A further consequence of this mechanism is the existence of the CP-
even neutral component of ®, with a mass mj, = mv/2. It is therefore predicted by
the SM that experimentalists will see a fundamental scalar (somewhere before the
TeV scale) which can be identified as this higgs boson.

Finally, the shift to the true vacuum gives the fermions of the theory a mass

through their yukawa couplings to the higgs:

1 1 1
— Y My, = — Mg = —=Yqv
\/§y ¢ \/iyd

me = \/éyuv
with the neutrino remaining massless.

(1.13)

The resulting theoretical picture can then be summarized as in Figure 1.2:
SU(3)¢ x SU(2), x U(1)y is broken by the vacuum state since (®) # 0. This leaves
SU(3)¢ intact and produces a massless photon, as well as three massive gauge bosons
whose longitudinal modes come from the higgs field. The remaining higgs degree
of freedom obtains a non-zero, positive mass and should be seen by experiment.
Furthermore, the quarks, electron, muon, and tau pick up masses from the yukawa

couplings to the higgs while the neutrino remains massless.

1.1.3 Additional Symmetries

In addition to the gauge symmetries, Eq. (1.1) has several global U(1) sym-
metries that are an accidental byproduct of the form of the lagrangian[12]. These
symmetries are baryon number B, electron lepton number L., muon lepton num-

ber L,, and tau lepton number L.; the corresponding charges of the particles are

o
detailed in Table 1.2. All of these symmetries are anomalous—that is, if one at-
tempted to make them local symmetries the symmetry would be violated at loop
level. For example, the symmetry B — L, where L = L. + L, + L., has a non-zero

loop diagram when two SU(2), gauge bosons enter, one hypothetical B — L gauge

boson leaves, and fermions run in the loop. This diagram, which is proportional



SU(B)C X SU(Q)L X U(l)y

ground state breaks
SU(Z)L X U(l)y
through (®) # 0

SU(3)¢ X U(1)em
W=, Z massive gauge bosons.
3 Higgs degrees of freedom consumed
by massive gauge fields.
One massive higgs boson.
Massive quarks, electron, muon, tau.
Massless neutrinos.

Figure 1.2: The standard model and theoretical understanding of why the weak
force is short ranged and only electromagnetic charge is conserved

Q wur dgr (V;) €R (i;) HR (VTT) TR
Bl+; +3 43 0 0 0 0 0 0
L.| 0 0 0 +1 +1 0 0 0 0
L,| 0 0 0 0 0 +1 +1 0 0
L 0 0 0 0 0 0 0 +1 +1

3

Table 1.2: Accidental symmetries in the standard model. B is baryon number
which is the only accidental symmetry of the quarks due their mixing with the
CKM matrix[4, 5]. L = L.+ L, + L. is lepton number and in the standard model
it is conserved for each generation separately.
to Tr(B — L) = 1, is interesting since the addition of a fermionic, three-generation
singlet with B — L = —1 would precisely cancel this quantity leaving B — L anomaly
free; however, as it stands the SM only has B— L and the aforementioned symmetries
as global symmetries.

In addition to the global U(1) symmetries, the standard model also has an
important U(1) symmetry that is explicitly broken. It is called the chiral sym-
metry and can be seen by taking y, = 0, y4 = 0, yo = 0. The resultant la-

grangian is then invariant under U(1); x U(1)g where (¥g,¥;) — 5% (¥g,¥;)



and (W, Vg, ¥.,) — @2, W, ¥,..). The yukawa couplings of Eq. (1.3)
clearly break this symmetry to U(1),, g since they mix, for example, L and eg. As
the yukawa couplings explicitly break this symmetry, all quantum corrections must
be proportional to these yukawa couplings since the symmetry must be restored as

y; — 0.

1.2 Neutrinos

As stated the SM has massless neutrinos, but experiments have detected neu-
trino oscillations[13, 14, 15, 16, 17, 18, 19, 20]—neutrinos changing from one flavor
to another—which indicates that they have a non-zero mass whose eigenstate is
not a flavor eigenstate[21, 22]. If the neutrino is assumed to be like other standard
model particles, then it has a dirac mass originating from a yukawa coupling of the

form

UL OV, (1.14)

which means that the right-handed neutrino, vg, must be introduced. Furthermore
there is an upper bound on the mass of the neutrino from direct searches the strictest

of which is m,, < 2.0 eV. Thus Eq. (1.14) implies that

2 eV

~ e ~ 1078 ~ 1075y, . 1.15
174 GeV Yo Y (1.15)

Y

so that it would appear the neutrino’s yukawa coupling is at least six orders of
magnitude less than its SU(2), partner. As this seems ‘unnatural’ (or at least in
need of an explanation) when considering that the up and down quarks have yukawa
couplings within 2 orders of magnitude of each other, there is incentive to postulate
that y, is actually around y. but that neutrinos get a small mass through another
means such as the seesaw mechanism|23, 24, 25, 26, 22].

The seesaw mechanism exploits the singlet nature of vg: because it doesn’t

transform under the SM gauge group, it can have a mass term



MgV} C¥,, (1.16)

called a majorana mass. The left- and right-handed neutrinos then have a mass

matrix

(o %)

which, assuming Mg > (®), has the heavy eigenvalues Mg and the light eigenvalues

m, = —(®)* yl Mgy, (1.18)

The yukawa coupling for the neutrino is then permitted to be around g, due to
the suppression of (®) /Mp. Using the experimental upper limit for neutrino mass,
10° GeV < My < 10" GeV (using 4, = ye ~ 107 for the lower limit; 3, = /47 for
the upper limit).

At this point it may be argued that not much has been gained: the original
small mass of the neutrino has been explained at the expense of introducing a
new mass scale My that is just as inexplicable. Additionally, the presence of the
majorana mass term of Eq. (1.16) means the nature of the neutrino is fundamentally
different than that of the other SM particles. It may well be simpler to just assume

this character from the start and add the non-renormalizable term

LD %(mcb)? (1.19)

to the theory. Of course this reintroduces an inexplicable new scale A < Mp; with
the same range as Mp.

It therefore appears that if the small neutrino mass is to be explained, a new,
unexpected scale must be introduced. If this scale is the A of Eq. (1.19), then the
new particles have a mass around A and will not likely be found in any foreseeable
collider (there may be other low-scale implications, however). On the other hand,
if this new scale is Mg, then a right-handed neutrino is a necessity of the theory—

meaning U(1)g_1, becomes anomaly-free (see Section 1.1.3) and may then be gauged.



The new scale My, is then associated with the scale at which B — L breaks, making
this ‘unexpected’ mass a physical mass of the theory (as opposed to A where there

is no immediately obvious physical significance).

1.3 Supersymmetry

The SM has a major theoretical issue distinct from its failure to explain neu-
trino masses and has been a major driving force for physics beyond the standard
model (BSM). The problem has many names, among which are “the gauge-hierachy
problem”, “the hierarchy problem”, and “the Planck-weak hierarchy problem”, but
they all reflect the fact that the higgs mass is susceptible to large corrections from

loops. The inverse propagator of the higgs is

o0
\ )
e G N R
2 ), N 2 A 2
—p —m +16W2<_ZCF%+O¢)\+ZCQQA>+”'
i A

(1.20)
and if the SM is the full theory until gravity becomes strong, then A = Mp; > My,
so that the higgs field prefers a VEV near the planck scale. Clearly this situation
is unacceptable since precision electroweak data places (®) = 174 GeV < Mpy.
Given the differing signs in Eq. (1.20), it is possible that some terms cancel, but for
A = Mp, the expression in parentheses would need to cancel to the 30th decimal
place to keep m? at the electroweak scale. Furthermore, the couplings involved in
Eq. (1.20) are unrelated to each other and logically there is no reason for them to
conspire to cancel to 1 in 1073°—unless there is a symmetry behind the cancellation.

The argument just given may seem a bit suspicious as neutrino oscillations



have demonstrated that there is new physics at or above 1 TeV, so it may be
more appropriate to use A = 1 TeV. Yet if this physics is just the introduction of
the right-handed neutrino, the problem will persist: the new physics will need to
fundamentally alter the character of the higgs scalar above a TeV (something the
mere addition of right-handed neutrinos does not do).

It is also worth noting that the SM fermions do not have this issue due to
the chiral symmetry discussed in Section 1.1.3. Thus if it were possible to associate
some chiral symmetry with the scalar higgs field, its mass would also be protected.
Supersymmetry (SUSY) does just this by imposing a symmetry between bosons
and fermions—grafting the fermion’s chiral symmetry onto the scalar bosons in the
process|[27].

As SUSY is a symmetry between bosons and fermions, it is best described
when the fields are placed in multiplets containing both types of particles (called
supermultiplets)[28]. This may be accomplished with the introduction of the an-
ticommuting grassmann variables 6,, 8%, and the spacetime coordinate y* = z* +
ifo*f. With these tools the matter content is contained in a chiral multiplet given
by

D(y) = (y) + V200 (y) + Fa(y) 0°, (1.21)

while the gauge fields are expressed in terms of real supermultiplets as

VAy) = =006V y) + 16°0vH (y) — 16°6v*(y) + %9252(0/*@) — 10"V, (y)) .
(1.22)

The fermionic components g, v of Egs. (1.21) and (1.22) are weyl spinors;
that is, they are two component objects. The component ® is a complex scalar field
and VHA is the usual vector field. The components Fyp and D4 are auxiliary fields
in that they may be eliminated by the equations of motion—they are necessary for

accounting purposes as the number of bosonic degrees of freedom must equal the

10



number of fermionic degrees of freedom in a theory that is symmetric under their
exchange.
The lagrangian of a SUSY theory is determined by two functions: the kahler

potential, IC, and the superpotential, W, as follows

1

£=3

/d4elc+/d29w+h.c. (1.23)

The kahler potential is a real or vector superfield since K = KC; the superpotential

is a chiral superfield. The gauge field kinetic terms enter through W from the

superderivatives
0 _. 0
Dy = — + 200" 04— 1.24
@ 0 + ﬂaaoﬁ 6y“ ( )
— 0
Dy = —— 1.25
55 (1.25)

which are used to construct the superstrength

¥, = _252@—2"% DoV 1o (1.26)

and this appears in the superpotential as 7 *%,,.

1.3.1 Minimal Supersymmetric Standard Model

Of particular interest to a SUSY theory of nature is the minimal supersymmet-
ric standard model (MSSM)—the SM extended to include SUSY with the minimal
particle content. The MSSM fields are given in Table 1.3. The MSSM potentials
are taken to be

K = QT(BGAAA+WATA+§BQ +ucted M5By 4 et (G Aa+3B ge

+ LT(BWATA—BL 4 ecT(BZBec

+ HiV'" B 4 HieV By, (1.27)
W= yUQHuuC + de1¥ddC + yeL[—Idec + NHqu
1 1 1
b BBy + — T (W W) + — Te(9°Y,) . 1.28
A9y A )+ g %) (1.28)
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SU(?))C X SU(Q)L X U(l)y
Q 3 2 +3
uf 3 1 —%
d° 3 1 +32
L 1 2 -1
e 1 1 +2
H, 1 2 +1
H, 1 2 —1

Table 1.3: The Minimal Supersymmetric Standard Model. The particles are listed
by their representations of the gauge groups except for U(1)y where the hypercharge
is given.

The MSSM is defined such that it conserves R-parity; that is, the gauge invariant

interactions

Wi = GNP LiLyes + (X)7 LiQydy + SOV widi + () HuLi - (1.29)

are forbidden by the discrete symmetry
(QJ uca dC7 L7 60) - _<Q7 uC) dca LJ eC)
(Hy,Hq) — (Hy,, Hy) . (1.30)
The transformations of Eq. (1.30) actually define matter parity which is trivially

related to R-parity through the particle’s spin:

Pp = (_1)3(37[/)4’28 — (_1)23PM (131>

While R-parity prevents rapid proton decay, it also makes the lightest super-
symmetric particle (LSP) stable as it would have P = —1 meaning its decay to SM
particles (with Pr = +1) would violate R-parity. The fact that the LSP is stable is
useful as it provides a candidate for the non-baryonic dark matter of the universe.
The conservation of R-parity is therefore an attractive feature of SUSY models.
Unfortunately the MSSM has R-parity added by hand; however, since it’s related to

B — L, it is possible to have it as a remnant symmetry if B — L is gauged[29, 30, 31].

12



As outlined the MSSM with R-parity® provides the minimal model that con-
tains supersymmetry; however, as a scalar particle otherwise identical to the electron
has not yet been found, SUSY must be a broken symmetry. Since SUSY was intro-
duced to protect the higgs mass, it is important to add SUSY breaking terms that
do not ruin this feature. The terms that keep the higgs mass protected but violate

SUSY are known as soft SUSY breaking terms and for the MSSM they are given as

1
_'Csoft - 5 <M3gig2 + MLW?;WS + Myb2 + hC)

+ (auQH u° + aqgQH 4d° + a.LH 4e + h.c.)
+mpQ'Q + miutut + midd® +mPLTL + m%e et
+m¥ HiH, +m} H\H,+ (bH,H,+h.c) (1.32)

Sadly, Eq. (1.32) adds 105 free parameters to the theory[27], most of which
lead to effects that are ruled out by experiment (large C'P violation, flavor changing
neutral currents, etc[32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
48, 49, 50, 51]). Due to this large number of degrees of freedom, as well as the
notion that SUSY should be broken in a spontaneous fashion (i.e. similar to the way
electroweak is broken to electromagnetism), an organizing principle has been sought
to relate these parameters and generate SUSY breaking in a way that naturally
yields small effects to known experimental limits. One highly attractive method
that does just that is found in the context of theories incorporating gravity and is

known as anomaly mediated supersymmetry breaking[52, 53].

1.4  Gravity

As the reader may have noticed, the SM model does not include gravitational
interactions. At the energies of current and conceivable future experiments this is

easily justified since gravity is entirely insignificant compared to the electroweak

3This label is redundant as the model was defined to contain R-parity, but sometimes things
need to be explicit.
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and strong interactions of particles. Yet a complete theory of nature would include
gravity as part of its description, and the early universe presents a regime where
both particle interactions and gravity are equally important. Thus, it is worth
considering particle theories in the presence of gravity.

One very compelling aspect of supersymmetry is that gauging it, or making it
a local symmetry, requires the existence of gravity. This can be seen as follows: since
SUSY is a symmetry between fermions and bosons, its parameters, £¢, carry spinor,
or fermionic, indices. Following the typical procedure to gauge this symmetry, £ —
£%(z*), introducing variations of the lagrangian proportional to 9, that must be
cancelled by an additional gauge field. Because the parameter £ carries fermionic
indices, the new gauge field required to make the action invariant will have to carry
both a spacetime index p and fermionic index a. Such an object, a spinorial 4-vector,
describes a spin-3/2 particle. Now because a new fermionic field has been added,
invariance under SUSY will mandate its bosonic partner, a spin-2 field, be added. It
can then be shown that this spin-2 particle couples to the energy-momentum tensor
of the matter fields and is therefore identifiable as the graviton, or the particle
mediating gravitational interactions.

While making SUSY local introduces a graviton coupling to matter, its kinetic
term still needs to be added to the theory. Since the theory is gravity, it is expected
that the kinetic energy should take the form dictated by general relativity. To
obtain this expression, it is therefore necessary to briefly discuss the classical theory

of gravity.

1.4.1 Classical Gravity

To motivate the general theory of relativity, it is helpful to formulate the
newtonian field theory of gravity. First consider a test mass m, in the presence of a

mass M, located at distance r from M. The newtonian theory states that m feels a

14



force

GNTTLMA
r.

F=_ 3 (1.33)
Defining the gravitational field g by
mj=F (1.34)
yields
j= —G;LMf. (1.35)
Gauss’s law relates the mass M to the flux of this field as
/dA G-n= /dQ r2G- 7 = —4rGy M. (1.36)
The use of the divergence theorem then gives a differential equation for g:
V.-g=—4nGyp (1.37)
with p the mass density of M. Finally, taking § = —V®, yields
V20 = 471G yp. (1.38)

Eq. (1.38) represents the newtonian field equation when gravity is sourced by a mass

density p. Making this expression consistent with special relativity modifies it to

1 87TGN

Rog — =9gosR = ——To5, 1.39
8 = 598 2 Los (1.39)
where
R 5, = 05"y, — 0,15 + 17,17 5 — 177,517, (1.40)
R, = R% 0 (1.41)
R=g"R,, (1.42)
1
Fauu - Egaﬁ<augﬁV + avgﬁu - aﬂg;w) (143)
]_ o v al / IV/
detg = EG Pr € A Yoo’ 988 Gup' uv' - (144>

and g,, contains the ® of Eq. (1.38).
In a manner analogous to an electric field existing independent of the charge,

the Einstein equation Eq. (1.39) permits gravitation effects without the presence of
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matter/energy: taking 7,5 = 0 yields

1
Rag — égagR = 0. (1.45)

Eq. (1.45) describes what is called ‘pure gravity’—gravity without any sources—
and is essentially the field equation of gravity. Given this status, it is expected that
Eq. (1.45) may be obtained, through variational techniques, from some lagrangian.

Indeed this is true, and

3

C
Lorav = — 167TGNRV —detg (1.46)

yields Eq. (1.45) as its Euler-Lagrange equations when varied with respect to gas.
Because Eq. (1.45) describes gravity without sources, it represents the ‘free-
field” lagrangian for a gravitational theory. Due to this, Lgray is precisely the
kinetic energy term for the graviton (since the graviton is massless, the free-field
theory only contains kinetic energy terms). Recalling that the ultimate particle
theory is desired to be supersymmetric, Eq. (1.45) must be extended to capture
both the graviton and its spin-3/2 partner, the gravitino. The resulting theory
is called supergravity (SUGRA), and is most easily formulated in the context of

superconformal invariance, discussed in Section 2.3.
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Chapter 2

Anomaly Mediated Supersymmetry Breaking

Anomaly mediated supersymmetry breaking (AMSB) is the idea that the
anomaly of superconformal invariance generates SUSY breaking terms in the visible
sector when SUSY breaking in the hidden sector gives the auxiliary component of
a SUGRA multiplet a VEV[52, 53, 54]. As SUGRA fields will always couple to the
hidden sector, this AMSB contribution is always present, though it is not always the
dominant contribution. If it is assumed that AMSB is the only significant source
of SUSY breaking, then the form of the breaking is completely determined by su-
perconformal invariance. In this case AMSB may be naively thought of as ‘placing
conformal compensators’, which then leads to the ‘AMSB rule’ for the introduction

of SUSY breaking.

2.1 Supercouplings

When discussing the breaking of supersymmetry it is often helpful to treat
the SUSY parameters of the theory as superfields themselves[55, 56]. The rationale
behind this is that a constant superfield—that is, one that is independent of su-

perspacetime (6, 6, x*)—does not break supersymmetry because the generators of

SUSY involve superspacetime derivatives:

I R
= ggn ~1oaa 5 Oo = gga 100 1)

Qa
Therefore, when operated upon by a generator, a constant superfield yields zero
and thus preserves SUSY. Due to this fact, any SUSY parameter may be viewed

as a constant superfield. Consequently, extending the SUSY parameters to have

superspace (6, §) dependence will introduce supersymmetry breaking as the coupling
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will no longer be invariant under the action of the generator.

The parameters can not be extended in an arbitrary fashion, however, because
they may always be re-written as a ‘dummy’ superfield times a complex number.
Therefore the superspace extended parameters, or supercouplings for short, must
obey the same rules as the superfields themselves. Essentially this means that
parameters in the superpotential must be chiral supercouplings while those in the
kahler potential must be real supercouplings.

Treating the parameters as supercouplings provides a powerful tool for ana-
lyzing the structure of SUSY breaking as well as loop effects. These ideas are best

demonstrated in a toy model first written by Wess and Zumino:

O
Kz = 201 (1 + F) ® (2.2)
1 2 1 3
Wiz = S ME® + AP (2.3)

where Z is the wavefunction renormalization constant made into a real supercou-
pling, A is a real supercoupling cut-off, and A\, M are chiral supercouplings.

Using the Wess-Zumino model, it is straightforward to show the general prop-
erty that the superpotential receives no loop corrections. Consider, for example,
the one-loop correction to the superpotential term A®3. If such a correction were

present, the divergent correction would necessarily take the form

AWRIVRG <1?7:2 In %) o° (2.4)
which is the typical correction to a yukawa coupling. Yet a term such as Eq. (2.4)
can not appear in Wy because of the real supercoupling A: the superpotential may
only contain chiral superfields and supercouplings. Because any divergent correction
to the superpotential would contain a A, it can be concluded that no divergent

correction to the superpotential is possible.

The exclusion of divergent corrections to the superpotential does not eliminate
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u@l) Ur
) +1 0
M| =2 2
A -3 2

Table 2.1: The transformational properties of the superfields and supercouplings in
the Wess-Zumino model. For the U(1) the ® is chosen to have its conventional mass
dimension as its charge, the supercouplings M, A are then chosen to keep Eq. (2.3)
invariant. For the U(1)p, ® may not transform if it is desired to have both M ®?
and \®3; therefore, the supercouplings must be chosen to transform to keep d?0 W
invariant.

the possibility of finite corrections; however, these too must vanish. To see how this
must be the case, it is useful to also consider a U(1) x U(1)gr symmetry with the
transformations given by Table 2.1. Any finite corrections to Wyyyz can only depend
on X\ or M as these are the only chiral supercouplings; additionally, the corrections

must preserve the U(1) x U(1)g symmetry so they must come in the ratio of A/ M:

M? A’
AWEINITE _ COTCI) + C1ﬂq’4 4. (2.5)

As either A — 0 or M — 0 these terms are divergent and therefore not finite
corrections. As the limit of either coupling being independently zero is relevant as
a special case of a constant superfield, these terms must be forbidden.

The previous argument establishes that the superpotential, and therefore its
parameters, do not receive quantum corrections. This is true to all orders in pertur-
bation theory, as demonstrated by the generality of the argument. The couplings
in the kahler potential, on the other hand, will receive radiative corrections be-
cause they may acquire dependence on the real supercoupling A. Thus the only
renormalization in a non-gauge SUSY theory is the wavefunction constant.

Inclusion of gauge groups is fairly straightforward as the introduction of gauge
fields does not disrupt the previous argument (which indeed must be valid for g — 0);

therefore, the only new features the gauge groups add are their couplings. These
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gauge couplings may also be made supercouplings, called 7, and will receive diver-

gent, contributions causing them to ‘run’.

2.2 Transmitting Radiatively

Section 2.1 discussed making parameters of a SUSY theory into supercou-
plings which would then give rise to SUSY breaking terms. The idea was also used
to establish that the only couplings that are renormalized in a SUSY theory are the
wavefunction and the gauge couplings. Therefore, if the theory transmits the break-
ing of supersymmetry through quantum corrections, the SUSY breaking is entirely
captured by the supercouplings Z;7 and 7¢. For such a theory, the supercouplings

may be expanded in 6,

In 27 =InZ7 + A70° + (A1), 767 — (m?) 76°6” (2.6)
1 i

= —wg — — — Mgweh? 2.

6= 5We T cwat’, (2.7)

permitting the identification of the components: (m?) .7 is the scalar mass-squared,
© is the vacuum polarization angle, My is the gaugino mass, and the A;/ contribute
to the SUSY breaking terms as follows!:

_az‘jk _ Yiijmk—{— (Z PN k‘) + (] PN /{5)

— IR = Nikm A E 4 (s ) + (= 0) + (k= 0)

(2.8)

The usefulness in this expansion is that the theory that radiatively transmits SUSY
breaking will yield expressions for the components of Z;/ and 7¢ directly. This then
leads to immediate expressions for the SUSY breaking terms. In the case of AMSB,

this is the ‘AMSB rule’ which details how to make Z;7 and wq supercouplings.

!See Appendix A for the definitions of the SUSY breaking terms
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2.3 Supergravity

To justify the existence of the ‘AMSB rule’; it is first necessary to discuss
certain aspects of supergravity, as this is the origin of AMSB[52]. The basic ideas
are also present in Einstein gravity, so this will be the launching point.

The lagrangian for pure gravity (see Section 1.4) is

3

c
EGRAV = — R\/ — detg (29)

167TGN

with g,, the metric as determined by the Einstein equation, R the Ricci scalar, and

R=g"R" 0 (2.10)
R o = 0al% — 0T o + TP, 1%, — TP ,,T%, (2.11)
[0 1 (0%
T = 59 (0ugs + 0v95u — OpGyw) (2.12)
1 o v Oél / IV/
detg = ZE B € Bu gaa’gﬁﬁ’guu’guu“ (213)

The scale transformation g, — Q2g,, (2% a constant) leaves I'*,,, invariant since it
involves the metric and the inverse. Thus R“,,, is also invariant, so that the Ricci
scalar only transforms due to the presence of the inverse metric. Under this scaling,
then,

1
Guv — QQQW g’w - Wguy detg — QS detg (214)
Fauy - Fauli Rauau - Rauay R — QQR (215)

which does not leave Eq. (2.9) invariant. Yet the two theories yield identical euler-
lagrange equations hinting they are the same physical description. To make this
symmetry manifest in the lagrangian, the constant of Eq. (2.9) can be made to

transform non-trivially:

3 1 ¢

— =
8GN 28rGn

3

(2.16)

The fact that the constant transforms under this scaling hints that it may be better
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thought of as an expectation value of some scalar field, 7, as then the ‘true’ theory

is based upon the lagrangian

1
»CSIGRAV = —5773\/ — detg (2.17)

with the field 5 transforming, n — (1/9%)n. The symmetry is broken when 7

acquires a VEV,

03

(2.18)

yielding Eq. (2.9).

With the introduction of the scalar field 7, this scaling symmetry can now be
made local; that is, Q* — Q?(x) (clearly a constant can not depend on spacetime,
by definition). In this context the character of 1 is revealed: it acts in a manner
analogous to the gauge field A*—compensating for the spacetime transformation of
the metric ‘field’” by scaling. Given this, it is appropriate to label n a gauge field.

Yet 7 also represents the gauge freedom, since it may be eliminated by suitably
choosing Q?(z), viz.

Q2(z) = n(x). (2.19)

In this sense it differs from a typical gauge field because it itself defines the gauge.
The natural consequence of this property is that the physical parameters can not
depend on n(x), but this is easily seen to be true as an invariant ‘tilded’ metric, §,,,

may be defined,
G = 0(T) Gy, (2.20)

and the theory can then be completely written in terms of g, .

The final result of the above is that, with the assistance of 1, pure Einstein
gravity has been made scale invariant. This symmetry actually implies an extended
set of transformations called conformal invariance[57, 58], giving n(x) the name

“conformal compensator”.
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It should be emphasized that there is no new physical content to this rewriting
of the theory: no measured parameter can depend on 7 and it may always be
eliminated from the theory to yield the usual Einstein theory. The advantage to
introducing 7 is in its simplification of calculations. This situation is analogous
to that of supersymmetry where the auxiliary fields F' and D are introduced—
these additional fields are not required by the theory but allow calculations to be
performed without invoking the equations of motion. Because n may always be
absorbed into the metric, in this sense 7 is an auxiliary component of the metric
‘field’.

The idea of supergravity is to extend the conformally invariant Einstein theory
to be supersymmetric. A SUSY theory will require the scalar field n be part of
a chiral multiplet labeled ¢ which is also dubbed the “conformal compensator”.
Furthermore, the conformal transformations will necessarily operate on the full chiral
multiplet, leading to an even larger symmetry known as superconformal invariance.

The field ¢, just like n, is not a physical degree of freedom. It is more anal-
ogous to an auxiliary component of the supergravity multiplet that may be easily
eliminated to yield the usual SUGRA theory. In this scenario, though, the compar-
ison with the F' and D fields is even more appropriate since the standard auxiliary
fields break SUSY by acquiring a non-zero VEV. Similarly, the field ¢ may acquire
non-zero higher components leading to SUSY breaking, and it is here that there are
interesting effects.

It is well established that SUSY breaking must occur in a hidden sector that
doesn’t couple directly to the visible sector[27]; though there is no known way to
prevent a gravitational interaction. Because of this fact, the conformal compensator
itself can act as a messenger of SUSY breaking—gravity demands it couple to both
the hidden and visible sectors.

Alternatively, the scenario may be pictured in the following manner: the hid-
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den sector breaks SUSY in some manner, perhaps through an O’Raifeartaigh fashion.
Because the conformal compensator couples to this SUSY breaking, it picks up a

non-zero F'-component,

0

ﬁ ~ <Fhidden> . (221)

Choosing the gauge where ¢ = Mp,, this may be re-expressed as
¢ = Mpi(1+ Fy6°) . (2.22)

where F}, has been defined as (Fhidden) /Mp1. The non-zero F-component of ¢ then
appears in the visible sector due to the conformal compensator’s coupling with these
fields.

The transmitting of SUSY breaking through this means is unavoidable in any

SUGRA model containing conformal invariance; yet because

(Fhidden)

Fr~
? Mp,

(2.23)

it can easily be subdominant to other contributions[52]. Alternatively, if the hidden
sector is ‘sufficiently hidden’[52], then Fj, can be the dominant source of SUSY
breaking. Hence, the supposition of AMSB is that however SUSY is ultimately
broken, the conformal compensator’s F-term is the dominant source transmitting

this breaking.

2.4 Placing Conformal Compensators

Though critical for understanding the mechanism of transmitting SUSY break-
ing, the SUGRA origin of the conformal compensator can be ignored if the presence
of ¢ is taken as read. In this simplified mindset the form of the supersymme-
try breaking is determined strictly by the appearance of ¢, which is dictated by
the superconformal invariance of the SUGRA theory. Fortunately, superconformal

invariance contains weyl scale transformations and a U(1)g symmetry which are
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dw R
0| -3 +1
6 | -1 -1
g | +3 -1
g | +5 +1

Table 2.2: Weyl weight and R charges of superspace coordinates

dw R
K|+2 0
W +3 +2

Table 2.3: Derived weyl weight and R charge assignments for the kdhler and super
potentials
sufficient to determine how the conformal compensator shows up in the lagrangian.
The transformations of ¢ under these symmetries are given by its weyl weight,
dw(¢) = +1, and R charge, +2/3[56, 55].

To see how to place ¢’s, consider a general supersymmetric theory given by

the lagrangian

C— % / 440 K + / 20w + / 026 XG: TE ()" (e ]+ he. (2.24)

1671'0@
where
K =Z7% exp[2V5 (TX), ] "+ - - (2.25)
. 1 .. 1 i ijkt
W = qu)z + Elu”q)iq)j -+ gym (I)I(I)](I)k -+ ET@l@j@k@g + .. (226)

The charges of the superspace coordinates ), §—given in Table 2.2—determine the
necessary charges of the kahler and super potentials to keep the lagrangian invariant;
their appropriate charges are shown in Table 2.3. If we define “tilded” fields so that
dy (®;) = dW(”/7GA) = R(®;) = R(”/%A) = 0, then we may write

W = WXy K =KXk (2.27)
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where the “tilded” potentials are functions of only the “tilded” fields. Since the
“tilded” fields have no charges, the resulting potentials don’t either; hence all the

transformational weights belong to the X,,:

dw(ch> =42 dw(Xw) =43 (228)

Now because the X, carry charges, they can only depend on the conformal
compensator ¢ (we've already removed any other fields’ dependence into the poten-

tials). Therefore invariance necessitates

Xi = ¢'¢ Xy = ¢ (2.30)

We can now write the most general superconformal invariant lagrangian. It is
given by
1 - N
L= 3 /d40 PTOK + /d20 ¢*W + h.c. (2.31)
This picture explicitly demonstrates the ¢ couplings as required by supercon-

formal invariance at a cost of using non-canonically normalized fields. It is possible

to return to the usual fields by defining

_¢T~

= S P = ¢y (2.32)

o, = ¢(i)z Do

with the last equation being a consequence of the second. It is then clear that the

lagrangian of Eq. (2.31), combined with the field redefinitions Eq. (2.32), leads to a

lagrangian
K =Z® exp(2V5TH) " p + - - (2.33)
Q12 Ly Lo ik P

The dimensionful terms of Eq. (2.34) explicitly break the conformal invariance,
and setting them to zero restores the conformal symmetry at tree level; however,

when quantum corrections are included a mass parameter, p, will be introduced.
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The theory will then need to be regularized, which can be done with a cutoff A.
This type of regulator is a convenient choice since the form of Eq. (2.34) establishes
that A must come paired with a ¢ should it give rise to non-renormalizable terms?.

The functional dependence of various parameters on p will always be of the form

i1/ A, so that the renormalized parameters will become supercouplings by the rule
pw— ’% (Chiral Superfields)

pw— |%| (Real Superfields) (2.35)
Eq. (2.35) is the ‘AMSB rule’ for determining the SUSY breaking parameters.

To derive expressions for the supersymmetry breaking terms, a form for Z;7 that

can be ‘promoted’ using the ‘AMSB rule’ is required. Formally solving the beta

function,
dln Z; ,
L=, 2.36
Y (2.36)
yields just such an expression:
) ' InA '
InZ/(Inp) =mnZ’(InA) — / dt ;. (2.37)
Inp
The supercoupling is given as
4 ' InA '
InZ/(Inp) =InZ/(InA) — / dt (2.38)
In £

1]
and the components, which yield the SUSY breaking expressions, may be gotten by

taking derivatives with respect to 62 and 62,

So, for example, the A;7 term is gotten by

2The result that the ultra violet (UV) cutoff gets paired with a ¢ is independent of whether or
not it yields non-renormalizable terms; it is merely a useful illustration here
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d ) d In £
—=In 27 (In 1) = —2/ ” dt v (2.39)
dg 6=06=0 do InA 0=0=0
/J, .
=~/ (In p) {— In —} — 77 (In A) {— In A}
do? 19| ] p_s_0 do? 9—G—0
In &+
+ / i ivﬂ (2.40)
InA 892 ~
6=0=0
1 .
= —Q%j(ln,u) Fy. (2.41)

The last line follows because neither the anomalous dimension, ¥;/, or A have explicit
6, 0 dependence (7 due to it being a physical quantity, A due to the UV physics
being held fixed).

The scalar masses may be obtained in a similar manner, though there is a

subtle complexity as it requires the evaluation of

el mflol)] (242)

While the anomalous dimension has no explicit ¢ dependence, it does contain im-
plicit dependence through the gauge and yukawa couplings of which it is a function;

that is,

e i), - e e (o)
dg? [ -0 ‘g 0w [dF? 191/ 1 o—5-0
v d <. M
—__ytmn el
" gyt LW (“|¢|) ico
oy’ [ d H
—Yoin | In — 2.43
tor e (o) |, @9

The gauge and yukawa couplings’ implicit dependence on 6 can be obtained in the

same fashion as the wavefunction renormalization constant; i.e. formally solving
their RGEs.
The same techniques may be applied to the gauge supercoupling, yielding the

full set of AMSB expressions:
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T

Table 2.4: The U(1) charges and particle content of a toy model that demonstrates
decoupling of thresholds in AMSB

. 1 8% 8% o
(m2)ﬂ = ——I Fol’ |3 gms e * gram 5" + b (2.44)
= —0y"Fy (2.45)
M = —P=a p, (2.46)
QYEG

Eqgs. (2.44)-(2.46) are powerful expressions because they are the solutions to the
RGE at any scale p. This statement is valid both above and below a threshold, M,
provided that the threshold does not introduce any new SUSY breaking comparable

to Fy; that is, any effects of the theory above M vanish in the theory below M [59, 60].

2.5 Thresholds

To witness the insensitivity of AMSB to thresholds M > Fj, it is helpful
to consider a toy model having the particle content given in Table 2.4 and the

superpotential given by

Whepr, = [XUU +yS (XX — M?¢?). (2.47)
In the SUSY limit the scalar components of X and X acquire a VEV equal to M
thus introducing a threshold. At this point all the fields except ¥ gain a mass

of M > Fy. Including the effects of SUSY breaking due to AMSB, it is a mere

algebraic feat to show
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(X) =M + (9(—;) - O(”ﬁ“) (2.49)
(Fx)=MFy (2.50)
(Fx) = MF, (2.51
Jall
(8) = —f (2.52)
_ 1 2 2\ _ |F¢>|2 87};
(D) = %(my_ mx) = _gwﬂf (2.53)

with the D-term acquiring a VEV because X has the f coupling and X does not;
hence, the AMSB expression for their scalar masses are different.

Above the threshold M, ¥ has a scalar mass given by AMSB

5

2\t 4,2

(mﬁ) = —Zg ms, (2.54)

while below M there is no gauge group and W~ = 0 so that AMSB predicts
(m%) =0 (2.55)

The fact that AMSB predicts U’s scalar mass to be zero below M raises two
questions: how the contribution of the gauge group given by Eq. (2.54) disappeared,
and why the D-term VEV-—acquired at the threshold—vanished. Both issues are
resolved by noting that the U’s act as messengers giving a gauge mediated super-
symmetry breaking (GMSB) contribution at the threshold M. This is because the

lagrangian from Eq. (2.47) contains the term
/ 20 Wocpr, D (Fx) W = FMEWY = My F,00 (2.56)

which appears in loops.

For example, the scalar U couples to the U’s through the D-term potential
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Vo = g | (1 = 1K)+ b (1P - ")
-l (1P - X (- [mP) ] e

leading to the diagram

~ X
i v b P Fx [ |Fyl’
- / - g X ®
\I} e e e A \I} ~ — 44
g% /92 (1672)* M2 g (1672)? (2.58)
AN
U >~ 7 U

which is exactly the same structure and size as the AMSB contribution above the
threshold. In fact, Eq. (2.58), along with the other diagrams involving gauge fields,
yields
(mg) = (mQE)Jr + (m) ausg = U (2.59)
The GMSB diagrams such as Eq. (2.58) cancel the higher-scale AMSB con-
tributions to U’s scalar mass; however, they do not remove the D-term portion
acquired at the threshold. Rather, this term’s cancellation can be seen as a re-
sult of the D VEV actually being zero below the threshold—GMSB diagrams like
Eq. (2.58), with ¥ replaced by X, X cause the scalar masses of these fields to be

zero below M resulting in the VEV of D vanishing. Alternatively, the cancellation

can be seen directly through contributions such as
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X
xp// S
My P
l \f<FX>/ )
AN TR WA
VP — — " — T ~ 92f6|FX|2]\42 — g |F<z>|2
7’ oz 77 (16w)?

(2.60)

which cancel the D-term contribution to the scalar W.

The result of the argument just given is that AMSB decouples any effects of
an intermediate threshold and the resulting scalar masses depend solely on the low-
scale physics. There is, as mentioned, a caveat to this statement which is that the
threshold must not give any additional SUSY breaking that is comparable to Fi.
This condition may be re-expressed as stating that the messengers ¥ must have their
mass appear as M¢ in the superpotential; or, alternatively, that the VEV of Fx
must be M Fj,. If these three equivalent conditions are violated, then the threshold

does not decouple and the AMSB expressions are no longer valid below this scale.

2.6 Minimal Supersymmetric Standard Model and Anomaly Media-

tion

The naive application of AMSB to the MSSM is an unmitigated disaster: elec-
troweak symmetry is not broken by the higgs fields, but electric charge conservation
is violated[61, 62, 63, 64, 65, 66, 67, 68, 69, 70]. The latter problem can be seen
directly from application of the AMSB formulae to the sleptons; for example, the

right-handed selectron’s mass is given as

m2. = —22m? gy < 0. (2.61)

e
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The negative mass-square is a result of the negligible yukawa couplings for the elec-
tron yielding a strictly gauge group dependent mass. Since U(1)y is asymptotically
enslaved, the beta function is positive, and so the mass-square must be negative.
This means that any scalar without yukawa couplings and with only IR-free gauge
charges will have a negative mass squared—hence in the MSSM both chiralities of
selectron and muon (and likely the stau) will be tachyonic.

While electrically charged scalars obtain the wrong sign scalar mass-squared
(thus acquiring a VEV and breaking electric charge), the unified electroweak sym-
metry is not broken by the higgs fields. The culprit here is the p term which provides
tree-level conformal symmetry breaking.

In the MSSM, the conformal compensator appears as

W =y, QH,u’ + ysQHayd® + y. LHye® + uoH, Hy. (2.62)
The resulting scalar potential for the neutral higgs fields is then
Vier — 2 2 0|2 2 2 012
v = (mfy, + |l ) |Ho|™ + (m, + |l |Hg|
1
— FypHOHy — Flpr HYHY + S (g} +g3) (|29]" - |25

2

) (2.63)
From the potential Eq. (2.63), two constraints may be obtained. The first is the
requirement that the potential as given be bounded from below. While it is typically
argued that this is to ensure positive energy states, that is not the case as there may
be non-renormalizable terms yielding higher powers of the higgs fields. Such terms,
with the correct sign, would eventually turn the potential positive; however, in doing
so they would also push the higgs VEV to a value well beyond the one required for
electroweak symmetry breaking. Thus, to ensure the correct higgs VEV the potential
of Eq. (2.63) must be bounded from below. The most stringent constraint will come
when <ﬁ2> = <ﬂ2>, leading to the condition

my, iy, + 2l = |Fo+ Fjpt| = 2 Fonl (2.64)
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Eq. (2.64) can not be satisfied for F, ~ 10 TeV unless pu ~ Fj, which implies the

2 . .
scalar masses m3; ~ my; ~ m2, < |Fy|” are completely irrelevant to the constraint:

i, + iy, + 2l ~ 20l > 2 Ful (2.65)

The second requirement of Eq. (2.63) is the instability condition for SU(2), x
U(1)y, which ensures that the gauge group is broken. The instability manifests

itself as a negative eigenvalue for the higgs mass matrix,

2 *
2 2 | .
—Fyp mip, + |pl

which may be accomplished by requiring the determinant to be negative. This yields

(mir, + ) (mi, + o) = " < [Fopl”. (2.67)
Clearly both Eq. (2.65) and Eq. (2.67) can not be satisfied simultaneously, and so

the higgs fields do not acquire a VEV.

2.7 Next-to Minimal Supersymmetric Standard Model and Anomaly

Mediation

Since the MSSM already has the p problem without AMSB, it may be ar-
gued that AMSB just exaggerates the issue and so the explanation to the MSSM p
problem should solve the troubles of electroweak symmetry breaking when SUSY is
broken with AMSB. Unfortunately, this is not the case for the minimal model, the
next-to minimal supersymmetric standard model (NMSSM)[71]. The best way to
understand the underlying problem is through a toy model. Consider a superpoten-

tial given by
1

Wioy = gﬁNs (2.68)
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where N is a singlet field with no gauge symmetries. The resulting scalar potential,

including SUSY breaking, is
Viey = |n|2|ﬂ|4+%(a,€ﬂ3+a2ﬂ*3) +my N (2.69)
Taking account for the complex phases by letting
N = |N| e~ K = |k| e Uy = || @19, (2.70)
the minimization condition for the phase dy is
sin(30x + d,,. ) = 0. (2.71)

The resulting minimum condition for |N|,

0= 2\&\2 |ﬂ|2 + |ax| |N]| cos(36y + 6,,) +m3
= 2[[* |N|* + |a.| N] + m}, (2.72)

is then independent of any phases leaving (/) real. The solution to Eq. (2.72) states

]+ y/lacl* — 8Jsf* m3,

2|s|’

(V)

(2.73)

where the soft couplings a, and my are determined by AMSB via Eqgs. (2.44) and

(2.45):
a, = &6,{3
1672
m2 = ol jg
(1672)

Substituting these into Eq. (2.73) gives

(N) = %'%’(—6 +v/—60) (2.75)

yielding a contradiction: (N) must be real, but the large negative under the radical
demonstrates this can not be so.
The source of the problem can be identified by examining the potential of N.

To expose the difficulty, it is helpful to define
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r= (2.76)

and re-write Eq. (2.69) as

Vio 1
% = 37 a4 3% (2.77)
mMan R

where the AMSB expressions of Eq. (2.74) have been substituted. For the potential
to have a non-trivial minimum it is necessary that the cubic term dominate for some
value of = (since this term is the only one that provides a negative contribution to
the potential); however, for large s, the 2? term will always be larger than the
cubic term. Meanwhile, for small k the quartic term will dominate the expression.
Therefore, if there is any chance for the 2 term to create a minimum other than

zero, it must be that k ~ 1. This leaves the potential as

W)
—S:;? = Zx‘l + 23 + 322 (2.78)

where it now becomes clear that neither large x,  ~ 1, nor small x will have the
cubic term dominate the expression—leaving the only minimum as the trivial one.
Thus, the heart of the problem is that AMSB predicts the cubic term’s coefficient
such that it will always be weaker than either the quartic or quadratic regardless of
the parameter regime.

The same problem carries over to the full NMSSM, as pointed out in [71]. In
this model, the additional coupling of N to H, and H,; does not alter the relative
strengths of N’s quartic, cubic, or quadratic terms, but it does add a linear term
to the potential, ayv,vgN. The induced linear term shifts the trivial minimum
away from zero, but keeps it small. The minimization condition for N can then be

approximated as

1
2 AN) — ——a?sin28 =0 2.79
R (N) = 5oz sin 25 279

with 13, ~ m?2_ being essentially the AMSB predicted soft SUSY breaking mass for

N. The maximum value occurs when sin 23 = 1 so we have that

36



() < a)v? 1 v?
Y232 2v/2Man

The small (N) then results in a chargino mass which falls below the LEP II bound

~ 22 Gev (2.80)

of about 94 GeV.
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Chapter 3
Mixing the Left-Right Model, Supersymmetry, and Anomaly

Mediation

This chapter introduces the supersymmetric left-right model and takes the
theory “through the scales” ending at the SUSY scale, below which it is the standard
electroweak theory. It also argues the presence of “light” SU(2), triplets and doubly-
charged SU(2), singlet fields, whose phenomenology has been the subject of many
papers(72, 73, 74, 75, 76, 77].

3.1 The Left-Right Model

The SUSYLR model is defined by Table 3.1. It contains right-handed B — L =
+2 triplets to break SU(2)g x U(1)p—r to U(l)y. Because these triplets have
B — L = +2, Eq. (1.31) implies that R-parity will be a residual symmetry after
the breaking—thus, the model naturally enforces R-parity conservation yielding a
stable LSP.

Parity has also been enforced in Table 3.1, so that the theory necessarily
contains left-handed triplets. While the seesaw mechanism may be achieved with
only SU(2)r higgs fields, demanding parity introduces seesaw like couplings for
the left-handed sleptons which, combined with the right-handed seesaw couplings,
provides both chiralities of sleptons positive mass-squares.

The fully parity symmetric superpotential is

Wsusyrr = Wy + Wy + Waspnr + Wasvnr (3.1)

where
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Fields SU(?))C X SU(?)L X SU(?)R X U(l)B_L
Q 3 2 1 +3
Q° 3 1 2 —3
L 1 2 1 -1
Le 1 1 2 +1
P, 1 2 2 0
A 1 3 1 +2
A 1 3 1 -2
A€ 1 1 3 -2
A° 1 1 3 +2
S 1 1 1 0
N 1 1 1 0

Table 3.1: Assignment of the fermion and Higgs fields’ representations of the left-
right symmetry group (except for U(1)p_; where the charge under that group is
given.)

Wy = iy4Q 1 ®aQ° + iy L 1p®, L + 1 f LT 7 ALS + 1 f LT AL (3.2)
- _ 1 1
Wit = (Ma¢ = AsS) [Tr(A°A°) + Tr(AA) | + MEO*S + S psdS” + 5/@553
1
+ AYN Tr (L o) + gf@NN3 (3.3)

Waspnr = ]\2\;{) Tr* (AA) + ]\/j\—;‘(b Tr* (A°A°)

AB XA /\B cCAC ACAC
+ Mo Tr(AA) Tr(AA) + Vo Tr(A°A°) Tr(A°A°)

)\C A cAC
Mo Tr(AA) Tr(A A )

)\S A 2 )\g CAC 2
Vo Tr(AA) S o Tr(A A°) S? + (3.4)

AD AD — — —  —
W, = Tr(AA) Tr(A°A° Tr(AA) Tr(A°A°
GSVNR Moo r(AA) Tr( )+ Mo r( ) r( )
(Ao)™ X T (A)™
Tr(AA) Tr(@, 2®prs) + —7
Mg HAA) T (@amaoms) +
) Wa

2% (AT, 7 7,0, A)
I T T
Mpi Mpig e

)‘N A 2 )‘CN A 2
+ Tr(AA) N4+ —— Tr(A°A°) N
Mp1o ( ) Mp1o ( )
Tr(®L rPp72) S° + A—MS2N2 + - (3.5)
Mp¢

_|_

+

+

Tr (ACAC) Tr (CI)ZTQ(P[)TQ)

+

Tr(A®,7P; A) +

_|_

Mp1o
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The fields transform under parity as

Q — —imQ°* L« —imyL°* P, — OF

B - (3.6)
A o Act A Al (S, N) — (S*,N*)
which demands that the couplings be related:
vo= (o) W=D f=fi Ma=Mj
As =Xy Mi= (M) nps=ps Ks=rg
Ay = AL KN = K- (3.7)

The superpotential of Eq. (3.1) has also had a discrete Z3 symmetry imposed

where the fields transform

(Q’ Qc7 L7 LC? A? AC’ ¢G’N) - @2]171-/3(62’ QC’ L’ Lc7 A? AC? ¢a7N)7 (3 8)
(A7 AC) N (B4ﬂ7r/3(A’ AC) ’
and S invariant. This symmetry is necessary to keep one singlet light below the

right-handed scale since it forbids terms such as
Wy, = k12SN? 4 £21.S°N + AN Tr(A°A°) (3.9)

which would generate a large, O(vg), SUSY mass for N. This symmetry is not
gauged, therefore it is global symmetry which is susceptible to violation due to
gravitational effects!. Due to these considerations, Eq. (3.1) contains the planck
suppressed, Zsz violating, non-renormalizable terms of Eq. (3.5).

The Zs violating non-renormalizable terms are not, however, the only ones
possible: Eq. (3.4) displays terms which conserve the discrete symmetry, but are
nonetheless gauge invariant. As these terms do not violate the Zs, they quite pos-
sibly originate from the next new scale of physics which is conceivably below Mp.

To allow this possibility the terms in Eq. (3.4) are suppressed by My and not Mp.

'For example, if a particle charged under this symmetry falls into a blackhole, there is no way to
ascertain the amount of this charge the blackhole contains. This can be contrasted with a gauged
symmetry where Gauss’s law may be utilized to determine the charge enclosed
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3.2 Vacuum Structure
The potential generated by Eq. (3.1) is
V =Vp+Vp+ Ve + Vaenr (3.10)

with the F' and D term potentials given by

Vie = Tr(FAFa + FLFp) + F}Fy + Tt (F} Fs,)

+ Tr(FXFac + FL Fac) + F5Fs (3.11)
1
Vo =3 ZG: DS DS + ZG: DYDY + D%, . (3.12)

The F' and D term expressions, along with the SUSY breaking potentials, may be
found in Appendix B.1.

The potential Eq. (3.10) is clearly intractable; however, not all the terms are
important at all scales. If it is assumed that Ma ~ Mg ~ pug > Fy, then the the
breaking of SU(2)r x U(1)p_1 can be considered in the SUSY limit. Furthermore,
provided Mx > Ma ~ Mg ~ pg, all the non-renormalizable terms are insignificant.

In these limits (and taking the VEV of the sneutrino to be zero), then

—Fl. = (Ma — XsS) A (3.13)
—Fl, = (Ma — AsS) A° (3.14)
—Fi = —\g [Tr(écéc) + Tr(M) } + MZ + psS + rsS? (3.15)

Evidently Egs. (3.13) and (3.14) give S a VEV

M
(8) === (3.16)
As
Eq. (3.15) then implies that A°, A® acquire a VEV of
roy M3 ps  KsMa\ Ma
A9 (A" = 5 —= — 1
(@) = 35+ (B4 55) 35 3.17)

where it becomes clear that Ma ~ pug ~ Mg ~ vp—taking vy as the characteristic
right-handed breaking scale.
Inclusion of the non-renormalizable terms shifts the right-handed scale by

O(v%/Mx) which is small compared to vg. It is important to emphasize that the
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non-renormalizable terms alter the VEV while preserving SUSY—the ultimate ex-
pression for the VEV should decouple the SUSY preserving and SUSY violating
parts. This distinction is pertinent as it is entirely conceivable (and it turns out

desirable) to have

,02

R OF 3.18
" e (3.18)

which results in the non-renormalizable terms yielding a contribution of the same
order of magnitude of the SUSY breaking ones. Even though the terms are of the
same size, the previous argument guarantees that non-renormalizable contributions
never break SUSY?—an important feature as it ensures AMSB provides the only
source of SUSY breaking.

While the SUSY limit implies SU(2)g x U(1)p_p, is broken, it does not specify
which components of the SU(2) triplets get a VEV. This implies the existence of a
continuously connected set of degenerate vacua[78]. Indeed, the degenerate vacua
can be deduced from the form of the superpotential of Eq. (3.1): by asserting that
the sneutrino has a zero VEV, the yukawa couplings of Eq. (3.2) play no role in
determining the vacuum structure; hence, they can be neglected for this discussion.
Furthermore, setting the gauge couplings to zero and taking My, Mp; — oo unveils a
complexified U(6) symmetry for the SU(2) triplets. The U(6) is revealed by defining

two new fields

A= (A, A% A= (A, A% (3.19)

which are complex 6 vectors. The terms in Eq. (3.3) can then be written in terms of
the quantity Tr (AA), resulting in the freedom to rotate between the 6 components
of A and A.

When SU(2)r x U(1)p_r, breaks, A° and A° acquire a VEV which can be

2It should also be emphasized, albeit in smaller text, that this is not generically true for fields
with zero vacuum expectation value in the SUSY limit and non-zero VEV when SUSY is broken.
This is because the zero point of the potential may be highly unstable and susceptible to inducing
large VEVs
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rotated into one component of A and A; hence the complexified U(6) is broken
to a complexified U(5). This SSB yields 22 massless real degrees of freedom. The
superhiggs mechanism ensures that 6 are eaten or become massive, leaving 16. These
16 degrees of freedom then parameterize the degenerate vacua.

In terms of goldstone particles, the 16 degrees of freedom lie in the SU(2),
triplets A, A and the doubly-charged right-handed particles A==, AT+, If it is
demanded that SU(2); be preserved, then the U(6) is broken only by the right-
handed triplets. The result is that the vacuum degeneracy of interest is parame-
terized through the four real degrees of freedom in A"~ and A°**. This may be

expressed as

en _ YR ipe 0 Cos oy
(A% = \/§(B <(Bﬁ6 sin acy 0 ) (3.20)

e\ UR _jge 0 e sin oy
(A°) = Nor (COS o 0 > (3.21)

where agy # 0 represents a vacuum that violates charge conservation.
The vacuum degeneracy is explicitly broken when gauge couplings are in-
cluded, but because of the choice of SU(2) preservation, only by the SU(2)r D-

terms. Their VEV contributes a term to the potential that is dependent upon acy:

I 2
(V)ivbe = +392(Vr = vR)" cos’ 2a0v (3.22)

For the charge conserving potential, acy = 0 and (V) is at its maximal value;
thus, the charge violating vacuum is the lower, favored state[78].

Naturally, a dynamically-favored, charge-violating vacuum implies that a vi-
able theory must include additional terms that explicitly break the U(6). One
option is to break R-parity thus making the seesaw yukawa couplings relevant to
the vacuum structure[78]. Another option is to include additional particle content

with couplings that explicitly break this symmetry[79, 80]. Alternatively, it is pos-
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sible to use the given theory if terms generated from a higher scale of physics—that
is, non-renormalizable terms—exist that explicitly break the symmetry[81, 80, 82].
Such terms are present in Eq. (3.4), namely Ag, A%, Ap, Ap, and they are higher
in magnitude than the D-term contributions. This is because the contribution to
the potential from the D-term is proportional to the square of the difference of the

VEVs

_ 2
<V>\D/DC ~ (U?% - UIQ?L) ~ M§USY (3.23)

with the last expression following from the fact that the D-term VEV comes from
the difference in the soft SUSY breaking masses. The non-renormalizable terms,

however, are

4
NR v _
(V)vbe ~ _MR;( (7)12% - Uz%z) ~ Mx Mdygy > Mgygy (3.24)

assuming v% ~ MxMgysy. It is therefore quite easy to achieve a contribution to
the potential from these non-renormalizable terms that places the charge conserving
vacuum lower than that of the charge violating one. In fact, it is important to realize
that because the doubly-charged particles are the goldstone bosons of the U(6), and
this symmetry is responsible for the vacuum degeneracy, requiring the mass-squares
of these goldstone bosons to be positive is exactly the same condition as requiring
the charge conserving vacuum to be lower than the charge violating one. Hence

ensuring one will imply the other.

3.3 The Theory Between vp and Fy

Once SU(2)g breaks, the effective theory will contain the doubly-charged
A~ At a pair of left-handed triplets, and the particle content of the NMSSM
with an extra set of higgs doublets. This theory shall be called the NMSSM++ as
it connotates the presence of doubly-charged particles as well as the notion that it

is ‘incrementally more than’ the NMSSM.
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The doubly-charged particles and the left-handed triplets survive below vg
because of the U(6) symmetry discussed in Section 3.2. The non-renormalizable

terms give them a SUSY mass of

’U2

R
<~ ~ — 3.25
KA A ™~ KUDC My ( )

which is precisely the mass of the fermionic components. The scalars, however, will
receive a bilinear term due to the explicit breaking of superconformal invariance,

resulting in a mass matrix of the form

2 vh
I I —Fy
X

The eigenvalues of Mpoa A need to be positive, which will be accomplished by
requiring

YR > p 9

As it is desired that these particles survive to the F; scale, the condition

2

VR
Vi ¢>( EA) ( )

is imposed, resulting in Eq. (3.26) having the eigenvalues of 2|Fy|* and ex|F,|>.
In addition to providing a mass for the U(6) goldstones, the non-renormalizable
terms of Eq. (3.1) also provide important contributions to the electroweak breaking

higgses. For instance, the term

pre _
Tr(A°A°) N? + -~ G§2N? 3.29
Mpip ( ) Mpy¢ (3.29)

generates a SUSY mass term for N when A, A and S get a VEV. Taking this

Am

term in the superpotential to be written as puy¢N2, the mass is

/\CN xC /\M 2 U}2{
= A (A") + —(9)" ~ ——. 3.30
v = A (A7) + (8 = 1 (3:30)

Once again the explicit superconformal breaking yields a bilinear term of

—[I,NFngZ = —bNﬂz (331)
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with by given as
2

(%
by = punFy ~ M—I;F¢. (3.32)

If by is to be of the expected order of MZ;qy, then it must be that

Mp M2
0% ~ w ~ (10°-10" GeV)? (3.33)
¢
and this results in a range for Mx:
% 15_1018
My ~ 2~ (10'°-10"® GeV). (3.34)

¢

Finally, the non-renormalizable terms will also split the masses between the

two higgs doublets as the terms

20 el
Mp¢

c\ab B
—(]\4(;)@ Tr(ACAC) Tr(@aTg@ng) +

Tr (AT ®. 1D A°) (3.35)
generate a SUSY mass for the ®’s with the second term providing an asymmetry
between ®; and ®,. This asymmetry will allow a larger mass, say of order Fy, for
one set of doublets while the remaining pair stays light.

Taking all these elements under consideration, the resulting theory between

vg and F, may be written. The superpotential is given as
Wimssm+ = 15 Q" o Hyyu® + y§Q" 1o Hy,d® + yf LT 19 Hy e
+ foef AT + i f LT AL
1 1
+ANYNHE moHyy + ip™¢HYL 70 Hy, + §MN¢N2 + —KkN3

“ 3
+ ,uDCquc__AC—H_ + MAgb TI"(AA) (336)

where the SU(2), doublets H,,, Hg, come from the bidoublets ®,, and the yukawa
couplings obey
Yo = Yu + Yd (3.37)

at the scale vg.

The significant new features of the NMSSM++ are the yukawa couplings f
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and f. in Eq. (3.36), which survive to the low-scale theory due to the complexified
U(6). Since these are new leptonic couplings, they introduce new terms in the
AMSB expression for both the right- and left-handed sleptons. The new yukawa
couplings may then be selected to turn both chiralities of sleptons positive.

To make this explicit, the slepton masses are

2
o 1 |Fy

Mee 5
2 (167?)
8 )+ AT e+ T () |+ 4 v [ i) vk + 2411

+205) v |20 v+ T (3 wi + W) vt ) + 40w x|

8£1 )" (i) fo+12(02) f 11y

— 2g% <24chfc +3(y0) T yg + 269%) — 692 (y2) ys + hec. (3.38)
mi = LIRS 6£(y8)" (yv2)* £+ dyt £ fu(yd)
LT 5 16m2) L) Wi rlelelYr

+6[ (0 i + 12071 2T (F) | S 2 )+ 81T v )
i)t 200"+ Te (3" vs + W) wh ) + A0 AR
-9y (181”fT + 3yt (yp)" + 13952/) — 391 (14ffT +y2(yi) + 39%) +he

(3.39)

Lepton flavor violating experiments constrain the f’s off-diagonal elements[83] so
severely that they may be taken to be zero. The f’s are then diagonal in flavor

space,

f:diag(f17f27f3>7 fC:diag(f617f027fC3)7 (34())

which, along with the usual neglecting of first and second generation yukawa cou-

plings, simplifies Eqgs. (3.38) and (3.39) to
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me. = mg, [40 o+ 8 021( o+ 023) — 481397 — 529?/] (3.41)

mi, = ma, (847 + 127 (f3 + f3) — 67 (3¢% + T91) — 1393 — 991 ] (342
mic =mg, [40 o+ 8 622( o+ 023) — 48f5gy — 529?/] (3.43)
mi, =ma, [84fy + 125 (f + f5) — 65 (397 + 791) — 139y — 991 ] (3.44)

mZ. = m2, [40f5 + 10(y2ys)* + 8 A (fA + f5) + 6(ylus)? + 12052 (2f2% + [3)

+ BATYINPYE — A8 [Z g5 — Gyt (9v + 91) — 529y ] (3.45)
mi, =ma, (8415 +5(yly)® + 3(ylus)” + 125 (f7 + 3) + 2082 (9f5 + 2f%)

+ NIy — 63 (395 + Tg7) — 3ulyt(9v + g7) — 139y — 9g1]  (3.46)

Egs. (3.41)—(3.46) demonstrate that the sleptons may be made positive by requiring

fi(Fy) = fa(Fy) = fa(Fy) = fea(Fy) 2 0.6 (3.47)

with the 0.6 coming from the detailed analysis of Section 3.5.2.

The f and f.’s as well as the (left and right) doubly-charged masses are ex-
perimentally constrained from muonium-antimuonium oscillations[84] which occurs
through the tree-level exchange of a doubly-charge particle. The constraint imposes

the condition

fclch —~ f1f2
4v/2m3 4\/57712A A

For the minimum f values of Eq. (3.47), this implies a lower bound on the masses

<3 x107°Gp. (3.48)

of the doubly-charged fields of

mpc, ma > 2 TeV (3.49)

or the ea of Eq. (3.28) is around 1/100. An exciting result of this limit is that
masses near this lower bound are accessible at the LHC and may therefore be found

in the near future.
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3.4 The Theory Between Fj, and Msysy

At Fy the doubly-charged particles and SU(2), triplets need to be integrated
out; we also choose, at this scale, to integrate out one set of higgs doublets (which
is permissible due to asymmetric u®—see Section 3.3). The remaining particle con-
tent below F} is that of the NMSSM, though the actual theory contains additional
couplings originating from the higher-scale non-renormalizable terms. To distin-
guish this model as having additional (though natural) couplings, but still having
the NMSSM particle content, the theory below Fj is referred to as the NMSSM.

The superpotential for the NMSSM is

Winssu = Wu@Q" o Hyu® + 1y4Q" 7o Hyd® + iy L' 72 Hye

1 1
+IANH 7 Hy + iuN]\ﬂ + §/€N3 (3.50)

with the SUSY breaking potential

VERSM = mQQ + miuTu + midlds + miy LT L + mieTe
+miy, HLH, +mpy H{Hy+miN*N
+ [10,Q" o H u + 1agQ" 7o H 4d° + 10 LT 7 H 4 + h.c.]

1 1
+ [mANHfTQﬂd — §bNﬂ2 + gaﬁﬁ3 + h.c}

1 o
= (Mggf;gg} + Mp(wp)% (wi)? + Myb2 + h.c.) . (3.51)

The resulting higgs-sector potential is

Vinssm = Ve + Vo + Vass (3.52)
Ve = PP INP (P + [Hy*) + [IAHE 7 H, + pv N + sN2[° (3.53)
Vo= 5 (0 + 1) (HLJP — |H*)" + 503 | HLH, [ (354

Visg = myy, HLH,, +mj; HiH, +myN*N
+ liaxNH 7 H ; — %bNM + %aﬁﬁiﬂ + h.c. (3.55)

The extra terms puy and by present in Eq. (3.52) are fortuitous since Section 2.7

demonstrated that the NMSSM with AMSB produces a very small singlet VEV
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leading to a tiny higgsino mass|[71]. As discussed in Section 3.3, the NMSSM++
naturally generates a SUSY breaking bilinear term for NV, which carries over to the
NMSSM. This term is conceivably of the correct size and magnitude to force the
net mass-square of NV negative and cure the small singlet VEV problem. To see how

this works it is useful to define the tilded parameters

ELA = a)\—f-)\[,LN (356)
dp = ay, + 3KUN (3.57)
mi = ma + s — by (3.58)

which encapsulate the deviation of the NMSSM from the NMSSM.
Taking the VEVs of the fields as

wi=s () w-5 (W) W= e

as well as defining

v, = vsin Vg = v cos 3 (3.60)

the minimization conditions of Eq. (3.52) may be written:

my, — é(g% + gy) v* cos 23 + %)\2(n2 + v cos® B) — %(d,\ + )\—\%1) cot f =0
(3.61)
2 Loy 2\ .2 Liora 2.9 n (. AT
de+§(gL+gY)v 00826—1-5)\ (n + v*sin ﬁ) —E<CL,\+W) tan (3 =0
(3.62)

na,.

V2

1 .
— 51}2(”(35 + /\Ii) sin20 =0
(3.63)

1
ma 4+ k*n? + 5)\202 +

Notice that Eq. (3.63) has Eq. (3.58) in lieu of the typical m%. Using Eq. (3.32)

this may be re-written:

m
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Figure 3.1: Constant n contours in the py—r(vg) plane where the curves, from top
to bottom, correspond to n = —10000, —7500, —5000, —2500 and —1000 GeV. A
constant value of tan § = 3.25 has been assumed with F}, = 33 TeV and A(vg) = 0.5.

where the second line follows from the fact that puy ~ O(%) ~ O(%)
and therefore the p% term is negligible compared to the the other terms. The last
line substitutes the AMSB expression for the scalar mass-squared assuming it is
dominated by the A contribution. It is clear from Eq. (3.64) that the A\* suppression
makes it relatively easy to adjust py to turn m3, negative. Thus, the singlet N can
achieve a VEV of the necessary size to evade the experimental higgsino mass bound.

Given that constraints from perturbativity limit A(Msysy) < 0.5 and that
= \A/—%, it is only necessary for n 2 300 GeV to achieve chargino masses above the
LEP II bound. Such a scenario is easily done in the NMSSM, as show in Figure 3.1.
In the figure, constant n contours are plotted in the uy—+(vg) plane treating the
VEVs of the Higgs doublets as constant background values with tan3 = 3.25,
F, =33 TeV, and A(vg) = 0.5. The ample parameter space demonstrates that the
additional terms inherent in the model easily provide a means to resolve the conflict
between AMSB and the NMSSM.

Perhaps unsurprisingly, the resulting mass spectrum of the NMSSM is quite

similar to the NMSSM and most results can be obtained by the simple substitution
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of the appropriate variables with their tilded form. Typically uy is small compared
to Msysy so that the untilded variables are usually very good approximations to
the tilded ones.

For example, the neutral higgses mass matrix is

M2 ,LL2
M2 — ( HN HSN) 365
° (MI%ISN)T Mgy (3.65)
with
M%{N =
'U2 KN Vd Uy n ~ KN
I“(g%+gL)+ (a +/\xf> d4 (4)\24—912/4—9%)—%(@,\—1—%)
(AN + gy + 97) — (a,\ + {?) (QY +97) + N <~ + %)

(3.66)
(N2HSN)T = ()\anu — 50 — Akvgn A2nvg — Jax — /\fwun> (3.67)

My = 2n’k? —|—— H+qud~

V2 V2n

which is identical to the NMSSM matrix if py is neglected. This is also true of the

(3.68)

charged higgs where
M2 = 2_2A2)+1(a +M)0802ﬁ (3.69)
¢\ ANV |

The pseudoscalar mass matrix, however, does get altered because it picks up a
contribution from the SUSY breaking by term. Generically by is significant in size
for any reasonable higgsino mass, so this term ensures that the heaviest pseudoscalar
is mostly singlet. This can be seen from the mass matrix (after rotating out the

zero-mode),

M2 =
\f (a,\ + A\ﬁ‘) csc 2 \/Li(aA — AN — \/ﬁ)mm) ’
75( — \UN — \/_/\l{n> %(ﬁ,\ + 2)\1171\/5) — 3&}% + 2by + 8/-@,uN\%

(3.70)

for when the (2,2) entry is dominated by by: Tr M2 = 2by.
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As the superpartners to the scalar higgs only get mass from the superpotential,
their mass matrices remain unchanged from the NMSSM. For completeness, the

charged higgsino mass matrix is

0 uly M, V2Myy sin 8
M = X == . 1
X (uxi 0 ) Foc <\/§MW cos 3 L (8:71)

in the basis (W*, H, W, H . ); while the neutralino mass matrix is

M1 0 MngSQW —Mzcﬁsgw 0
0 Mg —M285C9W M2CgC9W 0
Mo = | Mzsssew  —Mzsscoy 0 —2sn —%Ud (3.72)
—Mzcgse,,  Mzcges, —\%n 0 —\%Uu
0 0 —\/%vd —\/%vu V261 + iy

in the basis (f)’, W, H,, Hy, N).

3.5 Phenomenological Consequences

Running Scheme: The numerical values of this section are based on the param-

eter running scheme as follows:

e The gauge coupling values are run from the electroweak scale M, to Msysy = 1
TeV using the one-loop SM RGEs. They are then run from Mgysy to Fy, using
the NMSSM one-loop RGEs. Finally, the gauge couplings are run from Fy to
the right-handed scale vg = 2 x 10! GeV using the NMSSM++ one-loop
RGEs.

e The yukawa couplings are specified at vy using the ‘only third-generation’
approximation for y¢ and y7. The seesaw couplings are equal at vg by parity,
assumed to be diagonal at this scale due to lepton flavor violation constraints,

and approximated as

f=diag(fi, f1, f) (3.73)
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mo universal scalar mass at Mgyt
mSUGRA m1/2 universal gaugino mass at Mgy
oy = «g at A universal trilinear A-term value at Mgyt
Meaur ~ 106 GeV tan3  ratio of higgs VEVs
sgn(p) sign of the higgs’s SUSY mass term
A the scale of SUSY breaking
Mess  mass of the messengers
N5 number of pairs of messengers (assumed to
mGMSB come in complete SU(5) multiplets)
tan (8  ratio of higgs VEVs
sgn(p) sign of the higgs’s SUSY mass term
ma universal constant added to scalar mass-
squares to avert tachyonic sleptons
Mlggl\l\//I[iBAﬁg]B Fy the scale of SUSY breaking
tan 3  ratio of higgs VEVs
sgn(p) sign of the higgs’s SUSY mass term

Table 3.2: Popular SUSY breaking schemes.

for simplicity. These yukawa couplings are then run down from vy to Msysy

[1, 85] with matching at the various thresholds.

o As AMSB is valid until Fy, the SUSY breaking terms need not be run but can
be evaluated directly at Fj, using the AMSB expressions. From Fj to Mgusy
the SUSY breaking parameters are run using the RGEs of the NMSSM [86].

The numerical values are expectedly parameter-choice dependent, so they are
compared with the other popular SUSY breaking scenarios of minimal supergrav-
ity (mSUGRA), minimal gauge mediated supersymmetry breaking (mGMSB) and

minimal anomaly mediated supersymmetry breaking (mAMSB). The m* models are

defined by their inputs and assumptions as shown in Table 3.2

3.5.1 The Spectrum Qualitatively

The overall spectrum of SUSYLR+AMSB is shown in Figure 3.2 and Figure 3.3

with the m* models for comparison. The m* models’ parameters were chosen so
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tan f = 3.25 sgn(u) = +1
SUSYLR mAMSB mSUGRA mGMSB
Fy =33 TeV B mo = 209 GeV A =99 TeV
filvp) =35 ”}0 __63435T(1§/V My = —300 GeV | Mpyess = 792 TeV
fs(vg) = 3.5 ¢ Ay = 265 GeV Ns =1

Table 3.3: The input parameters for Figure 3.2 and Figure 3.3. Each model has
tan 3 = 3.25 and sgn(u) = +1.
that the gluino mass matched with SUSYLR+AMSB and were calculated using
ISAJET[87] through the online tool SUPERSIM. The specific parameters used are
given in Table 3.3

Figure 3.3 shows a very striking feature for SUSYLR+AMSB: the sleptons and
the squarks are very close in mass. This result is highly dependent on the seesaw
couplings (for example, taking fi(vg) = f3(vg) = 1.4 yields sleptons roughly 200
GeV less; the squarks unchanged) but is a possibility that is difficult to achieve in

other models.

3.5.2  Sleptons

As the sleptons are made positive by f and f,., it should come as no surprise
that their masses rely heavily upon these couplings’ values—therefore making it
logical to analyze these couplings when discussing slepton masses. It is convenient to
establish a range the f’s may take, and an upper bound may be obtained by requiring
the theory be perturbative at the vg scale. This constraint yields fyax(vgr) = VAT ~
3.5. A lower bound can be gotten by requiring positive slepton masses, and this will
be derived shortly—for the present it suffices to take fiin(vg) = 0.

Figure 3.4 shows the running of f.; as a function of energy for the two extremes
of fes(vg). It is immediately apparent from the figure that there is a fixed point
for fe.(Msusy) around 0.6 for any value of f.i(vg) 2 1, though the value is clearly

influenced by f.3. The behavior demonstrated in Figure 3.4 actually shows the
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Figure 3.2: The relative masses of the gluino, neutralinos, and charginos in SUSYLR
(FCf) = 33 TeV, fl(vR) = fg(UR) = 35), mAMSB (F¢ =33 TeV, moy = 645 GGV)
mSUGRA (my = 209 GeV, my/, = =300 GeV, Ay = 265 GeV) mGMSB (A = 99
TeV, Mpyess = 792 TeV, Ny = 1) for tan 5 = 3.25 and sgn u = +1.
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Figure 3.3: The relative masses of the first generation left-handed, first generation
right-handed, lightest third generation, and heaviest third generation sfermions in
SUSYLR, mAMSB, mSUGRA, mGMSB, for the parameters as defined in Table 3.3.

The final column consists of gluino masses for comparison with Figure 3.2
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Figure 3.4: Plots of f.; verses the log of the energy scale. The lines correspond, in
ascending order, to f.1(vg) values of 0.25, 0.5, 0.75, 1, 2.25 and 3.5 for (a) f3(vg) =0
and (b) fe(vgr) = 3.5.
qualitative feature of all the seesaw couplings; each of fi, f3, fa, fe3 tend to a
fix point as quantified in Table 3.4. For initial values of fi(vg) = fa(vgr) and
fs(vr) = fe3(vr) greater than 1.5, these values are correct up to 2%. The higher
fixed point value for the right-handed f.’s is a result of slower running caused by
the broken SU(2)p symmetry.

The fixed-point behavior implies an upper bound for the slepton masses, as
can be seen in Figure 3.5. The plot displays the dependence of the selectron masses
on the initial value of fi(vg) = fa(vgr) = f3(vr) = fs(vr) = f. Below f ~ 0.5

the selectron mass-squares are negative. At f ~ 0.5, the seesaw couplings begin



f3 fl fc3 fcl
Fixed Point Value | 0.64 0.64 0.67 0.67

Table 3.4: Fixed point values of the seesaw couplings at F, assuming initial values
are above 1.5.
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Figure 3.5: Plot of mg (dashed) and m; as a function of f(vg) = fe1(vg) = f3(vr) =
fes(vr) = f for Fyy = 33 TeV. The greyed-out region has been excluded by LEP II.
The line around 417 GeV is the mass of the lightest neutralino.

dominating the scalar mass expression and there is a steep rise from their quartic
dependence. The ascent levels off, however, around f ~ 1 where the asymptotic
limit is due to the fixed-point behavior.

The masses of the other sleptons follow the behavior of Figure 3.5, and, as
can be seen in the plot, this results in a mild degeneracy between the left- and
right-handed slepton masses. The mild degeneracy at first seems a bit contrary to
Egs. (3.41) and (3.42), where the f; factor is twice as large for left-handed sleptons
as it is for the right-handed sleptons; however, this term is limited in size by the
fixed-point of f; and the negative SU(2);, contribution happens to be a little less
than half of this value. The accidental cancelation between these terms then yields

the degeneracy.
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The similarities of left- and right-handed slepton masses is an interesting situa-
tion phenomologically since it numerically falls in between mSUGRA /mGMSB (with
large splittings) and mAMSB (with a high degeneracy). In mSUGRA, left-handed
slepton masses get large positive contributions from My as they run from the UV,
where in mGMSB the boundary conditions dictate the left-handed to right-handed
mass ratio to be as : . For these two theories then, the left-handed sleptons are
always heavier than the right-handed ones. Meanwhile, in mAMSB both sectors get
the same (and dominant) contribution from mg so they are highly degenerate. Fur-
thermore, accidental cancellations in the anomaly-induced splittings related to the
gauge and D-term contributions[62, 88| result in splittings dominated by loop-level
effects which are quite small[62].

To demonstrate just how this may be important, mAMSB predicts a mass
splitting A, = m2 — m2 ~ 751 GeV?[62, 88] for tan3 = 3.25 and F, = 33

TeV (note that the value of m2 is irrelevant for the mass difference). The percent

difference, defined as

Ae

(méL + méR)2 ’

% difference = (3.74)

is highly dependent on the masses of the selectrons; but for selectron masses around
450 GeV, the percent difference is less than 1%. The situation in SUSYLR+AMSB
is quite different as Figure 3.6 shows: the difference can rise as high as 5%. While
a hadron collider would not be able to see this, a lepton collider can achieve a
roughly 2% resolution of slepton masses from the end-point lepton distribution of
the selectron decays[89]. Therefore such a distinction is feasible, and measurements
of mild mass differences around 3 — 5% will single out this model from mSUGRA
and mGMSB while potentially discriminating it from mAMSB (though this will be
highly dependent on the values of the seesaw couplings).

Finally, the slepton masses provide an interesting bound when it is demanded

that the theory have a viable dark matter candidate. Figure 3.7 shows constant
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Figure 3.6: Contours of constant ng'g x 100% in the f3(vg)—fi(vg) plane. The

(me+mec)
unlabeled contours on the left side of the plot, from left to right, correspond to

2%,3%,4% and 5%. The dashed vertical (horizontal) contour corresponds to a 7y
(é°)constant contour of mass equal to that of the LSP (417 GeV). The shaded region
is excluded by LEP II bounds of 81.9 GeV (94 GeV) on the mass of 7y (€°).

mass contours for the right-handed selectron in the f.3(vg)—fe1(vr) plane with the
shaded region excluded by LEP II. The dashed lines, on the other hand, define
the region with a viable dark matter as they represent mz = mygo (vertical) and
mee = mgo (horizontal). Clearly, insisting the theory explain dark matter yields a
much more stringent bound than the experimental constraints. What makes this
more interesting is that, as Figure 3.7 indicates, the seesaw couplings need to be
within 10% of their fixed-point value, fo1(Fy) ~ fe3(Fy) ~ fi(Fy) ~ f3(Fp) ~ 0.6
if the LSP is the lightest neutralino. Therefore, a successful explanation of dark
matter leaves the seesaw couplings larger than about 0.5. Noting that the lightest
neutralino has a mass of approximately the wino (see Section 3.5.4), and using the
expression of the selectron mass from AMSB, it is straightforward to place a bound

on f(Fy) = f1(Fy) = fs(Fy) of:

f(Fy) 2 0.58. (3.75)
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Figure 3.7: Mass contours for the right-handed selectron mass, m; in the f3(vg)—
fi(vg) plane at F, = 33 TeV. The horizontal and vertical shaded areas are ruled out
due to LEP II bounds on the lightest stau (m;z > 81.9 GeV) and selectron (m; > 94
GeV) masses respectively. The dashed vertical contour is m; = mgo = 417 GeV
indicating the point where the LSP is neutralino. The dashed horizontal curve
corresponds to msz = mg. The fixed point behavior of f; is apparent after f; ~ 1
at which point the contours curve more drastically.

3.5.3 Squarks

The main feature of SUSYLR+AMSB is a natural means to avoid tachyonic
sleptons; however, the squark masses also have a couple of noteworthy features.
First, as in mAMSB, the squark masses decrease with energy because the SU(2), x
U(1)y gauge couplings become larger and hence their negative contribution increases
in magnitude. Therefore, it is conceivable that the negative contribution equals the

positive contribution and the squark masses become zero at a certain energy scale,

M,

40[90]. If this does happen, the squark mass-squares would be negative for energies

above My, resulting in a vacuum that breaks SU(3)°. This scenario has been
considered in mAMSBJ[90], where it was determined that the squark mass squares
do turn negative before Mp, but at a high, My, ~ Mqur > F} energy scale. The

issue must be reconsidered here because the new particle content alters the slope
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of the SU(2);, x U(1)y gauge couplings, resulting in the couplings running faster
(for the hypercharge coupling, the effect is quite large). Despite this faster running,
the squark masses still turn negative at a high scale, M,o ~ 10° GeV > Fy, though
slightly before the vg scale. Typically the effect of these negative mass-squares
would be expected to turn up from physics at temperatures near Mgy, where the
vacuum would be capable of breaking color; however, at such temperatures the
vacuum of the theory is also affected by temperature corrections. Consequently
the mass-square term of the squarks picks up a temperature dependence of the
form p?(T); ~ (—M3Zysp + AT?). The first term only grows logarithmically with
temperature, whereas the second term grows quadratically. The coefficient A is
positive, and even though it is ‘small’, the mass-square remains positive definite
because T' is so large. Thus the temperature effects alone ensure the color gauge
symmetry remains intact in the early universe.

It is also worth noting that the right-handed squarks are slightly heavier than
left-handed squarks because of the negative SU(2),, contribution. This is different
from mSUGRA and mGMSB (though the result is essentially the same in mAMSB)
where all gauge couplings yield positive contributions. In these theories, then, the

left-handed squarks are always heavier (this can be seen in Figure 3.3).

3.5.4 Bosinos and the Lightest Supersymmetric Particle

Because all superpartners eventually decay into the LSP, its makeup is an im-
portant part of SUSY collider phenomenology and dark matter prospects; therefore,
understanding that makeup is vital. Cosmological constraints rule out a charged
or colored LSP as dark matter[91], limiting the choices to the sneutrino or lightest
neutralino. The former, in typical models, makes a poor dark matter candidate
as its relic abundances are too light and much of its mass range is ruled out by

direct detection [92, 93]. The responsibility of dark matter therefore falls upon an
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LSP being the lightest neutralino—a typical candidate in common SUSY scenarios
(except in mGMSB where the LSP is always the gravitino, so the neutralino is the
next-to lightest supersymmetric particle [94]).

Due to R-parity conservation, the lightest neutralino will be some mixture
of the B — L = 0 fields: the neutral wino, the bino, the neutral higgsinos, and
the singlino. In the SUSYLR+AMSB model, the singlet VEV, n, is typically large
compared to the other elements of Eq. (3.72), so the singlino decouples and becomes
the heaviest neutralino.

The relative gaugino composition of the lightest neutralino is fairly easily cal-
culated and relatively independent of the point in parameter space: it follows from
the gaugino mass ratio which, in AMSB models, depends on both the gauge cou-
plings and the a~! beta functions b. For the NMSSM++ the latter quantity is more
important since this is where the effects of the light triplets and doubly-charged hig-

gses are felt the most severely (as demonstrated by Table 3.5). The gaugino mass

bY bL b3
MSSM i 1 -3
NMSSM++ | & 6 -3

Table 3.5: Values of the o~ ! beta function in the MSSM and NMSSM++.

ratio of the NMSSM++ is M3 : My : My ~ 1.3 :1:1.3. This is a striking ratio due
to its close proximity of the gaugino masses, unlike other popular scenarios (see Ta-
ble 3.6). The nearly-degenerate gaugino masses then implies that the NMSSM++
has a light neutralino with a large wino component and a non-negligible bino com-
ponent. This is in stark contrast to mAMSB where the ratio implies the gaugino
composition is all wino. It also contrasts the mSUGRA and mGMSB where the
lightest neutralino is always mostly bino.

Furthermore, in the NMSSM++ the mass of the LSP may be larger because
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M3 . MQ . M1
NMSSM++ 1.3:1:1.3
mAMSB 8:1:3.5
mSUGRA 3:1:0.3
mGMSB 3:1:0.3

Table 3.6: The gaugino mass ratios for four SUSY breaking scenarios, including the
low-energy SUSYLR+AMSB (NMSSM++)

of the gaugino contribution. This is because the gaugino mass terms are bounded
by

My < 1350 GeV M;, < 980 GeV. (3.76)

which comes from the limit Fy < 63 TeV. This is important in terms of available
parameter space: in mAMSB, My < 200 GeV [88], and experiment has ruled out
much of its parameter space; for the NMSSM++ this is no longer the case.

The higgsino composition, on the other hand, is not independent of other
parameters and is therefore not as predictable. Numerical results indicate, however,
that the p value is typically slightly smaller than M, resulting in an LSP that
is mostly higgsino, significantly wino, and non-negligibly bino. The next lightest
neutralino, Ya, is then all higgsino, while ¥3 is mostly wino and significantly higgsino
(the composition is complementary to the lightest neutralino x9). Finally, x9 is
mostly bino (as already established, x? is all singlino).

Another important particle in decays is the chargino, which is a mixture of
wino and higgsino. As already noted, the p term is typically smaller than M,
which implies, from Eq. (3.71), that the lightest chargino, Y, is mostly higgsino
with some wino; therefore, the heaviest chargino, Y3 is mostly wino with some
higgsino—a similar composition to x5, and complementary to V.

In addition to the composition, the mass difference between the charginos

and neutralinos is also important since the charginos will decay to the LSP. As the
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neutral higgsino and wino form isospin doublets and triplets with the appropriate
charginos, there is potential for a very small mass difference between the lightest
neutralino and the lightest chargino. This is very pronounced in mAMSB where
the mass difference of the lightest neutralino and chargino is on the order of 100s
of MeVs, including leading radiative corrections. Analytical approximations for the
difference have been given in [62, 95, 88] for large p; however, such approximations
are not as useful here since p ~ My ~ M.

To obtain an expression for the mass difference of the lightest neutralino and
chargino relevant to NMSSM++, it is necessary to consider the two mass matrices
given in Egs. (3.72) and (3.71). Comparison of the two reveals that the neutralino
matrix has a mixing dependent on tan 3 that is absent in the chargino matrix. As
tan 0 — 1, the extra mixing parameter of the neutralinos goes to zero; hence, for
tan # = 1 the mass difference is minimal. The eigenvalues of the two matrices may
then be expanded for tan § = 1 using the approximation My ~ M > pu > M.

This yields, to first order:

Ay, =mo+ —meo > 2sin? 0 Mz (3.77)
L ! Ly -

The neglected second order term is positive definite so that Ay, truly represents
the minimal value for the mass splitting. As a check of the expression, Ay, — 0
as tan fy — 0; since tan fy — 0 restores the custodial SU(2), this is the expected
behavior. Additionally, My — oo restores the custodial SU(2) when tan § = 1, and
indeed Ay, — 0.

Since Eq. (3.77) depends on 1/My-, while all other parameters are known, its
minimum occurs when My is maximized; this is fortunate because Eq. (3.76) gives

an upper bound for My . Application of this limit yields

AT > 1.4 GeV (3.78)

Evidently, this is larger than the mAMSB value of a few 100s of MeV. For a quan-
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Figure 3.8: Mass difference of the lightest chargino and neutralino as a function

of p for A = 0.26, tan = 3.25, and the singlino mass term, 2<,UN + \%nn) =
2My . From top to bottom, My = 1.1y, 1.5u, 2 and 3u. The line at 165 MeV is
the asymptotic value for large My in mAMSB, while the dotted curve represents
where squark masses are about a TeV-—below this curve, the Higgs mass would be
considered fine-tuned to some extent.

titative comparison, numerical examples of the NMSSM++ mass differences are

displayed in Figure 3.8 as a function of u = \%)\n.

3.5.5 Dark matter

Due to the preservation of R-parity, the LSP is stable and therefore is a po-
tential dark matter candidate. Section 3.5.4 gives its composition, which is predom-
inantly higgsino, some wino, and a tiny but non-negligible bino (around 1%). The
annihilation rate for a mostly higgsino/wino LSP is far too large for its relic density
at freeze out to be sufficiently high enough to explain the observed €2,, ~ 0.20. This
issue has already been resolved, however, in mAMSB with a wino LSP[96]. In that
case the abundance of LSP at freeze out is not the source of dark matter, rather
the late decay of the gravitino—which occurs after LSP freeze out—generates the
LSP in a non-equilibrium environment. The generation of these non-thermal LSPs

is sufficient to achieve the appropriate dark matter abundance[96].
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In the SUSYLR+AMSB model, the same mechanism will also allow an accept-
able dark matter abundance to be obtained. This is because the argument given in

[96] depends on three properties which are not specific to the wino:
1. the LSP mass,
2. the LSP interactions with the gravitino, and
3. the LSP annihilation rate.

For SUSYLR+AMSB the LSP mass is very similar to those of [96]. Further-
more, as the mass is the same, the interaction with the gravitino is equivalent since
this is purely gravitational (i.e. only mass dependent). Finally, the annihilation
rate for the higgsino/wino combination is similar to that of the wino because both
take place through ¢-channel chargino exchange and the higgsino couplings to the
chargino with the same strength, o .

Another consideration for dark matter is the direct detection limit given by
nucleus recoil experiments. The current bounds are set by CDMS Soudan and
EDELWEISS, and the dark matter of the NMSSM evades these bounds. Perhaps
more importantly, however, is that the projected sensitivity of the currently-planned,
near-future experiments will probe the mass and cross section of this model’s dark
matter. Thus the model—at least as far as its dark matter candidate—may be ruled

out or confirmed shortly.

3.5.6 Collider Signatures

At the LHC the studied SUSY signals are done in the mSUGRA framework.
The pertinent signals are chargino decays yielding dilepton or trilepton signals|97,

90, 98, 27]. The processes for these events are
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PP — 4r4r qrL — qXi Xi — vy (3.79)

(3.80)

o L — qxi X = vl
PP — qrLqr

qr. — q>23

Xo = XY
where there is a great deal of “schematicity”. In this scenario the right-handed
squark plays no role because it decays directly to the LSP due to the LSP being
mostly bino.

However, in the mAMSB scenario the LSP is mostly wino and the lightest
chargino is also purely wino. Therefore the left-handed squarks do not utilize the
process Eq. (3.80), but rather decay directly to the LSP instead. The direct decay
to the LSP has no chance of detection, because it manifests as missing energy plus
a jet, which has far too large a background. The decay chain Eq. (3.79) is then the
only one available for mAMSB, but this decay is dominantly y; — 7y and not
leptons. Due to the small mass difference of ¥ and ¥ the resulting pion is far

too soft to be detected. Alternatively the right-handed squarks do favor decays to

heavier neutralinos since they are mostly bino. The process,
pp = @@ 7= Xz Xa — LR, (3.81)
however, does not yield same-sign dileptons or trilepton signals.

Interestingly enough, the use of SUSYLR with AMSB permits the restoration
of the dilepton and trilepton channels. This is because in certain parameter regimes
the left-handed squarks will favor decays to X3 or x5 due to their higher wino
content. These particles may then decay leptonically:

pp—qudc  GL—axs Xs — Utvx]

~ o+ ot +.,<0

- . qdr — dXo  Xao — VXy
PP — Grdr 4 - N N - (3.82)
{ L —aXs Xz — (X3

For other parts of the parameter space, the situation is similar to the mAMSB
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decays; however, the larger mass difference yields additional potential for detection
if it is large enough to produce a 7 or a hard p. Sadly, this advantage is muted by
a faster chargino decay which eliminates chances of long-lived charged tracks and
no muon chamber activity. Regardless, similar situations have been analyzed and

found to be manageable for both lepton colliders[99] and the Tevatron [95, 100].

3.5.7 The Higgs Boson

The lightest higgs boson—the particle that would appear as the SM higgs and
hence the particle that prompted the introduction of SUSY—plays an important
role in limiting the SUSY breaking parameter, Fj, providing both an upper and
lower bound.

As is well established, the lightest higgs mass at tree-level is at most M,
meaning the full one-loop radiative corrections are responsible for producing a mass
in excess of the LEP II bound (provided it wasn’t missed through invisible decays).
The most important contribution is due to top and stop loops, and the expressions
may be found in [101]. As the top mass is known, it falls on the stop mass to provide
a sufficiently large contribution to evade the LEP II limit. This constraint yields a

lower bound for the stop mass, m; 2 600 GeV, which immediately implies

F, > 33. (3.83)

Simultaneously, the same corrections to the lightest higgs mass are expected
to be of the same order as this higgs’s mass if the theory is not to be considered
“fine-tuned”. That is, if it is expected that SUSY solves the gauge-hierachy problem,
the squark masses’ contribution to the lightest higgs mass must not conveniently
cancel to yield the correct mass of the higgs. This naturalness argument states that
the squarks masses must be less than about 1 TeV to avoid any ‘fine-tuning’. This

translates into an upper bound for Fj,
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Fy <63 TeV. (3.84)

3.5.8 HExotics

While the SU(2),, triplets and right-handed doubly-charged particles must
have a SUSY mass around Fj, ~ 33 TeV to resolve the issue of tachyonic sleptons,
this does not eliminate the possibility of their being seen at the LHC. Or rather,
it does ensure that the corresponding fermions will not be seen at the LHC (whose
center of mass energy, as a reminder, is 14 TeV), but not the scalar particles.

As argued, the scalar triplets and doubly-charged particles split in mass due
to SUSY breaking (see Eq. (3.26)), yielding a lighter mass of \/ea|Fy| ~ 1.5 TeV.
Such a mass would be accessible to the LHC, and may then be seen through its
striking four lepton decays[102].

In addition to the LHC, the upcoming muonium-antimuonium oscillation ex-
periments would also be sensitive enough to detect an O(1 TeV) doubly-charged
particle since their couplings to the first and second generation leptons must be

large in this model.
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Chapter 4

Conclusion

This thesis considered the supersymmetric left-right model in the context of
anomaly mediated supersymmetry breaking. The model was motivated by phe-
nomenological considerations to explain neutrino oscillations and to provide a vi-
able dark matter candidate. The bottom-up approach was taken to yield a minimal
extension of the MSSM that incorporated this phenomenology through the seesaw
mechanism and automatic R-parity conservation. This minimal extension achieved
these goals through the addition of B — L = 42 triplets. These new particles, which
were motivated through independent reasons, were then shown to solve the tachy-
onic slepton problem of AMSB in the context of the MSSM through the introduction
of the seesaw couplings.

The resulting combined model, SUSYLR+AMSB, retained the characteristic
UV insensitivity and powerful predictability inherent in AMSB while retaining in-
fluence from the new particle content. The new high-scale couplings were shown to
survive the UV insensitivity “washout” due to an accidental symmetry of the model
that was broken solely by non-renormalizable operators. This explicit breaking
resulted in low mass values for the left-handed triplets and right-handed doubly-
charged particles despite an O(10'" GeV) scale of B — L breaking.

The low energy consequences of the theory were then explored, taking into con-
sideration experimental constraints on the triplets and doubly-charged couplings. It
was shown that the particles satisfy the lepton flavor violation limits and the most
stringent bound of muonium-antimuonium oscillation. Furthermore, the limits of
future planned experiments such as PRISM[103] will probe a majority of the pa-

rameter space related to these new particles thus providing a means of falsifying the
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model. Additionally, it was demonstrated that these exotic particles were capable
of having masses within the reach of the LHC and so there are multiple means of
discovery.

This thesis proceeded to investigate the viability of EWSB and the size of
the Bu term. The model was revealed to contain a natural solution to the EWSB
problem of combining the NMSSM with AMSB. The Bu term in the theory was
demonstrably sizable to permit a large singlet VEV and still satisfy EWSB con-
straints.

Finally, the low-energy features were considered, and the general features of
the superpartners’s mass spectrum were given. The same spectrum was compared to
other SUSY breaking scenarios, including the mAMSB, and shown to significantly
differ. The slepton masses were then explored to determine constraints and depen-
dence on the seesaw parameters. Subsequently, the higgsino and gaugino masses,
which is related to the dark matter composition, were investigated and bounds
were obtained on the gaugino parameters. The scenario of relic abundance for dark
matter was addressed, where it was pointed out that the model can use late-stage
gravitino decay to obtain the appropriate abundance. Furthermore the direct detec-
tion cross-section was explained to be within experimental limits, but within reach

of near future experimental sensitivities.
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Appendix A

Notation Conventions

In this appendix we summarize our notational conventions.

A.1 Explanation of Symbols

[A, B]  commutator of A and B, defined in Eq. (A.5)

{A, B} anti-commutator of A and B, defined in Eq. (A.6)

A" photon vector field

ag  ‘fine-structure’ constant for the group G

hypercharge or B — L vector field

hypercharge or B — L field strength

B hypercharge or B — L vector superfield

A*  field strength for hypercharge or B — L vector superfield

Cg quadratic casimir invariant /dynkin index for the group G

C% quadratic casimir invariant in representation R of the group G

charge conjugation acting on a dirac field

D,  gauge covariant derivative

D,  superderivative

Dy superderivative conjugate

oy partial derivative with respect to spacetime
J a small (compared to one) number

6% kronecker delta

548 kronecker delta

d(z) the dirac delta function
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® base of natural logarithm, see Section A.2

€ a small (compared to one) number

eha2an totally antisymmetric levi-civita tensor density

e minkowski (flat) spacetime metric tensor, defined in Eq. (A.3)
4BC  structure constants for the group G

F, (F') of the conformal compensator divided by Mp,
GZ‘ gluon vector field

Gl‘fy gluon field strength

G4  gluon vector superfield

@~  field strength for gluon vector superfield

Gn  Newton’s gravitational constant, see Section A.2
g3 gauge coupling constant for SU(3)¢

gpr  gauge coupling constant for SU(2)p_p,

Jga gauge coupling constant for the group G

g, gauge coupling constant for SU(2),

IR gauge coupling constant for SU(2)g

gy gauge coupling constant for the hypercharge U(1)
Jy GUT normalized gauge coupling constant for the hypercharge U(1)
9w metric tensor

I'*,, affine connection

Yu dirac matrix

77 anomalous dimension

1 square-root of minus one, see Section A.2

K kahler potential

L  lagrangian density, referred to as lagrangian

A4 Gell-Mann lambda matrices
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Man Fy /1672
Mg the gaugino mass for the group G
Mgyt the grand unification scale
Mp, the planck mass or reduced planck mass
Msysy the SUSY scale
Mx the next higher scale of new physics
My the mass of the Z boson
My, the mass of the W boson
Prr projection operator acting on dirac field
Pr r projection operator relating dirac and weyl fields
Pr g projection operator relating dirac and weyl fields
oy partial derivative with respect to spacetime
) scalar field or higgs boson
0¥ generic chiral superfield or a higgs bidoublet superfield
. the scalar component of the superfield ®;
10) conformal compensator
wg  multiplicative inverse of ag
4 dirac field (four component spinor)
) weyl field (two component spinor)
ricci scalar
R(®;) R charge of ®; or representation of ®; for a group G
R, ricci tensor
R%,3, riemann tensor
S%  dynkin index in representation R of the group G

o' pauli matrices

o*  the identity and o
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generator for the group GG

(Tg ) 4 the A™ generator for the group G in representation R

TA

TG

JH
Z;
Z

G

)A the A™ generator for the group G in representation R

second pauli matrix
pauli matrices
gauge supercoupling for the group G
vacuum polarization angle
grassmann variable
grassmann variable conjugate
generic vector field with group index A
vector superfield for the group G
field strength for vector superfield Vg
SU(2)r, SU(2)g vector field
SU(2)L, SU(2)g field strength
SU(2)r, SU(2)g vector superfield
field strength for SU(2)., SU(2)g vector superfield
superpotential
standard model Z boson
wavefunction renormalization constant
wavefunction renormalization superconstant
set of integers

anomalous mass dimension
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A.2 Physical and Mathematical Constants

Gy 6.67 x 1071 m3/kg-s?

h 6.626 x 1073* J-s

h 1.054 x 1073% J.s = 6.582 x 10722 MeV's
c 299792458 m/s

¢ lim(l+2)/"=2718--.

z—0
1 v—1
T 3.14159- - -

n

1
Ve JH&(Z; —lnn) = 0.577 -

A.3 Field Theory

Field theory takes quantum mechanics and makes it consistent with special
relativity. As such it treats space and time on equal footing: taking both as param-
eters of the theory and postulating that the particle or field (which depends upon
spacetime) is an operator. Because space and time are on equal footing, the the-
ory’s space and time dependence is most easily written in terms of the contravariant

four-vector

= (t,7) (A.1)

with p € {0,1,2,3} and defining time as the zeroth component. Lengths are deter-

mined by a metric, g,,, and given as
ds® = Z Z Guvdatdx” (A.2)
W v

Since field theory® deals with flat spacetime, the metric gy, is the minkowski metric,

given the symbol 7,,, and defined by

Lat least the field theory considered in this text

78



10 0 0
o -1 0 o
=10 0 -1 o0
0 0 0 -1

(A.3)

Invariant products of four-vectors involve the metric through
2D e
“w v
and it is convenient to define the covariant four-vector
T, = an,m”. (A.4)
v

The invariant products of four-vectors may then be expressed as
P — JTa—"
E xx#—g ot = alz,,
w u

where the last equal, because the combination is always a subscript /superscript pair,
contains an implicit sum—this is the Einstein summation convention which states
that any subscript/superscript pair with the same index is assumed to be summed
over.

The language of field theory is also the language of quantum mechanics, so

that the commutator,

[A,B] = AB — BA, (A.5)

appears and the fields themselves are chosen to have non-vanishing commutation

relations. Furthermore, since the theory will require fermions, the anti-commutator,

{A, B} = AB + BA, (A.6)

is introduced so that the fermionic fields have non-vanishing anticommutation rela-

tions.
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A.3.1 Scalar Fields

A real, spin zero field ® of mass m has the ‘free’ (i.e. non-interacting) la-

grangian
1 " 1 5.,
L= 5(@}1))(8 D) — g™ ) (A.7)
yielding the klein-gordon equation
"0, ® — m*® =0 (A.8)

from applying the variational principle.

The field ® and its conjugate momentum

5L
=55 =0 (A.9)

obey the canonical equal-time commutation relations

M1(Z, 1), D(7',1)] = —163(7 — &)
11(z,¢), 117", 1)] = 0
[(Z, 1), B(Z',1)] = 0 (A.10)

A.3.2 Fermion Fields

A spin one-half field ¥ of mass m has the ‘free’ (i.e. non-interacting) lagrangian

L = i¥y"9,¥ — mb¥ (A.11)
yielding the dirac equation

170, — m¥ =0 (A.12)

from applying the variational principle.

The lagrangian Eq. (A.11) involves

¥ =01y, (A.13)

and the objects v* which, along with an additional object 75, obey
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{7 =2 {771 =0 ()" =97 (A.14)

where
V=5 =170y’ = 4'€aﬁ,tw'7 Pty = A (A.15)
The smallest realization of the v’s in 3 4 1 spacetime dimensions are 4 x 4 matrices,

making ¥ a four-component object. To make this explicit ¥ is given a subscript

index a that runs from 1 to 4. The conjugate of ¥, is then defined as
v =9 (A.16)

leading to ¥ carrying a superscript index.

The field ¥, and its conjugate momentum

oL

I1* =
00y,

_" (A.17)

obey the canonical equal-time anticommutation relations

{07, 1), Wy (2, t)} = (T — 7)oy
{I1*(z, ), 1°(&',¢)} = 0
{lﬂfa(f, ),\[Ifb(f’,t)} = 0. (A.18)

A.3.2.1 Dirac vs. Weyl Spinors

The four component dirac spinor ¥, defined in Section A.3.2 may be split
into two, two-component objects called weyl spinors. Let this two-component weyl
spinor be denoted ¥*, where a runs over 1 and 2.

The products of dirac spinors may be explicitly written using indices:

[ R T I (A.19)
YICY « ,C%, (A.20)
PCT" s T°Co¥. (A.21)

The projection operators on dirac fields can then be defined as
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(1), = 51— %5)," P’ =504, (A22)

To relate the dirac and weyl spinors, four hybrid projection operators must also be

defined. These satisfy

(PL)aa(PL)ab = (Pp)," (PR)@ (Pr)* = (Pg),"
(Pn),*(Pn),” =6, (Pr)* (Pr),; =03 (A.23)

Given these projection operators,

(PL)a Wy = Yra v (PL)aa = %’é
(Pr)** W, = i ¥ (Pr),, =¥ls (A.24)

In addition, the canonical anticommutation relations Eq. (A.18) imply the existence

of
e = P Vha = €aptlsy (A.25)
Uhe = €t v = eyl (A.26)

With these hybrid projection operators, quantities involving the dirac fields and a

P r may then be expressed in terms of the weyl spinors. For example

VP A" = WPy PR — ¥ (Pr) “(Pr), ("), “(Pr) . (Pr)* ¥ (A.27)

cx

VP ry" ¥ = WPpy"Pr¥ — ¥ (Pg) . (Pr)* (+"), “(Pr),*(Pr), “¥a (A.28)

The gamma matrices, and consequently the charge conjugation matrix, become

(Pe)o"(4"),“ (Pr) oy = Tl (Pr)™ (v),°(PL),* = o (A.29)
Cab(pL)aa(PL)bﬂ = (PL)aa(PL)g "Cab = €ap
e (PR)ad (PR)I;B = €ap (PR)M (PR)ﬂb Cap = €t (A.30)

with
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eaﬁ:((lj —01> ed5=<_01 (1]) (A.31)

erg = 05 edj‘e;\g = (52“ (A.32)
10 01 0 —1 1 0
0o _ 1 _ 2 _ 3
Oas = (0 1) Oaa = (1 O) Oasa = <]1 0) Oaa = (0 _1) <A33>
oo _ 6B _of p
(6")™ = e*e Tas (A.34)

Using these results a dictionary can be constructed relating dirac and weyl spinors.

A.3.2.2 Weyl-Dirac Spinor Dictionary

Choosing the convention that

YrYL = VUL ik = vlavk (A.35)

the dictionary takes the form
WiPLVs = it
PRV, = ol g
WICPLYy = =11t
1“le([:”DR‘Ub - _wJ{Rw;R
¥, [PLC%T = Y1rY2R
W PrCY, = o], ¢l
TPl = ], 0nr
U1y PRy = 1 go’ iy (A.36)

A4 Gauge Groups

Let G be a gauge group of dimension d(G) having the gauge coupling constant

ga, the structure constants f45¢, the fundamental symmetric constants dA2¢, and
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by

the generators TS for a representation R. The ‘fine structure’ constant of G is given

_ Yc
= JG A.37
ac 47 ( )
and its multiplicative inverse is denoted
1 4
we= — = - (A.38)
&a  9g
The generators of G obey

[(Tg) Z ABC’ TG

(A.39)
and also define the quadratic casimir invariant C$ and dynkin index S§ through

ciar = Y16 (1)),
SG(;AB :

(A.40)
Te[(75)*(T5)"] -

(A.41)
In the fundamental representation, denoted by a subscript zero, the generators

may be taken as n X n matrices obeying

[(TOG) _HZ ABC TG

(1)} =

with the normalization convention

(A.42)
{(16)A L ST e (1) (A.43)
C

T (1) (1)) = S50 =

5AB

(A.44)
In the adjoint representation, denoted by a subscript A, the structure constants
are the generators,

(1) e = 27 = 5o T([(T)*, (15)"] (1))

0 (A.45)
and the quadratic casimir invariant is equal to the dynkin index
CGé‘AB = C«ﬁéAB _ SidAB Z féCD BCD

(A.46)
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A.4.1 Gauge Covariant Derivative

Let the gauge group G be a product of n simple groups and p U(1) groups,

G=G1 xGyx - xGpxUp(l) x Uy(l) x --- x Uy(1). (A.A4T)

with the respective gauge fields

(Vo ve, . ve B B ... BY) (A.48)

The gauge covariant derivative is then given by

n+p n [n+p d(Gy) O A, b "
(01,03, ) DY 27000 = [H 53?] 3u—ﬁZ[H 53’;] > o @) (e
j=1

J=1 Lk#j 4;=1
n+p [n+p (b
. b Uj_n(1 i >i—
-6 3 Tl o0 o
j=n+1 Lk#j

(A.49)
The above expression explicitly separates the group into products of simple or U(1)
groups; however, it may just as easily be considered that G has the generators T4

where

(T4, for 1 < A <d(Gy)
T4 e for 1 < A—d(Gy) < d(Gy)
. A=YId(GY) n—
TUl(l) for A = Zj:l d(G]) +1
TU2(1) for A = Z;LZI d(GJ) + 2

L Tu,) for A=37" d(Gj) +p

the gauge field V;‘ defined as
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[ (ve)! for 1 < A <d(Gy)
(VG2 Ay for 1 < A—d(Gy) < d(Go)
A=l d(Gy) n—
VA = (K{fn) for 1 <A - S d(Gy) < d(G) (A51)
Blf for A = Z%:l d(Gj)+1
B, for A=3%7"_,d(Gj) +2
| B for A = 2?21 d(G;) +p

and the gauge couplings g given by

g1 for 1 < A <d(Gy)
g2 for 1 < A—d(G)) <d(Gs)

gn for1 < A-— Z;:ll d(G;) < d(Gy)

84T gy for A= S d(Gy) +1 (A.52)
g1 for A=370 d(Gy) +2
| Gnyp for A=370d(G)) +p
The gauge covariant derivative may then be expressed more simply as
d(@)
D} =610, =) ea(T4); V! (A.53)
A=1

with d(G) = 32", d(G;) + p.

J]=

A.4.2 The Standard Model Gauge Group

The SM gauge group, SU(3)¢ x SU(2);, x U(1)y, has the gauge couplings gs,
Jr, gy, and the gauge fields G, W, and B, respectively.

The value for the SM gauge couplings evaluated at M, are
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w3 = 8.50£0.15
wr = 29.61 £0.05
wy = 35.98 £0.03
wy = 59.97 £+ 0.05
Wem = 128
g3 = 1.22 +0.02
gr, = 0.6514 £ 0.0006
gy = 0.5910 £ 0.0004
gy = 0.4616 £ 0.0002
Gem = € = 0.31

In the fundamental representation, the generators of SU(3)¢ are the Gell-Mann
A matrices divided by two, the generators of SU(2) are the pauli matrices divided
by two, and the generators of U(1)y are, by the convention used here, half of the
particle’s hypercharge.

The quadratic casimir invariant for a field in the fundamental representation
of SU(3)¢ is 4/3 and of SU(2), is 3/4.

The structure constants of SU(3)¢, denoted f3'5¢ have the non-zero values

123 _ (A.54)
1
147 _ p246 _ 257 _ g345 3 (A.55)
1
156 _ (367 _ -3 (A.56)
V3
458 _ (678 _ o (A.57)

the structure constants of SU(2)., denoted f55¢, are the levi-civita tensor density,

ABC __ EABC'. (A58)

2 - )
the structure constants of U(1)y are all zero.

The fundamental symmetric constants of SU(3)¢, denoted d42¢, have non-zero
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entries

M8 = 228 — 338 — % (A.59)
0 a7 g g g a0
4247 = @366 — 37T — _% (A.61)
48 = 358 = 08 — 78 — _% (A.62)
38 = _ 1 (A.63)

\/§7
the fundamental symmetric constants of SU(2), are all zero.

The gauge covariant derivative for the SM gauge group is

(as.azan) D20 = 6k6k2601 6, — 1193(TA)b3 G2 5t

a3z~ ag " al Kma2 " al

— g% (Ta)22 Wi — gy 05262 (T) B, (A.64)

n Cal asz a2

A.5  Supersymmetry

Supersymmetry is a symmetry between bosonic degrees of freedom and fermi-
onic degrees of freedom; one means of treating these on equal footing is the introduc-
tion of superspacetime coordinates—extending the bosonic spacetime parameters z*

to include fermionic counterparts.

A.5.1 Superspacetime Coordinates

The fermionic counterpart to x* is the four component spinor ©. Just like the
spinors of Section A.3.2, © may be broken down into two two-component objects:

(P), “@u = 0o 6" (P,), " = 6°
(Pr)** @, = 6° 0°(Pg), . = Os. (A.65)

acx

where, because PO is related to Py, the four component spinor © has only 4

degrees of freedom instead of the usual 8 (as desired to match the degrees of freedom
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in 2#). In fact, any four component spinor that has Pp¥ related to WPy, is given the
special name of majorana spinor.

The coordinates 0, 6 obey the anticommutation relations

{0,,05} =0 {04,0,} =0 {0,051 =0 (A.66)

and as in Section A.3.2,

O = €agh” 0" = P9, Os = ;50 6% = 94, (A.67)

Once again, the convention for products is

02 = 6°0, = €*70,0, 0% = 0,0% = ¢, ,0°0° (A.68)

Differentiation with respect to the fermionic spacetime coordinates is taken as

d d 5
- = o _— ﬁ g 6
05 =1 7t =14, (A.69)

and integration of a function f is defined by

d . d
/d@af:%f /d@ I=at (A.70)

A grassmann volume is also defined as
d*0 = d*0d*0 (A.71)

where the d?0 and d?6 represent products of the differentials, or

420 = d6°do, = P dfydo, %0 = dBdf* = e ;5d0° (A.72)

Given the fermionic components 6%, 6%, a superspacetime vector, 2, may be
constructed

2= (2",0%,0%). (A.73)

The components of z4 may be rotated into each other: a rotation from the basis z

to 2’ is given as
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274 = RA2P (A.74)

R’, R', R’
R =|R°, R°, R (A.75)
R°, RP, RP,
and
0 022 0 J0 5 | O
024 024028 [82AR s } 0z'B (A.76)

The standard transformation of superspacetime coordinates from x* to y* is from
the rotation matrix

v 1: v pa 1:na v
0, 05,09 —5i0%7,

Ris=10 6, 0 (A.77)
0 0 64
yielding the transformations
0 0
0 0 ., oA O
% — % — naaéﬂ ay’/ (A?g)
0 0 ey O
55~ B5e + 16 Uad‘@_yV (A.80)

A.5.2 Supersymmetric Models

A generic lagrangian involving the chiral superfields ®; and based upon the
gauge groups G—with corresponding vector superfields Vg and field strengths 75—

is

_1 4 2 /2 TG «a
L_z/d@lc+/dew+ de;%OGTr[WG) (7c),] +he  (A81)

where
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K =279 exp(2VETY) " Op + - - (A.82)

W= L + %,ﬂ'j@icbj + %Y”kd)i@j@k + E%MCI)i@j@kd)g +-o (A83)
InZ7 =InZ7 + A70° + (AT) 76° — (m?) 7 6°6” (A.84)

Z7  wavefunction renormalization constant
(AT),7 = (A7) = 4% (A.85)
P = ¢; (A.86)

1 10 9

TG = SW6 T Mowwab (A.87)
wg = a_lg = ;l—g (A.88)

gc the gauge coupling constant for the group G
© the vacuum polarization angle
Mg the gaugino mass for the group G

Ce quadratic casimir invariant for the group G

The signs of the SUSY breaking terms are defined by specifying the SUSY breaking

potential, which is taken to be

1 i i i Lo L3 L 5
Vs = 5 (mQ)Z ‘P @j + 0P, + ab j@i@j + ga ]k@i@jgk + IZ ]kegigjgkge +h.c.
(A.89)
The anomalous dimensions, v;/; and §-functions, (7, 317, % B at a given energy
scale p are
. dln Z; Cliay - ; .
167%y; = 167 ~ =16 —20 57 — Y, Y A.90
, dL’ 1 . .
[ = _—_[J~0 A91
iy du 1. . . .
ij — A ] A.92
B dinp 2t + (i =) (A.92)
g dYik 1. ..
ijk i . .
y = dinp _ﬁyjp%k t=k)+ <k (A.93)
Boe = Y [Z Sty — 300} (A.94)
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with the last equal sign being valid to one-loop. The value C}C?;(@i) is the quadratic
Casimir invariant in the representation R (which is the representation of the field

®,) of the group G, while SIC%;(%) is the dynkin index—the definitions of these objects

may be found in Appendix A.4.
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Appendix B
SUSYLR+AMSB: Briefing

This appendix provides an overview of the model given in the text, providing
a complete picture of the physics starting at the high scale vz and coming down to

the electroweak scale. Schematically, the model is pictured in Figure B.1, starting

SU(?))C X SU(Q)L X SU(Q)R X U(]-)B—L

vp + ‘ (A%), (A°), (S) AMSB
NMSSM-t 4 valid

Mmpce T

NMSSM
Mgusy +

Figure B.1: A schematic of the SUSYLR+AMSB model showing the complete pic-
ture through all the energy scales.

above the vg scale as a parity-conserving SUSYLR model with AMSB generating
the SUSY breaking. The theory then breaks down to the NMSSM++ below vg,
maintaining the anomaly mediated supersymmetry breaking through the threshold
decoupling. The AMSB form is valid until mpe ~ Fy, below which the theory is

the NMSSM. This remains the theory until Mgysy, where the superpartners are
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integrated out leaving the standard electroweak model.

B.1 Above vp

B.1.1 Particles

B.1.1.1

B.1.1.2

_ (UK
1K — dK

C

1K —

Leptons

I/e _
() e
C ec
= (—vz>

Quarks

Que = ()

dic c _ [ 5k
() e (%)

sz(
QgK:(

1578

b
b

—t¢

K is the color index, running over r,¢,b for Q and 7,g,b for Q°

B.1.1.3

Higgs
®0 ot )
(I)a — cia ua
(q)da (b?m
AT
At A+ _
A= V2 A=
0 At
(A —ﬁ> (
A c0
A" = ( \c/g— AAC) A® =
A Y]
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B.1.2 Symmetries

B.1.2.1 Gauge Group

Fields SU(B)C X SU(Q)L X SU(?)R X U(]-)B—L
Q 3 2 1 +%
Q° 3 1 2 -4
L 1 2 1 -1
Le 1 1 2 +1
o, 1 2 2 0
A 1 3 1 +2
A 1 3 1 -2
JANS 1 1 3 —2
A 1 1 3 +2
S 1 1 1 0
N 1 1 1 0
B.1.2.2 SU(2)
Q—-UrLQ Q° — UgrQ* L —ULL L¢ — UgrL®
A — U, AU} A= UAU A UpAUL,  A°— UgA°U},
d, — U, ®,U}, S— S N — N (B.8)
B.1.2.3 Parity
Q — -1 Q" L« —im L°" ®, — !
A — AT A« A S,N — S* N* (B.9)
B.1.2.4 Discrete Zs
(Q?QC7 L? LC7A7 AC? ¢(17 N) - (82]17(/3(Q7 QC7 L? LC7A7AC7(EUI’N) (Blo)
(A, A% — eM/3(A, A°) (B.11)
S — 9 (B.12)
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B.1.3 Superpotential

Wsusyrr = Wy + Wy + Wasenr + Wasvnr (B.13)
Wy = iysQ 1 ®aQ° + iyt L' 1o®, L + 1 f LT AL + i f L' AL (B.14)

Wit = (Mag — As8) [Tr(AA%) + Te(AR) ] + MESS + SpséS* + 3hsS®

1
+AYN Tr (@ @y + SN N3 (B.15)

Wosenn = AZ: STH(A4) + MA—Q T2 (A°AY)

>\B A A )\CB cCAC ACAC
 ireg THAL) Tr(AA) 78 Tr(AAT) Tr(A°AY)
AC A cCAC
Vo Tr(AA) Tr(A A )
)\S A 2 /\g CAC 2
ST Tr(AA) S T Tr(A°A°) S* + (B.16)
AD

Y - o
Wasvnr = Moo Tr(AA) Tr(A°A°) + M:;qﬁ Tr(AA) Tr(A°A°)

+

)\U ab B ¢ ab _
+ —(Mp)ltb Tr(AA) Tr(@aTTQCI)ng) + 8\4‘;)@ Tr(ACAC) Tr(q)aTTzq)sz)

2,62 _ 2\¢ ¢ab _
2 Tr(AD, P A @ Tr (A ®l md, A°
Vo r(AD, P A) + Vo (AP 7 A°)

)‘N A 2 /\CN CAC 2
Tr(AA) N Tr(A°A°) N
* Mp, H(AA) N+ PIO t )

A Am
A @aTT(I)T 52 4 S2N? ... B.17
Mp1¢ ( 2 2) Mp1¢ ( )
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B.1.4 Potential

V =Vp+Vp+ Vs + Vsenr (B.18)
Vie = |Ma = AsSP Tr[|A7° + AP + A" + |4
+ | =As[Tr(A°A") + Tr(AA) | + Mg + psS + ks S?

1
Vo =3 EG; DS DG + EG; DSDY + D%, (B.20)

‘ 2

(B.19)

1 N .
Vg = §(M3g3g53 + Mo(we)® (W) + Ma(wi)? (W) + Mpib? + hC.)
+ mQQQTQ + méCQCTQC + m%LTL+ m%CLcTLc
+mA Tr|AP + m Te|A]” + m% N[ + (m3),, ®Le,

+ mA Tr|A? + mi. Tr|A) + m3[S)”

xe X 1
+ [—2M§F¢§ — MaFy[Tr(AA") + Tr(AQ) | — SpsFeS™ + h.c}
+ {CLZ)Q@bQC +al LO, L+ a;, L°A°L° + af LAL

1 1
+ gaﬁsﬁg + aill’vﬂTr(QaTTngTg) + gawﬂ?’ (B.21)

C

_ )\AF¢ 2 A M 2 cAC
Vean = | S0 T(A4) + 70 (4°4)

X

/\BF¢ A A ACBFd) CAcC XCRC
22  man) m(aa) + 2B miacay e

AcFy .
+ 5 T (AR) Tr(AA")

AsF. . A,
+ 5 Te(AR) 87+ P T (ACAT) 87

X X -

+ 205 man) Tacan + 22T (an) T(a%a")

Pl Pl

ab c\ab
+ Pl (AR) Tr(@Tmpym) + P (aa) Te(@T ey )
Mp, Mp,

2\, € F, - 22X\ e F,
Pl Pl

ANES iy (AA) N2+ 288y (a0A) N2
Pl Pl

AT, M F,
4 =0 Tr(@ffggm) S?+ M§2M2 + h.c. (B.22)
Mp, Mp

Tr (éCT QQaTT 2@1)AC)
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B.1.5 F-terms

1
—FLC = ifc [m1(L Tt — TBLCTLC) + i3 LT (1 + 73) L — ﬁLCTﬁLC]

—e  2)XS —ey e 2MS
+ (Ma = AsS) A"+ 2 Tr(A°A°) A+ =8
X M
c Ty xe . AS xea2  2AD ¢, AN xen2
+ —Tr(AA) A + —=AS"+ —Tr(AA) A+ —AN
Mx (_)_ Mx— "  Mp (ad)a Mpy—
¢ ab—c 2)\¢ ab
+ )7 A Tl”(@aTTQ@bﬁ) + e
Mp,

AC 1 AC
{T 2@37 2P A — ) Tr (T 2@37 LA ) }
Pl

TH(AA°) A°
X

(B.23)
—Fl = (Ma — AsS) A® + 2 Tr(A°A%) A° + 225 Tr(A°A°) A
A E T My TS EE T My S

C A c )\g cQ2 25\0 AA) AC >\CN c T2
+ —Tr(AA) A° + A°S + —Tr(AA) A"+ —A°N
My (A4) A Mx= 2 " Mp (A4) A Mp = =
¢ ab 2)\¢ ab
_|_( 0') éCTr(@ZTQQbTZ) + o€
Mpy

1
[QCT 2@37 2P, — ) Tr (éCT 2@37 2@1,) }
Pl

(B.24)
1
—Ff = 5”71 (L"7sL — m5L"L) + i L' (1 + 75) L — 1L 7, L]

F(Ma—Xs8) A+ 2ATH(AA) A+ 22 TH(AA) A
X

X
C cAC\ A )\S ] 2>\D CAC )\N A A2
+ == Tr(ACA) A+ Z2AS? + 22 Tr(ACAY) A + == AN
Mx (__)_ Mx——  Mp (a'a)a Mpy—
M) g€ | )
+ ué T (2T 78, 7) + o | D, mPI RA — = Tr (2,707 nA)
MPI Mpl 2
(B.25)
; 24 _ 2\p _
—Fl = (Ma = XsS) A+ 22 Tr(AA) A+ 22 Tr(AA) A
MX MX
)\C' AxC )\S 2 2j\D ACAC\ A >\N 2
+ = Tr(ACA) A+ 2AS? + ZZETr(AAY) A + == AN
Mx (__)_ Mx——  Mp (__)_ Mpy—
Ay )% 2y €% 1
+ ué Te(B7 708, 7) + =2 | AD, B 7y — = Tr(AD, 7 PF 7)
MPI Mpl 2
(B.26)
—F§ = —Xg[Tr(A°A%) + Tr(AA) | + MZ + psS + ksS”
A _ 2\E
+ M_j Tr(%) S+ A5 T

S TH(AME) S + 1t @I lym) S+ TSN

P1

(B.27)
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B.1.6 D-terms
D§ = 590 Te(20°1 798" 4+ 2571 794 - 0,70} )
D§ = —%gR Tr (2AT 79N 4+ 2AT79A + @ZT‘@Q)
Dpr = —gBL TT(éCTéC - ACTAC>
B.2 NMSSM++: vgp — Fy

B.2.1 Particles

B.2.1.1 Leptons
() ) )
B.2.1.2 Quarks

N R we= (1)

K is the color index, running over r,g,b

B.2.1.3 Higgs
H I Hi_a H I HC(l)CL
ve ), o \H,
At A=A
) e
A0 &L A A
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(B.29)

(B.30)

(B.31)

(B.32)

(B.33)
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B.2.2 Symmetries

B.2.2.1 Gauge Group

Fields SU(3)C X SU(?)L X U(l)y
Q 3 2 +z
u’ 3 1 —12
de 3 1 +§
L 1 2 -1
e 1 1 +2

H,., 1 2 +1
Hy, 1 2 —1
A 1 3 +2
A 1 3 -2

A~ 1 1 —4

At 1 1 +4
N 1 1 0

B.2.3 Superpotential

WNMSSM++ = ﬁngTTQHuauC + ﬁngTTngadc + ﬁy%LTTQHdaec
+ foefAT e i f LT AL
1 1
+INYNH] moHgy + i ¢H. 1o Hyy + §MN¢N2 - g/@N?'
+ 1ipe AT AT 4+ pa¢ Tr(AA)

B.2.4 F-terms
) _
~FL = 5/ [n(L L — mL L) +inL (1 + ) L = 1L L] + pal

—F. =y Q  mut — INCNH Y m — ip™ HYym
_Fft’da = y;Q" rod’ + iy§ LT e’ + INNH 70 + ip* H., 7
_F;\} = ﬁ)\abﬂgaTZEdb —+ MNM"‘ HMQ

100

(B.35)



B.2.5 D-terms

DY = —

1
Dy = —59v [ﬂlaﬂua

1
301 |HY 7O 0+ HY, 7 H

B.2.6 Anomalous Dimensions

B.2.6.1

B.2.6.2

Leptons

Quarks

Qs =
7o =
Vie =
Yue =
Toe =

Yde =

"°\ “\ °°\ “\ “\ °°\
— Y|~ [~ (= J[—= J|=

o
(-
o
(a0
o
(a0

ax,  a

A

ax,  a ax,  a

Ye Ye T Yy Yp —
8
39 gL

2y — 93 —

)
Y)

2y Yy —
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18

1
2

3
Ly

8

ggy

22
9Y

)

-39

8
~g3 —

)

3
<y7' Y- + 6‘f3’2 - 59% -

1)

2yl + 4!]23!2 — 2g7)

3
5 (41fal” —247)

3
2

~ H,H ol

2

2

2

2Y

1

18

g%)

(B.41)

(B.42)

(B.43)
(B.44)

(B.45)

(B.46)

(B.47)
(B.48)
(B.49)
(B.50)
(B.51)

(B.52)



B.2.6.3 Higgs

1 abx \ a
=T33 2]/1| + 207\ (B.53)
1 * ac C a
Vi, = —33 <3y§‘ yp + AN =0 b( ) ) (B.54)
1 * a* cax \ ¢ a
Vi, = 87<3y§ Yy YT Yy XA — ”( > > (B.55)
1
Ta = =55 @S+ 20L +2A° - 497 - 267) (B.56)
1
Y2 = —55 (491 — 29v) (B.57)
1
Yae- = =g (23 + 2|12 + 2/ 1] - 8g7) (B.58)
1
Ae-- = 55 (8 B.59
A 87r2( Iy ) ( )

B.2.7 AMSB Scalar Masses

B.2.7.1 Leptons

mg. = m3, [40f4 + 814 (f5 + f3) — 48f29% — 529y ] (B.60)

mz, = ma, 84! +12f7 (fF + f5) — 6/ (39 + 797) — 139y — 997 ] (B.61)
2 4

Mye = {40}82 + 8fc2 (fcl + ch) - 48f 29Y 5291/] (B.62)

m%g = My, [84f2 + 12f2 (fl + f3) - 6f2 (39Y + 79%) - 139?/ - 9gﬂ (B'63)

mZ. =mZ, [40f% + 10(y5ys)* + 815 (fA + f2) + 6(ysvs)® + 12y0y2 (2% + f3)

+ 8N INPYY — A8 f2 g5 — Gyt (9v + 97) — 529y ] (B.64)
m7, =ma, [8415 + 52y + 3(ylys)” + 125 (f7 + £3) + 2022 (9f3 + 2£%)

+ XYY — 6 £3 (g3 + Tgi) — 3ytyt(9y + 91) — 139y — 9g1] (B.65)
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B.2.7.2 Quarks

1 m, . m m, . m m,. m n. n n. n m._ . m

mg, = §!man\2 [54(y™y™)” + 54(yryi™)? + 9y v (Cyry + yiyl) + 9y yr)?
+ NN YY + Oyt NTPYI N — gty (1393 + 2747 4 2493)
— yy (Tgy + 2797 + 48¢3) — 13¢5 — 81g} + 7243 (B.66)
1 m o\ m n n

mp. = §|man|2 [108(y"y™)” + 18y, yi yyyy + 18y" APy AP
— 2y"y" (1395 + 27g7 + 2443) — 2089y + 72g5] (B.67)
1 m. . m m._ . m m._m n._n n._n

mi = §!man\2 [108(yy"yi)? + 18(y"y™)? + 18y i (yi'ys' + yry™)
+ 18Ny P NPyl — 2y (Tgy + 2797 + 4893) — B2gy + T2g5]  (B.68)

B.3 NMSSM: F; — Msusy

B.3.1 Particles

B.3.1.1 Leptons
Ve (Vv [ Vr
ne() (%) ne(0) s
B.3.1.2 Quarks

Qix = (Zi) 2k = (Zi) sk = <Zi§) (B.70)

K is the color index, running over r,g,b

B.3.1.3 Higgs

H, — (gﬁ) Hy = (gg) (B.71)
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B.3.2 Symmetries

B.3.2.1 Gauge Group

Fields SU(3)C X SU(?)L X U(l)y
Q 3 2 +z
u® 3 1 -2
de 3 1 +§
L 1 2 —1
e 1 1 +2
H, 1 2 +1
H, 1 2 —1
N 1 1 0

B.3.3 Superpotential

Winssm = 10u QT o Hyu® + iyaQ mo Had® + iy L' 7o Hye®

1 1
+IANH 9 Hy + §MNN2 + gf»@N?’ (B.72)
B.3.4 Potential
Vinssm = Ve + Vo + Vs (B.73)
Vi = AP INP (I, P + [Hyf*) + BAH 2 Hy + v N + w827 (B.74)
1 2 1 2
Vo =< (gh +02) (LI = |H,*)" + 598 | HLH,| (B.75)
Ves  +m¥ HIH, +m?% HiH,+miN'N
1 1
+ i \NH mH , — §bNﬂ2 + ga,{ﬂ?’ + h.c. (B.76)
B.3.5 F-terms
—F, = Q" mu’ — IANH (B.77)
—Fl = 1yaQ" 12d’ + iy L moe” + IANH . ) (B.78)
—F% =iNH o H ; + unN + kN? (B.79)
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B.3.6 D-terms

1
Df = —Sgu|HlrH, + Hi7H,| (B.80)

1
Dy = —sgv [HLH, - H}H,| (B.81)
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